[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014192969A1 - Semiconductor device and curable silicone composition for sealing semiconductor element - Google Patents

Semiconductor device and curable silicone composition for sealing semiconductor element Download PDF

Info

Publication number
WO2014192969A1
WO2014192969A1 PCT/JP2014/064798 JP2014064798W WO2014192969A1 WO 2014192969 A1 WO2014192969 A1 WO 2014192969A1 JP 2014064798 W JP2014064798 W JP 2014064798W WO 2014192969 A1 WO2014192969 A1 WO 2014192969A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
semiconductor device
bonded
atom
Prior art date
Application number
PCT/JP2014/064798
Other languages
French (fr)
Japanese (ja)
Inventor
侑典 宮本
宏明 吉田
Original Assignee
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング株式会社 filed Critical 東レ・ダウコーニング株式会社
Priority to JP2015519987A priority Critical patent/JP6355210B2/en
Priority to CN201480029204.6A priority patent/CN105229783B/en
Priority to KR1020157033397A priority patent/KR20160013872A/en
Publication of WO2014192969A1 publication Critical patent/WO2014192969A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds

Definitions

  • the present invention relates to a semiconductor device and a curable silicone composition for sealing a semiconductor element in the semiconductor device.
  • a silver-plated lead or substrate is used in order to prevent corrosion of the lead and the substrate and efficiently reflect light from a light emitting diode (LED) element.
  • LED light emitting diode
  • Silver has a problem of being blackened by a sulfur-containing gas such as hydrogen sulfide. For this reason, the use of gold-plated leads and substrates that are less reflective than silver but have no problem of blackening due to sulfur-containing gas has been studied.
  • the hydrosilylation reaction curable silicone composition is rapidly cured by heating and does not produce a by-product during curing, and thus is used as a sealant or adhesive for semiconductor elements. Since the hydrosilylation reaction-curable silicone composition has poor adhesiveness, for example, in Japanese Patent Application Laid-Open No.
  • a semiconductor element mounted on a gold-plated substrate is sealed with the hydrosilylation reaction-curable silicone composition.
  • the method proposed in Japanese Patent Application Laid-Open No. 2007-134372 has the disadvantage that the gold-plated substrate must be previously treated with an acid anhydride group-containing alkoxysilane or a partially hydrolyzed condensate thereof.
  • JP 2011-063663 A discloses branched organopolysiloxane having a silicon atom-bonded hydroxyl group, inorganic filler, condensation catalyst, organopolysiloxane having a linear diorganopolysiloxane residue, and 3-mercapto.
  • An underfill material composition consisting of a silane coupling agent such as propyltrimethoxysilane has been proposed, and there is no effect on the warping behavior during reflow, and it is proposed that it has excellent heat resistance, light resistance, and adhesion to gold bumps. Has been.
  • this composition is used for an underfill material and is cured by a condensation reaction, there is a problem that a by-product is generated by the reaction.
  • an organosilicon compound having a silicon atom-bonded hydrolyzable group and a sulfur atom such as 3-mercaptopropyltrimethoxysilane is likely to cause inhibition of curing.
  • the use of the organosilicon compound as an adhesion promoter has not been studied.
  • the semiconductor device of the present invention is a semiconductor device in which a gold-plated lead or substrate and a semiconductor element are sealed with a silicone cured product, wherein the silicone cured product has (A) at least two alkenyl groups in one molecule.
  • the type A durometer hardness defined in JIS K 6253 of the silicone cured product is preferably 10 to 99.
  • the semiconductor element is preferably a light emitting diode (LED) element.
  • the curable silicone composition for encapsulating a semiconductor element of the present invention is a hydrosilylation reaction curable silicone composition for encapsulating a gold-plated lead or substrate in a semiconductor device and the semiconductor element.
  • Organopolysiloxane having at least two alkenyl groups in one molecule
  • (B) Organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule ⁇ alkenyl group 1 in component
  • (A) Amount in which the silicon-bonded hydrogen atom in this component is 0.1 to 10 moles per mole ⁇
  • platinum catalyst for hydrosilylation reaction (with respect to the present composition, 0.01 to 500% by mass of platinum atoms) And at least consisting of an amount) to be m.
  • the semiconductor device of the present invention is characterized by excellent reliability after the moisture absorption reflow test.
  • the curable silicone composition for sealing a semiconductor element of the present invention is characterized by good adhesion to a gold-plated lead or substrate.
  • FIG. 1 is a cross-sectional view of an optical semiconductor device (LED) which is an example of a semiconductor device of the present invention.
  • LED optical semiconductor device
  • the semiconductor device of the present invention is a semiconductor device in which a gold-plated lead or substrate and a semiconductor element are sealed with a silicone cured product.
  • the semiconductor element include a light emitting diode (LED) element, a semiconductor laser element, a photodiode element, a phototransistor element, a solid-state imaging element, a light emitting element or a light receiving element for a photocoupler, and in particular, a light emitting diode (LED) element.
  • LED light emitting diode
  • FIG. 1 is a cross-sectional view of an optical semiconductor device (LED) which is an example of a semiconductor device.
  • a light emitting diode (LED) element 5 is die-bonded by an adhesive 4 on a die pad 3 in a polyphthalamide (PPA) resin casing 1, and the light emitting diode (LED) element 5
  • PPA polyphthalamide
  • the gold-plated lead 2 is wire-bonded by a gold bonding wire 6, and the light-emitting diode (LED) element 5 and the gold-plated lead 2 and the gold bonding wire 6 are sealed by a sealing material 7 made of a cured silicone. It has been stopped.
  • the cured silicon product in which the gold-plated lead or substrate and the semiconductor element are sealed is (A) an organopolysiloxane having at least two alkenyl groups in one molecule, and (B) in one molecule.
  • An organohydrogenpolysiloxane having at least two silicon atom-bonded hydrogen atoms in ⁇ 1 mol of alkenyl groups in component (A) is 0.1 to 10 mol of silicon atom-bonded hydrogen atoms in this component Amount ⁇ , (C) an organosilicon compound having a sulfur atom-bonded and silicon-bonded hydrolyzable group (0.0001 to 2 mass% with respect to the present composition), and (D) a platinum system for hydrosilylation reaction A cured product of a hydrosilylation reaction-curable silicone composition comprising at least a catalyst (in which the platinum atom is 0.01 to 500 ppm by mass with respect to the present composition) And wherein the Rukoto.
  • Component (A) is the main component of the above composition and is an organopolysiloxane having at least two alkenyl groups in one molecule.
  • alkenyl group in the component (A) the vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, etc. Twelve alkenyl groups are exemplified, and a vinyl group is preferable.
  • the silicon atom in the component (A) may have a small amount of an alkoxy group such as a hydroxyl group, a methoxy group, and an ethoxy group as long as the object of the present invention is not impaired.
  • the molecular structure of the component (A) is not particularly limited, and examples thereof include linear, partially branched linear, branched, cyclic, and three-dimensional network structures.
  • the component (A) may be a single organopolysiloxane having these molecular structures or a mixture of two or more organopolysiloxanes having these molecular structures.
  • the alkenyl group is 0.01 to 50 mol%, 0.05 to 40 mol%, or 0.09 to 32 mol% with respect to the silicon-bonded total organic group. Is preferred. This is because if there are too few alkenyl groups in the component (A), a cured product may not be obtained, and if there are too many alkenyl groups in the component (A), the mechanical properties of the resulting cured product will deteriorate. Because there is a fear. Moreover, it is preferable that the alkenyl group in (A) component exists in the both ends of the molecular chain of organopolysiloxane.
  • Component (A) is an organopolysiloxane that is liquid or solid at 25 ° C.
  • the viscosity at 25 ° C. is in the range of 1 to 1,000,000 mPa ⁇ s, or in the range of 10 to 1,000,000 mPa ⁇ s. Is preferred.
  • Component (B) is a crosslinking agent of the above composition, and is an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule.
  • the silicon atom in the component (B) may have a small amount of a hydroxyl group, an alkoxy group such as a methoxy group, an ethoxy group or the like as long as the object of the present invention is not impaired.
  • the molecular structure of the component (B) is not particularly limited, and examples thereof include linear, linear, partially branched, branched, cyclic, and three-dimensional network structures. Examples include chain, branched chain, and three-dimensional network structures.
  • the component (B) is solid or liquid at 25 ° C. When the component (B) is liquid at 25 ° C., the viscosity at 25 ° C. is 10,000 mPa ⁇ s or less, within the range of 0.1 to 5,000 mPa ⁇ s, or 0.5 to 1, It is preferably within the range of 000 mPa ⁇ s.
  • the component (B) is not particularly limited to a specific organopolysiloxane as long as the object of the present invention can be achieved.
  • the content of component (B) is such that the silicon-bonded hydrogen atoms in this component are 0.1 to 10 moles per mole of alkenyl groups in component (A), preferably The amount is 5 to 5 mol. This is because when the content of the component (B) is not more than the upper limit of the above range, it is possible to suppress a decrease in the mechanical properties of the obtained cured product, and on the other hand, if it is not less than the lower limit of the above range, This is because the resulting composition is sufficiently cured.
  • the organosilicon compound (C) is a component that binds sulfur atoms and has a silicon atom-bonded hydrolyzable group, and imparts good adhesion to a lead frame that is gold-plated to the above composition. .
  • Examples of such a component (C) include mercaptoalkylalkoxysilanes such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropylmethyldiethoxysilane; Examples thereof include bis (alkoxysilylalkyl) sulfides such as (trimethoxysilylpropyl) disulfide, bis (trimethoxysilylpropyl) trisulfide, and bis (trimethoxysilylpropyl) tetrasulfide.
  • the content of the component (C) is 0.0001 to 2% by mass, preferably 0.001 to 1% by mass, or 0.01 to 0.2% by mass with respect to the composition. Amount. This is because if it is at least the lower limit of the above range, the adhesion to a gold-plated lead or substrate is improved, while if it is below the upper limit of the above range, the composition is less likely to be inhibited from curing.
  • Component (D) is a platinum catalyst for hydrosilylation reaction for promoting the hydrosilylation reaction of the composition.
  • Rukoto is preferable. These platinum catalysts for hydrosilylation reaction may be used individually by 1 type, and may use 2 or more types together.
  • the alkenyl siloxane used in the platinum-alkenyl siloxane complex is not particularly limited.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferred because the resulting platinum-alkenylsiloxane complex has good stability.
  • these platinum-alkenylsiloxane complexes may be converted to 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3-diallyl-1 1,3,3-tetramethyldisiloxane, 1,3-divinyl-1,3-dimethyl-1,3-diphenyldisiloxane, 1,3-divinyl-1,1,3,3-tetraphenyldisiloxane , And 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane and other alkenylsiloxane oligomers and dimethylsiloxane oligomers and other organosiloxane
  • the content of the component (D) is such that the platinum atom in the component (D) is 0.01 to 500 ppm by mass, preferably in the range of 0.01 to 100 ppm by mass with respect to the above composition. Or within the range of 0.1 to 50 ppm by mass. This is because when the content of the component (D) is not less than the lower limit of the above range, the resulting composition is sufficiently cured, whereas when it is not more than the upper limit of the above range, the resulting cured product is colored. It is because it is suppressed.
  • the composition may contain (E) a hydrosilylation reaction inhibitor as an optional component for extending the pot life at room temperature and improving storage stability.
  • component (E) examples include 1-ethynylcyclohexane-1-ol, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, and 2-phenyl- Alkyne alcohols such as 3-butyn-2-ol; Enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7 Methyl alkenylsiloxane oligomers such as tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane and 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane; Alkyl such as dimethylbis (3-methyl-1-butyne-3-oxy) silane and methylvinylbis (3-methyl-1-butyne-3-oxy) silane Oxysilane, and triallyl isocyanurate
  • the content of the component (E) is not particularly limited, but it is an amount sufficient to suppress gelation or to suppress curing when the components (A) to (D) are mixed. Sufficient to allow storage. Specifically, the content of the component (E) is in the range of 0.0001 to 5 parts by mass with respect to a total of 100 parts by mass of the components (A) to (D), or 0.01 to It is preferably within the range of 3 parts by mass. Moreover, in order to further improve the adhesiveness to the base material which is contacting during hardening, you may contain an adhesion promoter in the said composition. As this adhesion promoter, an organosilicon compound having one or more alkoxy groups bonded to silicon atoms in one molecule is preferable.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group, and a methoxy group or an ethoxy group is particularly preferable.
  • a substituted or unsubstituted monovalent hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group, an aralkyl group, and a halogenated alkyl group
  • Glycidoxyalkyl groups such as 3-glycidoxypropyl group and 4-glycidoxybutyl group
  • Epoxy cyclohexyl alkyl groups such as 4-oxiranyl butyl group and oxiranyl alkyl groups such as 8-oxiranyl octyl group
  • acrylic group-containing monovalent organic groups such as 3-methacryloxypropyl group
  • isocyanate groups examples include isocyanurate groups; as well as hydrogen atoms.
  • This organosilicon compound preferably has an alkenyl group or a group capable of reacting with a silicon atom-bonded hydrogen atom in the composition, and specifically, preferably has a silicon atom-bonded hydrogen atom or an alkenyl group.
  • the content of the adhesion promoter is not limited, but is within the range of 0.01 to 10 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). It is preferable to be within the range.
  • the said composition can contain fluorescent substance as another arbitrary component.
  • Examples of the phosphor include oxide phosphors, oxynitride phosphors, nitride phosphors, sulfide phosphors, and oxysulfide phosphors that are widely used in light emitting diodes (LEDs). Examples thereof include yellow, red, green, and blue light emitting phosphors.
  • oxide-based phosphor examples include yttrium, aluminum, and garnet-based YAG-based green to yellow light-emitting phosphors including cerium ions; terbium, aluminum, and garnet-based TAG-based yellow light-emitting phosphors including cerium ions; and Examples include silicate green to yellow light emitting phosphors containing cerium and europium ions.
  • oxide-based phosphor examples include yttrium, aluminum, and garnet-based YAG-based green to yellow light-emitting phosphors including cerium ions; terbium, aluminum, and garnet-based TAG-based yellow light-emitting phosphors including cerium ions; and Examples include silicate green to yellow light emitting phosphors containing cerium and europium ions.
  • oxynitride phosphor examples include silicon, aluminum, oxygen, and nitrogen sialon red to green light emitting phosphors containing europium ions.
  • nitride-based phosphors include calcium, strontium, aluminum, silicon, and nitrogen-based casoon-based red light-emitting phosphors containing europium ions.
  • sulfide-based phosphors include ZnS-based green color phosphors including copper ions and aluminum ions.
  • oxysulfide phosphors include Y 2 O 2 S red light-emitting phosphors containing europium ions. These phosphors may use one kind or a mixture of two or more kinds.
  • the content of the phosphor is not particularly limited, but is preferably in the range of 0.1 to 70% by mass or in the range of 1 to 20% by mass in the composition.
  • one or more inorganic fillers selected from silica, glass, alumina and the like as other optional components; silicone rubber powder; Resin powders such as silicone resins and polymethacrylate resins; one or more components selected from heat-resistant agents, dyes, pigments, flame retardants, surfactants, solvents and the like may be contained.
  • the manufacturing method of the semiconductor device of the present invention is not particularly limited.
  • the optical semiconductor device (LED) shown in FIG. 1 can be manufactured as follows. A light emitting diode (LED) element 5 is die-bonded with an adhesive 4 on a die pad 3 in a polyphthalamide (PPA) resin casing 1.
  • PPA polyphthalamide
  • the light emitting diode (LED) element 5 and the gold-plated lead 2 are wire-bonded with a gold bonding wire 6.
  • the composition is injected into a polyphthalamide (PPA) resin casing 1 and cured to cure the light-emitting diode (LED) element 5, the gold-plated lead 2 and the gold bonding wire 6 with silicone. Sealing is performed with a sealing material made of a material.
  • the composition can be cured by standing at room temperature or by heating, and heating is preferred for rapid curing. The heating temperature is preferably in the range of 50 to 200 ° C.
  • the type A durometer hardness defined in JIS K6253 of the silicone cured product is preferably 10 to 99, and particularly preferably 15 to 95.
  • the curable silicone composition for encapsulating a semiconductor element of the present invention is a hydrosilylation reaction curable silicone composition for encapsulating a gold-plated lead or substrate in a semiconductor device and the semiconductor element.
  • Organopolysiloxane having at least two alkenyl groups in the molecule (B) Organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule ⁇ in 1 mol of alkenyl groups in component (A) In contrast, the amount of silicon-bonded hydrogen atoms in this component is 0.1 to 10 moles ⁇ , (C) an organosilicon compound having a sulfur atom-bonded and silicon-bonded hydrolyzable group (in this composition) 0.0001-2 mass%) and (D) platinum catalyst for hydrosilylation reaction (with respect to the present composition, the platinum atom is 0.01-500 mass ppm) And at least consisting of that amount).
  • the components (A) to (D) are as described above.
  • the present composition includes: an adhesion promoter; a phosphor; silica, glass, and alumina. 1 type or 2 or more types of inorganic fillers selected from, etc .; silicone rubber powder; resin powder such as silicone resin and polymethacrylate resin; heat-resistant agent, dye, pigment, flame retardant, surfactant, solvent You may contain 1 type, or 2 or more types of components selected from etc. These components and their contents are as described above.
  • Such a curable silicone composition of the present invention comprises the above-mentioned components (A) to (D) and further any of the above-mentioned optional components, and is divided into one-component type or optional components. It can be a liquid type.
  • the organopolysiloxane can be obtained by a known production method.
  • the viscosity is a value at 25 ° C., and was measured using a B-type viscometer in accordance with JIS K7117-1.
  • the vinyl group content was measured by analysis such as FT-IR, NMR, GPC and the like.
  • (A-2) component: viscosity is 10,000 mPa ⁇ s, average formula: Me 2 ViSiO (Me 2 SiO) 500 SiMe 2 Vi Dimethylpolysiloxane blocked with dimethylvinylsiloxy group at both ends of the molecular chain represented by formula (Vinyl group content 0.15% by mass)
  • Average unit formula (Me 2 ViSiO 1/2 ) 0.13 (Me 3 SiO 1/2 ) 0.45 (SiO 4/2 ) 0.42 (HO 1/2 ) 0.01
  • An organopolysiloxane resin having two or more vinyl groups in one molecule represented by (content of vinyl group 3.4% by mass) (A-5)
  • Component Average unit formula that is white solid at 25 ° C.
  • the organohydrogenpolysiloxane can be obtained by a known production method. Moreover, a viscosity is a value in 25 degreeC and measured using the B-type viscosity meter based on JISK7117-1. The content of silicon-bonded hydrogen atoms and the number of silicon-bonded hydrogen atoms per molecule were measured by analysis such as FT-IR, NMR, GPC and the like.
  • B-3) Average formula: HMe 2 SiO (Ph 2 SiO) SiMe 2 H Dimethylhydrogensiloxy group-blocked diphenylpolysiloxane having a viscosity of 5 mPa ⁇ s and having a viscosity of 5 mPa ⁇ s (content of
  • component 3-mercaptopropyltrimethoxysilane
  • component (c-2) component bis (3-triethoxysilylpropyl) tetrasulfide
  • component-3) component 1,3,5-triglycidyl isocyanuric acid
  • component (c-4) component 3-methacryloxypropyltrimethoxysilane
  • component (c-6) component 3-acryloxypropyltrimethoxysilane
  • component 3-glycidoxypropyltrimethoxysilane
  • the LED chip is placed on the center of the lead, and the LED chip and the gold-plated lead are electrically connected by a gold bonding wire in the precursor of the polyphthalamide (PPA) resin case
  • PPA polyphthalamide
  • the curable silicone composition of each Example or each Comparative Example was defoamed and poured using a dispenser, and cured by heating in a heating oven at 100 ° C. for 30 minutes and then at 150 ° C. for 1 hour.
  • 20 optical semiconductor devices (LEDs) shown in FIG. 1 were produced.
  • [Initial peeling rate of sealing material] For the 20 optical semiconductor devices (LEDs), the peeled state between the gold-plated lead 2 and the sealing material 7 was observed with an optical microscope, and the peeled number / 20 was defined as the peel rate.
  • the semiconductor device of the present invention is suitable as an optical semiconductor device (LED) having a strict requirement for reliability because it is difficult to cause peeling between the gold-plated lead and the sealing material made of the cured silicone after the moisture absorption reflow test.
  • LED optical semiconductor device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Abstract

A semiconductor device in which a gold-plated lead or a substrate and a semiconductor element are sealed by cured silicone, wherein: the cured silicone is a cured product of a hydrosilylation-reaction-curable silicone composition comprising at least (A) an organopolysiloxane having at least two alkenyl groups in a molecule, (B) an organohydrogenpolysiloxane having at least two silicon atom-bonded hydrogen atoms in a molecule, (C) an organosilicon compound that is bonded with a sulfur atom and that has a silicon atom-bonded hydrolyzable group, and (D) a platinum-based catalyst for a hydrosilylation reaction; and the semiconductor device is highly reliable after a moisture absorption reflow test.

Description

半導体装置および半導体素子封止用硬化性シリコーン組成物Curable silicone composition for semiconductor device and semiconductor element sealing
 本発明は、半導体装置および該半導体装置中の半導体素子を封止するための硬化性シリコーン組成物に関する。 The present invention relates to a semiconductor device and a curable silicone composition for sealing a semiconductor element in the semiconductor device.
 LED等の光半導体装置では、リードや基板の腐食を防止し、発光ダイオード(LED)素子からの光を効率良く反射するため、銀メッキしたリードや基板が使用されている。銀は硫化水素等の硫黄含有ガスにより黒色化する問題がある。このため、銀より反射率が劣るものの、硫黄含有ガスによる黒色化の問題がない、金メッキされたリードや基板の使用が検討されている。
 一方、ヒドロシリル化反応硬化性シリコーン組成物は、加熱により速やかに硬化し、硬化の際に副生成物を生じないことから半導体素子の封止剤や接着剤として利用されている。ヒドロシリル化反応硬化性シリコーン組成物は、接着性が乏しいため、例えば、特開2007−134372号公報では、金メッキされた基板上に搭載した半導体素子をヒドロシリル化反応硬化性シリコーン組成物で封止する際には、前記基板を予め酸無水物基含有アルコキシシランもしくはその部分加水分解縮合物で処理することが提案されている。
 しかし、特開2007−134372号公報により提案される方法では、金メッキされた基板を予め酸無水物基含有アルコキシシランもしくはその部分加水分解縮合物で処理しなければならないという不都合がある。
 ところで、特開2011−063663号公報には、ケイ素原子結合水酸基を有する分岐状オルガノポリシロキサン、無機充填剤、縮合触媒、直鎖状ジオルガノポリシロキサン残基を有するオルガノポリシロキサン、および3−メルカプトプロピルトリメトキシシラン等のシランカップリング剤からなるアンダーフィル材組成物が提案され、リフロー時の反りの挙動への影響が無く、耐熱性、耐光性、金バンプへの接着性に優れることが提案されている。しかし、この組成物は、アンダーフィル材用途であり、また、縮合反応により硬化するため、反応により、副生成物が発生するという課題がある。一方で、ヒドロシリル化反応硬化性シリコーン組成物において、3−メルカプトプロピルトリメトキシシラン等の硫黄原子を結合し、ケイ素原子結合加水分解性基を有する有機ケイ素化合物は、硬化阻害を生じやすいことから、前記有機ケイ素化合物を接着促進剤として使用することは検討されていなかった。
In an optical semiconductor device such as an LED, a silver-plated lead or substrate is used in order to prevent corrosion of the lead and the substrate and efficiently reflect light from a light emitting diode (LED) element. Silver has a problem of being blackened by a sulfur-containing gas such as hydrogen sulfide. For this reason, the use of gold-plated leads and substrates that are less reflective than silver but have no problem of blackening due to sulfur-containing gas has been studied.
On the other hand, the hydrosilylation reaction curable silicone composition is rapidly cured by heating and does not produce a by-product during curing, and thus is used as a sealant or adhesive for semiconductor elements. Since the hydrosilylation reaction-curable silicone composition has poor adhesiveness, for example, in Japanese Patent Application Laid-Open No. 2007-134372, a semiconductor element mounted on a gold-plated substrate is sealed with the hydrosilylation reaction-curable silicone composition. In this case, it has been proposed to treat the substrate in advance with an acid anhydride group-containing alkoxysilane or a partial hydrolysis condensate thereof.
However, the method proposed in Japanese Patent Application Laid-Open No. 2007-134372 has the disadvantage that the gold-plated substrate must be previously treated with an acid anhydride group-containing alkoxysilane or a partially hydrolyzed condensate thereof.
JP 2011-063663 A discloses branched organopolysiloxane having a silicon atom-bonded hydroxyl group, inorganic filler, condensation catalyst, organopolysiloxane having a linear diorganopolysiloxane residue, and 3-mercapto. An underfill material composition consisting of a silane coupling agent such as propyltrimethoxysilane has been proposed, and there is no effect on the warping behavior during reflow, and it is proposed that it has excellent heat resistance, light resistance, and adhesion to gold bumps. Has been. However, since this composition is used for an underfill material and is cured by a condensation reaction, there is a problem that a by-product is generated by the reaction. On the other hand, in the hydrosilylation reaction curable silicone composition, an organosilicon compound having a silicon atom-bonded hydrolyzable group and a sulfur atom such as 3-mercaptopropyltrimethoxysilane is likely to cause inhibition of curing. The use of the organosilicon compound as an adhesion promoter has not been studied.
特開2007−134372号公報JP 2007-134372 A 特開2011−063663号公報JP 2011-063663 A
 本発明の目的は、金メッキされたリードまたは基板と半導体素子をシリコーン硬化物で封止してなる、吸湿リフロー試験後の信頼性が優れる半導体装置を提供することにある。また、本発明の他の目的は、金メッキされたリードまたは基板に対する接着性が良好な、前記リードまたは基板と半導体素子を封止するための硬化性シリコーン組成物を提供することにある。 An object of the present invention is to provide a semiconductor device having excellent reliability after a moisture absorption reflow test, in which a gold-plated lead or substrate and a semiconductor element are sealed with a cured silicone. Another object of the present invention is to provide a curable silicone composition for sealing the lead or substrate and the semiconductor element, which has good adhesion to the gold-plated lead or substrate.
 本発明の半導体装置は、金メッキされたリードまたは基板と半導体素子をシリコーン硬化物で封止した半導体装置であって、前記シリコーン硬化物が、(A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン{(A)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~10モルとなる量}、(C)硫黄原子を結合し、ケイ素原子結合加水分解性基を有する有機ケイ素化合物(本組成物に対して0.0001~2質量%)、および(D)ヒドロシリル化反応用白金系触媒(本組成物に対して、白金原子が0.01~500質量ppmとなる量)から少なくともなるヒドロシリル化反応硬化性シリコーン組成物の硬化物であることを特徴とする。
 上記半導体装置において、シリコーン硬化物のJIS K 6253に規定のタイプAデュロメータ硬さは10~99であることが好ましい。
 また、上記半導体装置において、半導体素子は発光ダイオード(LED)素子であることが好ましい。
 また、本発明の半導体素子封止用硬化性シリコーン組成物は、半導体装置中の金メッキされたリードまたは基板と半導体素子を封止するためのヒドロシリル化反応硬化性シリコーン組成物であって、(A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン{(A)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~10モルとなる量}、(C)硫黄原子を結合し、ケイ素原子結合加水分解性基を有する有機ケイ素化合物(本組成物に対して0.0001~2質量%)、および(D)ヒドロシリル化反応用白金系触媒(本組成物に対して、白金原子が0.01~500質量ppmとなる量)から少なくともなることを特徴とする。
The semiconductor device of the present invention is a semiconductor device in which a gold-plated lead or substrate and a semiconductor element are sealed with a silicone cured product, wherein the silicone cured product has (A) at least two alkenyl groups in one molecule. An organopolysiloxane having (B) an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule {the silicon atom bond in this component per mole of alkenyl group in component (A) Amount in which hydrogen atom is 0.1 to 10 mol}, (C) an organosilicon compound having a sulfur atom bonded and a silicon atom-bonded hydrolyzable group (0.0001 to 2% by mass based on the present composition) And (D) a hydrosilation reaction platinum catalyst (amount of platinum atoms with respect to the present composition in an amount of 0.01 to 500 ppm by mass). Characterized in that it is a cured product of reaction-curable silicone composition.
In the semiconductor device, the type A durometer hardness defined in JIS K 6253 of the silicone cured product is preferably 10 to 99.
In the semiconductor device, the semiconductor element is preferably a light emitting diode (LED) element.
The curable silicone composition for encapsulating a semiconductor element of the present invention is a hydrosilylation reaction curable silicone composition for encapsulating a gold-plated lead or substrate in a semiconductor device and the semiconductor element. ) Organopolysiloxane having at least two alkenyl groups in one molecule, (B) Organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule {alkenyl group 1 in component (A) Amount in which the silicon-bonded hydrogen atom in this component is 0.1 to 10 moles per mole}, (C) an organosilicon compound having a silicon atom-bonded hydrolyzable group bonded to a sulfur atom (this composition) 0.0001 to 2% by mass with respect to the product), and (D) platinum catalyst for hydrosilylation reaction (with respect to the present composition, 0.01 to 500% by mass of platinum atoms) And at least consisting of an amount) to be m.
 本発明の半導体装置は、吸湿リフロー試験後の信頼性が優れるという特徴がある。また、本発明の半導体素子封止用硬化性シリコーン組成物は、金メッキされたリードまたは基板に対する接着性が良好であるという特徴がある。 The semiconductor device of the present invention is characterized by excellent reliability after the moisture absorption reflow test. In addition, the curable silicone composition for sealing a semiconductor element of the present invention is characterized by good adhesion to a gold-plated lead or substrate.
 図1は、本発明の半導体装置の一例である光半導体装置(LED)の断面図である。 FIG. 1 is a cross-sectional view of an optical semiconductor device (LED) which is an example of a semiconductor device of the present invention.
 はじめに、本発明の半導体装置について詳細に説明する。
 本発明の半導体装置は、金メッキされたリードまたは基板と半導体素子をシリコーン硬化物で封止した半導体装置である。この半導体素子としては、発光ダイオード(LED)素子、半導体レーザ素子、フォトダイオード素子、フォトトランジスタ素子、固体撮像素子、フォトカプラー用の発光素子または受光素子が例示され、特に、発光ダイオード(LED)素子であることが好ましい。
 本発明の半導体装置を図1により詳細に説明する。
 図1は半導体装置の一例である光半導体装置(LED)の断面図である。この光半導体装置(LED)では、ポリフタルアミド(PPA)樹脂製筐体1内のダイパッド3上に発光ダイオード(LED)素子5が接着材4によりダイボンディングされ、発光ダイオード(LED)素子5と金メッキされたリード2とが金製ボンディングワイヤ6によりワイヤボンディングされ、発光ダイオード(LED)素子5と金メッキされたリード2と金製ボンディングワイヤ6とが、シリコーン硬化物からなる封止材7により封止されている。
 本発明の半導体装置では、金メッキされたリードまたは基板と半導体素子を封止したシリコーン硬化物が、(A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン{(A)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~10モルとなる量}、(C)硫黄原子を結合し、ケイ素原子結合加水分解性基を有する有機ケイ素化合物(本組成物に対して0.0001~2質量%)、および(D)ヒドロシリル化反応用白金系触媒(本組成物に対して、白金原子が0.01~500質量ppmとなる量)から少なくともなるヒドロシリル化反応硬化性シリコーン組成物の硬化物であることを特徴とする。
 (A)成分は上記組成物の主剤であり、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンである。(A)成分中のアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基等の炭素数が2~12個のアルケニル基が例示され、好ましくは、ビニル基である。また、(A)成分中のアルケニル基以外のケイ素原子に結合する基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の炭素数が1~12個のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等の炭素数が6~20個のアリール基;ベンジル基、フェネチル基、フェニルプロピル基等の炭素数が7~20個のアラルキル基;これらの基の水素原子の一部または全部をフッ素原子、塩素原子、臭素原子等のハロゲン原子で置換した基が例示される。なお、(A)成分中のケイ素原子には、本発明の目的を損なわない範囲で、少量の水酸基やメトキシ基、エトキシ基等のアルコキシ基を有していてもよい。
 (A)成分の分子構造は特に限定されないが、例えば、直鎖状、一部分岐を有する直鎖状、分岐鎖状、環状、および三次元網状構造が挙げられる。(A)成分は、これらの分子構造を有する単独のオルガノポリシロキサン、あるいはこれらの分子構造を有する二種以上のオルガノポリシロキサンの混合物であってもよい。
 このような(A)成分は、ケイ素原子結合全有機基に対して、アルケニル基が0.01~50モル%、0.05~40モル%、あるいは、0.09~32モル%であることが好ましい。これは、(A)成分中のアルケニル基が少なすぎると硬化物が得られないおそれがあり、また、(A)成分中のアルケニル基が多すぎると得られる硬化物の機械的特性が悪くなるおそれがあるからである。また、(A)成分中のアルケニル基は、オルガノポリシロキサンの分子鎖両末端にあることが好ましい。なお、(A)成分中のアルケニル基のモル%は、例えば、フーリエ変換赤外分光光度計(FT−IR)、核磁気共鳴(NMR)、ゲル浸透クロマトグラフィー(GPC)等の分析によって求めることができる。
 (A)成分は、25℃で液状又は固体状のオルガノポリシロキサンである。(A)成分が25℃で液状である場合、その25℃での粘度は、1~1,000,000mPa・sの範囲内、または10~1,000,000mPa・sの範囲内であることが好ましい。なお、オルガノポリシロキサンの25℃での粘度は、例えば、JIS K7117−1に準拠してB型粘度計を用いた測定により求めることができる。
 (B)成分は上記組成物の架橋剤であり、一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンである。(B)成分中の水素原子以外のケイ素原子に結合する基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等の炭素数が1~12個のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等の炭素数が6~20個のアリール基;ベンジル基、フェネチル基、フェニルプロピル基等の炭素数が7~20個のアラルキル基;これらの基の水素原子の一部または全部をフッ素原子、塩素原子、臭素原子等のハロゲン原子で置換した基が例示される。なお、(B)成分中のケイ素原子には、本発明の目的を損なわない範囲で、少量の水酸基やメトキシ基、エトキシ基等のアルコキシ基を有していてもよい。
 (B)成分の分子構造は特に限定されないが、例えば、直鎖状、一部分岐を有する直鎖状、分岐鎖状、環状、および三次元網状構造が挙げられ、好ましくは、一部分岐を有する直鎖状、分岐鎖状、および三次元網状構造が挙げられる。
 (B)成分は、25℃で固体状又は液状である。(B)成分が25℃で液状である場合は、その25℃での粘度は、10,000mPa・s以下、0.1~5,000mPa・sの範囲内、あるいは、0.5~1,000mPa・sの範囲内であることが好ましい。なお、オルガノポリシロキサンの25℃での粘度は、例えば、JIS K7117−1に準拠してB型粘度計を用いた測定により求めることができる。
 (B)成分は、本発明の目的を達成できる限り、特に特定のオルガノポリシロキサンに限定されないが、例えば、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、1−グリシドキシプロピル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジグリシドキシプロピル−1,3,5,7−テトラメチルシクロテトラシロキサン、1−グリシドキシプロピル−5−トリメトキシシリルエチル−1,3,5,7−テトラメチルシクロテトラシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、および(CHHSiO1/2単位とSiO4/2単位と(C)SiO3/2単位とからなる共重合体等からなる群から選ばれる1種又は2種以上が挙げられる。
 (B)成分の含有量は、(A)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~10モルとなる量であり、好ましくは、0.5~5モルとなる量である。これは、(B)成分の含有量が上記範囲の上限以下であると、得られる硬化物の機械的特性の低下を抑えることができるからであり、一方、上記範囲の下限以上であると、得られる組成物が十分に硬化するからである。なお、(B)成分中のケイ素原子結合水素原子の含有量は、例えば、フーリエ変換赤外分光光度計(FT−IR)、核磁気共鳴(NMR)、ゲル浸透クロマトグラフィー(GPC)等の分析によって求めることができる。
 (C)成分の有機ケイ素化合物は、硫黄原子を結合し、ケイ素原子結合加水分解性基を有するものであり、上記組成物に金メッキされたリードフレームへの良好な接着性を付与する成分である。このような(C)成分としては、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルメチルジエトキシシラン等のメルカプトアルキルアルコキシシラン;ビス(トリメトキシシリルプロピル)ジスルフィド、ビス(トリメトキシシリルプロピル)トリスルフィド、ビス(トリメトキシシリルプロピル)テトラスルフィド等のビス(アルコキシシリルアルキル)スルフィドが例示される。
 (C)成分の含有量は、上記組成物に対して、0.0001~2質量%であり、好ましくは、0.001~1質量%、あるいは、0.01~0.2質量%となる量である。これは上記範囲の下限以上であると、金メッキされたリードや基板に対する接着性が向上し、一方、上記範囲の上限以下であると、上記組成物の硬化阻害を生じにくいからである。
 (D)成分は、上記組成物のヒドロシリル化反応を促進するためのヒドロシリル化反応用白金系触媒である。このような(D)成分としては、白金微粉末、白金黒、塩化白金酸、塩化白金酸のアルコール変性物、塩化白金酸とジオレフィンの錯体、白金−オレフィン錯体、白金ビス(アセトアセテート)、白金ビス(アセチルアセトネート)等の白金−カルボニル錯体、塩化白金酸−ジビニルテトラメチルジシロキサン錯体、塩化白金酸−テトラビニルテトラメチルシクロテトラシロキサン錯体等の塩化白金酸−アルケニルシロキサン錯体、白金−ジビニルテトラメチルジシロキサン錯体、白金−テトラビニルテトラメチルシクロテトラシロキサン錯体等の白金−アルケニルシロキサン錯体、および塩化白金酸とアセチレンアルコール類との錯体が例示され、特に、ヒドロシリル化反応の促進効果が高いことから、白金−アルケニルシロキサン錯体であることが好ましい。これらのヒドロシリル化反応用白金系触媒は、一種単独で用いてもよいし、二種以上を併用してもよい。
 白金−アルケニルシロキサン錯体に用いられるアルケニルシロキサンは、特に限定されないが、例えば、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサンオリゴマー、およびこれらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンオリゴマー等が挙げられる。特に、生成する白金−アルケニルシロキサン錯体の安定性が良好であることから、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサンが好ましい。
 また、白金−アルケニルシロキサン錯体の安定性を向上させるため、これらの白金−アルケニルシロキサン錯体を、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3−ジアリル−1,1,3,3−テトラメチルジシロキサン、1,3−ジビニル−1,3−ジメチル−1,3−ジフェニルジシロキサン、1,3−ジビニル−1,1,3,3−テトラフェニルジシロキサン、および1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン等のアルケニルシロキサンオリゴマーやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーに溶解していることが好ましく、特にアルケニルシロキサンオリゴマーに溶解していることが好ましい。
 (D)成分の含有量は、上記組成物に対して、(D)成分中の白金原子が0.01~500質量ppmとなる量であり、好ましくは、0.01~100質量ppmの範囲内、あるいは、0.1~50質量ppmの範囲内となる量である。これは、(D)成分の含有量が上記範囲の下限以上であると、得られる組成物が十分に硬化するからであり、一方、上記範囲の上限以下であると、得られる硬化物の着色が抑えられるからである。
 上記組成物には、常温での可使時間を延長し、保存安定性を向上させるための任意の成分として、(E)ヒドロシリル化反応抑制剤を含有してもよい。このような(E)成分としては、1−エチニルシクロヘキサン−1−オール、2−メチル−3−ブチン−2−オール、3,5−ジメチル−1−ヘキシン−3−オール、および2−フェニル−3−ブチン−2−オール等のアルキンアルコール;3−メチル−3−ペンテン−1−イン、および3,5−ジメチル−3−ヘキセン−1−イン等のエンイン化合物;1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン、および1,3,5,7−テトラメチル−1,3,5,7−テトラヘキセニルシクロテトラシロキサン等のメチルアルケニルシロキサンオリゴマー;ジメチルビス(3−メチル−1−ブチン−3−オキシ)シラン、およびメチルビニルビス(3−メチル−1−ブチン−3−オキシ)シラン等のアルキンオキシシラン、並びにトリアリルイソシアヌレート系化合物が例示される。
 (E)成分の含有量は特に限定されないが、上記、(A)成分~(D)成分の混合時にゲル化を抑制し、または硬化を抑制するのに十分な量であり、さらには長期間保存可能とするために十分な量である。(E)成分の含有量としては、具体的には、上記(A)成分~(D)成分の合計100質量部に対して0.0001~5質量部の範囲内、あるいは、0.01~3質量部の範囲内であることが好ましい。
 また、上記組成物には、硬化中に接触している基材への接着性を更に向上させるために、接着促進剤を含有してもよい。この接着促進剤としては、ケイ素原子に結合したアルコキシ基を一分子中に1個または2個以上有する有機ケイ素化合物が好ましい。このアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、およびメトキシエトキシ基が例示され、特に、メトキシ基またはエトキシ基が好ましい。また、この有機ケイ素化合物のケイ素原子に結合するアルコキシ基以外の基としては、アルキル基、アルケニル基、アリール基、アラルキル基、およびハロゲン化アルキル基等の置換もしくは非置換の一価炭化水素基;3−グリシドキシプロピル基、および4−グリシドキシブチル基等のグリシドキシアルキル基;2−(3,4−エポキシシクロヘキシル)エチル基、および3−(3,4−エポキシシクロヘキシル)プロピル基等のエポキシシクロヘキシルアルキル基;4−オキシラニルブチル基、および8−オキシラニルオクチル基等のオキシラニルアルキル基;3−メタクリロキシプロピル基等のアクリル基含有一価有機基;イソシアネート基;イソシアヌレート基;並びに水素原子が例示される。この有機ケイ素化合物は本組成物中のアルケニル基またはケイ素原子結合水素原子と反応し得る基を有することが好ましく、具体的には、ケイ素原子結合水素原子またはアルケニル基を有することが好ましい。
 接着促進剤の含有量は限定されないが、上記(A)成分~(D)成分の合計100質量部に対して0.01~10質量部の範囲内、あるいは、0.1~3質量部の範囲内であることが好ましい。
 また、上記組成物には、その他任意の成分として、蛍光体を含有することができる。この蛍光体としては、例えば、発光ダイオード(LED)に広く利用されている、酸化物系蛍光体、酸窒化物系蛍光体、窒化物系蛍光体、硫化物系蛍光体、酸硫化物系蛍光体等からなる黄色、赤色、緑色、青色発光蛍光体が挙げられる。酸化物系蛍光体としては、セリウムイオンを包含するイットリウム、アルミニウム、ガーネット系のYAG系緑色~黄色発光蛍光体;セリウムイオンを包含するテルビウム、アルミニウム、ガーネット系のTAG系黄色発光蛍光体;および、セリウムやユーロピウムイオンを包含するシリケート系緑色~黄色発光蛍光体が例示される。酸窒化物系蛍光体としては、ユーロピウムイオンを包含するケイ素、アルミニウム、酸素、窒素系のサイアロン系赤色~緑色発光蛍光体が例示される。窒化物系蛍光体としては、ユーロピウムイオンを包含するカルシウム、ストロンチウム、アルミニウム、ケイ素、窒素系のカズン系赤色発光蛍光体が例示される。硫化物系蛍光体としては、銅イオンやアルミニウムイオンを包含するZnS系緑色発色蛍光体が例示される。酸硫化物系蛍光体としては、ユーロピウムイオンを包含するYS系赤色発光蛍光体が例示される。これらの蛍光体は、1種もしくは2種以上の混合物を用いてもよい。
 この蛍光体の含有量は特に限定されないが、上記組成物中、0.1~70質量%の範囲内、あるいは、1~20質量%の範囲内であることが好ましい。
 また、上記組成物には、本発明の目的を損なわない限り、その他の任意の成分として、シリカ、ガラス、およびアルミナ等から選択される1種又は2種以上の無機質充填剤;シリコーンゴム粉末;シリコーン樹脂、およびポリメタクリレート樹脂等の樹脂粉末;耐熱剤、染料、顔料、難燃性付与剤、界面活性剤、溶剤等から選択される1種又は2種以上の成分を含有してもよい。
 本発明の半導体装置の製造方法は特に限定されず、例えば、図1で示される光半導体装置(LED)は次のようにして製造することができる。
 ポリフタルアミド(PPA)樹脂製筐体1内のダイパッド3上に発光ダイオード(LED)素子5を接着材4によりダイボンディングする。次に、発光ダイオード(LED)素子5と金メッキされたリード2とを金製ボンディングワイヤ6によりワイヤボンディングする。次いで、ポリフタルアミド(PPA)樹脂製筐体1内に上記組成物を注入し、硬化させることにより、発光ダイオード(LED)素子5と金メッキされたリード2と金製ボンディングワイヤ6とをシリコーン硬化物からなる封止材で封止する。この製造方法において、上記組成物を硬化する方法としては、室温放置、あるいは加熱により硬化することができ、迅速に硬化させるためには加熱することが好ましい。加熱温度としては、50~200℃の範囲内であることが好ましい。
 このようにして得られる半導体装置において、シリコーン硬化物のJIS K6253に規定されるタイプAデュロメータ硬さは10~99であることが好ましく、特に、15~95であることが好ましい。これは、シリコーン硬化物の硬さが上記範囲の下限以上であると、硬化物の強度が大きくなり、外部からの応力に対して半導体素子を十分に保護することができるからであり、一方、上記範囲の上限以下であると、硬化物が柔軟となり、熱衝撃に対して半導体素子を十分に保護することができるからである。
 次に、本発明の半導体素子封止用硬化性シリコーン組成物を詳細に説明する。
 本発明の半導体素子封止用硬化性シリコーン組成物は、半導体装置中の金メッキされたリードまたは基板と半導体素子を封止するためのヒドロシリル化反応硬化性シリコーン組成物であって、(A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン{(A)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~10モルとなる量}、(C)硫黄原子を結合し、ケイ素原子結合加水分解性基を有する有機ケイ素化合物(本組成物に対して0.0001~2質量%)、および(D)ヒドロシリル化反応用白金系触媒(本組成物に対して、白金原子が0.01~500質量ppmとなる量)から少なくともなることを特徴とする。
 上記(A)成分~(D)成分については、前述のとおりである。また、本組成物には、常温での可使時間を延長し、保存安定性を向上させるための(E)ヒドロシリル化反応抑制剤の他;接着促進剤;蛍光体;シリカ、ガラス、およびアルミナ等から選択される1種又は2種以上の無機質充填剤;シリコーンゴム粉末;シリコーン樹脂、およびポリメタクリレート樹脂等の樹脂粉末;耐熱剤、染料、顔料、難燃性付与剤、界面活性剤、溶剤等から選択される1種又は2種以上の成分を含有してもよい。これらの成分およびその含有量については前述のとおりである。
 このような本発明の硬化性シリコーン組成物は、上記(A)成分~(D)成分、さらには、上記の任意成分からなるものであり、一液型、あるいは任意の成分に分けられた二液型とすることができる。
First, the semiconductor device of the present invention will be described in detail.
The semiconductor device of the present invention is a semiconductor device in which a gold-plated lead or substrate and a semiconductor element are sealed with a silicone cured product. Examples of the semiconductor element include a light emitting diode (LED) element, a semiconductor laser element, a photodiode element, a phototransistor element, a solid-state imaging element, a light emitting element or a light receiving element for a photocoupler, and in particular, a light emitting diode (LED) element. It is preferable that
The semiconductor device of the present invention will be described in detail with reference to FIG.
FIG. 1 is a cross-sectional view of an optical semiconductor device (LED) which is an example of a semiconductor device. In this optical semiconductor device (LED), a light emitting diode (LED) element 5 is die-bonded by an adhesive 4 on a die pad 3 in a polyphthalamide (PPA) resin casing 1, and the light emitting diode (LED) element 5 The gold-plated lead 2 is wire-bonded by a gold bonding wire 6, and the light-emitting diode (LED) element 5 and the gold-plated lead 2 and the gold bonding wire 6 are sealed by a sealing material 7 made of a cured silicone. It has been stopped.
In the semiconductor device of the present invention, the cured silicon product in which the gold-plated lead or substrate and the semiconductor element are sealed is (A) an organopolysiloxane having at least two alkenyl groups in one molecule, and (B) in one molecule. An organohydrogenpolysiloxane having at least two silicon atom-bonded hydrogen atoms in {1 mol of alkenyl groups in component (A) is 0.1 to 10 mol of silicon atom-bonded hydrogen atoms in this component Amount}, (C) an organosilicon compound having a sulfur atom-bonded and silicon-bonded hydrolyzable group (0.0001 to 2 mass% with respect to the present composition), and (D) a platinum system for hydrosilylation reaction A cured product of a hydrosilylation reaction-curable silicone composition comprising at least a catalyst (in which the platinum atom is 0.01 to 500 ppm by mass with respect to the present composition) And wherein the Rukoto.
Component (A) is the main component of the above composition and is an organopolysiloxane having at least two alkenyl groups in one molecule. As the alkenyl group in the component (A), the vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, etc. Twelve alkenyl groups are exemplified, and a vinyl group is preferable. In addition, as the group bonded to the silicon atom other than the alkenyl group in the component (A), a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, Alkyl groups having 1 to 12 carbon atoms such as hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group and dodecyl group; carbon such as phenyl group, tolyl group, xylyl group and naphthyl group Aryl groups having 6 to 20 carbon atoms; aralkyl groups having 7 to 20 carbon atoms such as benzyl, phenethyl, and phenylpropyl groups; some or all of hydrogen atoms of these groups are fluorine atoms, chlorine atoms, Examples thereof include a group substituted with a halogen atom such as a bromine atom. In addition, the silicon atom in the component (A) may have a small amount of an alkoxy group such as a hydroxyl group, a methoxy group, and an ethoxy group as long as the object of the present invention is not impaired.
The molecular structure of the component (A) is not particularly limited, and examples thereof include linear, partially branched linear, branched, cyclic, and three-dimensional network structures. The component (A) may be a single organopolysiloxane having these molecular structures or a mixture of two or more organopolysiloxanes having these molecular structures.
In such component (A), the alkenyl group is 0.01 to 50 mol%, 0.05 to 40 mol%, or 0.09 to 32 mol% with respect to the silicon-bonded total organic group. Is preferred. This is because if there are too few alkenyl groups in the component (A), a cured product may not be obtained, and if there are too many alkenyl groups in the component (A), the mechanical properties of the resulting cured product will deteriorate. Because there is a fear. Moreover, it is preferable that the alkenyl group in (A) component exists in the both ends of the molecular chain of organopolysiloxane. In addition, the mol% of the alkenyl group in the component (A) is determined by analysis such as Fourier transform infrared spectrophotometer (FT-IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), etc. Can do.
Component (A) is an organopolysiloxane that is liquid or solid at 25 ° C. When the component (A) is liquid at 25 ° C., the viscosity at 25 ° C. is in the range of 1 to 1,000,000 mPa · s, or in the range of 10 to 1,000,000 mPa · s. Is preferred. The viscosity of the organopolysiloxane at 25 ° C. can be determined, for example, by measurement using a B-type viscometer according to JIS K7117-1.
Component (B) is a crosslinking agent of the above composition, and is an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule. (B) As a group couple | bonded with silicon atoms other than a hydrogen atom in a component, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group Alkyl groups having 1 to 12 carbon atoms such as cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, etc .; carbon number such as phenyl group, tolyl group, xylyl group, naphthyl group, etc. 6 to 20 aryl groups; aralkyl groups having 7 to 20 carbon atoms such as benzyl group, phenethyl group and phenylpropyl group; some or all of hydrogen atoms of these groups are fluorine atoms, chlorine atoms, bromine atoms And a group substituted with a halogen atom such as In addition, the silicon atom in the component (B) may have a small amount of a hydroxyl group, an alkoxy group such as a methoxy group, an ethoxy group or the like as long as the object of the present invention is not impaired.
The molecular structure of the component (B) is not particularly limited, and examples thereof include linear, linear, partially branched, branched, cyclic, and three-dimensional network structures. Examples include chain, branched chain, and three-dimensional network structures.
The component (B) is solid or liquid at 25 ° C. When the component (B) is liquid at 25 ° C., the viscosity at 25 ° C. is 10,000 mPa · s or less, within the range of 0.1 to 5,000 mPa · s, or 0.5 to 1, It is preferably within the range of 000 mPa · s. The viscosity of the organopolysiloxane at 25 ° C. can be determined, for example, by measurement using a B-type viscometer according to JIS K7117-1.
The component (B) is not particularly limited to a specific organopolysiloxane as long as the object of the present invention can be achieved. For example, 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetra Methylcyclotetrasiloxane, tris (dimethylhydrogensiloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, 1-glycidoxypropyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-digly Sidoxypropyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1-glycidoxypropyl-5-trimethoxysilylethyl-1,3,5,7-tetramethylcyclotetrasiloxane, both ends of molecular chain Trimethylsiloxy group-blocked methylhydrogenpolysiloxane, trimer at both ends of molecular chain Lucyloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, dimethylhydrogensiloxy group-blocked dimethylpolysiloxane at both molecular chain ends, dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer at both chain ends, molecule Trimethylsiloxy group-capped methylhydrogensiloxane / diphenylsiloxane copolymer at both ends of the chain, trimethylsiloxy group-capped methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer at both ends of the molecular chain, (CH 3 ) 2 HSiO 1/2 unit and a copolymer consisting of SiO 4/2 units, and (CH 3) 2 HSiO 1/2 units and the SiO 4/2 units (C 6 H 5) consisting of SiO 3/2 units, and copolymers and the like Group 1 type (s) or 2 or more types selected from are mentioned.
The content of component (B) is such that the silicon-bonded hydrogen atoms in this component are 0.1 to 10 moles per mole of alkenyl groups in component (A), preferably The amount is 5 to 5 mol. This is because when the content of the component (B) is not more than the upper limit of the above range, it is possible to suppress a decrease in the mechanical properties of the obtained cured product, and on the other hand, if it is not less than the lower limit of the above range, This is because the resulting composition is sufficiently cured. In addition, content of the silicon atom bond hydrogen atom in (B) component is analysis, such as a Fourier-transform infrared spectrophotometer (FT-IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) etc., for example. Can be obtained.
The organosilicon compound (C) is a component that binds sulfur atoms and has a silicon atom-bonded hydrolyzable group, and imparts good adhesion to a lead frame that is gold-plated to the above composition. . Examples of such a component (C) include mercaptoalkylalkoxysilanes such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropylmethyldiethoxysilane; Examples thereof include bis (alkoxysilylalkyl) sulfides such as (trimethoxysilylpropyl) disulfide, bis (trimethoxysilylpropyl) trisulfide, and bis (trimethoxysilylpropyl) tetrasulfide.
The content of the component (C) is 0.0001 to 2% by mass, preferably 0.001 to 1% by mass, or 0.01 to 0.2% by mass with respect to the composition. Amount. This is because if it is at least the lower limit of the above range, the adhesion to a gold-plated lead or substrate is improved, while if it is below the upper limit of the above range, the composition is less likely to be inhibited from curing.
Component (D) is a platinum catalyst for hydrosilylation reaction for promoting the hydrosilylation reaction of the composition. As such component (D), platinum fine powder, platinum black, chloroplatinic acid, alcohol-modified chloroplatinic acid, chloroplatinic acid and diolefin complex, platinum-olefin complex, platinum bis (acetoacetate), Platinum-carbonyl complexes such as platinum bis (acetylacetonate), chloroplatinic acid-divinyltetramethyldisiloxane complexes, chloroplatinic acid-alkenylsiloxane complexes such as chloroplatinic acid-tetravinyltetramethylcyclotetrasiloxane complexes, platinum-divinyl Examples include platinum-alkenylsiloxane complexes such as tetramethyldisiloxane complexes, platinum-tetravinyltetramethylcyclotetrasiloxane complexes, and complexes of chloroplatinic acid and acetylene alcohols, and particularly high hydrosilylation reaction promoting effects. From the platinum-alkenylsiloxane complex Rukoto is preferable. These platinum catalysts for hydrosilylation reaction may be used individually by 1 type, and may use 2 or more types together.
The alkenyl siloxane used in the platinum-alkenyl siloxane complex is not particularly limited. For example, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1 , 3,5,7-tetravinylcyclotetrasiloxane, alkenylsiloxane oligomers in which part of the methyl groups of these alkenylsiloxanes are substituted with ethyl groups, phenyl groups, etc., and the vinyl groups of these alkenylsiloxanes are allyl groups, hexenyls And alkenylsiloxane oligomers substituted with a group. In particular, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferred because the resulting platinum-alkenylsiloxane complex has good stability.
In order to improve the stability of the platinum-alkenylsiloxane complex, these platinum-alkenylsiloxane complexes may be converted to 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3-diallyl-1 1,3,3-tetramethyldisiloxane, 1,3-divinyl-1,3-dimethyl-1,3-diphenyldisiloxane, 1,3-divinyl-1,1,3,3-tetraphenyldisiloxane , And 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane and other alkenylsiloxane oligomers and dimethylsiloxane oligomers and other organosiloxane oligomers, It is preferably dissolved in the alkenylsiloxane oligomer.
The content of the component (D) is such that the platinum atom in the component (D) is 0.01 to 500 ppm by mass, preferably in the range of 0.01 to 100 ppm by mass with respect to the above composition. Or within the range of 0.1 to 50 ppm by mass. This is because when the content of the component (D) is not less than the lower limit of the above range, the resulting composition is sufficiently cured, whereas when it is not more than the upper limit of the above range, the resulting cured product is colored. It is because it is suppressed.
The composition may contain (E) a hydrosilylation reaction inhibitor as an optional component for extending the pot life at room temperature and improving storage stability. Examples of such component (E) include 1-ethynylcyclohexane-1-ol, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, and 2-phenyl- Alkyne alcohols such as 3-butyn-2-ol; Enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7 Methyl alkenylsiloxane oligomers such as tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane and 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane; Alkyl such as dimethylbis (3-methyl-1-butyne-3-oxy) silane and methylvinylbis (3-methyl-1-butyne-3-oxy) silane Oxysilane, and triallyl isocyanurate compounds.
The content of the component (E) is not particularly limited, but it is an amount sufficient to suppress gelation or to suppress curing when the components (A) to (D) are mixed. Sufficient to allow storage. Specifically, the content of the component (E) is in the range of 0.0001 to 5 parts by mass with respect to a total of 100 parts by mass of the components (A) to (D), or 0.01 to It is preferably within the range of 3 parts by mass.
Moreover, in order to further improve the adhesiveness to the base material which is contacting during hardening, you may contain an adhesion promoter in the said composition. As this adhesion promoter, an organosilicon compound having one or more alkoxy groups bonded to silicon atoms in one molecule is preferable. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group, and a methoxy group or an ethoxy group is particularly preferable. In addition, as a group other than the alkoxy group bonded to the silicon atom of the organosilicon compound, a substituted or unsubstituted monovalent hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group, an aralkyl group, and a halogenated alkyl group; Glycidoxyalkyl groups such as 3-glycidoxypropyl group and 4-glycidoxybutyl group; 2- (3,4-epoxycyclohexyl) ethyl group and 3- (3,4-epoxycyclohexyl) propyl group Epoxy cyclohexyl alkyl groups such as 4-oxiranyl butyl group and oxiranyl alkyl groups such as 8-oxiranyl octyl group; acrylic group-containing monovalent organic groups such as 3-methacryloxypropyl group; isocyanate groups; Examples include isocyanurate groups; as well as hydrogen atoms. This organosilicon compound preferably has an alkenyl group or a group capable of reacting with a silicon atom-bonded hydrogen atom in the composition, and specifically, preferably has a silicon atom-bonded hydrogen atom or an alkenyl group.
The content of the adhesion promoter is not limited, but is within the range of 0.01 to 10 parts by mass, or 0.1 to 3 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). It is preferable to be within the range.
Moreover, the said composition can contain fluorescent substance as another arbitrary component. Examples of the phosphor include oxide phosphors, oxynitride phosphors, nitride phosphors, sulfide phosphors, and oxysulfide phosphors that are widely used in light emitting diodes (LEDs). Examples thereof include yellow, red, green, and blue light emitting phosphors. Examples of the oxide-based phosphor include yttrium, aluminum, and garnet-based YAG-based green to yellow light-emitting phosphors including cerium ions; terbium, aluminum, and garnet-based TAG-based yellow light-emitting phosphors including cerium ions; and Examples include silicate green to yellow light emitting phosphors containing cerium and europium ions. Examples of the oxynitride phosphor include silicon, aluminum, oxygen, and nitrogen sialon red to green light emitting phosphors containing europium ions. Examples of nitride-based phosphors include calcium, strontium, aluminum, silicon, and nitrogen-based casoon-based red light-emitting phosphors containing europium ions. Examples of sulfide-based phosphors include ZnS-based green color phosphors including copper ions and aluminum ions. Examples of oxysulfide phosphors include Y 2 O 2 S red light-emitting phosphors containing europium ions. These phosphors may use one kind or a mixture of two or more kinds.
The content of the phosphor is not particularly limited, but is preferably in the range of 0.1 to 70% by mass or in the range of 1 to 20% by mass in the composition.
Further, in the above composition, as long as the object of the present invention is not impaired, one or more inorganic fillers selected from silica, glass, alumina and the like as other optional components; silicone rubber powder; Resin powders such as silicone resins and polymethacrylate resins; one or more components selected from heat-resistant agents, dyes, pigments, flame retardants, surfactants, solvents and the like may be contained.
The manufacturing method of the semiconductor device of the present invention is not particularly limited. For example, the optical semiconductor device (LED) shown in FIG. 1 can be manufactured as follows.
A light emitting diode (LED) element 5 is die-bonded with an adhesive 4 on a die pad 3 in a polyphthalamide (PPA) resin casing 1. Next, the light emitting diode (LED) element 5 and the gold-plated lead 2 are wire-bonded with a gold bonding wire 6. Next, the composition is injected into a polyphthalamide (PPA) resin casing 1 and cured to cure the light-emitting diode (LED) element 5, the gold-plated lead 2 and the gold bonding wire 6 with silicone. Sealing is performed with a sealing material made of a material. In this production method, the composition can be cured by standing at room temperature or by heating, and heating is preferred for rapid curing. The heating temperature is preferably in the range of 50 to 200 ° C.
In the semiconductor device thus obtained, the type A durometer hardness defined in JIS K6253 of the silicone cured product is preferably 10 to 99, and particularly preferably 15 to 95. This is because when the hardness of the silicone cured product is equal to or higher than the lower limit of the above range, the strength of the cured product is increased, and the semiconductor element can be sufficiently protected against external stress, It is because hardened | cured material will become flexible and it can fully protect a semiconductor element with respect to a thermal shock as it is below the upper limit of the said range.
Next, the curable silicone composition for sealing a semiconductor element of the present invention will be described in detail.
The curable silicone composition for encapsulating a semiconductor element of the present invention is a hydrosilylation reaction curable silicone composition for encapsulating a gold-plated lead or substrate in a semiconductor device and the semiconductor element. Organopolysiloxane having at least two alkenyl groups in the molecule, (B) Organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule {in 1 mol of alkenyl groups in component (A) In contrast, the amount of silicon-bonded hydrogen atoms in this component is 0.1 to 10 moles}, (C) an organosilicon compound having a sulfur atom-bonded and silicon-bonded hydrolyzable group (in this composition) 0.0001-2 mass%) and (D) platinum catalyst for hydrosilylation reaction (with respect to the present composition, the platinum atom is 0.01-500 mass ppm) And at least consisting of that amount).
The components (A) to (D) are as described above. In addition to the (E) hydrosilylation reaction inhibitor for extending the pot life at room temperature and improving the storage stability, the present composition includes: an adhesion promoter; a phosphor; silica, glass, and alumina. 1 type or 2 or more types of inorganic fillers selected from, etc .; silicone rubber powder; resin powder such as silicone resin and polymethacrylate resin; heat-resistant agent, dye, pigment, flame retardant, surfactant, solvent You may contain 1 type, or 2 or more types of components selected from etc. These components and their contents are as described above.
Such a curable silicone composition of the present invention comprises the above-mentioned components (A) to (D) and further any of the above-mentioned optional components, and is divided into one-component type or optional components. It can be a liquid type.
 本発明の半導体装置および半導体素子封止用硬化性シリコーン組成物を実施例および比較例を用いて詳細に説明する。なお、化学式中、Me、Vi、およびPhは、それぞれ、メチル基、ビニル基、およびフェニル基を示す。
[実施例1~5、比較例1~7]
 次の成分を表1に示す組成(質量部)で均一に混合して実施例1~5及び比較例1~7の硬化性シリコーン組成物を調製した。また、表1中、SiH/Viは、硬化性シリコーン組成物において、(A)成分中のビニル基の合計1モルに対する、(B)成分中のケイ素原子結合水素原子の合計モル数を示す。
 (A)成分として、次の成分を用いた。なお、オルガノポリシロキサンは、公知の製法によって得ることができる。また、粘度は25℃における値であり、JIS K7117−1に準拠してB型粘度計を用いて測定した。また、ビニル基の含有量は、FT−IR、NMR、GPC等の分析によって測定した。
(a−1)成分:粘度300mPa・sであり、平均式:
MeViSiO(MeSiO)150SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.48質量%)
(a−2)成分:粘度10,000mPa・sであり、平均式:
MeViSiO(MeSiO)500SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.15質量%)
(a−3)成分:粘度1,000mPa・sであり、平均式:
MeViSiO(MePhSiO)30SiMeVi
で表されるメチルフェニルポリシロキサン(ビニル基の含有量=1.27質量%)
(a−4)成分:25℃において白色固体状で、トルエン可溶性である、平均単位式:
(MeViSiO1/20.13(MeSiO1/20.45(SiO4/20.42(HO1/20.01
で表される一分子中に2個以上のビニル基を有するオルガノポリシロキサンレジン(ビニル基の含有量=3.4質量%)
(a−5)成分:25℃において白色固体状で、トルエン可溶性である、平均単位式:
(MeViSiO1/20.15(MeSiO1/20.38(SiO4/20.47(HO1/20.01
で表される一分子中に2個以上のビニル基を有するオルガノポリシロキサン(ビニル基の含有量=4.2質量%)
(a−6)成分:25℃において白色固体状で、トルエン可溶性である、平均単位式:
(PhSiO3/20.75(MeViSiO1/20.25
で表される一分子中に2個以上のビニル基を有するオルガノポリシロキサン(ビニル基の含有量=5.6質量%)
 (B)成分として、次の成分を用いた。なお、オルガノハイドロジェンポリシロキサンは、公知の製法によって得ることができる。また、粘度は、25℃における値であり、JIS K7117−1に準拠してB型粘度計を用いて測定した。また、ケイ素原子結合水素原子の含有量と一分子当たりのケイ素原子結合水素原子の個数は、FT−IR、NMR、GPC等の分析によって測定した。
(b−1)成分:平均式:
MeSiO(MeHSiO)15SiMe
で表される、粘度5mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量=1.42質量%)
(b−2)成分:平均式:
MeSiO(MeHSiO)55SiMe
で表される、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量=1.6質量%)
(b−3)成分:平均式:
HMeSiO(PhSiO)SiMe
で表される、粘度5mPa・sの分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルポリシロキサン(ケイ素原子結合水素原子の含有量=0.6質量%)
(b−4)成分:平均単位式:
(PhSiO3/20.4(HMeSiO1/20.6
で表される、粘度25mPa・sの一分子中に2個以上のケイ素原子結合水素原子を有する分岐鎖状オルガノポリシロキサン(ケイ素原子結合水素原子の含有量=0.65質量%)
 (C)成分として、次の成分を用いた。
(c−1)成分:3−メルカプトプロピルトリメトキシシラン
(c−2)成分:ビス(3−トリエトキシシリルプロピル)テトラスルフィド
(c−3)成分:1,3,5−トリグリシジルイソシアヌル酸
(c−4)成分:3−メタクリロキシプロピルトリメトキシシラン
(c−5)成分:3−アクリロキシプロピルトリメトキシシラン
(c−6)成分:3−グリシドキシプロピルトリメトキシシラン
(c−7)成分:2−メルカプトベンゾチアゾール
 (D)成分として、白金の1,3−ジビニルテトラメチルジシロキサン錯体の1,3−ジビニルテトラメチルジシロキサン溶液(白金金属の含有量=約5000質量ppm)を用いた。
 (E)成分として、1−エチニルシクロヘキサン−1−オールを用いた。
[評価と結果]
 実施例1~5および比較例1~7で得られた硬化性シリコーン組成物について、「150℃のゲル化時間」、「シリコーン硬化物の硬さ」、「封止材の初期剥離率」、および「封止材の吸湿リフロー後の剥離率」を次のようにして測定し、その結果を表1に示した。
[150℃のゲル化時間]
 150℃のゲル化時間(秒)は、Alpha Technologies Rheometer MDR 2000Pを用いて測定した。
[シリコーン硬化物の硬さ]
 シリコーン硬化物の硬さは、実施例1~5及び比較例1~7で得られた硬化性シリコーン組成物を150℃で1時間、5MPaの圧力でプレス成形することによりシート状のシリコーン硬化物を作製し、この硬さをJIS K 6253に規定されるタイプAデュロメータにより測定した。
[光半導体装置(LED)の作製]
 底部が塞がった円筒状のポリフタルアミド(PPA)樹脂ケース(内径2.0mm、深さ1.0mm)の内底部の中心部に向かって、金メッキされたリードが側壁から延出しており、金メッキされたリードの中央部上にLEDチップが載置されており、LEDチップと金メッキされたリードは金製ボンディングワイヤにより電気的に接続している前駆体の、ポリフタルアミド(PPA)樹脂ケース内に、各実施例または各比較例の硬化性シリコーン組成物を脱泡してディスペンサーを用いて注入し、加熱オーブン中、100℃で30分、続いて150℃で1時間加熱して、硬化させることにより、各々20個の図1に示す光半導体装置(LED)を作製した。
[封止材の初期剥離率]
 上記光半導体装置(LED)20個について、金メッキされたリード2と封止材7間の剥離状態を光学顕微鏡で観察し、剥離した個数/20個を剥離率とした。
[吸湿リフロー後の剥離率]
 上記光半導体装置(LED)20個を、85℃/85%RHの高温高湿条件下で168時間保持した後、280℃のオーブン内に30秒間静置した。その後、室温(25℃)にして、金メッキされたリード2と封止材7間の剥離状態を光学顕微鏡で観察し、剥離した個数/20個を剥離率とした。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~5の硬化性シリコーン組成物の硬化物で封止されている半導体装置は、高い耐剥離性を有することが示された。
The semiconductor device and the curable silicone composition for sealing a semiconductor element of the present invention will be described in detail with reference to Examples and Comparative Examples. In the chemical formula, Me, Vi, and Ph represent a methyl group, a vinyl group, and a phenyl group, respectively.
[Examples 1 to 5, Comparative Examples 1 to 7]
The following components were uniformly mixed in the composition (parts by mass) shown in Table 1 to prepare curable silicone compositions of Examples 1 to 5 and Comparative Examples 1 to 7. In Table 1, SiH / Vi represents the total number of moles of silicon-bonded hydrogen atoms in the component (B) relative to a total of 1 mole of vinyl groups in the component (A) in the curable silicone composition.
The following components were used as the component (A). The organopolysiloxane can be obtained by a known production method. The viscosity is a value at 25 ° C., and was measured using a B-type viscometer in accordance with JIS K7117-1. The vinyl group content was measured by analysis such as FT-IR, NMR, GPC and the like.
(A-1) Component: Viscosity of 300 mPa · s, average formula:
Me 2 ViSiO (Me 2 SiO) 150 SiMe 2 Vi
Dimethylpolysiloxane blocked with dimethylvinylsiloxy group at both ends of the molecular chain represented by formula (Vinyl group content = 0.48% by mass)
(A-2) component: viscosity is 10,000 mPa · s, average formula:
Me 2 ViSiO (Me 2 SiO) 500 SiMe 2 Vi
Dimethylpolysiloxane blocked with dimethylvinylsiloxy group at both ends of the molecular chain represented by formula (Vinyl group content = 0.15% by mass)
(A-3) Component: Viscosity of 1,000 mPa · s, average formula:
Me 2 ViSiO (MePhSiO) 30 SiMe 2 Vi
Methylphenyl polysiloxane represented by the formula (vinyl group content = 1.27% by mass)
(A-4) Component: A white solid at 25 ° C. and soluble in toluene. Average unit formula:
(Me 2 ViSiO 1/2 ) 0.13 (Me 3 SiO 1/2 ) 0.45 (SiO 4/2 ) 0.42 (HO 1/2 ) 0.01
An organopolysiloxane resin having two or more vinyl groups in one molecule represented by (content of vinyl group = 3.4% by mass)
(A-5) Component: Average unit formula that is white solid at 25 ° C. and soluble in toluene:
(Me 2 ViSiO 1/2 ) 0.15 (Me 3 SiO 1/2 ) 0.38 (SiO 4/2 ) 0.47 (HO 1/2 ) 0.01
An organopolysiloxane having two or more vinyl groups in one molecule represented by the formula (vinyl group content = 4.2 mass%)
(A-6) Component: Average unit formula that is white solid at 25 ° C. and soluble in toluene:
(PhSiO 3/2 ) 0.75 (Me 2 ViSiO 1/2 ) 0.25
An organopolysiloxane having two or more vinyl groups in one molecule represented by the formula (vinyl group content = 5.6% by mass)
As the component (B), the following components were used. The organohydrogenpolysiloxane can be obtained by a known production method. Moreover, a viscosity is a value in 25 degreeC and measured using the B-type viscosity meter based on JISK7117-1. The content of silicon-bonded hydrogen atoms and the number of silicon-bonded hydrogen atoms per molecule were measured by analysis such as FT-IR, NMR, GPC and the like.
(B-1) Component: Average formula:
Me 3 SiO (MeHSiO) 15 SiMe 3
The molecular chain both ends trimethylsiloxy group-capped methylhydrogenpolysiloxane with a viscosity of 5 mPa · s (content of silicon-bonded hydrogen atoms = 1.42 mass%)
(B-2) Component: Average formula:
Me 3 SiO (MeHSiO) 55 SiMe 3
The molecular chain both ends trimethylsiloxy group-blocked methyl hydrogen polysiloxane with a viscosity of 20 mPa · s (content of silicon-bonded hydrogen atoms = 1.6 mass%)
(B-3) Component: Average formula:
HMe 2 SiO (Ph 2 SiO) SiMe 2 H
Dimethylhydrogensiloxy group-blocked diphenylpolysiloxane having a viscosity of 5 mPa · s and having a viscosity of 5 mPa · s (content of silicon-bonded hydrogen atoms = 0.6 mass%)
(B-4) Component: Average unit formula:
(PhSiO 3/2 ) 0.4 (HMe 2 SiO 1/2 ) 0.6
A branched organopolysiloxane having two or more silicon atom-bonded hydrogen atoms in one molecule with a viscosity of 25 mPa · s (content of silicon atom-bonded hydrogen atoms = 0.65 mass%)
As the component (C), the following components were used.
(C-1) component: 3-mercaptopropyltrimethoxysilane (c-2) component: bis (3-triethoxysilylpropyl) tetrasulfide (c-3) component: 1,3,5-triglycidyl isocyanuric acid ( c-4) component: 3-methacryloxypropyltrimethoxysilane (c-5) component: 3-acryloxypropyltrimethoxysilane (c-6) component: 3-glycidoxypropyltrimethoxysilane (c-7) Component: 2-mercaptobenzothiazole As component (D), a 1,3-divinyltetramethyldisiloxane solution of platinum with a 1,3-divinyltetramethyldisiloxane complex (platinum metal content = about 5000 mass ppm) is used. It was.
As component (E), 1-ethynylcyclohexane-1-ol was used.
[Evaluation and results]
For the curable silicone compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 7, “150 ° C. gelation time”, “hardness of silicone cured product”, “initial release rate of sealing material”, And “the peeling rate after moisture absorption reflow of the sealing material” was measured as follows, and the results are shown in Table 1.
[Gelation time at 150 ° C.]
The gelation time (seconds) at 150 ° C. was measured using Alpha Technologies Rheometer MDR 2000P.
[Hardness of cured silicone]
The hardness of the cured silicone product was determined by pressing the curable silicone compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 7 at 150 ° C. for 1 hour at a pressure of 5 MPa. The hardness was measured with a type A durometer as defined in JIS K 6253.
[Production of optical semiconductor device (LED)]
A gold-plated lead extends from the side wall toward the center of the inner bottom of a cylindrical polyphthalamide (PPA) resin case (inner diameter 2.0 mm, depth 1.0 mm) whose bottom is closed. The LED chip is placed on the center of the lead, and the LED chip and the gold-plated lead are electrically connected by a gold bonding wire in the precursor of the polyphthalamide (PPA) resin case The curable silicone composition of each Example or each Comparative Example was defoamed and poured using a dispenser, and cured by heating in a heating oven at 100 ° C. for 30 minutes and then at 150 ° C. for 1 hour. As a result, 20 optical semiconductor devices (LEDs) shown in FIG. 1 were produced.
[Initial peeling rate of sealing material]
For the 20 optical semiconductor devices (LEDs), the peeled state between the gold-plated lead 2 and the sealing material 7 was observed with an optical microscope, and the peeled number / 20 was defined as the peel rate.
[Peeling rate after moisture absorption reflow]
Twenty optical semiconductor devices (LEDs) were held under high temperature and high humidity conditions of 85 ° C./85% RH for 168 hours, and then left in an oven at 280 ° C. for 30 seconds. Thereafter, the peeled state between the gold-plated lead 2 and the sealing material 7 was observed with an optical microscope at room temperature (25 ° C.), and the peeled number / 20 was defined as the peel rate.
Figure JPOXMLDOC01-appb-T000001
From the results of Table 1, it was shown that the semiconductor devices sealed with the cured products of the curable silicone compositions of Examples 1 to 5 have high peel resistance.
 本発明の半導体装置は、吸湿リフロー試験後、金メッキされたリードとシリコーン硬化物からなる封止材との剥離を生じ難いので、信頼性の要求が厳しい光半導体装置(LED)として好適である。 The semiconductor device of the present invention is suitable as an optical semiconductor device (LED) having a strict requirement for reliability because it is difficult to cause peeling between the gold-plated lead and the sealing material made of the cured silicone after the moisture absorption reflow test.
 1 ポリフタルアミド(PPA)樹脂製筐体
 2 金メッキされたリード
 3 ダイパッド
 4 接着材
 5 発光ダイオード(LED)素子
 6 金製ボンディングワイヤ
 7 シリコーン硬化物からなる封止材
DESCRIPTION OF SYMBOLS 1 Polyphthalamide (PPA) resin housing 2 Gold-plated lead 3 Die pad 4 Adhesive material 5 Light emitting diode (LED) element 6 Gold bonding wire 7 Sealing material made of cured silicone

Claims (4)

  1.  金メッキされたリードまたは基板と半導体素子をシリコーン硬化物で封止した半導体装置であって、前記シリコーン硬化物が、(A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン{(A)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~10モルとなる量}、(C)硫黄原子を結合し、ケイ素原子結合加水分解性基を有する有機ケイ素化合物(本組成物に対して0.0001~2質量%)、および(D)ヒドロシリル化反応用白金系触媒(本組成物に対して、白金原子が0.01~500質量ppmとなる量)から少なくともなるヒドロシリル化反応硬化性シリコーン組成物の硬化物である半導体装置。 A semiconductor device in which a gold-plated lead or substrate and a semiconductor element are sealed with a silicone cured product, wherein the silicone cured product is (A) an organopolysiloxane having at least two alkenyl groups in one molecule, (B ) Organohydrogenpolysiloxane having at least two silicon atom-bonded hydrogen atoms in one molecule {The amount of silicon atom-bonded hydrogen atoms in this component is 0.1 to 0.1 mol per 1 mole of alkenyl groups in component (A). An amount of 10 mol}, (C) an organosilicon compound having a silicon atom-bonded hydrolyzable group bonded to a sulfur atom (0.0001 to 2% by mass relative to the present composition), and (D) hydrosilylation Hydrosilylation reaction curable silicone comprising at least a platinum catalyst for reaction (in which the platinum atom is 0.01 to 500 ppm by mass with respect to the present composition) The semiconductor device is a cured product of the emission composition.
  2.  シリコーン硬化物のJIS K 6253に規定のタイプAデュロメータ硬さが10~99である、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the type A durometer hardness defined in JIS K 6253 of the cured silicone is 10 to 99.
  3.  半導体素子が発光ダイオード(LED)素子である、請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor element is a light emitting diode (LED) element.
  4.  半導体装置中の金メッキされたリードまたは基板と半導体素子を封止するための、(A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサン{(A)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.1~10モルとなる量}、(C)硫黄原子を結合し、ケイ素原子結合加水分解性基を有する有機ケイ素化合物(本組成物に対して0.0001~2質量%)、および(D)ヒドロシリル化反応用白金系触媒(本組成物に対して、白金原子が0.01~500質量ppmとなる量)から少なくともなるヒドロシリル化反応硬化性シリコーン組成物。 (A) an organopolysiloxane having at least two alkenyl groups in one molecule and (B) at least two in one molecule for sealing a gold-plated lead or substrate and a semiconductor element in the semiconductor device. Organohydrogenpolysiloxane having a silicon atom-bonded hydrogen atom {amount in which silicon atom-bonded hydrogen atom in this component is 0.1 to 10 moles per mole of alkenyl group in component (A)}, (C ) An organosilicon compound having a sulfur atom bonded and a silicon atom-bonded hydrolyzable group (0.0001 to 2% by mass based on the present composition), and (D) a platinum-based catalyst for hydrosilylation reaction (the present composition) Hydrosilylation reaction-curable silicone composition comprising at least platinum atoms in an amount of 0.01 to 500 ppm by mass).
PCT/JP2014/064798 2013-05-29 2014-05-28 Semiconductor device and curable silicone composition for sealing semiconductor element WO2014192969A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015519987A JP6355210B2 (en) 2013-05-29 2014-05-28 Curable silicone composition for semiconductor device and semiconductor element sealing
CN201480029204.6A CN105229783B (en) 2013-05-29 2014-05-28 Semiconductor devices and the curable organosilicon composition for sealing semiconductor element
KR1020157033397A KR20160013872A (en) 2013-05-29 2014-05-28 Semiconductor device and curable silicone composition for sealing semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-112503 2013-05-29
JP2013112503 2013-05-29

Publications (1)

Publication Number Publication Date
WO2014192969A1 true WO2014192969A1 (en) 2014-12-04

Family

ID=51988981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064798 WO2014192969A1 (en) 2013-05-29 2014-05-28 Semiconductor device and curable silicone composition for sealing semiconductor element

Country Status (5)

Country Link
JP (1) JP6355210B2 (en)
KR (1) KR20160013872A (en)
CN (1) CN105229783B (en)
TW (1) TWI621664B (en)
WO (1) WO2014192969A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147371A (en) * 2016-02-18 2017-08-24 信越化学工業株式会社 Semiconductor device
WO2017183259A1 (en) * 2016-04-22 2017-10-26 株式会社Adeka Silicon-containing curable composition and cured object obtained therefrom
JP2019014800A (en) * 2017-07-05 2019-01-31 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Curable polyorganosiloxane composition
CN112300576A (en) * 2019-07-30 2021-02-02 杜邦东丽特殊材料株式会社 Hot-melt curable silicone composition, sealant, film, and optical semiconductor element
WO2021099236A1 (en) * 2019-11-19 2021-05-27 Merck Patent Gmbh Adhesion promoting composition and method for producing laminate, and film forming composition and method for producing film
WO2022013917A1 (en) * 2020-07-13 2022-01-20 ダウ・東レ株式会社 Silicone gel composition, cured product thereof, and use therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660008B (en) * 2014-08-26 2019-05-21 日商琳得科股份有限公司 Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
JP6754317B2 (en) * 2017-04-27 2020-09-09 信越化学工業株式会社 Additive-curable silicone composition, method for producing the composition, silicone cured product, and optical element
TWI829640B (en) * 2017-07-10 2024-01-21 美商陶氏有機矽公司 Curable silicone composition and optical semiconductor device
TWI791554B (en) * 2017-07-31 2023-02-11 美商陶氏有機矽公司 Curable organopolysiloxane composition and optical semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270101A (en) * 2008-04-11 2009-11-19 Momentive Performance Materials Inc Curable silicone composition for semiconductor and semiconductor device therewith
JP2011009346A (en) * 2009-06-24 2011-01-13 Shin-Etsu Chemical Co Ltd Optical semiconductor device
JP2012046714A (en) * 2010-07-30 2012-03-08 Mitsubishi Chemicals Corp Resin composition for semiconductor light-emitting device
JP2013095914A (en) * 2011-11-07 2013-05-20 Shin-Etsu Chemical Co Ltd Wavelength conversion sheet filled with large amount of phosphor, method of producing light emitting semiconductor device using the sheet, and light emitting semiconductor device
JP2014118464A (en) * 2012-12-14 2014-06-30 Kaneka Corp Thermosetting resin composition having improved flowability and package of semiconductor using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228667A (en) * 1994-02-18 1995-08-29 Sekisui Chem Co Ltd Coating composition for molding in-mold coating
JP4900975B2 (en) * 2005-06-24 2012-03-21 エクソンモービル・ケミカル・パテンツ・インク Functionalized propylene copolymer adhesive composition
ES2384302T3 (en) * 2009-12-18 2012-07-03 Sika Technology Ag Hot melt adhesive compositions with good adhesion to both polar substrates and apolar substrates
KR101305438B1 (en) * 2011-05-13 2013-09-06 현대자동차주식회사 Adhesives for Bonding Polyurethane and Aluminium
JP2013043901A (en) * 2011-08-22 2013-03-04 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270101A (en) * 2008-04-11 2009-11-19 Momentive Performance Materials Inc Curable silicone composition for semiconductor and semiconductor device therewith
JP2011009346A (en) * 2009-06-24 2011-01-13 Shin-Etsu Chemical Co Ltd Optical semiconductor device
JP2012046714A (en) * 2010-07-30 2012-03-08 Mitsubishi Chemicals Corp Resin composition for semiconductor light-emitting device
JP2013095914A (en) * 2011-11-07 2013-05-20 Shin-Etsu Chemical Co Ltd Wavelength conversion sheet filled with large amount of phosphor, method of producing light emitting semiconductor device using the sheet, and light emitting semiconductor device
JP2014118464A (en) * 2012-12-14 2014-06-30 Kaneka Corp Thermosetting resin composition having improved flowability and package of semiconductor using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147371A (en) * 2016-02-18 2017-08-24 信越化学工業株式会社 Semiconductor device
WO2017183259A1 (en) * 2016-04-22 2017-10-26 株式会社Adeka Silicon-containing curable composition and cured object obtained therefrom
KR20180135863A (en) * 2016-04-22 2018-12-21 가부시키가이샤 아데카 The silicon-containing curing composition and the cured product thereof
JPWO2017183259A1 (en) * 2016-04-22 2019-02-21 株式会社Adeka Silicon-containing curable composition and cured product thereof
KR102659459B1 (en) * 2016-04-22 2024-04-23 가부시키가이샤 아데카 Silicon-containing curable composition and its cured product
JP2019014800A (en) * 2017-07-05 2019-01-31 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Curable polyorganosiloxane composition
JP7130316B2 (en) 2017-07-05 2022-09-05 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Curable polyorganosiloxane composition
CN112300576A (en) * 2019-07-30 2021-02-02 杜邦东丽特殊材料株式会社 Hot-melt curable silicone composition, sealant, film, and optical semiconductor element
CN112300576B (en) * 2019-07-30 2024-05-14 杜邦东丽特殊材料株式会社 Hot melt curable silicone composition, sealant, film, and optical semiconductor element
WO2021099236A1 (en) * 2019-11-19 2021-05-27 Merck Patent Gmbh Adhesion promoting composition and method for producing laminate, and film forming composition and method for producing film
CN114729225A (en) * 2019-11-19 2022-07-08 默克专利有限公司 Thickening composition, method for producing laminate, film-forming composition, and method for producing film
WO2022013917A1 (en) * 2020-07-13 2022-01-20 ダウ・東レ株式会社 Silicone gel composition, cured product thereof, and use therefor

Also Published As

Publication number Publication date
KR20160013872A (en) 2016-02-05
TWI621664B (en) 2018-04-21
CN105229783A (en) 2016-01-06
CN105229783B (en) 2018-06-22
JPWO2014192969A1 (en) 2017-02-23
TW201502208A (en) 2015-01-16
JP6355210B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP6355210B2 (en) Curable silicone composition for semiconductor device and semiconductor element sealing
EP3045499B1 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
EP2914664B1 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
US9688822B2 (en) Organopolysiloxane, curable silicone composition, cured product thereof, and optical semiconductor
KR102455665B1 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
US9683084B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
JP7220718B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
WO2019026754A1 (en) Curable silicone composition and optical semiconductor device
TWI761386B (en) Curable silicone composition and optical semiconductor device using the same
JP2022104216A (en) Curable silicone composition, sealant, and photo-semiconductor device
KR102651640B1 (en) Curable silicone compositions and optical semiconductor devices
JPWO2019026755A1 (en) Curable silicone composition and optical semiconductor device
JP2023132309A (en) curable silicone composition
JP2023132308A (en) curable silicone composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029204.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14805057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519987

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157033397

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14805057

Country of ref document: EP

Kind code of ref document: A1