[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014185173A1 - Tubular foam molded article - Google Patents

Tubular foam molded article Download PDF

Info

Publication number
WO2014185173A1
WO2014185173A1 PCT/JP2014/059185 JP2014059185W WO2014185173A1 WO 2014185173 A1 WO2014185173 A1 WO 2014185173A1 JP 2014059185 W JP2014059185 W JP 2014059185W WO 2014185173 A1 WO2014185173 A1 WO 2014185173A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
balloon
plate
molded article
shaped portion
Prior art date
Application number
PCT/JP2014/059185
Other languages
French (fr)
Japanese (ja)
Inventor
奈央人 谷
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Publication of WO2014185173A1 publication Critical patent/WO2014185173A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00564Details of ducts or cables of air ducts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a tubular foamed molded article used as an automobile duct or the like, and more particularly to a novel tubular foamed molded article that is provided with a measure against abnormal noise generation.
  • a foam molded body in which a flange portion for connecting to another tubular member is provided in the vicinity of an opening in a tube main body is widely used.
  • a duct for ventilating air from an air conditioner it is possible to realize a lightweight duct having excellent heat insulation properties by using a tubular foamed molded body. Further, such a duct is more effective because it can further improve heat insulation and light weight by increasing the foaming ratio at the time of manufacture and increasing the number of bubbles inside the foam.
  • a so-called compression is obtained by extending a foam parison from a parting line and crushing the two foam parisons thus extended.
  • the flange portion is formed as a portion.
  • the flange portion is provided at the center of a general ventilation path, etc. Detection of the occurrence of abnormal noise has to rely on the judgment by the inspection operator's ears, and the detection work takes a lot of time. This leads to a decrease in efficiency and a decrease in productivity. In addition, the work itself depends on the intuition of the operator, and detection omission is inevitable. If a detection omission occurs, the reliability of the product is greatly impaired.
  • the present invention has been proposed in view of such a conventional situation, and it is possible to suppress the generation of abnormal noise even when a balloon shape is configured by the growth of bubbles.
  • An object of the present invention is to provide a tubular foamed molded product that can be greatly simplified.
  • a tubular foamed molded product of the present invention is a tubular foamed molded product having a tube main body and a plate-like portion connected to the outside of the tube main body. At least in part, a recess is formed so that the tube wall of the tube main body at the plate-like portion forming position is retracted outward.
  • the balloon-shaped portion is formed by forming a recess so that the tube wall of the tube main body is retracted outward at the plate-shaped portion forming position, the balloon-shaped portion remains in the recess. And is not exposed to the air blowing path of the tubular foamed molded product. Therefore, the balloon-shaped portion does not flutter by blowing, and the generation of abnormal noise is suppressed. Moreover, since no abnormal noise is generated regardless of whether or not the balloon-shaped portion is formed, there is no need to detect the abnormal noise, and the detection operation can be omitted.
  • the present invention it is possible to provide a tubular foamed molded article that does not generate abnormal noise even during blowing. Further, according to the present invention, even if a balloon-shaped portion is formed in the manufacturing process, the generation of abnormal noise can be suppressed, so that the detection operation can be omitted, and the manufacturing process can be made more efficient and productive. It is possible to improve.
  • the foam duct of the present embodiment is a duct for automobiles, and is a lightweight tubular foam molded body for circulating the cool / warm air supplied from the air conditioner unit to a desired site.
  • a foam duct is formed, for example, by clamping a thermoplastic resin mixed with a foaming agent with a split mold and blow molding.
  • thermoplastic resin examples include a polypropylene resin and the like, and a blend in which 1 to 20% by mass of a polyolefin polymer and 5 to 40% by mass of a hydrogenated styrene thermoplastic elastomer are mixed. Resins and the like can also be used.
  • polypropylene resin polypropylene having a melt tension at 230 ° C. in the range of 30 to 350 mN is preferable.
  • the polypropylene resin is preferably a propylene homopolymer having a long-chain branched structure, and more preferably an ethylene-propylene block copolymer is added.
  • the hydrogenated styrene thermoplastic elastomer blended with the polypropylene resin is 5 to 40% by mass with respect to the polypropylene resin in order to improve impact resistance and maintain the rigidity as a tubular foamed molded article. Preferably, it is added in the range of 15 to 30% by mass.
  • a hydrogenated polymer such as a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, or a styrene-butadiene random copolymer is used.
  • the hydrogenated styrene thermoplastic elastomer has a styrene content of less than 30% by mass, preferably less than 20% by mass, MFR at 230 ° C. (test temperature 230 ° C. according to JIS K-7210, test load) (Measured at 2.16 kg) is 10 g / 10 min or less, preferably 5.0 g / 10 min or less and 1.0 g / 10 min or more.
  • the polyolefin polymer blended with the polypropylene resin is preferably a low-density ethylene- ⁇ -olefin, and is preferably blended in the range of 1 to 20% by mass.
  • the low-density ethylene- ⁇ -olefin is preferably one having a density of 0.91 g / cm 3 or less, and ethylene- ⁇ -olefin obtained by copolymerizing ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
  • Olefin copolymers are preferred and include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene. 4-methyl-1-hexene and the like, and 1-butene, 1-hexene, 1-octene and the like are particularly preferable.
  • the ⁇ -olefin having 3 to 20 carbon atoms can be used alone or in combination of two or more.
  • the content of monomer units based on ethylene in the ethylene- ⁇ -olefin copolymer is preferably in the range of 50 to 99% by mass with respect to the ethylene- ⁇ -olefin copolymer.
  • the content of the monomer unit based on ⁇ -olefin is preferably in the range of 1 to 50% by mass with respect to the ethylene- ⁇ -olefin copolymer.
  • foaming agents include physical foaming agents, chemical foaming agents, and mixtures thereof.
  • Physical foaming agents include inorganic physical foaming agents such as air, carbon dioxide, nitrogen gas, and water, organic physical foaming agents such as butane, pentane, hexane, dichloromethane, dichloroethane, and their supercritical fluids. Can be applied.
  • As the supercritical fluid it is preferable to use carbon dioxide, nitrogen or the like. If nitrogen, the critical temperature is 149.1 ° C. and the critical pressure is 3.4 MPa or more, and if carbon dioxide, the critical temperature is 31 ° C. It can be made by setting it to 7.4 MPa or more.
  • the expansion ratio of the foam duct formed by blow molding is, for example, 2.5 times or more, and is constituted by a closed cell structure having a plurality of cell cells (closed cell ratio is 70% or more).
  • the present invention is effective in forming a tubular foamed molded article having a high expansion ratio. From this viewpoint, the effect is high when the expansion ratio is 3 times or more.
  • the average cell diameter of the cell in the thickness direction is, for example, less than 300 ⁇ m, and preferably less than 100 ⁇ m.
  • the foam duct formed by blow molding preferably has a tensile breaking elongation at ⁇ 10 ° C. of 40% or more and a tensile elastic modulus at room temperature of 1000 kg / cm 2 or more. Further, the tensile fracture elongation at ⁇ 10 ° C. is preferably 100% or more.
  • the definition of each term of the said expansion ratio, tensile fracture elongation, and a tensile elasticity modulus is as follows.
  • Foaming ratio A value obtained by dividing the density of the thermoplastic resin by the apparent density in the tube body of the foamed duct obtained by blow molding.
  • -Tensile fracture elongation The tube body of the foam duct obtained by blow molding was cut out, stored at -10 ° C, and then measured as a No. 2 test piece according to JIS K-7113 at a tensile speed of 50 mm / min. Value.
  • -Tensile elastic modulus The tube body of the foamed duct obtained by blow molding was cut out and measured at room temperature (23 ° C) as a No. 2 test piece according to JIS K-7113 at a tensile speed of 50 mm / min. Value.
  • FIG. 1 and 2 show examples of the shape of the foam duct 1 that is blow-molded using the above-described materials.
  • a supply port 3 for connection to an air conditioner unit (not shown) is opened at the center on the bottom side of the pipe part 2, and a plurality of duct parts (here 4 The open ends of the duct portions 4, 5, 6 and 7 are provided with fitting portions 4 a, 5 a, 6 a and 7 a, respectively.
  • Each of the duct parts 4, 5, 6, and 7 is formed in a cylindrical shape so as to have a flow path for circulating a fluid, so that cool and warm air introduced from the air conditioner unit can be circulated through the supply port 3. Yes. Therefore, in the foamed duct 1 of this embodiment, the said pipe part 2 and the duct parts 4, 5, 6, and 7 correspond to a pipe main body, and an internal space becomes a mainstream part of a cool / warm air.
  • the duct portions 4, 5, 6, and 7, which are pipe bodies, are used for the purpose of structural reinforcement of the duct itself, reinforcement at the time of attachment to other part materials, and the like.
  • the flange portion 8 (plate-like portion) is provided at a plurality of locations in such a manner as to be connected to the outside of the pipe body (duct portions 4, 5, 6, 7). These flange portions 8 are formed as compression portions obtained by overlapping and crushing two foam parisons.
  • the flange portion 8 includes the branch portions of the duct portions 4 and 5, the branch portions of the duct portions 6 and 7, and the midway portions and positions near the tips of the duct portions 4, 5, 6, and 7. Are formed at positions necessary for reinforcement and mounting / fixing.
  • Each flange portion 8 is provided with fixing holes (not shown) as required. By passing bolts or the like through these fixing holes and tightening with nuts, other tubular members or the vehicle body can be provided. It fixes to the provided support part etc.
  • a so-called balloon-shaped structure may be formed when the flange portion 8 that is the plate-shaped portion is formed. Since the flange portion 8 is formed as a compression portion when the foam duct 1 is blow-molded, the air bubbles in the foam parison are crushed and the pressing force of the mold is not applied (the portion facing the inner wall of the pipe body). The thermoplastic resin swells into a balloon shape, and a thin balloon-shaped portion is formed.
  • FIG. 3 shows a state in which the balloon-shaped part is formed in the flange part 8 of the duct part 4, for example.
  • the foam parison is crushed to form the flange portion 8
  • the bubbles in the foam parison escape toward the inner wall of the duct portion 4 where the pressure of the mold is not applied, and a thin balloon-shaped portion 9 is formed.
  • the formed balloon-shaped part 9 is formed in the main flow part of the duct part 4 as shown in FIG. Therefore, when the cool and warm air flows in the mainstream portion, the balloon-shaped portion 9 flutters due to the blowing, and an abnormal noise is generated.
  • a concave portion is formed so that the tube wall of the tube body recedes outward at the formation position of the flange portion 8 which is a plate-like portion, and the balloon shape is formed therein.
  • the generation of abnormal noise is suppressed by accommodating the portion 9.
  • the formation of the recess will be described.
  • FIGS. 4 and 5 show a portion where the flange portion 8 of the duct portion 4 is formed.
  • the connecting portion of the flange portion 8 with the duct portion 4 that is the pipe body is formed so as to bulge outward.
  • the bulging part 10 is formed, and the recessed part 11 is formed in a form in which a part of the main flow part space of the duct part 4 is enlarged.
  • the base end portion of the flange portion 8 is retracted from the tube wall of the tube body.
  • the balloon-shaped portion 9 is formed by forming the concave portion 11 as shown in FIG. 6, the balloon-shaped portion 9 is accommodated in the concave portion 11.
  • the flow rate in the recess 11 is slower than that of the main flow portion of the duct portion 4, and the generation of abnormal noise can be significantly suppressed by accommodating the balloon-shaped portion 9 therein.
  • the opening width W of the recess 11 to be formed is preferably 1 mm or less.
  • the balloon-shaped portion 9 is pressed by the wall surface of the concave portion 11, and flapping is effectively suppressed.
  • FIG. 7 schematically shows a state in which the balloon-shaped portion 9 is accommodated in the recess 11.
  • the opening width W of the recessed part 11 is larger than the external dimension of the balloon-shaped part 9, the balloon-shaped part 9 may flutter slightly in the recessed part 11, as shown to Fig.7 (a).
  • the depth dimension (depth) D may be any depth that can accommodate the balloon-shaped portion 9 and is preferably 1 mm to 10 mm.
  • the aforementioned recesses 11 may be formed in all the flange portions 8, but may be formed only in some flange portions.
  • the cross-sectional area of the duct portions 4 and 6 extending in the lateral direction is reduced in the branch portions of the duct portions 4 and 5 and the branch portions of the duct portions 6 and 7, and the flow velocity is reduced. It tends to rise. Therefore, the above measures (formation of the recesses 11) may be applied only to the flange portions 8 formed at the branch portions of the duct portions 4 and 5 and the branch portions of the duct portions 6 and 7.
  • the foamed duct of this embodiment further suppresses the generation of abnormal noise by forming a blocking recess in the flange portion 8 that is a plate-like portion in addition to the formation of the recess 11.
  • the same members as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • FIG. 8 shows the foamed duct 1 of the present embodiment, and a dammed recess 21 is formed on the surface of each flange portion 8 along the connecting portion with the duct portions 4, 5, 6, 7.
  • FIG. 9 shows the formation of the damming recess 21 by taking the duct portion 4 as an example.
  • the dam recessed portion 21 is formed as a recessed groove having a predetermined depth along the boundary portion between the flange portion 8 and the duct portion 4.
  • the dam recessed portion 21 functions as a dam that dams the movement of bubbles when the foam parison is crushed to form the flange portion 8. That is, the bubbles contained in the foamed parison try to move in a direction in which pressure is not applied by crushing (in the direction of the arrow in the figure), but the movement is performed by a mold portion for forming the damming recess 21. It is blocked and cannot move in the direction of the duct part 4 beyond this. As a result, the formation of the balloon-shaped portion 9 is suppressed and the generation of abnormal noise is prevented.
  • the dam concave portion 21 may be formed in the vicinity of the boundary portion between the flange portion 8 and the duct portion 4, but the formation position is preferably as close as possible to the boundary with the duct portion.
  • the boundary line with the duct part 4 is formed as the dam recessed part 21 as it is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

[Problem] To provide a tubular foam molded article capable of suppressing the occurrence of abnormal noise even when a balloon shape is formed by the growth of air bubbles, and greatly simplifying an abnormal noise inspection step. [Solution] A tubular foam molded article (a foamed duct) having a tube body, and a plate-shaped portion connected to the outside of the tube body. In at least part of the plate-shaped portion, a recessed section is formed such that the tube wall of the tube body at a position where the plate-shaped portion is formed retreats outward. When a balloon-shaped portion is generated by air bubbles being crushed, the balloon-shaped portion is housed in the recessed section. In the vicinity of a connection section with the tube body in the plate-shaped portion, a dam recessed section may be provided.

Description

管状発泡成形体Tubular foam molding
 本発明は、自動車ダクト等として用いられる管状発泡成形体に関するものであり、特に、異音発生対策を施した新規な管状発泡成形体に関する。 The present invention relates to a tubular foamed molded article used as an automobile duct or the like, and more particularly to a novel tubular foamed molded article that is provided with a measure against abnormal noise generation.
  例えば自動車用ダクトの分野においては、管本体における開口部近傍に、他の管状部材と接続するためのフランジ部が設けられた発泡成形体が広く用いられている。特に、エアコンからの空気を通風させるためのダクトでは、管状の発泡成形体を用いることにより、断熱性に優れ、軽量なダクトを実現することができる。さらに、こうしたダクトでは、製造時の発泡倍率を上げて発泡体内部の気泡を多くすることにより、断熱性、軽量さをさらに向上させることができるため、より効果的である。 For example, in the field of automobile ducts, a foam molded body in which a flange portion for connecting to another tubular member is provided in the vicinity of an opening in a tube main body is widely used. In particular, in a duct for ventilating air from an air conditioner, it is possible to realize a lightweight duct having excellent heat insulation properties by using a tubular foamed molded body. Further, such a duct is more effective because it can further improve heat insulation and light weight by increasing the foaming ratio at the time of manufacture and increasing the number of bubbles inside the foam.
  こうした発泡成形体の製造方法としては、溶融樹脂を分割金型で型締めして成形する方法が広く知られている。近年では、成形技術の向上に伴い、管状発泡体の発泡倍率を向上させた量産化が可能となりつつある。 As a method for producing such a foamed molded product, a method is widely known in which a molten resin is clamped with a split mold. In recent years, with the improvement of molding technology, mass production with an improved expansion ratio of tubular foams is becoming possible.
  また、本出願人により先に出願されている技術として、発泡樹脂による樹脂シートと、未発泡樹脂による樹脂シートとを分割金型で型締めすることにより、管状部分および板状部分を有する成形品を製造するものがある(例えば、特許文献1参照)。 Further, as a technology previously filed by the present applicant, a molded product having a tubular portion and a plate-like portion by clamping a resin sheet made of foamed resin and a resin sheet made of unfoamed resin with a split mold (For example, refer to Patent Document 1).
特開2011-131776号公報JP 2011-131777 A
 ところで、前述のようにダクト(管状部分)にフランジ部(板状部分)を設ける場合、パーティングラインから発泡パリソンを延長し、この延長された2枚の発泡パリソンを押し潰すことにより、いわゆるコンプレッション部として前記フランジ部を形成することになる。 By the way, when providing a flange part (plate-shaped part) in a duct (tubular part) as mentioned above, a so-called compression is obtained by extending a foam parison from a parting line and crushing the two foam parisons thus extended. The flange portion is formed as a portion.
 この時、断熱性や軽量性を高めるために、発泡パリソンの発泡倍率を高めると、コンプレッションにより発泡気泡の集合体が発生し、さらには、この気泡が成長して薄膜の風船形状を構成する場合がある。この風船形状部が送風路に露出する形で形成されると、送風時に異音が発生するという現象が起こる。 At this time, if the expansion ratio of the foam parison is increased in order to improve heat insulation and light weight, an aggregate of foam bubbles is generated by compression, and further, when the bubbles grow to form a thin-film balloon shape There is. If this balloon-shaped part is formed so as to be exposed to the air passage, a phenomenon occurs in which abnormal noise is generated during the air blowing.
 したがって、品質管理上、前記異音発生の有無を検出することが必要になるが、例えば屈曲した経路を有するダクトにおいて、一般通風経路の中央部等に前記フランジ部を有している場合、前記異音発生の検出は、検査作業者の耳による判断に頼らざるを得ず、検出作業に多大な時間を要することになる。このことは効率の低下を招き、生産性の低下を招くことになる。また、作業自体も、作業者の勘等に頼ることになり、検出漏れが避けられない。検出漏れが発生すると、製品の信頼性を大きく損なうことになる。 Therefore, for quality control, it is necessary to detect the presence or absence of the occurrence of the abnormal noise.For example, in a duct having a bent path, the flange portion is provided at the center of a general ventilation path, etc. Detection of the occurrence of abnormal noise has to rely on the judgment by the inspection operator's ears, and the detection work takes a lot of time. This leads to a decrease in efficiency and a decrease in productivity. In addition, the work itself depends on the intuition of the operator, and detection omission is inevitable. If a detection omission occurs, the reliability of the product is greatly impaired.
 本発明は、このような従来の実情に鑑みて提案されたものであり、気泡の成長により風船形状が構成された場合にも異音発生を抑えることができ、製造に際して、異音検査工程を大幅に簡略化することが可能な管状発泡成形体を提供することを目的とする。 The present invention has been proposed in view of such a conventional situation, and it is possible to suppress the generation of abnormal noise even when a balloon shape is configured by the growth of bubbles. An object of the present invention is to provide a tubular foamed molded product that can be greatly simplified.
 前述の目的を達成するために、本発明の管状発泡成形体は、管本体と、前記管本体の外側に連接された板状部分とを有する管状発泡成形体であって、前記板状部分の少なくとも一部において、板状部分形成位置における管本体の管壁が外方に向かって後退するように凹部が形成されていることを特徴とする。 In order to achieve the aforementioned object, a tubular foamed molded product of the present invention is a tubular foamed molded product having a tube main body and a plate-like portion connected to the outside of the tube main body. At least in part, a recess is formed so that the tube wall of the tube main body at the plate-like portion forming position is retracted outward.
 板状部分形成位置において、管本体の管壁が外方に向かって後退するように凹部を形成しておくことで、仮に前記風船形状部が形成されたとしても、風船形状部が前記凹部内に収容される形となり、管状発泡成形体の送風路に露出することがない。したがって、風船形状部が送風によってばたつくことがなくなり、異音の発生が抑えられる。また、風船形状部が形成されるか否かによらず異音が発生することがないので、異音検出の必要がなく、検出作業が省略可能である。 Even if the balloon-shaped portion is formed by forming a recess so that the tube wall of the tube main body is retracted outward at the plate-shaped portion forming position, the balloon-shaped portion remains in the recess. And is not exposed to the air blowing path of the tubular foamed molded product. Therefore, the balloon-shaped portion does not flutter by blowing, and the generation of abnormal noise is suppressed. Moreover, since no abnormal noise is generated regardless of whether or not the balloon-shaped portion is formed, there is no need to detect the abnormal noise, and the detection operation can be omitted.
 本発明によれば、送風時にも異音が発生することのない管状発泡成形体を提供することが可能である。また、本発明によれば、製造過程において、風船形状部が形成されたとしても異音の発生を抑えることができるので、検出作業を省略することができ、製造工程の効率化を図り生産性を向上することが可能である。 According to the present invention, it is possible to provide a tubular foamed molded article that does not generate abnormal noise even during blowing. Further, according to the present invention, even if a balloon-shaped portion is formed in the manufacturing process, the generation of abnormal noise can be suppressed, so that the detection operation can be omitted, and the manufacturing process can be made more efficient and productive. It is possible to improve.
第1の実施形態の管状発泡成型体の概略平面図である。It is a schematic plan view of the tubular foaming molding of a 1st embodiment. 第1の実施形態の管状発泡成型体の概略底面図である。It is a schematic bottom view of the tubular foaming molding of a 1st embodiment. 風船形状部が形成された状態を示す概略断面図である。It is a schematic sectional drawing which shows the state in which the balloon shape part was formed. 第1の実施形態の管状発泡成形体の板状部分近傍の要部概略斜視図である。It is a principal part schematic perspective view of the plate-shaped part vicinity of the tubular foaming molding of 1st Embodiment. 第1の実施形態の管状発泡成形体の板状部分近傍の要部概略断面図である。It is a principal part schematic sectional drawing of the plate-shaped part vicinity of the tubular foaming molding of 1st Embodiment. 風船形状部が形成された状態を示す要部概略断面図である。It is a principal part schematic sectional drawing which shows the state in which the balloon shape part was formed. 凹部に風船形状部が収容された状態を示す模式図であり、凹部の開口幅Wが風船形状部の外形寸法よりも大きい場合を示すものである。It is a schematic diagram which shows the state in which the balloon-shaped part was accommodated in the recessed part, and shows the case where the opening width W of a recessed part is larger than the external dimension of a balloon-shaped part. 凹部に風船形状部が収容された状態を示す模式図であり、凹部の開口幅Wが風船形状部の外形寸法よりも小さい場合を示すものである。It is a schematic diagram which shows the state in which the balloon-shaped part was accommodated in the recessed part, and shows the case where the opening width W of a recessed part is smaller than the external dimension of a balloon-shaped part. 第2の実施形態の管状発泡成形体の概略底面図である。It is a schematic bottom view of the tubular foaming molding of 2nd Embodiment. 第2の実施形態の管状発泡成形体の板状部分近傍の要部概略断面図である。It is a principal part schematic sectional drawing of the plate-shaped part vicinity of the tubular foaming molding of 2nd Embodiment. 堰き止め凹部の他の例を示す要部概略断面図である。It is a principal part schematic sectional drawing which shows the other example of a dam recessed part.
 以下、本発明を適用した管状発泡成形体(発泡ダクト)の実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of a tubular foamed molding (foaming duct) to which the present invention is applied will be described in detail with reference to the drawings.
(第1の実施形態)
 本実施形態の発泡ダクトは、自動車用ダクトであり、エアコンユニットから供給される冷暖風を所望の部位へ流通させるための軽量な管状発泡成形体である。係る発泡ダクトは、例えば発泡剤を混合させた熱可塑性樹脂を分割金型で型締めし、ブロー成形することで成形される。
(First embodiment)
The foam duct of the present embodiment is a duct for automobiles, and is a lightweight tubular foam molded body for circulating the cool / warm air supplied from the air conditioner unit to a desired site. Such a foam duct is formed, for example, by clamping a thermoplastic resin mixed with a foaming agent with a split mold and blow molding.
 ここで、前記熱可塑性樹脂としては、例えばポリプロピレン系樹脂等を挙げることができ、1~20質量%のポリオレフィン系重合体や5~40質量%の水素添加スチレン系熱可塑性エラストマーを混合させたブレンド樹脂等を用いることもできる。 Here, examples of the thermoplastic resin include a polypropylene resin and the like, and a blend in which 1 to 20% by mass of a polyolefin polymer and 5 to 40% by mass of a hydrogenated styrene thermoplastic elastomer are mixed. Resins and the like can also be used.
 前記ポリプロピレン系樹脂としては、230℃におけるメルトテンションが30~350mNの範囲内のポリプロピレンが好ましい。特に、ポリプロピレン系樹脂は、長鎖分岐構造を有するプロピレン単独重合体であることが好ましく、エチレン-プロピレンブロック共重合体を添加することが更に好ましい。 As the polypropylene resin, polypropylene having a melt tension at 230 ° C. in the range of 30 to 350 mN is preferable. In particular, the polypropylene resin is preferably a propylene homopolymer having a long-chain branched structure, and more preferably an ethylene-propylene block copolymer is added.
 また、ポリプロピレン系樹脂にブレンドされる水素添加スチレン系熱可塑性エラストマーとしては、耐衝撃性を改善すると共に管状発泡成形体としての剛性を維持するために、ポリプロピレン系樹脂に対して5~40質量%、好ましくは、15~30質量%の範囲で添加することが好ましい。 The hydrogenated styrene thermoplastic elastomer blended with the polypropylene resin is 5 to 40% by mass with respect to the polypropylene resin in order to improve impact resistance and maintain the rigidity as a tubular foamed molded article. Preferably, it is added in the range of 15 to 30% by mass.
 具体的には、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエンランダム共重合体などの水素添加ポリマーを用いる。また、水素添加スチレン系熱可塑性エラストマーとしては、スチレン含有量が30質量%未満、好ましくは、20質量%未満であり、230℃におけるMFR(JIS  K-7210に準じて試験温度230℃、試験荷重2.16kgにて測定)は10g/10分以下、好ましくは、5.0g/10分以下で、かつ、1.0g/10分以上である。 Specifically, a hydrogenated polymer such as a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, or a styrene-butadiene random copolymer is used. The hydrogenated styrene thermoplastic elastomer has a styrene content of less than 30% by mass, preferably less than 20% by mass, MFR at 230 ° C. (test temperature 230 ° C. according to JIS K-7210, test load) (Measured at 2.16 kg) is 10 g / 10 min or less, preferably 5.0 g / 10 min or less and 1.0 g / 10 min or more.
 ポリプロピレン系樹脂にブレンドされるポリオレフィン系重合体としては、低密度のエチレン-α-オレフィンが好ましく、1~20質量%の範囲で配合することが好ましい。低密度のエチレン-α-オレフィンは、密度0.91g/cm以下のものを用いることが好ましく、エチレンと炭素原子数3~20のα-オレフィンとを共重合して得られるエチレン-α-オレフィン共重合体が好適であり、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン等があり、特に、1-ブテン、1-ヘキセン、1-オクテン等が好適である。また、炭素原子数3~20のα-オレフィンは単独で用いたり、2種以上を併用したりすることも可能である。エチレン-α-オレフィン共重合体中のエチレンに基づく単量体単位の含有量は、エチレン-α-オレフィン共重合体に対して、50~99質量%の範囲であることが好ましい。また、α-オレフィンに基づく単量体単位の含有量は、エチレン-α-オレフィン共重合体に対して、1~50質量%の範囲であることが好ましい。特に、メタロセン系触媒を用いて重合された直鎖状超低密度ポリエチレン又はエチレン系エラストマー、プロピレン系エラストマーを用いることが好ましい。 The polyolefin polymer blended with the polypropylene resin is preferably a low-density ethylene-α-olefin, and is preferably blended in the range of 1 to 20% by mass. The low-density ethylene-α-olefin is preferably one having a density of 0.91 g / cm 3 or less, and ethylene-α-olefin obtained by copolymerizing ethylene and an α-olefin having 3 to 20 carbon atoms. Olefin copolymers are preferred and include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene. 4-methyl-1-hexene and the like, and 1-butene, 1-hexene, 1-octene and the like are particularly preferable. Further, the α-olefin having 3 to 20 carbon atoms can be used alone or in combination of two or more. The content of monomer units based on ethylene in the ethylene-α-olefin copolymer is preferably in the range of 50 to 99% by mass with respect to the ethylene-α-olefin copolymer. The content of the monomer unit based on α-olefin is preferably in the range of 1 to 50% by mass with respect to the ethylene-α-olefin copolymer. In particular, it is preferable to use a linear ultra-low density polyethylene polymerized using a metallocene catalyst, an ethylene elastomer, or a propylene elastomer.
 発泡剤としては、物理発泡剤、化学発泡剤及びその混合物が挙げられる。物理発泡剤としては、空気、炭酸ガス、窒素ガス、水等の無機系物理発泡剤、及び、ブタン、ペンタン、ヘキサン、ジクロロメタン、ジクロロエタン等の有機系物理発泡剤、更には、それらの超臨界流体を適用することができる。超臨界流体としては、二酸化炭素、窒素などを用いて作ることが好ましく、窒素であれば臨界温度-149.1℃、臨界圧力3.4MPa以上、二酸化炭素であれば臨界温度31℃、臨界圧力7.4MPa以上とすることで作ることができる。 Examples of foaming agents include physical foaming agents, chemical foaming agents, and mixtures thereof. Physical foaming agents include inorganic physical foaming agents such as air, carbon dioxide, nitrogen gas, and water, organic physical foaming agents such as butane, pentane, hexane, dichloromethane, dichloroethane, and their supercritical fluids. Can be applied. As the supercritical fluid, it is preferable to use carbon dioxide, nitrogen or the like. If nitrogen, the critical temperature is 149.1 ° C. and the critical pressure is 3.4 MPa or more, and if carbon dioxide, the critical temperature is 31 ° C. It can be made by setting it to 7.4 MPa or more.
 ブロー成形により形成される発泡ダクトの発泡倍率は、例えば2.5倍以上であり、複数の気泡セルを有する独立気泡構造(独立気泡率が70%以上)により構成される。本発明は、発泡倍率の高い管状発泡成形体の成形において効果的であり、係る観点から、発泡倍率3倍以上とする場合に効果が高い。厚み方向における気泡セルの平均気泡径は例えば300μm未満、好ましくは、100μm未満である。 The expansion ratio of the foam duct formed by blow molding is, for example, 2.5 times or more, and is constituted by a closed cell structure having a plurality of cell cells (closed cell ratio is 70% or more). The present invention is effective in forming a tubular foamed molded article having a high expansion ratio. From this viewpoint, the effect is high when the expansion ratio is 3 times or more. The average cell diameter of the cell in the thickness direction is, for example, less than 300 μm, and preferably less than 100 μm.
 また、ブロー成形により形成される発泡ダクトは、-10℃における引張破壊伸びが40%以上で、かつ、常温時における引張弾性率が1000kg/cm以上であることが好ましい。さらに、-10℃における引張破壊伸びが100%以上であることが好ましい。なお、前記発泡倍率や引張破壊伸び、引張弾性率の各用語の定義は下記の通りである。 The foam duct formed by blow molding preferably has a tensile breaking elongation at −10 ° C. of 40% or more and a tensile elastic modulus at room temperature of 1000 kg / cm 2 or more. Further, the tensile fracture elongation at −10 ° C. is preferably 100% or more. In addition, the definition of each term of the said expansion ratio, tensile fracture elongation, and a tensile elasticity modulus is as follows.
・発泡倍率:熱可塑性樹脂の密度を、ブロー成形により得られた発泡ダクトの管本体における見かけ密度で割った値である。
・引張破壊伸び:ブロー成形により得られた発泡ダクトの管本体を切り出し、-10℃で保管後に、JIS  K-7113に準じて2号形試験片として引張速度を50mm/分で測定を行った値である。
・引張弾性率:ブロー成形により得られた発泡ダクトの管本体を切り出し、常温(23℃)で、JIS  K-7113に準じて2号形試験片として引張速度を50mm/分で測定を行った値である。
Foaming ratio: A value obtained by dividing the density of the thermoplastic resin by the apparent density in the tube body of the foamed duct obtained by blow molding.
-Tensile fracture elongation: The tube body of the foam duct obtained by blow molding was cut out, stored at -10 ° C, and then measured as a No. 2 test piece according to JIS K-7113 at a tensile speed of 50 mm / min. Value.
-Tensile elastic modulus: The tube body of the foamed duct obtained by blow molding was cut out and measured at room temperature (23 ° C) as a No. 2 test piece according to JIS K-7113 at a tensile speed of 50 mm / min. Value.
 図1及び図2は、前述のような材料を用いてブロー成形される発泡ダクト1の形状例を示すものである。本例の発泡ダクト1においては、エアコンユニット(図示せず)に接続するための供給口3が管部2の底面側中央に開設され、管部2が分岐した複数のダクト部(ここでは4本のダクト部)4,5,6,7の開放端には、それぞれ嵌め合い部4a,5a,6a,7aが設けられている。各ダクト部4,5,6,7は、流体を流通させる流路を有するよう筒状に構成され、前記供給口3を介してエアコンユニットから導入される冷暖風を流通させられるようになっている。したがって、本実施形態の発泡ダクト1においては、前記管部2及びダクト部4,5,6,7が管本体に相当し、内部空間が冷暖風の主流部となる。 1 and 2 show examples of the shape of the foam duct 1 that is blow-molded using the above-described materials. In the foamed duct 1 of this example, a supply port 3 for connection to an air conditioner unit (not shown) is opened at the center on the bottom side of the pipe part 2, and a plurality of duct parts (here 4 The open ends of the duct portions 4, 5, 6 and 7 are provided with fitting portions 4 a, 5 a, 6 a and 7 a, respectively. Each of the duct parts 4, 5, 6, and 7 is formed in a cylindrical shape so as to have a flow path for circulating a fluid, so that cool and warm air introduced from the air conditioner unit can be circulated through the supply port 3. Yes. Therefore, in the foamed duct 1 of this embodiment, the said pipe part 2 and the duct parts 4, 5, 6, and 7 correspond to a pipe main body, and an internal space becomes a mainstream part of a cool / warm air.
 また、本実施形態の発泡ダクト1においては、ダクト自体の構造的補強、及び他の部位材に対して取り付けの際の補強等を目的として、管本体であるダクト部4,5,6,7の複数箇所に、フランジ部8(板状部分)が管本体(ダクト部4,5,6,7)の外側に連接する形で設けられている。これらフランジ部8は、2枚の発泡パリソンを重ねて押し潰したコンプレッション部として形成されるものである。 Further, in the foamed duct 1 of the present embodiment, the duct portions 4, 5, 6, and 7, which are pipe bodies, are used for the purpose of structural reinforcement of the duct itself, reinforcement at the time of attachment to other part materials, and the like. The flange portion 8 (plate-like portion) is provided at a plurality of locations in such a manner as to be connected to the outside of the pipe body ( duct portions 4, 5, 6, 7). These flange portions 8 are formed as compression portions obtained by overlapping and crushing two foam parisons.
 本実施形態の場合、前記フランジ部8は、ダクト部4,5の分岐部分やダクト部6,7の分岐部分、さらには、各ダクト部4,5,6,7の中途部や先端近傍位置において、補強や取り付け固定に必要な位置に形成されている。各フランジ部8には、必要に応じて固定用孔(図示は省略する)が穿設されており、これら固定用孔にボルト等を通し、ナットで締め付けることにより、他の管状部材や車体に設けられた支持部等に固定する。 In the case of the present embodiment, the flange portion 8 includes the branch portions of the duct portions 4 and 5, the branch portions of the duct portions 6 and 7, and the midway portions and positions near the tips of the duct portions 4, 5, 6, and 7. Are formed at positions necessary for reinforcement and mounting / fixing. Each flange portion 8 is provided with fixing holes (not shown) as required. By passing bolts or the like through these fixing holes and tightening with nuts, other tubular members or the vehicle body can be provided. It fixes to the provided support part etc.
 以上の構成を有する発泡ダクト1においては、前記板状部分であるフランジ部8の形成の際に、いわゆる風船形状の構造(風船形状部)が形成されることがある。フランジ部8は、発泡ダクト1のブロー成形の際にコンプレッション部として形成されるため、発泡パリソン内の気泡が押し潰され、金型の押圧力が加わらない部分(管本体の内壁に臨む部分)に押し出され、熱可塑性樹脂が風船状に膨らんで、薄肉状の風船形状部が形成される。 In the foamed duct 1 having the above-described configuration, a so-called balloon-shaped structure (balloon-shaped portion) may be formed when the flange portion 8 that is the plate-shaped portion is formed. Since the flange portion 8 is formed as a compression portion when the foam duct 1 is blow-molded, the air bubbles in the foam parison are crushed and the pressing force of the mold is not applied (the portion facing the inner wall of the pipe body). The thermoplastic resin swells into a balloon shape, and a thin balloon-shaped portion is formed.
 図3は、例えばダクト部4のフランジ部8において、前記風船形状部が形成された状態を示すものである。発泡パリソンを押し潰してフランジ部8を形成すると、発泡パリソン内の気泡が金型の圧力が加わらないダクト部4の内壁方向に逃げ、薄肉状の風船形状部9が形成される。形成された風船形状部9は、図3に示す通り、ダクト部4の主流部内に形成される形になる。したがって、主流部に冷暖風が流れると、送風によって風船形状部9がばたつき、異音を発生する。 FIG. 3 shows a state in which the balloon-shaped part is formed in the flange part 8 of the duct part 4, for example. When the foam parison is crushed to form the flange portion 8, the bubbles in the foam parison escape toward the inner wall of the duct portion 4 where the pressure of the mold is not applied, and a thin balloon-shaped portion 9 is formed. The formed balloon-shaped part 9 is formed in the main flow part of the duct part 4 as shown in FIG. Therefore, when the cool and warm air flows in the mainstream portion, the balloon-shaped portion 9 flutters due to the blowing, and an abnormal noise is generated.
 そこで、本実施形態の発泡ダクト1では、板状部分であるフランジ部8の形成位置において、管本体の管壁が外方に向かって後退するように凹部を形成し、この中に前記風船形状部9を収容するようにすることで、異音の発生を抑制することとする。以下、前記凹部の形成について説明する。 Therefore, in the foam duct 1 of the present embodiment, a concave portion is formed so that the tube wall of the tube body recedes outward at the formation position of the flange portion 8 which is a plate-like portion, and the balloon shape is formed therein. The generation of abnormal noise is suppressed by accommodating the portion 9. Hereinafter, the formation of the recess will be described.
 図4及び図5は、ダクト部4のフランジ部8形成部分を示すものである。本実施形態の発泡ダクト1においては、これら図4,図5に示すように、フランジ部8の管本体であるダクト部4との連接部分を外側に向かって膨出するように成形することで膨出部10を形成し、ダクト部4の主流部空間の一部を拡大する形で凹部11を形成する。これにより、フランジ部8の基端部が管本体の管壁から後退することになる。 4 and 5 show a portion where the flange portion 8 of the duct portion 4 is formed. In the foamed duct 1 of the present embodiment, as shown in FIGS. 4 and 5, the connecting portion of the flange portion 8 with the duct portion 4 that is the pipe body is formed so as to bulge outward. The bulging part 10 is formed, and the recessed part 11 is formed in a form in which a part of the main flow part space of the duct part 4 is enlarged. As a result, the base end portion of the flange portion 8 is retracted from the tube wall of the tube body.
 前記凹部11を形成することで、図6に示すように、前述の風船形状部9が形成された場合、当該風船形状部9は凹部11内に収容されることになる。凹部11内は、ダクト部4の主流部に比べて流速が遅く、この中に風船形状部9を収容することで、異音の発生を大幅に抑えることが可能である。 When the above-described balloon-shaped portion 9 is formed by forming the concave portion 11 as shown in FIG. 6, the balloon-shaped portion 9 is accommodated in the concave portion 11. The flow rate in the recess 11 is slower than that of the main flow portion of the duct portion 4, and the generation of abnormal noise can be significantly suppressed by accommodating the balloon-shaped portion 9 therein.
 形成される凹部11の開口幅Wは1mm以下であることが好ましい。開口幅Wを小さくすることで、風船形状部9が凹部11の壁面で押さえ付けられ、ばたつきが効果的に抑制される。図7は、凹部11内に風船形状部9が収容された状態を模式的に示すものである。凹部11の開口幅Wが風船形状部9の外形寸法よりも大きい場合、図7(a)に示すように凹部11内で風船形状部9が僅かにばたつく可能性がある。これに対して、凹部11の開口幅Wを風船形状部9の外形寸法よりも小さくすれば、図7(b)に示すように、風船形状部9が凹部11の内壁によって押さえ付けられる形になり、ばたつきが解消される。奥行き寸法(深さ)Dに関しては、風船形状部9を収容し得る深さであればよく、1mm~10mmであることが好ましい。 The opening width W of the recess 11 to be formed is preferably 1 mm or less. By reducing the opening width W, the balloon-shaped portion 9 is pressed by the wall surface of the concave portion 11, and flapping is effectively suppressed. FIG. 7 schematically shows a state in which the balloon-shaped portion 9 is accommodated in the recess 11. When the opening width W of the recessed part 11 is larger than the external dimension of the balloon-shaped part 9, the balloon-shaped part 9 may flutter slightly in the recessed part 11, as shown to Fig.7 (a). On the other hand, if the opening width W of the concave portion 11 is made smaller than the outer dimension of the balloon-shaped portion 9, the balloon-shaped portion 9 is pressed by the inner wall of the concave portion 11 as shown in FIG. And fluttering is eliminated. The depth dimension (depth) D may be any depth that can accommodate the balloon-shaped portion 9 and is preferably 1 mm to 10 mm.
 前述の凹部11は、全てのフランジ部8において形成しても良いが、一部のフランジ部においてのみ形成するようにしても良い。例えば、本実施形態の発泡ダクト1の場合、ダクト部4,5の分岐部分及びダクト部6,7の分岐部分において、横方向に伸びるダクト部4,6の断面積が小さく絞られ、流速が上昇する傾向にある。そこで、ダクト部4,5の分岐部分及びダクト部6,7の分岐部分に形成されるフランジ部8についてのみ、前記対策(凹部11の形成)を施すようにしてもよい。なお、前記の通り断面積が小さく絞られ流速が上昇するダクト部4,6の分岐部分において異音の発生が顕著であることから、このような部分にフランジ部(板状部分)を形成しないことも有効な異音対策となる。 The aforementioned recesses 11 may be formed in all the flange portions 8, but may be formed only in some flange portions. For example, in the case of the foamed duct 1 of the present embodiment, the cross-sectional area of the duct portions 4 and 6 extending in the lateral direction is reduced in the branch portions of the duct portions 4 and 5 and the branch portions of the duct portions 6 and 7, and the flow velocity is reduced. It tends to rise. Therefore, the above measures (formation of the recesses 11) may be applied only to the flange portions 8 formed at the branch portions of the duct portions 4 and 5 and the branch portions of the duct portions 6 and 7. As described above, since abnormal noise is noticeably generated at the branch portions of the duct portions 4 and 6 where the cross-sectional area is reduced and the flow velocity is increased, a flange portion (plate-like portion) is not formed in such a portion. This is also an effective noise countermeasure.
(第2の実施形態)
 本実施形態の発泡ダクトは、前記凹部11の形成に加えて、板状部分であるフランジ部8に堰き止め凹部を形成することで、異音の発生をさらに抑制するものである。なお、本実施形態の発泡ダクトにおいて、先の第1の実施形態と同一の部材については、第1の実施形態と同一の符号を付し、その説明は省略する。
(Second Embodiment)
The foamed duct of this embodiment further suppresses the generation of abnormal noise by forming a blocking recess in the flange portion 8 that is a plate-like portion in addition to the formation of the recess 11. In the foam duct of this embodiment, the same members as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 図8は、本実施形態の発泡ダクト1を示すものであり、各フランジ部8には、ダクト部4,5,6,7との連接部分に沿って、その表面に堰き止め凹部21が形成されている。図9は、ダクト部4を例にして、前記堰き止め凹部21の形成状態を示すものである。堰き止め凹部21は、フランジ部8とダクト部4の境界部分に沿う形で所定の深さの凹溝として形成されている。 FIG. 8 shows the foamed duct 1 of the present embodiment, and a dammed recess 21 is formed on the surface of each flange portion 8 along the connecting portion with the duct portions 4, 5, 6, 7. Has been. FIG. 9 shows the formation of the damming recess 21 by taking the duct portion 4 as an example. The dam recessed portion 21 is formed as a recessed groove having a predetermined depth along the boundary portion between the flange portion 8 and the duct portion 4.
 前記堰き止め凹部21は、発泡パリソンを押し潰してフランジ部8を形成する際に、気泡の移動を堰き止めるダムの働きをするものである。すなわち、発泡パリソンに含まれる気泡は、押し潰しによって圧力が加わらない方向(図中、矢印方向)に移動しようとするが、その移動は、前記堰き止め凹部21を形成するための金型部分で遮断され、これを越えてダクト部4方向に移動することはできない。その結果、風船形状部9の形成が抑制され、異音発生が防止される。 The dam recessed portion 21 functions as a dam that dams the movement of bubbles when the foam parison is crushed to form the flange portion 8. That is, the bubbles contained in the foamed parison try to move in a direction in which pressure is not applied by crushing (in the direction of the arrow in the figure), but the movement is performed by a mold portion for forming the damming recess 21. It is blocked and cannot move in the direction of the duct part 4 beyond this. As a result, the formation of the balloon-shaped portion 9 is suppressed and the generation of abnormal noise is prevented.
 前記堰き止め凹部21は、フランジ部8のダクト部4との境界部分近傍位置に形成すれば良いが、その形成位置はなるべくダクト部との境界に近いことが好ましい。堰き止め凹部21の最も好ましい形態としては、図10に示すように、ダクト部4との境界線がそのまま堰き止め凹部21として形成されている形態である。このような形態とすることで、堰き止め凹部21よりもダクト部4に近いフランジ部8がなくなり、気泡の移動をより効果的に抑えることができる。 The dam concave portion 21 may be formed in the vicinity of the boundary portion between the flange portion 8 and the duct portion 4, but the formation position is preferably as close as possible to the boundary with the duct portion. As the most preferable form of the dam recessed part 21, as shown in FIG. 10, the boundary line with the duct part 4 is formed as the dam recessed part 21 as it is. By setting it as such a form, the flange part 8 close | similar to the duct part 4 rather than the dam recessed part 21 is lose | eliminated, and the movement of a bubble can be suppressed more effectively.
 以上、本発明を適用した実施形態についてを説明してきたが、本発明が前述の実施形態に限られるものでないことは言うまでもなく、本発明の要旨を逸脱しない範囲において、種々の変更を加えることが可能である。 As mentioned above, although embodiment which applied this invention has been described, it cannot be overemphasized that this invention is not what is limited to the above-mentioned embodiment, In the range which does not deviate from the summary of this invention, a various change can be added. Is possible.
1 発泡ダクト
2 管部
3 開口部
4,5,6,7 ダクト部
8 フランジ部
9 風船形状部
10 膨出部
11 凹部
21 堰き止め凹部
DESCRIPTION OF SYMBOLS 1 Foam duct 2 Pipe part 3 Opening part 4, 5, 6, 7 Duct part 8 Flange part 9 Balloon-shaped part 10 Bulging part 11 Recessed part 21 Damping recessed part

Claims (5)

  1.  管本体と、前記管本体の外側に連接された板状部分とを有する管状発泡成形体であって、
     前記板状部分の少なくとも一部において、板状部分形成位置における管本体の管壁が外方に向かって後退するように凹部が形成されていることを特徴とする管状発泡成形体。
    A tubular foam molded body having a tube body and a plate-like portion connected to the outside of the tube body,
    A tubular foamed molded article, wherein a recess is formed in at least a part of the plate-like portion so that the tube wall of the tube body at the plate-like portion forming position is retracted outward.
  2.  前記凹部の開口幅が1mm以下であり、奥行き寸法が1mm~10mmであることを特徴とする請求項1記載の管状発泡成形体。 The tubular foamed molded article according to claim 1, wherein the opening width of the concave portion is 1 mm or less and the depth dimension is 1 mm to 10 mm.
  3.  前記板状部分における前記管本体との連接部近傍に堰き止め凹部が形成されたことを特徴とする請求項1または2記載の管状発泡成形体。 3. A tubular foamed molded article according to claim 1 or 2, wherein a blocking recess is formed in the vicinity of the connecting part of the plate-like part with the pipe body.
  4.  前記堰き止め凹部が、凹溝であることを特徴とする請求項3記載の管状発泡成形体。 4. The tubular foamed molded article according to claim 3, wherein the dammed concave portion is a concave groove.
  5.  前記堰き止め凹部は、前記管本体との境界に沿う形状として形成されたことを特徴とする請求項3または4記載の管状発泡成形体。
     
    5. The tubular foamed molded article according to claim 3, wherein the blocking recess is formed in a shape along a boundary with the pipe body.
PCT/JP2014/059185 2013-05-16 2014-03-28 Tubular foam molded article WO2014185173A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013104531A JP6212834B2 (en) 2013-05-16 2013-05-16 Tubular foamed molded product and method for producing the same
JP2013-104531 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014185173A1 true WO2014185173A1 (en) 2014-11-20

Family

ID=51898157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059185 WO2014185173A1 (en) 2013-05-16 2014-03-28 Tubular foam molded article

Country Status (2)

Country Link
JP (1) JP6212834B2 (en)
WO (1) WO2014185173A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315209U (en) * 1989-06-29 1991-02-15
JPH066027U (en) * 1992-06-29 1994-01-25 日本プラスト株式会社 Vehicle air-conditioning duct connection structure
JP2007508175A (en) * 2003-10-08 2007-04-05 ベール ゲーエムベーハー ウント コー カーゲー Components, in particular hybrid supports for vehicles, methods for forming such components, and the use of these components
JP2011075121A (en) * 2009-09-29 2011-04-14 Inoac Corp Duct and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011368A (en) * 2011-06-28 2013-01-17 Kyoraku Co Ltd Duct
JP5367884B2 (en) * 2011-08-31 2013-12-11 キョーラク株式会社 Tubular foamed molded article with plate-like portion and molding method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315209U (en) * 1989-06-29 1991-02-15
JPH066027U (en) * 1992-06-29 1994-01-25 日本プラスト株式会社 Vehicle air-conditioning duct connection structure
JP2007508175A (en) * 2003-10-08 2007-04-05 ベール ゲーエムベーハー ウント コー カーゲー Components, in particular hybrid supports for vehicles, methods for forming such components, and the use of these components
JP2011075121A (en) * 2009-09-29 2011-04-14 Inoac Corp Duct and method for manufacturing the same

Also Published As

Publication number Publication date
JP2014223876A (en) 2014-12-04
JP6212834B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP5053907B2 (en) Lightweight air conditioning duct
JP5367884B2 (en) Tubular foamed molded article with plate-like portion and molding method thereof
JP6429009B2 (en) Blow molding method and blow molding apparatus
JP5878034B2 (en) Foam molding
JP5636669B2 (en) Manufacturing method of foam molded product
JP5565133B2 (en) Method for producing hollow foam molded body and hollow foam molded body
JP5428061B2 (en) Foam blow molded product
JP5324258B2 (en) Molding method for air conditioning duct for resin vehicle
US12115713B2 (en) Molded foam
JP6212834B2 (en) Tubular foamed molded product and method for producing the same
JP2006181957A (en) Polypropylene-based resin expansion-molded article
JP6174462B2 (en) Foam blow molded product
JP5720724B2 (en) Molding method for air conditioning duct for resin vehicle
JP5464888B2 (en) Lightweight air conditioning duct for vehicles
JP6051795B2 (en) Foam molding
JP5803990B2 (en) Molding method for air conditioning duct for resin vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797281

Country of ref document: EP

Kind code of ref document: A1