WO2014192909A1 - ハイドロゲルを組み込んだ積層化細胞シート - Google Patents
ハイドロゲルを組み込んだ積層化細胞シート Download PDFInfo
- Publication number
- WO2014192909A1 WO2014192909A1 PCT/JP2014/064384 JP2014064384W WO2014192909A1 WO 2014192909 A1 WO2014192909 A1 WO 2014192909A1 JP 2014064384 W JP2014064384 W JP 2014064384W WO 2014192909 A1 WO2014192909 A1 WO 2014192909A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- cell
- hydrogel
- cell sheet
- laminated
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/52—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0657—Cardiomyocytes; Heart cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/20—Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2513/00—3D culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/54—Collagen; Gelatin
Definitions
- the present invention relates to a laminated cell sheet incorporating a hydrogel, preferably gelatin hydrogel, more preferably gelatin hydrogel particles, and a method for producing the same.
- cell transplantation treatment using a cell sheet has been studied as a medical treatment for replenishing cells to a tissue deficient due to disease or damage.
- adult cardiomyocytes hardly proliferate, cardiomyocytes deficient due to ischemic heart disease or the like are irreversibly damaged, and cardiomyocyte replacement therapy is being studied.
- cardiomyocyte sheet prepared from cardiomyocytes, but sufficient engraftment of cardiovascular cell fractions is essential for the success of such cardiac regeneration therapy.
- methods using cardiac cell fractions derived from embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) (Non-patent Documents 1 and 2, and Patent Document 1) as such cardiomyocytes have been studied. Yes.
- Non-patent Document 3 transplantation of a three-layer cardiac tissue sheet prepared from these cells suppressed the decrease in cardiac function in rats after myocardial infarction, but this was more than the direct effect of induced cardiomyocytes. This was due to suppression of left ventricular remodeling due to an indirect paracrine effect including angiogenesis by cytokines released from (Non-patent Document 3).
- Gelatin hydrogel is a biodegradable biomaterial that can be used as a cell culture substrate or scaffolding material. For example, when the gel particles are contained in cultured cell aggregates, the supply of oxygen is improved and the cell state is improved. There is a report that it is improved (Non-Patent Document 4 and Patent Document 2).
- the present invention relates to a method of laminating cell sheets using gelatin hydrogel particles.
- An object of the present invention is to prevent the decrease in the number of viable cells in the cell sheet and the accompanying cell function by stacking the cell sheets.
- the present inventors have laminated a cell sheet using a specific type of hydrogel material, preferably gelatin hydrogel material, more preferably gelatin hydrogel particles, so that the sheet It was found that the number of viable cells increased significantly. Furthermore, even when five or more sheets were stacked by this method, it was confirmed that the cells survived and their functions were improved.
- a specific type of hydrogel material preferably gelatin hydrogel material, more preferably gelatin hydrogel particles
- the present invention includes the following features.
- [1] A method for laminating cell sheets, comprising laminating cell sheets using hydrogel.
- the hydrogel is made of a material or a form that enables diffusion and movement of a substance necessary for cell survival.
- [3] The method according to [1] or [2], wherein the hydrogel is a gelatin hydrogel.
- [4] The method according to any one of [1] to [3], wherein the hydrogel is hydrogel particles.
- the method according to [4], wherein the hydrogel gel particles are gelatin hydrogel particles.
- [6] The method according to [5], wherein the gelatin hydrogel particles are gelatin hydrogel particles obtained by forming intermolecular crosslinks in gelatin.
- the hydrogel preferably hydrogel particles, more preferably gelatin hydrogel particles, comprising the step of adding the per unit area 500 [mu] g / cm 2 cell sheet in an amount of 2000 [mu] g / cm 2, [8] or The method according to [9].
- a pharmaceutical composition comprising the laminated cell sheet according to [11] or [12].
- the cell sheet is a heart cell sheet containing cardiomyocytes, endothelial cells and mural cells.
- cardiomyocytes are cells produced from pluripotent stem cells.
- endothelial cell is a cell produced from a pluripotent stem cell.
- mural cells are cells produced from pluripotent stem cells.
- the pluripotent stem cell is an induced pluripotent stem cell (iPS cell).
- [20] A laminated cell sheet laminated by the method according to any one of [14] to [19].
- [21] The laminated cell sheet according to [20], wherein four or more cell sheets are laminated.
- [22] A therapeutic agent for heart disease comprising the laminated cell sheet according to any one of [11], [12], [20] and [21].
- the method of the present invention makes it possible to stack cell sheets while the cells remain alive. Moreover, application to cell replacement therapy becomes possible using the obtained cell sheet.
- FIG. 1 shows the protocol for heart cell sheet formation.
- EC endothelial cell
- VEGF vascular endothelial growth factor
- cAMP cyclic adenosine monophosphate
- MC mural cell
- CM cardiomyocyte
- CsA cyclosporin A
- MC Each means medium change.
- FIG. 2 illustrates a cell sheet lamination process using gelatin hydrogel fine particles according to the method of the present invention.
- FIG. 2a shows a process in which the sheet is allowed to stand in a state of being spread on a gelatin-coated culture dish
- FIG. 2b shows a process of aspirating the medium and fixing the culture dish and the sheet.
- FIG. 2a shows a process in which the sheet is allowed to stand in a state of being spread on a gelatin-coated culture dish
- FIG. 2b shows a process of aspirating the medium and fixing the culture dish and the sheet.
- FIG. 2c shows a step of dropping gelatin hydrogel fine particles on the cell sheet.
- FIG. 2d shows the step of incubation at 37 ° C. for 30 minutes.
- FIG. 2e shows the process of stacking another cell sheet after gelatin hydrogel treatment.
- FIG. 2f shows an illustration of the cell sheet after repeating 5 layers.
- FIG. 3 shows a tissue specimen photograph and a quantified result of the laminated sheet (5 layers) of the present invention. Fig.
- FIG. 3A shows a target group (Control) laminated without using gelatin hydrogel, a group in which 250 ⁇ g of gelatin hydrogel fine particles (particle size 20 to 32 ⁇ m in a dry state) are dropped on each layer (Low dose), gelatin hydrogel fine particles A hematoxylin eosin (HE) -stained image of a group to which 750 ⁇ g (dry particle size of 20 to 32 ⁇ m) is dropped (High ⁇ dose group) is shown.
- black arrowheads indicate gelatin hydrogel fine particles.
- FIG. 3B shows the comparison of the cell sheet wall thickness between the groups on the left, and the comparison of the HE staining positive cell region area between the groups on the right.
- FIG. 4 shows a tissue specimen photograph and a quantified result of the laminated sheet (5 layers) of the present invention.
- FIG. 4A shows a target group (Control) laminated without using gelatin hydrogel, a group in which a dry particle size of 20 ⁇ m or less was dropped, a group in which a dry particle size of 20 to 32 ⁇ m was dropped, and a dry particle size.
- the hematoxylin eosin (HE) stained image of the group in which 32-53 ⁇ m was dropped is shown.
- FIG. 4B the left figure shows the comparison of the cell sheet wall thickness between the groups, and the right figure shows the comparison of the HE staining positive cell region area between the groups.
- FIG. 4A shows a target group (Control) laminated without using gelatin hydrogel, a group in which a dry particle size of 20 ⁇ m or less was dropped, a group in which a dry particle size of 20 to 32 ⁇ m was dropped, and a dry particle size.
- FIG. 5 shows a case where the laminated sheet (5 layers) of the present invention was transplanted on the anterior heart surface of a myocardial infarction model rat prepared from athymic nude rats (male, 10-12 weeks old) by a known method. It is the graph which showed the time-dependent change of the left ventricle (LV) shortening rate (%).
- (1) represents the sham surgery untreated group
- (2) represents a laminated sheet not using gelatin hydrogel (5 layers)
- (3) represents the laminated sheet of the present invention.
- hydrogel is a substance that can contain a large amount of water, such as oxygen, water, water-soluble nutrients, polypeptides such as enzymes and cytokines, etc. It means a material or form that can easily diffuse and move substances necessary for cell survival, waste products, etc., and is generally biocompatible.
- the shape or form of the hydrogel is not particularly limited as long as it can be incorporated into a cell sheet. For example, it is particulate, granular, film-like, tube-like, disk-like, mesh-like, mesh-like, porous, or suspended. Alternatively, various shapes or forms such as a dispersed state can be used.
- hydrogel particles obtained as a result of solidification of an aqueous solution containing colloidal particles are preferable.
- Any particle having any of the above hydrogel properties can be used.
- the polysaccharide include, but are not limited to, glycosaminoglycans such as hyaluronic acid and chondroitin sulfate, starch, glycogen, agarose, pectin, and cellulose.
- Proteins include, but are not limited to, collagen and its hydrolysates gelatin, proteoglycan, fibronectin, vitronectin, laminin, entactin, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, etc. .
- particles made of a material that is biocompatible and is degraded by cells in vivo are suitable for the present invention, and more preferably particles made of gelatin. Therefore, in the present invention, preferred hydrogel particles are gelatin hydrogel particles.
- hydrogel particles preferably hydrogel particles, more preferably gelatin hydrogel particles, in order to enhance cell culture conditions and proliferation
- a cell adhesion protein and its active peptide, or a biologically functional sugar, oligosaccharide, polysaccharide or the like coated or immobilized can also be used.
- the gelatin hydrogel particles used in the present invention are fine gelatin particles obtained by forming crosslinks between gelatin molecules by giving chemical reaction, thermal dehydration treatment, radiation, ultraviolet rays, electron beam irradiation, etc. between gelatin molecules. It is a hydrogel.
- a condensing agent that forms a chemical bond between water-soluble carbodiimide such as EDC, propylene oxide, diepoxy compound, hydroxyl group, carboxyl group, amino group, thiol group, and imidazole group can be used.
- Gelatin in the present invention means denatured collagen which is irreversibly changed to a water-soluble protein by cleaving a salt bond or a hydrogen bond between peptide chains of collagen by acid or alkali, or enzymatic treatment, It may be collected from animals or plants, or genetically modified collagen may be used.
- the gelatin used in the present invention may be either acidic gelatin or basic gelatin.
- acidic gelatin refers to gelatin prepared by alkali treatment of collagen and having an isoelectric point of less than 7.0 and not less than 2.0, preferably not more than about 6.5 and not less than about 4.0, more preferably About 5.5 or less and about 4.5 or more are contemplated.
- the “basic gelatin” means gelatin having an isoelectric point prepared by acid treatment of collagen of about 7.0 or more and about 13.0 or less, preferably about 7.5 or more and about 10.0 or less, more preferably From about 8.5 to about 9.5 is contemplated.
- IEP Niita Gelatin's sample isoelectric point
- basic gelatin Nitta Gelatin's sample IEP 9.0 or the like can be used.
- More preferred is “acidic gelatin” having an isoelectric point of about 5.0.
- the degree of crosslinking of gelatin can be appropriately selected according to the desired water content, that is, the level of bioabsorbability of the hydrogel.
- the preferred ranges of gelatin and crosslinker concentrations in preparing the gelatin hydrogel are a gelatin concentration of about 1 to about 20 w / w% and a crosslinker concentration of about 0.01 to about 1 w / w%.
- the crosslinking reaction conditions There are no particular restrictions on the crosslinking reaction conditions, but for example, the reaction can be carried out at about 0 to about 160 ° C. for about 1 to about 48 hours.
- concentration of gelatin and the crosslinking agent and the crosslinking time increase, the degree of crosslinking of the hydrogel increases, and the bioabsorbability of the gelatin hydrogel decreases.
- thermal dehydration crosslinking may be performed at high temperature under reduced pressure.
- the thermal dehydration crosslinking can be carried out under a reduced pressure of about 0.1 Torr, for example, at about 80 to about 160 ° C., preferably about 120 to about 140 ° C. for about 1 to about 48 hours.
- the degree of swelling of the hydrogel particles varies depending on the degree of cross-linking, and when used for a laminated cell sheet, the degree of cross-linking of the hydrogel need not be particularly limited and can be implemented.
- the degree of crosslinking can be represented by, for example, the water content (water swollen hydrogel weight / dry hydrogel weight ⁇ 100), and the water content of the hydrogel particles used in the present invention is not particularly limited, but about 85 to about 99%.
- Gelatin hydrogel particles can be prepared by a known method.
- a stirring motor for example, manufactured by Shinto Kagaku Co., Ltd., Three One Motor, EYELA miniDC Stirrer, etc.
- a Teflon (registered trademark) propeller are attached, A gelatin solution is put into a device fixed together, and oil such as olive oil is added thereto and stirred at a speed of about 200 to about 600 rpm to form a W / O type emulsion. It can be produced by forming a bridge between them.
- acetone, ethyl acetate or the like is added and stirred, and uncrosslinked gelatin particles are recovered by centrifugation.
- the collected gelatin particles are further washed with acetone, ethyl acetate, etc., then 2-propanol, ethanol, etc., and then dried.
- particles having a necessary size may be appropriately screened according to the purpose. You may produce by bridge
- gelatin aqueous solution previously emulsified in olive oil (for example, using a vortex mixer Advantec TME-21, homogenizer, polytron PT10-35, etc.) is dropped into olive oil to make fine particles.
- a prepared W / O emulsion may be prepared, and an aqueous crosslinking agent solution may be added thereto to cause a crosslinking reaction.
- the gelatin hydrogel particles thus obtained are collected by centrifugation, washed with acetone, ethyl acetate, etc., and further immersed in 2-propanol, ethanol, etc. to stop the crosslinking reaction.
- the obtained gelatin hydrogel particles are washed successively with distilled water containing 2-propanol and Tween 80, distilled water, etc., and then used for cell culture.
- a surfactant or the like may be added or sonication (preferably within about 1 minute under cooling) may be performed.
- the average particle size of the obtained gelatin hydrogel particles varies depending on the gelatin concentration, the volume ratio of the gelatin aqueous solution and olive oil, the stirring speed, and the like at the time of preparing the particles.
- the particle diameter is about 500 nm to about 1000 ⁇ m, and particles having a necessary size may be appropriately screened and used according to the purpose.
- particle size may be described as “particle size”.
- particle size”, “particle size” and “particle size” are used interchangeably. Further, by pre-emulsifying, gelatinous gelatin hydrogel particles having a particle size of about 50 nm to about 20 ⁇ m or less can be obtained.
- particles having a size of about 50 nm to about 1 ⁇ m can be obtained by causing phase separation from the aqueous solution state and self-assembling.
- Phase separation is achieved by a known technique such as addition of a second component, change in pH of an aqueous solution, ionic strength, and the like.
- the preferred particle size obtained by sieving is from about 50 nm to about 1000 ⁇ m, from about 500 nm to about 1000 ⁇ m, more preferably from about 1 ⁇ m to about 200 ⁇ m, and even more preferably from about 10 to about 50 ⁇ m. 20 to 32 ⁇ m.
- the particle size since the particle size may swell in the solvent, it is preferable that the particle size is represented by the particle size in a dry state.
- hydrogel particles other than gelatin hydrogel particles can also be prepared from hydrogel by a similar method or a known method.
- the viable cell region area and wall thickness of the laminated cell sheet are measured by the method as described in Example 1 described later. Can determine the optimum range of particle sizes.
- Cells used to make cell sheets are, but not limited to, mammalian cells, including humans, such as somatic cells, their precursor cells or mixed cells thereof.
- the cell sheet is a sheet-like cell aggregate in which cells are connected by intercellular bonding.
- the cell type is not particularly limited, but the cell is a mammalian cell including a human, for example, a somatic cell, a precursor cell thereof, or a mixed cell thereof.
- the cells include, but are not limited to, cardiomyocytes, endothelial cells (for example, vascular endothelial cells and lymphatic endothelial cells), wall cells (for example, pericytes), muscle cells (for example, skeletal muscle) Cells and smooth muscle cells), epithelial cells (eg, epidermal cells, dermal cells, gastrointestinal epithelial cells, respiratory / respiratory epithelial cells, esophageal epithelial cells, renal pelvic epithelial cells, ureteral epithelial cells, bladder epithelial cells, urethral epithelium) Cells and prostate duct epithelial cells), chondrocytes, periodontal ligament cells, nervous system cells (for example, nerve cells and glial cells), hair papilla cells, bone cells, their progenitor cells and mixed cells thereof .
- cardiomyocytes for example, vascular endothelial cells and lymphatic endothelial cells
- wall cells for example, pericytes
- These cells may be cells contained in a tissue isolated by any method, or may be a cell line established from the tissue.
- cells derived from pluripotent stem cells by any method may be used.
- the induction method used at this time can be a method well known to those skilled in the art, and is not particularly limited. Examples thereof include a method of forming an embryoid body as described in JP-T-2003-523766.
- cardiomyocytes means cells expressing at least cardiac troponin (cTnT) or ⁇ MHC.
- cTnT is exemplified by NCBI accession number NM_000364 for humans and NM_001130174 for mice.
- ⁇ MHC is exemplified by NCBI accession number NM_002471 for humans, and NM_001164171 for mice.
- endothelial cell means a cell expressing any one of PE-CAM, VE-cadherin, and von Willebrand factor (vWF).
- the mural cell means a cell expressing SmoothSmuscle actin (SMA).
- the PE-CAM is exemplified by NCBI accession number NM_000442 in the case of humans, and NM_001032378 in the case of mice.
- VE-cadherin is exemplified by NCBI accession number NM_001795 for humans and NM_009868 for mice.
- vWF NCBI accession number NM_000552 is exemplified for humans, and NM_011708 is exemplified for mice.
- SMA is exemplified by NCBI accession number NM_001141945 for humans and NM_007392 for mice.
- the pluripotent stem cell that can be used in the present invention is a stem cell that has pluripotency that can be differentiated into all cells existing in a living body and also has proliferative ability, and is not particularly limited.
- embryonic stem (ES) cells embryonic stem (ntES) cells derived from cloned embryos obtained by nuclear transfer
- GS cells sperm stem cells
- EG cells embryonic germ cells
- induced pluripotency Examples include sex stem (iPS) cells, cultured fibroblasts, and pluripotent cells derived from bone marrow stem cells (Muse cells).
- Preferred pluripotent stem cells are induced pluripotent stem cells (“iPS cells”) from the viewpoint that they can be obtained without destroying embryos, eggs, etc. in the production process.
- IPS cells can be produced by introducing reprogramming factors into any somatic cells.
- the reprogramming factor is, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15 -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1, etc. genes or gene products are exemplified, and these reprogramming factors may be used alone or in combination. Also good.
- Somatic cells include, but are not limited to, fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells. , Passage cells, and established cell lines.
- somatic cells include, for example, (1) neural stem cells, hematopoietic stem cells, mesenchymal stem cells, tissue stem cells such as dental pulp stem cells (somatic stem cells), (2) tissue progenitor cells, (3) lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, enterocytes, spleen cells, pancreatic cells (exocrine pancreas cells, etc.), brain cells, lung cells, kidney cells Examples thereof include differentiated cells such as fat cells.
- somatic cells having the same or substantially the same HLA genotype as the transplant destination individual from the viewpoint that rejection does not occur.
- substantially the same means that the HLA genotype matches the transplanted cells to such an extent that an immune response can be suppressed by an immunosuppressive agent.
- HLA-A, HLA-B And somatic cells having an HLA type in which 3 loci of HLA-DR or 4 loci plus HLA-C are matched.
- cardiomyocytes, endothelial cells and mural cells can be simultaneously produced from induced pluripotent stem cells (“iPS cells”).
- iPS cells induced pluripotent stem cells
- A Step of producing cardiomyocytes from induced pluripotent stem cells
- b Step of culturing the cardiomyocytes obtained in step (a) in the presence of vascular endothelial growth factor (VEGF)
- VEGF vascular endothelial growth factor
- cardiomyocytes, endothelial cells and mural cells can be produced in the same manner from stem cells such as embryonic stem cells (“ES cells”) instead of induced pluripotent stem cells.
- stem cells such as embryonic stem cells (“ES cells”) instead of induced pluripotent stem cells.
- cardiomyocytes can be produced from pluripotent stem cells reported by Laflamme MA et al. (Laflamme MA & Murry CE, Nature 2011, Review).
- a method for producing cardiomyocytes by forming cell clusters (embryoid bodies) by suspension culture of induced pluripotent stem cells, myocardium in the presence of a substance that suppresses BMP signaling
- a method for producing cells WO2005 / 033298
- a method for producing cardiomyocytes by sequentially adding Activin A and BMP WO2007 / 002136
- producing cardiomyocytes in the presence of a substance that promotes activation of the canonical Wnt signaling pathway WO2007 / 126077
- a method of isolating Flk / KDR positive cells from induced pluripotent stem cells and producing cardiomyocytes in the presence of cyclosporin A WO2009 /
- the method may further comprise a step of removing undifferentiated cells from the mixed cells including cardiomyocytes, endothelial cells and mural cells prepared by the above steps. it can.
- this method includes the following steps. (I) a step of culturing induced pluripotent stem cells in a medium containing Activin A (ii) a step of further culturing in a medium containing BMP4 and bFGF after step (i)
- induced pluripotent stem cells are prepared and separated by a known method, and cultured by a method such as suspension culture or adhesion culture using a coated culture dish, preferably adhesion culture.
- a separation solution having mechanical, protease activity and collagenase activity for example, Accutase (TM) and Accumax (TM)
- a separation solution having only collagenase activity may be used.
- it is a method of dissociating using a separation solution having only collagenase activity and separating finely mechanically.
- the induced pluripotent stem cell to be used it is preferable to use a colony cultured until it becomes 80% confluent with respect to the used dish.
- the suspension culture means culturing cells in a non-adherent state in a culture dish, and is not particularly limited, but artificially treated (for example, extracellular matrix, etc.) for the purpose of improving adhesion to cells.
- artificially treated for example, extracellular matrix, etc.
- a coating treatment with polyhydroxyethyl methacrylic acid (poly-HEMA) for example, a coating treatment with polyhydroxyethyl methacrylic acid (poly-HEMA)
- it culture cultivates in arbitrary culture media with the culture dish by which the coating process was carried out.
- the coating agent examples include matrigel (BD), collagen, gelatin, laminin, heparan sulfate proteoglycan, entactin, and combinations thereof.
- Matrigel is preferable. More preferably, it is an adhesion culture by the Matrigel sandwich method in which induced pluripotent stem cells are adhered to a culture dish coated with Matrigel, and Matrigel is further added to coat the entire induced pluripotent stem cells with Matrigel.
- the medium in this step can be prepared using a medium used for animal cell culture as a basal medium.
- the basal medium include IMDM medium, Medium ⁇ 199 medium, Eagle's'Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Doulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium Etc. are included. Preferred is RPMIRP1640 medium.
- the medium may contain serum or may be serum-free.
- albumin transferrin, Knockout Serum Replacement (KSR) (serum substitute for FBS during ES cell culture), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acid, insulin, collagen precursor, It may contain one or more serum replacements such as trace elements, 2-mercaptoethanol, 3'-thiolglycerol, lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential amino acids, vitamins, growth factors, One or more substances such as antibiotics, antioxidants, pyruvate, buffers, inorganic salts may also be included.
- KSR Knockout Serum Replacement
- Preferred growth factors include Wnt1, Wnt3, Wnt3a, Wnt4, Wnt7a, TGF- ⁇ , Activin A, Nodal, BMP2, BMP4, BMP6, BMP7, GDF, bFGF and VEGF. At least in this step, it is desirable to use Activin A (for example, (recombinant) human Activin A) as a growth factor.
- Activin A for example, (recombinant) human Activin A
- an RPMI medium containing L-glutamine, B27 supplement and Activin A is exemplified.
- the concentration of Activin A added to the medium is, for example, 10 ng / mL, 25 ng / mL, 50 ng / mL, 60 ng / mL, 70 ng / mL, 80 ng / mL, 90 ng / mL, 100 ng / mL, 110 ng / mL, 120 ng / mL, 130 ng / mL, 140 ng / mL, 150 ng / mL, 175 ng / mL or 200 ng / mL, but not limited thereto.
- the concentration of Activin A added to the medium is 100 ng / mL.
- the culture temperature is not limited to the following, but is about 30 to 40 ° C., preferably about 37 ° C.
- the culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferably about 2 to 5%. is there.
- the culture time is, for example, 1 day to 5 days, preferably 1 day.
- Step of culturing in a medium containing BMP and bFGF> when the previous step is performed by suspension culture, the obtained cell population may be cultured as it is in an arbitrary medium in a coated culture dish.
- the coating agent include matrigel (BD), collagen, gelatin, laminin, heparan sulfate proteoglycan, entactin, and combinations thereof. Matrigel is preferable.
- the culture may be continued by exchanging the medium.
- the medium used in this step can be prepared using a medium used for animal cell culture as a basal medium.
- the basal medium include IMDM medium, Medium ⁇ 199 medium, Eagle's'Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Doulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium Etc. are included.
- RPMIRP1640 medium It is desirable that the medium does not contain serum.
- albumin transferrin, sodium selenite, ITS-X (Invitrogen) (containing insulin, transferrin, sodium selenite), Knockout Serum Replacement (KSR) (serum replacement of FBS during ES cell culture) ), N2 supplements (Invitrogen), B27 supplements (Invitrogen), fatty acids, insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, etc. It may also contain one or more substances such as lipids, amino acids, L-glutamine, Glutamax, non-essential amino acids, vitamins, growth factors, antibiotics, antioxidants, pyruvate, buffers, inorganic salts and the like.
- Preferred growth factors in the present invention include Wnt1, Wnt3, Wnt3a, Wnt4, Wnt7a, TGF- ⁇ , Activin A, Nodal, BMP2, BMP4, BMP6, BMP7, GDF, bFGF and VEGF. At least in this step, it is desirable to use BMP4 (eg, (recombinant) human BMP4) and bFGF (eg, (recombinant) human bFGF) as growth factors.
- BMP4 eg, (recombinant) human BMP4
- bFGF eg, (recombinant) human bFGF
- an RPMI medium containing L-glutamine, B27 supplement, BMP4 and bFGF is exemplified.
- the concentration of BMP4 added to the medium is, for example, 0.1 ng / mL, 0.5 ng / mL, 1 ng / mL, 2.5 ng / mL, 5 ng / mL, 6 ng / mL, 7 ng / mL, 8 ng / mL, 9 ng / mL , 10 ng / mL, 11 ng / mL, 12 ng / mL, 13 ng / mL, 14 ng / mL, 15 ng / mL, 17.5 ng / mL, 20 ng / mL, 30 ng / mL, 40 ng / mL or 50 ng / mL. It is not limited.
- the concentration of BMP4 added to the medium is 10 ng / mL.
- the concentration of bFGF added to the medium is, for example, 0.1 ng / mL, 0.5 ng / mL, 1 ng / mL, 2.5 ng / mL, 5 ng / mL, 6 ng / mL, 7 ng / mL, 8 ng / mL, 9 ng / mL , 10 ng / mL, 11 ng / mL, 12 ng / mL, 13 ng / mL, 14 ng / mL, 15 ng / mL, 17.5 ng / mL, 20 ng / mL, 30 ng / mL, 40 ng / mL or 50 ng / mL. It is not limited.
- the concentration of bFGF added to the medium is 10 ng / mL.
- the culture temperature is not limited to the following, but is about 30 to 40 ° C., preferably about 37 ° C.
- the culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferably about 2 to 5%. is there.
- the culture time is, for example, 1 day to 10 days, preferably 4 days.
- cardiomyocytes obtained by the above-described method are further cultured in the presence of VEGF, whereby mixed cells in which cardiomyocytes, endothelial cells and wall cells have a desired composition ratio can be produced.
- the obtained cardiomyocytes may be cultured in an arbitrary medium in a coated culture dish when the pre-process is a cell population after suspension culture.
- the coating agent include matrigel (BD), collagen, gelatin, laminin, heparan sulfate proteoglycan, entactin, and combinations thereof. Matrigel is preferable.
- the cells obtained by adhesion culture in the above-described step may be continuously cultured by exchanging the medium.
- the medium used in this step can be prepared using a medium used for animal cell culture as a basal medium.
- the basal medium include IMDM medium, Medium ⁇ 199 medium, Eagle's'Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Doulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, and Fischer's medium. Etc. are included. Preferred is RPMIRP1640 medium. It is desirable that the medium does not contain serum.
- albumin transferrin, sodium selenite, ITS-X (Invitrogen) (containing insulin, transferrin, sodium selenite), Knockout Serum Replacement (KSR) (serum replacement of FBS during ES cell culture) ), N2 supplements (Invitrogen), B27 supplements (Invitrogen), fatty acids, insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, etc. May also contain one or more substances such as lipids, amino acids, L-glutamine, Glutamax, non-essential amino acids, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, etc. .
- Preferred growth factors include Wnt1, Wnt3, Wnt3a, Wnt4, Wnt7a, TGF- ⁇ , Activin A, Nodal, BMP2, BMP4, BMP6, BMP7, GDF, bFGF and VEGF. At least in this step, it is desirable to use VEGF as a growth factor.
- RPMI-1640 medium containing L-glutamine, B27 supplement and VEGF is exemplified.
- the concentration of VEGF added to the medium is, for example, 10 ng / mL to 500 ng / mL, 25 ng / mL to 300 ng / mL, 40 ng / mL to 200 ng / mL, 50 ng / mL to 100 ng / mL, 60 ng / mL to 90 ng / It can be in the range of mL or 65 ng / mL to 85 ng / mL.
- the concentration of VEGF added to the medium is 50 ng / mL to 100 ng / mL.
- the concentration of VEGF added to the medium is 10 ng / mL, 25 ng / mL, 50 ng / mL, 55 ng / mL, 60 ng / mL, 65 ng / mL, 70 ng / mL, 75 ng / mL, 80 ng / mL, 85 ng / It may be, but is not limited to, mL, 90 ng / mL, 95 ng / mL, 100 ng / mL, 110 ng / mL, 120 ng / mL, 130 ng / mL, 140 ng / mL, 150 ng / mL or 200 ng / mL.
- the concentration of VEGF added to the medium is 75 ng / mL.
- the culture temperature is not limited to the following, but is about 30 to 40 ° C., preferably about 37 ° C.
- the culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferably about 2 to 5%. is there.
- the culture time is, for example, 4 to 20 days (for example, 5 to 15 days), preferably 10 days.
- the cell composition ratio of cardiomyocytes, endothelial cells and mural cells, as measured by FACS analysis, produced by the above method is not limited to the following, but is not limited to the following: cardiomyocytes 40-80%, endothelial 1-20% of cells, 1-45% of mural cells, and 0.1-10% of undifferentiated cells. At least endothelial cells are preferably contained in an amount of about 3 to 12%.
- the composition ratio of cardiomyocytes, endothelial cells and mural cells is 62.7% cardiomyocytes, 7.9% endothelial cells, 18.3% mural cells, mixed cells of 2.7% undifferentiated cells, or 45.6 ⁇ 3.8% cardiomyocytes, endothelium Examples include mixed cells having a composition ratio of 9.9 ⁇ 1.7% cells and 41.8 ⁇ 3.3% mural cells.
- the cell composition ratio of cardiomyocytes, endothelial cells, and mural cells according to the present invention can be arbitrarily changed depending on the concentration of VEGF and other various culture conditions. It can be arbitrarily changed within a range that can be maintained.
- any method capable of separating cardiomyocytes, endothelial cells and wall cells in the mixed cells from undifferentiated cells can be employed. Separation of cardiomyocytes, endothelial cells and mural cells from undifferentiated cells may be a method of extracting only undifferentiated cells from mixed cells based on the index of undifferentiated cells, or cardiomyocytes, endothelial cells Alternatively, a method of taking out cardiomyocytes, endothelial cells and mural cells from the mixed cells based on the index of mural cells may be used. Preferably, the former method is used in this step.
- the indicator of undifferentiated cells can be, for example, a gene or protein that is specifically expressed in undifferentiated cells.
- genes or proteins are well known in the art (Cell., 2005 Sep 23; 122 (6): 947-56, Stem Cells., 2004; 22 (1): 51-64, Mol Biol Cell., 2002 Apr; 13 (4): 1274-81), for example, Oct3 / 4, Nanog (above, transcription factor), SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 ( Examples include cell surface antigens), but are not limited thereto.
- a cell surface antigen is preferably used, and TRA-1-60 is particularly preferably used as the index.
- indicators for cardiomyocytes, endothelial cells, and mural cells include, but are not limited to, cardiac troponin-T (cTnT) (cardiomyocytes), VE-cadherin (endothelial cells), PDGFRb (mural cells), and the like. .
- cTnT cardiac troponin-T
- VE-cadherin endothelial cells
- PDGFRb peripheral cells
- the removal of undifferentiated cells in this step is performed using a method such as flow cytometry (FACS) or magnetic cell separation (MACS) based on the above index.
- FACS flow cytometry
- MACS magnetic cell separation
- the step of removing undifferentiated cells from the mixed cells captures the undifferentiated cells with the TRA-1-60 antibody, and the captured undifferentiated cells (TRA-1-60 positive cells) are immunomagnetic. This is done by removing by the conventional method (MACS).
- the mixed cells after the step of removing undifferentiated cells may be composed only of cardiomyocytes, endothelial cells and mural cells, or any cells in addition to cardiomyocytes, endothelial cells and mural cells It may be included. Any cell may contain undifferentiated cells.
- the cells are composed of a (meth) acrylamide compound, an N- (or N, N-di) alkyl-substituted (meth) acrylamide derivative (JP 2010-255001), Or it can culture
- a culture device a culture device in which poly-N-isopropylacrylamide is fixed is exemplified.
- this culture equipment can also be purchased from Cellseed as UpCell.
- a culture device having a terephthalate (poly (ethyleneterephthalate); PET) film is exemplified, and these culture devices can be used as appropriate when forming cells into a sheet.
- the cell sheet when the cell sheet includes cardiomyocytes, it is desirable that the cell sheet is a “cardiac cell sheet” composed of mixed cells including cardiomyocytes, endothelial cells and wall cells.
- the cardiomyocytes when the cardiomyocytes are mainly contained (for example, more than 80% per total number of cells), the cardiomyocytes are referred to as “cardiomyocyte sheets” for the sake of convenience.
- a method for producing such a cardiac cell sheet from pluripotent stem cells is prepared by individually producing cardiomyocytes, endothelial cells and mural cells, and mixing them, as in the method described in WO2012 / 133945. It may be performed, or may be performed by simultaneously inducing three types of differentiation induction methods in combination, as in the method described in PCT / JP2013 / 058460 (2 above).
- cardiomyocytes refer to cells expressing cardiac troponin (cTnT) or ⁇ MHC.
- cTnT is exemplified by NCBI accession number NM_000364 for humans and NM_001130174 for mice.
- ⁇ MHC is exemplified by NCBI accession number NM_002471 for humans, and NM_001164171 for mice.
- endothelial cells refer to cells expressing any one of PE-CAM, VE-cadherin, and von Willebrand factor (vWF).
- the mural cell means a cell expressing SmoothSmuscle actin (SMA).
- the PE-CAM is exemplified by NCBI accession number NM_000442 in the case of humans, and NM_001032378 in the case of mice.
- VE-cadherin is exemplified by NCBI accession number NM_001795 for humans and NM_009868 for mice.
- vWF NCBI accession number NM_000552 is exemplified for humans, and NM_011708 is exemplified for mice.
- SMA is exemplified by NCBI accession number NM_001141945 for humans and NM_007392 for mice.
- the cell sheets obtained by the above-described method can be laminated.
- the above-described hydrogel for example, gelatin hydrogel, preferably hydrogel particles, for example gelatin hydrogel particles, is dispersed in a phosphate buffer solution (PBS) or a culture solution with respect to the surface of the cell sheet. (Including application to a part or the entire surface).
- the hydrogel preferably hydrogel particles, may be in a dry state or a state swollen with PBS or a culture solution.
- hydrogel such as gelatin hydrogel
- hydrogel particles such as gelatin hydrogel particles
- the hydrogel used at this time such as gelatin hydrogel, preferably hydrogel particles such as gelatin hydrogel particles, may be used by dissolving in an isotonic solution at an arbitrary concentration.
- examples of the isotonic solution used here include physiological saline and PBS.
- the amount of hydrogel to be added or applied for example gelatin hydrogel, preferably hydrogel particles, for example gelatin hydrogel particles, is, for example, 100 ⁇ g to 6000 ⁇ g, 200 ⁇ g to 5000 ⁇ g per unit area (cm 2 ) of the cell sheet, 300 ⁇ g ⁇ 4000 ⁇ g, a 400 ⁇ g ⁇ 3000 ⁇ g or 500 [mu] g ⁇ about 2000 [mu] g,, preferably, an amount of 2000 [mu] g / cm 2 from the unit area of the cell sheet (cm 2) per 500 [mu] g / cm 2.
- the cell sheets to be stacked may be performed by stacking the stacked cell sheets, or may be performed by stacking a single cell sheet on the stacked cell sheets.
- the hydrogel, preferably hydrogel particles, more preferably gelatin hydrogel particles are added between the sheets.
- the hydrogel, preferably hydrogel particles, and more preferably gelatin hydrogel particles are added between the first cell sheet or laminated cell sheet and the second cell sheet or laminated cell sheet.
- the laminated cell sheet can be preferably two or three cell sheets.
- the laminated cell sheet of the present invention has an advantageous feature that even when four or more cell sheets are laminated, the number of cells increases and the wall thickness of the laminated cell sheet increases.
- the amount of the hydrogel, preferably hydrogel particles, more preferably gelatin hydrogel particles added between the cell sheets is a part of the cell sheet surface (for example, 10 to 30% or more of the entire surface, preferably 40 to 70% or more) or an amount that spreads over the entire surface.
- the amount per unit area of the cell sheet is as illustrated above.
- the number of cell sheets to be laminated may be appropriately changed depending on the purpose of use, and may be 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 15 sheets The above or 20 or more is exemplified.
- the thickness of the laminated sheet is desirably about 500 ⁇ m or more, 600 ⁇ m or more, 700 ⁇ m or more, 800 ⁇ m or more, 900 ⁇ m or more, or 1 mm or more.
- the laminated cell sheet obtained by the above-described method can be used for treatment by directly affixing it to a portion deficient due to a disease or disorder. Therefore, in this invention, the pharmaceutical composition containing a laminated cell sheet can be provided.
- a sheet having an arbitrary number of cells or an arbitrary size or number can be used according to the animal species to be affected, the size of the disease treatment site, the disease treatment method, and the like.
- the disease to be treated is appropriately selected depending on the cell type.
- a therapeutic agent for corneal epithelial disease using a corneal epithelial cell sheet or oral mucosal epithelial cell sheet heart failure using a cardiomyocyte sheet or a heart cell sheet
- Chronic heart failure severe heart failure, ischemic heart disease, myocardial infarction, acute myocardial, chronic myocardial infarction, cardiomyopathy, ischemic cardiomyopathy, myocarditis, hypertrophic cardiomyopathy, dilated phase hypertrophic cardiomyopathy, dilated cardiomyopathy
- a therapeutic agent for esophageal epithelial cell sheet or oral mucosal epithelial cell sheet reconstructing esophageal epithelium, suppressing inflammatory reaction, preventing esophageal stricture, periodontal ligament cell sheet, pulp stem cell sheet
- Examples include a therapeutic agent for periodontal tissue regeneration and a therapeutic agent for osteoarthritis using a cartilage sheet containing chond
- Example 1 Preparation of laminated heart cell sheet ⁇ Mouse ES cell line> A mouse ES cell line (EMG7) engineered to control EGFP expression by the aMHC promoter described in Yamashita JK et al., FASEB J. 19: 1534-6, 2005, and Zambrowicz BP to express TFP constitutively Et al., Proc Natl Acad Sci USA, 94: 3789-3794, 1997, was used for the ES cell line (TFP-ROSA).
- EMG7 mouse ES cell line engineered to control EGFP expression by the aMHC promoter described in Yamashita JK et al., FASEB J. 19: 1534-6, 2005, and Zambrowicz BP to express TFP constitutively Et al., Proc Natl Acad Sci USA, 94: 3789-3794, 1997, was used for the ES cell line (TFP-ROSA).
- Flk + cells were generated by previously reported methods (Yamashita J, et al. Nature. 408: 92-6, 2000 or Yamashita JK, et al. FASEB J. 19: 1534-6, 2005). Briefly, EMG7 or TFP-ROSA was cultured for 4 days on gelatin-coated dishes using differentiation medium ( ⁇ MEM supplemented with 10% fetal bovine serum and 5x10 5 mol / L 2-mercaptoethanol), followed by FACS Were prepared by purifying Flk positive cells.
- differentiation medium ⁇ MEM supplemented with 10% fetal bovine serum and 5x10 5 mol / L 2-mercaptoethanol
- ⁇ Mixed cells of endothelial cells and mural cells A mixed cell of endothelial cells and mural cells was produced from the TFP-ROSA-derived Flk + cells obtained by the above-described method using the method reported so far (Yamashita J, et al. Nature. 408: 92-6 , 2000 or Yurugi-Kobayashi T, et al. Arterioscler ThrombVasc Biol. 26: 1977-84, 2006). Briefly, it was obtained by culturing on a gelatin-coated dish for 3 days using a differentiation medium supplemented with 50 ng / ml VEGF and 0.5 mmol / L 8-bromo-cAMP.
- Cardiomyocytes were prepared from EMG7-derived Flk + cells obtained by the above-described method using the methods reported so far (WO2009 / 118928 or Yan P, et al. Biochem Biophys Res Commun. 379: 115-20, 2009). Briefly, it was obtained by culturing on mitomycin C-treated OP9 cells for 4 days using a differentiation medium supplemented with 1 to 3 ⁇ g / mL Cyclosporin-A, and then separating the GFP positive fraction.
- ⁇ Cardiac cell sheet> Using the above Flk + cells, mixed cells of endothelial cells and mural cells, and cardiomyocytes, the cells were prepared by the method described in Masumoto H, et al, Stem Cells. 301196-205, 2012 shown in FIG. Briefly, 2.5 ⁇ 10 4 to 4.0 ⁇ 10 4 TFP-ROSA-derived Flk + cells were seeded on a 12-well temperature-sensitive culture dish (UpCell, Celseed), and 5.0 ⁇ 10 4 Five above-mentioned mixed cells of endothelial cells and mural cells and 5.0 ⁇ 10 5 above-mentioned cardiomyocytes were seeded in the same culture dish, and cultured at 37 ° C.
- a differentiation medium supplemented with VEGF.
- VEGF vascular endothelial growth factor
- gelatin derived from bovine bone, isoelectric point 5.0, weight average molecular weight 1.0 ⁇ 10 5 , provided by Nitta Gelatin Co., Ltd.
- the emulsion was cooled to 0 ° C. and stirred at a rotational speed of 400 rpm for 1 hour to gel the aqueous gelatin solution. Subsequently, 200 ml of cooled acetone was added, and dehydration was performed by stirring for 15 minutes at a rotation speed of 200 rpm. Thereafter, the solution in the flask was collected in a 50 ml falcon tube and centrifuged at 4 ° C. and a rotation speed of 5000 rpm for 5 minutes. After removing the supernatant, it was washed with cold acetone and stirred with a homogenizer (rotational speed 10,000 rpm) for 1 minute.
- a homogenizer rotational speed 10,000 rpm
- gelatin particles were fractionated by a sieve (20, 32, and 53 ⁇ m opening), collected according to particle size, and dried in vacuo to obtain dry particles.
- gelatin hydrogel particles were obtained by chemically cross-linking gelatin particles by thermally dehydrating the uncrosslinked gelatin particles at 140 ° C. for 48 hours under reduced pressure in a vacuum oven. Dry particles with a particle size of 20 ⁇ m or less, 20-32 ⁇ m, and 32-53 ⁇ m were used.
- the self-pulsation that was more sustained than the control group was observed in the obtained laminated heart cell sheet.
- a heart cell sheet laminated without adding gelatin hydrogel particles was used as a control.
- a cardiac cell sheet (about 1 cm in diameter) prepared using a 12-well plate is similarly dissolved in a gelatin hydrolyzate having a dry particle size of 20 to 32 ⁇ m dissolved in a PBS solution at a concentration of 0.1 mg / ⁇ l.
- a gelatin hydrolyzate having a dry particle size of 20 to 32 ⁇ m dissolved in a PBS solution at a concentration of 0.1 mg / ⁇ l.
- a cardiac cell sheet (wall thickness of about 1 mm) was obtained in 15 layers by the same process.
- Example 2 Transplantation test of laminated cardiac cell sheet into myocardial infarction model rat A known technique (Masumoto H, et al., Stem Cell 30: 1196-) from athymic nude rats (male, 10-12 weeks old) 1205 (2012); Nishina T, et al., Circulation 104: 1241-1245 (2001); Sakakibara Y., et al., Circulation 104: 106: 1193-1197 (2002))
- the laminated heart cell sheet (5 layers) prepared in Example 1 was transplanted to the anterior heart wall surface by the method of Masumoto et al. (Above), and echocardiography was performed before ligation (baseline) and after myocardial infarction.
- the cell sheet in the production of the laminated cell sheet of the present invention, can be laminated while the cells are alive, and therefore, the obtained cell sheet can be used for cell replacement therapy. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Cardiology (AREA)
- Cell Biology (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Rheumatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Urology & Nephrology (AREA)
- Pharmacology & Pharmacy (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Botany (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Materials For Medical Uses (AREA)
- Developmental Biology & Embryology (AREA)
- Vascular Medicine (AREA)
- Immunology (AREA)
Abstract
Description
[1]ハイドロゲルを用いて細胞シートを積層化することを含む、細胞シートの積層方法。
[2]前記ハイドロゲルが、細胞生存に必要な物質の拡散移動を可能にする材料または形態からなる、[1]に記載の方法。
[3]前記ハイドロゲルが、ゼラチンハイドロゲルである、[1]または[2]に記載の方法。
[4]前記ハイドロゲルが、ハイドロゲル粒子である、[1]~[3]のいずれかに記載の方法。
[5]前記ハイドロゲルゲル粒子が、ゼラチンハイドロゲル粒子である、[4]に記載の方法。
[6]前記ゼラチンハイドロゲル粒子が、ゼラチンに分子間架橋を形成させて得られるゼラチンハイドロゲル粒子である、[5]に記載の方法。
[7]前記ゼラチンハイドロゲル粒子が、乾燥状態で粒子サイズ20μmから32μmの粒子から成る、[5]または[6]に記載の方法。
[8] 前記ハイドロゲル、好ましくはハイドロゲル粒子、より好ましくはゼラチンハイドロゲル粒子を第1の細胞シートもしくは積層細胞シートと第2の細胞シートもしくは積層細胞シートとの間に添加する工程を含む、[1]~[7]のいずれかに記載の方法。
[9]前記積層細胞シートが、2もしくは3枚の細胞シートからなる、[8]に記載の方法。
[10]前記ハイドロゲル、好ましくはハイドロゲル粒子、より好ましくはゼラチンハイドロゲル粒子を、細胞シートの単位面積あたり500μg/cm2から2000μg/cm2の量で添加する工程を含む、[8]または[9]に記載の方法。
[11][1]~[10]のいずれかに記載の方法で積層化された積層化細胞シート。
[12]細胞シートを4枚以上積層化した、[11]に記載の積層化細胞シート。
[13][11]または[12]に記載の積層化細胞シートを含む医薬組成物。
[14]前記細胞シートが、心筋細胞シートである、[1]~[10]のいずれかに記載の方法。
[15]前記細胞シートが、心筋細胞、内皮細胞および壁細胞を含む心臓細胞シートである、[1]~[10]のいずれかに記載の方法。
[16]前記心筋細胞が多能性幹細胞から製造された細胞である、[14]または[15]に記載の方法。
[17]前記内皮細胞が多能性幹細胞から製造された細胞である、[15]または[16]に記載の方法。
[18]前記壁細胞が多能幹細胞から製造された細胞である、[15]~[17]のいずれかに記載の方法。
[19]前記多能性幹細胞が誘導多能性幹細胞(iPS細胞)である、[14]~[18]のいずれかに記載の方法。
[20][14]~[19]のいずれかに記載の方法で積層化された積層化細胞シート。
[21]細胞シートを4枚以上積層化した、[20]に記載の積層化細胞シート。
[22][11]、[12]、[20]および[21]のいずれかに記載の積層化細胞シートを含む心疾患治療剤。
本明細書中で使用される「ハイドロゲル」とは、水を大量に含むことができる物質であり、酸素、水、水溶性の栄養物、酵素やサイトカイン、等のポリペプチド、などの細胞生存に必要な物質、老廃物などを容易に拡散移動させることができる材料または形態であって、通常、生体適合性であるものを意味する。ハイドロゲルの形状もしくは形態としては、細胞シートに組み込むことができれば特に限定されないが、例えば、粒子状、顆粒状、フィルム状、チューブ状、ディスク状、網状、メッシュ状、多孔質状、懸濁状もしくは分散状、などの種々の形状もしくは形態のものが使用できる。その中でも、コロイド粒子を含有する水溶液が固相化した結果としてなるハイドロゲル粒子が好ましい。上記のハイドロゲルの性質をもつものであれば、いずれの材料からなる粒子でも利用することができる。例えば、ポリアクリルアミド、ポリアクリル酸、ポリヒドロキシエチルメタアクリレート、ポリビニルアルコール、ポリ乳酸、ポリグリコール酸などの水溶性、水親和性、もしくは水吸収性合成高分子、多糖、タンパク質、核酸などを化学架橋したハイドロゲルからなる粒子である。多糖としては、ヒアルロン酸やコンドロイチン硫酸などのグリコサミノグリカン、デンプン、グリコーゲン、アガロース、ペクチン、セルロース等が挙げられるが、これらに限定されない。また、タンパク質としては、コラーゲンおよびその加水分解物であるゼラチン、プロテオグリカン、フィブロネクチン、ビトロネクチン、ラミニン、エンタクチン、テネイシン、トロンボスポンジン、フォンビルブランド因子、オステオポンチン、フィブリノーゲン等が挙げられるが、これらに限定されない。好ましくは、生体適合性で、かつ、生体内で細胞により分解される材料からなる粒子が本発明には適しており、さらに好ましくはゼラチンからなる粒子である。従って、本発明において、好ましいハイドロゲル粒子は、ゼラチンハイドロゲル粒子である。
ゼラチンハイドロゲル粒子以外のハイドロゲル粒子についても類似の手法または公知の手法でハイドロゲルから作製しうる。また、種々の粒径のハイドロゲル粒子を用いて積層化細胞シートを作製したのち、後述の実施例1に記載のような手法で積層化細胞シートの生存細胞領域面積や壁厚を測定することによって最適な範囲の粒径を決定しうる。
細胞シートを作製するための細胞は、限定されないが、ヒトを含む哺乳動物の細胞であり、例えば体細胞、その前駆細胞またはそれらの混合細胞である。
本発明において細胞シートとは、細胞間結合により細胞同士が連結されたシート状の細胞集合体である。細胞の種類は特に問わないが、細胞は、ヒトを含む哺乳動物の細胞であり、例えば体細胞、その前駆細胞またはそれらの混合細胞である。具体的には、細胞として、非限定的に、心筋細胞、内皮細胞(例えば、血管内皮細胞およびリンパ管内皮細胞など)、壁細胞(例えば、周皮細胞など)、筋細胞(例えば、骨格筋細胞および平滑筋細胞など)、上皮細胞(例えば、表皮細胞、真皮細胞、消化管上皮細胞、呼吸器・気道上皮細胞、食道上皮細胞、腎盂上皮細胞、尿管上皮細胞,膀胱上皮細胞、尿道上皮細胞および前立腺導管上皮細胞など)、軟骨細胞、歯根膜細胞、神経系細胞(例えば、神経細胞およびグリア細胞など)、毛乳頭細胞、骨細胞、これらの前駆細胞およびこれらの混合細胞などが挙げられる。これらの細胞は、任意の方法で単離した組織に含有する細胞であってもよく、または組織から樹立された細胞株であってもよい。この他にも、多能性幹細胞から任意の方法で誘導された細胞であってもよい。この時用いる誘導方法は、当業者に周知の方法を用いることができ、特に限定されないが、例えば、特表2003-523766に記載されているように胚様体を形成させる方法が挙げられる。
本明細書において「心筋細胞」とは、少なくとも心筋トロポニン(cTnT)またはαMHCを発現している細胞を意味する。cTnTは、ヒトの場合NCBIのaccession番号NM_000364が例示され、マウスの場合、NM_001130174が例示される。αMHCは、ヒトの場合NCBIのaccession番号NM_002471が例示され、マウスの場合、NM_001164171が例示される。
(a)誘導多能性幹細胞から心筋細胞を製造する工程
(b)工程(a)で得られた心筋細胞を血管内皮細胞成長因子(VEGF)の存在下で培養する工程
心筋細胞を製造するための別の好ましい方法について、以下に説明する。
(i)誘導多能性幹細胞を、Activin Aを含む培地で培養する工程
(ii)工程(i)の後、さらに、BMP4とbFGFとを含む培地で培養する工程
本工程では、誘導多能性幹細胞を公知の方法で作製して分離し、浮遊培養、コーティング処理された培養皿を用いる接着培養などの方法、好ましくは接着培養、によって培養する。
また、接着培養においては、コーティング処理された培養皿にて、任意の培地中で培養する。コーティング剤としては、例えば、マトリゲル(BD)、コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸プロテオグリカン、またはエンタクチン、およびこれらの組み合わせが挙げられる。好ましくは、マトリゲルである。より好ましくは、マトリゲルでコーティング処理された培養皿へ誘導多能性幹細胞を接着させ、さらにマトリゲルを添加することで、誘導多能性幹細胞全体をマトリゲルでコーティングするマトリゲルサンドイッチ法による接着培養である。
本工程では、前工程が浮遊培養で行われた場合、得られた細胞集団をそのままコーティング処理された培養皿にて、任意の培地中で培養してもよい。コーティング剤としては、例えば、マトリゲル(BD)、コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸プロテオグリカン、またはエンタクチン、およびこれらの組み合わせが挙げられる。好ましくは、マトリゲルである。または、前工程が接着培養で行われた場合、培地の交換により培養を続けてもよい。
本工程では、前述した方法で得られた心筋細胞をさらにVEGFの存在下で培養することにより、心筋細胞、内皮細胞および壁細胞が所望の構成比率から成る混合細胞を製造することができる。
さらに、上記の工程により作製された心筋細胞、内皮細胞および壁細胞の混合細胞から未分化な細胞を除去することが好ましい。
<細胞シート>
本発明において、上記の細胞をシート化するためには、例えば、細胞を(メタ)アクリルアミド化合物、N-(若しくはN,N-ジ)アルキル置換(メタ)アクリルアミド誘導体(特開2010-255001)、又はビニルエーテル誘導体を重合させた温度応答性ポリマーを被覆した培養器材を用いて培養し、温度を変化させることにより、細胞をシート状にて取り出すことができる。ここで好ましい培養器材として、ポリ-N-イソプロピルアクリルアミドを固定した培養器材が例示される。尚、本培養器材は、UpCellとしてセルシード社より購入することもできる。この他にも、温度応答性のコーティング剤として、Chen CH, et al, Biomacromolecules. 7:736-43, 2006に記載のメチルセルロースをコーティングした培養器材またはTakamoto Y, et al, J. Biomater. Sci. Polymer Edn, 18:1211-1222, 2007に記載の2-エトキシエチルビニルエーテル(2-ethoxyethyl vinyl ether)および2-フェノキシエチルビニルエーテル(2-phenoxyethyl vinyl ether)から成るブロック共重合体をコーティングしたポリ(エチレンテレフタレート)(poly(ethyleneterephthalate); PET)フィルムを有する培養器材が例示され、細胞をシート化するにあたり、適宜、これらの培養器材を用いることができる。
本発明において、細胞シートが、心筋細胞を含む場合、心筋細胞、内皮細胞および壁細胞を含む混合細胞からなる「心臓細胞シート」であることが望ましい。このとき、心筋細胞を主として(例えば全細胞数あたり80%超)含むようなとき便宜的に上記の「心臓細胞シート」と区別して「心筋細胞シート」と称する。このような心臓細胞シートを多能性幹細胞から製造する方法は、WO2012/133945に記載された方法のように、心筋細胞、内皮細胞および壁細胞を個々に作製し、作成後、混合させることによって行われてもよく、PCT/JP2013/058460に記載された方法(上記の2.)のように、各分化誘導方法を合わせて、同時に3種誘導することによって行われてもよい。
本発明において、細胞シートを積層化させる方法として、上述の方法で得られた細胞シートを重ねることで積層化することができる。細胞シートを重ねる方法として、任意の培養液中で重ねて、培養液を除去することによって行われ得る。この時、細胞シートの重ねる面に対して、上記のハイドロゲル、例えばゼラチンハイドロゲル、好ましくはハイドロゲル粒子、例えばゼラチンハイドロゲル粒子、をリン酸バッファー溶液(PBS)あるいは培養液に分散させた状態で添加(例えば一部もしくは全面への塗布を包含する。)する。この際、ハイドロゲル、好ましくはハイドロゲル粒子は、乾燥状態でも、PBSあるいは培養液で膨潤させた状態でもよい。ハイドロゲル、例えばゼラチンハイドロゲル、好ましくはハイドロゲル粒子、例えばゼラチンハイドロゲル粒子の添加後、10分以上、好ましくは30分程度、37℃にて静置することが好ましい。この時用いるハイドロゲル、例えばゼラチンハイドロゲル、好ましくはハイドロゲル粒子、例えばゼラチンハイドロゲル粒子は、任意の濃度により等張溶液に溶解させて用いても良い。ここで用いられる等張溶液は、生理的食塩水やPBSなどが例示される。添加もしくは塗布されるハイドロゲル、例えばゼラチンハイドロゲル、好ましくはハイドロゲル粒子、例えばゼラチンハイドロゲル粒子、の量は、例えば、細胞シートの単位面積(cm2)あたり、100μg~6000μg、200μg~5000μg、300μg~4000μg、400μg~3000μg、または500μg~2000μg程度であり、好ましくは、細胞シートの単位面積(cm2)あたり500μg/cm2から2000μg/cm2の量である。
本発明において、上述の方法で得られた積層化細胞シートは、疾患や障害により欠損した部分へ直接貼付することによって、治療に用いることができる。従って、本発明では、積層化細胞シートを含む医薬組成物を提供できる。積層化細胞シートは、疾患の対象となる動物種、疾患の治療部位の大きさ、疾患の治療方法などに応じて任意の細胞数もしくは任意の大きさまたは数のシートを用いることができる。
<マウスES細胞株>
Yamashita JKら, FASEB J. 19:1534-6, 2005に記載のaMHCプロモーターによりEGFPの発現が制御されるよう操作されたマウスES細胞株(EMG7)およびTFPを恒常的に発現するようにZambrowicz BPら, Proc Natl Acad Sci USA, 94:3789-3794, 1997記載の方法で改変されたES細胞株(TFP-ROSA)を用いた。
Flk+細胞は、これまでに報告された方法により作製した(Yamashita J, et al. Nature. 408:92-6, 2000またはYamashita JK, et al. FASEB J. 19:1534-6, 2005)。簡潔には、EMG7またはTFP-ROSAを、分化培地(10%ウシ胎児血清および5x105mol/Lの 2-mercaptoethanolを添加したαMEM)を用いて、ゼラチンコーティングディッシュ上で4日間培養した後、FACSによりFlk陽性細胞を純化することで作製した。
上述の方法で得られたTFP-ROSA由来のFlk+細胞からこれまでに報告された方法を用いて内皮細胞および壁細胞の混合細胞を作製した(Yamashita J, et al. Nature. 408:92-6, 2000またはYurugi-Kobayashi T, et al. Arterioscler ThrombVasc Biol. 26:1977-84, 2006)。簡潔には、50 ng/mlのVEGFと0.5 mmol/Lの8-bromo-cAMPを添加した分化培地を用いて、ゼラチンコーティングディッシュ上で3日間培養することにより得られた。
上述の方法で得られたEMG7由来のFlk+細胞からこれまでに報告された方法を用いて心筋細胞を作製した(WO2009/118928またはYan P, et al. Biochem Biophys Res Commun. 379:115-20, 2009)。簡潔には、1~3μg/mLのCyclosporin-Aを添加した分化培地を用いて、mitomycin C処理をしたOP9細胞上で4日間培養した後、GFP陽性分画を分離することにより得られた。
上記のFlk+細胞、内皮細胞および壁細胞の混合細胞ならびに心筋細胞を用いて、図1に示したMasumoto H, et al, Stem Cells. 301196-205, 2012に記載の方法により作製された。簡潔には、2.5×104から4.0×104のTFP-ROSA由来のFlk+細胞を12 wellの温度感受性培養皿(UpCell、セルーシード社)上に播種し、培養開始4日目に、5.0×105の上述の内皮細胞および壁細胞の混合細胞ならびに5.0×105の上述の心筋細胞を同培養皿へ播種し、VEGFを添加した分化培地を用いて37℃にて培養した。心筋細胞添加4日後(培養開始7日目)に室温に戻すことで培養皿より細胞をシート状に剥離させ、心臓細胞シートを得た。尚、2種の細胞混合後2日目に培地の交換を行った。
三つ口1L容フラスコにオリーブ油(和光純薬工業株式会社製) 600 mlを加え、プロペラで攪拌しながら、40 ℃の湯浴中で1時間加熱した。次に、40 ℃に加熱したゼラチン(牛骨由来、等電点5.0、重量平均分子量1.0×105、新田ゼラチン株式会社から供与)の10 wt%水溶液 20 mlをフラスコに加え、回転速度400 rpmで10分間攪拌することでW/Oエマルジョンを形成させた。このエマルジョンを0 ℃まで冷却し、回転速度400 rpmで1時間攪拌することで、ゼラチン水溶液をゲル化させた。続いて、冷却したアセトン200 mlを加え、回転速度200 rpmで15分間攪拌することで脱水処理を行った。その後、フラスコ内の溶液を50 mlファルコンチューブに回収し、4 ℃中、回転速度5000 rpmで5分間遠心分離した。上清を除去した後、冷却アセトンで洗浄し、ホモジナイザー(回転速度10000 rpm)で1分間攪拌した。続いて、4℃中、回転速度5000 rpmで5分間遠心分離した。再び上清を除去し、洗浄、遠心、この操作を3回繰り返した。冷却アセトンで洗浄しながら、ゼラチン粒子を篩(20, 32, および53 μmオープニング)により分画、粒径別に回収し、真空乾燥することにより乾燥粒子を得た。次に、未架橋ゼラチン粒子を真空オーブンで減圧下、140 ℃で48時間熱脱水処理することによって、ゼラチン粒子を化学架橋することで、ゼラチンハイドロゲル粒子を得た。乾燥状態の粒子径が20μm以下、20~32μm、および32-53μmのものを用いた。
上述の方法において、全ての細胞量を半量にして、24wellプレートを用いて作製された心臓細胞シートをゼラチンコート培養皿に広げた状態で静置し、培地を吸引し培養皿とシートを固定した。この時、心臓シートとしては直径約6mm程度であった。この上に0.1mg/μlの濃度でPBS溶液中へ分散させた乾燥状態の粒子径が20~32μmのゼラチンハイドロゲル粒子を2.5μl(約885μg/cm2)(low dose)または7.5μl(約2654μg/cm2)(high dose)を滴下し、37℃にて30分インキュベートした。続いて、別の心臓細胞シートを分化培地と共に加え、ゼラチンハイドロゲル粒子処理した心臓細胞シートの上に重ね、培地を除去した。同様の操作を繰り返し、心臓細胞シート5枚を積層化させた(図2)。この時、2,3,4,5層目は少しずつ位置をずらして重ねた。最後に、ピペットマンを用いて培養皿底面を沿わせるように分化培地を流し、積層化された心臓細胞シートを培養皿からはがした。
上述した心臓細胞シートの積層化において、乾燥状態の粒子径が20μm以下、20~32μm、および32~53μmのゼラチンハイドロゲル粒子をそれぞれ用いて、心臓細胞シートを積層化させたところ、積層化シートの壁厚および生存細胞領域面積はctrl群(対照群)、20μm以下群、20~32μm群、32~53μm群の4群中で20~32μm群において最も大きかった(図4AおよびB)。 (壁厚; ctrl: 204.7 ± 9.5, n=5 vs. 20μm以下群: 389.1 ± 7.6, n=3 vs. 20-32μm群: 597.1 ± 24.0μm, n=10 vs. 32-53μm群: 333.5 ± 5.7μm, n=3, p < 0.0001, HE染色陽性細胞領域面積; ctrl: 0.03446 ±0.005362, n=3 vs. 20μm以下群: 0.2051 ±0.004676, n=3 vs. 20-32μm群: 0.4746 ±0.04162μm, n=3 vs. 32-53μm群: 0.1487 ±0.003894μm, n=3, p < 0.0001)。
胸腺欠損ヌードラット(雄、10~12週齢)から公知の手法(Masumoto H, et al., Stem Cell 30: 1196-1205 (2012); Nishina T, et al., Circulation 104: 1241-1245 (2001); Sakakibara Y., et al., Circulation 104: 106: 1193-1197 (2002))で作製した心筋梗塞モデルラットの心臓前壁表面に、Masumotoらの方法(上記)により、実施例1で作製された積層化心臓細胞シート(5層)を移植し、心エコー検査を、結紮前(ベースライン)、心筋梗塞後6日目(pre TX)、1週間後、2週間後、4週間後、8週間後、および12週間後に行い、左心室の拡張期径(LVDd)と収縮期径(LVDs)、ならびに、左心室の梗塞壁および非梗塞壁の拡張期壁厚(LVWTd)と収縮期壁厚 (LVWTs)を測定し、左心室(LV)短縮率(FS(%))の経時変化を以下の式から算出した。
FS(%)=(LVDd-LVDs)/LVDd
結果を、図5に示した。図から、ゼラチンハイドロゲル粒子を用いて積層化した心臓細胞シート群が無処置群だけでなくゼラチンハイドロゲル粒子を用いずに積層化した心臓細胞シート群よりも、統計的有意差をもって、心機能を改善させたことが分かる。
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
Claims (22)
- ハイドロゲルを用いて細胞シートを積層化することを含む、細胞シートの積層方法。
- 前記ハイドロゲルが、細胞生存に必要な物質の拡散移動を可能にする材料または形態からなる、請求項1に記載の方法。
- 前記ハイドロゲルが、ゼラチンハイドロゲルである、請求項1または2に記載の方法。
- 前記ハイドロゲルが、ハイドロゲル粒子である、請求項1~3のいずれか1項に記載の方法。
- 前記ハイドロゲルゲル粒子が、ゼラチンハイドロゲル粒子である、請求項4に記載の方法。
- 前記ゼラチンハイドロゲル粒子が、ゼラチンに分子間架橋を形成させて得られるゼラチンハイドロゲル粒子である、請求項5に記載の方法。
- 前記ゼラチンハイドロゲル粒子が、乾燥状態で粒子サイズ20μmから32μmの粒子から成る、請求項5または6に記載の方法。
- 前記ハイドロゲル、好ましくはハイドロゲル粒子、より好ましくはゼラチンハイドロゲル粒子を第1の細胞シートもしくは積層細胞シートと第2の細胞シートもしくは積層細胞シートとの間に添加する工程を含む、請求項1~7のいずれか1項に記載の方法。
- 前記積層細胞シートが、2もしくは3枚の細胞シートからなる、請求項8に記載の方法。
- 前記ハイドロゲル、好ましくはハイドロゲル粒子、より好ましくはゼラチンハイドロゲル粒子を、細胞シートの単位面積あたり500μg/cm2から2000μg/cm2の量で添加する工程を含む、請求項8または9に記載の方法。
- 請求項1~10のいずれか1項に記載の方法で積層化された積層化細胞シート。
- 細胞シートを4枚以上積層化した、請求項11に記載の積層化細胞シート。
- 請求項11または12に記載の積層化細胞シートを含む医薬組成物。
- 前記細胞シートが、心筋細胞シートである、請求項1~10のいずれか1項に記載の方法。
- 前記細胞シートが、心筋細胞、内皮細胞および壁細胞を含む心臓細胞シートである、請求項1~10のいずれか1項に記載の方法。
- 前記心筋細胞が多能性幹細胞から製造された細胞である、請求項14または15に記載の方法。
- 前記内皮細胞が多能性幹細胞から製造された細胞である、請求項15または16に記載の方法。
- 前記壁細胞が多能幹細胞から製造された細胞である、請求項15~17のいずれか1項に記載の方法。
- 前記多能性幹細胞が誘導多能性幹細胞(iPS細胞)である、請求項14~18のいずれか1項に記載の方法。
- 請求項14~19のいずれか1項に記載の方法で積層化された積層化細胞シート。
- 細胞シートを4枚以上積層化した、請求項20に記載の積層化細胞シート。
- 請求項11、12、20および21のいずれか1項に記載の積層化細胞シートを含む心疾患治療剤。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015519955A JP5862915B2 (ja) | 2013-05-31 | 2014-05-30 | ハイドロゲルを組み込んだ積層化細胞シート |
US14/894,610 US10159766B2 (en) | 2013-05-31 | 2014-05-30 | Layered cell sheet incorporating hydrogel |
EP14803665.0A EP3006559B1 (en) | 2013-05-31 | 2014-05-30 | Layered cell sheet incorporating hydrogel |
KR1020157035152A KR101870174B1 (ko) | 2013-05-31 | 2014-05-30 | 하이드로겔을 포함하는 적층화된 세포 시트 |
CN201480030846.8A CN105247041B (zh) | 2013-05-31 | 2014-05-30 | 组入有水凝胶的层叠细胞膜片 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-116388 | 2013-05-31 | ||
JP2013116388 | 2013-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192909A1 true WO2014192909A1 (ja) | 2014-12-04 |
Family
ID=51988931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064384 WO2014192909A1 (ja) | 2013-05-31 | 2014-05-30 | ハイドロゲルを組み込んだ積層化細胞シート |
Country Status (6)
Country | Link |
---|---|
US (1) | US10159766B2 (ja) |
EP (1) | EP3006559B1 (ja) |
JP (1) | JP5862915B2 (ja) |
KR (1) | KR101870174B1 (ja) |
CN (1) | CN105247041B (ja) |
WO (1) | WO2014192909A1 (ja) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105749350A (zh) * | 2016-04-21 | 2016-07-13 | 四川大学 | 一种心肌补片及其制备方法 |
WO2017077985A1 (ja) * | 2015-11-05 | 2017-05-11 | 学校法人東京女子医科大学 | 積層化細胞シート組成物を製造する方法、それにより製造される積層化細胞シート組成物及びその製造装置 |
WO2017110745A1 (ja) * | 2015-12-25 | 2017-06-29 | コニカミノルタ株式会社 | ゼラチン粒子、ゼラチン粒子の製造方法、ゼラチン粒子内包細胞、およびゼラチン粒子内包細胞の製造方法 |
WO2017110746A1 (ja) * | 2015-12-25 | 2017-06-29 | コニカミノルタ株式会社 | ゼラチン粒子、ゼラチン粒子の製造方法、ゼラチン粒子内包細胞、およびゼラチン粒子内包細胞の製造方法 |
JP2017131144A (ja) * | 2016-01-27 | 2017-08-03 | 株式会社リコー | 三次元細胞集合体作製用材料、三次元細胞集合体作製用組成物、三次元細胞集合体作製用セット、組成物収容容器、及び三次元細胞集合体の作製方法 |
WO2017170343A1 (ja) * | 2016-03-29 | 2017-10-05 | 富士フイルム株式会社 | 細胞シートを含有する積層体、心疾患治療剤および細胞シート積層用フィルム |
JP2018042572A (ja) * | 2017-12-22 | 2018-03-22 | 大日本印刷株式会社 | 組織の作製方法 |
WO2018070441A1 (ja) * | 2016-10-12 | 2018-04-19 | 旭硝子株式会社 | 培養細胞構造体の製造方法 |
JP2019050777A (ja) * | 2017-09-15 | 2019-04-04 | 株式会社リコー | 複合体及びその製造方法、並びに細胞接着用基材及びその製造方法 |
EP3366700A4 (en) * | 2015-10-21 | 2019-06-19 | Tokyo Metropolitan Industrial Technology Research Institute | GELATINE, CHEMICALLY MODIFIED PRODUCT THEREOF, AQUEOUS COMPOSITION AND MEDICAL LAMINATE THEREWITH, METHOD OF MANUFACTURING MEDICAL LAMINATE AND CELL LAYER PROCESSING |
WO2019189554A1 (ja) | 2018-03-30 | 2019-10-03 | 国立大学法人京都大学 | 心筋細胞成熟促進剤 |
WO2019189553A1 (ja) | 2018-03-30 | 2019-10-03 | 国立大学法人京都大学 | 複素環化合物 |
CN111050781A (zh) * | 2017-06-30 | 2020-04-21 | 可隆生命科学株式会社 | 用于预防或治疗骨关节炎的药物组合物 |
WO2021065395A1 (ja) * | 2019-10-01 | 2021-04-08 | 国立大学法人大阪大学 | フィブリンシートの製造方法 |
JP2021078377A (ja) * | 2019-11-15 | 2021-05-27 | 株式会社リコー | 積層体 |
JP2021531807A (ja) * | 2018-07-31 | 2021-11-25 | ロキット ヘルスケア インク. | 多層細胞シートの製造方法、及び、これを用いて製造された多層細胞シート |
WO2022059236A1 (ja) * | 2020-09-17 | 2022-03-24 | コニカミノルタ株式会社 | 細胞支持体およびその製造方法、細胞の培養方法ならびに細胞構造体 |
JP2022188204A (ja) * | 2017-09-08 | 2022-12-20 | 国立研究開発法人理化学研究所 | 網膜組織を含む細胞凝集体及びその製造方法 |
WO2024241939A1 (ja) * | 2023-05-19 | 2024-11-28 | 住友化学株式会社 | 積層体 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3010995A1 (en) | 2016-01-25 | 2017-08-03 | Suntory Holdings Limited | Capsule containing functional substance and method for manufacturing said capsule |
KR101894486B1 (ko) * | 2016-12-20 | 2018-09-03 | 인제대학교 산학협력단 | 신경능선줄기세포의 다층세포시트 및 이의 제조방법 |
KR101915367B1 (ko) * | 2016-12-20 | 2018-11-05 | 인제대학교 산학협력단 | 심장줄기세포의 다층세포시트 및 이의 제조방법 |
CN106924817B (zh) * | 2017-03-02 | 2019-12-17 | 浙江大学 | 一种超薄载体细胞片及其制备方法 |
JP6865265B2 (ja) * | 2017-03-02 | 2021-04-28 | 富士フイルム株式会社 | 細胞塊または細胞構造体の包埋剤、細胞塊または細胞構造体含有組成物およびキット |
KR102017948B1 (ko) * | 2017-10-30 | 2019-09-03 | 단국대학교 천안캠퍼스 산학협력단 | 콜라겐 및 실크 피브로인을 포함하는 세포 캡슐화용 복합 하이드로겔 및 이의 제조방법 |
US20200338218A1 (en) * | 2017-11-06 | 2020-10-29 | Yasuhiko Tabata | Hydrogel particle and method for producing same, cell or cell structure each enclosing hydrogel particle therein, method for evaluating activity of cell using hydrogel particle, and use of hydrogel particle as sustained release preparation |
CN109793934B (zh) * | 2017-11-17 | 2021-06-29 | 中国科学院大连化学物理研究所 | 一种组织工程化心肌补片及其制备和应用 |
JP7033095B2 (ja) * | 2019-03-04 | 2022-03-09 | 日清食品ホールディングス株式会社 | 三次元筋組織とその製造方法 |
KR102228619B1 (ko) * | 2019-11-25 | 2021-03-17 | 경희대학교 산학협력단 | 히알루론산 및 폴리에틸렌글리콜을 포함하여 제조된 세포 시트 및 이의 제조방법 |
US20230063104A1 (en) * | 2020-02-04 | 2023-03-02 | Hierabio Inc | Composition for intrapericardial injection comprising stem cells and use thereof |
JP2022014367A (ja) * | 2020-07-06 | 2022-01-19 | 日本光電工業株式会社 | 転写方法 |
Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003523766A (ja) | 2000-02-21 | 2003-08-12 | ウイスコンシン アラムニ リサーチ ファンデーション | 霊長類胚性幹細胞からの胚様体の製造方法 |
WO2005033298A1 (ja) | 2003-10-03 | 2005-04-14 | Keiichi Fukuda | 幹細胞から心筋細胞を分化誘導する方法 |
WO2007002136A2 (en) | 2005-06-22 | 2007-01-04 | Geron Corporation | Differentiation of primate pluripotent stem cells to cardiomyocyte-lineage cells |
WO2007069666A1 (ja) | 2005-12-13 | 2007-06-21 | Kyoto University | 核初期化因子 |
JP2007228921A (ja) * | 2006-03-02 | 2007-09-13 | Osaka Univ | 三次元組織の製造方法およびそれに用いる細胞外マトリックスの製造方法。 |
WO2007126077A1 (ja) | 2006-04-28 | 2007-11-08 | Asubio Pharma Co., Ltd. | 多能性幹細胞から心筋細胞を分化誘導する方法 |
WO2008118820A2 (en) | 2007-03-23 | 2008-10-02 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
WO2008143149A1 (ja) * | 2007-05-11 | 2008-11-27 | Dai Nippon Printing Co., Ltd. | 寸法が保持された細胞シート、その製造方法、及びそのための細胞培養担体 |
WO2009007852A2 (en) | 2007-06-15 | 2009-01-15 | Izumi Bio, Inc | Multipotent/pluripotent cells and methods |
WO2009032194A1 (en) | 2007-08-31 | 2009-03-12 | Whitehead Institute For Biomedical Research | Wnt pathway stimulation in reprogramming somatic cells |
WO2009057831A1 (ja) | 2007-10-31 | 2009-05-07 | Kyoto University | 核初期化方法 |
WO2009058413A1 (en) | 2007-10-29 | 2009-05-07 | Shi-Lung Lin | Generation of human embryonic stem-like cells using intronic rna |
WO2009075119A1 (ja) | 2007-12-10 | 2009-06-18 | Kyoto University | 効率的な核初期化方法 |
WO2009079007A1 (en) | 2007-12-17 | 2009-06-25 | Gliamed, Inc. | Stem-like cells and method for reprogramming adult mammalian somatic cells |
WO2009091659A2 (en) | 2008-01-16 | 2009-07-23 | Shi-Lung Lin | Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents |
WO2009101084A1 (en) | 2008-02-13 | 2009-08-20 | Fondazione Telethon | Method for reprogramming differentiated cells |
WO2009101407A2 (en) | 2008-02-11 | 2009-08-20 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
WO2009102983A2 (en) | 2008-02-15 | 2009-08-20 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
WO2009114949A1 (en) | 2008-03-20 | 2009-09-24 | UNIVERSITé LAVAL | Methods for deprogramming somatic cells and uses thereof |
WO2009117439A2 (en) | 2008-03-17 | 2009-09-24 | The Scripps Research Institute | Combined chemical and genetic approaches for generation of induced pluripotent stem cells |
WO2009118928A1 (en) | 2008-03-26 | 2009-10-01 | Kyoto University | Efficient production and use of highly cardiogenic progenitors and cardiomyocytes from embryonic and induced pluripotent stem cells |
WO2009126250A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through rna interference |
WO2009157593A1 (en) | 2008-06-27 | 2009-12-30 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
WO2010009015A2 (en) | 2008-07-14 | 2010-01-21 | Oklahoma Medical Research Foundation | Production of pluripotent cells through inhibition of bright/arid3a function |
WO2010033906A2 (en) | 2008-09-19 | 2010-03-25 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
WO2010033920A2 (en) | 2008-09-19 | 2010-03-25 | Whitehead Institute For Biomedical Research | Compositions and methods for enhancing cell reprogramming |
WO2010042800A1 (en) | 2008-10-10 | 2010-04-15 | Nevada Cancer Institute | Methods of reprogramming somatic cells and methods of use for such cells |
WO2010050626A1 (en) | 2008-10-30 | 2010-05-06 | Kyoto University | Method for producing induced pluripotent stem cells |
WO2010056831A2 (en) | 2008-11-12 | 2010-05-20 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator |
WO2010068955A2 (en) | 2008-12-13 | 2010-06-17 | Dna Microarray | MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING |
WO2010098419A1 (en) | 2009-02-27 | 2010-09-02 | Kyoto University | Novel nuclear reprogramming substance |
WO2010102267A2 (en) | 2009-03-06 | 2010-09-10 | Ipierian, Inc. | Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells |
WO2010111409A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Pluripotent stem cells |
WO2010111422A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Induced pluripotent stem cell generation using two factors and p53 inactivation |
WO2010115050A2 (en) | 2009-04-01 | 2010-10-07 | The Regents Of The University Of California | Embryonic stem cell specific micrornas promote induced pluripotency |
WO2010124290A2 (en) | 2009-04-24 | 2010-10-28 | Whitehead Institute For Biomedical Research | Compositions and methods for deriving or culturing pluripotent cells |
JP2010255001A (ja) | 2010-06-28 | 2010-11-11 | Cellseed Inc | アクリルアミド誘導体および該誘導体を含む重合体 |
WO2010147395A2 (en) | 2009-06-16 | 2010-12-23 | Korea Research Institute Of Bioscience And Biotechnology | Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same |
WO2010147612A1 (en) | 2009-06-18 | 2010-12-23 | Lixte Biotechnology, Inc. | Methods of modulating cell regulation by inhibiting p53 |
WO2011059112A1 (ja) | 2009-11-13 | 2011-05-19 | 株式会社日立ハイテクノロジーズ | 粒子含有細胞集合体 |
JP2011130720A (ja) * | 2009-12-25 | 2011-07-07 | Medgel Corp | 細胞培養基材およびその使用方法 |
JP2011224398A (ja) | 2005-02-28 | 2011-11-10 | Cellseed Inc | 培養細胞シート、製造方法及びその利用方法 |
JP2012120696A (ja) * | 2010-12-08 | 2012-06-28 | Univ Of Tokyo | 血管様構造物を含む三次元細胞培養物 |
WO2012133945A1 (ja) | 2011-03-30 | 2012-10-04 | 学校法人東京女子医科大学 | 胚性幹細胞から心筋シートを製造する方法 |
JP2013198437A (ja) | 2012-03-26 | 2013-10-03 | Terumo Corp | 移植用シート |
JP2014075979A (ja) | 2011-03-31 | 2014-05-01 | Cellseed Inc | 細胞シート移植治具及びその利用方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040235161A1 (en) * | 2001-05-17 | 2004-11-25 | Yasuhiko Tabata | Artificial kidney having function of metabolizing protein and method of constructing the same |
EP2357251B1 (en) * | 2008-11-11 | 2014-09-24 | Japan Science and Technology Agency | Method and kit for detecting biological signal of three-dimensional cell culture material |
-
2014
- 2014-05-30 CN CN201480030846.8A patent/CN105247041B/zh active Active
- 2014-05-30 US US14/894,610 patent/US10159766B2/en active Active
- 2014-05-30 JP JP2015519955A patent/JP5862915B2/ja active Active
- 2014-05-30 WO PCT/JP2014/064384 patent/WO2014192909A1/ja active Application Filing
- 2014-05-30 KR KR1020157035152A patent/KR101870174B1/ko active IP Right Grant
- 2014-05-30 EP EP14803665.0A patent/EP3006559B1/en active Active
Patent Citations (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003523766A (ja) | 2000-02-21 | 2003-08-12 | ウイスコンシン アラムニ リサーチ ファンデーション | 霊長類胚性幹細胞からの胚様体の製造方法 |
WO2005033298A1 (ja) | 2003-10-03 | 2005-04-14 | Keiichi Fukuda | 幹細胞から心筋細胞を分化誘導する方法 |
JP2011224398A (ja) | 2005-02-28 | 2011-11-10 | Cellseed Inc | 培養細胞シート、製造方法及びその利用方法 |
WO2007002136A2 (en) | 2005-06-22 | 2007-01-04 | Geron Corporation | Differentiation of primate pluripotent stem cells to cardiomyocyte-lineage cells |
WO2007069666A1 (ja) | 2005-12-13 | 2007-06-21 | Kyoto University | 核初期化因子 |
JP2007228921A (ja) * | 2006-03-02 | 2007-09-13 | Osaka Univ | 三次元組織の製造方法およびそれに用いる細胞外マトリックスの製造方法。 |
WO2007126077A1 (ja) | 2006-04-28 | 2007-11-08 | Asubio Pharma Co., Ltd. | 多能性幹細胞から心筋細胞を分化誘導する方法 |
WO2008118820A2 (en) | 2007-03-23 | 2008-10-02 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
WO2008143149A1 (ja) * | 2007-05-11 | 2008-11-27 | Dai Nippon Printing Co., Ltd. | 寸法が保持された細胞シート、その製造方法、及びそのための細胞培養担体 |
WO2009007852A2 (en) | 2007-06-15 | 2009-01-15 | Izumi Bio, Inc | Multipotent/pluripotent cells and methods |
WO2009032194A1 (en) | 2007-08-31 | 2009-03-12 | Whitehead Institute For Biomedical Research | Wnt pathway stimulation in reprogramming somatic cells |
WO2009058413A1 (en) | 2007-10-29 | 2009-05-07 | Shi-Lung Lin | Generation of human embryonic stem-like cells using intronic rna |
WO2009057831A1 (ja) | 2007-10-31 | 2009-05-07 | Kyoto University | 核初期化方法 |
WO2009075119A1 (ja) | 2007-12-10 | 2009-06-18 | Kyoto University | 効率的な核初期化方法 |
WO2009079007A1 (en) | 2007-12-17 | 2009-06-25 | Gliamed, Inc. | Stem-like cells and method for reprogramming adult mammalian somatic cells |
WO2009091659A2 (en) | 2008-01-16 | 2009-07-23 | Shi-Lung Lin | Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents |
WO2009101407A2 (en) | 2008-02-11 | 2009-08-20 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
WO2009101084A1 (en) | 2008-02-13 | 2009-08-20 | Fondazione Telethon | Method for reprogramming differentiated cells |
WO2009102983A2 (en) | 2008-02-15 | 2009-08-20 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
WO2009117439A2 (en) | 2008-03-17 | 2009-09-24 | The Scripps Research Institute | Combined chemical and genetic approaches for generation of induced pluripotent stem cells |
WO2009114949A1 (en) | 2008-03-20 | 2009-09-24 | UNIVERSITé LAVAL | Methods for deprogramming somatic cells and uses thereof |
WO2009118928A1 (en) | 2008-03-26 | 2009-10-01 | Kyoto University | Efficient production and use of highly cardiogenic progenitors and cardiomyocytes from embryonic and induced pluripotent stem cells |
WO2009126250A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through rna interference |
WO2009126251A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator |
WO2009126655A2 (en) | 2008-04-07 | 2009-10-15 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of a small molecule modulator |
WO2009157593A1 (en) | 2008-06-27 | 2009-12-30 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
WO2010009015A2 (en) | 2008-07-14 | 2010-01-21 | Oklahoma Medical Research Foundation | Production of pluripotent cells through inhibition of bright/arid3a function |
WO2010033920A2 (en) | 2008-09-19 | 2010-03-25 | Whitehead Institute For Biomedical Research | Compositions and methods for enhancing cell reprogramming |
WO2010033906A2 (en) | 2008-09-19 | 2010-03-25 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
WO2010042800A1 (en) | 2008-10-10 | 2010-04-15 | Nevada Cancer Institute | Methods of reprogramming somatic cells and methods of use for such cells |
WO2010050626A1 (en) | 2008-10-30 | 2010-05-06 | Kyoto University | Method for producing induced pluripotent stem cells |
WO2010056831A2 (en) | 2008-11-12 | 2010-05-20 | Nupotential, Inc. | Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator |
WO2010068955A2 (en) | 2008-12-13 | 2010-06-17 | Dna Microarray | MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING |
WO2010098419A1 (en) | 2009-02-27 | 2010-09-02 | Kyoto University | Novel nuclear reprogramming substance |
WO2010102267A2 (en) | 2009-03-06 | 2010-09-10 | Ipierian, Inc. | Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells |
WO2010111409A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Pluripotent stem cells |
WO2010111422A2 (en) | 2009-03-25 | 2010-09-30 | The Salk Institute For Biological Studies | Induced pluripotent stem cell generation using two factors and p53 inactivation |
WO2010115050A2 (en) | 2009-04-01 | 2010-10-07 | The Regents Of The University Of California | Embryonic stem cell specific micrornas promote induced pluripotency |
WO2010124290A2 (en) | 2009-04-24 | 2010-10-28 | Whitehead Institute For Biomedical Research | Compositions and methods for deriving or culturing pluripotent cells |
WO2010147395A2 (en) | 2009-06-16 | 2010-12-23 | Korea Research Institute Of Bioscience And Biotechnology | Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same |
WO2010147612A1 (en) | 2009-06-18 | 2010-12-23 | Lixte Biotechnology, Inc. | Methods of modulating cell regulation by inhibiting p53 |
WO2011059112A1 (ja) | 2009-11-13 | 2011-05-19 | 株式会社日立ハイテクノロジーズ | 粒子含有細胞集合体 |
JP2011130720A (ja) * | 2009-12-25 | 2011-07-07 | Medgel Corp | 細胞培養基材およびその使用方法 |
JP2010255001A (ja) | 2010-06-28 | 2010-11-11 | Cellseed Inc | アクリルアミド誘導体および該誘導体を含む重合体 |
JP2012120696A (ja) * | 2010-12-08 | 2012-06-28 | Univ Of Tokyo | 血管様構造物を含む三次元細胞培養物 |
WO2012133945A1 (ja) | 2011-03-30 | 2012-10-04 | 学校法人東京女子医科大学 | 胚性幹細胞から心筋シートを製造する方法 |
JP2014075979A (ja) | 2011-03-31 | 2014-05-01 | Cellseed Inc | 細胞シート移植治具及びその利用方法 |
JP2013198437A (ja) | 2012-03-26 | 2013-10-03 | Terumo Corp | 移植用シート |
Non-Patent Citations (44)
Title |
---|
CELL., vol. 122, no. 6, 23 September 2005 (2005-09-23), pages 947 - 56 |
CHEN CH ET AL., BIOMACROMOLECULES, vol. 7, 2006, pages 736 - 43 |
EMINLI S ET AL., STEM CELLS, vol. 26, 2008, pages 2467 - 2474 |
FENG B ET AL., NAT CELL BIOL., vol. 11, 2009, pages 197 - 203 |
HAN J ET AL., NATURE, vol. 463, 2010, pages 1096 - 100 |
HARAGUCHI Y. ET AL.: "Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro.", NATURE PROTOCOLS, vol. 7, no. 5, 2012, pages 850 - 858, XP055291922 * |
HAYASHI K. ET AL.: "Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions.", ACTA BIOMATERIALIA, vol. 7, 2011, pages 2797 - 2803, XP028222110 * |
HAYASHI K; TABATA Y., ACTA BIOMATER., vol. 7, 2011, pages 2797 - 803 |
HENG JC ET AL., CELL STEM CELL, vol. 6, 2010, pages 167 - 74 |
HUANGFU D ET AL., NAT BIOTECHNOL., vol. 26, 2008, pages 1269 - 1275 |
HUANGFU D ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 795 - 797 |
ICHIDA JK ET AL., CELL STEM CELL, vol. 5, 2009, pages 491 - 503 |
KIM JB ET AL., NATURE, vol. 461, 2009, pages 649 - 643 |
KO SUGIBAYASHI ET AL.: "Sei Bunkaisei Hydrogel Sonyu ni yoru Sekisoka Saibo Sheet eno Kekkan'yo Kanku Kozo no Sakusei", REGENERATIVE MEDICINE, vol. 9, 2010, pages 176, XP008182689 * |
LAFLAMME MA; MURRY CE, NATURE, 2011 |
LYSSIOTIS CA ET AL., PROC NATL ACAD SCI U S A., vol. 106, 2009, pages 8912 - 8917 |
MAEKAWA M ET AL., NATURE, vol. 474, 2011, pages 225 - 9 |
MALI P ET AL., STEM CELLS, vol. 28, 2010, pages 713 - 720 |
MARSON A, CELL STEM CELL, vol. 3, 2008, pages 132 - 135 |
MASUMOTO H ET AL., STEM CELL, vol. 30, 2012, pages 1196 - 1205 |
MASUMOTO H ET AL., STEM CELLS, 2012, pages 301196 - 205 |
MASUMOTO H ET AL., STEM CELLS, vol. 30, 2012, pages 1196 - 205 |
MASUMOTO H ET AL.: "the same as above", STEM CELL, vol. 30, 2012, pages 1196 - 1205 |
MASUMOTO H. ET AL.: "Pluripotent Stem Cell - Engineered Cell Sheets Reassembled with Defined Cardiovascular Populations Ameliorate Reduction in Infarct Heart Function Through Cardiomyocyte -Mediated Neovascularization.", STEM CELLS, vol. 30, no. 6, 2012, pages 1196 - 1205, XP055298190 * |
MOL BIOL CELL, vol. 13, no. 4, April 2002 (2002-04-01), pages 1274 - 81 |
NISHINA T ET AL., CIRCULATION, vol. 104, 2001, pages 1241 - 1245 |
R.L. JUDSON ET AL., NAT. BIOTECH., vol. 27, 2009, pages 459 - 461 |
SAKAKIBARA Y. ET AL., CIRCULATION, vol. 104, no. 106, 2002, pages 1193 - 1197 |
SASAGAWA T. ET AL.: "Design of prevascularized three-dimensional cell -dense tissues using a cell sheet stacking manipulation technology.", BIOMATERIALS, vol. 31, 2010, pages 1646 - 1654, XP026827522 * |
See also references of EP3006559A4 |
SHI Y ET AL., CELL STEM CELL, vol. 2, 2008, pages 525 - 528 |
SHI Y ET AL., CELL STEM CELL, vol. 3, 2008, pages 568 - 574 |
SHIMIZU T. ET AL.: "Cell sheet engineering for myocardial tissue reconstruction.", BIOMATERIALS, vol. 24, 2003, pages 2309 - 2316, XP004420022 * |
STEM CELLS, vol. 22, no. 1, 2004, pages 51 - 64 |
TAKAMOTO Y ET AL., J. BIOMATER. SCI. POLYMER EDN, vol. 18, 2007, pages 1211 - 1222 |
TAKEHIKO MATSUO ET AL.: "Shinzo Soshiki Sheet Taso Sekisoka ni Okeru Gelatin Hydrogel Biryushi no Yukosei", REGENERATIVE MEDICINE, vol. 13, 2014, pages 203 * |
YAMASHITA J ET AL., NATURE, vol. 408, 2000, pages 92 - 6 |
YAMASHITA JK ET AL., FASEB J, vol. 19, 2005, pages 1534 - 6 |
YAMASHITA JK ET AL., FASEB J., vol. 19, 2005, pages 1534 - 6 |
YAMASHITA JK, FASEB J., vol. 19, 2005, pages 1534 - 6 |
YAN P ET AL., BIOCHEM BIOPHYS RES COMMUN, vol. 379, 2009, pages 115 - 20 |
YURUGI-KOBAYASHI T ET AL., ARTERIOSCLER THROMBVASC BIOL., vol. 26, 2006, pages 1977 - 84 |
ZAMBROWICZ BP, PROC NATL ACAD SCI USA, vol. 94, 1997, pages 3789 - 3794 |
ZHAO Y ET AL., CELL STEM CELL, vol. 3, 2008, pages 475 - 479 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10815393B2 (en) | 2015-10-21 | 2020-10-27 | Tokyo Metropolitan Industrial Technology Research Institute | Gelatin, chemically modified product thereof, aqueous composition and medical laminate containing same, production method for medical laminate, and cell sheet isolation method |
EP3366700A4 (en) * | 2015-10-21 | 2019-06-19 | Tokyo Metropolitan Industrial Technology Research Institute | GELATINE, CHEMICALLY MODIFIED PRODUCT THEREOF, AQUEOUS COMPOSITION AND MEDICAL LAMINATE THEREWITH, METHOD OF MANUFACTURING MEDICAL LAMINATE AND CELL LAYER PROCESSING |
WO2017077985A1 (ja) * | 2015-11-05 | 2017-05-11 | 学校法人東京女子医科大学 | 積層化細胞シート組成物を製造する方法、それにより製造される積層化細胞シート組成物及びその製造装置 |
WO2017110746A1 (ja) * | 2015-12-25 | 2017-06-29 | コニカミノルタ株式会社 | ゼラチン粒子、ゼラチン粒子の製造方法、ゼラチン粒子内包細胞、およびゼラチン粒子内包細胞の製造方法 |
JPWO2017110746A1 (ja) * | 2015-12-25 | 2018-10-11 | コニカミノルタ株式会社 | ゼラチン粒子、ゼラチン粒子の製造方法、ゼラチン粒子内包細胞、およびゼラチン粒子内包細胞の製造方法 |
JPWO2017110745A1 (ja) * | 2015-12-25 | 2018-10-11 | コニカミノルタ株式会社 | ゼラチン粒子、ゼラチン粒子の製造方法、ゼラチン粒子内包細胞、およびゼラチン粒子内包細胞の製造方法 |
WO2017110745A1 (ja) * | 2015-12-25 | 2017-06-29 | コニカミノルタ株式会社 | ゼラチン粒子、ゼラチン粒子の製造方法、ゼラチン粒子内包細胞、およびゼラチン粒子内包細胞の製造方法 |
JP2017131144A (ja) * | 2016-01-27 | 2017-08-03 | 株式会社リコー | 三次元細胞集合体作製用材料、三次元細胞集合体作製用組成物、三次元細胞集合体作製用セット、組成物収容容器、及び三次元細胞集合体の作製方法 |
WO2017170343A1 (ja) * | 2016-03-29 | 2017-10-05 | 富士フイルム株式会社 | 細胞シートを含有する積層体、心疾患治療剤および細胞シート積層用フィルム |
US20190008791A1 (en) * | 2016-03-29 | 2019-01-10 | Fujifilm Corporation | Laminate containing cell sheet, agent for treating cardiac diseases, and film for being laminated on cell sheet |
JPWO2017170343A1 (ja) * | 2016-03-29 | 2019-01-17 | 富士フイルム株式会社 | 細胞シートを含有する積層体、心疾患治療剤および細胞シート積層用フィルム |
JP2020099355A (ja) * | 2016-03-29 | 2020-07-02 | 富士フイルム株式会社 | 細胞シートを含有する積層体、心疾患治療剤および細胞シート積層用フィルム |
CN105749350A (zh) * | 2016-04-21 | 2016-07-13 | 四川大学 | 一种心肌补片及其制备方法 |
WO2018070441A1 (ja) * | 2016-10-12 | 2018-04-19 | 旭硝子株式会社 | 培養細胞構造体の製造方法 |
CN111050781A (zh) * | 2017-06-30 | 2020-04-21 | 可隆生命科学株式会社 | 用于预防或治疗骨关节炎的药物组合物 |
JP7373174B2 (ja) | 2017-09-08 | 2023-11-02 | 国立研究開発法人理化学研究所 | 網膜組織を含む細胞凝集体及びその製造方法 |
JP2022188204A (ja) * | 2017-09-08 | 2022-12-20 | 国立研究開発法人理化学研究所 | 網膜組織を含む細胞凝集体及びその製造方法 |
JP2019050777A (ja) * | 2017-09-15 | 2019-04-04 | 株式会社リコー | 複合体及びその製造方法、並びに細胞接着用基材及びその製造方法 |
JP7102694B2 (ja) | 2017-09-15 | 2022-07-20 | 株式会社リコー | 複合体及びその製造方法、積層体、並びに細胞接着用基材及びその製造方法 |
JP2018042572A (ja) * | 2017-12-22 | 2018-03-22 | 大日本印刷株式会社 | 組織の作製方法 |
WO2019189553A1 (ja) | 2018-03-30 | 2019-10-03 | 国立大学法人京都大学 | 複素環化合物 |
WO2019189554A1 (ja) | 2018-03-30 | 2019-10-03 | 国立大学法人京都大学 | 心筋細胞成熟促進剤 |
JP2021531807A (ja) * | 2018-07-31 | 2021-11-25 | ロキット ヘルスケア インク. | 多層細胞シートの製造方法、及び、これを用いて製造された多層細胞シート |
JP7228672B2 (ja) | 2018-07-31 | 2023-02-24 | ロキット ヘルスケア インク. | 多層細胞シートの製造方法、及び、これを用いて製造された多層細胞シート |
JPWO2021065395A1 (ja) * | 2019-10-01 | 2021-04-08 | ||
JP7222567B2 (ja) | 2019-10-01 | 2023-02-15 | 国立大学法人大阪大学 | フィブリンシートの製造方法 |
WO2021065395A1 (ja) * | 2019-10-01 | 2021-04-08 | 国立大学法人大阪大学 | フィブリンシートの製造方法 |
EP3828542A1 (en) | 2019-11-15 | 2021-06-02 | Ricoh Company, Ltd. | Layered body |
JP2021078377A (ja) * | 2019-11-15 | 2021-05-27 | 株式会社リコー | 積層体 |
WO2022059236A1 (ja) * | 2020-09-17 | 2022-03-24 | コニカミノルタ株式会社 | 細胞支持体およびその製造方法、細胞の培養方法ならびに細胞構造体 |
WO2022059115A1 (ja) * | 2020-09-17 | 2022-03-24 | コニカミノルタ株式会社 | 細胞支持体およびその製造方法、細胞の培養方法ならびに細胞構造体 |
WO2024241939A1 (ja) * | 2023-05-19 | 2024-11-28 | 住友化学株式会社 | 積層体 |
Also Published As
Publication number | Publication date |
---|---|
EP3006559A1 (en) | 2016-04-13 |
US20160121025A1 (en) | 2016-05-05 |
EP3006559B1 (en) | 2019-11-06 |
US10159766B2 (en) | 2018-12-25 |
KR101870174B1 (ko) | 2018-06-22 |
CN105247041A (zh) | 2016-01-13 |
CN105247041B (zh) | 2018-04-20 |
KR20160005366A (ko) | 2016-01-14 |
EP3006559A4 (en) | 2017-01-04 |
JP5862915B2 (ja) | 2016-02-16 |
JPWO2014192909A1 (ja) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5862915B2 (ja) | ハイドロゲルを組み込んだ積層化細胞シート | |
Du et al. | Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering | |
JP5920741B2 (ja) | 人工多能性幹細胞から心筋および血管系混合細胞群を製造する方法 | |
JP2024050597A (ja) | 免疫改変された多能性細胞から分化させた細胞 | |
Saei Arezoumand et al. | An overview on different strategies for the stemness maintenance of MSCs | |
Costa-Almeida et al. | Cellular strategies to promote vascularisation in tissue engineering applications | |
JP6823326B2 (ja) | 血管内皮細胞の誘導方法 | |
Metallo et al. | Engineering tissue from human embryonic stem cells | |
Ryu et al. | Nanothin coculture membranes with tunable pore architecture and thermoresponsive functionality for transfer-printable stem cell-derived cardiac sheets | |
Natesan et al. | Adipose-derived stem cell delivery into collagen gels using chitosan microspheres | |
US9623052B2 (en) | Method for producing myocardial sheet from embryonic stem cell | |
WO2014185358A1 (ja) | 効率的な心筋細胞の誘導方法 | |
Zeng et al. | Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury | |
Bartosh et al. | 3D‐model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress | |
Hu et al. | Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration | |
JP6646311B2 (ja) | 多能性幹細胞から中胚葉前駆細胞および血液血管前駆細胞への分化誘導法 | |
Qin et al. | Biomimetic bilayer scaffold as an incubator to induce sequential chondrogenesis and osteogenesis of adipose derived stem cells for construction of osteochondral tissue | |
WO2011067983A1 (ja) | 脂肪細胞シート、その三次元構造体、及びそれらの製造方法 | |
JP7471069B2 (ja) | 移植片の活性を高める方法 | |
Di Baldassarre et al. | Induced Pluripotent Stem Cells Technology and Cardiomyocyte Generation: Progress, Uncertainties and Challenges in the Biological Features and Clinical Applications | |
WO2024248017A1 (ja) | 心筋細胞を成熟させる方法及び成熟した心筋細胞の製造方法 | |
JPWO2017073794A1 (ja) | 多能性幹細胞から3次元の心筋組織を製造する方法 | |
Jin et al. | Inductive factors for generation of pluripotent stem cell-derived | |
JP2024092786A (ja) | 多層重厚組織体、その製造方法及びその用途 | |
JP2020048583A (ja) | 多能性幹細胞から中胚葉前駆細胞および血液血管前駆細胞への分化誘導法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14803665 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2015519955 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14894610 Country of ref document: US Ref document number: 2014803665 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157035152 Country of ref document: KR Kind code of ref document: A |