WO2014192820A1 - Core for precision casting, production method therefor, and mold for precision casting - Google Patents
Core for precision casting, production method therefor, and mold for precision casting Download PDFInfo
- Publication number
- WO2014192820A1 WO2014192820A1 PCT/JP2014/064152 JP2014064152W WO2014192820A1 WO 2014192820 A1 WO2014192820 A1 WO 2014192820A1 JP 2014064152 W JP2014064152 W JP 2014064152W WO 2014192820 A1 WO2014192820 A1 WO 2014192820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- alkoxide
- mold
- casting
- precision casting
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C3/00—Selection of compositions for coating the surfaces of moulds, cores, or patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/12—Treating moulds or cores, e.g. drying, hardening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/18—Finishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/22—Moulds for peculiarly-shaped castings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/22—Moulds for peculiarly-shaped castings
- B22C9/24—Moulds for peculiarly-shaped castings for hollow articles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
Definitions
- the present invention relates to a core for precision casting, a manufacturing method thereof, and a mold for precision casting.
- Examples of precision castings include moving blades used in gas turbines.
- a working fluid is burned in a combustor to form a high-temperature and high-pressure working fluid, and the turbine is rotated by the working fluid. That is, the working fluid compressed by the compressor is burned by the combustor, energy is increased, and the energy is recovered by the turbine to generate a rotational force, thereby generating electric power.
- the turbine section is provided with a turbine rotor, and at least one gas turbine rotor blade is provided on the outer periphery of the turbine rotor.
- the gas turbine blade is exposed to high temperature.
- a cooling medium for cooling is supplied to the gas turbine rotor blade.
- the gas turbine rotor blade is provided with an internal cooling structure.
- a core (core) having the same shape as the flow path of the cooling medium is disposed, and the core is removed after casting.
- the core is removed by dissolving and removing the core in an alkali (for example, NaOH or KOH) solution, thereby forming an internal cooling structure of the turbine rotor blade, for example.
- an alkali for example, NaOH or KOH
- Patent Document 1 a ceramic core using ceramic particles is conventionally used.
- the core for precision casting is obtained by molding a siliceous material such as fused silica (SiO 2 ) by a method such as injection molding or slip casting, and then performing a heat treatment.
- the injection molding method is a method of obtaining a molded product by kneading ceramic powder and wax, then injecting and injecting a material obtained by heating and melting the wax into a mold, and cooling and solidifying the material.
- Slip cast molding is a method in which ceramic powder is mixed with water or the like to form a slurry, which is poured into a mold made of a material that absorbs a solution such as gypsum, dried, and molded.
- the present core is manufactured mainly for alkali solubility, there are problems such as low high-temperature strength.
- the sintered core has a large number of holes on its surface, so the strength is low. There is a problem that there is a concern about the possibility of breaking. Therefore, the appearance of a core for precision casting with improved high temperature strength is eagerly desired.
- the present invention has been made in view of the above, and an object thereof is to provide a precision casting core having improved high-temperature strength, a method for producing the same, and a precision casting mold.
- the first invention of the present invention for solving the above-mentioned problem is to form an alkoxide coating layer made of an alkoxide material on the surface of a sintered precision casting core body mainly composed of siliceous particles.
- the core for precision casting is characterized by
- an accurate alkoxide-silica fume coating layer comprising an alkoxide material and silica fume on the surface of a sintered precision casting core body mainly composed of siliceous particles. Located in the casting core.
- the third invention is the precision casting core according to the first or second invention, wherein the alkoxide material is silicon alkoxide alone or mixed alkoxide of silicon alkoxide and aluminum alkoxide.
- a fourth invention is a precision casting mold used for manufacturing a casting, the precision casting core of the first or second invention having a shape corresponding to a hollow portion inside the casting, and an outer periphery of the casting. And an outer casting mold corresponding to the shape of the surface.
- a sintered body of a core body for precision casting mainly composed of siliceous particles is immersed in an alkoxide material, then dried, and then subjected to heat treatment to obtain a surface of the core body for precision casting.
- a coating layer is formed on the precision casting core manufacturing method.
- the sintered body of the core body for precision casting mainly composed of siliceous particles is immersed in an alkoxide-silica fume material of an alkoxide material and silica fume, then dried, and then heat-treated.
- a method for producing a core for precision casting is characterized in that a coating layer is formed on the surface of a core body for precision casting.
- the alkoxide material is a silicon alkoxide alone or a mixed alkoxide of silicon alkoxide and aluminum alkoxide.
- the surface holes generated during sintering are sealed, and the strength of the core is reduced. While improving, since a hole is sealed, there exists an effect that it can prevent that a core breaks at the time of casting.
- FIG. 1 is a cross-sectional configuration diagram of a precision casting core.
- FIG. 2 is a flowchart showing an example of the steps of the casting method.
- FIG. 3 is a flowchart showing an example of the steps of the mold manufacturing method.
- FIG. 4 is an explanatory view schematically showing a manufacturing process of the core.
- FIG. 5 is a perspective view schematically showing a part of the mold.
- FIG. 6 is an explanatory view schematically showing a wax mold manufacturing process.
- FIG. 7 is an explanatory diagram schematically showing a configuration in which slurry is applied to a wax mold.
- FIG. 8 is an explanatory view schematically showing a manufacturing process of the outer mold.
- FIG. 9 is an explanatory view schematically showing a part of the mold manufacturing method.
- FIG. 10 is an explanatory view schematically showing a part of the casting method.
- FIG. 1 is a cross-sectional configuration diagram of a precision casting core.
- the core for precision casting according to the present invention has two types of different particle diameters on the surface of a sintered core body for precision casting (hereinafter referred to as “core body”) mainly composed of siliceous particles.
- core body a sintered core body for precision casting
- a coating layer of a siliceous material is formed.
- a large number of holes 18c are generated in the surface 18b of the core body 18a during sintering.
- the hole 18c is sealed by covering the hole 18c formed on the surface with the coating layer 19a.
- the core body 18a contains siliceous particles as a main component, and is formed of fused silica (SiO 2 ) such as silica sand or silica flour.
- the core body 18a is manufactured by a known method, and uses, for example, silica flour (for example, 800 mesh (10 to 20 ⁇ m)) and silica sand (for example, 220 mesh (20 to 70 ⁇ m)) as siliceous particles.
- silica flour for example, 800 mesh (10 to 20 ⁇ m)
- silica sand for example, 220 mesh (20 to 70 ⁇ m)
- a wax is added to the mixture at a weight ratio of 1: 1 and heated and kneaded to obtain a compound.
- the obtained compound is molded by injection molding to obtain a core molded body. Thereafter, a degreasing process up to, for example, 600 ° C. is performed, and then a sintering process is performed at, for example, 1,200 ° C. to obtain the core body 18a.
- the coating layer 19a is formed on the surface 18b of the core body 18a of the obtained sintered body.
- the coating layer 19a uses an alkoxide material.
- the alkoxide material is silicon alkoxide alone or mixed alkoxide of silicon alkoxide and aluminum alkoxide.
- Silicon ethoxide or silicon butoxide is used as the silicon alkoxide, and ethanol or butanol is used as the solvent.
- ethanol or butanol is used as the solvent.
- an alcohol solvent such as butanol is used as the solvent.
- a solution in which a mixed alkoxide of silicon ethoxide and aluminum isopropoxide is dissolved in butanol is prepared.
- the mixed alkoxide silicon ethoxide + aluminum isopropoxide
- the molar ratio 2: 3, thereby preparing an organic mixed alkoxide.
- the core specimen After immersing the core specimen in the prepared alkoxide alone or mixed alkoxide, it is pulled up to form a silicon layer or silicon-aluminum alkoxide layer on the surface 18b of the core body 18a, and also in the hole 18c on the core surface.
- the silicon component or silicon-aluminum alkoxide component is deposited.
- the penetration into the core body is good, and a good coating layer 19a is formed.
- This heat treatment may be, for example, 1,000 ° C. or less as long as the coating layer 19a is formed on the surface.
- the silicon-aluminum alkoxide layer is changed to a high melting point inorganic mullite (3Al 2 O 3 .2SiO 2 ) by the reaction.
- the core 18 in which the core body 18a is covered with the mullitized coating layer 19a is obtained.
- the melting point of mullite is 1,900 ° C., which is considerably higher than the melting point of silica (1,600 ° C.)
- the present invention since a large number of holes formed on the surface are sealed, it is possible to prevent the core from being broken at the time of casting by using such a hole as a starting point. Therefore, the high temperature strength of the core for precision casting is improved.
- a wax is added to a mixture of silica flour (800 mesh) and silica sand (220 mesh) at a weight ratio of 1: 1, and heated and kneaded to obtain a compound.
- the silica flower is “MCF-200C” (trade name) manufactured by Tatsumori
- the silica sand is “RD-120” (trade name) manufactured by Tatsumori
- the wax is “Cerita Wax F30-” manufactured by Paramelt. 75 "(trade name) was used.
- a molded body is obtained by injection molding of the obtained compound.
- width 30 ⁇ length 200 ⁇ thickness 5 mm was obtained.
- the core body specimen was immersed in the obtained mixed alkoxide and then pulled up to form a mixed alkoxide coating layer 19a on the surface. Next, after drying, heat treatment was performed at 1,000 ° C., and a coating layer 19a made of mullite formed by reaction of a mixed alkoxide of silicon ethoxide and aluminum isopropoxide was formed on the core body surface 18b (test body 2). .
- a comparative test body was formed without a coating layer.
- the strength of these evaluation specimens was measured.
- the strength test was performed according to “Bending strength of ceramics (1981)” according to JIS R 1601.
- the strength of the comparative test body in which the coating layer of the conventional method was not formed was 20 MPa, whereas the strength of the test body 1 of the silica coating layer of the core body coating layer 1 according to the present invention was 22 MPa. It was. As a result, a strength improvement of 10% was observed in the test body for the core body of the present invention.
- the strength of the test body 2 of the silica coating layer of the core body coating layer 2 according to the present invention was 24 MPa. As a result, the strength improvement of 20% was recognized in the test body for the core body of the present invention. According to the test body 2 of the present invention, since the high temperature durability of the core is improved by mullite formation, no deformation occurs even if the core is kept at a high temperature (for example, 1,550 ° C.) for a long time, for example, in the manufacture of a unidirectional solidified blade. A mold can be obtained.
- a high temperature for example, 1,550 ° C.
- FIG. 2 is a flowchart showing an example of the steps of the casting method.
- the processing shown in FIG. 2 may be executed fully automatically, or may be executed by an operator operating an apparatus that executes each process.
- the casting method of this embodiment produces a casting mold (step S1).
- the mold may be produced in advance or may be produced each time casting is performed.
- FIG. 3 is a flowchart showing an example of the steps of the mold manufacturing method.
- the process shown in FIG. 3 may be executed fully automatically, or may be executed by an operator operating an apparatus that executes each process.
- the mold manufacturing method produces a core (core) (step S12).
- the core has a shape corresponding to a cavity inside a casting made of a mold. That is, the core is arranged in a portion corresponding to the cavity inside the casting, thereby suppressing the metal that becomes the casting from flowing in at the time of casting.
- the manufacturing process of the core will be described with reference to FIG.
- FIG. 4 is an explanatory view schematically showing the manufacturing process of the core.
- a mold 12 is prepared as shown in FIG. 4 (step S101).
- the mold 12 has a hollow area corresponding to the core.
- the portion that becomes the cavity of the core becomes the convex portion 12a.
- the cross section of the mold 12 is shown.
- the mold 12 basically has an entire circumference corresponding to the core except for an opening for injecting material into the space and a hole for extracting air. It is a covering cavity.
- the ceramic slurry 16 is injected into the mold 12 through an opening for injecting material into the space of the mold 12 as indicated by an arrow 14.
- the core 18 is produced by so-called injection molding in which the ceramic slurry 16 is injected into the mold 12.
- injection molding in which the ceramic slurry 16 is injected into the mold 12.
- the core 18 is removed from the mold 12, and the removed core 18 is placed in the firing furnace 20 and fired. Thereby, the core 18 formed of ceramics is baked and hardened (step S102).
- alkoxide material was used as the ceramic slurry 16 material.
- the sintered core 18 is immersed in the storage portion 17 in which the slurry 19 is stored, taken out, and then dried (step S 103).
- the immersed core 18 is taken out, placed in the firing furnace 20, and fired.
- the coating layer 19a is formed on the surface of the core 18 made of ceramics (step S104).
- the mold casting method produces the core 18 on which the coating layer 19a is formed as described above.
- the core 18 is formed of a material that can be removed by a core removal process such as a chemical process after the casting is solidified.
- an external mold is manufactured (step S14).
- the outer mold has a shape in which the inner peripheral surface corresponds to the outer peripheral surface of the casting.
- the mold may be made of metal or ceramics.
- FIG. 5 is a perspective view schematically showing a part of the mold. As for the metal mold
- FIG. 6 is an explanatory view schematically showing a wax mold manufacturing process.
- the core 18 is installed at a predetermined position of the mold 22a (step S110).
- a mold 22b corresponding to the mold 22a is placed on the surface of the mold 22a where the recess is formed, and the core 18 is surrounded by the molds 22a and 22b, and the core 18 and the molds 22a and 22b are surrounded.
- a space 24 is formed between the two.
- the mold manufacturing method starts injection of WAX 28 from the pipe connected to the space 24 toward the inside of the space 24 as indicated by an arrow 26 (step S112).
- WAX 28 is a substance having a relatively low melting point, such as wax, which melts when heated above a predetermined temperature.
- the entire space 24 is filled with the WAX 28 (step S113).
- the wax 28 is solidified to form the wax mold 30 in which the core 18 is surrounded by the wax 28.
- the wax mold 30 basically has the same shape as the casting for which the part formed by the WAX 28 is manufactured.
- the wax mold 30 is separated from the molds 22a and 22b, and the gate 32 is attached (step S114).
- the gate 32 is a port into which molten metal, which is a metal melted during casting, is charged.
- the mold manufacturing method produces the solder mold 30 including the core 18 inside and formed of the WAX 28 having the same shape as the casting.
- FIG. 7 is an explanatory diagram schematically showing a configuration in which slurry is applied to a wax mold.
- FIG. 8 is an explanatory view schematically showing a manufacturing process of the outer mold.
- the wax mold 30 is immersed in the storage part 41 in which the slurry 40 is stored, and is taken out and then dried (step S19).
- the prime layer 101 ⁇ / b> A can be formed on the surface of the wax mold 30.
- the slurry applied in step S ⁇ b> 18 is a slurry applied directly to the wax mold 30.
- the slurry 40 a slurry in which alumina ultrafine particles are monodispersed is used.
- refractory fine particles of about 350 mesh, such as zirconia, as flour.
- polycarboxylic acid as a dispersing agent.
- slurry application is performed with the slurry 40, and then the wax mold having the prime layer (first dry film) 101A is further applied with slurry (dipping) (step S20).
- stuccoing is performed by sprinkling zircon stucco grains (average particle size 0.8 mm) as the stucco material 54 on the surface of the wet slurry (step S21).
- the surface of the slurry layer with the stucco material 54 attached is dried, and the first backup layer (second dry film) 104-1 is formed on the prime layer (first dry film) 101A (step S22).
- a predetermined number (n) of n-th backup layers 104-n are stacked (step S23: Yes) to obtain a dry molded body 106A that is an outer mold having a thickness of, for example, 10 mm on which the multilayer backup layer 105A is formed.
- step S24 the dry molded body 106A is subjected to heat treatment (step S24). Specifically, WAX between the outer mold and the core is removed, and the outer mold and the core are further fired.
- FIG. 9 is an explanatory view schematically showing a part of the mold manufacturing method.
- a dry molded body 106A serving as an outer mold in which a plurality of layers of the prime layer 101A and the multilayer backup layer 105A is formed is placed in the autoclave 60 and heated.
- the autoclave 60 heats the wax mold 30 in the dry molded body 106A by filling the interior with pressurized steam. As a result, the WAX constituting the wax mold 30 is melted, and the molten WAX 62 is discharged from the space 64 surrounded by the dry molded body 106A. In the mold manufacturing method, the melted WAX 62 is discharged from the space 64, so that the space between the dry molded body 106A serving as the outer mold and the core 18 is filled with space as shown in step S131. A mold 72 in which 64 is formed is produced.
- step S132 the mold 72 in which the space 64 is formed between the dry molded body 106A serving as the outer mold and the core 18 is heated in the firing furnace 70.
- the mold 72 removes the water component and unnecessary components contained in the dry molded body 106 ⁇ / b> A serving as the outer mold, and is further cured by firing to form the outer mold 61.
- the mold 72 is produced as described above.
- FIG. 10 is an explanatory view schematically showing a part of the casting method.
- the mold is preheated (step S2).
- the mold is placed in a furnace (vacuum furnace, firing furnace) and heated to 800 ° C. or higher and 900 ° C. or lower.
- a furnace vacuum furnace, firing furnace
- preheating it is possible to prevent the mold from being damaged when molten metal (melted metal) is injected into the mold at the time of casting production.
- step S3 when the mold is preheated, pouring is performed (step S3). That is, as shown in step S ⁇ b> 140 of FIG. 10, a molten metal 80, that is, a molten casting material (for example, steel) is injected between the outer mold 61 and the core 18 from the opening of the mold 72.
- a molten metal 80 that is, a molten casting material (for example, steel) is injected between the outer mold 61 and the core 18 from the opening of the mold 72.
- step S4 After the molten metal 80 poured into the mold 72 is solidified, the outer mold 61 is removed (step S4). That is, as shown in step S141 of FIG. 10, when the molten metal hardens into the casting 90 inside the mold 72, the outer mold 61 is crushed and removed from the casting 90 as a broken piece 61a.
- the core removal process is performed (step S5). That is, as shown in step S142 of FIG. 10, the casting 90 is put into the autoclave 92 and the core removal process is performed to melt the core 18 inside the casting 90, and the melted melting core 94 is removed. It discharges from the inside of the casting 90. Specifically, the casting 90 is put into an alkaline solution inside the autoclave 92, and the melting core 94 is discharged from the casting 90 by repeating pressurization and decompression.
- step S6 After the removal of the core, the finishing process is performed (step S6). That is, a finishing process is performed on the surface and inside of the casting 90. In the casting method, the casting is inspected together with the finishing process. Thereby, as shown to step S143 of FIG. 10, the casting 100 can be manufactured.
- the casting method of the present embodiment produces a casting by using a lost wax casting method using WAX (wax) to produce a casting.
- the mold manufacturing method, the casting method, and the mold according to the present embodiment include an outer mold that is an outer portion of the mold, and a prime layer (first layer that is the first layer) that forms an inner peripheral surface using alumina ultrafine particles as a slurry. Dry film) 101A is formed, and a plurality of backup layers 105A are formed outside the prime layer 101A to form a multilayer structure.
- the coating layer is formed on the surface of the core, the dimensional accuracy is improved, and the durability is improved even when the casting temperature is high. Even when the casting process takes a long time, since it is a high-strength core, the degree of freedom in casting design (for example, setting the pulling speed low) is improved. Furthermore, it is possible to reduce the thickness of the product and manufacture a precision casting such as a turbine rotor blade having good thermal efficiency.
- precision castings according to the present invention include gas turbine stationary blades, gas turbine combustors, gas turbine split rings and the like in addition to gas turbine rotor blades.
- FIG. 1 is a cross-sectional configuration diagram of a precision casting core.
- the core for precision casting according to the present invention has two types of different particle diameters on the surface of a sintered core body for precision casting (hereinafter referred to as “core body”) mainly composed of siliceous particles. A coating layer of a siliceous material is formed.
- a large number of holes 18c are generated in the surface 18b of the core body 18a during sintering.
- the hole 18c is sealed by covering the hole 18c formed on the surface with the coating layer 19a.
- the core body 18a contains siliceous particles as a main component, and is formed of fused silica (SiO 2 ) such as silica sand or silica flour.
- the core body is manufactured by a known method and uses, for example, silica flour (for example, 800 mesh (10 to 20 ⁇ m)) and silica sand (for example, 220 mesh (20 to 70 ⁇ m)) as siliceous particles.
- silica flour for example, 800 mesh (10 to 20 ⁇ m)
- silica sand for example, 220 mesh (20 to 70 ⁇ m)
- a wax is added to the mixture at a weight ratio of 1 and the mixture is heated and kneaded to obtain a compound.
- the obtained compound is molded by injection molding to obtain a core molded body. Thereafter, a degreasing process up to, for example, 600 ° C. is performed, and then a sintering process is performed at, for example, 1,200 ° C. to obtain the core body 18a.
- the coating layer 19a is formed on the surface of the core body 18a of the obtained sintered body.
- the covering layer 19a is an alkoxide-silica fume material made of an alkoxide material and silica fume.
- the alkoxide material is silicon alkoxide alone or mixed alkoxide of silicon alkoxide and aluminum alkoxide.
- the silica fume of the inorganic material uses, for example, a spherical body having a particle size of 0.15 ⁇ m.
- the silica fume preferably has a particle size of 0.05 to 0.5 ⁇ m.
- the dispersion ratio of silica fume is 5 to 40% by weight, preferably around 20% by weight.
- Silicon ethoxide or silicon butoxide is used as the silicon alkoxide, and ethanol or butanol is used as the solvent.
- ethanol or butanol is used as the solvent.
- an alcohol solvent such as butanol is used as the solvent.
- a solution in which a mixed alkoxide of silicon ethoxide and aluminum isopropoxide is dissolved in butanol is prepared.
- the mixed alkoxide silicon ethoxide + aluminum isopropoxide
- the molar ratio 2: 3, thereby preparing an organic mixed alkoxide.
- the core specimen After immersing the core test body in the prepared single-piece alkoxide or mixed alkoxide in which the silica fume is dispersed, the core specimen is pulled up to form a silicon layer or silicon-aluminum alkoxide layer containing silica fume on the surface 18b of the core body 18a.
- a silicon layer containing silicon fume or silicon-aluminum alkoxide component also deposits in the hole 18c on the core surface.
- heat treatment is performed at 1,000 ° C., for example.
- This heat treatment may be, for example, 1,000 ° C. or less as long as the coating layer 19a is formed on the surface.
- the alkoxide and silica fume components are deposited in the holes 18c on the surface of the core body 18a.
- a mixed layer of a large particle size silica fume layer and a fine and dense alkoxide layer is formed.
- the heat treatment at 1000 ° C. causes the alkoxide layer to become inorganic ceramics, and the voids of the large particle size silica fume layer are filled with a dense ceramic layer to improve the adhesion between the particles.
- the silicon-aluminum alkoxide layer containing silica fume changes to a high melting point inorganic mullite (3Al 2 O 3 .2SiO 2 ) by the reaction.
- the core 18 in which the core body 18a is covered with the coating layer 19a in which the voids of the silica fume layer having a large particle diameter are filled with a dense mullite layer and the adhesion between the particles is improved is obtained.
- the melting point of mullite is 1,900 ° C., which is considerably higher than the melting point of silica (1,600 ° C.), it is possible to cope with a high casting temperature.
- the present invention since a large number of holes formed on the surface are sealed, it is possible to prevent the core from being broken at the time of casting by using such a hole as a starting point. Therefore, the high temperature strength of the core for precision casting is improved.
- silica fume has a large particle size, thermal contraction is small even in heat treatment at 1,000 ° C.
- a wax is added to a mixture of silica flour (800 mesh) and silica sand (220 mesh) at a weight ratio of 1: 1, and heated and kneaded to obtain a compound.
- the silica flower is “MCF-200C” (trade name) manufactured by Tatsumori
- the silica sand is “RD-120” (trade name) manufactured by Tatsumori
- the wax is “Cerita Wax F30-” manufactured by Paramelt. 75 "(trade name) was used.
- a molded body is obtained by injection molding of the obtained compound.
- width 30 ⁇ length 200 ⁇ thickness 5 mm was obtained.
- the core body specimen was immersed in the mixed alkoxide slurry containing silica fume and then pulled up to form a mixed alkoxide coating layer 19a on the surface. Next, after drying, heat treatment was performed at 1,000 ° C., and a coating layer 19a made of mullite containing silica fume formed by reaction of a mixed alkoxide of silicon ethoxide and aluminum isopropoxide was formed on the core body surface 18b (test). Body 4).
- a comparative test body was formed without a coating layer.
- the strength of these evaluation specimens was measured.
- the strength test was performed according to “Bending strength of ceramics (1981)” according to JIS R 1601.
- the strength of the comparative test body in which the coating layer of the conventional method was not formed was 20 MPa, whereas the strength of the test body 3 of the silica coating layer of the core body coating layer 3 according to the present invention was 23 MPa. It was. As a result, a strength improvement of 15% was recognized in the test body for the core body of the present invention. Further, the strength of the test body 4 of the silica coating layer 4 of the core body coating layer 4 according to the present invention was 25 MPa. As a result, the core body test specimen of the present invention was found to have a strength improvement of 25%.
- the test body 4 of the present invention since the high temperature durability of the core is improved by mullite formation, for example, no deformation occurs even if the core is kept at a high temperature (for example, 1,550 ° C.) for a long time in the manufacture of a unidirectional solidified blade. A mold can be obtained.
- a high temperature for example, 1,550 ° C.
- alkoxide material which is the material of the ceramic slurry 16 used in the method of the first embodiment is referred to as “alkoxide material”. Since the operation is the same except that the alkoxide-silica fume material made of silica fume is changed, the description thereof will be omitted.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Mold Materials And Core Materials (AREA)
Abstract
Description
射出成形法は、セラミックスの粉末とワックスを混練した後、ワックスを加熱溶融させた材料を金型内に射出注入し、冷却・固化させる事によって、成形品を得る方法である。
また、スリップキャスト成形は、セラミックスの粉末を水などに混ぜてスラリを作り、これを石こう製などの溶液を吸う材質でできた成形型に注ぎ込んで乾燥し、成形する方法である。 Here, the core for precision casting is obtained by molding a siliceous material such as fused silica (SiO 2 ) by a method such as injection molding or slip casting, and then performing a heat treatment.
The injection molding method is a method of obtaining a molded product by kneading ceramic powder and wax, then injecting and injecting a material obtained by heating and melting the wax into a mold, and cooling and solidifying the material.
Slip cast molding is a method in which ceramic powder is mixed with water or the like to form a slurry, which is poured into a mold made of a material that absorbs a solution such as gypsum, dried, and molded.
よって、高温強度が向上した精密鋳造用中子の出現が切望されている。 By the way, since the present core is manufactured mainly for alkali solubility, there are problems such as low high-temperature strength. In addition, in the injection molding method, after the molding, the sintered core has a large number of holes on its surface, so the strength is low. There is a problem that there is a concern about the possibility of breaking.
Therefore, the appearance of a core for precision casting with improved high temperature strength is eagerly desired.
図1は、精密鋳造用中子の断面構成図である。
本発明に係る精密鋳造用中子は、シリカ質粒子を主成分とする焼結された精密鋳造用中子本体(以下「中子本体」という。)の表面に、粒径の異なる2種類のシリカ質材料の被覆層を形成してなるものである。 [First Embodiment]
FIG. 1 is a cross-sectional configuration diagram of a precision casting core.
The core for precision casting according to the present invention has two types of different particle diameters on the surface of a sintered core body for precision casting (hereinafter referred to as “core body”) mainly composed of siliceous particles. A coating layer of a siliceous material is formed.
本発明では、図1の下段に示すように、この表面に形成された孔18cを被覆層19aで被覆することで、孔18cを封孔するようにしている。 As shown in the upper section of the cross-sectional view of the core body of the sintered body shown in FIG. 1, a large number of
In the present invention, as shown in the lower part of FIG. 1, the
この中子本体18aは、公知の方法で製造され、シリカ質粒子として、例えばシリカフラワー(例えば800メッシュ(10~20μm))と、シリカ砂(例えば220メッシュ(20~70μm))とを用い、1:1の重量割合で混合したものに、ワックスを加えて、加熱混練し、コンパウンドを得る。 Here, the
The
その後、例えば600℃までの脱脂処理を行い、次いで例えば1,200℃における焼結処理を行い、中子本体18aを得る。 The obtained compound is molded by injection molding to obtain a core molded body.
Thereafter, a degreasing process up to, for example, 600 ° C. is performed, and then a sintering process is performed at, for example, 1,200 ° C. to obtain the
被覆層19aは、アルコキシド材料を用いている。
ここで、アルコキシド材料は、シリコンアルコキシド単独又はシリコンアルコキシドとアルミニウムアルコキシドとの混合アルコキシドとしている。 In the present invention, the
The
Here, the alkoxide material is silicon alkoxide alone or mixed alkoxide of silicon alkoxide and aluminum alkoxide.
また、アルコキシドを二種類混合する場合には、シリコンアルコキシドとアルミニウムアルコキシドとの混合アルコキシド材料とし、その溶媒としては、例えばブタノール等のアルコール系溶媒を用いている。 Silicon ethoxide or silicon butoxide is used as the silicon alkoxide, and ethanol or butanol is used as the solvent.
When two types of alkoxide are mixed, a mixed alkoxide material of silicon alkoxide and aluminum alkoxide is used, and as the solvent, an alcohol solvent such as butanol is used.
ここで、混合アルコキシド(シリコンエトキシド+アルミニウムイソプロポキシド)は、モル比=2:3となるように調合し、有機体の混合アルコキシドを調製する。 When preparing a mixed alkoxide, a solution in which a mixed alkoxide of silicon ethoxide and aluminum isopropoxide is dissolved in butanol is prepared.
Here, the mixed alkoxide (silicon ethoxide + aluminum isopropoxide) is prepared so that the molar ratio = 2: 3, thereby preparing an organic mixed alkoxide.
この浸漬の際、アルコール溶液にアルコキシド単体又は混合アルコキシドが溶解されているので、中子本体への浸透が良好となり、良好な被覆層19aが形成されることとなる。 After immersing the core specimen in the prepared alkoxide alone or mixed alkoxide, it is pulled up to form a silicon layer or silicon-aluminum alkoxide layer on the
At the time of this immersion, since the alkoxide alone or the mixed alkoxide is dissolved in the alcohol solution, the penetration into the core body is good, and a
ここで、ムライトの融点は、1,900℃であり、シリカの融点(1,600℃)よりもかなり高いものとなるので、高い鋳込み温度への対応が可能となる。
このように、本発明によれば、表面に多数形成された孔が封孔されるので、従来のようなこの孔が起点となって、鋳込時に中子が壊れるということが防止される。よって、精密鋳造用の中子の高温強度が向上することとなる。 In this heat treatment, in the case of the mixed alkoxide, the silicon-aluminum alkoxide layer is changed to a high melting point inorganic mullite (3Al 2 O 3 .2SiO 2 ) by the reaction. The core 18 in which the
Here, since the melting point of mullite is 1,900 ° C., which is considerably higher than the melting point of silica (1,600 ° C.), it is possible to cope with a high casting temperature.
As described above, according to the present invention, since a large number of holes formed on the surface are sealed, it is possible to prevent the core from being broken at the time of casting by using such a hole as a starting point. Therefore, the high temperature strength of the core for precision casting is improved.
以下、本発明の効果を確認する試験例について、説明する。
本試験例では、先ずシリカフラワー(800メッシュ)と、シリカ砂(220メッシュ)を1:1の重量割合で混合したものにワックスを加えて、加熱混練し、コンパウンドを得る。ここで、シリカフラワーは、龍森社製「MCF-200C」(商品名)を、シリカ砂は龍森社製「RD- 120」(商品名)、ワックスはパラメルト社製、「Cerita Wax F30-75」(商品名)を各々用いた。
この得られたコンパウンドを、射出成形により成形体を得る。
評価試験体として、幅30×長200×厚5mmを得た。 <Test Example 1>
Hereinafter, test examples for confirming the effects of the present invention will be described.
In this test example, first, a wax is added to a mixture of silica flour (800 mesh) and silica sand (220 mesh) at a weight ratio of 1: 1, and heated and kneaded to obtain a compound. Here, the silica flower is “MCF-200C” (trade name) manufactured by Tatsumori, the silica sand is “RD-120” (trade name) manufactured by Tatsumori, and the wax is “Cerita Wax F30-” manufactured by Paramelt. 75 "(trade name) was used.
A molded body is obtained by injection molding of the obtained compound.
As an evaluation test body,
次に、シリコンエトキシドを、エタノールに溶解した液を調合する。この得られたシリコンエトキシドに、中子本体用の試験体を浸漬した後、引き上げ、表面にアルコキシドの被覆層19aを形成した。次いで乾燥後、1,000℃で熱処理を行い、中子本体表面18bに、シリコンエトキシドからなる無機体のシリカの被覆層19aを形成した(試験体1)。 (Coating layer 1)
Next, a solution in which silicon ethoxide is dissolved in ethanol is prepared. The core body specimen was immersed in the obtained silicon ethoxide, and then pulled up to form an
次に、シリコンエトキシドとアルミニウムイソプロポキシドの混合アルコキシドを、ブタノールに溶解した液を調合する。ここで、混合アルコキシド(シリコンエトキシド+アルミニウムイソプロポキシド)は、モル比=2:3となるように調合し、有機体の混合アルコキシドを調製する。 (Coating layer 2)
Next, a solution in which mixed alkoxide of silicon ethoxide and aluminum isopropoxide is dissolved in butanol is prepared. Here, the mixed alkoxide (silicon ethoxide + aluminum isopropoxide) is prepared so that the molar ratio = 2: 3, thereby preparing an organic mixed alkoxide.
これらの評価試験体の強度を測定した。
ここで、強度試験は、JIS R 1601による「セラミックスの曲げ強さ(1981)」に準拠しておこなった。 As a comparative example, a comparative test body was formed without a coating layer.
The strength of these evaluation specimens was measured.
Here, the strength test was performed according to “Bending strength of ceramics (1981)” according to JIS R 1601.
本発明の試験体2によれば、ムライト化により中子の高温耐久性が向上するので、例えば一方向凝固翼製造における高温(例えば1,550℃)で長時間保持した場合でも変形が生じない鋳型を得ることができる。 Further, the strength of the test body 2 of the silica coating layer of the core body coating layer 2 according to the present invention was 24 MPa. As a result, the strength improvement of 20% was recognized in the test body for the core body of the present invention.
According to the test body 2 of the present invention, since the high temperature durability of the core is improved by mullite formation, no deformation occurs even if the core is kept at a high temperature (for example, 1,550 ° C.) for a long time, for example, in the manufacture of a unidirectional solidified blade. A mold can be obtained.
鋳型鋳造方法は、以上のようにして被覆層19aが形成された中子18を作製する。なお、中子18は、鋳物が固まった後に化学処理等の脱中子処理で取り除ける材料で形成される。 Next, in order to form a coating layer on the surface of the core 18, the
The mold casting method produces the core 18 on which the
ここで、ステップS18で塗布するスラリーは、ろう型30に直接塗布されるスラリーである。このスラリー40は、アルミナ超微粒子が単一分散されたスラリーを用いる。このスラリー40には、フラワーとして350メッシュ程度の耐火性の微粒子、例えばジルコニアを用いることが好ましい。また、分散剤としてポリカルボン酸を用いることが好ましい。また、スラリー40には、消泡剤(シリコン系の物質)や、濡れ性改善剤を微量、例えば0.01%添加することが好ましい。濡れ性改善剤を添加することで、スラリー40のろう型30への付着性を向上させることができる。 In the mold manufacturing method, when the
Here, the slurry applied in step S <b> 18 is a slurry applied directly to the
この第1バックアップ層(第2乾燥膜)104-1の形成工程と同様の操作を複数回(例えばn:6~10回)繰り返す判断を行う(ステップS23)。所定回数(n)の第nバックアップ層104-nを積層させ(ステップS23:Yes)、複層バックアップ層105Aが形成された厚みが例えば10mmの外側鋳型となる乾燥成形体106Aを得る。 In the mold manufacturing method, as shown in FIG. 7, slurry application is performed with the
A determination is made to repeat the same operation as that for forming the first backup layer (second dry film) 104-1 a plurality of times (for example, n: 6 to 10 times) (step S23). A predetermined number (n) of n-th backup layers 104-n are stacked (step S23: Yes) to obtain a dry molded
鋳型製造方法は、溶けたWAX62を空間64から排出することで、ステップS131に示すように、外側鋳型となる乾燥成形体106Aと、中子18との間のWAXが充填されていた領域に空間64が形成された鋳型72が作製される。その後、鋳型製造方法は、ステップS132に示すように、外側鋳型となる乾燥成形体106Aと中子18との間に空間64が形成された鋳型72を、焼成炉70で加熱する。これにより、鋳型72は、外側鋳型となる乾燥成形体106Aに含まれる水成分や不要な成分が除去され、さらに、焼成されることで硬化され、外側鋳型61が形成される。鋳物製造方法は、以上のようにして鋳型72を作製する。 In the mold manufacturing method, after obtaining the dry molded
In the mold manufacturing method, the melted
また、鋳込みプロセス時間が長時間となった場合でも、高強度の中子であるので、鋳込み設計の自由度(例えば引き下げ速度を低く設定すること等)が向上する。
さらに、製品の薄肉化を図り、熱効率の良好なタービン動翼等の精密鋳造品を製造することができる。 In the casting method of this embodiment, since the coating layer is formed on the surface of the core, the dimensional accuracy is improved, and the durability is improved even when the casting temperature is high.
Even when the casting process takes a long time, since it is a high-strength core, the degree of freedom in casting design (for example, setting the pulling speed low) is improved.
Furthermore, it is possible to reduce the thickness of the product and manufacture a precision casting such as a turbine rotor blade having good thermal efficiency.
本実施形態では、第1の実施形態の精密鋳造用中子の構成と同一であるので、第1の実施形態で説明した図面(図1及び2)を参照して説明する。
図1は、精密鋳造用中子の断面構成図である。
本発明に係る精密鋳造用中子は、シリカ質粒子を主成分とする焼結された精密鋳造用中子本体(以下「中子本体」という。)の表面に、粒径の異なる2種類のシリカ質材料の被覆層を形成してなるものである。 [Second Embodiment]
In this embodiment, since it is the same as that of the core for precision casting of the first embodiment, description will be made with reference to the drawings (FIGS. 1 and 2) described in the first embodiment.
FIG. 1 is a cross-sectional configuration diagram of a precision casting core.
The core for precision casting according to the present invention has two types of different particle diameters on the surface of a sintered core body for precision casting (hereinafter referred to as “core body”) mainly composed of siliceous particles. A coating layer of a siliceous material is formed.
本発明では、図1の下段に示すように、この表面に形成された孔18cを被覆層19aで被覆することで、孔18cを封孔するようにしている。 As shown in the upper section of the cross-sectional view of the core body of the sintered body shown in FIG. 1, a large number of
In the present invention, as shown in the lower part of FIG. 1, the
この中子本体は、公知の方法で製造され、シリカ質粒子として、例えばシリカフラワー(例えば800メッシュ(10~20μm))と、シリカ砂(例えば220メッシュ(20~70μm))とを用い、1:1の重量割合で混合したものに、ワックスを加えて、加熱混練し、コンパウンドを得る。 Here, the
The core body is manufactured by a known method and uses, for example, silica flour (for example, 800 mesh (10 to 20 μm)) and silica sand (for example, 220 mesh (20 to 70 μm)) as siliceous particles. A wax is added to the mixture at a weight ratio of 1 and the mixture is heated and kneaded to obtain a compound.
その後、例えば600℃までの脱脂処理を行い、次いで例えば1,200℃における焼結処理を行い、中子本体18aを得る。 The obtained compound is molded by injection molding to obtain a core molded body.
Thereafter, a degreasing process up to, for example, 600 ° C. is performed, and then a sintering process is performed at, for example, 1,200 ° C. to obtain the
被覆層19aは、アルコキシド材料とシリカフュームからなるアルコキシド-シリカフューム材料としている。
ここで、アルコキシド材料は、シリコンアルコキシド単独又はシリコンアルコキシドとアルミニウムアルコキシドとの混合アルコキシドである。 In the present invention, the
The
Here, the alkoxide material is silicon alkoxide alone or mixed alkoxide of silicon alkoxide and aluminum alkoxide.
ここで、シリカフュームは粒径0.05~0.5μmとするのが好ましい。
シリカフュームの分散割合としては、5~40重量%、好適には20重量%前後としている。 The silica fume of the inorganic material uses, for example, a spherical body having a particle size of 0.15 μm.
Here, the silica fume preferably has a particle size of 0.05 to 0.5 μm.
The dispersion ratio of silica fume is 5 to 40% by weight, preferably around 20% by weight.
また、アルコキシドを二種類混合する場合には、シリコンアルコキシドとアルミニウムアルコキシドとの混合アルコキシド材料とし、その溶媒としては、例えばブタノール等のアルコール系溶媒を用いている。 Silicon ethoxide or silicon butoxide is used as the silicon alkoxide, and ethanol or butanol is used as the solvent.
When two types of alkoxide are mixed, a mixed alkoxide material of silicon alkoxide and aluminum alkoxide is used, and as the solvent, an alcohol solvent such as butanol is used.
ここで、混合アルコキシド(シリコンエトキシド+アルミニウムイソプロポキシド)は、モル比=2:3となるように調合し、有機体の混合アルコキシドを調製する。 When preparing a mixed alkoxide, a solution in which a mixed alkoxide of silicon ethoxide and aluminum isopropoxide is dissolved in butanol is prepared.
Here, the mixed alkoxide (silicon ethoxide + aluminum isopropoxide) is prepared so that the molar ratio = 2: 3, thereby preparing an organic mixed alkoxide.
この浸漬の際、アルコール溶液にアルコキシド単体又は混合アルコキシドが溶解されているので、中子本体への浸透が良好となり、良好な被覆層が形成されることとなる。 After immersing the core test body in the prepared single-piece alkoxide or mixed alkoxide in which the silica fume is dispersed, the core specimen is pulled up to form a silicon layer or silicon-aluminum alkoxide layer containing silica fume on the
At the time of this immersion, since the alkoxide alone or the mixed alkoxide is dissolved in the alcohol solution, the penetration into the core body is good, and a good coating layer is formed.
この乾燥後には中子本体18aの表面の孔18cの中にも、アルコキシドとシリカフュームの成分が析出する形となる。この際、大粒径のシリカフューム層と、微細で緻密なアルコキシド層の混合層が形成される。
そして、1000℃での熱処理により、アルコキシド層は無機のセラミックス化が起こり、大粒径のシリカフューム層の空隙を、緻密なセラミックス層で埋め、粒子間の付着力を向上させることとなる。 Thereafter, drying is performed, and then heat treatment is performed at 1,000 ° C., for example. This heat treatment may be, for example, 1,000 ° C. or less as long as the
After this drying, the alkoxide and silica fume components are deposited in the
Then, the heat treatment at 1000 ° C. causes the alkoxide layer to become inorganic ceramics, and the voids of the large particle size silica fume layer are filled with a dense ceramic layer to improve the adhesion between the particles.
ここで、ムライトの融点は、1,900℃であり、シリカの融点(1,600℃)よりもかなり高いものとなるので、高い鋳込み温度への対応が可能となる。
このように、本発明によれば、表面に多数形成された孔が封孔されるので、従来のようなこの孔が起点となって、鋳込時に中子が壊れるということが防止される。よって、精密鋳造用の中子の高温強度が向上することとなる。 In this heat treatment, when a mixed alkoxide is used, the silicon-aluminum alkoxide layer containing silica fume changes to a high melting point inorganic mullite (3Al 2 O 3 .2SiO 2 ) by the reaction. The core 18 in which the
Here, since the melting point of mullite is 1,900 ° C., which is considerably higher than the melting point of silica (1,600 ° C.), it is possible to cope with a high casting temperature.
As described above, according to the present invention, since a large number of holes formed on the surface are sealed, it is possible to prevent the core from being broken at the time of casting by using such a hole as a starting point. Therefore, the high temperature strength of the core for precision casting is improved.
以下、本発明の効果を確認する試験例について、説明する。
本試験例では、先ずシリカフラワー(800メッシュ)と、シリカ砂(220メッシュ)を1:1の重量割合で混合したものにワックスを加えて、加熱混練し、コンパウンドを得る。ここで、シリカフラワーは、龍森社製「MCF-200C」(商品名)を、シリカ砂は龍森社製「RD- 120」(商品名)、ワックスはパラメルト社製、「Cerita Wax F30-75」(商品名)を各々用いた。
この得られたコンパウンドを、射出成形により成形体を得る。
評価試験体として、幅30×長200×厚5mmを得た。 <Test Example 2>
Hereinafter, test examples for confirming the effects of the present invention will be described.
In this test example, first, a wax is added to a mixture of silica flour (800 mesh) and silica sand (220 mesh) at a weight ratio of 1: 1, and heated and kneaded to obtain a compound. Here, the silica flower is “MCF-200C” (trade name) manufactured by Tatsumori, the silica sand is “RD-120” (trade name) manufactured by Tatsumori, and the wax is “Cerita Wax F30-” manufactured by Paramelt. 75 "(trade name) was used.
A molded body is obtained by injection molding of the obtained compound.
As an evaluation test body,
次に、シリコンエトキシドを、エタノールに溶解した液を調合する。この得られたシリコンエトキシドに、シリカフューム(例えば粒径0.15μm;球状体)を20重量%配合し、シリカフュームを配合したシリコンエトキシドスラリーを得る。
このシリカフュームを配合したシリコンエトキシドスラリーに、中子本体用の試験体を浸漬したのち、引き上げ、表面にシリカフュームを含むアルコキシドの被覆層19aを形成した。次いで乾燥後、1,000℃で熱処理を行い、中子本体表面18bに、シリカフュームを含むシリコンエトキシドからなる無機体のシリカの被覆層19aを形成した(試験体3)。 (Coating layer 3)
Next, a solution in which silicon ethoxide is dissolved in ethanol is prepared. Silica fume (for example, a particle size of 0.15 μm; spherical body) is blended in an amount of 20% by weight with the obtained silicon ethoxide to obtain a silicon ethoxide slurry blended with silica fume.
The core body test specimen was immersed in the silicon ethoxide slurry containing this silica fume and then pulled up to form an
次に、シリコンエトキシドとアルミニウムイソプロポキシドの混合アルコキシドを、ブタノールに溶解した液を調合する。ここで、混合アルコキシド(シリコンエトキシド+アルミニウムイソプロポキシド)は、モル比=2:3となるように調合し、有機体の混合アルコキシドを調製する。
この得られた混合アルコキシドに、シリカフューム(例えば粒径0.15μm;球状体)を20重量%配合し、シリカフュームを配合した混合アルコキシドスラリーを得る。
このシリカフュームを配合した混合アルコキシドスラリーに、中子本体用の試験体を浸漬したのち、引き上げ、表面に混合アルコキシドの被覆層19aを形成した。次いで乾燥後、1,000℃で熱処理を行い、中子本体表面18bに、シリコンエトキシドとアルミニウムイソプロポキシドの混合アルコキシドが反応してなるシリカフュームを含むムライトからなる被覆層19aを形成した(試験体4)。 (Coating layer 4)
Next, a solution in which mixed alkoxide of silicon ethoxide and aluminum isopropoxide is dissolved in butanol is prepared. Here, the mixed alkoxide (silicon ethoxide + aluminum isopropoxide) is prepared so that the molar ratio = 2: 3, thereby preparing an organic mixed alkoxide.
Silica fume (for example, particle size 0.15 μm; spherical body) is blended with the obtained mixed alkoxide at 20% by weight to obtain a mixed alkoxide slurry blended with silica fume.
The core body specimen was immersed in the mixed alkoxide slurry containing silica fume and then pulled up to form a mixed
これらの評価試験体の強度を測定した。
ここで、強度試験は、JIS R 1601による「セラミックスの曲げ強さ(1981)」に準拠しておこなった。 As a comparative example, a comparative test body was formed without a coating layer.
The strength of these evaluation specimens was measured.
Here, the strength test was performed according to “Bending strength of ceramics (1981)” according to JIS R 1601.
また、本発明法による中子本体用の被覆層4のシリカ被覆層の試験体4の強度は、25MPaであった。この結果、本発明の中子本体用の試験体は、25%の強度向上が認められた。 The strength of the comparative test body in which the coating layer of the conventional method was not formed was 20 MPa, whereas the strength of the test body 3 of the silica coating layer of the core body coating layer 3 according to the present invention was 23 MPa. It was. As a result, a strength improvement of 15% was recognized in the test body for the core body of the present invention.
Further, the strength of the test body 4 of the silica coating layer 4 of the core body coating layer 4 according to the present invention was 25 MPa. As a result, the core body test specimen of the present invention was found to have a strength improvement of 25%.
12a 凸部
14、26 矢印
16 セラミックスラリー
18 中子(コア)
18a 中子本体
18b 表面
18c 孔
19 スラリー
19a 被覆層
20、70 焼成炉
24、64 空間
28 WAX(ろう)
30 ろう型
32 湯口
40 スラリー
60、92 オートクレーブ
61 外側鋳型
61a 破片
62 溶融WAX
72 鋳型
80 溶湯
90、100 鋳物
94 溶解中子
101A プライム層 12, 22a,
30
72
Claims (7)
- シリカ質粒子を主成分とする焼結された精密鋳造用中子本体の表面に、
アルコキシド材料からなるアルコキシド被覆層を形成してなることを特徴とする精密鋳造用中子。 On the surface of a sintered precision casting core body mainly composed of siliceous particles,
A precision casting core comprising an alkoxide coating layer made of an alkoxide material. - シリカ質粒子を主成分とする焼結された精密鋳造用中子本体の表面に、
アルコキシド材料とシリカフュームからなるアルコキシド-シリカフューム被覆層を形成してなることを特徴とする精密鋳造用中子。 On the surface of a sintered precision casting core body mainly composed of siliceous particles,
A precision casting core comprising an alkoxide-silica fume coating layer comprising an alkoxide material and silica fume. - 請求項1又は2において、
アルコキシド材料が、シリコンアルコキシド単独又はシリコンアルコキシドとアルミニウムアルコキシドとの混合アルコキシドであることを特徴とする精密鋳造用中子。 In claim 1 or 2,
A precision casting core, wherein the alkoxide material is silicon alkoxide alone or mixed alkoxide of silicon alkoxide and aluminum alkoxide. - 鋳物の製造に用いる精密鋳造用鋳型であって、
前記鋳物の内部の空洞部分に対応する形状の請求項1又は2の精密鋳造用中子と、
前記鋳物の外周面の形状に対応する外側鋳型と、を有することを特徴とする精密鋳造用鋳型。 A mold for precision casting used in the manufacture of castings,
The core for precision casting according to claim 1 or 2 having a shape corresponding to a hollow portion inside the casting,
A precision casting mold comprising: an outer mold corresponding to a shape of an outer peripheral surface of the casting. - シリカ質粒子を主成分とする精密鋳造用中子本体の焼結処理体を、
アルコキシド材料に浸漬し、
次いで乾燥し、その後熱処理をし、精密鋳造用中子本体の表面に被覆層を形成することを特徴とする精密鋳造用中子の製造方法。 A sintered body of a core body for precision casting mainly composed of siliceous particles,
Soak in alkoxide material,
A method for producing a core for precision casting, which is then dried and then heat-treated to form a coating layer on the surface of the core body for precision casting. - シリカ質粒子を主成分とする精密鋳造用中子本体の焼結処理体を、
アルコキシド材料とシリカフュームとのアルコキシド-シリカフューム材料に浸漬し、
次いで乾燥し、その後熱処理をし、精密鋳造用中子本体の表面に被覆層を形成することを特徴とする精密鋳造用中子の製造方法。 A sintered body of a core body for precision casting mainly composed of siliceous particles,
Immersion in alkoxide-silica fume material of alkoxide material and silica fume,
A method for producing a core for precision casting, which is then dried and then heat-treated to form a coating layer on the surface of the core body for precision casting. - 請求項5又は6において、
アルコキシド材料が、シリコンアルコキシド単独又はシリコンアルコキシドとアルミニウムアルコキシドとの混合アルコキシドであることを特徴とする精密鋳造用中子の製造方法。 In claim 5 or 6,
A method for producing a core for precision casting, wherein the alkoxide material is silicon alkoxide alone or a mixed alkoxide of silicon alkoxide and aluminum alkoxide.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/893,958 US20160121390A1 (en) | 2013-05-29 | 2014-05-28 | Precision-casting core, precision-casting core manufacturing method, and precision-casting mold |
CN201480030193.3A CN105283259B (en) | 2013-05-29 | 2014-05-28 | Core for precision casting, production method therefor, and mold for precision casting |
DE112014002572.0T DE112014002572T5 (en) | 2013-05-29 | 2014-05-28 | Investment casting core, method for producing a investment casting core, and investment casting tool |
KR1020157033534A KR101761048B1 (en) | 2013-05-29 | 2014-05-28 | Core for precision casting, production method therefor, and mold for precision casting |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013113129A JP2014231078A (en) | 2013-05-29 | 2013-05-29 | Core for precision casting, production method therefor, and mold for precision casting |
JP2013113130A JP2014231079A (en) | 2013-05-29 | 2013-05-29 | Core for precision casting, production method therefor, and mold for precision casting |
JP2013-113130 | 2013-05-29 | ||
JP2013-113129 | 2013-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192820A1 true WO2014192820A1 (en) | 2014-12-04 |
Family
ID=51988843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064152 WO2014192820A1 (en) | 2013-05-29 | 2014-05-28 | Core for precision casting, production method therefor, and mold for precision casting |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160121390A1 (en) |
KR (1) | KR101761048B1 (en) |
CN (1) | CN105283259B (en) |
DE (1) | DE112014002572T5 (en) |
WO (1) | WO2014192820A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11148331B2 (en) | 2017-10-10 | 2021-10-19 | General Electric Company | Mold system including separable, variable mold portions for forming casting article for investment casting |
US11027469B2 (en) * | 2017-10-10 | 2021-06-08 | General Electric Company | Mold system including separable, variable mold portions for forming casting article for investment casting |
CN108500215B (en) * | 2018-04-28 | 2020-02-07 | 安徽工业大学 | Rapid forming method for microwave-cured water-soluble mold core |
CN108380825B (en) * | 2018-04-28 | 2020-01-10 | 安徽工业大学 | Rapid forming method for microwave-cured water-soluble salt core |
KR102599924B1 (en) | 2023-08-04 | 2023-11-08 | (주)용진 | Molding apparatus for vessel engine |
KR102630323B1 (en) | 2023-10-30 | 2024-01-29 | (주)용진 | Molding apparatus for vessel engine that can control the movement speed of additives |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248542A (en) * | 1987-04-01 | 1988-10-14 | Honda Motor Co Ltd | Method for forming coating layer in mold |
JPH0748170A (en) * | 1991-05-21 | 1995-02-21 | Satoyuki Inui | Production of high-purity mullite |
JPH08276241A (en) * | 1986-07-11 | 1996-10-22 | Howmet Corp | Reactive metal casting |
JP2003170245A (en) * | 2001-12-07 | 2003-06-17 | Mitsubishi Heavy Ind Ltd | Method for coating core material and manufacturing method for hollow structure |
JP2004528988A (en) * | 2001-06-07 | 2004-09-24 | オンデオ ナルコ カンパニー | Manufacturing method of precision casting shell |
JP2013136061A (en) * | 2011-12-28 | 2013-07-11 | Mitsubishi Heavy Ind Ltd | Coating agent for casting, and casting method using the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6349343A (en) * | 1986-08-14 | 1988-03-02 | Nobuyoshi Sasaki | Core and its production and production of mold for investment casting |
CN1014686B (en) * | 1988-09-30 | 1991-11-13 | 太原矿山机器厂 | Production method of sand core for investment casting |
JPH06340467A (en) | 1993-05-28 | 1994-12-13 | Mitsubishi Heavy Ind Ltd | Production of ceramic molded body |
-
2014
- 2014-05-28 WO PCT/JP2014/064152 patent/WO2014192820A1/en active Application Filing
- 2014-05-28 DE DE112014002572.0T patent/DE112014002572T5/en not_active Withdrawn
- 2014-05-28 KR KR1020157033534A patent/KR101761048B1/en active IP Right Grant
- 2014-05-28 CN CN201480030193.3A patent/CN105283259B/en not_active Expired - Fee Related
- 2014-05-28 US US14/893,958 patent/US20160121390A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08276241A (en) * | 1986-07-11 | 1996-10-22 | Howmet Corp | Reactive metal casting |
JPS63248542A (en) * | 1987-04-01 | 1988-10-14 | Honda Motor Co Ltd | Method for forming coating layer in mold |
JPH0748170A (en) * | 1991-05-21 | 1995-02-21 | Satoyuki Inui | Production of high-purity mullite |
JP2004528988A (en) * | 2001-06-07 | 2004-09-24 | オンデオ ナルコ カンパニー | Manufacturing method of precision casting shell |
JP2003170245A (en) * | 2001-12-07 | 2003-06-17 | Mitsubishi Heavy Ind Ltd | Method for coating core material and manufacturing method for hollow structure |
JP2013136061A (en) * | 2011-12-28 | 2013-07-11 | Mitsubishi Heavy Ind Ltd | Coating agent for casting, and casting method using the same |
Also Published As
Publication number | Publication date |
---|---|
US20160121390A1 (en) | 2016-05-05 |
KR101761048B1 (en) | 2017-07-24 |
KR20160003768A (en) | 2016-01-11 |
CN105283259A (en) | 2016-01-27 |
CN105283259B (en) | 2017-04-12 |
DE112014002572T5 (en) | 2016-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014192820A1 (en) | Core for precision casting, production method therefor, and mold for precision casting | |
CN110280717A (en) | A kind of ink-jet bonding 3 D-printing sand mold Ti alloy casting technique | |
WO2014192825A1 (en) | Core for precision casting, production method therefor, and mold for precision casting | |
JP6199019B2 (en) | Precision casting mold manufacturing method | |
CN105899309B (en) | Mold forms the manufacture method with slurry, mold and mold | |
JP2014231081A (en) | Core for precision casting, production method therefor, and mold for precision casting | |
WO2014192819A1 (en) | Core for precision casting, production method therefor, and mold for precision casting | |
JP6095933B2 (en) | Precision casting mold manufacturing method | |
JP6196472B2 (en) | Precision casting core and manufacturing method thereof, precision casting mold | |
JP2014231077A (en) | Core for precision casting, production method therefor, and mold for precision casting | |
JP2014231079A (en) | Core for precision casting, production method therefor, and mold for precision casting | |
JP2014231078A (en) | Core for precision casting, production method therefor, and mold for precision casting | |
JP6199018B2 (en) | Precision casting mold manufacturing method | |
JP6344034B2 (en) | Casting method of TiAl alloy | |
JP6037756B2 (en) | Mold manufacturing method and mold | |
JP6095935B2 (en) | Precision casting mold manufacturing method | |
JP6095934B2 (en) | Precision casting mold manufacturing method | |
JP2017087226A (en) | Manufacturing method of ceramic casting mold | |
JP2014226668A (en) | Precision-casting molding material, precision-casting mold and method for manufacturing the same | |
JP2016079072A (en) | Producing method of ceramics molding and producing method of casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480030193.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14803437 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157033534 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14893958 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014002572 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14803437 Country of ref document: EP Kind code of ref document: A1 |