[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014192627A1 - 液晶媒体、光素子および液晶化合物 - Google Patents

液晶媒体、光素子および液晶化合物 Download PDF

Info

Publication number
WO2014192627A1
WO2014192627A1 PCT/JP2014/063568 JP2014063568W WO2014192627A1 WO 2014192627 A1 WO2014192627 A1 WO 2014192627A1 JP 2014063568 W JP2014063568 W JP 2014063568W WO 2014192627 A1 WO2014192627 A1 WO 2014192627A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
replaced
alkyl
compound
fluorine
Prior art date
Application number
PCT/JP2014/063568
Other languages
English (en)
French (fr)
Inventor
仁志 戸畑
弘毅 佐郷
山本 真一
長谷場 康宏
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to JP2015519817A priority Critical patent/JP6327248B2/ja
Priority to US14/893,073 priority patent/US9611429B2/en
Publication of WO2014192627A1 publication Critical patent/WO2014192627A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3444Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing one nitrogen atom, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3444Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing one nitrogen atom, e.g. pyridine
    • C09K19/3447Pyridine condensed or bridged with another ring system, e.g. quinoline or acridine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/345Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
    • C09K19/3458Uncondensed pyrimidines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • C09K19/588Heterocyclic compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/124Ph-Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases

Definitions

  • the present invention relates to a liquid crystal compound, a liquid crystal composition, an optical element using the liquid crystal composition, and the like useful as a material for an optical element, for example.
  • Liquid crystal display elements using a liquid crystal composition are widely used in displays such as watches, calculators, word processors and the like. These liquid crystal display elements utilize the refractive index anisotropy and dielectric anisotropy of liquid crystal compounds.
  • PC phase change
  • TN twisted nematic
  • STN super twisted nematic
  • BTN Battery twisted nematic
  • ECB mainly using one or more polarizing plates
  • ECB Known are electrically controlled birefringence (OCB), optically compensated bend (OCB), in-plane switching (IPS), and vertical alignment (VA).
  • OCB electrically controlled birefringence
  • OCB optically compensated bend
  • IPS in-plane switching
  • VA vertical alignment
  • a mode in which an electric field is applied in an optically isotropic liquid crystal phase to develop electric birefringence has been studied (Patent Documents 1 to 16, Non-Patent Documents 1 to 3).
  • Patent Documents 10 to 12 The classification based on the element driving method is PM (passive matrix) and AM (active matrix). PM (passive matrix) is classified into static and multiplex, and AM is classified into TFT (thin film transistor), MIM (metal insulator metal), etc., depending on the type of switching element.
  • a composition expressing an optically isotropic liquid crystal phase including the following compound (R-3) is disclosed in Patent Document 15 as optically including (R-1) to (R-3).
  • Patent Document 16 discloses a composition that exhibits an isotropic liquid crystal phase.
  • Patent Document 17 describes the following compounds (R-4) and (R-5).
  • liquid crystal medium that exhibits stability against heat, light, etc., a wide liquid crystal phase temperature range, extremely large dielectric anisotropy, and exhibits an optically isotropic liquid crystal phase. Also, various optical elements that can be used in a wide temperature range, have a short response time, a large contrast ratio, and a low driving voltage are required.
  • the present invention includes, for example, the following liquid crystal compounds, liquid crystal media (liquid crystal compositions, polymer / liquid crystal composite materials, etc.), mixtures of polymerization monomers and liquid crystal compositions, optical devices containing liquid crystal media, and liquid crystal compounds. Etc.
  • the present invention provides the following compound, liquid crystal medium (liquid crystal composition or polymer / liquid crystal composite), an optical element containing the liquid crystal medium, and the like.
  • R 1 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is —O—, —S—, —COO—, —OCO—, —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C— may be substituted, and —CH 2 — in the alkyl and in the alkyl may be —O—, —S—, —COO—, — At least one hydrogen in the group replaced by OCO—, —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C— may be replaced by halogen or alkyl of 1 to 3 carbon atoms; L 1 and L 2 are each independently fluorine or hydrogen, X 1 is halogen, —CF 3 , —OC
  • R 1 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is —O—, —S—, —COO—, —OCO. —, —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C— may be substituted, and —CH 2 — in the alkyl and in the alkyl may be —O—, —S—, —COO—.
  • At least one hydrogen in the group replaced by —OCO—, —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C— may be replaced by halogen or alkyl of 1 to 3 carbons;
  • X 1 is halogen, —CF 3 , —OCF 3 , —C ⁇ N, or —N ⁇ C ⁇ S.
  • —O— and —CH ⁇ CH— are not adjacent to each other, and —CO— and —CH ⁇ CH— are not adjacent to each other.
  • R 7 is alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is replaced by —O—, —S—, —COO— or —OCO—. And at least one —CH 2 —CH 2 — in the alkyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C—, wherein at least one of the alkyl in the alkyl In a group in which two —CH 2 — are replaced by —O—, —S—, —COO— or —OCO—, or at least one —CH 2 — in alkyl is —O—, —S—, —COO At least one hydrogen in the group in which at least one —CH 2 —CH 2 — in the group replaced with — or —OCO— is replaced with —CH ⁇ CH— or —C ⁇ C— is fluorine or chlorine May be replaced , However, -O-
  • —O— and —CH ⁇ CH— are not adjacent to each other, and —CO— and —CH ⁇ CH— are not adjacent to each other.
  • the amount of at least one compound selected from the group represented by formula (1) and formula (7) is 1 to 32% by weight with respect to the total amount of achiral component T,
  • the liquid crystal composition according to any one of the above.
  • each R 3A independently represents alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon in which at least one hydrogen may be replaced with fluorine.
  • An alkenyl having the number 2-12; L 31 , L 32 , L 33 , L 34 and L 35 are each independently hydrogen or fluorine;
  • X 3A is fluorine, chlorine, —CF 3 or —OCF 3 .
  • At least one is —COO— or —CF 2 O—, provided that in formula (7-3), L 71 and L 72 are both fluorine, Z 71 is —CF 2 O— and when n71 is 1, L 74 is hydrogen, and in formulas (7-4) and (7-5), Z 71 is independently —COO— or —CF 2 O—; X 7A is fluorine, chlorine, —CF 3 or —OCF 3 . )
  • Compound 7 is represented by formulas (7-2-2-E), (7-2-5-E), (7-2-2-F) and (7-2-5-F).
  • R 7A is alkyl having 1 to 12 carbons, alkoxy having 1 to 11 carbons, alkenyl having 2 to 12 carbons, or 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. Is alkenyl;
  • X 7A is fluorine, chlorine, —CF 3 or —OCF 3 .
  • the total weight of the achiral component T is 3 to 20% by weight of Compound 1, the total of Compound 3 is 20 to 80% by weight, and the total of Compound 7 is 10% by weight.
  • the achiral component T further comprises at least one compound selected from the compound 4 represented by the formula (4) and the compound 2 represented by the formula (2)
  • R 4 represents alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon having 2 to 2 carbon atoms in which at least one hydrogen is replaced with fluorine.
  • Each ring B is independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, 3,5-difluoro-1, 4-phenylene, 3,5-dichloro-1,4-phenylene or pyrimidine-2,5-diyl;
  • Each Z 41 is independently a single bond, ethylene, —COO—, —OCO—, —CF 2 O— or —OCF 2 —;
  • L 48 and L 49 are each independently hydrogen or fluorine;
  • X 4 is fluorine, chlorine, —CF 3 or —OCF 3 ;
  • n41 is 1, 2, 3 or 4, provided that when n41 is 3 or 4, at least one Z 41 is —CF 2 O— or —OCF 2 —, and when n41 is 3, Not all B is 1,4-phenylene substituted with fluorine.
  • Compound 4 is one or more selected from the group of compounds represented by formulas (4-1) to (4-9), and compound 2 is represented by formula (2-1-1-2), (2-1-2-1), (2-1-3-1), (2-1-3-2), (2-1-4-2) and (2-1-4-3)
  • the liquid crystal composition according to [10] which is one or more selected from the group of compounds represented.
  • each R 4A independently represents an alkyl having 1 to 12 carbon atoms, an alkoxy having 1 to 12 carbon atoms, an alkenyl having 2 to 12 carbon atoms, or a carbon number of 2 in which at least one hydrogen is replaced by fluorine.
  • R 2A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine.
  • Is; (F) is each independently hydrogen or fluorine;
  • X 2A is fluorine, chlorine, —CF 3 or —OCF 3 .
  • Z is each independently a single bond or alkylene having 1 to 8 carbon atoms, and at least one —CH 2 — in the alkylene is —O—, —S—, —COO—, —OCO—, — CSO—, —OCS—, —N ⁇ N—, —CH ⁇ N— or —N ⁇ CH— may be substituted, and at least one —
  • One hydrogen replaced by halogen It may be;
  • Each X is independently a single bond, —COO—, —OCO—, —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, or —CH 2 CH 2 —;
  • mK is each independently an integer of 1 to 4.
  • a mixture comprising the liquid crystal composition according to any one of [1] to [13] and a polymerizable monomer.
  • An optical element comprising an electrode disposed on one or both substrates, a liquid crystal medium disposed between the substrates, and an electric field applying means for applying an electric field to the liquid crystal medium via the electrodes, [1] to [13]
  • An optical device comprising the liquid crystal composition according to any one of [1] to [13] or the polymer / liquid crystal composite material according to [15].
  • liquid crystal compound represents a compound having a mesogen, and is not limited to a compound that exhibits a liquid crystal phase. Specifically, it is a generic term for a compound that exhibits a liquid crystal phase such as a nematic phase or a smectic phase, and a compound that does not have a liquid crystal phase but is useful as a component of a liquid crystal composition.
  • Liquid crystal medium is a general term for a liquid crystal composition and a polymer / liquid crystal composite.
  • An “achiral component” is an achiral mesogenic compound that does not include an optically active compound and a compound having a polymerizable functional group.
  • the “achiral component” does not include a chiral agent, a monomer, a polymerization initiator, an antioxidant, an ultraviolet absorber, a curing agent, a stabilizer, and the like.
  • the “chiral agent” is an optically active compound and is a component used to be added to give a desired twisted molecular arrangement to the liquid crystal composition.
  • Liquid crystal display element is a general term for liquid crystal display panels and liquid crystal display modules.
  • “Optical element” refers to various elements that perform functions such as light modulation and optical switching by utilizing the electro-optic effect. For example, display elements (liquid crystal display elements), optical communication systems, optical information processing, and the like. And light modulation elements used in various sensor systems.
  • the Kerr effect is known for light modulation using a change in refractive index caused by voltage application to an optically isotropic liquid crystal medium.
  • K Kerr coefficient (Kerr constant), ⁇ : wavelength)
  • the electric birefringence value is a refractive index anisotropy value induced when an electric field is applied to the isotropic medium.
  • Liquid crystal compound”, “liquid crystal composition”, and “liquid crystal display element” may be abbreviated as “compound”, “composition”, and “element”, respectively.
  • the upper limit temperature of the liquid crystal phase is the phase transition temperature of the liquid crystal phase-isotropic phase, and may simply be abbreviated as the clearing point or the upper limit temperature.
  • the lower limit temperature of the liquid crystal phase may be simply abbreviated as the lower limit temperature.
  • the compound represented by Formula (1) may be abbreviated as Compound 1. This abbreviation may also apply to compounds represented by formula (2) and the like. In formulas (2) to (5), symbols such as A 1 , B, and C surrounded by hexagons correspond to ring A 1 , ring B, and ring C, respectively.
  • the amount of the compound expressed as a percentage is a weight percentage (% by weight) based on the total weight of the composition.
  • a plurality of the same symbols such as rings A 1 , Y 1 , and B are described in the same formula or different formulas, but these may be the same or different.
  • alkyl examples include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7. H 15 , -C 8 H 17, -C 9 H 19 , -C 10 H 21 , -C 11 H 23 , -C 12 H 25 , -C 13 H 27 , -C 14 H 29 , and -C 15 H 31 .
  • alkoxy examples include —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , —OC 6 H 13 and —OC 7. H 15 , —OC 8 H 17, —OC 9 H 19 , —OC 10 H 21 , —OC 11 H 23 , —OC 12 H 25 , —OC 13 H 27 , and —OC 14 H 29 are listed.
  • alkoxyalkyl examples include —CH 2 OCH 3 , —CH 2 OC 2 H 5 , —CH 2 OC 3 H 7 , — (CH 2 ) 2 —OCH 3 , — (CH 2 ) 2 -OC 2 H 5 , — (CH 2 ) 2 —OC 3 H 7 , — (CH 2 ) 3 —OCH 3 , — (CH 2 ) 4 —OCH 3 , and — (CH 2 ) 5 —OCH 3 Is mentioned.
  • alkenyloxy examples include —OCH 2 CH ⁇ CH 2 , —OCH 2 CH ⁇ CHCH 3 , and —OCH 2 CH ⁇ CHC 2 H 5 .
  • alkynyl examples include —C ⁇ CH, —C ⁇ CCH 3 , —CH 2 C ⁇ CH, —C ⁇ CC 2 H 5 , —CH 2 C ⁇ CCH 3 , — (CH 2 ) 2 —C ⁇ CH, —C ⁇ CC 3 H 7 , —CH 2 C ⁇ CC 2 H 5 , — (CH 2 ) 2 —C ⁇ CCH 3 , and —C ⁇ C (CH 2 ) 5 It is done.
  • halogen include fluorine, chlorine, bromine, and iodine.
  • Preferred liquid crystal compositions and polymer / liquid crystal composite materials of the present invention exhibit stability against heat, light, etc., high maximum temperature and low minimum temperature of optically isotropic liquid crystal phase, and large dielectric anisotropy Have sex.
  • the polymer / liquid crystal composite material according to a preferred embodiment of the present invention has a high upper limit temperature and a lower lower limit temperature of an optically isotropic liquid crystal phase, and is driven by an optically isotropic liquid crystal phase. Has a low drive voltage and a short response time.
  • the optical element driven by the optically isotropic liquid crystal phase of the preferred embodiment of the present invention can be used in a wide temperature range, can be driven at a low voltage, and can have a high transmittance. Large contrast ratios are possible and have a fast electro-optic response.
  • the comb-shaped electrode substrate used in the Example is shown.
  • the optical system used in the Example is shown.
  • the liquid crystal composition having an optically isotropic liquid crystal phase of the present invention contains an achiral component T and a chiral agent, and the achiral component T contains the compound represented by the formula (1) as a first component. .
  • the first aspect of the liquid crystal composition of the present invention is a composition containing a first component and other components not particularly indicated in the present specification. First, the compound represented by Formula (1) is demonstrated.
  • the liquid crystal composition of the present invention may further contain a solvent, a monomer, a polymerization initiator, a curing agent, a stabilizer (an antioxidant, an ultraviolet absorber, etc.) and the like.
  • R 1 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is —O—, —S—, —COO—, —OCO—, —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C— may be substituted, and —CH 2 — in the alkyl and in the alkyl may be —O—, —S—, —COO—, — At least one hydrogen in the group replaced with OCO—, —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C— may be replaced with halogen or alkyl having 1 to 3 carbon atoms.
  • —CH ⁇ CH— in R 1 depends on the position of the double bond. —CH ⁇ CHCH 3 , —CH ⁇ CHC 2 H 5 , —CH ⁇ CHC 3 H 7 , —CH ⁇ CHC 4 H 9 , —C 2 H 4 CH ⁇ CHCH 3 , and —C 2 H 4 CH ⁇ CHC 2
  • the trans configuration is preferable.
  • -CH 2 CH CHCH 3
  • An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase.
  • Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.
  • the position of the alkenyl group is preferably a position that does not form a conjugate with the benzene ring.
  • the alkyl in R 1 may be linear or branched, and specific examples of alkyl include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , -C 6 H 13 , -C 7 H 15 , -C 8 H 17, -C 9 H 19 , -C 10 H 21 , -C 11 H 23 , -C 12 H 25 , -C 13 H 27 ,- C 14 H 29 , and —C 15 H 31 .
  • the alkoxy in R 1 may be linear or branched, and specific examples of alkoxy include —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , -OC 6 H 13 and -OC 7 H 15 , -OC 8 H 17, -OC 9 H 19 , -OC 10 H 21 , -OC 11 H 23 , -OC 12 H 25 , -OC 13 H 27 , and -OC 14 H 29 .
  • the alkoxyalkyl in R 1 may be linear or branched, and specific examples of alkoxyalkyl include —CH 2 OCH 3 , —CH 2 OC 2 H 5 , —CH 2 OC 3 H 7 , — (CH 2 ) 2 —OCH 3 , — (CH 2 ) 2 —OC 2 H 5 , — (CH 2 ) 2 —OC 3 H 7 , — (CH 2 ) 3 —OCH 3 , — (CH 2 ) 4 —OCH 3 And — (CH 2 ) 5 —OCH 3 .
  • the alkenyl in R 1 may be linear or branched, and specific examples of alkenyl include —CH 2 CH ⁇ CH 2 , —CH 2 CH ⁇ CHCH 3 , — (CH 2 ) 2 —CH ⁇ CH 2 , —CH 2 CH ⁇ CHC 2 H 5 , — (CH 2 ) 2 —CH ⁇ CHCH 3 , and — (CH 2 ) 3 —CH ⁇ CH 2 .
  • the alkenyloxy in R 1 may be linear or branched, and specific examples of alkenyloxy include —OCH 2 CH ⁇ CH 2 , —OCH 2 CH ⁇ CHCH 3 , and —OCH 2 CH ⁇ CHC 2 H. 5 .
  • the alkynyl in R 1 may be linear or branched, and specific examples of alkynyl include —C ⁇ CH, —C ⁇ CCH 3 , —CH 2 C ⁇ CH, —C ⁇ CC 2 H 5 , —CH 2 C ⁇ CCH 3 , — (CH 2 ) 2 —C ⁇ CH, —C ⁇ CC 3 H 7 , —CH 2 C ⁇ CC 2 H 5 , — (CH 2 ) 2 —C ⁇ CCH 3 , and —C ⁇ C (CH 2 ) 5
  • R 1 is preferably a structure represented by the formulas (CHN-1) to (CHN-6). More preferred is (CHN-1) or (CHN-2). (In the above formula, R 1a is hydrogen or alkyl having 1 to 20 carbon atoms.)
  • X 1 is halogen, —CF 3 , —OCF 3 , —C ⁇ N, or —N ⁇ C ⁇ S.
  • Preferred examples of X 1 are fluorine and —CF 3 .
  • the compound 1 is preferably a compound of the formula (1-1).
  • R 1 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is —O—, —S—, —COO—, —OCO—, —CH ⁇ CH—, —CF ⁇ CF—, or —C ⁇ C— may be substituted, and —CH 2 — in the alkyl and in the alkyl may be —O—, —S—, —COO—, — At least one hydrogen in the group replaced by OCO—, —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C— may be replaced by halogen or alkyl of 1 to 3 carbon atoms;
  • X 1 is halogen, —CF 3 , —OCF 3 , —C ⁇ N, or —N ⁇ C ⁇ S.
  • Compound 1 is more preferably a compound represented by Formulas (1-1-1) to (1-1-2). (In
  • Compound 1 is physically and chemically extremely stable under conditions in which the device is normally used, has a large dielectric anisotropy and a relatively large refractive index anisotropy, Compatibility with other compounds is relatively good.
  • a composition containing this compound is stable under conditions in which the device is normally used. Therefore, the driving voltage can be lowered by using a small amount of Compound 1.
  • it is possible to prepare a composition with a short response time by mixing Compound 1 with a compound that increases the driving voltage and shortens the response time.
  • Compound 1 can be synthesized by appropriately combining methods in known organic synthetic chemistry. There are a plurality of methods for synthesizing Compound 1, which can be appropriately synthesized from commercially available reagents. In addition, when synthesizing Compound 1, the methods for introducing the desired terminal group, ring and linking group into the starting material are as follows: Organic Syntheses, John Wiley & Sons, Inc., Organic Reactions, John Wiley & Sons, Inc), Comprehensive Organic Synthesis (Pergamon Press), New Experimental Chemistry Course (Maruzen). For example, Compound 1 can be synthesized by applying the method of Japanese Patent No. 2959526 (JP 2959526B).
  • the liquid crystal composition of the present invention is a composition that contains the compound 1 represented by the formula (1) and exhibits an optically isotropic liquid crystal phase. Further, the optically isotropic liquid crystal composition contains a chiral agent in addition to the achiral component T containing the compound 1, and may further contain an antioxidant, an ultraviolet absorber, a stabilizer and the like.
  • the achiral component T includes a case where the compound 1 is composed of one compound and a case where the compound 1 includes a plurality of compounds represented by the formula (1). Furthermore, the achiral component includes one or more compounds selected from the group consisting of compounds 2 to 7 as necessary.
  • the achiral component T preferably includes compounds 2, 3, 5 and 7 in addition to compound 1, particularly preferably includes compounds 3 and 7, and further includes compounds 4 and 6 depending on the properties required. Can do.
  • Compounds 1 to 7 are liquid crystal compounds. Since Compound 1 has a relatively high clearing point, a large dielectric anisotropy, and a relatively good compatibility at low temperatures, the achiral component T using Compound 1 also has a wide liquid crystal phase temperature range or a large dielectric constant difference. Develops anisotropy.
  • an optically isotropic liquid crystal composition using the achiral component T is also useful as a composition used for an optical element.
  • the total content of the achiral component T is preferably 1 to 30% by weight, more preferably 3 to 20% by weight, and more preferably 5 to 15% by weight. It is particularly preferable to do this.
  • the achiral component of the present invention may further contain one or more compounds 2 represented by formula (2). That is, the present invention includes a case where the achiral component T is composed of one compound as the compound 2 and a case where the compound 2 includes a plurality of compounds represented by the formula (2).
  • R 2 in the formula (2) is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. Are preferred.
  • ring A 21 , ring A 22 , ring A 23 , ring A 24 and ring A 25 in formula (2) are 1,4-phenylene, one Alternatively, 1,4-phenylene in which two hydrogens are replaced by fluorine is preferable.
  • Z 21 , Z 22 , Z 23 , Z 24 , Z 25 and Z 26 in the formula (2) are each independently a single bond or alkylene having 1 to 4 carbon atoms, and at least one —CH in the alkylene 2 — may be replaced by —O—, —COO— or —CF 2 O—.
  • X 2 in the formula (2) is fluorine, chlorine, —CF 3 , —CHF 2 , —CH 2 F, —OCF 3 , —OCHF 2 , —OCH 2 F, —OCF 2 CFHCF 3 or —CH ⁇ CHCF 3
  • Preferred are fluorine, chlorine, —CF 3 and —OCF 3 .
  • compound 2 it is preferable to use a compound of formula (2-1).
  • R 2A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 to 12 carbons in which at least one hydrogen is replaced with fluorine.
  • Z 21 , Z 22 , Z 23 , Z 24 , Z 25 , and Z 26 are each independently a single bond or alkylene having 1 to 4 carbon atoms, and at least one —CH 2 — in the alkylene is May be replaced by —O—, —COO— or —CF 2 O—;
  • n22, n23, n24 and n25 are independently 0 or 1, and n22 + n23 + n24 + n25 is an integer of 1 to 2.
  • X 2A is fluorine, chlorine, —CF 3 and —OCF 3 ; (F) each independently represents hydrogen or fluorine. )
  • the compound 2 is represented by the formula (2-1-1-2), (2-1-2-1), (2-1-3-1), (2-1-3-2) , (2-1-4-2) or (2-1-4-3) is preferred.
  • Compound 2 has good compatibility, large dielectric anisotropy and large refractive index anisotropy.
  • the total amount of compound 2 is preferably 0.5% to 70% by weight, more preferably 5% to 60% by weight, more preferably 10% to 50% by weight based on the total weight of the achiral component T. % Content is particularly preferable.
  • Compound 2 has a chlorobenzene ring.
  • Compound 2 is extremely physically and chemically stable under the conditions under which the device is normally used, and has good compatibility with other liquid crystal compounds. Furthermore, it is difficult to develop a smectic phase.
  • a composition containing this compound is stable under conditions in which the device is normally used. Accordingly, the temperature range of the cholesteric phase in the composition can be expanded, and the composition can be used as a display element in a wide temperature range. Further, since this compound has a large dielectric anisotropy and refractive index anisotropy, it is useful as a component for increasing the reflectance in order to lower the driving voltage of the composition driven in the cholesteric phase.
  • n22 to n25 in formula (2), the left terminal group R 2A , the group on the rightmost benzene ring and its substitution position ((F) and X 2A ), or the linking groups Z 22 to Z 26 are It is possible to arbitrarily adjust physical properties such as clearing point, refractive index anisotropy and dielectric anisotropy.
  • the effect of the combination of n22, n23, n24 and n25, the left terminal group R 2A , the right terminal group X 2A , the linking groups Z 21 to Z 26 and (F) on the physical properties of the compound 2 will be described below.
  • R 2A in formula (2) is alkenyl
  • the preferred configuration conforms to the preferred configuration of —CH ⁇ CH— in R 1 of formula (1).
  • the bonding groups Z 21 to Z 26 in the formula (2) are a single bond or —CF 2 O—, they are chemically relatively stable and relatively hardly deteriorated. Further, when the bonding group is a single bond, the viscosity is small. Further, when the bonding group is —CF 2 O—, the dielectric anisotropy is large.
  • a compound having the desired physical properties can be obtained by appropriately selecting the kind of the ring structure, terminal group, bonding group and the like in formula (2).
  • the achiral component of the present invention may further contain at least one compound 3 represented by formula (3). That is, the present invention includes a case where the achiral component T is composed of one compound as the compound 3 and a case where the compound 3 includes a plurality of compounds represented by the formula (3).
  • the liquid crystal composition of the present invention may contain one or more selected from the group consisting of compounds 2 and 4-7 in addition to compound 1 and compound 3.
  • Z 31 , Z 32 and Z 33 are each independently a single bond, —COO— or —CF 2 O—, but at least one is —CF 2 O—.
  • Preferred examples of Z 31 , Z 32 and Z 33 are a single bond and —CF 2 O—.
  • L 31 , L 32 , L 33 , L 34 and L 35 are independently hydrogen or fluorine.
  • Z 32 is —COO— or —CF 2 O—
  • L 32 , L 34 and L 35 are preferably fluorine
  • Z 33 is —COO— or —CF 2 O—
  • L 33 , L 34 and L 35 are preferably fluorine.
  • alkyl in which one or more hydrogens in X 3 of formula (3) are replaced by halogen include —CH 2 F, —CHF 2 , —CF 3 , — (CH 2 ) 2 —F, —CF 2 CH 2 F, —CF 2 CHF 2 , —CH 2 CF 3 , —CF 2 CF 3 , — (CH 2 ) 3 —F, — (CF 2 ) 3 —F, —CF 2 CHFCF 3 , —CHFCF 2 CF 3 , — (CH 2 ) 4 —F, — (CF 2 ) 4 —F, — (CH 2 ) 5 —F, and — (CF 2 ) 5 —F.
  • alkoxy in which one or more hydrogens are replaced by halogen include —OCH 2 F, —OCHF 2 , —OCF 3 , —O— (CH 2 ) 2 —F, —OCF 2 CH 2 F, — OCF 2 CHF 2 , —OCH 2 CF 3 , —O— (CH 2 ) 3 —F, —O— (CF 2 ) 3 —F, —OCF 2 CHFCF 3 , —OCHFCF 2 CF 3 , —O (CH 2 ) 4 -F, -O- (CF 2 ) 4 -F, -O- (CH 2 ) 5 -F, and -O- (CF 2 ) 5 -F.
  • X 3 is preferably fluorine, chlorine, —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2, and more preferably fluorine, chlorine, —CF 3 and —OCF 3 .
  • compound 3 it is preferable to use compounds represented by formulas (3-1) to (3-3), and it is more preferable to use compounds represented by formulas (3-2) and (3-3). .
  • compounds represented by formula (3-2) it is more preferable to use compounds represented by formulas (3-2A) to (3-2H), and formulas (3-2A) to (3-2D) It is particularly preferable to use a compound represented by formula (3-2A) and (3-2C), and it is most preferable to use a compound represented by formula (3-2A).
  • R 3A each independently represents an alkyl having 1 to 12 carbon atoms, an alkoxy having 1 to 12 carbon atoms, an alkenyl having 2 to 12 carbon atoms, or a carbon number in which at least one hydrogen may be replaced by fluorine
  • L 31 to L 35 are each independently hydrogen or fluorine
  • X 3A is fluorine, chlorine, —CF 3 , or —OCF 3 .
  • R 3A is independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon 2 having at least one hydrogen substituted with fluorine.
  • X 3A is fluorine, chlorine, —CF 3 or —OCF 3 .
  • Compound 3 has a relatively high clearing point, and has a large dielectric anisotropy and a large refractive index anisotropy.
  • the total amount of compound 3 is preferably 0.5% to 70% by weight, more preferably 5% to 60% by weight, more preferably 10% to 50% by weight based on the total weight of the achiral component T. % Content is particularly preferred.
  • Compound 3 has four benzene rings and at least one —CF 2 O— linking group.
  • Compound 3 is extremely physically and chemically stable under conditions in which the device is normally used, and has good compatibility with other liquid crystal compounds.
  • a composition containing this compound is stable under conditions in which the device is normally used. Accordingly, the temperature range of the cholesteric phase in the composition can be expanded, and the composition can be used as a display element in a wide temperature range.
  • this compound has large dielectric anisotropy and refractive index anisotropy, it is useful as a component for lowering the driving voltage of a composition driven in the cholesteric phase and for increasing the reflectance.
  • the left terminal group R 3 By appropriately selecting the left terminal group R 3 , the groups on the benzene ring (L 31 to L 35 and X 3 ), or the linking groups Z 31 to Z 33 in the formula (3), the clearing point, the refractive index anisotropic It is possible to arbitrarily adjust physical properties such as property and dielectric anisotropy.
  • the effect of the left terminal group R 3 , the group on the benzene ring (L 31 to L 35 and X 3 ), or the type of the linking group Z 31 to Z 33 on the physical properties of the compound (3) will be described below.
  • R 3 in formula (3) is alkenyl
  • the preferred configuration of —CH ⁇ CH— in alkenyl conforms to the preferred configuration of —CH ⁇ CH— in R 1 of formula (1).
  • the bonding groups Z 31 , Z 32 and Z 33 in the formula (3) are single bonds or —CF 2 O—, the viscosity is small.
  • the bonding group is Z 31 , Z 32 and Z 33 is —CF 2 O—, the dielectric anisotropy is large.
  • Z 31 , Z 32 and Z 33 in the formula (3) are a single bond or —CF 2 O—, they are chemically relatively stable and relatively difficult to deteriorate.
  • Dielectric constant when right end group X 3 in formula (3) is fluorine, chlorine, —SF 5 , —CF 3 , —CHF 2 , —CH 2 F, —OCF 3 , —OCHF 2 or —OCH 2 F High anisotropy.
  • X 3 is fluorine, —OCF 3 , or —CF 3 , it is chemically stable.
  • a compound having desired physical properties can be obtained by appropriately selecting the type of terminal group, bonding group, and the like.
  • the achiral component of the present invention may further contain at least one compound 4 represented by the formula (4) in addition to the compound 1. That is, the present invention includes a case where the achiral component T is composed of one compound as the compound 4 and a case where the compound 4 includes a plurality of compounds represented by the formula (4).
  • the liquid crystal composition of the present invention may contain one or more selected from the group consisting of compounds 2, 3 and 5 to 7 in addition to compound 1 and compound 4.
  • R 4 in Formula (4) is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 to 12 carbons in which at least one hydrogen is replaced by fluorine.
  • Desirable R 4 in formula (4) is alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or for the stability to heat.
  • R 4 in the formula (4) is preferably an alkenyl having 2 to 12 carbons from the viewpoint of decreasing the viscosity, and an alkyl having 1 to 12 carbons from the viewpoint of increasing the stability to ultraviolet rays or the stability to heat. Is preferred.
  • Preferred alkyl for R 4 in formula (4) is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, or octyl, and more preferred alkyl is ethyl, propyl, butyl, pentyl for decreasing the viscosity. Or heptyl.
  • Preferred alkoxy for R 4 in formula (4) is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy, and more preferred alkoxy is methoxy or ethoxy for decreasing the viscosity.
  • Preferred alkenyl for R 4 in the formula (4) is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl. , 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl, and more preferred alkenyl is vinyl, 1-propenyl, 3-butenyl, or 3-pentenyl for decreasing the viscosity. is there.
  • the preferred configuration of —CH ⁇ CH— in alkenyl at R 4 in formula (4) is in accordance with the preferred configuration of —CH ⁇ CH— in R 1 of formula (1).
  • trans is preferable in alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl.
  • Cis is preferable in alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl.
  • linear alkenyl is preferable to branched chain.
  • alkenyl in which one or more hydrogens are replaced by fluorine in R 4 in the formula (4) include 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro- 3-butenyl, 5,5-difluoro-4-pentenyl, and 6,6-difluoro-5-hexenyl are listed, and in order to reduce the viscosity of the liquid crystal composition, 2,2-difluorovinyl, and 4 4-difluoro-3-butenyl is preferred.
  • the alkyl in R 4 in formula (4) does not include cyclic alkyl.
  • Alkoxy does not include cyclic alkoxy.
  • Alkenyl does not include cyclic alkenyl.
  • Alkenyl in which at least one hydrogen is replaced with fluorine does not include cyclic alkenyl in which at least one hydrogen is replaced with fluorine.
  • N41 in the formula (4) is 1, 2, 3 or 4, provided that when n41 is 3 or 4, at least one Z 41 is —CF 2 O— or —OCF 2 —, and n41 is In the case of 3, all of ring B is not 1,4-phenylene substituted with fluorine.
  • Ring B in formula (4) is independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, 3,5 -Difluoro-1,4-phenylene, 3,5-dichloro-1,4-phenylene, or pyrimidine-2,5-diyl, and when n41 is 2 or more, at least two of the rings B are the same It may or may not be.
  • Ring B in formula (4) is 1,4-phenylene or 3-fluoro-1,4-phenylene for increasing the optical anisotropy, and 1,4-cyclohexylene for decreasing the viscosity. Is preferred.
  • Z 41 in formula (4) is independently a single bond, ethylene, —COO—, —OCO—, —CF 2 O— or —OCF 2 —, provided that when n41 is 3 or 4, One Z 12 is —CF 2 O—. When n41 is 2 or more, at least two Z 12 of which may be the same or different.
  • Z 41 in formula (4) is preferably a single bond for decreasing the viscosity.
  • Z 41 in formula (4) is preferably —CF 2 O— in order to increase the dielectric anisotropy and to improve the compatibility.
  • L 48 and L 49 in the formula (4) are independently hydrogen or fluorine.
  • both L 48 and L 49 are preferably fluorine, and in order to increase the clearing point, L 48 And L 49 is preferably hydrogen.
  • X 4 in the formula (4) is fluorine, chlorine, —CF 3 or —OCF 3 .
  • —CF 3 is preferable.
  • fluorine and —OCF 3 are preferable.
  • chlorine is preferable.
  • R 4A is independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one Hydrogen is alkenyl having 2 to 12 carbon atoms replaced by fluorine
  • X 4A is fluorine
  • L 40 to L 49 are independently hydrogen or fluorine.
  • (4-1) to (4-3) have high clearing points and excellent compatibility as a 5-ring.
  • (4-4) to (4-6) have a high clearing point and a large ⁇ n
  • (4-7) to (4-9) have excellent compatibility.
  • L 40 to L 49 the larger the number of fluorine, the larger the dielectric anisotropy.
  • Compound 4 is suitable for the preparation of a composition having large dielectric anisotropy or good compatibility at low temperatures.
  • the total amount of compound 4 is preferably 5% to 40% by weight, more preferably 5% to 30% by weight, more preferably 5% to 20% by weight, based on the total weight of the achiral component T. It is particularly preferable to do this.
  • the achiral component of the present invention may further contain at least one compound 3 represented by formula (5). That is, the present invention includes a case where the achiral component T is composed of one compound as the compound 5 and a case where the compound 5 includes a plurality of compounds represented by the formula (5). Further, for example, the liquid crystal composition of the present invention may contain one or more selected from the group consisting of compounds 2 to 4, 6 and 7 in addition to the compounds 1 and 5.
  • R 5 is hydrogen or alkyl having 1 to 20 carbon atoms, and at least one —CH 2 — in the alkyl is —O—, —S—, —COO— or —OCO—.
  • At least one —CH 2 —CH 2 — in the alkyl may be replaced by —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C—, and at least one in the alkyl.
  • Two hydrogens may be replaced by fluorine or chlorine, provided that —O— and —CH ⁇ CH— and —CO— and —CH ⁇ CH— are not adjacent in R 5 ;
  • (F) is each independently hydrogen or fluorine;
  • X 5 is hydrogen, halogen, —SF 5 or alkyl having 1 to 10 carbons, and at least one —CH 2 — in the alkyl is replaced by —O—, —S—, —COO— or —OCO—.
  • At least one hydrogen in the substituted group may be replaced by fluorine or chlorine, provided that —O— and —CH ⁇ CH— are not adjacent in X 5 , and —CO— and —CH ⁇ CH- is not adjacent.
  • R 5 in formula (5) the preferred configuration of —CH ⁇ CH— in alkenyl conforms to the preferred configuration of —CH ⁇ CH— in R 1 of formula (1).
  • alkyl in which at least one hydrogen is replaced by fluorine in R 5 and X 5 in formula (5) are —CHF 2 , —CF 3 , —CF 2 CH 2 F, —CF 2 CHF 2 , —CH 2 CF 3 , —CF 2 CF 3 , — (CH 2 ) 3 —F, — (CF 2 ) 3 —F, —CF 2 CHFCF 3 , and —CHFCF 2 CF 3 .
  • alkoxy in which at least one hydrogen is replaced by fluorine in R 5 and X 5 in formula (5) are —OCHF 2 , —OCF 3 , —OCF 2 CH 2 F, —OCF 2 CHF 2 , —OCH 2 CF 3 , —O— (CF 2 ) 3 —F, —OCF 2 CHFCF 3 , and —OCHFCF 2 CF 3 .
  • X 5 in formula (5) include fluorine, chlorine, —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2 , and fluorine, chlorine, —CF 3 and —OCF 3 are preferable.
  • X 5 in the formula (5) is chlorine or fluorine, the melting point of the compound 5 is relatively low, and the compatibility with other liquid crystal compounds is particularly excellent.
  • X 5 in Formula (5) is —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2 , Compound 5 exhibits a relatively large dielectric anisotropy.
  • X 5 in the formula (5) is fluorine, chlorine, —SF 5 , —CF 3 , —OCF 3 , or —CH ⁇ CH—CF 3 , the dielectric anisotropy of the compound 5 is relatively large, When X 5 is fluorine, —CF 3 , or —OCF 3 , it is relatively chemically stable.
  • R 5A is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine. Yes; (F) is each independently hydrogen or fluorine; X 5A is fluorine, chlorine, —CF 3 or —OCF 3 . )
  • Compound 5 is suitable for preparing a composition having a large dielectric anisotropy.
  • the compound 5 is preferably contained in a total of about 1.0% by weight or more based on the total weight of the achiral component T.
  • the compound 5 is preferably contained in an amount of 1 to 25% by weight, more preferably 1 to 15% by weight, based on the total weight of the achiral component T.
  • Compound 5 has a dioxane ring and three benzene rings. Compound 5 is physically and chemically very stable under the conditions under which the device is normally used, and has a relatively good compatibility with other liquid crystal compounds despite its high clearing point. The composition containing compound 5 is stable under conditions in which the device is normally used. Therefore, the composition containing the compound 5 can expand the temperature range of the optically isotropic liquid crystal phase and can be used as a display element in a wide temperature range. Compound 5 is useful as a component for lowering the driving voltage of a composition driven in an optically isotropic liquid crystal phase.
  • composition of a preferred embodiment including the chiral agent and the compound 5 When a blue phase is expressed in the composition of a preferred embodiment including the chiral agent and the compound 5, a uniform blue phase without coexistence with the N * phase or the isotropic phase is obtained.
  • the composition of the preferable aspect containing the compound 5 tends to express a uniform blue phase.
  • the clearing point of the liquid crystal composition tends to increase.
  • the compound of the formula (5) of the present application can be synthesized even if the method of Japanese Patent No. 2959526 (JP 2959526B) is applied mutatis mutandis.
  • the achiral component of the present invention may further contain at least one compound 6 represented by the formula (6) in addition to the compound 1. That is, the present invention includes a case where the achiral component T is composed of one compound as the compound 6 and a case where the compound 6 contains a plurality of compounds represented by the formula (6).
  • the liquid crystal composition of the present invention may contain one or more selected from the group consisting of compounds 2 to 5 and 7 in addition to compound 1 and compound 6.
  • Compound 6 is a compound having a small absolute value of dielectric anisotropy and close to neutrality.
  • R in the formula (6) is 1, 2 or 3.
  • a compound in which r is 1 in the formula (6) mainly has an effect of adjusting viscosity or refractive index anisotropy, and a compound in which r is 2 or 3 in the formula (6) has a high clearing point. This has the effect of expanding the temperature range of the optically isotropic liquid crystal phase or adjusting the refractive index anisotropy value.
  • the content of the compound 6 of the achiral component T is preferably 0% to 40% by weight, more preferably 1% to 40% by weight, more preferably 1% by weight with respect to the total weight of the achiral component T. It is particularly preferable that the content is from 20 to 20% by weight.
  • R 6A and R 6B in the formula (6) are each independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen being fluorine. Substituted alkenyl having 2 to 12 carbon atoms. In order to reduce the viscosity of Compound 6, R 6A and R 6B in Formula (6) are preferably alkenyl having 2 to 12 carbon atoms. In order to increase stability to ultraviolet light or heat, R 6A and R 6B in formula (6) are preferably alkyl having 1 to 12 carbon atoms.
  • alkyl is preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, or octyl.
  • ethyl, propyl, butyl, Pentyl or heptyl is preferred.
  • alkoxy is preferably methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy, and methoxy or ethoxy is preferable for decreasing the viscosity.
  • alkenyl in which at least one hydrogen is replaced by fluorine is 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3 -Butenyl, 5,5-difluoro-4-pentenyl, and 6,6-difluoro-5-hexenyl are preferred.
  • R 6A and R 6B are preferably 2,2-difluorovinyl and 4,4-difluoro-3-butenyl.
  • Ring C and Ring D in formula (6) are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene or When 2,5-difluoro-1,4-phenylene and r is 2 or more, at least two of the rings C may be the same or different.
  • ring C and ring D are preferably 1,4-phenylene or 3-fluoro-1,4-phenylene.
  • Ring C and Ring D are 1,4-cyclohexylene.
  • Z 61 in formula (6) is each independently a single bond, ethylene, or —COO— or —OCO—, and when r is 2 or more, at least two of Z 13 are the same. May be different. Desirable Z 61 is a single bond for decreasing the viscosity.
  • compound 6 it is preferable to use compounds represented by formulas (6-1) to (6-13).
  • the compounds represented by (6-1) to (6-3) have relatively low viscosity, and the compounds represented by (6-4) to (6-8) have a clear point comparison.
  • the compounds represented by (6-9) to (6-13) have a relatively high clearing point.
  • Compound 6 is used to lower the viscosity or raise the clearing point as necessary. However, since the drive voltage is increased, when importance is attached to the drive voltage, it is preferably not used or used in a small amount.
  • the total amount of compound 6 is preferably 0 to 30% by weight, more preferably 0 to 20% by weight, and particularly preferably 0 to 10% by weight.
  • the achiral component of the present invention may further contain at least one compound 7 represented by formula (7). That is, the present invention includes a case where the achiral component T is composed of one compound as the compound 7 and a case where the compound 7 includes a plurality of compounds represented by the formula (7). Further, for example, the liquid crystal composition of the present invention may contain one or more selected from the group consisting of compounds 2 to 6 in addition to compound 1 and compound 7.
  • alkyl in which at least one hydrogen is replaced with fluorine at X 7 in the formula (7) include —CHF 2 , —CF 3 , —CF 2 CH 2 F, —CF 2 CHF 2 , — CH 2 CF 3 , —CF 2 CF 3 , — (CH 2 ) 3 —F, — (CF 2 ) 3 —F, —CF 2 CHFCF 3 , and —CHFCF 2 CF 3 .
  • alkoxy in which at least one hydrogen is replaced by fluorine in X 7 in formula (7) include —OCHF 2 , —OCF 3 , —OCF 2 CH 2 F, —OCF 2 CHF 2 , — OCH 2 CF 3 , —O— (CF 2 ) 3 —F, —OCF 2 CHFCF 3 , and —OCHFCF 2 CF 3 .
  • X 7 preferred specific examples include fluorine, chlorine, —CF 3 , —CHF 2 , —OCF 3 and —OCHF 2 , and fluorine, chlorine, —CF 3 and —OCF 3 are Further preferred.
  • X 7 in the formula (7) is chlorine or fluorine, the melting point of the compound 7 is relatively low, and the compatibility with other liquid crystal compounds is particularly excellent.
  • Formula (7) X 7 is —CF 3 , —SF 5, —CHF 2 , —OCF 3 and —OCHF 2 , Compound 7 exhibits a relatively large dielectric anisotropy.
  • X 7 is fluorine, —CF 3 , or —OCF 3 , it is chemically stable.
  • R 7A is alkyl having 2 to 12 carbons, alkoxy having 1 to 11 carbons, alkenyl having 2 to 12 carbons, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine.
  • Z 71 and Z 72 are each independently a single bond, —COO— or —CF 2 O—, but at least one of them is —COO— or —CF 2 O— and has the formula (7-4- 1), (7-5-1) and (7-5-2), Z 71 is —COO— or —CF 2 O—;
  • X 7A is fluorine, chlorine, —CF 3 or —OCF 3 .
  • Compound 7 is suitable for preparing a composition having a large dielectric anisotropy, and can reduce the driving voltage in the device of the present invention.
  • the total content of compound 7 is preferably 5% to 80% by weight, more preferably 20% to 75% by weight, and more preferably 30% to 70% by weight, based on the total weight of the achiral component T. It is particularly preferable to do this.
  • Compound 7 has a dioxane ring and three benzene rings, and has at least one —CF 2 O— linking group.
  • Compound 7 is physically and chemically very stable under the conditions in which the device is normally used, and has relatively good compatibility with other liquid crystal compounds despite its high clearing point.
  • the composition containing Compound 7 is relatively stable under conditions in which the device is normally used. Therefore, the temperature range of the optically isotropic liquid crystal phase in the composition containing the compound 7 can be expanded, and can be used as a display element in a wide temperature range. Further, the compound 7 is useful as a component for lowering the driving voltage of a composition driven with an optically isotropic liquid crystal phase.
  • the compound 7 is a compound that easily develops a uniform blue phase. In addition, it exhibits extremely large dielectric anisotropy.
  • the liquid crystal composition of the present invention includes an embodiment of a composition containing an achiral component T and a chiral agent and exhibiting an optically isotropic liquid crystal phase (optical isotropic).
  • Liquid crystal composition) includes compound 1, and optionally includes one or more selected from the group consisting of compounds 2 to 7.
  • the achiral component T preferably includes compounds 2, 3, 5 and 7 in addition to compound 1, particularly preferably includes compounds 3 and 7, and further includes compounds 4 and 6 depending on the properties required. Can do.
  • Compound 1 Since Compound 1 has a relatively high clearing point, a relatively large dielectric anisotropy, and a relatively good compatibility at low temperature, a liquid crystal composition that exhibits optical isotropy using Compound 1 is also high. Since it exhibits a clearing point, a wide liquid crystal phase temperature range, or a large dielectric anisotropy, it is useful as a composition used in an optical element.
  • the optically isotropic liquid crystal composition containing the compound 1 simultaneously exhibits a high clearing point and a low driving voltage.
  • the chiral agent contained in the optically isotropic liquid crystal composition of the present invention is an optically active compound, and is preferably composed of a compound selected from compounds having no radically polymerizable group.
  • a compound having a large twisting power is preferable.
  • a compound having a large torsional force can reduce the amount of addition necessary to obtain a desired pitch, so that an increase in driving voltage can be suppressed and is practically advantageous.
  • compounds represented by formulas (K1) to (K6) are preferable.
  • the binaphthyl group and octahydronaphthyl group are optically active sites, and the chirality of the chiral agent is not limited.
  • chiral agents added to the liquid crystal composition include those represented by formulas (K4-1) to (K4-6) and formula (K5) included in formula (K4) (K5-).
  • the formulas (K6-1) to (K6-6) included in the formulas (1) to (K5-3) and (K6) are preferable, and the formulas (K4-5), (K5-1) to (K5) -3) and formulas (K6-5) to (K6-6) are more preferable.
  • a chiral agent that does not have a relatively large twisting force examples include compounds represented by the following formulas (Op-1) to (Op-13).
  • a single compound or a plurality of compounds may be used as the chiral agent contained in the liquid crystal composition.
  • the chiral agent is preferably contained in an amount of 1 to 40% by weight based on the total weight of the liquid crystal composition of the present invention. It is more preferably contained, and particularly preferably 3 to 15% by weight.
  • the liquid crystal composition is optically isotropic.
  • the liquid crystal molecular alignment is isotropic, so that the liquid crystal composition is optically isotropic.
  • it microscopically means that liquid crystal order exists.
  • “Pitch based on liquid crystal order microscopically possessed by the liquid crystal composition is preferably 700 nm or less, more preferably 500 nm or less, and 350 nm or less. Most preferably.
  • non-liquid crystal isotropic phase is a generally defined isotropic phase, that is, a disordered phase, and even if a region where the local order parameter is not zero is generated, the cause is fluctuating. Isotropic phase that is due to.
  • an isotropic phase appearing on the high temperature side of the nematic phase corresponds to a non-liquid crystal isotropic phase in this specification.
  • the “optically isotropic liquid crystal phase” means a phase that expresses an optically isotropic liquid crystal phase instead of fluctuations, and a phase that expresses a platelet structure (a blue phase in a narrow sense). Is an example.
  • a nematic phase means a nematic phase in a narrow sense that does not include a chiral nematic phase.
  • optically isotropic liquid crystal composition of the present invention although it is an optically isotropic liquid crystal phase, a platelet structure typical of a blue phase may not be observed under a polarizing microscope. Therefore, in this specification, a phase that develops a platelet structure is referred to as a blue phase, and an optically isotropic liquid crystal phase including the blue phase is referred to as an optically isotropic liquid crystal phase. That is, the blue phase is included in the optically isotropic liquid crystal phase.
  • the blue phase is classified into three types of blue phase I, blue phase II, and blue phase III, and these three types of blue phases are all optically active and isotropic.
  • the blue phase I or blue phase II two or more types of diffracted light caused by Bragg reflection from different lattice planes are observed.
  • the blue phase is generally observed between the non-liquid crystal isotropic phase and the chiral nematic phase.
  • the state in which the optically isotropic liquid crystal phase does not show diffracted light of two or more colors means that the platelet structure observed in the blue phase I and the blue phase II is not observed and is generally monochromatic. To do. In an optically isotropic liquid crystal phase that does not show diffracted light of two or more colors, it is not necessary until the color brightness is uniform in the plane.
  • An optically isotropic liquid crystal phase that does not show diffracted light of two or more colors has an advantage that the reflected light intensity due to Bragg reflection can be suppressed or shifted to the lower wavelength side.
  • color may be a problem when used as a display element.
  • the reflection wavelength is shifted by a low wavelength. Therefore, the reflection of visible light can be eliminated at a pitch longer than the narrowly defined blue phase (phase that expresses the platelet structure).
  • the chiral agent is preferably added at a concentration such that the pitch is 700 nm or less.
  • the composition which expresses a nematic phase contains the compound 1 and another component as needed.
  • the optically isotropic liquid crystal composition of the present invention can also be obtained by adding a chiral agent to a composition having a chiral nematic phase and not having an optically isotropic liquid crystal phase.
  • the composition which has a chiral nematic phase and does not have an optically isotropic liquid crystal contains the compound 1, an optically active compound, and another component as needed.
  • the chiral agent is preferably added at a concentration such that the pitch is 700 nm or more.
  • the compounds (K1) to (K5) which are compounds having a large torsional force, can be used, and more preferably, the compounds of the formulas (K2-1) to (K2-8) and (K4- Compounds represented by formulas (1) to (K4-6), formulas (K5-1) to (K5-3), or formulas (K6-1) to (K6-6) are used.
  • the added chiral agent may be a compound that does not have a very large twisting force. Examples of such a compound include compounds added to liquid crystal compositions for devices driven in a nematic phase (TN mode, STN mode, etc.). And a compound represented by (Op-13).
  • the temperature range in which the liquid crystal composition of the preferred embodiment of the present invention exhibits an optically isotropic liquid crystal phase is a nematic phase or a liquid crystal composition having a wide coexistence temperature range of a chiral nematic phase and an isotropic phase. It can be widened by adding an optically isotropic liquid crystal phase.
  • a liquid crystal compound having a high clearing point and a liquid crystal compound having a low clearing point are mixed to prepare a liquid crystal composition having a wide coexistence temperature range of a nematic phase and an isotropic phase over a wide temperature range, and a chiral agent is added thereto.
  • a composition that exhibits an optically isotropic liquid crystal phase in a wide temperature range can be prepared.
  • the difference between the maximum temperature and the minimum temperature at which the chiral nematic phase and the non-liquid crystal isotropic phase coexist is 3 to 150 ° C.
  • a liquid crystal composition is preferable, and a liquid crystal composition having a difference of 5 to 150 ° C. is more preferable.
  • a liquid crystal composition in which the difference between the upper limit temperature and the lower limit temperature at which the nematic phase and the non-liquid crystal isotropic phase coexist is 3 to 150 ° C. is preferable.
  • the liquid crystal composition of the present invention is a range that does not significantly affect the properties of the composition, and further includes a solvent, a monomer, a polymer substance, a polymerization initiator, an antioxidant, an ultraviolet absorber, a curing agent, A stabilizer, a dichroic dye, a photochromic compound, and the like may be included.
  • the dichroic dye used in the liquid crystal composition of the present invention include merocyanine series, styryl series, azo series, azomethine series, azoxy series, quinophthalone series, anthraquinone series, and tetrazine series.
  • the polymer / liquid crystal composite material of the present invention is a composite material containing a liquid crystal composition and a polymer, and is optically isotropic. It can be used for an optical element driven in an optically isotropic liquid crystal phase.
  • the liquid crystal composition contained in the polymer / liquid crystal composite material of the present invention is the liquid crystal composition of the present invention.
  • the “polymer / liquid crystal composite material” is not particularly limited as long as it is a composite material including both a liquid crystal composition and a polymer compound. A state where the polymer is phase-separated from the liquid crystal composition without being dissolved in a solvent or the like may be used.
  • the optically isotropic polymer / liquid crystal composite material according to a preferred embodiment of the present invention can exhibit an optically isotropic liquid crystal phase in a wide temperature range. Further, the polymer / liquid crystal composite material according to a preferred embodiment of the present invention has an extremely fast response speed. Moreover, the polymer / liquid crystal composite material according to a preferred embodiment of the present invention can be suitably used for an optical element such as a display element based on these effects.
  • the composite material of the present invention can be produced by mixing an optically isotropic liquid crystal composition and a polymer obtained by polymerization in advance, but it has a low molecular weight as a polymer material. It is preferable that the monomer, macromonomer, oligomer, etc. (hereinafter collectively referred to as “monomer etc.”) and the liquid crystal composition CLC are mixed and then subjected to a polymerization reaction in the mixture.
  • a mixture containing a monomer or the like and a liquid crystal composition is referred to as a “polymerizable monomer / liquid crystal mixture”.
  • the “polymerizable monomer / liquid crystal mixture” includes a polymerization initiator, a curing agent, a catalyst, a stabilizer, a dichroic dye, or a photochromic compound, which will be described later, as necessary, as long as the effects of the present invention are not impaired. But you can.
  • the polymerizable monomer / liquid crystal mixture of the present invention may contain a polymerization initiator in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the polymerizable monomer, if necessary.
  • the “polymerizable monomer / liquid crystal mixture” must be a liquid crystal medium when polymerized in the blue phase, but is not necessarily a liquid crystal medium when polymerized in the isotropic phase.
  • the polymerization temperature is preferably a temperature at which the polymer / liquid crystal composite material exhibits high transparency and isotropic properties. More preferably, the polymerization is terminated at a temperature at which the mixture of the monomer and the liquid crystal material develops an isotropic phase or a blue phase, and at the isotropic phase or the optically isotropic liquid crystal phase. That is, after polymerization, the polymer / liquid crystal composite material is preferably set to a temperature that does not substantially scatter light on the longer wavelength side than visible light and develops an optically isotropic state.
  • low molecular weight monomers, macromonomers, and oligomers can be used as the polymer raw materials constituting the composite material of the present invention.
  • the high molecular weight raw material monomers are low molecular weight monomers, macromonomers.
  • the obtained polymer has a three-dimensional crosslinked structure. Therefore, it is preferable to use a polyfunctional monomer having two or more polymerizable functional groups as a raw material monomer for the polymer.
  • the polymerizable functional group is not particularly limited, and an acrylic group, a methacryl group, a glycidyl group, an epoxy group, an oxetanyl group, a vinyl group, and the like can be raised, but an acrylic group and a methacryl group are preferable from the viewpoint of polymerization rate.
  • a monomer having two or more polymerizable functional groups in the polymer raw material monomer is contained in an amount of 10% by weight or more, high transparency and isotropy are easily exhibited in the composite material of the present invention. This is preferable.
  • the polymer preferably has a mesogen moiety, and a raw material monomer having a mesogen moiety can be used as a part or all of the polymer as a polymer raw material monomer.
  • the monofunctional or bifunctional monomer having a mesogen moiety is not particularly limited in terms of structure. Can be mentioned.
  • One hydrogen is halogen or -C ⁇ N It may be replaced
  • R a is hydrogen, halogen, —C ⁇ N, —CF 3 , —CF 2 H, —CFH 2 , —OCF 3 , —OCF 2 H, alkyl having 1 to 20 carbons, or alkyl having 1 to 19 carbons. Alkoxy, alkenyl having 2 to 21 carbons, and alkynyl having 2 to 21 carbons. Particularly preferred R a is —C ⁇ N, alkyl having 1 to 20 carbons and alkoxy having 1 to 19 carbons.
  • each R b is independently a polymerizable group of the formulas (M3-1) to (M3-7).
  • R d in formulas (M3-1) to (M3-7) is each independently hydrogen, halogen, or alkyl having 1 to 5 carbon atoms, and in these alkyls, at least one hydrogen is replaced with halogen. May be.
  • Preferred R d is hydrogen, halogen and methyl.
  • Particularly preferred R d is hydrogen, fluorine and methyl.
  • the formula (M3-2), the formula (M3-3), the formula (M3-4), and the formula (M3-7) are preferably polymerized by radical polymerization.
  • the formulas (M3-1), (M3-5), and (M3-6) are preferably polymerized by cationic polymerization.
  • a polymerization initiator can be used for the purpose of accelerating the generation of active species. For example, light or heat can be used to generate the active species.
  • a M is each independently an aromatic or non-aromatic 5-membered ring, 6-membered ring, or condensed ring having 9 or more carbon atoms.
  • CH 2 — may be —O—, —S—, —NH—, or —NCH 3 —, and —CH ⁇ in the ring may be replaced by —N ⁇ , the hydrogen atom on the ring is halogen, and carbon number It may be replaced with 1 to 5 alkyls or alkyl halides.
  • a M 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4 -Phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2-methyl-1,4-phenylene, 2-trifluoromethyl-1,4-phenylene, 2 , 3-bis (trifluoromethyl) -1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, 9-methylfluorene-2,7- Diyl, 1,3-dioxane-2,5-diyl, pyridine-2,5-diyl, and pyrimidine-2,5-diyl.
  • the steric configuration of 1,4-cyclohexylene and 1,3-dioxane-2,5-diyl is preferably trans rather than cis. Since 2-fluoro-1,4-phenylene is structurally identical to 3-fluoro-1,4-phenylene, the latter was not exemplified. This rule also applies to the relationship between 2,5-difluoro-1,4-phenylene and 3,6-difluoro-1,4-phenylene.
  • each Y is independently a single bond or alkylene having 1 to 20 carbon atoms, and in these alkylenes, at least one —CH 2 — is —O— or —S—. At least one —CH 2 —CH 2 — in the alkyl may be replaced with —CH ⁇ CH—, —C ⁇ C—, —COO—, or —OCO—.
  • Preferred Y is a single bond, — (CH 2 ) m2 —, —O (CH 2 ) m2 —, and — (CH 2 ) m2 O— (wherein m2 is an integer of 1 to 20) .
  • Y is a single bond, — (CH 2 ) m2 —, —O (CH 2 ) m2 —, and — (CH 2 ) m2 O— (wherein m2 is an integer of 1 to 10). is there.
  • —Y—R a and —Y—R b may be —O—O—, —O—S—, —S—O—, or —S—S in their groups. It is preferable not to have-.
  • Z M each independently represents a single bond, — (CH 2 ) m3 —, —O (CH 2 ) m3 —, — (CH 2 ) m3 O—, —O ( CH 2 ) m 3 O—, —CH ⁇ CH—, —C ⁇ C—, —COO—, —OCO—, — (CF 2 ) 2 —, — (CH 2 ) 2 —COO—, —OCO— (CH 2 ) 2 —, —CH ⁇ CH—COO—, —OCO—CH ⁇ CH—, —C ⁇ C—COO—, —OCO—C ⁇ C—, —CH ⁇ CH— (CH 2 ) 2 —, — (CH 2 ) 2 —CH ⁇ CH—, —CF ⁇ CF—, —C ⁇ C—CH ⁇ CH—, —CH ⁇ CH—C ⁇ C—, —OCF 2 — (CH 2 ) 2 —,
  • Preferred Z M is a single bond, — (CH 2 ) m3 —, —O (CH 2 ) m3 —, — (CH 2 ) m3 O—, —CH ⁇ CH—, —C ⁇ C—, —COO—, — OCO—, — (CH 2 ) 2 —COO—, —OCO— (CH 2 ) 2 —, —CH ⁇ CH—COO—, —OCO—CH ⁇ CH—, —OCF 2 —, and —CF 2 O— It is.
  • m1 is an integer of 1 to 6.
  • Preferred m1 is an integer of 1 to 3.
  • m1 is 1, it is a bicyclic compound having two rings such as a 6-membered ring.
  • m1 is 2 or 3, they are tricyclic and tetracyclic compounds, respectively.
  • two A M may be may be the same or different.
  • three A M or two Z M ) may be the same or different.
  • m1 is 3-6.
  • R a , R b , R d , Z M , A M and Y The same applies.
  • the compound (M1) represented by the formula (M1) and the compound (M2) represented by the formula (M2) contain isotopes such as 2 H (deuterium) and 13 C in an amount larger than the natural abundance. However, since they have similar characteristics, they can be preferably used.
  • More preferred examples of the compound (M1) and the compound (M2) include the compounds (M1-1) represented by the formulas (M1-1) to (M1-41) and the formulas (M2-1) to (M2-27). To (M1-41) and compounds (M2-1) to (M2-27).
  • R a , R b , R d , Z M , A M , Y and p are the same as those in formula (M1) and formula (M2) described in the embodiments of the present invention.
  • the partial structure (a1) represents 1,4-phenylene in which at least one hydrogen is replaced by fluorine.
  • the partial structure (a2) represents 1,4-phenylene in which at least one hydrogen may be replaced by fluorine.
  • the partial structure (a3) represents 1,4-phenylene in which at least one hydrogen may be replaced with either fluorine or methyl.
  • the partial structure (a4) represents fluorene in which the hydrogen at the 9-position may be replaced with methyl.
  • a monomer having no mesogen moiety and a polymerizable compound other than the monomers (M1) and (M2) having a mesogen moiety can be used as necessary.
  • a monomer having a mesogenic moiety and having three or more polymerizable functional groups may be used.
  • known compounds can be suitably used. Examples thereof include (M4-1) to (M4-3).
  • Examples thereof include compounds described in JP-A No. 2000-327632 (JP 2000-327632A), JP-A No. 2004-182949 (JP 2004-182949A), JP-A No. 2004-59772 (JP 2004-59772A).
  • R b , Z M , Y, and (F) have the same definition as described above.
  • a monomer having a polymerizable functional group not having a mesogen moiety for example, a linear or branched acrylate having 1 to 30 carbon atoms, carbon number 1 -30 linear or branched diacrylates and monomers having three or more polymerizable functional groups include glycerol propoxylate (1PO / OH) triacrylate, pentaerythritol propoxylate triacrylate, pentaerythritol, Triacrylate, trimethylolpropane ethoxylate triacrylate, trimethylolpropane propoxylate triacrylate, trimethylolpropane triacrylate, di (trimethylolpropane) tetraacrylate, pentaerythritol te La acrylate, di (pentaerythritol) pentaacrylate, di (pentaerythritol) hexaacrylate
  • the polymerization reaction in the production of the polymer constituting the composite material of the present invention is not particularly limited, and for example, photoradical polymerization, thermal radical polymerization, photocationic polymerization and the like are performed.
  • radical photopolymerization initiators examples include DAROCUR 1173 and 4265 (both trade names, BASF Japan Ltd.), Irgacure 184, 369, 500, 651, and 784. 819, 907, 1300, 1700, 1800, 1850, and 2959 (all are trade names, BASF Japan Ltd.).
  • thermal radical polymerization examples include benzoyl peroxide, diisopropyl peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxypivalate , T-butyl peroxydiisobutyrate, lauroyl peroxide, dimethyl 2,2′-azobisisobutyrate (MAIB), di-t-butyl peroxide (DTBPO), azobisisobutyronitrile (AIBN), azobiscyclohexanecarbox Nitrile (ACN).
  • benzoyl peroxide diisopropyl peroxydicarbonate
  • t-butylperoxy-2-ethylhexanoate examples include t-butylperoxypivalate , T-butyl peroxydiisobutyrate, lauroyl peroxide, dimethyl 2,2′-azobisisobutyrate (MAIB), di-t-butyl
  • Examples of the cationic photopolymerization initiator that can be used in the cationic photopolymerization are diaryliodonium salts (hereinafter referred to as “DAS”) and triarylsulfonium salts (hereinafter referred to as “TAS”).
  • DAS diaryliodonium salts
  • TAS triarylsulfonium salts
  • DAS diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluorophosphonate, diphenyliodonium hexafluoroarsenate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium trifluoroacetate, diphenyliodonium-p-toluenesulfonate, diphenyliodoniumtetra (pentafluoro) Phenyl) borate, 4-methoxyphenylphenyliodonium tetrafluoroborate, 4-methoxyphenylphenyliodonium hexafluorophosphonate, 4-methoxyphenylphenyliodonium hexafluoroarsenate, 4-methoxyphenylphenyliodonium trifluoromethanesulfonate, 4-methoxypheny Phenyl i
  • Sensitivity can be increased by adding a photosensitizer such as thioxanthone, phenothiazine, chlorothioxanthone, xanthone, anthracene, diphenylanthracene, rubrene to DAS.
  • a photosensitizer such as thioxanthone, phenothiazine, chlorothioxanthone, xanthone, anthracene, diphenylanthracene, rubrene to DAS.
  • TAS triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluorophosphonate, triphenylsulfonium hexafluoroarsenate, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfonate , Triphenylsulfonium tetra (pentafluorophenyl) borate, 4-methoxyphenyldiphenylsulfonium tetrafluoroborate, 4-methoxyphenyldiphenylsulfonium hexafluorophosphonate, 4-methoxyphenyldiphenylsulfonium hexafluoroarsenate, 4-methoxyphenyldiphenylsulfonium trifluoride Lomethanes
  • cationic photopolymerization initiator examples include Cyracure UVI-6990, Cyracure UVI-6974, Cyracure UVI-6922 (trade names, UCC Co., Ltd.), Adekaoptomer SP-150, SP-152, SP-170, SP-172 (Product name, ADEKA Corporation), Rhodorsil® Photoinitiator 2074 (Product name, Rhodia Japan Co., Ltd.), Irgacure (IRGACURE) 250 (Product name, BASF Japan Co., Ltd.) ), And UV-9380C (trade name, GE Toshiba Silicone Co., Ltd.).
  • the curing agent a conventionally known latent curing agent that is usually used as a curing agent for epoxy resins can be used.
  • the latent epoxy resin curing agent include amine curing agents, novolak resin curing agents, imidazole curing agents, and acid anhydride curing agents.
  • amine-based curing agents include aliphatic polyamines such as diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, isophoronediamine, Alicyclic polyamines such as 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, laromine, aromatics such as diaminodiphenylmethane, diaminodiphenylethane, metaphenylenediamine It is a polyamine.
  • aliphatic polyamines such as diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, die
  • novolac resin-based curing agents examples include phenol novolac resin and bisphenol novolac resin.
  • imidazole curing agents 2-methylimidazole, 2-ethylhexylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate.
  • acid anhydride curing agents are tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylcyclohexene tetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride Pyromellitic anhydride, benzophenone tetracarboxylic dianhydride.
  • a curing accelerator for accelerating the curing reaction between the polymerizable compound having a glycidyl group, an epoxy group, or an oxetanyl group and the curing agent may be further used.
  • curing accelerators include tertiary amines such as benzyldimethylamine, tris (dimethylaminomethyl) phenol, dimethylcyclohexylamine, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazole
  • imidazoles such as triphenylphosphine, quaternary phosphonium salts such as tetraphenylphosphonium bromide, 1,8-diazabicyclo [5.4.0] undecene-7
  • Quaternary ammonium salts such as zabicycloalkenes, tetraethylammonium bromide and tetrabutylammonium bromide, and boron
  • a stabilizer is preferably added to prevent undesired polymerization during storage. All compounds known to those skilled in the art can be used as stabilizers. Representative examples of stabilizers include 4-ethoxyphenol, hydroquinone, butylated hydroxytoluene (BHT) and the like.
  • the content of the liquid crystal composition in the polymer / liquid crystal composite material of the present invention is possible as long as the composite material can express an optically isotropic liquid crystal phase. It is preferable that the content is as high as possible. This is because the electric birefringence value of the composite material of the present invention increases as the content of the liquid crystal composition is higher.
  • the content of the liquid crystal composition is preferably 60 to 99% by weight, more preferably 60% to 98% by weight, and more preferably 80% to 97% by weight with respect to the composite material. Weight percent is particularly preferred.
  • the polymer content is preferably 1% to 40% by weight, more preferably 2% to 40% by weight, more preferably 3% by weight to the composite material. % To 20% by weight is particularly preferred.
  • the optical device of the present invention comprises a liquid crystal composition or a polymer / liquid crystal composite material (hereinafter, the liquid crystal composition of the present invention and the polymer / liquid crystal composite material may be collectively referred to as a liquid crystal medium).
  • the optical element is driven by an optically isotropic liquid crystal phase. When no electric field is applied, the liquid crystal medium is optically isotropic, but when an electric field is applied, the liquid crystal medium exhibits optical anisotropy, and light modulation by the electric field becomes possible.
  • the structure of the liquid crystal display element as shown in FIG.
  • the liquid crystal composition of the present invention can be used for an optical element. Since the liquid crystal composition of the present invention exhibits a low driving voltage and a short response time, the optical element according to a preferred embodiment of the present invention can be driven at a low voltage and can respond at high speed.
  • a GC-14B gas chromatograph manufactured by Shimadzu Corporation was used.
  • a capillary column CBP1-M25-025 (length: 25 m, inner diameter: 0.22 mm, film thickness: 0.25 ⁇ m) manufactured by Shimadzu Corporation; dimethylpolysiloxane; nonpolar) as the stationary liquid phase was used.
  • Helium was used as the carrier gas, and the flow rate was adjusted to 1 ml / min.
  • the temperature of the sample vaporizing chamber was set to 300 ° C.
  • the temperature of the detector (FID) portion was set to 300 ° C.
  • the sample was dissolved in toluene to prepare a 1% by weight solution, and 1 ⁇ l of the resulting solution was injected into the sample vaporization chamber.
  • a recorder a C-R6A type Chromatopac manufactured by Shimadzu Corporation or an equivalent thereof was used.
  • the obtained gas chromatogram shows the peak retention time and peak area value corresponding to the component compounds.
  • capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) manufactured by Agilent Technologies Inc.
  • HP-1 length 30 m, inner diameter 0
  • Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m)
  • BP-1 from SGE International Corporation Pty. Ltd (length 30 m, inner diameter) 0.32 mm, film thickness of 0.25 ⁇ m) or the like
  • SGE International Corporation Pty. Ltd length 30 m, inner diameter 0.32 mm, film thickness of 0.25 ⁇ m
  • the peak area ratio in the gas chromatogram corresponds to the ratio of the component compounds.
  • the weight% of the component compound of the analysis sample is not completely the same as the area% of each peak of the analysis sample.
  • the correction factor is substantially 1. Therefore, the weight% of the component compound in the analysis sample substantially corresponds to the area% of each peak in the analysis sample. This is because there is no significant difference in the correction coefficients of the component liquid crystal compounds.
  • an internal standard method based on the gas chromatogram is used.
  • the liquid crystal compound component (test component) weighed in a certain amount accurately and the reference liquid crystal compound (reference material) are simultaneously measured by gas chromatography, and the area ratio between the peak of the obtained test component and the peak of the reference material Is calculated in advance.
  • the composition ratio of the liquid crystal compound in the liquid crystal composition can be determined more accurately from gas chromatography analysis.
  • Samples for Measuring Physical Property Values of Liquid Crystal Compounds There are two types of samples for measuring the physical property values of liquid crystal compounds: when the compound itself is used as a sample, and when the compound is mixed with a mother liquid crystal as a sample.
  • the measurement is performed by the following method. First, 15% by weight of the obtained liquid crystal compound and 85% by weight of the mother liquid crystal are mixed to prepare a sample. Then, an extrapolated value is calculated from the measured value of the obtained sample according to the extrapolation method based on the following calculation formula. This extrapolated value is taken as the physical property value of this compound.
  • ⁇ Extrapolated value> (100 ⁇ ⁇ Measured value of sample> ⁇ ⁇ Weight% of mother liquid crystal> ⁇ ⁇ Measured value of mother liquid crystal>) / ⁇ Weight% of liquid crystal compound>
  • the ratio between the liquid crystal compound and the mother liquid crystal is this ratio (15% by weight: 85% by weight), when the smectic phase or crystal is precipitated at 25 ° C., the ratio between the liquid crystal compound and the mother liquid crystal is 10 Weight%: 90% by weight, 5% by weight: 95% by weight, 1% by weight: 99% by weight
  • An extrapolated value is determined according to the above formula and is used as a physical property value of the liquid crystal compound.
  • mother liquid crystals A There are various types of mother liquid crystals used for measurement.
  • the composition (% by weight) of the mother liquid crystals A is as follows.
  • Phase structure and phase transition temperature Measurement was performed by the following methods (1) and (2).
  • a compound is placed on a hot plate (Mettler FP-52 type hot stage) of a melting point measuring apparatus equipped with a polarizing microscope, and a phase state and its change are observed with a polarizing microscope while heating at a rate of 3 ° C./min. , Identified the type of liquid crystal phase.
  • (2) Using a scanning calorimeter DSC-7 system or Diamond DSC system manufactured by PerkinElmer, Inc., the temperature is raised and lowered at a rate of 3 ° C / min, and the start point of the endothermic peak or exothermic peak accompanying the phase change of the sample is excluded The phase transition temperature was determined by onset.
  • the crystal is expressed as K, and when the crystal can be distinguished, it is expressed as K 1 or K 2 , respectively.
  • the smectic phase is represented as Sm
  • the nematic phase is represented as N
  • the chiral nematic phase is represented as N * .
  • the liquid (isotropic) was designated as I.
  • the smectic phase can be distinguished from the smectic B phase or the smectic A phase, it is expressed as SmB or SmA, respectively.
  • BP represents a blue phase or an optically isotropic liquid crystal phase.
  • the coexistence state of two phases may be expressed in the form of (N * + I) and (N * + BP).
  • (N * + I) represents a phase in which a non-liquid crystal isotropic phase and a chiral nematic phase coexist
  • (N * + BP) represents a BP phase or an optically isotropic liquid crystal phase.
  • Un represents an unidentified phase that is not optically isotropic.
  • K 50.0 N 100.0 I means that the phase transition temperature (KN) from the crystal to the nematic phase is 50.0 ° C., and the phase from the nematic phase to the liquid
  • the transition temperature (NI) is 100.0 ° C. The same applies to other notations.
  • T NI Maximum temperature of nematic phase
  • a sample mixture of liquid crystal compound and mother liquid crystal
  • a hot plate Metal FP-52 type hot stage
  • a melting point measuring apparatus equipped with a polarizing microscope and heat the polarizing microscope while heating at a rate of 1 ° C./min.
  • the temperature at which a part of the sample changed from a nematic phase to an isotropic liquid was defined as the upper limit temperature of the nematic phase.
  • the upper limit temperature of the nematic phase may be simply abbreviated as “upper limit temperature”.
  • Viscosity (bulk viscosity; ⁇ ; measured at 20 ° C .; mPa ⁇ s) A mixture of the liquid crystal compound and the mother liquid crystal was measured using an E-type viscometer.
  • the pitch of cholesteric liquid crystals having a reflection wavelength in the longer wavelength region than visible light is proportional to the reciprocal of the concentration of the optically active compound in regions where the optically active compound concentration is low, so the pitch of liquid crystals having a selective reflection wavelength in the visible light region
  • the length was measured at several points and determined by a linear extrapolation method.
  • the “optically active compound” corresponds to the chiral agent in the present invention.
  • the characteristic value of the liquid crystal composition can be measured according to the following method. Many of them are the methods described in the Standard of Electronics Industry Association of Japan EIAJ ED-2521A, or a modified method thereof. No TFT was attached to the TN device used for measurement.
  • nematic phase 1-11 Maximum temperature of nematic phase (NI; ° C) A sample was placed on a hot plate of a melting point measurement apparatus equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid.
  • the upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
  • nematic phase lower limit temperature T C; °C
  • T C nematic phase lower limit temperature
  • Viscosity (Rotational viscosity; ⁇ 1; measured at 25 ° C .; mPa ⁇ s) 1) Sample with positive dielectric anisotropy: Measurement was performed according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). A sample was put in a TN device having a twist angle of 0 ° and a distance (cell gap) between two glass substrates of 5 ⁇ m. The voltage was applied to the TN device stepwise in the range of 16 to 19.5 volts every 0.5 volts.
  • Threshold voltage (Vth; measured at 25 ° C .; V) 1) A composition having a positive dielectric anisotropy: a normally white mode (normally white mode) in which a distance (gap) between two glass substrates is (0.5 / ⁇ n) ⁇ m and a twist angle is 80 degrees. A sample was put in a liquid crystal display element in white mode). ⁇ n is a value of refractive index anisotropy measured by the above method. A rectangular wave having a frequency of 32 Hz was applied to this element. The voltage of the rectangular wave was increased and the value of the voltage when the transmittance of light passing through the element reached 90% was measured.
  • composition having a negative dielectric anisotropy For a normally black mode liquid crystal display element in which the distance (gap) between two glass substrates is about 9 ⁇ m and processed in homeotropic alignment A sample was placed. A rectangular wave having a frequency of 32 Hz was applied to this element. The voltage of the rectangular wave was raised, and the value of the voltage when the transmittance of light passing through the element reached 10% was measured.
  • VHR Voltage holding ratio
  • the TN device used for the measurement has a polyimide alignment film, and the distance (cell gap) between the two glass substrates is 6 ⁇ m. This element was sealed with an adhesive polymerized by ultraviolet rays after putting a sample.
  • the TN device was charged by applying a pulse voltage (60 microseconds at 5 V).
  • the decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
  • the area B is an area when it is not attenuated.
  • the voltage holding ratio is a percentage of the area A with respect to the area B.
  • the pitch length was measured using selective reflection (Liquid Crystal Manual 196, 2000, Maruzen).
  • ⁇ n> represents an average refractive index and is given by the following equation.
  • ⁇ n> ⁇ (n ⁇ 2 + n ⁇ 2 ) / 2 ⁇ 1/2 .
  • the selective reflection wavelength was measured with a microspectrophotometer (JEOL Ltd., trade name MSV-350). The pitch was obtained by dividing the obtained reflection wavelength by the average refractive index.
  • the pitch of cholesteric liquid crystals having a reflection wavelength in the longer wavelength region than visible light is proportional to the reciprocal of the concentration of the chiral agent in regions where the chiral agent concentration is low. Several points were measured and obtained by linear extrapolation.
  • the ratio (percentage) of the component or liquid crystal compound is a weight percentage (% by weight) based on the total weight of the liquid crystal compound.
  • the composition is prepared by measuring the weight of components such as a liquid crystal compound and then mixing them. Therefore, it is easy to calculate the weight percentage of the component.
  • Example 1 In the synthesis formula (1-1-1) of the compound (1-1-1-S1), R 1a is C 4 H 9 , and X 1a is fluorine.
  • a compound represented by 1-S1) (compound (1-1-1-S1)) was synthesized according to the following scheme.
  • reaction solution was poured into water and extracted twice with toluene (500 mL).
  • organic phase was washed twice with an aqueous sodium thiosulfate solution and twice with water, and then the organic phase was concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (solvent: n-heptane) to obtain compound (S102) (46.5 g, 172 mmol).
  • Compound (S105) can be obtained by a general organic chemical synthesis method. Under a nitrogen atmosphere, DMF of compound (S105) (17.4 g (purity 74%), 33.3 mmol), compound (S104) (8.82 g, 33.9 mmol) obtained in the previous stage, potassium carbonate (9.35 g, 67.7 mmol) The (100 mL) solution was heated and stirred at 80 ° C. for 3 hours. The reaction solution was poured into water and extracted with toluene (200 mL), and the organic phase was washed twice with layered water and three times with water, and then concentrated under reduced pressure.
  • a liquid crystal composition AS1 comprising the base liquid crystal A (90% by weight) and the compound (1-1-1-S1) (10% by weight) obtained in Example 1 was prepared.
  • the physical property value of the obtained liquid crystal composition AS1 was measured, and the extrapolated value of the physical property of the compound (1-1-1-S1) was calculated by extrapolating the measured value.
  • Example 2 Preparation of nematic liquid crystal composition (NLC) As shown in Table 1, nematic liquid crystal compositions NLC-A and NLC-B containing the compound (1-1-S1) synthesized in Example 1 were used. NLC-C and NLC-D were prepared (Table 1). In addition, the phase transition point of each nematic liquid crystal composition was as shown in Table 2. Table 1 Table 2
  • Example 3 Preparation of chiral liquid crystal composition (CLC)
  • nematic liquid crystal compositions NLC-A, NLC-B and NLC-C shown in Table 1 were converted into chiral agents BN-H4 and BN-H5 shown below.
  • chiral liquid crystal compositions CLC-A, CLC-B, and CLC-C To prepare chiral liquid crystal compositions CLC-A, CLC-B, and CLC-C.
  • a nematic liquid crystal composition NLC-D shown in Table 1 and a chiral agent CD-5 shown below were mixed to prepare a chiral liquid crystal composition CLC-D.
  • the composition of the chiral liquid crystal composition was as follows, and the phase transition points were as shown in Table 3.
  • Example 4 Preparation of liquid crystal composition (MLC) as a mixture with a polymerizable monomer
  • MLC liquid crystal composition
  • Example 3 Each chiral liquid crystal composition (CLC) prepared in Example 3 was heated and mixed in a isotropic phase with a mixture of a polymerizable monomer.
  • liquid crystal compositions MLC-A, MLC-B, MLC-C and MLC-D were prepared. Table 4 shows the composition and phase transition of these liquid crystal compositions.
  • LCA-6, LCA-12 and DMPA are respectively 1,4-di (4- (6- (acryloyloxy) hexyloxy) benzoyloxy) -2-methylbenzene (LCA-6), 1,4- Di (4- (6- (acryloyloxy) dodecyloxy) benzoyloxy) -2-methylbenzene (LCA-12), 1,4-di (4- (6- (acryloyloxy) tridecyloxy) benzoyloxy) It represents -2-methylbenzene (LCA-13) 2,2′-dimethoxyphenylacetophenone, and DMPA is a photopolymerization initiator.
  • Example 5 Cell in which preparation of polymer / liquid crystal composite material is held
  • the liquid crystal composition (MLC) which is a mixture of a chiral liquid crystal composition (CLC) and a polymerizable monomer, is not subjected to alignment treatment. It was sandwiched between a comb-shaped electrode substrate and a counter glass substrate (non-electrode provided) and heated to a blue phase. In this state, ultraviolet light (ultraviolet light intensity: 23 mWcm-2 (365 nm)) is irradiated for 1 minute to conduct a polymerization reaction, and polymer / liquid crystal composite materials PSBP-A, PSBP-B, PSBP-C and PSBP-D. Was produced (cell thickness 7-9 ⁇ m).
  • the polymerization temperature was as shown in Table 5.
  • the polymer / liquid crystal composite material (PSBP) thus obtained maintained an optically isotropic liquid crystal phase even when cooled to room temperature.
  • Example 6 Optical System Using Cell
  • the cell sandwiched with the polymer / liquid crystal composite material obtained in Example 5 was set in the optical system shown in FIG. Specifically, a white light source of a polarization microscope (Nikon Eclipse LV100POL) is used as the light source, the incident angle to the cell is perpendicular to the cell surface, and the line direction of the comb-shaped electrode is Polarizer and Analyzer polarizer A cell in which the polymer / liquid crystal composite material obtained in Example 5 was held so as to be 45 ° with respect to each other was set (FIG. 2). Using this optical system, the relationship between the applied voltage and the transmittance of the polymer / liquid crystal composite material obtained in Example 5 at room temperature was examined. Table 5 shows the physical property values of the polymer / liquid crystal composite material (PSBP) sandwiched between the cells. Note that the response time data are those when applying and removing the saturation voltage.
  • PSBP polymer / liquid crystal composite material
  • the optical element of the present invention is superior to the prior art because of its short response time and high transmittance.
  • Examples of the utilization method of the present invention include optical elements such as display elements using a polymer / liquid crystal composite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Abstract

 熱、光などに対する安定性、極めて大きな誘電率異方性を有し、光学的に等方性の液晶相を発現する液晶媒体が求められている。また、広い温度範囲で使用可能であり、短い応答時間、大きなコントラスト比、および低い駆動電圧を有する各種光素子が求められている。 式(1)で表される化合物1を少なくとも1つ含むアキラル成分Tとキラル剤とを含有し、光学的に等方性の液晶相を発現する液晶組成物。 式(1)中、Rは例えばアルキルであり、LおよびLはそれぞれ独立してフッ素または水素であり、Xは例えばハロゲンである。

Description

液晶媒体、光素子および液晶化合物
 本発明は、たとえば光素子用の材料として有用な液晶化合物、液晶組成物、当該液晶組成物を用いた光素子等に関する。
 液晶組成物を用いた液晶表示素子は、時計、電卓、ワ-プロなどのディスプレイに広く利用されている。これらの液晶表示素子は液晶化合物の屈折率異方性、誘電率異方性などを利用したものである。液晶表示素子における動作モードとしては、主として1枚以上の偏光板を利用して表示するPC(phase change)、TN(twisted nematic)、STN(super twisted nematic)、BTN(Bistable twisted nematic)、ECB(electrically controlled birefringence)、OCB(opticallycompensated bend)、IPS(in-plane switching)、VA(vertical alignment)などが知られている。さらに近年は光学的に等方性の液晶相において電場を印加し、電気複屈折を発現させるモードも研究されている(特許文献1~16、非特許文献1~3)。
 さらに光学的に等方性の液晶相の1つであるブルー相における電気複屈折を利用した波長可変フィルター、波面制御素子、液晶レンズ、収差補正素子、開口制御素子、光ヘッド装置などが提案されている(特許文献10~12)。
 素子の駆動方式に基づいた分類は、PM(passive matrix)とAM(active matrix)である。PM(passive matrix)はスタティック(static)とマルチプレックス(multiplex)などに分類され、AMはそのスイッチング素子の種類によって、TFT(thin film transistor)、MIM(metal insulator metal)などに分類される。
 一方、下記の化合物(R-3)を包含する光学的に等方性の液晶相を発現する組成物が特許文献15に、(R-1)~(R-3)を包含する光学的に等方性の液晶相を発現する組成物が特許文献16に記載されている。

Figure JPOXMLDOC01-appb-I000013

また、特許文献17には下記化合物(R-4)および(R-5)が記載されている。

Figure JPOXMLDOC01-appb-I000014
特開2003-327966号公報 国際公開2005/90520号パンフレット 特開2005-336477号公報 特開2006-89622号公報 特開2006-299084号公報 特表2006-506477号公報 特表2006-506515号公報 国際公開2006/063662号パンフレット 特開2006-225655号公報 特開2005-157109号公報 国際公開2005/80529号パンフレット 特開2006-127707号公報 国際公開1998/023561号パンフレット 国際公開2010/058681号パンフレット 国際公開2010/134430号パンフレット 国際公開2011/162142号パンフレット 国際公開2012/100809号パンフレット
Nature Materials, 1, 64, (2002) Adv. Mater., 17, 96, (2005) Journal of the SID, 14, 551, (2006)
 上記状況の下、熱、光などに対する安定性、広い液晶相温度範囲、極めて大きな誘電率異方性を有し、光学的に等方性の液晶相を発現する液晶媒体が求められている。また、広い温度範囲で使用可能であり、短い応答時間、大きなコントラスト比、および低い駆動電圧を有する各種光素子が求められている。
 本発明は、たとえば、以下のような液晶化合物、液晶媒体(液晶組成物、高分子/液晶複合材料等)、重合モノマーと液晶組成物との混合物、液晶媒体等を含有する光素子、液晶化合物等を提供する。
 本発明は、以下のような化合物、液晶媒体(液晶組成物または高分子/液晶複合体)および液晶媒体を含有する光素子等を提供する。
[1]式(1)で表される化合物1を少なくとも1つ含むアキラル成分Tとキラル剤とを含有し、光学的に等方性の液晶相を発現する液晶組成物。

Figure JPOXMLDOC01-appb-I000015

式(1)中、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は、-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンまたは炭素数1~3のアルキルで置き換えられてもよく;
 LおよびLはそれぞれ独立してフッ素または水素であり、
 Xはハロゲン、-CF、-OCF、-C≡N、または-N=C=S、である。
[2]化合物1が式(1-1)で表される化合物である[1]に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000016

式(1-1)中、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は、-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンまたは炭素数1~3のアルキルで置き換えられてもよく;
 Xはハロゲン、-CF、-OCF、-C≡N、または-N=C=S、である。
[3]式(1)または(1-1)において、Xがフッ素または-CFである[1]または[2]に記載の液晶組成物。
[4]下記式(3)で表される化合物3および(7)で表される化合物7の群から選ばれる少なくとも1つの化合物をさらに含む、[1]~[3]のいずれか一項に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000017

式(3)中、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中またはアルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、アルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中、またはアルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Rにおいて-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;
 Z31、Z32およびZ33はそれぞれ独立して、単結合または炭素数1~4のアルキレンであり、当該アルキレン中の少なくとも1つの-CH-は、-O-、-COO-または-CFO-で置き換えられてもよく;
 L31、L32、L33,L34およびL35はそれぞれ独立して、水素またはフッ素であり;
  Xは水素、ハロゲン、-SFまたは炭素数1~10のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、当該アルキル中の-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中および当該アルキル中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Xにおいて-O-と-CH=CH-とが隣接することはなく、-CO-と-CH=CH-とが隣接することはない。

Figure JPOXMLDOC01-appb-I000018

式(7)中、Rは炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、アルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中、またはアルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Rにおいて-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;
 L71、L72、L73、L74、L75、L76、L77およびL78はそれぞれ独立して、水素またはフッ素であり;
 Z71、72およびZ73はそれぞれ独立して、単結合、-COO-または-CFO-であるが、少なくとも一つは-COO-または-CFO-であり;
 n71およびn72はそれぞれ独立して0または1であり、かつn71≧n72であり、;
 ただし、L71とL72が共にフッ素であり、Z71が-CFO-でかつn71が1の場合、L74は水素であり、
 Xは水素、ハロゲン、-SFまたは炭素数1~10のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、当該アルキル中の-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中および当該アルキル中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Xにおいて-O-と-CH=CH-とが隣接することはなく、-CO-と-CH=CH-とが隣接することはない。
[5]アキラル成分Tの全量に対して、式(1)と式(7)で表わされる群から選択された少なくとも1つの化合物を1~32重量%含有する、[1]~[4]のいずれか一項に記載の液晶組成物。
[6]化合物3が、式(3-2)および式(3-3)で表される化合物の群から選ばれる1つ以上である、[4]または[5]に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000019

(上記式中、R3Aはそれぞれ独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニルまたは少なくとも1つの水素がフッ素で置き換えられてもよい炭素数2~12のアルケニルであり;
 L31、L32、L33,L34およびL35はそれぞれ独立して水素またはフッ素であり;
 X3Aはフッ素、塩素、-CFまたは-OCFである。)
[7]化合物7が、式(7-1)~(7-8)で表される化合物の群から選ばれる1つ以上である、[4]または[5]に記載の液晶組成物。


(上記式中、R7Aは水素、炭素数1~12のアルキル、炭素数1~11のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
 L72、L74、L75、L76、L77およびL78はそれぞれ独立して、水素またはフッ素であり;
 式(7-1)~(7-3)および(7-6)~(7-8)において、Z71およびZ72はそれぞれ独立して、単結合、-COO-または-CFO-であるが、少なくとも一つは-COO-または-CFO-であり、ただし、式(7-3)において、L71とL72が共にフッ素であり、Z71が-CFO-でかつn71が1の場合、L74は水素であり、式(7-4)および(7-5)においては、Z71はそれぞれ独立して、-COO-または-CFO-であり、
 X7Aは、フッ素、塩素、-CFまたは-OCFである。)
[8]化合物7が、式(7-2-2-E)、(7-2-5-E)、(7-2-2-F)および(7-2-5-F)で表される化合物の群から選ばれる1つ以上である[4]または[5]に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000021

(上記式中、R7Aは、炭素数1~12のアルキル、炭素数1~11のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
 X7Aは、フッ素、塩素、-CFまたは-OCFである。)
[9]アキラル成分Tの全重量に対して、化合物1を合計で3重量%~20重量%含有し、化合物3を合計で20重量%~80重量%、化合物7を合計で10重量%~27重量%含有する、[4]~[8]のいずれか一項に記載の液晶組成物。
[10]アキラル成分Tが、さらに式(4)で表される化合物4および式(2)で表される化合物2から選ばれる少なくとも1つの化合物をさらに含む、[1]~[9]のいずれか一項に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000022

(式(4)中、Rは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
 環Bはそれぞれ独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、3,5-ジフルオロ-1,4-フェニレン、3,5-ジクロロ-1,4-フェニレンまたはピリミジン-2,5-ジイルであり;
 Z41はそれぞれ独立して、単結合、エチレン、-COO-、-OCO-、-CFO-または-OCF-であり;
 L48およびL49はそれぞれ独立して、水素またはフッ素であり;
 Xはフッ素、塩素、-CFまたは-OCFであり;
 n41は、1、2、3または4であり、ただしn41が3または4である場合、少なくとも1つのZ41は-CFO-または-OCF-であり、n41が3の場合は、環Bのすべてがフッ素で置換された1,4-フェニレンであることはない。

Figure JPOXMLDOC01-appb-I000023

式(2)中、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、アルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中、またはアルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Rにおいて-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;
 環A21、環A22、環A23、環A24および環A25はそれぞれ独立して、1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレン、2つの水素がそれぞれフッ素と塩素で置き換えられた1,4-フェニレン、ピリジン-2,5-ジイル、ピリミジン-2,5-ジイルであり;
 Z21、Z22、Z23、Z24、Z25およびZ26はそれぞれ独立して、単結合または炭素数1~4のアルキレンであり、当該アルキレン中の少なくとも1つの-CH-は、-O-、-COO-または-CFO-で置き換えられてもよく;
 L21、L22およびL23はそれぞれ独立して、水素またはフッ素であり;
 Xはフッ素、塩素、-CF、-CHF、-CHF、-OCF、-OCHF、-OCHF、-OCFCFHCFまたは-CH=CHCFであり;
 n21、n22、n23、n24およびn25はそれぞれ独立して、0または1であり、2≦n21+n22+n23+n24+n25≦3である。
[11] 化合物4が、式(4-1)~(4-9)で表される化合物の群から選ばれる1つ以上であり、化合物2が、式(2-1-1-2)、(2-1-2-1)、(2-1-3-1)、(2-1-3-2)、(2-1-4-2)および(2-1-4-3)で表される化合物の群から選ばれる1以上である[10]に記載の液晶組成物。


Figure JPOXMLDOC01-appb-I000024

(上記式中、R4Aはそれぞれ独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニルまたは少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
 X4Aはフッ素、塩素、-CFまたは-OCFであり;
 L40~L49はそれぞれ独立して水素またはフッ素である。

Figure JPOXMLDOC01-appb-I000025

上記式中、R2Aは炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または、少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
 (F)はそれぞれ独立して、水素またはフッ素であり;
 X2Aは、フッ素、塩素、-CFまたは-OCFである。
[12]キラル剤が、式(K1)~(K6)で表される化合物の群から選択される少なくとも1つの化合物である、[1]~[11]のいずれか一項に記載の液晶組成物。

Figure JPOXMLDOC01-appb-I000026

(上記式中、Rはそれぞれ独立して、水素、ハロゲン、-C≡N、-N=C=O、-N=C=Sまたは炭素数1~20のアルキルであり、当該R中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該R中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、アルキル中、当該R中の少なくとも1つの-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中、または当該R中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく;
 Aはそれぞれ独立して、芳香族性の6~8員環、非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の少なくとも1つの水素はハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、環の-CH-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;
 Bはそれぞれ独立して、水素、ハロゲン、炭素数1~3のアルキル、炭素数1~3のハロアルキル、芳香族性の6~8員環、非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の少なくとも1つの水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、-CH-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;
 Zはそれぞれ独立して、単結合、炭素数1~8のアルキレンであり、このアルキレン中の少なくとも1つの-CH-は、-O-、-S-、-COO-、-OCO-、-CSO-、-OCS-、-N=N-、-CH=N-または-N=CH-で置き換えられてもよく、このアルキレン中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、アルキレン中、当該アルキレン中の少なくとも1つの-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中、または当該アルキレン中の少なくとも1つの-CH-CH-が-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく;
 Xはそれぞれ独立して、単結合、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、または-CHCH-であり;
 mKはそれぞれ独立して、1~4の整数である。)
[13]-20℃~70℃のいずれかの温度においてキラルネマチック相を示し、この温度範囲の少なくとも一部において螺旋ピッチが700nm以下である、[1]~[12]のいずれか一項に記載の液晶組成物。
[14][1]~[13]のいずれか一項に記載の液晶組成物と、重合性モノマーとを含む混合物。
[15][14]に記載の混合物を重合して得られる、光学的に等方性の液晶相で駆動される素子に用いられる高分子/液晶複合材料。
[16]一方または両方の基板に電極が配置され、基板間に配置された液晶媒体、および電極を介して液晶媒体に電界を印加する電界印加手段を備えた光素子であって、液晶媒体が、[1]~[13]のいずれか一項に記載の液晶組成物、または、[15]に記載の高分子/液晶複合材料である光素子。
[17][1]~[13]のいずれか一項に記載の液晶組成物または[15]に記載の高分子/液晶複合材料の光素子への使用。
 本明細書において、「液晶化合物」とはメソゲンを有する化合物を表し、液晶相を発現する化合物に限定されない。具体的には、ネマチック相、スメクチック相などの液晶相を発現する化合物および液晶相を有しないが液晶組成物の成分として有用な化合物の総称である。
 「液晶媒体」とは、液晶組成物および高分子/液晶複合体の総称である。
 「アキラル成分」とはアキラルなメソゲン化合物であって、光学活性化合物および重合性官能基を有する化合物を含まない成分である。したがって、「アキラル成分」には、キラル剤、モノマー、重合開始剤、酸化防止剤、紫外線吸収剤、硬化剤、安定剤等は含まれない。
 「キラル剤」は、光学活性化合物であり、液晶組成物に所望のねじれた分子配列を与える為に添加されるために用いられる成分である。
 「液晶表示素子」は、液晶表示パネルおよび液晶表示モジュールの総称である。
 また、「光素子」とは、電気光学効果を利用して、光変調や光スイッチングなどの機能を奏する各種の素子を指し、たとえば、表示素子(液晶表示素子)、光通信システム、光情報処理や種々のセンサーシステムに用いられる光変調素子が挙げられる。光学的に等方性の液晶媒体への電圧印加による屈折率の変化を利用した光変調については、カー効果が知られている。カー効果とは電気複屈折値Δn(E)が電場Eの二乗に比例する現象であり、カー効果を示す材料ではΔn(E)=KλEが成立する(K:カー係数(カー定数)、λ:波長))。ここで、電気複屈折値とは、等方性媒体に電界を印加した時に誘起される屈折率異方性値である。
 「液晶化合物」、「液晶組成物」、「液晶表示素子」をそれぞれ「化合物」、「組成物」、「素子」と略すことがある。
 また、たとえば液晶相の上限温度は液晶相-等方相の相転移温度であり、そして単に透明点または上限温度と略すことがある。液晶相の下限温度を単に下限温度と略すことがある。式(1)で表わされる化合物を化合物1と略すことがある。この略記は式(2)などで表される化合物にも適用することがある。式(2)~(5)において、六角形で囲んだA、B、Cなどの記号はそれぞれ環A、環B、環Cなどに対応する。百分率で表した化合物の量は組成物の全重量に基づいた重量百分率(重量%)である。環A、Y、Bなど複数の同じ記号を同一の式または異なった式に記載したが、これらはそれぞれが同一であってもよいし、または異なってもよい。
 本明細書中、「アルキル」の具体例は、-CH、-C、-C、-C、-C11、-C13、-C15、-C17、-C19、-C1021、-C1123、-C1225、-C1327、-C1429、および-C1531が挙げられる。
 本明細書中、「アルコキシ」の具体例は、-OCH、-OC、-OC、-OC、-OC11、-OC13および-OC15、-OC17、-OC19、-OC1021、-OC1123、-OC1225、-OC1327、および-OC1429が挙げられる。
 本明細書中、「アルコキシアルキル」の具体例は、-CHOCH、-CHOC、-CHOC、-(CH-OCH、-(CH-OC、-(CH-OC、-(CH-OCH、-(CH-OCH、および-(CH-OCHが挙げられる。
 本明細書中、「アルケニル」の具体例は、-CH=CH、-CH=CHCH、-CHCH=CH、-CH=CHC、-CHCH=CHCH、-(CH-CH=CH、-CH=CHC、-CHCH=CHC、-(CH-CH=CHCH、および-(CH-CH=CHが挙げられる。
 本明細書中、「アルケニルオキシ」の具体例は、-OCHCH=CH、-OCHCH=CHCH、および-OCHCH=CHCが挙げられる。
 本明細書中、「アルキニル」の具体例は、-C≡CH、-C≡CCH、-CHC≡CH、-C≡CC、-CHC≡CCH、-(CH-C≡CH、-C≡CC、-CHC≡CC、-(CH-C≡CCH、および-C≡C(CHが挙げられる。
 本明細書中、「ハロゲン」の具体例は、フッ素、塩素、臭素、およびヨウ素が挙げられる。
 本発明の好ましい液晶組成物および高分子/液晶複合材料等は、熱、光などに対する安定性、光学的に等方性の液晶相の高い上限温度と低い下限温度を示し、大きな誘電率異方性を有する。また、本発明の好ましい態様の高分子/液晶複合材料は、光学的に等方性の液晶相の高い上限温度、低い下限温度を示し、光学的に等方性の液晶相で駆動させる光素子において低い駆動電圧、短い応答時間を有する。
 また、本発明の好ましい態様の光学的に等方性の液晶相で駆動される光素子は、幅広い温度範囲で使用可能であり、低電圧駆動が可能であり、高い透過率が可能であり、大きなコントラスト比が可能であり、高速な電気光学応答を有する。
実施例で用いた櫛型電極基板を示す。 実施例で用いた光学系を示す。
 本発明の光学的に等方性の液晶相を有する液晶組成物は、アキラル成分Tとキラル剤を含有し、アキラル成分Tは第一成分として、前記式(1)で表される化合物を含む。本発明の液晶組成物の第1の態様は、第一成分と本明細書中で特に成分名を示していないその他の成分を含有する組成物である。まず、式(1)で表される化合物について説明する。また、本発明の液晶組成物は上記成分の他に、溶媒、モノマー、重合開始剤、硬化剤、安定剤(酸化防止剤、紫外線吸収剤等)等をさらに含有してもよい。
1-1 化合物1
 式(1)において、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は、-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンまたは炭素数1~3のアルキルで置き換えられてもよい。
 たとえば、CH(CH-において少なくとも1つの-CH-を-O-、-S-または-CH=CH-で置き換えた基の例として、CH(CHO-、CH-O-(CH-、CH-O-CH-O-、CH(CHS-、CH-S-(CH-、CH-S-CH-S-、CH=CH-(CH-、CH-CH=CH-(CH-、CH-CH=CH-CHO-、CHCHC≡C-等が挙げられる。たとえば、CH(CH-または、CH(CH-において少なくとも1つの-CH-を-O-、-C≡C-または-CH=CH-で置き換えた基中の少なくとも1つの水素がハロゲンに置き換えられた基の例として、ClCH(CH-、CF=CH-(CH-、CHF(CHO-、CHFCHC≡C-等が挙げられる。
 Rにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。-CH=CHCH、-CH=CHC、-CH=CHC、-CH=CHC、-CCH=CHCH、および-CCH=CHCのような奇数位に二重結合をもつアルケニルにおいてはトランス配置が好ましい。-CHCH=CHCH、-CHCH=CHC、および-CHCH=CHCのような偶数位に二重結合をもつアルケニルにおいてはシス配置が好ましい。好ましい立体配置を有するアルケニル化合物は、高い上限温度または液晶相の広い温度範囲を有する。Mol. Cryst. Liq. Cryst., 1985, 131, 109およびMol. Cryst. Liq. Cryst., 1985, 131, 327に詳細な説明がある。また、アルケニル基の位置はベンゼン環と共役を作らない位置が好ましい。
 Rにおけるアルキルとしては、直鎖でも分岐鎖でもよく、アルキルの具体的な例は、-CH、-C、-C、-C、-C11、-C13、-C15、-C17、-C19、-C1021、-C1123、-C1225、-C1327、-C1429、および-C1531である。
 Rにおけるアルコキシとしては、直鎖でも分岐鎖でもよく、アルコキシの具体的な例は、-OCH、-OC、-OC、-OC、-OC11、-OC13および-OC15、-OC17、-OC19、-OC1021、-OC1123、-OC1225、-OC1327、および-OC1429である。
 Rにおけるアルコキシアルキルとしては、直鎖でも分岐鎖でもよく、アルコキシアルキルの具体的な例は、-CHOCH、-CHOC、-CHOC、-(CH-OCH、-(CH-OC、-(CH-OC、-(CH-OCH、-(CH-OCH、および-(CH-OCHである。
 Rにおけるアルケニルとしては、直鎖でも分岐鎖でもよく、アルケニルの具体的な例は、-CHCH=CH、-CHCH=CHCH、-(CH-CH=CH、-CHCH=CHC、-(CH-CH=CHCH、および-(CH-CH=CHである。
 Rにおけるアルケニルオキシとしては、直鎖でも分岐鎖でもよく、アルケニルオキシの具体的な例は、-OCHCH=CH、-OCHCH=CHCH、および-OCHCH=CHCである。
 Rにおけるアルキニルとしては、直鎖でも分岐鎖でもよく、アルキニルの具体的例は、-C≡CH、-C≡CCH、-CHC≡CH、-C≡CC、-CHC≡CCH、-(CH-C≡CH、-C≡CC、-CHC≡CC、-(CH-C≡CCH、および-C≡C(CHである。
 Rは式(CHN-1)~(CHN-6)で表される構造が好ましい。より好ましくは(CHN-1)または(CHN-2)である。

Figure JPOXMLDOC01-appb-I000027

(上記式中、R1aは水素または炭素数1~20のアルキルである。)
 式(1)において、Xはハロゲン、-CF、-OCF、-C≡N、または-N=C=S、である。
 Xの好ましい例は、フッ素、および-CFである。
化合物1として、好ましくは、式(1-1)の化合物である。

Figure JPOXMLDOC01-appb-I000028

式(1)中、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は、-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンまたは炭素数1~3のアルキルで置き換えられてもよく;
 Xはハロゲン、-CF、-OCF、-C≡N、または-N=C=S、である。
 化合物1として、より好ましくは式(1-1-1)~(1-1-2)で表される化合物である。

Figure JPOXMLDOC01-appb-I000029

(上記式中、R1aは炭素数1~10のアルキルである。)
1-2 化合物1の性質
 化合物1は、素子が通常使用される条件下で物理的および化学的に極めて安定であり、大きな誘電率異方性と比較的大きな屈折率異方性を有し、他の化合物との相溶性が比較的よい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。したがって、化合物1は、少量使用するだけで、駆動電圧を低下させることが可能である。また、化合物1と、駆動電圧を高くし、かつ応答時間を短くする化合物とを混合することで、応答時間が短い組成物を調製することが可能である。
1-3 化合物1の合成
化合物1は公知の有機合成化学における手法を適切に組み合わせることにより合成できる。化合物1を合成する方法は複数あり、市販の試薬から適宜、合成することが可能である。また、化合物1を合成する際、出発物に目的の末端基、環および結合基を導入する方法は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などに記載されている。たとえば、日本特許2959526号公報(JP 2959526B)の方法を準用して、化合物1を合成することが可能である。
2-1 液晶組成物
 本発明の液晶組成物は、式(1)で表される化合物1を含有し、光学的に等方性の液晶相を発現する組成物である。また、光学的に等方性の液晶組成物は化合物1を含むアキラル成分Tの他に、キラル剤を含み、さらに、酸化防止剤、紫外線吸収剤、安定剤等を含んでもよい。
 アキラル成分Tは、化合物1として1つの化合物からなる場合も、化合物1として式(1)で表される複数の化合物を含有する場合も含む。さらに、アキラル成分は、必要に応じて化合物2~7からなる群から選ばれる1つ以上の化合物を含む。アキラル成分Tは、化合物1の他に、化合物2,3,5および7を含むことが好ましく、化合物3、7を含むことが特に好ましく、さらに求められる性質に応じて化合物4と6を含むことができる。化合物1~7は液晶化合物である。
 化合物1は比較的高い透明点、大きな誘電率異方性、比較的良好な低温での相溶性を併せ持つため、化合物1を用いたアキラル成分Tも、広い液晶相温度範囲、または大きな誘電率異方性を発現する。このため、アキラル成分Tを用いた光学的に等方性の液晶組成物も、光素子に用いる組成物として有用である。
 アキラル成分Tの全重量に対して、化合物1を合計で1重量%~30重量%含有することが好ましく、3重量%~20重量%含有することがさらに好ましく、5重量%~15重量%含有することが特に好ましい。
 大きな誘電率異方性を発現させるためには、化合物3と7で表される群から選択される化合物をさらに添加することが好ましい。この組成物は非常に大きな誘電率異方性を発現するため、光素子の低電圧化に極めて有効な組成物である。
2-2-1 化合物2
 本発明のアキラル成分は、化合物1に加えて、さらに式(2)で表される化合物2を1つ以上含んでもよい。すなわち、本発明は、アキラル成分Tにおいて、化合物2として1つの化合物からなる場合も、化合物2として式(2)で表される複数の化合物を含有する場合も含む。

Figure JPOXMLDOC01-appb-I000030
 式(2)中のRは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルが好ましい。
 化合物の安定性や大きな誘電率異方性の点から、式(2)中の環A21、環A22、環A23、環A24および環A25は、1,4-フェニレン、1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレンが好ましい。
 式(2)中のZ21、Z22、Z23、Z24、Z25およびZ26は独立して、単結合または炭素数1~4のアルキレンであり、該アルキレン中の少なくとも1つの-CH-は、-O-、-COO-または-CFO-で置き換えられてもよい。式(2)中のZ21、Z22、Z23、Z24、Z25およびZ26は、すべて単結合であるか少なくとも一つが-COO-または-CFO-であることが好ましく、他の液晶化合物との相溶性が重視される場合は、少なくとも一つが-CFO-であることが好ましい。
式(2)中、n24=1であり、Z25が-CFO-であることが特に好ましい。
 式(2)中のXはフッ素、塩素、-CF、-CHF、-CHF、-OCF、-OCHF、-OCHF、-OCFCFHCFまたは-CH=CHCFであり、好ましくはフッ素、塩素、-CFおよび-OCFである。
 化合物2において、式(2-1)の化合物を用いることが好ましい。

Figure JPOXMLDOC01-appb-I000031

(式中、R2Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1以上の水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
 Z21、Z22、Z23、Z24、Z25、およびZ26はそれぞれ独立して、単結合または炭素数1~4のアルキレンであり、当該アルキレン中の少なくとも1つの-CH-は、-O-、-COO-または-CFO-で置き換えられてもよく;
 式(2-1)中のn22、n23、n24およびn25は独立して、0または1であり、n22+n23+n24+n25は1~2の整数である。
 X2Aはフッ素、塩素、-CFおよび-OCFであり;
 (F)はそれぞれ独立して水素またはフッ素を表す。)
 式(2)および式(2-1)中のR2AおよびZ21~Z26中のアルケニルにおいて、-CH=CH-の好ましい立体配置は、式(1)のRにおける-CH=CH-の好ましい立体配置に準ずる。
 Z21、Z22、Z23、Z24、Z25およびZ26はそれぞれ独立して、単結合または-CFO-であり、他の液晶化合物との相溶性が重視される場合は、Z21、Z22、Z23、Z24、Z25およびZ26は、少なくとも1つが-CFO-であることが好ましい。
 式(2-1)中、n24=1であり、Z25が-CFO-であることが特に好ましい。
 化合物2において、式(2-1-1)~(2-1-5)で表される化合物を用いることがさらに好ましい。

Figure JPOXMLDOC01-appb-I000032

(式中、R2A,Z21~Z26、X2Aおよび(F)の定義は式(2-1)と同じである)
 化合物2として、式(2-1-1)~(2-1-5)の化合物を用いる場合において、下記式(2-1-1-1)~(2-1-1-3)、(2-1-2-1)~(2-1-2-3)、(2-1-3-1)~(2-1-3-3)、(2-1-4-1)~(2-1-4-3)、(2-1-5-1)~(2-1-5-3)で表される化合物を用いることが好ましく、式(2-1-1-1)、(2-1-1-2)、式(2-1-2-1)、(2-1-2-2)、式(2-1-3-1)、(2-1-3-2)、(2-1-4-2)、(2-1-4-3)および(2-1-5-3)で表される化合物を用いることがさらに好ましい。

Figure JPOXMLDOC01-appb-I000033


Figure JPOXMLDOC01-appb-I000034

 (上記式中、R2A、(F)、およびX2Aの定義は式(2-1)と同じである)
 これらの化合物の中でも、化合物2が、式(2-1-1-2)、(2-1-2-1)、(2-1-3-1)、(2-1-3-2)、(2-1-4-2)または(2-1-4-3)で表される化合物が好ましい。
 化合物2は、良好な相溶性と大きな誘電率異方性と大きな屈折率異方性を有する。
 アキラル成分Tの全重量に対して、化合物2を合計で0.5重量%~70重量%含有することが好ましく、5重量%~60重量%含有することがさらに好ましく、10重量%~50重量%含有することが特に好ましい。
2-2-2 化合物2の性質
 化合物2はクロロベンゼン環を有する。化合物2は、素子が通常使用される条件下で物理的および化学的に極めて安定であり、他の液晶化合物との相溶性がよい。さらにスメクチック相を発現しにくい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。したがって組成物においてコレステリック相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。さらにこの化合物は誘電率異方性と屈折率異方性が大きい為、コレステリック相で駆動される組成物の駆動電圧を下げるため、反射率を上げるための成分として有用である。
 式(2)におけるn22~n25の組み合わせと、左末端基R2A、一番右側のベンゼン環上の基およびその置換位置((F)およびX2A)、あるいは結合基Z22~Z26を適切に選択することによって、透明点、屈折率異方性、誘電率異方性などの物性を任意に調整することが可能である。n22,n23,n24およびn25の組み合わせ、左末端基R2A、右末端基X2A、結合基Z21~Z26、(F)の種類が、化合物2の物性に与える効果を以下に説明する。
 一般に、式(2)中、n22+n23+n24+n25=2の化合物は透明点が高く、n22+n23+n24+n25=1の化合物は融点が低い。
 式(2)中のR2Aがアルケニルであるとき、好ましい立体配置は、式(1)のRにおける-CH=CH-の好ましい立体配置に準ずる。
 式(2)中の結合基Z21~Z26は単結合、または-CFO-であるため、化学的に比較的安定であって、比較的劣化を起こしにくい。さらに結合基が単結合であるときは、粘度が小さい。また、結合基が-CFO-であるときは、誘電率異方性が大きい。
 式(2)中の右末端基Xがフッ素、塩素、-OCFであるときは、他の液晶化合物との低温での相溶性に優れ、-CFであるときは、駆動電圧低下効果が大きい。
 式(2)中の(F)が水素であるときは、融点が低く、フッ素であるときは誘電率異方性が大きい。
 式(2)中の環構造、末端基、結合基などの種類を適当に選択することにより目的の物性を有する化合物を得ることができる。
2-3-1 化合物3
 本発明のアキラル成分は、化合物1に加えて、さらに式(3)で表される化合物3を少なくとも1つ含んでもよい。すなわち、本発明は、アキラル成分Tにおいて、化合物3として1つの化合物からなる場合も、化合物3として式(3)で表される複数の化合物を含有する場合も含む。また、たとえば、本発明の液晶組成物は化合物1と化合物3の他に、化合物2および4~7からなる群から選ばれる1つ以上を含んでもよい。

Figure JPOXMLDOC01-appb-I000035
 式(3)中、Rにおけるアルケニルの-CH=CH-の好ましい立体配置は、式(1)のRにおける-CH=CH-の好ましい立体配置に準ずる。
 式(3)中、Z31、Z32、およびZ33は独立して、単結合、-COO-または-CFO-であるが、少なくとも一つは-CFO-である。Z31、Z32、およびZ33の好ましい例は、単結合と-CFO-である。
 式(3)中、L31、L32、L33、L34およびL35は独立して、水素またはフッ素である。Z32が-COO-または-CFO-である場合は、L32、L34およびL35がフッ素であることが好ましく、Z33が-COO-または-CFO-である場合は、L33、L34およびL35がフッ素であることが好ましい。
 式(3)のXにおける1以上の水素がハロゲンで置き換えられたアルキルの具体的な例として、-CHF、-CHF、-CF、-(CH-F、-CFCHF、-CFCHF、-CHCF、-CFCF、-(CH-F、-(CF-F、-CFCHFCF、-CHFCFCF、-(CH-F、-(CF-F、-(CH-F、および-(CF-Fが挙げられる。
 1以上の水素がハロゲンで置き換えられたアルコキシの具体的な例として、-OCHF、-OCHF、-OCF、-O-(CH-F、-OCFCHF、-OCFCHF、-OCHCF、-O-(CH-F、-O-(CF-F、-OCFCHFCF、-OCHFCFCF、-O(CH-F、-O-(CF-F、-O-(CH-F、および-O-(CF-Fが挙げられる。
 1以上の水素がハロゲンで置き換えられたアルケニルの具体的な例として、-CH=CHF、-CH=CF、-CF=CHF、-CH=CHCHF、-CH=CHCF、-(CH-CH=CF、-CHCH=CHCF、-CH=CHCF、および-CH=CHCFCFが挙げられる。
 式(3)中、Xは、フッ素、塩素、-CF、-CHF、-OCFおよび-OCHFが好ましく、フッ素、塩素、-CFおよび-OCFがさらに好ましい。
 化合物3において、式(3-1)~(3-3)で表される化合物を用いることが好ましく、式(3-2)および(3-3)で表される化合物を用いることがより好ましい。式(3-2)で表される化合物においては、式(3-2A)~(3-2H)で表される化合物を用いることがさらに好ましく、式(3-2A)~(3-2D)で表される化合物を用いることが特に好ましく、式(3-2A)および(3-2C)で表される化合物を用いることが最も好ましい。式(3-3)で表される化合物においては、式(3-3A)~(3-3D)で表される化合物を用いることがさらに好ましく、式(3-3A)および(3-3B)で表される化合物を用いることが特に好ましく、式(3-3A)で表される化合物を用いることが最も好ましい。

Figure JPOXMLDOC01-appb-I000036

(式中、R3Aはそれぞれ独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニルまたは少なくとも1つの水素がフッ素で置き換えられてもよい炭素数2~12のアルケニルであり;
 L31~L35はそれぞれ独立して水素またはフッ素であり;
 X3Aはフッ素、塩素、-CF、または-OCFである。)

Figure JPOXMLDOC01-appb-I000037

Figure JPOXMLDOC01-appb-I000038

 (上記式中、R3Aは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニルまたは少なくとも1以上の水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
3Aはフッ素、塩素、-CFまたは-OCFである。)
 化合物3は透明点が比較的高く、大きな誘電率異方性と大きな屈折率異方性を有する。
アキラル成分Tの全重量に対して、化合物3を合計で0.5重量%~70重量%含有することが好ましく、5重量%~60重量%含有することがさらに好ましく、10重量%~50重量%含有することが特に好ましくである。
2-3-2 化合物3の性質
 化合物3は4個のベンゼン環を有し、少なくとも1個の-CFO-連結基を有する。化合物3は、素子が通常使用される条件下で物理的および化学的に極めて安定であり、そして他の液晶化合物との相溶性がよい。この化合物を含有する組成物は素子が通常使用される条件下で安定である。したがって組成物においてコレステリック相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。さらにこの化合物は誘電率異方性と屈折率異方性が大きい為、コレステリック相で駆動される組成物の駆動電圧を下げるため、および反射率を上げるための成分として有用である。
 式(3)における左末端基R、ベンゼン環上の基(L31~L35およびX)、あるいは結合基Z31~Z33を適切に選択することによって、透明点、屈折率異方性、誘電率異方性などの物性を任意に調整することが可能である。左末端基R、ベンゼン環上の基(L31~L35およびX)、あるいは結合基Z31~Z33の種類が、化合物(3)の物性に与える効果を以下に説明する。
 式(3)におけるRがアルケニルであるとき、アルケニルにおける-CH=CH-の好ましい立体配置は、式(1)のRにおける-CH=CH-の好ましい立体配置に準ずる。
 式(3)における結合基Z31、Z32およびZ33が単結合、または-CFO-であるときは粘度が小さい。結合基がZ31、Z32およびZ33が-CFO-であるときは誘電率異方性が大きい。式(3)におけるZ31、Z32およびZ33が単結合、-CFO-であるときは化学的に比較的安定であって、比較的劣化をおこしにくい。
 式(3)における右末端基Xがフッ素、塩素、-SF、-CF、-CHF、-CHF、-OCF、-OCHFまたは-OCHFであるときは誘電率異方性が大きい。Xがフッ素、-OCF、または-CFであるときは、化学的に安定である。
 式(3)において、L31~L35におけるフッ素の数が多いときは誘電率異方性が大きい。L31が水素であるときは他の液晶との相溶性に優れる。L34およびL35がともにフッ素である場合は、誘電率異方性が特に大きい。
 以上のように、末端基、結合基などの種類を適当に選択することにより目的の物性を有する化合物を得ることができる。
2-4-1 化合物4
 本発明のアキラル成分は、化合物1に加えて、さらに式(4)で表される化合物4を少なくとも1つ含んでもよい。すなわち、本発明は、アキラル成分Tにおいて、化合物4として1つの化合物からなる場合も、化合物4として式(4)で表される複数の化合物を含有する場合も含む。また、たとえば、本発明の液晶組成物は化合物1と化合物4の他に、化合物2、3および5~7からなる群から選ばれる1つ以上を含んでもよい。

Figure JPOXMLDOC01-appb-I000039
 式(4)中のRは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルである。式(4)中の好ましいRは、紫外線に対する安定性を上げるため、または熱に対する安定性のために、炭素数1~12のアルキルである。式(4)中のRは、粘度を下げる点から、炭素数2~12のアルケニルが好ましく、紫外線に対する安定性を上げる点または熱に対する安定性を上げる点から、炭素数1~12のアルキルが好ましい。
 式(4)中のRにおいて好ましいアルキルは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、またはオクチルであり、さらに好ましいアルキルは、粘度を下げるために、エチル、プロピル、ブチル、ペンチル、またはヘプチルである。
 式(4)中のRにおいて好ましいアルコキシは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、またはヘプチルオキシであり、さらに好ましいアルコキシは、粘度を下げるために、メトキシまたはエトキシである。
 式(4)中のRにおいて好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルであり、さらに好ましいアルケニルは、粘度を下げるために、ビニル、1-プロペニル、3-ブテニル、または3-ペンテニルである。
 式(4)中のRにおいてアルケニルにおける-CH=CH-の好ましい立体配置は、式(1)のRにおける-CH=CH-の好ましい立体配置に準ずる。粘度を下げるために、1-プロペニル、1-ブテニル、1-ペンテニル、1-ヘキセニル、3-ペンテニル、3-ヘキセニルのようなアルケニルにおいてはトランスが好ましい。2-ブテニル、2-ペンテニル、2-ヘキセニルのようなアルケニルにおいてはシスが好ましい。これらのアルケニルにおいては、分岐鎖よりも直鎖のアルケニルが好ましい。
 式(4)中のRにおいて、1以上の水素がフッ素で置き換えられたアルケニルの好ましい例としては、2,2-ジフルオロビニル、3,3-ジフルオロ-2-プロペニル、4,4-ジフルオロ-3-ブテニル、5,5-ジフルオロ-4-ペンテニル、および6,6-ジフルオロ-5-ヘキセニルであるが挙げられ、液晶組成物の粘度を下げるためには、2,2-ジフルオロビニル、および4,4-ジフルオロ-3-ブテニルであるが好ましい。
 式(4)中のRにおけるアルキルは環状アルキルを含まない。アルコキシは環状アルコキシを含まない。アルケニルは環状アルケニルを含まない。少なくとも1つの水素がフッ素で置き換えられたアルケニルは、少なくとも1つの水素がフッ素で置き換えられた環状アルケニルを含まない。
 式(4)中のn41は、1、2、3または4であり、ただしn41が3または4である場合、少なくとも1つのZ41は-CFO-または-OCF-であり、n41が3の場合は、環Bのすべてがフッ素で置換された1,4-フェニレンであることはない。
 式(4)中の環Bは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、3,5-ジフルオロ-1,4-フェニレン、3,5-ジクロロ-1,4-フェニレン、またはピリミジン-2,5-ジイルであり、n41が2以上である時、そのうちの少なくとも2つの環Bは同じであっても、異なってもよい。式(4)中の環Bは光学異方性を上げるために1,4-フェニレンまたは3-フルオロ-1,4-フェニレンであり、粘度を下げるために1,4-シクロへキシレンであることが好ましい。
 式(4)中のZ41は独立して、単結合、エチレン、-COO-、-OCO-、-CFO-または-OCF-であり、ただしn41が3または4である場合、一つのZ12は-CFO-である。n41が2以上である時、そのうちの少なくとも2つのZ12は同じであっても、異なってもよい。式(4)中のZ41は、粘度を下げるために単結合が好ましい。式(4)中のZ41は、誘電率異方性を上げるためおよび相溶性を良好にするために-CFO-が好ましい。
 式(4)中のL48およびL49は独立して、水素、またはフッ素であり、誘電率異方性を上げるため、L48およびL49ともにフッ素が好ましく、透明点を上げるため、L48およびL49ともに水素が好ましい。
 式(4)中のXは、フッ素、塩素、-CFまたは-OCFである。誘電率異方性を上げるために、-CFであることが好ましく、相溶性を良好にするためにフッ素、-OCFが好ましく、屈折率異方性を上げるために塩素が好ましい。
 化合物4において、式(4-1)~(4-9)で表される化合物を用いることが好ましい。

Figure JPOXMLDOC01-appb-I000040
上記式(4-1)~(4-9)において、R4Aは独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり、X4Aはフッ素、塩素、-CF、-OCFであり、L40~L49は独立して水素またはフッ素である。
(4-1)~(4-3)は透明点が高く、5環としては相溶性に優れる。(4-4)~(4-6)は透明点が高く、Δnが大きく、(4-7)~(4-9)は相溶性に優れる。なお、L40~L49において、フッ素の数が多いほど、誘電率異方性が大きい。
 化合物4は、大きな誘電率異方性あるいは低温での良好な相溶性を有する組成物の調製に適している。アキラル成分Tの全重量に対して、化合物4を合計で5重量%~40重量%含有することが好ましく、5重量%~30重量%含有することがさらに好ましく、5重量%~20重量%含有することが特に好ましい。
2-5-1 化合物5
 本発明のアキラル成分は、化合物1に加えて、さらに式(5)で表される化合物3を少なくとも1つ含んでもよい。すなわち、本発明は、アキラル成分Tにおいて、化合物5として1つの化合物からなる場合も、化合物5として式(5)で表される複数の化合物を含有する場合も含む。また、たとえば、本発明の液晶組成物は化合物1と化合物5の他に、化合物2~4、6および7からなる群から選ばれる1つ以上を含んでもよい。

Figure JPOXMLDOC01-appb-I000041

(式(5)中、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Rにおいて-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;
 (F)はそれぞれ独立して、水素またはフッ素であり;
 Xは水素、ハロゲン、-SFまたは炭素数1~10のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-が-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、当該アルキル中の-CH-が-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中および当該アルキル中の少なくとも1つの-CH-CH-が-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Xにおいて-O-と-CH=CH-とが隣接することはなく、-CO-と-CH=CH-とが隣接することはない。)
 式(5)中のRにおいて、アルケニルにおける-CH=CH-の好ましい立体配置は、式(1)のRにおける-CH=CH-の好ましい立体配置に準ずる。
 式(5)中のRとXにおいて、少なくとも1つの水素がフッ素で置き換えられたアルキルの具体的な例は、-CHF、-CF、-CFCHF、-CFCHF、-CHCF、-CFCF、-(CH-F、-(CF-F、-CFCHFCF、および-CHFCFCFである。
 式(5)中のRとXにおいて、少なくとも1つの水素がフッ素で置き換えられたアルコキシの具体的な例は、-OCHF、-OCF、-OCFCHF、-OCFCHF、-OCHCF、-O-(CF-F、-OCFCHFCF、および-OCHFCFCFである。
 式(5)中のRとXにおいて、少なくとも1つの水素がフッ素で置き換えられたアルケニルの具体的な例は、-CH=CF、-CF=CHF、-CH=CHCHF、-CH=CHCF、-(CH-CH=CF、-CHCH=CHCF、および-CH=CHCFCFである。
 式(5)中のXの具体的な例として、フッ素、塩素、-CF、-CHF、-OCFおよび-OCHFが挙げられ、フッ素、塩素、-CFおよび-OCFが好ましい。式(5)中のXが塩素、フッ素である場合、化合物5の融点が比較的低く、他の液晶化合物との相溶性が特に優れている。式(5)中のXが-CF、-CHF、-OCFおよび-OCHFである場合は、化合物5は比較的大きな誘電率異方性を示す。
 式(5)中のXがフッ素、塩素、-SF、-CF、-OCF、または-CH=CH-CFであるとき、化合物5の誘電率異方性が比較的大きく、Xがフッ素、-CF、または-OCFであるときは、比較的、化学的に安定する。
 化合物5において、式(5-1)~(5-4)で表される化合物を用いることが好ましく、(5-1)~(5-3)で表される化合物がさらに好ましい。これらの化合物の中でも、式(5-1-1)、(5-1-2)、(5-2-1)~(5-2-4)、(5-3-1)および(5-3-2)で表される化合物が特に好ましく、式(5-2-1)、(5-2-2)および(5-3-2)で表される化合物が最も好ましい。

Figure JPOXMLDOC01-appb-I000042

Figure JPOXMLDOC01-appb-I000043

(式中、R5Aは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニルまたは少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
 (F)はそれぞれ独立して、水素またはフッ素であり;
 X5Aは、フッ素、塩素、-CFまたは-OCFである。)
 化合物5は、大きな誘電率異方性を有する組成物の調製に適している。
 透明点を上げるために、アキラル成分Tの全重量に対して、化合物5を合計で約1.0重量%以上含有することが好ましい。また、液晶相の下限温度を下げるために、アキラル成分Tの全重量に対して、化合物5を合計で1重量%~50重量%含有することが好ましい。さらに、アキラル成分Tの全重量に対して、化合物5を1重量%~25重量%含有することが好ましく、1重量%~15重量%含有することがさらに好ましい。
2-5-2 化合物5の性質
 化合物5はジオキサン環と3個のベンゼン環を有する。化合物5は、素子が通常使用される条件下で物理的および化学的に極めて安定であり、そして透明点が高いにも関らず、他の液晶化合物との相溶性が比較的よい。化合物5を含有する組成物は素子が通常使用される条件下で安定である。したがって、化合物5を含む組成物では、光学的に等方性の液晶相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。また、化合物5は光学的に等方性の液晶相で駆動される組成物の駆動電圧を下げるための成分として有用である。キラル剤および化合物5を含む好ましい態様の組成物でブルー相を発現させると、N*相や等方相との共存がない均一なブルー相となる。このように、化合物5を含む好ましい態様の組成物は均一なブルー相を発現しやすい。また、化合物5を用いると液晶組成物の透明点が高くなる傾向がある。
2-5-3 化合物5の合成
 次に、化合物(5)の合成について説明する。化合物(5)は有機合成化学における公知の手法を適切に組み合わせることにより合成できる。出発物に目的の末端基、環および結合基を導入する方法は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などに記載されている。
 たとえば、特許2959526号公報(JP 2959526B)の方法を準用しても、本願式(5)の化合物を合成することが可能である。
2-6-1 化合物6
 本発明のアキラル成分は、化合物1に加えて、さらに式(6)で表される化合物6を少なくとも1つ含んでもよい。すなわち、本発明は、アキラル成分Tにおいて、化合物6として1つの化合物からなる場合も、化合物6として式(6)で表される複数の化合物を含有する場合も含む。また、たとえば、本発明の液晶組成物は化合物1と化合物6の他に、化合物2~5および7からなる群から選ばれる1つ以上を含んでもよい。化合物6は、誘電率異方性値の絶対値が小さく、中性に近い化合物である。

Figure JPOXMLDOC01-appb-I000044
 式(6)中のrは、1、2または3である。式(6)においてrが1の化合物は主として粘度調整または屈折率異方性値の調整の効果があり、また式(6)においてrが2または3である化合物は透明点を高くするなどの光学的に等方性の液晶相の温度範囲を広げる効果、または屈折率異方性値を調整する効果がある。
 式(6)で表される化合物の含有量を増加させると液晶組成物の駆動電圧が高くなり、粘度が低くなるので、液晶組成物の粘度の要求値を満たす限り、駆動電圧の観点から含有量は少ないほうが望ましい。アキラル成分Tの化合物6の含有量は、アキラル成分Tの全重量に対して、0重量%~40重量%含有することが好ましく、1重量%~40重量%含有することがさらに好ましく、1重量%~20重量%含有することが特に好ましい。
 式(6)中のR6AおよびR6Bは、それぞれ独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルである。化合物6の、粘度を下げるためには、式(6)中のR6AおよびR6Bは炭素数2~12のアルケニルが好ましい。紫外線に対する安定性を上げるため、または熱に対する安定性を上げるためには、式(6)中のR6AおよびR6Bは、炭素数1~12のアルキルであることが好ましい。
 式(6)中のR6AおよびR6Bにおいて、アルキルは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、またはオクチルであることが好ましく、粘度を下げるために、エチル、プロピル、ブチル、ペンチル、またはヘプチルであることが好ましい。
 式(6)中のR6AおよびR6Bにおいて、アルコキシは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、またはヘプチルオキシが好ましく、粘度を下げるためには、メトキシまたはエトキシが好ましい。
 式(6)中のR6AおよびR6Bにおいて、アルケニルにおける-CH=CH-の好ましい立体配置は、式(1)のRにおける-CH=CH-の好ましい立体配置に準ずる。
 式(6)中のR6AおよびR6Bにおいて、少なくとも1つの水素がフッ素で置き換えられたアルケニルは、2,2-ジフルオロビニル、3,3-ジフルオロ-2-プロペニル、4,4-ジフルオロ-3-ブテニル、5,5-ジフルオロ-4-ペンテニル、および6,6-ジフルオロ-5-ヘキセニルが好ましい。化合物6を含む組成物の粘度を下げるためにはR6AおよびR6Bは2,2-ジフルオロビニル、および4,4-ジフルオロ-3-ブテニルであることが好ましい。
 式(6)中の環Cおよび環Dは独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレンまたは2,5-ジフルオロ-1,4-フェニレンであり、rが2以上である時、そのうちの少なくとも2つの環Cは同じであっても、異なってもよい。化合物6の光学異方性を上げるためには、環Cおよび環Dは1,4-フェニレンまたは3-フルオロ-1,4-フェニレンであることが好ましい。化合物6の粘度を下げるためには、環Cおよび環Dは1,4-シクロへキシレンである。
 式(6)中のZ61はそれぞれ独立して、単結合、エチレン、または-COO-、-OCO-であり、rが2以上である時、そのうちの少なくとも2つのZ13は同じであっても、異なってもよい。好ましいZ61は、粘度を下げるために単結合である。
 化合物6において、式(6-1)~(6-13)で表される化合物を用いることが好ましい。

Figure JPOXMLDOC01-appb-I000045

 これらの化合物の中でも、(6-1)~(6-3)で表される化合物は比較的粘度が低く、(6-4)~(6-8)で表される化合物は透明点が比較的高く、(6-9)~(6-13)で表される化合物は比較的透明点が高い。
 化合物6は、必要に応じて粘度を下げるため、あるいは透明点を上げるために用いられる。ただし、駆動電圧を上昇させるので、駆動電圧を重視する場合は、使用しないか、少ない使用量で使用されることが好ましい。化合物6を合計で0重量%~30重量%含有することが好ましく、0重量%~20重量%含有することがさらに好ましく、0重量%~10重量%含有することが特に好ましい。
2-7-1 化合物7
 本発明のアキラル成分は、化合物1に加えて、さらに式(7)で表される化合物7を少なくとも1つ含んでもよい。すなわち、本発明は、アキラル成分Tにおいて、化合物7として1つの化合物からなる場合も、化合物7として式(7)で表される複数の化合物を含有する場合も含む。また、たとえば、本発明の液晶組成物は化合物1と化合物7の他に、化合物2~6からなる群から選ばれる1つ以上を含んでもよい。

Figure JPOXMLDOC01-appb-I000046
 式(7)中のRとXにおいて、アルケニルにおける-CH=CH-の好ましい立体配置は、式(1)のRにおける-CH=CH-の好ましい立体配置に準ずる。
 式(7)中のXにおいて、少なくとも1つの水素がフッ素で置き換えられたアルキルの具体的な例は、-CHF、-CF、-CFCHF、-CFCHF、-CHCF、-CFCF、-(CH-F、-(CF-F、-CFCHFCF、および-CHFCFCFである。
  式(7)中のXにおいて、少なくとも1つの水素がフッ素で置き換えられたアルコキシの具体的な例は、-OCHF、-OCF、-OCFCHF、-OCFCHF、-OCHCF、-O-(CF-F、-OCFCHFCF、および-OCHFCFCFである。
 式(7)中のXにおいて、少なくとも1つの水素がフッ素で置き換えられたアルケニルの具体的な例は、-CH=CF、-CF=CHF、-CH=CHCHF、-CH=CHCF、-(CH-CH=CF、-CHCH=CHCF、および-CH=CHCFCFである。
 式(7)において、Xの好ましい具体的としては、フッ素、塩素、-CF、-CHF、-OCFおよび-OCHFが挙げられ、フッ素、塩素、-CFおよび-OCFがさらに好ましい。
式(7)のXが塩素、フッ素である場合は化合物7の融点が比較的低く、他の液晶化合物との相溶性が特に優れている。式(7)Xが-CF、-SF5、-CHF、-OCFおよび-OCHFである場合は、化合物7は比較的大きな誘電率異方性を示す。
 Xがフッ素、-CF、または-OCFであるときは、化学的に安定である。
 化合物7において、式(7-1)~(7-8)で表される化合物を用いることが好ましく、式(7-1-1)、(7-1-2)、(7-2-1)~(7-2-5)、(7-3-1)、(7-3-2)、(7-4-1)、(7-5-1)および(7-5-2)で表される化合物を用いることがより好ましく、式(7-2-1)~(7-2-5)で表される化合物を用いることがさらに好ましく、(7-2-2-E)、(7-2-5-E)、(7-2-2-F)および(7-2-5-F)で表される化合物が特に好ましい。

Figure JPOXMLDOC01-appb-I000047

Figure JPOXMLDOC01-appb-I000048

Figure JPOXMLDOC01-appb-I000049

式中、R7Aは、炭素数2~12のアルキル、炭素数1~11のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
 式(7-1-1)、(7-1-2)、(7-2-1)~(7-2-5)、(7-3-1)および(7-3-2)において、Z71およびZ72はそれぞれ独立して、単結合、-COO-または-CFO-であるが、少なくとも一つは-COO-、または-CFO-であり、式(7-4-1)、(7-5-1)および(7-5-2)において、Z71は-COO-または-CFO-であり;
 X7Aは、フッ素、塩素、-CFまたは-OCFである。
 化合物7は、大きな誘電率異方性を有する組成物の調製に適しており、本発明の素子における駆動電圧を低下させることができる。アキラル成分Tの全重量に対して、化合物7を合計で5重量%~80重量%含有することが好ましく、20重量%~75重量%含有することがさらに好ましく、30重量%~70重量%含有することが特に好ましい。
2-7-2 化合物7の性質
 化合物7はジオキサン環と3個のベンゼン環を有し、かつ少なくとも一つの-CFO-連結基を有する。化合物7は、素子が通常使用される条件下で物理的および化学的に極めて安定であり、そして透明点が高いにも関らず、他の液晶化合物との相溶性が比較的よい。化合物7を含有する組成物は素子が通常使用される条件下で比較的安定している。したがって、化合物7を含む組成物において光学的に等方性の液晶相の温度範囲を広げることが可能となり、幅広い温度範囲で表示素子として使用することができる。さらに化合物7は光学的に等方性の液晶相で駆動される組成物の駆動電圧を下げるための成分として有用である。また、化合物7とキラル剤とを含む組成物においてブルー相を発現させると、N*相や等方相との共存がない均一なブルー相となりやすい。すなわち、化合物7は均一なブルー相を発現させやすい化合物である。また、極めて大きな誘電率異方性を発現する。
2-7-3 化合物7の合成
 化合物7は有機合成化学における手法を適切に組み合わせることにより合成できる。出発物に目的の末端基、環および結合基を導入する方法は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などに記載されている。
光学的等方性液晶組成物
 本発明の液晶組成物は、アキラル成分Tとキラル剤とを含み、光学的に等方性の液晶相を発現する組成物の態様を含む(光学的等方性液晶組成物)。
本発明の光学的等方性液晶組成物に含まれるアキラル成分Tは化合物1を含み、必要に応じて化合物2~7からなる群から選ばれる1以上を含む。アキラル成分Tは、化合物1の他に、化合物2,3,5および7を含むことが好ましく、化合物3、7を含むことが特に好ましく、さらに求められる性質に応じて化合物4と6を含むことができる。
化合物1は比較的高い透明点、比較的大きな誘電率異方性、低温での比較的良好な相溶性を併せ持つため、化合物1を用いた光学的等方性を発現する液晶組成物も、高い透明点、広い液晶相温度範囲、または大きな誘電率異方性を発現するため、光素子に用いる組成物として有用である。化合物1を含有する光学的等方性液晶組成物は、高い透明点と低い駆動電圧を同時に発現する。
 さらに、大きな誘電率異方性を発現させるためには、化合物3と7で表される化合物をさらに添加することが好ましい。この組成物は非常に大きな誘電率異方性を発現するため、光素子の低電圧化に極めて有効な組成物である。
キラル剤
 本発明の光学的等方性液晶組成物等が含有するキラル剤は光学活性化合物であり、ラジカル重合性基を有さない化合物から選ばれた化合物からなることが好ましい。
 本発明の液晶組成物に用いられるキラル剤としては、ねじり力(Helical Twisting Power)が大きい化合物が好ましい。ねじり力が大きい化合物は所望のピッチを得るために必要な添加量が少なくできるので、駆動電圧の上昇を抑えられ、実用上有利である。具体的には、式(K1)~(K6)で表される化合物が好ましい。なお、式(K4)~(K6)は、ビナフチル基、オクタヒドロナフチル基が光学活性部位であり、かつ、キラル剤の掌性は問わない。

Figure JPOXMLDOC01-appb-I000050

これらの化合物の中でも、液晶組成物に添加されるキラル剤としては、式(K4)に含まれる式(K4-1)~式(K4-6)、式(K5)に含まれる式(K5-1)~式(K5-3)および式(K6)に含まれる式(K6-1)~式(K6-6)が好ましく、式(K4-5)、式(K5-1)~式(K5-3)および式(K6-5)~式(K6-6)がさらに好ましい。

Figure JPOXMLDOC01-appb-I000051


Figure JPOXMLDOC01-appb-I000052


Figure JPOXMLDOC01-appb-I000053

(式中、Rは独立して、炭素数3~10のアルキルまたは炭素数3~10のアルコキシであり、アルキル中またはアルコキシ中の少なくとも1以上の-CH-CH-は、-CH=CH-で置き換えられてもよい。)。
 液晶組成物に求められる性質によっては、ねじり力が比較的大きくないキラル剤を用いることが好ましい。ねじり力が比較的大きくないキラル剤の例として、以下の式(Op-1)~(Op-13)で表される化合物を挙げることができる。


Figure JPOXMLDOC01-appb-I000054
 液晶組成物に含有されるキラル剤として1つの化合物を用いても、複数の化合物を用いてもよい。
 光学的に等方性の液晶相の発現を容易にするために、本発明の液晶組成物の全重量に対して、キラル剤を1~40重量%含有することが好ましく、3~25重量%含有することがさらに好ましく、3~15重量%含有することが特に好ましい。
光学的に等方性の液晶相
 本明細書において、液晶組成物が光学的に等方性を有するとは、巨視的には液晶分子配列は等方的であるため光学的に等方性を示すが、微視的には液晶秩序が存在することをいう。「液晶組成物が微視的に有する液晶秩序に基づくピッチ(以下では、単に「ピッチ」と呼ぶことがある)」は700nm以下であることが好ましく、500nm以下であることがさらに好ましく、350nm以下であることが最も好ましい。
 本明細書において、「非液晶等方相」とは一般的に定義される等方相、すなわち、無秩序相であり、局所的な秩序パラメーターがゼロでない領域が生成したとしても、その原因がゆらぎによるものである等方相である。たとえばネマチック相の高温側に発現する等方相は、本明細書では非液晶等方相に該当する。本明細書におけるキラルな液晶についても、同様の定義があてはまるものとする。
 本明細書において「光学的に等方性の液晶相」とは、ゆらぎではなく光学的に等方性の液晶相を発現する相を表し、プレートレット組織を発現する相(狭義のブルー相)はその一例である。
 本明細書において、特に言及がなければ、ネマチック相はキラルネマチック相を含まない、狭義のネマチック相を意味する。
 本発明の光学的に等方性の液晶組成物において、光学的に等方性の液晶相ではあるが、偏光顕微鏡観察下、ブルー相に典型的なプレートレット組織が観測されないことがある。そこで本明細書において、プレートレット組織を発現する相をブルー相と称し、ブルー相を含む光学的に等方性の液晶相を光学的に等方性の液晶相と称する。すなわちブルー相は光学的に等方性の液晶相に包含される。
 一般的に、ブルー相は、ブルー相I、ブルー相II、ブルー相IIIの3種類に分類され、これら3種類のブルー相はすべて光学活性であり、かつ、等方性である。ブルー相Iやブルー相IIのブルー相では異なる格子面からのブラッグ反射に起因する2種以上の回折光が観測される。ブルー相は一般的に非液晶等方相とキラルネマチック相の間で観測される。
 光学的に等方性の液晶相が二色以上の回折光を示さない状態とは、ブルー相I、ブルー相IIに観測されるプレートレット組織が観測されず、概ね一面単色であることを意味する。二色以上の回折光を示さない光学的に等方性の液晶相では、色の明暗が面内で均一であることまでは不要である。
 二色以上の回折光を示さない光学的に等方性の液晶相は、ブラッグ反射による反射光強度が抑えられる、あるいは低波長側にシフトするという利点がある。
 また、可視光の光を反射する液晶媒体では、表示素子として利用する場合に色味が問題となることがあるが、二色以上の回折光を示さない液晶では、反射波長が低波長シフトするため、狭義のブルー相(プレートレット組織を発現する相)より長いピッチで可視光の反射を消失させることができる。
 アキラル成分Tとキラル剤とを含む本発明の液晶組成物において、キラル剤は好ましくはピッチが700nm以下になるような濃度で添加される。なお、ネマチック相を発現する組成物は、化合物1および必要に応じてその他の成分を含む。
 また、本発明の光学的等方性液晶組成物は、キラルネマチック相を有し、光学的に等方性の液晶相を有さない組成物にキラル剤を添加して得ることもできる。なお、キラルネマチック相を有し光学的に等方性の液晶を有さない組成物は、化合物1、光学活性化合物および必要に応じてその他の成分を含む。この際、光学的に等方性の液晶相を発現させないために、好ましくはピッチが700nm以上になるような濃度でキラル剤が添加される。ここで、添加されるは、前述のねじり力が大きい化合物である式(K1)~(K5)が使用でき、より好ましくは、式(K2-1)~(K2-8)、式(K4-1)~(K4-6)、式(K5-1)~(K5-3)、または式(K6-1)~(K6-6)で表される化合物が用いられる。
 また、添加されるキラル剤は、ねじり力がそれほど大きくない化合物であってもよい。そのような化合物としては、ネマチック相で駆動される素子(TN方式、STN方式など)用の液晶組成物に添加される化合物を挙げることができ、具体的には、式(Op-1)~(Op-13)で表される化合物が挙げられる。
 本発明の好ましい態様の液晶組成物が光学的に等方性の液晶相を発現する温度範囲は、ネマチック相またはキラルネマチック相と等方相の共存温度範囲が広い液晶組成物に、キラル剤を添加し、光学的に等方性の液晶相を発現させることにより、広くすることができる。たとえば、透明点の高い液晶化合物と透明点の低い液晶化合物とを混合し、広い温度範囲でネマチック相と等方相の共存温度範囲が広い液晶組成物を調製し、これにキラル剤を添加することで、広い温度範囲で光学的に等方性の液晶相を発現する組成物を調製することができる。
 ネマチック相またはキラルネマチック相と等方相の共存温度範囲が広い液晶組成物としては、キラルネマチック相と非液晶等方相とが共存する上限温度と下限温度との差が3~150℃である液晶組成物が好ましく、差が5~150℃である液晶組成物が更に好ましい。また、ネマチック相と非液晶等方相とが共存する上限温度と下限温度との差が3~150℃である液晶組成物が好ましい。
 光学的に等方性の液晶相において本発明の液晶媒体に電界を印加すると、電気複屈折が生じるが、必ずしもカー効果である必要はない。
光学的に等方性の液晶相における電気複屈折はピッチが長くなるほど大きくなるので、その他の光学特性(透過率、回折波長など)の要求を満たす限り、キラル剤の種類と含有量を調整して、ピッチを長く設定することにより、電気複屈折を大きくすることができる。
その他の成分
 本発明の液晶組成物は、その組成物の特性に大きな影響を与えない範囲で、さらに、溶媒、モノマー、高分子物質、重合開始剤、酸化防止剤、紫外線吸収剤、硬化剤、安定剤、二色性色素、フォトクロミック化合物等を含んでもよい。
 また、本発明の液晶組成物に用いられる二色性色素の例としては、メロシアニン系、スチリル系、アゾ系、アゾメチン系、アゾキシ系、キノフタロン系、アントラキノン系、テトラジン系などが挙げられる。
光学的に等方性の高分子/液晶複合材料
1 高分子/液晶複合材料
 本発明の高分子/液晶複合材料は、液晶組成物と高分子とを含む複合材料であり、光学的に等方性を示すものであり、光学的に等方性の液晶相で駆動される光素子に用いることができる。本発明の高分子/液晶複合材料に含まれる液晶組成物は本発明の液晶組成物である。
 本明細書中、「高分子/液晶複合材料」とは、液晶組成物と高分子の化合物の両者を含む複合材料であれば特に限定されないが、高分子の一部または全部が液晶組成物や溶媒等に溶解していない状態で高分子が液晶組成物と相分離している状態でもよい。
 本発明の好ましい態様に係る光学的に等方性の高分子/液晶複合材料は、光学的に等方性の液晶相を広い温度範囲で発現させることが可能である。また、本発明の好ましい態様に係る高分子/液晶複合材料は、応答速度が極めて速い。また、本発明の好ましい態様に係る高分子/液晶複合材料は、これらの効果に基づいて表示素子等の光素子等に好適に用いることができる。
2 高分子化合物
 本発明の複合材料は、光学的に等方性の液晶組成物と、予め重合されて得られた高分子とを混合しても製造できるが、高分子の材料となる低分子量のモノマー、マクロモノマー、オリゴマー等(以下、まとめて「モノマー等」という)と液晶組成物CLCとを混合してから、当該混合物において重合反応を行うことによって、製造されることが好ましい。モノマー等と液晶組成物とを含む混合物を本件明細書では、「重合性モノマー/液晶混合物」と呼ぶ。「重合性モノマー/液晶混合物」には必要に応じて、後述する重合開始剤、硬化剤、触媒、安定剤、二色性色素、またはフォトクロミック化合物等を、本発明の効果を損なわない範囲で含んでもよい。たとえば、本件発明の重合性モノマー/液晶混合物には必要に応じて、重合開始剤を重合性モノマー100重量部に対して0.1~20重量部含有してもよい。「重合性モノマー/液晶混合物」は、ブルー相で重合する場合は液晶媒体であることが必須となるが、等方相で重合する場合は、必ずしも液晶媒体である必要はない。
 重合温度は、高分子/液晶複合材料が高透明性と等方性を示す温度であることが好ましい。より好ましくはモノマーと液晶材料の混合物が等方相またはブルー相を発現する温度で、かつ、等方相ないしは光学的に等方性の液晶相で重合を終了する。すなわち、重合後は高分子/液晶複合材料が可視光線より長波長側の光を実質的に散乱せずかつ光学的に等方性の状態を発現する温度とするのが好ましい。
 本発明の複合材料を構成する高分子の原料としては、たとえば低分子量のモノマー、マクロモノマー、オリゴマーを使用することができ、本明細書において高分子の原料モノマーとは低分子量のモノマー、マクロモノマー、オリゴマー等を包含する意味で用いる。また、得られる高分子が三次元架橋構造を有するものが好ましく、そのために、高分子の原料モノマーとして2つ以上の重合性官能基を有する多官能性モノマーを用いることが好ましい。重合性の官能基は特に限定されないが、アクリル基、メタクリル基、グリシジル基、エポキシ基、オキセタニル基、ビニル基などを上げることができるが、重合速度の観点からアクリル基およびメタクリル基が好ましい。高分子の原料モノマー中、二つ以上の重合性のある官能基を持つモノマーをモノマー中に10重量%以上含有させると、本発明の複合材料において高度な透明性と等方性を発現しやすくなるので好ましい。
 また、好適な複合材料を得るためには、高分子はメソゲン部位を有するものが好ましく、高分子の原料モノマーとしてメソゲン部位を有する原料モノマーをその一部に、あるいは全部に用いることができる。
2-1 メソゲン部位を有する単官能性・二官能性モノマー
 メソゲン部位を有する単官能性、または二官能性モノマーは構造上特に限定されないが、たとえば下記の式(M1)または式(M2)で表される化合物を挙げることができる。
  R-Y-(A-Zm1-A-Y-R(M1)
  R-Y-(A-Zm1-A-Y-R(M2)
 式(M1)中、Rは、水素、ハロゲン、-C≡N、-N=C=O、-N=C=S、または炭素数1~20のアルキルであり、これらのアルキルにおいて少なくとも1つの-CH2-は-O-、-S-、-CO-、-COO-、または-OCO-、で置き換えられてもよく、このアルキル中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-、または-C≡C-で置き換えられてもよく、これらのアルキル基中、当該アルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中、または当該アルキル中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンまたは-C≡Nで置き換えられてもよい。Rは、それぞれ独立して、式(M3-1)~式(M3-7)の重合性基である。

Figure JPOXMLDOC01-appb-I000055
 好ましいRは、水素、ハロゲン、-C≡N、-CF、-CFH、-CFH、-OCF、-OCFH、炭素数1~20のアルキル、炭素数1~19のアルコキシ、炭素数2~21のアルケニル、および炭素数2~21のアルキニルである。特に好ましいRは、-C≡N、炭素数1~20のアルキルおよび炭素数1~19のアルコキシである。
 式(M2)中、Rは、それぞれ独立して、式(M3-1)~(M3-7)の重合性基である。
 ここで、式(M3-1)~(M3-7)におけるRは、それぞれ独立して水素、ハロゲンまたは炭素数1~5のアルキルであり、これらのアルキルにおいて少なくとも1つの水素はハロゲンで置き換えられてもよい。好ましいRは、水素、ハロゲンおよびメチルである。特に好ましいRは、水素、フッ素およびメチルである。
 また、式(M3-2)、式(M3-3)、式(M3-4)、式(M3-7)はラジカル重合で重合するのが好適である。式(M3-1)、式(M3-5)、式(M3-6)はカチオン重合で重合するのが好適である。いずれもリビング重合なので、少量のラジカルあるいはカチオン活性種が反応系内に発生すれば重合は開始する。活性種の発生を加速する目的で重合開始剤を使用できる。活性種の発生にはたとえば光または熱を使用できる。
 式(M1)および(M2)中、Aは、それぞれ独立して芳香族性または非芳香族性の5員環、6員環または炭素数9以上の縮合環であるが、環中の-CH-は-O-、-S-、-NH-、または-NCH-で、環中の-CH=は-N=で置き換わってもよく、環上の水素原子はハロゲン、および炭素数1~5のアルキル、またはハロゲン化アルキルで置き換わってもよい。好ましいAの具体例は、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、またはビシクロ[2.2.2]オクタン-1,4-ジイルであり、これらの環において少なくとも1つの-CH-は-O-で置き換えられてもよく、少なくとも1つの-CH=は-N=で置き換えられてもよく、これらの環において少なくとも1つの水素はハロゲン、炭素数1~5のアルキルまたは炭素数1~5のハロゲン化アルキルで置き換えられてもよい。
 化合物の安定性を考慮して、酸素と酸素とが隣接した-CH-O-O-CH-よりも、酸素と酸素とが隣接しない-CH-O-CH-O-の方が好ましい。硫黄においても同様である。
 これらの中でも、特に好ましいAは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2-メチル-1,4-フェニレン、2-トリフルオロメチル-1,4-フェニレン、2,3-ビス(トリフルオロメチル)-1,4-フェニレン、ナフタレン-2,6-ジイル、テトラヒドロナフタレン-2,6-ジイル、フルオレン-2,7-ジイル、9-メチルフルオレン-2,7-ジイル、1,3-ジオキサン-2,5-ジイル、ピリジン-2,5-ジイル、およびピリミジン-2,5-ジイルである。なお、前記1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルの立体配置はシスよりもトランスの方が好ましい。
 2-フルオロ-1,4-フェニレンは、3-フルオロ-1,4-フェニレンと構造的に同一であるので、後者は例示しなかった。この規則は、2,5-ジフルオロ-1,4-フェニレンと3,6-ジフルオロ-1,4-フェニレンの関係などにも適用される。
 式(M1)および(M2)中、Yは、それぞれ独立して単結合または炭素数1~20のアルキレンであり、これらのアルキレンにおいて少なくとも1つの-CH2-は-O-、-S-で置き換えられてもよく、このアルキル中の少なくとも1つの-CH-CH-は-CH=CH-、-C≡C-、-COO-、または-OCO-で置き換えられてもよい。好ましいYは、単結合、-(CH2m2-、-O(CH2m2-、および-(CH2m2O-(前記式中、m2は1~20の整数である)である。特に好ましいYは、単結合、-(CH2m2-、-O(CH2m2-、および-(CH2m2O-(前記式中、m2は1~10の整数である)である。化合物の安定性を考慮して、-Y-Rおよび-Y-Rは、それらの基中に-O-O-、-O-S-、-S-O-、または-S-S-を有しない方が好ましい。
 式(M1)および(M2)中、Zは、それぞれ独立して単結合、-(CH2m3-、-O(CH2m3-、-(CH2m3O-、-O(CH2m3O-、-CH=CH-、-C≡C-、-COO-、-OCO-、-(CF22-、-(CH2-COO-、-OCO-(CH2-、-CH=CH-COO-、-OCO-CH=CH-、-C≡C-COO-、-OCO-C≡C-、-CH=CH-(CH22-、-(CH22-CH=CH-、-CF=CF-、-C≡C-CH=CH-、-CH=CH-C≡C-、-OCF-(CH2-、-(CH2-CFO-、-OCF-または-CFO-(前記式中、m3は1~20の整数である)である。
 好ましいZは単結合、-(CH2m3-、-O(CH2m3-、-(CH2m3O-、-CH=CH-、-C≡C-、-COO-、-OCO-、-(CH2-COO-、-OCO-(CH2-、-CH=CH-COO-、-OCO-CH=CH-、-OCF-、および-CFO-である。
 式(M1)および(M2)中、m1は1~6の整数である。好ましいm1は、1~3の整数である。m1が1のときは、6員環などの環を2つ有する二環の化合物である。m1が2と3のときは、それぞれ三環と四環の化合物である。たとえばm1が1であるとき、2つのAは同一であってもよいし、または異なってもよい。また、たとえばm1が2であるとき、3つのA(または2つのZ)は同一であってもよいし、または異なってもよい。m1が3~6であるときについても同様である。R、R、R、Z、AおよびYについても同様である。
 式(M1)で表される化合物(M1)および式(M2)で表される化合物(M2)はH(重水素)、13Cなどの同位体を天然存在比の量よりも多く含んでいても同様の特性を有するので好ましく用いることができる。
 化合物(M1)および化合物(M2)の更に好ましい例は、式(M1-1)~(M1-41)および式(M2-1)~(M2-27)で表される化合物(M1-1)~(M1-41)および化合物(M2-1)~(M2-27)である。これらの化合物において、R、R、R、Z、A、Yおよびpの定義は、本発明の態様に記載した式(M1)および式(M2)のそれらと同一である。
 化合物(M1-1)~(M1-41)および(M2-1)~(M2-27)における下記の部分構造について説明する。部分構造(a1)は、少なくとも1つの水素がフッ素で置き換えられた1,4-フェニレンを表す。部分構造(a2)は、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレンを表す。部分構造(a3)は、少なくとも1つの水素がフッ素またはメチルのいずれかで置き換えられてもよい1,4-フェニレンを表す。部分構造(a4)は、9位の水素がメチルで置き換えられてもよいフルオレンを表す。

Figure JPOXMLDOC01-appb-I000056


Figure JPOXMLDOC01-appb-I000057

Figure JPOXMLDOC01-appb-I000058


Figure JPOXMLDOC01-appb-I000059


Figure JPOXMLDOC01-appb-I000060


Figure JPOXMLDOC01-appb-I000061


Figure JPOXMLDOC01-appb-I000062


Figure JPOXMLDOC01-appb-I000063


Figure JPOXMLDOC01-appb-I000064


Figure JPOXMLDOC01-appb-I000065


Figure JPOXMLDOC01-appb-I000066
 前述のメソゲン部位を有さないモノマー、およびメソゲン部位を持つモノマー(M1)、および(M2)以外の重合性化合物を必要に応じて使用することができる。
 本発明の高分子/液晶複合材料の光学的に等方性を最適化する目的で、メソゲン部位を持ち3つ以上の重合性官能基を持つモノマーを使用することもできる。メソゲン部位を持ち3つ以上の重合性官能基を持つモノマーとしては公知の化合物を好適に使用できるが、たとえば、(M4-1)~(M4-3)であり、より具体的な例として、特開2000-327632号(JP 2000-327632A)、特開2004-182949号(JP 2004-182949A)、特開2004-59772号(JP 2004-59772A)に記載された化合物をあげることができる。ただし、(M4-1)~(M4-3)において、R、Z、Y、および(F)は前述と同一の定義を示す。

Figure JPOXMLDOC01-appb-I000067
2-2 メソゲン部位を有さない重合性官能基を持つモノマー
 メソゲン部位を有さない重合性官能基を持つモノマーとして、たとえば、炭素数1~30の直鎖あるいは分岐鎖のアクリレート、炭素数1~30の直鎖あるいは分岐鎖のジアクリレート、三つ以上の重合性官能基を有するモノマーとしては、グリセロール・プロポキシレート(1PO/OH)トリアクリレート、ペンタエリスリトール・プロポキシレート・トリアクリレート、ペンタエリスリトール・トリアクリレート、トリメチロールプロパン・エトキシレート・トリアクリレート、トリメチロールプロパン・プロポキシレート・トリアクリレート、トリメチロールプロパン・トリアクリレート、ジ(トリメチロールプロパン)テトラアクリレート、ペンタエリスリトール・テトラアクリレート、ジ(ペンタエリスリトール)ペンタアクリレート、ジ(ペンタエリスリトール)ヘキサアクリレート、トリメチロールプロパン・トリアクリレートなどを挙げることができるが、これらに限定されるものではない。
2-3 重合開始剤
 本発明の複合材料を構成する高分子の製造における重合反応は特に限定されず、たとえば、光ラジカル重合、熱ラジカル重合、光カチオン重合等が行われる。
 光ラジカル重合において用いることができる光ラジカル重合開始剤の例は、ダロキュア(DAROCUR)1173および4265(いずれも商品名、BASFジャパン(株))、イルガキュア(IRGACURE)184、369、500、651、784、819、907、1300、1700、1800、1850、および2959(いずれも商品名、BASFジャパン(株))である。
 熱ラジカル重合において用いることができる熱によるラジカル重合の好ましい開始剤の例は、過酸化ベンゾイル、ジイソプロピルパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ブチルパーオキシジイソブチレート、過酸化ラウロイル、2,2’-アゾビスイソ酪酸ジメチル(MAIB)、ジt-ブチルパーオキシド(DTBPO)、アゾビスイソブチロニトリル(AIBN)、アゾビスシクロヘキサンカルボニトリル(ACN)である。
 光カチオン重合において用いることができる光カチオン重合開始剤の例は、ジアリールヨードニウム塩(以下、「DAS」という。)およびトリアリールスルホニウム塩(以下、「TAS」という。)である。
 DASの例は、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロホスホネート、ジフェニルヨードニウムヘキサフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム-p-トルエンスルホネート、ジフェニルヨードニウムテトラ(ペンタフルオロフェニル)ボレート、4-メトキシフェニルフェニルヨードニウムテトラフルオロボレート、4-メトキシフェニルフェニルヨードニウムヘキサフルオロホスホネート、4-メトキシフェニルフェニルヨードニウムヘキサフルオロアルセネート、4-メトキシフェニルフェニルヨードニウムトリフルオロメタンスルホネート、4-メトキシフェニルフェニルヨードニウムトリフルオロアセテート、および4-メトキシフェニルフェニルヨードニウム-p-トルエンスルホナートである。
 DASには、チオキサントン、フェノチアジン、クロロチオキサントン、キサントン、アントラセン、ジフェニルアントラセン、ルブレンなどの光増感剤を添加することで高感度化することもできる。
 TASの例は、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロホスホネート、トリフェニルスルホニウムヘキサフルオロアルセネート、トリフェニルスルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム-p-トルエンスルホネート、トリフェニルスルホニウムテトラ(ペンタフルオロフェニル)ボレート、4-メトキシフェニルジフェニルスルホニウムテトラフルオロボレート、4-メトキシフェニルジフェニルスルホニウムヘキサフルオロホスホネート、4-メトキシフェニルジフェニルスルホニウムヘキサフルオロアルセネート、4-メトキシフェニルジフェニルスルホニウムトリフルオロメタンスルホナート、4-メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、および4-メトキシフェニルジフェニルスルホニウム-p-トルエンスルホネートである。
 光カチオン重合開始剤の具体的な商品名の例は、サイラキュア(Cyracure)UVI-6990、サイラキュアUVI-6974、サイラキュアUVI-6992(それぞれ商品名、UCC(株))、アデカオプトマーSP-150、SP-152、SP-170、SP-172(それぞれ商品名、(株)ADEKA)、Rhodorsil Photoinitiator 2074(商品名、ローディアジャパン(株))、イルガキュア(IRGACURE)250(商品名、BASFジャパン(株))、およびUV-9380C(商品名、GE東芝シリコーン(株))である。
2-4 硬化剤等
 本発明の複合材料を構成する高分子の製造において、前記モノマー等および重合開始剤の他にさらに1種または2種以上の他の好適な成分、たとえば、硬化剤、触媒、安定剤等を加えてもよい。
 硬化剤としては、通常、エポキシ樹脂の硬化剤として使用されている従来公知の潜在性硬化剤が使用できる。潜在性エポキシ樹脂用硬化剤の例は、アミン系硬化剤、ノボラック樹脂系硬化剤、イミダゾール系硬化剤、酸無水物系硬化剤等である。アミン系硬化剤の例は、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタアミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン等の脂肪族ポリアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ラロミン等の脂環式ポリアミン、ジアミノジフェニルメタン、ジアミノジフェニルエタン、メタフェニレンジアミン等の芳香族ポリアミンである。
 ノボラック樹脂系硬化剤の例は、フェノールノボラック樹脂、ビスフェノールノボラック樹脂である。イミダゾール系硬化剤の例、2-メチルイミダゾール、2-エチルへキシルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウム・トリメリテートである。
 酸無水物系硬化剤の例は、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルへキサヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸二無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物である。
 また、グリシジル基、エポキシ基、オキセタニル基を有する重合性化合物と硬化剤との硬化反応を促進するための硬化促進剤をさらに用いてもよい。硬化促進剤の例は、ベンジルジメチルアミン、トリス(ジメチルアミノメチル)フェノール、ジメチルシクロヘキシルアミン等の3級アミン類、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン等の有機リン系化合物、テトラフェニルホスホニウムブロマイド等の4級ホスホニウム塩類、1,8-ジアザビシクロ[5.4.0]ウンデセン-7等やその有機酸塩等のジアザビシクロアルケン類、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩類、三フッ化ホウ素、トリフェニルボレート等のホウ素化合物である。これらの硬化促進剤は単独または複数を混合して使用することができる。
 また、たとえば貯蔵中の不所望な重合を防止するために、安定剤を添加することが好ましい。安定剤として、当業者に知られているすべての化合物を用いることができる。安定剤の代表例としては、4-エトキシフェノール、ハイドロキノン、ブチル化ヒドロキシトルエン(BHT)等が挙げられる。
3 高分子/液晶複合材料の組成
 本発明の高分子/液晶複合材料中における液晶組成物の含有率は、複合材料が光学的に等方性の液晶相を発現できる範囲であれば、可能な限り高含有率であることが好ましい。液晶組成物の含有率が高い方が、本発明の複合材料の電気複屈折値が大きくなるからである。
 本発明の高分子/液晶複合材料において、液晶組成物の含有率は複合材料に対して60~99重量%であることが好ましく、60重量%~98重量%がさらに好ましく、80重量%~97重量%が特に好ましい。また、本発明の高分子/液晶複合材料において、高分子の含有率は複合材料に対して1重量%~40重量%であることが好ましく、2重量%~40重量%がさらに好ましく、3重量%~20重量%が特に好ましい。
4 光素子
 本発明の光素子は、液晶組成物または高分子/液晶複合材料(以下では、本発明の液晶組成物および高分子/液晶複合材料を総称して液晶媒体と呼ぶことがある)を含む光学的に等方性の液晶相で駆動される光素子である。
 電界無印加時には液晶媒体は光学的に等方性であるが、電場を印加すると、液晶媒体は光学的異方性を生じ、電界による光変調が可能となる。
 液晶表示素子の構造例としては、図1に示すように、櫛型電極基板の電極が、左側から伸びる電極1と右側から伸びる電極2が交互に配置された構造を挙げることができる。電極1と電極2との間に電位差がある場合、図1に示すような櫛型電極基板上では、1本の電極に注目すると、図面上の上方向と下方向の2つの方向の電界が存在する状態を提供できる。
 本発明の液晶組成物は光素子に利用できる。本発明の液晶組成物は、低い駆動電圧と短い応答時間を示すため、本発明の好ましい態様の光素子は低電圧で駆動が可能であり、高速応答が可能である。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例によっては制限されない。なお特に言及のない限り、「%」は「重量%」を意味する。
 また、得られた化合物は、1H-NMR分析で得られる核磁気共鳴スペクトル、ガスクロマトグラフィー(GC)分析で得られるガスクロマトグラムなどにより同定した。分析方法は以下のとおりであった。
1 分析方法
1-1 1H-NMR分析
 測定装置は、DRX-500(商品名、ブルカーバイオスピン(株))を用いた。測定は、実施例等で製造したサンプルを、CDCl3等のサンプルが可溶な重水素化溶媒に溶解し、室温で、500MHz、積算回数24回の条件で行った。なお、得られた核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、mはマルチプレットであることを意味する。また、化学シフトδ値のゼロ点の基準物質としてはテトラメチルシラン(TMS)を用いた。
1-2 GC分析
 測定装置は、島津製作所製のGC-14B型ガスクロマトグラフを用いた。カラムは、島津製作所製のキャピラリーカラムCBP1-M25-025(長さ25m、内径0.22mm、膜厚0.25μm);固定液相はジメチルポリシロキサン;無極性)を用いた。キャリアーガスとしてはヘリウムを用い、流量は1ml/分に調整した。試料気化室の温度を300℃、検出器(FID)部分の温度を300℃に設定した。
 試料はトルエンに溶解して、1重量%の溶液となるように調製し、得られた溶液1μlを試料気化室に注入した。
 記録計としては島津製作所製のC-R6A型Chromatopac、またはその同等品を用いた。得られたガスクロマトグラムには、成分化合物に対応するピークの保持時間およびピークの面積値が示されている。
 なお、試料の希釈溶媒としては、たとえば、クロロホルム、ヘキサンを用いてもよい。また、カラムとしては、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ30m、内径0.32mm、膜厚0.25μm)、Agilent Technologies Inc.製のHP-1(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx-1(長さ30m、内径0.32mm、膜厚0.25μm)、SGE International Pty.Ltd製のBP-1(長さ30m、内径0.32mm、膜厚0.25μm)などを用いてもよい。
 ガスクロマトグラムにおけるピークの面積比は成分化合物の割合に相当する。一般には、分析サンプルの成分化合物の重量%は、分析サンプルの各ピークの面積%と完全に同一ではないが、本発明において上述したカラムを用いる場合には、実質的に補正係数は1であるので、分析サンプル中の成分化合物の重量%は、分析サンプル中の各ピークの面積%とほぼ対応している。成分の液晶化合物における補正係数に大きな差異がないからである。ガスクロマトグラムにより液晶組成物中の液晶化合物の組成比をより正確に求めるには、ガスクロマトグラムによる内部標準法を用いる。一定量正確に秤量された各液晶化合物成分(被検成分)と基準となる液晶化合物(基準物質)を同時にガスクロ測定して、得られた被検成分のピークと基準物質のピークとの面積比の相対強度をあらかじめ算出する。基準物質に対する各成分のピーク面積の相対強度を用いて補正すると、液晶組成物中の液晶化合物の組成比をガスクロ分析からより正確に求めることができる。
1-3 液晶化合物等の物性値の測定試料
 液晶化合物の物性値を測定する試料としては、化合物そのものを試料とする場合、化合物を母液晶と混合して試料とする場合の2種類がある。
 化合物を母液晶と混合した試料を用いる後者の場合には、以下の方法で測定を行う。まず、得られた液晶化合物15重量%と母液晶85重量%とを混合して試料を作製する。そして、得られた試料の測定値から、下記の計算式に基づく外挿法にしたがって、外挿値を計算する。この外挿値をこの化合物の物性値とする。
〈外挿値〉=(100×〈試料の測定値〉-〈母液晶の重量%〉×〈母液晶の測定値〉)/〈液晶化合物の重量%〉
 液晶化合物と母液晶との割合がこの割合(15重量%:85重量%)であっても、スメクチック相、または結晶が25℃で析出する場合には、液晶化合物と母液晶との割合を10重量%:90重量%、5重量%:95重量%、1重量%:99重量%の順に変更をしていき、スメクチック相、または結晶が25℃で析出しなくなった組成で試料の物性値を測定し上記式にしたがって外挿値を求めて、これを液晶化合物の物性値とする。
 測定に用いる母液晶としては様々な種類が存在するが、たとえば、母液晶Aの組成(重量%)は以下のとおりである。

Figure JPOXMLDOC01-appb-I000068
1-4 液晶化合物等の物性値の測定方法
 物性値の測定は後述する方法で行った。これら測定方法の多くは、日本電子機械工業会規格(Standard of Electric Industries Association of Japan)EIAJ・ED-2521Aに記載された方法、またはこれを修飾した方法である。また、測定に用いたTN素子には、TFTを取り付けなかった。
 測定値のうち、液晶化合物そのものを試料とした場合は、得られた値を実験データとして記載した。液晶化合物と母液晶との混合物を試料として用いた場合は、外挿法で得られた値を実験データとして記載した。
 相構造および相転移温度(℃):以下(1)、および(2)の方法で測定を行った。
(1)偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP-52型ホットステージ)に化合物を置き、3℃/分の速度で加熱しながら相状態とその変化を偏光顕微鏡で観察し、液晶相の種類を特定した。
(2)パーキンエルマー社製走査熱量計DSC-7システム、またはDiamond DSCシステムを用いて、3℃/分速度で昇降温し、試料の相変化に伴う吸熱ピーク、または発熱ピークの開始点を外挿により求め(on set)、相転移温度を決定した。
 以下、結晶はKと表し、さらに結晶の区別がつく場合は、それぞれK1またはK2と表した。また、スメクチック相はSm、ネマチック相はN、キラルネマチック相はNと表した。液体(アイソトロピック)はIと表した。スメクチック相の中で、スメクチックB相、またはスメクチックA相の区別がつく場合は、それぞれSmB、またはSmAと表した。BPはブルー相または光学的に等方性の液晶相を表す。2相の共存状態は(N+I)、(N+BP)という形式で表記することがある。具体的には、(N+I)は、それぞれ非液晶等方相とキラルネマチック相がと共存する相を表し、(N+BP)は、BP相または光学的に等方性の液晶相とキラルネマチック相が共存した相を表す。Unは光学的等方性ではない未確認の相を表す。相転移温度の表記として、たとえば、「K 50.0 N 100.0 I」とは、結晶からネマチック相への相転移温度(KN)が50.0℃であり、ネマチック相から液体への相転移温度(NI)が100.0℃であることを示す。他の表記も同様である。
1-5 ネマチック相の上限温度(TNI;℃)
 偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP-52型ホットステージ)に、試料(液晶化合物と母液晶との混合物)を置き、1℃/分の速度で加熱しながら偏光顕微鏡を観察した。試料の一部がネマチック相から等方性液体に変化したときの温度をネマチック相の上限温度とした。以下、ネマチック相の上限温度を、単に「上限温度」と略すことがある。
1-6 低温相溶性
 母液晶と液晶化合物とを、液晶化合物が、20重量%、15重量%、10重量%、5重量%、3重量%、および1重量%の量となるように混合した試料を作製し、試料をガラス瓶に入れる。このガラス瓶を、-10℃または-20℃のフリーザー中に一定期間保管したあと、結晶もしくはスメクチック相が析出しているかどうか観察をした。
1-7 粘度(バルク粘度;η;20℃で測定;mPa・s)
 液晶化合物と母液晶との混合物を、E型粘度計を用いて測定した。
1-8 屈折率異方性(Δn)
 測定は25℃の温度下で、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビングしたあと、試料(液晶化合物と母液晶との混合物)を主プリズムに滴下した。屈折率(n∥)は偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は偏光の方向がラビングの方向と垂直であるときに測定した。屈折率異方性(Δn)の値は、Δn=n∥-n⊥の式から計算した。
1-9 誘電率異方性(Δε;25℃で測定)
 2枚のガラス基板の間隔(ギャップ)が約9μm、ツイスト角が80度の液晶セルに試料(液晶化合物と母液晶との混合物)を入れた。このセルに20ボルトを印加して、液晶分子の長軸方向における誘電率(ε∥)を測定した。0.5ボルトを印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。
1-10 ピッチ(P;25℃で測定;nm)
 ピッチ長は選択反射を用いて測定した(液晶便覧196頁 2000年発行、丸善)。選択反射波長λには、関係式<n>p/λ=1が成立する。ここで<n>は平均屈折率を表し、次式で与えられる。<n>={(n 2+n 2)/2}1/2。選択反射波長は顕微分光光度計(日本電子(株)、商品名MSV-350)で測定した。得られた反射波長を平均屈折率で除すことにより、ピッチを求めた。可視光より長波長領域に反射波長を有するコレステリック液晶のピッチは、光学活性化合物濃度が低い領域では光学活性化合物の濃度の逆数に比例することから、可視光領域に選択反射波長を有する液晶のピッチ長を数点測定し、直線外挿法により求めた。「光学活性化合物」は本発明におけるキラル剤に相当する。
 本発明において、液晶組成物の特性値の測定は下記の方法にしたがって行うことができる。それらの多くは、日本電子機械工業会規格(Standard of Electric Industries Association of Japan)EIAJ・ED-2521Aに記載された方法、またはこれを修飾した方法である。測定に用いたTN素子には、TFTを取り付けなかった。
1-11 ネマチック相の上限温度(NI;℃)
 偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。
1-12 ネマチック相の下限温度(TC;℃)
 ネマチック相を有する試料を0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。たとえば、試料が-20℃ではネマチック相のままであり、-30℃では結晶(またはスメクチック相)に変化したとき、TCを≦-20℃と記載する。ネマチック相の下限温度を「下限温度」と略すことがある。
1-13 光学的に等方性の液晶相の転移温度
 偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、クロスニコルの状態で、まず試料が非液晶等方相になる温度まで昇温した後、1℃/分の速度で降温し、完全にキラルネマチック相または光学的に等方性の液晶相を出現させた。その降温過程での相転移した温度を測定し、次いで1℃/分の速度で昇熱し、その昇温過程における相転移した温度を測定した。本発明において、特に断りの無い限り、昇温過程での相転移した温度を相転移温度とした。光学的に等方性の液晶相においてクロスニコル下では暗視野で相転移温度の判別が困難な場合は、偏光板をクロスニコルの状態から1~10°ずらして相転移温度を測定した。
1-14 粘度(回転粘度;γ1;25℃で測定;mPa・s)
1)誘電率異方性が正である試料:測定はM. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。ツイスト角が0°であり、そして2枚のガラス基板の間隔(セルギャップ)が5μmであるTN素子に試料を入れた。TN素子に16ボルト~19.5ボルトの範囲で0.5ボルト毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文の40頁の計算式(8)とから回転粘度の値を得た。この計算で必要な誘電率異方性の値は、この回転粘度の測定で使用した素子にて、下記の誘電率異方性の測定方法で求めた。
2)誘電率異方性が負である試料:測定はM. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。2枚のガラス基板の間隔(セルギャップ)が20μmのVA素子に試料を入れた。この素子に30ボルト~50ボルトの範囲で1ボルト毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文、40頁の計算式(8)とから回転粘度の値を得た。この計算に必要な誘電率異方性は、下記の誘電率異方性で測定した値を用いた。
1-15 屈折率異方性(Δn;25℃で測定)
 測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビング(rubbing)したあと、試料を主プリズムに滴下した。屈折率(n∥)は偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は偏光の方向がラビングの方向と垂直であるときに測定した。屈折率異方性の値は、Δn=n∥-n⊥、の式から計算した。試料が組成物のときはこの方法によって屈折率異方性を測定した。
1-16 誘電率異方性(Δε;25℃で測定):
1)誘電率異方性が正である組成物:2枚のガラス基板の間隔(ギャップ)が約9μm、ツイスト角が80度の液晶セルに試料を入れた。このセルに20ボルトを印加して、液晶分子の長軸方向における誘電率(ε∥)を測定した。0.5ボルトを印加して、液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。
2)誘電率異方性が負である組成物:ホメオトロピック配向に処理した液晶セルに試料を入れ、0.5ボルトを印加して誘電率(ε∥)を測定した。ホモジニアス配向に処理した液晶セルに試料を入れ、0.5ボルトを印加して誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。
1-17 しきい値電圧(Vth;25℃で測定;V)
1)誘電率異方性が正である組成物:2枚のガラス基板の間隔(ギャップ)が(0.5/Δn)μmであり、ツイスト角が80度である、ノーマリーホワイトモード(normally white mode)の液晶表示素子に試料を入れた。Δnは上記の方法で測定した屈折率異方性の値である。この素子に周波数が32Hzである矩形波を印加した。矩形波の電圧を上昇させ、素子を通過する光の透過率が90%になったときの電圧の値を測定した。
2)誘電率異方性が負である組成物:2枚のガラス基板の間隔(ギャップ)が約9μmであり、ホメオトロピック配向に処理したノーマリーブラックモード(normally black mode)の液晶表示素子に試料を入れた。この素子に周波数が32Hzである矩形波を印加した。矩形波の電圧を上昇させ、素子を通過する光の透過率10%になったときの電圧の値を測定した。
1-18 電圧保持率(VHR;25℃で測定;%)
 測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は6μmである。この素子は試料を入れたあと紫外線によって重合する接着剤で密閉した。このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積である。電圧保持率は面積Bに対する面積Aの百分率である。
1-19 螺旋ピッチ(20℃で測定;μm)
 螺旋ピッチの測定には、カノのくさび型セル法を用いた。カノのくさび型セルに試料を注入し、セルから観察されるディスクリネーションラインの間隔(a;単位はμm)を測定した。螺旋ピッチ(P)は、式P=2・a・tanθから算出した。θは、くさび型セルにおける2枚のガラス板の間の角度である。
 あるいは、ピッチ長は選択反射を用いて測定した(液晶便覧196頁 2000年発行、丸善)。選択反射波長λには、関係式<n>p/λ=1が成立する。ここで<n>は平均屈折率を表し、次式で与えられる。<n>={(n∥2+n⊥2)/2}1/2。選択反射波長は顕微分光光度計(日本電子(株)、商品名MSV-350)で測定した。得られた反射波長を平均屈折率で除すことにより、ピッチを求めた。
 可視光より長波長領域に反射波長を有するコレステリック液晶のピッチは、キラル剤濃度が低い領域ではキラル剤の濃度の逆数に比例することから、可視光領域に選択反射波長を有する液晶のピッチ長を数点測定し、直線外挿法により求めた。
 成分または液晶化合物の割合(百分率)は、液晶化合物の全重量に基づいた重量百分率(重量%)である。組成物は、液晶化合物などの成分の重量を測定してから混合することによって調製される。したがって、成分の重量%を算出するのは容易である。
[実施例1] 化合物(1-1-1-S1) の合成
式(1-1-1)において、R1aがC、およびX1aがフッ素である、下記式(1-1-1-S1)で表される化合物(化合物(1-1-1-S1))を以下のスキームに従い合成した。

Figure JPOXMLDOC01-appb-I000069

Figure JPOXMLDOC01-appb-I000070
(第1段)化合物(S102)の合成
 化合物(S101)は市販されている。窒素雰囲気下で、化合物(S101)(38.4g、267mmol)のTHF(200mL)溶液を-60℃まで冷却し、n-ブチルリチウム/ヘキサン溶液(1.66M/L)(160mL、266mmol)をゆっくりと滴下してそのままの温度で1時間撹拌した。次いで、ヨウ素(68.9g、266mmol)のTHF(200mL)溶液をさらに滴下して徐々に室温に戻しながら1時間撹拌した。反応液を水に空けてトルエン(500mL)にて2回抽出し、有機相をチオ硫酸ナトリウム水溶液で2回、水で2回洗浄した後に有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:n-ヘプタン)にて精製し、化合物(S102)(46.5g、172mmol)を得た。
(第2段)化合物(S103)の合成
 窒素雰囲気下で、上段で得られた化合物(S102)(46.5g、172mmol)、3,4,5-トルフルオロフェニルボロン酸(33.9g、193mmol)、炭酸カリウム(72.8g、527mmol)、5%パラジウムカーボン粉末(3.00g)、トルエン(100mL)/エタノール(100mL)の混合溶液を80℃にて2時間加熱撹拌した。反応液にトルエン(300mL)を加えて有機相を水で3回洗浄した後に、有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:n-ヘプタン)、さらに再結晶ろ過(トルエン/エタノール=5/1(容量比))にて精製し、化合物(S103)(40.1g、146mmol)を得た。
(第3段)化合物(S104)の合成
 窒素雰囲気下で、上段で得られた化合物(S103)(40.1g、146mmol)のジクロロメタン(200mL)溶液を0℃まで冷却し、三臭化ホウ素(43.8g、175mmol)を滴下してそのままの温度で1時間撹拌した。反応液を氷水に空け、ジクロロメタン(200mL)を加えて有機相を水で3回洗浄した後に減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:トルエン/酢酸エチル=2/1(容量比))、さらに再結晶ろ過(トルエン/エタノール=5/1(容量比))にて精製し、化合物(S104)(26.5g、102mmol)を得た。
(第4段)化合物(1-1-1-S1)の合成
 化合物(S105)は一般的な有機化学合成法にて得ることができる。窒素雰囲気下で、化合物(S105)(17.4g(純度74%)、33.3mmol)、前段で得られた化合物(S104)(8.82g、33.9mmol)、炭酸カリウム(9.35g、67.7mmol)のDMF(100mL)溶液を80℃で3時間加熱撹拌した。反応液を水に空けてトルエン(200mL)にて抽出し、有機相を重層水で2回、水で3回洗浄した後に減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶媒:トルエン/n-ヘプタン=5/1(容量比))、さらに再結晶ろ過(エタノール/n-ヘプタン=1/1(容量比))にて精製し、最終目的物である化合物(1-1-1-S1)(6.98g、18.1mmol)を得た。この化合物の転移点はC・93.2・Iであった。
H-NMR:δ(ppm)
 0.910(3H, t)、1.10-1.13(2H, m)、1.25-1.35(4H, m)、2.07-2.12(1H, m)、3.50-3.55(2H, dd)、4.23-4.26(2H, dd)、5.37(1H, s)、6.95-6.98(2H, d)、7.08-7.11(2H, d)、7.14-7.16(2H, d)
19F-NMR:δ(ppm)
 -61.77- -61.88(2F, t)、-110.5- -110.6(2F, dt)、-112.7- -112.7(2F, d)、-134.8 -134.9(2H, dd)、-160.4- -160.6(1F, tt)
次に、上述した母液晶Aとして記載された4つの化合物を混合し、ネマチック相を有する母液晶Aを調製した。この母液晶Aの物性は以下の通りであった。
上限温度(TNI)=71.7℃; 誘電率異方性(Δε)=11.0; 屈折率異方性(Δn)=0.137。
母液晶A(90重量%)と、実施例1で得られた化合物(1-1-1-S1)(10重量%)とからなる液晶組成物AS1を調製した。得られた液晶組成物AS1の物性値を測定し、測定値を外挿することで化合物(1-1-1-S1)の物性の外挿値を算出した。その値は以下の通りであった。
 上限温度(TNI)=46.7℃; 誘電率異方性(Δε)=49.1; 屈折率異方性(Δn)=0.117。
 これらのことから化合物(1-1-1-S1)は、他の液晶化合物との比較的優れた相溶性を有し、誘電率異方性(Δε)の大きい化合物であることが分かった。
[実施例2]ネマチック液晶組成物(NLC)の調製
 表1に示すように、実施例1で合成した化合物(1-1-1-S1)を含むネマチック液晶組成物NLC-A、NLC-B、NLC-CおよびNLC-Dを調製した(表1)。また、各ネマチック液晶組成物の相転移点は表2に示すとおりであった。

表1
Figure JPOXMLDOC01-appb-I000071

表2

Figure JPOXMLDOC01-appb-I000072
[実施例3]キラル液晶組成物(CLC)の調製
 次に、表1に示すネマチック液晶組成物NLC-A、NLC-B、NLC-Cを、下記に示すキラル剤BN-H4およびBN-H5と混合して、キラル液晶組成物CLC-A、CLC-B、およびCLC-Cを調製した。また、表1に示すネマチック液晶組成物NLC-Dと下記に示すキラル剤CD-5を混合し、キラル液晶組成物CLC-Dを調製した。当該キラル液晶組成物の組成は以下のとおりで、相転移点は表3に示すとおりであった。
CLC-A
  NLC-A   94.7重量%
  BN-H4    2.65重量%
  BN-H5    2.65重量%
CLC-B
  NLC-B   94.7重量%
  BN-H4    2.65重量%
  BN-H5    2.65重量%
CLC-C
  NLC-C   94.7重量%
  BN-H4    2.65重量%
  BN-H5    2.65重量%
CLC-D
  NLC-D   95.2重量%
  CD-5     4.8重量%

表3

Figure JPOXMLDOC01-appb-I000073


BN-H4

Figure JPOXMLDOC01-appb-I000074


BN-H5

Figure JPOXMLDOC01-appb-I000075

CD-5

Figure JPOXMLDOC01-appb-I000076
[実施例4]重合性モノマーとの混合物である液晶組成物(MLC)の調製
 実施例3で調製された各キラル液晶組成物(CLC)を重合性モノマーとの混合物を等方相で加熱混合することで、液晶組成物MLC-A、MLC-B、MLC-CおよびMLC-Dを調製した。これらの液晶組成物の組成と相転移は表4に示すとおりであった。
MLC-A
  CLC-A          88.8重量%
  n-ヘキサデシルアクリレート  6.0重量%
  LCA-12          4.8重量%
  DMPA            0.4重量%
MLC-B
  CLC-B          88.8重量%
  n-ヘキサデシルアクリレート  6.0重量%
  LCA-12          4.8重量%
  DMPA            0.4重量%
MLC-C
  CLC-C          88.8重量%
  n-ヘキサデシルアクリレート  6.0重量%
  LCA-12          4.8重量%
  DMPA            0.4重量%
MLC-D
  CLC-D          88.4重量%
  n-ヘキサデシルアクリレート  6.2重量%
  LCA-13          5.0重量%
  DMPA            0.4重量%
 上記のLCA-6、LCA-12、DMPAはそれぞれ、1,4-ジ(4-(6-(アクリロイルオキシ)ヘキシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-6)、1,4-ジ(4-(6-(アクリロイルオキシ)ドデシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-12)、1,4-ジ(4-(6-(アクリロイルオキシ)トリデシルオキシ)ベンゾイルオキシ)-2-メチルベンゼン(LCA-13)2,2’-ジメトキシフェニルアセトフェノンを表し、DMPAは光重合開始剤である。
表4

Figure JPOXMLDOC01-appb-I000077


LCA-6

Figure JPOXMLDOC01-appb-I000078

LCA-12

Figure JPOXMLDOC01-appb-I000079

LCA-13

Figure JPOXMLDOC01-appb-I000080
[実施例5]高分子/液晶複合材料の調製が狭持されたセル
 キラル液晶組成物(CLC)と重合性モノマーとの混合物である液晶組成物(MLC)をを配向処理の施されていない櫛型電極基板と対向ガラス基板(非電極付与)の間に狭持し、ブルー相まで加熱した。この状態で、紫外光(紫外光強度23mWcm-2(365nm))を1分間照射して、重合反応を行い、高分子/液晶複合材料PSBP-A、PSBP-B、PSBP-CおよびPSBP-Dが挟持されたセルを作成した(セル厚7~9μm)。重合温度は表5に示すとおりであった。


Figure JPOXMLDOC01-appb-I000081
 このようにして得られた高分子/液晶複合材料(PSBP)は、いずれも、室温まで冷却しても光学的に等方性の液晶相を維持していた。
[実施例6]セルを用いた光学系
 実施例5で得られた高分子/液晶複合材料が狭持されたセルを、図2に示した光学系にセットした。具体的には、光源として偏光顕微鏡(ニコン製 エクリプス LV100POL)の白色光源を用い、セルへの入射角度がセル面に対して垂直となるようにし、櫛型電極の線方向がPolarizerとAnalyzer偏光板に対してそれぞれ45°となるように実施例5で得られた高分子/液晶複合材料が狭持されたセルがセットされた(図2)。
 当該光学系を用いて、実施例5で得られた高分子/液晶複合材料の室温で印加電圧と透過率との関係を調べた。セルに挟持された高分子/液晶複合材料(PSBP)の物性値は表5に示すとおりであった。なお応答時間のデータは、飽和電圧印加、除去時のものである。
 PSBP-A~Dはいずれも2ms以下の高速応答を示し、また、飽和電圧印加時に高い透過率を示した。
 上記実施例から明らかなように、本発明の光素子は、応答時間が短く、透過率が高いことから従来技術より優れている。
 本発明の活用法として、たとえば、高分子/液晶複合体を用いる表示素子などの光素子が挙げられる。
1 電極
2 電極
3 光源
4 偏光子(偏光板)(Polarizer)
5 櫛型電極セル
6 検光子(偏光板)(Analyzer)
7 受光器(Photodetector)

Claims (17)

  1.  式(1)で表される化合物1を少なくとも1つ含むアキラル成分Tとキラル剤とを含有し、光学的に等方性の液晶相を発現する液晶組成物。

    Figure JPOXMLDOC01-appb-I000001

    式(1)中、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は、-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンまたは炭素数1~3のアルキルで置き換えられてもよく;
     LおよびLはそれぞれ独立してフッ素または水素であり、
     Xはハロゲン、-CF、-OCF、-C≡N、または-N=C=S、である。
  2.  化合物1が式(1-1)で表される化合物である請求項1に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000002

    式(1-1)中、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は、-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、-OCO-、-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンまたは炭素数1~3のアルキルで置き換えられてもよく;
     Xはハロゲン、-CF、-OCF、-C≡N、または-N=C=S、である。
  3.  式(1)または式(1-1)において、Xがフッ素または-CFである請求項1または2に記載の液晶組成物。
  4.  下記式(3)で表される化合物3および(7)で表される化合物7の群から選ばれる少なくとも1つの化合物をさらに含む、請求項1~3のいずれか一項に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000003

    式(3)中、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中またはアルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、アルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中、またはアルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Rにおいて-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;
     Z31、Z32およびZ33はそれぞれ独立して、単結合または炭素数1~4のアルキレンであり、当該アルキレン中の少なくとも1つの-CH-は、-O-、-COO-または-CFO-で置き換えられてもよく;
     L31、L32、L33,L34およびL35はそれぞれ独立して、水素またはフッ素であり;
     Xは水素、ハロゲン、-SFまたは炭素数1~10のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、当該アルキル中の-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中および当該アルキル中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、
    ただし、Xにおいて-O-と-CH=CH-とが隣接することはなく、-CO-と-CH=CH-とが隣接することはない。

    Figure JPOXMLDOC01-appb-I000004

    式(7)中、Rは炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、アルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中、またはアルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Rにおいて-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;
     L71、L72、L73、L74、L75、L76、L77およびL78はそれぞれ独立して、水素またはフッ素であり;
     Z71、72およびZ73はそれぞれ独立して、単結合、-COO-または-CFO-であるが、少なくとも一つは-COO-または-CFO-であり;
     n71およびn72はそれぞれ独立して0または1であり、かつn71≧n72であり、;
     ただし、L71とL72が共にフッ素であり、Z71が-CFO-でかつn71が1の場合、L74は水素であり、
     Xは水素、ハロゲン、-SFまたは炭素数1~10のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中および当該アルキル中の-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、当該アルキル中の-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中および当該アルキル中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Xにおいて-O-と-CH=CH-とが隣接することはなく、-CO-と-CH=CH-とが隣接することはない。
  5.  アキラル成分Tの全量に対して、式(1)と式(7)で表わされる群から選択された少なくとも1つの化合物を1~32重量%含有する、請求項1~4のいずれか一項に記載の液晶組成物。
  6.  化合物3が、式(3-2)および式(3-3)で表される化合物の群から選ばれる1つ以上である、請求項4または5に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000005

    (上記式中、R3Aはそれぞれ独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニルまたは少なくとも1つの水素がフッ素で置き換えられてもよい炭素数2~12のアルケニルであり;
     L31、L32、L33,L34およびL35はそれぞれ独立して水素またはフッ素であり;
     X3Aはフッ素、塩素、-CFまたは-OCFである。)
  7.  化合物7が、式(7-1)~(7-8)で表される化合物の群から選ばれる1つ以上である、請求項4または5に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000006

    (上記式中、R7Aは水素、炭素数1~12のアルキル、炭素数1~11のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
     L72、L74、L75、L76、L77およびL78はそれぞれ独立して、水素またはフッ素であり;
     式(7-1)~(7-3)および(7-6)~(7-8)において、Z71およびZ72はそれぞれ独立して、単結合、-COO-または-CFO-であるが、少なくとも一つは-COO-または-CFO-であり、ただし、式(7-3)において、L71とL72が共にフッ素であり、Z71が-CFO-でかつn71が1の場合、L74は水素であり、式(7-4)および(7-5)においては、Z71はそれぞれ独立して、-COO-または-CFO-であり、
     X7Aは、フッ素、塩素、-CFまたは-OCFである。)
  8.  化合物7が、式(7-2-2-E)、(7-2-5-E)、(7-2-2-F)および(7-2-5-F)で表される化合物の群から選ばれる1つ以上である請求項4または5に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000007

    (上記式中、R7Aは、炭素数1~12のアルキル、炭素数1~11のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
     X7Aは、フッ素、塩素、-CFまたは-OCFである。)
  9.  アキラル成分Tの全重量に対して、化合物1を合計で3重量%~20重量%含有し、化合物3を合計で20重量%~80重量%、化合物7を合計で10重量%~27重量%含有する、請求項4~8のいずれか一項に記載の液晶組成物。
  10.  アキラル成分Tが、さらに式(4)で表される化合物4、および(2)で表される化合物2の群から選ばれる少なくとも1つの化合物をさらに含む、請求項1~9のいずれか一項に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000008

    式(4)中、Rは、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
     環Bはそれぞれ独立して、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、3-フルオロ-1,4-フェニレン、3,5-ジフルオロ-1,4-フェニレン、3,5-ジクロロ-1,4-フェニレンまたはピリミジン-2,5-ジイルであり;
     Z41はそれぞれ独立して、単結合、エチレン、-COO-、-OCO-、-CFO-または-OCF-であり;
     L48およびL49はそれぞれ独立して、水素またはフッ素であり;
     Xはフッ素、塩素、-CFまたは-OCFであり;
     n41は、1、2、3または4であり、ただしn41が3または4である場合、少なくとも1つのZ41は-CFO-または-OCF-であり、n41が3の場合は、環Bのすべてがフッ素で置換された1,4-フェニレンであることはない。

    Figure JPOXMLDOC01-appb-I000009

    式(2)中、Rは水素または炭素数1~20のアルキルであり、当該アルキル中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該アルキル中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、当該アルキル中、アルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中、またはアルキル中の少なくとも1つの-CH-が-O-、-S-、-COO-または-OCO-で置き換えられた基中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく、ただし、Rにおいて-O-と-CH=CH-および-CO-と-CH=CH-が隣接することはなく;
     環A21、環A22、環A23、環A24および環A25はそれぞれ独立して、1,4-シクロへキシレン、1,3-ジオキサン-2,5-ジイル、1,4-フェニレン、1つまたは2つの水素がフッ素で置き換えられた1,4-フェニレン、2つの水素がそれぞれフッ素と塩素で置き換えられた1,4-フェニレン、ピリジン-2,5-ジイル、ピリミジン-2,5-ジイルであり;
     Z21、Z22、Z23、Z24、Z25およびZ26はそれぞれ独立して、単結合または炭素数1~4のアルキレンであり、当該アルキレン中の少なくとも1つの-CH-は、-O-、-COO-または-CFO-で置き換えられてもよく;
     L21、L22およびL23はそれぞれ独立して、水素またはフッ素であり;
     Xはフッ素、塩素、-CF、-CHF、-CHF、-OCF、-OCHF、-OCHF、-OCFCFHCFまたは-CH=CHCFであり;
     n21、n22、n23、n24およびn25はそれぞれ独立して、0または1であり、2≦n21+n22+n23+n24+n25≦3である。
  11.  化合物4が、式(4-1)~(4-9)で表される化合物の群から選ばれる1つ以上であり、化合物2が、式(2-1-1-2)、(2-1-2-1)、(2-1-3-1)、(2-1-3-2)、(2-1-4-2)および(2-1-4-3)で表される化合物の群から選ばれる1以上である請求項10に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000010

    (上記式中、R4Aはそれぞれ独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニルまたは少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
     X4Aはフッ素、塩素、-CFまたは-OCFであり;
     L40~L49はそれぞれ独立して水素またはフッ素である。

    Figure JPOXMLDOC01-appb-I000011

    上記式中、R2Aは炭素数1~12のアルキル、炭素数1~12のアルコキシ、炭素数2~12のアルケニル、または、少なくとも1つの水素がフッ素で置き換えられた炭素数2~12のアルケニルであり;
     (F)はそれぞれ独立して、水素またはフッ素であり;
     X2Aは、フッ素、塩素、-CFまたは-OCFである。
  12.  キラル剤が、式(K1)~(K6)で表される化合物の群から選択される少なくとも1つの化合物である、請求項1~11のいずれか一項に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-I000012

    (上記式中、Rはそれぞれ独立して、水素、ハロゲン、-C≡N、-N=C=O、-N=C=Sまたは炭素数1~20のアルキルであり、当該R中の少なくとも1つの-CH-は-O-、-S-、-COO-または-OCO-で置き換えられてもよく、当該R中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられもよく、アルキル中、当該R中の少なくとも1つの-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中、または当該R中の少なくとも1つの-CH-CH-が-CH=CH-または-C≡C-で置き換えられた基中の少なくとも1つの水素はフッ素または塩素で置き換えられてもよく;
     Aはそれぞれ独立して、芳香族性の6~8員環、非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の少なくとも1つの水素はハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、環の-CH-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;
     Bはそれぞれ独立して、水素、ハロゲン、炭素数1~3のアルキル、炭素数1~3のハロアルキル、芳香族性の6~8員環、非芳香族性の3~8員環、または、炭素数9以上の縮合環であり、これらの環の少なくとも1つの水素がハロゲン、炭素数1~3のアルキルまたはハロアルキルで置き換えられてもよく、-CH-は-O-、-S-または-NH-で置き換えられてもよく、-CH=は-N=で置き換えられてもよく;
     Zはそれぞれ独立して、単結合、炭素数1~8のアルキレンであり、このアルキレン中の少なくとも1つの-CH-は、-O-、-S-、-COO-、-OCO-、-CSO-、-OCS-、-N=N-、-CH=N-または-N=CH-で置き換えられてもよく、このアルキレン中の少なくとも1つの-CH-CH-は-CH=CH-、-CF=CF-または-C≡C-で置き換えられてもよく、アルキレン中、当該アルキレン中の少なくとも1つの-CH-が-O-、-S-、-COO-、または-OCO-で置き換えられた基中、または当該アルキレン中の少なくとも1つの-CH-CH-が-CH=CH-、-CF=CF-または-C≡C-で置き換えられた基中の少なくとも1つの水素はハロゲンで置き換えられてもよく;
     Xはそれぞれ独立して、単結合、-COO-、-OCO-、-CHO-、-OCH-、-CFO-、-OCF-、または-CHCH-であり;
     mKはそれぞれ独立して、1~4の整数である。)
  13.  -20℃~70℃のいずれかの温度においてキラルネマチック相を示し、この温度範囲の少なくとも一部において螺旋ピッチが700nm以下である、請求項1~12のいずれか一項に記載の液晶組成物。
  14.  請求項1~13のいずれか一項に記載の液晶組成物と、重合性モノマーとを含む混合物。
  15.  請求項14に記載の混合物を重合して得られる、光学的に等方性の液晶相で駆動される素子に用いられる高分子/液晶複合材料。
  16.  一方または両方の基板に電極が配置され、基板間に配置された液晶媒体、および電極を介して液晶媒体に電界を印加する電界印加手段を備えた光素子であって、液晶媒体が、請求項1~13のいずれか一項に記載の液晶組成物、または、請求項15に記載の高分子/液晶複合材料である光素子。
  17.  請求項1~13のいずれか一項に記載の液晶組成物または請求項15に記載の高分子/液晶複合材料の光素子への使用。
PCT/JP2014/063568 2013-05-27 2014-05-22 液晶媒体、光素子および液晶化合物 WO2014192627A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015519817A JP6327248B2 (ja) 2013-05-27 2014-05-22 液晶媒体、光素子および液晶化合物
US14/893,073 US9611429B2 (en) 2013-05-27 2014-05-22 Liquid crystal medium, optical device and liquid crystal compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-110788 2013-05-27
JP2013110788 2013-05-27

Publications (1)

Publication Number Publication Date
WO2014192627A1 true WO2014192627A1 (ja) 2014-12-04

Family

ID=51988660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063568 WO2014192627A1 (ja) 2013-05-27 2014-05-22 液晶媒体、光素子および液晶化合物

Country Status (4)

Country Link
US (1) US9611429B2 (ja)
JP (1) JP6327248B2 (ja)
TW (1) TWI632227B (ja)
WO (1) WO2014192627A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174968A1 (ja) * 2015-04-28 2016-11-03 Jnc株式会社 液晶組成物および液晶表示素子
WO2017038265A1 (ja) * 2015-09-01 2017-03-09 Dic株式会社 粉体混合物
WO2018003658A1 (ja) * 2016-06-27 2018-01-04 Jnc株式会社 光学的に等方性の液晶媒体および光素子
CN107586546A (zh) * 2016-07-08 2018-01-16 江苏和成显示科技股份有限公司 液晶组合物及显示器件
CN108659857A (zh) * 2017-03-30 2018-10-16 江苏和成显示科技有限公司 具有正介电各向异性的液晶组合物及其显示器件
CN109423302A (zh) * 2017-08-21 2019-03-05 北京八亿时空液晶科技股份有限公司 一种具有高透过率的液晶组合物及其应用
JP2020114910A (ja) * 2018-06-11 2020-07-30 Jnc株式会社 光学的等方性液晶組成物およびそれを用いた光スイッチング素子
CN112300811A (zh) * 2019-08-01 2021-02-02 江苏和成显示科技有限公司 一种液晶组合物及液晶显示器件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170117395A (ko) * 2015-02-17 2017-10-23 제이엔씨 주식회사 알콕시기 또는 알콕시 알킬기, 및 포화 6원환을 가지는 화합물, 액정 조성물 및 액정 표시 소자
KR102559126B1 (ko) * 2016-03-10 2023-07-26 레드 뱅크 테크놀로지스 엘엘씨 키랄 액정 발광체를 사용하는 대역 가장자리 방출 증대된 유기 발광 다이오드

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134430A1 (ja) * 2009-05-19 2010-11-25 チッソ株式会社 クロロベンゼン誘導体、光学的に等方性の液晶媒体及び光素子
JP2011510112A (ja) * 2008-01-14 2011-03-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体
JP2011153202A (ja) * 2010-01-27 2011-08-11 Jnc Corp 液晶化合物、液晶組成物および液晶表示素子
WO2011162142A1 (ja) * 2010-06-22 2011-12-29 Jnc株式会社 分岐アルキルまたは分岐アルケニルを有する化合物、および光学的に等方性の液晶媒体及び光素子
WO2012100809A1 (de) * 2011-01-25 2012-08-02 Merck Patent Gmbh Flüssigkristalline verbindungen und flüssigkristalline medien
WO2013039051A1 (ja) * 2011-09-14 2013-03-21 Jnc株式会社 化合物、液晶組成物および液晶表示素子

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959060A1 (en) 1996-11-28 1999-11-24 Chisso Corporation Chlorobenzene derivatives, liquid-crystal composition, and liquid-crystal display elements
JP3779937B2 (ja) 2002-05-08 2006-05-31 独立行政法人科学技術振興機構 光学変調素子用液晶材料
DE10253325A1 (de) 2002-11-14 2004-05-27 Merck Patent Gmbh Elektrooptisches Lichtsteuerelement, elektrooptische Anzeige und Steuermedium
DE10393340D2 (de) 2002-11-15 2005-09-29 Merck Patent Gmbh Elektooptisches Lichtsteuerelement, elektrooptische Anzeige und Steuermedium
ATE445860T1 (de) 2003-11-27 2009-10-15 Asahi Glass Co Ltd Optisches element mit einem flüssigkristall mit optischer isotropie
JP4075781B2 (ja) 2003-11-27 2008-04-16 旭硝子株式会社 波長可変フィルタ
JPWO2005080529A1 (ja) 2004-02-20 2007-10-25 旭硝子株式会社 光学素子用液晶材料および光変調素子
EP1743931B1 (en) 2004-03-19 2011-08-24 Japan Science and Technology Agency Liquid crystal display device
JP5269284B2 (ja) 2004-04-30 2013-08-21 独立行政法人科学技術振興機構 高分子とキラリティーを有する液晶材料とからなる複合材料、該複合材料の製造方法、および該複合材料を用いる光素子
JP4972858B2 (ja) 2004-09-24 2012-07-11 Jnc株式会社 高分子と光学活性な液晶材料からなる複合体
JP2006127707A (ja) 2004-11-01 2006-05-18 Asahi Glass Co Ltd 開口制御素子および光ヘッド装置
US7794621B2 (en) 2004-12-17 2010-09-14 Merck Patent Gmbh Liquid crystal system and liquid crystal display
DE602006002994D1 (de) 2005-02-14 2008-11-20 Merck Patent Gmbh Mesogene Verbindungen, flüssigkristallines Medium und Flüssigkristallanzeigevorrichtung
EP1690917B1 (en) 2005-02-14 2008-10-08 MERCK PATENT GmbH Mesogenic compounds, liquid crystal medium and liquid crystal display
JP5082202B2 (ja) 2005-04-20 2012-11-28 Jnc株式会社 重合体とキラリティーを有する液晶とからなる複合体
EP2360229B1 (en) 2008-11-19 2016-08-31 JNC Corporation Optically isotropic liquid crystal medium and optical element
CN103987809B (zh) * 2011-11-30 2016-03-09 捷恩智株式会社 液晶组成物、混合物、高分子/液晶复合材料及光组件
WO2013179960A1 (ja) * 2012-05-28 2013-12-05 Jnc株式会社 光学的に等方性の液晶媒体及び光素子
US9738831B2 (en) * 2012-06-19 2017-08-22 Jnc Corporation Optically isotropic liquid crystal composition and optical device
JP6471500B2 (ja) * 2012-12-17 2019-02-20 Jnc株式会社 オクタヒドロ−ビナフチル系キラル化合物を含有する液晶組成物および光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510112A (ja) * 2008-01-14 2011-03-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体
WO2010134430A1 (ja) * 2009-05-19 2010-11-25 チッソ株式会社 クロロベンゼン誘導体、光学的に等方性の液晶媒体及び光素子
JP2011153202A (ja) * 2010-01-27 2011-08-11 Jnc Corp 液晶化合物、液晶組成物および液晶表示素子
WO2011162142A1 (ja) * 2010-06-22 2011-12-29 Jnc株式会社 分岐アルキルまたは分岐アルケニルを有する化合物、および光学的に等方性の液晶媒体及び光素子
WO2012100809A1 (de) * 2011-01-25 2012-08-02 Merck Patent Gmbh Flüssigkristalline verbindungen und flüssigkristalline medien
WO2013039051A1 (ja) * 2011-09-14 2013-03-21 Jnc株式会社 化合物、液晶組成物および液晶表示素子

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016174968A1 (ja) * 2015-04-28 2018-02-22 Jnc株式会社 液晶組成物および液晶表示素子
WO2016174968A1 (ja) * 2015-04-28 2016-11-03 Jnc株式会社 液晶組成物および液晶表示素子
WO2017038265A1 (ja) * 2015-09-01 2017-03-09 Dic株式会社 粉体混合物
JPWO2017038265A1 (ja) * 2015-09-01 2017-10-19 Dic株式会社 粉体混合物
US20190316036A1 (en) * 2016-06-27 2019-10-17 Jnc Corporation Optically isotropic liquid crystal medium and optical device
JPWO2018003658A1 (ja) * 2016-06-27 2019-05-16 Jnc株式会社 光学的に等方性の液晶媒体および光素子
WO2018003658A1 (ja) * 2016-06-27 2018-01-04 Jnc株式会社 光学的に等方性の液晶媒体および光素子
CN107586546A (zh) * 2016-07-08 2018-01-16 江苏和成显示科技股份有限公司 液晶组合物及显示器件
CN107586546B (zh) * 2016-07-08 2021-06-04 江苏和成显示科技有限公司 液晶组合物及显示器件
CN108659857A (zh) * 2017-03-30 2018-10-16 江苏和成显示科技有限公司 具有正介电各向异性的液晶组合物及其显示器件
CN108659857B (zh) * 2017-03-30 2022-03-11 江苏和成显示科技有限公司 具有正介电各向异性的液晶组合物及其显示器件
CN109423302A (zh) * 2017-08-21 2019-03-05 北京八亿时空液晶科技股份有限公司 一种具有高透过率的液晶组合物及其应用
JP2020114910A (ja) * 2018-06-11 2020-07-30 Jnc株式会社 光学的等方性液晶組成物およびそれを用いた光スイッチング素子
CN112300811A (zh) * 2019-08-01 2021-02-02 江苏和成显示科技有限公司 一种液晶组合物及液晶显示器件

Also Published As

Publication number Publication date
TWI632227B (zh) 2018-08-11
TW201504402A (zh) 2015-02-01
JPWO2014192627A1 (ja) 2017-02-23
US20160122648A1 (en) 2016-05-05
US9611429B2 (en) 2017-04-04
JP6327248B2 (ja) 2018-05-23

Similar Documents

Publication Publication Date Title
JP5477296B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP5408130B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP5621769B2 (ja) クロロベンゼン誘導体、光学的に等方性の液晶媒体及び光素子
JP6327248B2 (ja) 液晶媒体、光素子および液晶化合物
JP6299019B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP5544695B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP5625461B2 (ja) クロロフルオロベンゼン化合物、光学的等方性の液晶媒体および光素子
JP6641742B2 (ja) 液晶媒体、光素子および液晶化合物
JP6306887B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP6115472B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP5799956B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP6394390B2 (ja) 光学的に等方性の液晶組成物及び光素子
JP6432522B2 (ja) 液晶媒体、光素子および液晶化合物
JP6179373B2 (ja) 液晶媒体、光素子および液晶化合物
JP6299020B2 (ja) 液晶化合物、液晶媒体および光素子
JP5347347B2 (ja) 光学的に等方性の液晶媒体及び光素子
JP2016121288A (ja) 光学的に等方性の液晶媒体及び光素子
JP2019214698A (ja) 低電圧化された光学的等方性液晶組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519817

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14893073

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803922

Country of ref document: EP

Kind code of ref document: A1