[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014181631A1 - Power source device and power supply method - Google Patents

Power source device and power supply method Download PDF

Info

Publication number
WO2014181631A1
WO2014181631A1 PCT/JP2014/060373 JP2014060373W WO2014181631A1 WO 2014181631 A1 WO2014181631 A1 WO 2014181631A1 JP 2014060373 W JP2014060373 W JP 2014060373W WO 2014181631 A1 WO2014181631 A1 WO 2014181631A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
secondary battery
capacitor
power supply
supply device
Prior art date
Application number
PCT/JP2014/060373
Other languages
French (fr)
Japanese (ja)
Inventor
克也 小野瀬
高治 松永
梶谷 浩司
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015515825A priority Critical patent/JPWO2014181631A1/en
Publication of WO2014181631A1 publication Critical patent/WO2014181631A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices

Definitions

  • the present invention relates to a power supply device having a secondary battery and a capacitor and a power supply method.
  • the usable time of the secondary battery can be extended by connecting the secondary battery and the electric double layer capacitor or the hybrid capacitor using lithium ions as a negative electrode in parallel. Can be output instantaneously by the capacitor.
  • the power supply device described in Patent Document 2 includes a DC / DC (direct current / direct current) converter that converts electric power from a secondary battery, and a DC / DC converter that converts electric power from a capacitor.
  • the operation of each DC / DC converter is controlled so that power is preferentially supplied from the capacitor when large current consumption is required.
  • the secondary battery, the capacitor, and the output are controlled by controlling the operations of a plurality of DC / DC converters connected to the secondary battery and the capacitor.
  • a conversion loss occurs when the DC / DC converter converts the electric power from the secondary battery, and the burden on the secondary battery increases by this conversion loss.
  • An object of the present invention is to provide a power supply device and a power supply method capable of solving the above-described problems.
  • the power supply device of the present invention is A secondary battery, A capacitor; A voltage generation unit that generates a predetermined voltage that is equal to or lower than the voltage of the secondary battery using the voltage of the capacitor, and an output terminal connected to a load; A specific switch connected between the secondary battery and the load; Control means for intermittently turning on and off the specific switch.
  • the power supply method of the present invention includes: A secondary battery; a capacitor; a voltage generating means for generating a predetermined voltage equal to or lower than the voltage of the secondary battery using the voltage of the capacitor; and an output terminal connected to a load; the secondary battery and the load
  • a power supply method including a specific switch connected between and a power supply device, The specific switch is turned on and off intermittently.
  • the power of the capacitor can be used at any timing to reduce the burden on the secondary battery, and the loss of the secondary battery due to power conversion can be reduced.
  • FIG. 3 is a flowchart for explaining the operation of the power supply apparatus 100. It is a figure for demonstrating the operation timing of the PWM control in 1st Embodiment. It is the block diagram which showed power supply device 100A of 2nd Embodiment. It is a figure for demonstrating the operation timing of the PWM control in 2nd Embodiment. It is a figure for demonstrating the operation timing of the PWM control in 3rd Embodiment.
  • FIG. 1 is a diagram showing a power supply device 100 according to the first embodiment of the present invention.
  • a power supply device 100 includes a secondary battery 1, a switch 2, a PCS (Power Control System) 3, a diode 4, a capacitor 5, a switch 6, a DC / DC converter 7, and a diode 8. , Switch 9, current limiting resistor 10, diode 11, control circuit 12, voltage sensors 13 and 14, and snapper circuit 15.
  • PCS Power Control System
  • the secondary battery 1 is, for example, a lithium ion secondary battery. Note that the secondary battery 1 is not limited to a lithium secondary battery, and may be another secondary battery.
  • the secondary battery 1 is connected to the PCS 3 through a switch 2 and a diode 4 for suppressing and interrupting discharge.
  • the switch 2 is an example of a specific switch, for example, a semiconductor switch element.
  • a snubber circuit 15 is connected to the switch 2 in parallel to reduce the inrush current to the switch 2.
  • PCS3 is an example of a load.
  • the PCS 3 converts DC power into AC power.
  • the PCS 3 is a drive that requires a current having a current value I1 (hereinafter referred to as “steady driving”) and a drive that requires a current having a current value I2 (hereinafter “large”). (Referred to as “current driving”).
  • the PCS 3 When performing a large current drive, the PCS 3 outputs a control signal (for example, a control signal for requesting a current having a current value I2).
  • the diode 4 is arranged in such a direction as to interrupt the current flowing from the PCS 3 to the secondary battery 1.
  • the capacitor 5 is, for example, a lithium ion capacitor.
  • the capacitor 5 is not limited to a lithium ion capacitor, and may be another type of capacitor or a large-capacity capacitor as long as charging and discharging can be performed more rapidly than the secondary battery 1.
  • the capacitor 5 a capacitor whose upper limit value of the rated voltage is not less than the upper limit value of the rated voltage of the secondary battery 1 and whose lower limit value of the rated voltage is not more than the lower limit value of the rated voltage of the secondary battery 1 is used. Used.
  • the capacitor 5 is connected to an input section (input terminal) 7a of a constant voltage output type DC / DC converter 7 through a switch 6 for interrupting discharge.
  • the switch 6 is an example of a predetermined switch.
  • the DC / DC converter 7 is an example of a voltage generation unit, and an output unit (output terminal) 7b of the DC / DC converter 7 is connected to the PCS 3 via a diode 8.
  • the diode 8 is arranged in such a direction as to interrupt the current flowing from the PCS 3 to the DC / DC converter 7.
  • the secondary battery 1 is connected to the capacitor 5 through the diode 11, the switch 9 and the current limiting resistor 10.
  • a path formed by the diode 11, the switch 9, and the current limiting resistor 10 functions as a charging path through which current flows from the secondary battery 1 to the capacitor 5.
  • the switch 9 is an example of a charging switch.
  • the diode 11 is arranged in such a direction as to interrupt the current flowing from the capacitor 5 to the secondary battery 1.
  • the voltage sensor 13 is an example of a first detection unit and detects the voltage of the secondary battery 1.
  • the voltage sensor 14 is an example of a second detection unit and detects the voltage of the capacitor 5.
  • the control circuit 12 is an example of a control means.
  • the control circuit 12 turns on / off the switch 2 intermittently.
  • the control circuit 12 includes a detection result of the voltage sensor 13 (voltage of the secondary battery 13), a detection result of the voltage sensor 14 (voltage of the capacitor 5), and a control signal (for example, current value) from the PCS 3.
  • the control signal for requesting the current I2) is controlled based on the PWM (Pulse Width Modulation) control of the switch 2 and the simple on / off of the switch 6 and the switch 9.
  • the control circuit 12 determines that the voltage of the secondary battery 1 is greater than or equal to a predetermined value A based on the detection result of the voltage sensor 13. Check whether or not.
  • the predetermined value A is a value not less than the lower limit value and not more than the upper limit value of the usable voltage range (rated voltage) of the secondary battery 1, and is an example of a first threshold value.
  • the predetermined value A is a value that is closer to the lower limit than the upper limit of the usable voltage range of the secondary battery 1 and is a value that does not cause an internal short circuit of the secondary battery 1 due to a voltage drop.
  • the control circuit 12 performs the following operation.
  • the control circuit 12 turns on the switch 2 and discharges the power of the secondary battery 1 to the PCS 3. Further, the control circuit 12 turns on the switch 9 to enable charging of the capacitor 5 from the secondary battery 1.
  • the current flowing from the secondary battery 1 to the capacitor 5 is limited according to the resistance value of the current limiting resistor 10.
  • control circuit 12 performs the following operation.
  • the control circuit 12 turns off the switch 2 and the switch 9 and stops discharging from the secondary battery 1 to the PCS 3 and the capacitor 5.
  • the secondary battery 1 is charged by charging means (not shown).
  • the control circuit 12 does not return the discharge path until the voltage of the secondary battery 1 becomes higher than the predetermined value A. The reason is to prevent ringing around the predetermined value A.
  • the control circuit 12 performs the return of the discharge path by turning on the switch 2 and the switch 9.
  • control circuit 12 checks whether the voltage of the capacitor 5 is equal to or higher than the predetermined value B based on the detection result of the voltage sensor 14.
  • the predetermined value B is a value not less than the lower limit value and not more than the upper limit value of the usable voltage range (rated voltage) of the capacitor 5, and is an example of a second threshold value.
  • the predetermined value B is a value closer to the lower limit than the upper limit of the usable voltage range of the capacitor 5 and is a value that does not cause an internal short circuit of the capacitor 5 due to a voltage drop.
  • the control circuit 12 performs the following operation.
  • the control circuit 12 turns on the switch 6 and supplies a voltage from the capacitor 5 to the DC / DC converter 7.
  • the DC / DC converter 7 converts the voltage of the capacitor 5 into a voltage having a voltage value of a predetermined value A, and outputs a voltage of the predetermined value A.
  • the output of the DC / DC converter 7 merges with the output of the secondary battery 1 output from the diode 4 via the diode 8.
  • the voltage at the time of discharging of the secondary battery 1 is equal to or higher than a predetermined value A that is an output voltage of the DC / DC converter 7, and the secondary battery 1 is less than the predetermined value A because the voltage of the secondary battery 1 decreases. Discharge is stopped when reaching. Therefore, no current flows from the DC / DC converter 7 to the PCS 3 in a state where the secondary battery 1 is discharged in a steady state.
  • FIG. 2 is a flowchart for explaining the operation of the power supply apparatus 100.
  • step 101 the control circuit 12 reads the voltage of the secondary battery 1 from the voltage sensor 13, and then in step 102, checks whether the voltage is equal to or greater than a predetermined value A.
  • the control circuit 12 reads the voltage of the capacitor 5 from the voltage sensor 14 in step 103, and then the voltage value is greater than or equal to the predetermined value B in step 104. Check if it is.
  • the control circuit 12 determines in step 105 that the PWM control can be turned on, turns on the switch 2 and the switch 6, and turns on the secondary battery. 1 and capacitor 5 are prepared for discharge, and the routine proceeds to step 106.
  • the control circuit 12 When the voltage of the secondary battery 1 is less than the predetermined value A in step 102 or the voltage of the capacitor 5 is less than the predetermined value B in step 103, the control circuit 12 returns the process to step 101, and the secondary battery 1 Repeat the voltage reading.
  • step 106 when the control circuit 12 receives a control signal (a control signal for requesting the current having the current value I2) from the PCS 3, the process proceeds to step 107.
  • a control signal a control signal for requesting the current having the current value I2
  • step 106 when the control circuit 12 has not received a control signal, the control circuit 12 returns the process to step 101 and repeats the reading of the voltage of the secondary battery 1.
  • step 107 the control circuit 12 turns off the switch 9 regardless of the voltage of the secondary battery 1 to forcibly cut off the charging path from the secondary battery 1 to the capacitor 5, and the PWM control for the switch 2.
  • the switch 2 is turned on and off repeatedly.
  • the secondary battery 1 performs intermittent discharge, and current flows from the DC / DC converter 7 to the PCS 3 during the time when the discharge of the secondary battery 1 is intermittently interrupted.
  • the secondary battery 1 and the capacitor 5 share the power supply to the PCS 3.
  • step 107 the control circuit 12 immediately proceeds to step 108 to determine whether the voltage of the secondary battery 1 is equal to or higher than the predetermined value A.
  • the control circuit 12 advances the process to step 109 when the voltage of the secondary battery 1 is equal to or higher than the predetermined value A, and advances the process to step 111 when the voltage of the secondary battery 1 is less than the predetermined value A, and performs PWM control. Exit.
  • step 109 the control circuit 12 determines whether the voltage of the capacitor 5 is equal to or higher than a predetermined value B.
  • the control circuit 12 advances the process to step 110 when the voltage of the capacitor 5 is equal to or higher than the predetermined value B, and advances the process to step 111 when the voltage of the capacitor 5 is less than the predetermined value B, and ends the PWM control.
  • step 110 the control circuit 12 determines whether a control signal is received from the PCS 3.
  • the control circuit 12 returns the process to step 108 when the control signal is continuously received from the PCS 3, and advances the process to step 111 when the reception of the control signal from the PCS 3 is finished, and ends the PWM control.
  • step 111 when the voltage of the secondary battery 1 becomes equal to or higher than the predetermined value A, the control circuit 12 turns on the switch 9 again to restore the charging path from the secondary battery 1 to the capacitor 5.
  • the control circuit 12 turns off the switch 6 and stops the discharge from the capacitor 5 to the DC / DC converter 7.
  • the control circuit 12 does not return the discharge path from the capacitor 5 to the DC / DC converter 7 until the voltage of the capacitor 5 becomes higher than the predetermined value B by charging the capacitor 5 from the secondary battery 1. The reason is to prevent ringing in the vicinity of the predetermined value B.
  • the control circuit 12 executes the return of the discharge path by turning on the switch 9. At this time, since the upper limit value and the lower limit value of the rated voltage of the capacitor 5 are made wider than those of the secondary battery 1, the voltage of the capacitor 5 safely transitions within the usable voltage range.
  • FIG. 3 is a diagram for explaining the operation timing of the PWM control in the first embodiment.
  • a steady current flows to the PCS 3 from time t0 to time t1, and a large current period occurs at the timing of time t1.
  • the control circuit 12 receives a control signal from the PCS 3 at the timing of time t1, and starts PWM control.
  • the output of the secondary battery 1 whose voltage is equal to or higher than the predetermined value A and the voltage of the DC / DC converter 7 whose voltage is equal to the predetermined value A are alternately displayed. It is output to PCS3. For this reason, after time t1, the voltage output to the PCS 3 becomes a rectangular wave.
  • the present embodiment is configured as described above, and the output of the secondary battery 1 and the output of the capacitor that has been made constant voltage by the DC / DC converter 7 are combined and output using PWM control and a diode.
  • the secondary battery 1, the capacitor 5, and the output terminal 7 b are connected to the PCS 3, and DC is used to generate a predetermined voltage (predetermined value A) that is equal to or lower than the voltage of the secondary battery 1 using the power of the capacitor 5.
  • predetermined value A predetermined value that is equal to or lower than the voltage of the secondary battery 1 using the power of the capacitor 5.
  • the voltage of the secondary battery 1 is intermittently supplied to the PCS 3 while the supply of the voltage of the secondary battery 1 is intermittently stopped.
  • the output voltage of the DC / DC converter 7 that converts and outputs the voltage 5 can be supplied to the PCS 3.
  • the capacitor 5 having a voltage characteristic different from that of the secondary battery 1 can be used for reducing the discharge burden of the secondary battery 1 at an arbitrary timing for an arbitrary time.
  • the life of the secondary battery 1 can be extended.
  • the output of the secondary battery 1 is supplied to the PCS 3 without conversion, it is possible to reduce the loss of the secondary battery due to power conversion.
  • the power supply apparatus includes the DC / DC converter 7, the switch 2 connected between the secondary battery 1 and the PCS 3, and the control circuit 12 that turns the switch 2 on and off intermittently.
  • control circuit 12 intermittently turns on and off the switch 2 when the detection result of the voltage sensor 13 is equal to or greater than the predetermined value A and the detection result of the voltage sensor 14 is equal to or greater than the predetermined value B. For this reason, it becomes possible to discharge the secondary battery 1 and the capacitor 5 in a situation where the secondary battery 1 and the capacitor 5 can perform a preset discharge.
  • control circuit 12 turns on the switch 6 when the detection result of the voltage sensor 14 is equal to or greater than the predetermined value B. For this reason, it becomes possible to discharge the capacitor 5 in a situation where the capacitor 5 can perform a preset discharge.
  • the control circuit 12 intermittently turns on and off the switch 2 in response to a control signal from the PCS 3 (a control signal instructing the supply of power), and does not accept the control signal from the PCS 3.
  • a control signal from the PCS 3 a control signal instructing the supply of power
  • the switch 9 is turned on. For this reason, the capacitor 5 can be charged by the secondary battery 1 when the secondary battery 1 is not discharged to the PCS 3 in a state where the secondary battery 1 can be discharged.
  • FIG. 4 is a block diagram showing a power supply device 100A of the second embodiment.
  • the same components as those shown in FIG. 4 are identical to those shown in FIG. 4, the same components as those shown in FIG. 4, the same components as those shown in FIG. 4, the same components as those shown in FIG.
  • the current sensor 16 is arranged in the current path for supplying current to the PCS 3, and the control circuit 17 is provided instead of the control circuit 14, which is the power supply device of the first embodiment. This is the main difference from 100.
  • the control circuit 17 calculates the average value of the current flowing through the PCS 3 based on the current information detected by the current sensor 16, and triggers PWM control to start that the calculation result exceeds a predetermined value C. Is different from the control circuit 14.
  • control circuit 17 calculates an average value of current in a predetermined period (for example, a period of 1 second or more) based on the current information detected by the current sensor 16.
  • the predetermined period is not limited to a period of 1 second or longer and can be changed as appropriate.
  • FIG. 5 is a diagram for explaining the operation timing of the PWM control in the second embodiment.
  • a constant current to PCS3 flows from time t0 to time t1, and a large current period in which the current to PCS3 exceeds a predetermined value C occurs at the timing of time t1. .
  • the control circuit 17 starts PWM control.
  • the average of the discharge current to the PCS 3 after the time t1 is the one that was discharged only by the secondary battery 1 in the period from the time t0 to the time t2. From time t2 when the value exceeds the predetermined value C, the secondary battery 1 and the capacitor 5 are alternately discharged, and the burden on the secondary battery 1 is reduced.
  • the output (voltage) of the secondary battery 1 at which the voltage is equal to or higher than the predetermined value A and the voltage of the DC / DC converter 7 at which the voltage is at the predetermined value A are obtained.
  • the voltage output to the PCS 3 is a rectangular wave.
  • the present embodiment is configured as described above, and has the same effect as the first embodiment, and when a large current is drawn from the power supply device to the load, the PWM control is automatically performed, which is unexpected. It is possible to reduce the burden on the secondary battery during large current discharge, and it has an advantage of being resistant to current fluctuation.
  • the duty ratio of the PWM control is changed according to the average value of the current flowing through the PCS3.
  • the function of increasing the discharge rate of the capacitor 5 as the average value of the current flowing through the PCS 3 increases.
  • Other configurations are the same as those of the power supply apparatus 100A of the second embodiment shown in FIG.
  • FIG. 6 is a diagram for explaining the operation timing of PWM control in the third embodiment.
  • a steady current flows to the PCS 3 during the period from the time t0 to the time t1, and the current flowing to the PCS 3 exceeds the predetermined value D at the timing of the time t1. Further, at time t3, the current flowing to the PCS 3 exceeds the predetermined value E.
  • the state in which no current flows from the DC / DC converter 7 in a steady state is set to a duty ratio 0 of PWM control, and after the generation of a large current at time t1, the control circuit 17 At time t2, which is the timing when the average value of the discharge current to the PCS 3 calculated based on the current value of 16 exceeds the predetermined value D, PWM control is started and the duty ratio is raised from 0 to the predetermined value F.
  • control circuit 17 further increases the duty ratio from the predetermined value F to the predetermined value G at time t4, which is the timing when the average value of the discharge current exceeds the predetermined value E.
  • control circuit 17 reduces the discharge rate of the secondary battery 1 as the amount of current flowing through the PCS 3 increases.
  • the discharge contribution rate of the capacitor 5 is increased.
  • the present embodiment is configured as described above, and has the same effect as the second embodiment.
  • the load of the secondary battery 1 corresponding to the magnitude of the current value can be reduced, and the current required by the load is not determined and is discharged.
  • the present invention can be applied to a power supply system in which the rate varies greatly.
  • the PCS is used as the load.
  • the load is not limited to the PCS and can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A power source device includes: a secondary cell; a capacitor; a voltage-generating means for generating a prescribed voltage at or below the voltage of the secondary cell using power from the capacitor, the voltage-generating means having an output terminal connected to a load; a selection switch connected between the secondary cell and the load; and a control means that intermittently turns on or off the selection switch.

Description

電源装置および電力供給方法Power supply device and power supply method
 本発明は、二次電池とキャパシタとを有する電源装置および電力供給方法に関する。 The present invention relates to a power supply device having a secondary battery and a capacitor and a power supply method.
 高いエネルギー密度を有する二次電池と、この二次電池より急速な放電や大電力放電が可能なキャパシタとを、併用することによって、エネルギー密度と出力の両方に優れた特性を有する電源装置が、特許文献1、2に記載されている。 By using a secondary battery having a high energy density and a capacitor capable of rapid discharge and high power discharge more than this secondary battery, a power supply device having excellent characteristics in both energy density and output is obtained. It is described in Patent Documents 1 and 2.
 特許文献1に記載の電源装置では、二次電池と、電気二重層キャパシタまたはリチウムイオンを負極に用いたハイブリッドキャパシタとを、並列接続することによって、二次電池の使用可能時間を長くすることができ、かつキャパシタによる瞬発的な出力が可能となる。 In the power supply device described in Patent Document 1, the usable time of the secondary battery can be extended by connecting the secondary battery and the electric double layer capacitor or the hybrid capacitor using lithium ions as a negative electrode in parallel. Can be output instantaneously by the capacitor.
 特許文献2に記載の電源装置は、二次電池からの電力を変換するDC/DC(直流/直流)コンバータと、キャパシタからの電力を変換するDC/DCコンバータと、を備える。特許文献2に記載の電源装置では、大電流の消費が必要なときには、キャパシタから優先的に電力が供給されるように、各DC/DCコンバータの動作が制御される。 The power supply device described in Patent Document 2 includes a DC / DC (direct current / direct current) converter that converts electric power from a secondary battery, and a DC / DC converter that converts electric power from a capacitor. In the power supply device described in Patent Document 2, the operation of each DC / DC converter is controlled so that power is preferentially supplied from the capacitor when large current consumption is required.
特開2011-254650号公報JP 2011-254650 A 特開2010-273428号公報JP 2010-273428 A
 特許文献1に記載の電源装置のように、二次電池と、急速な放電や大電力放電が可能なキャパシタとを、単純な並列接続とした場合、急な大電流要求時などの瞬時的な電流変動に対応してキャパシタが大電流放電するものの、電圧降下の起こらない定常時には、大きな放電は行われない。 When a secondary battery and a capacitor capable of rapid discharge and high power discharge are simply connected in parallel as in the power supply device described in Patent Document 1, an instantaneous response such as when a sudden large current is required Although the capacitor discharges a large current in response to the current fluctuation, a large discharge is not performed in a steady state where no voltage drop occurs.
 このため、負荷への放電電流が所定値よりも高い状況が一定時間継続する場合には、時間の経過に伴い二次電池からの放電が支配的となる。よって、一定時間二次電池の放電をアシストして二次電池の負担を軽減するためには、キャパシタを用いた放電アシスト制御とは異なる制御が必要となる。つまり、二次電池とキャパシタとを単純な並列接続とした構成では、任意のタイミングでキャパシタの電力を二次電池の負担軽減のために用いることができない。 For this reason, when the state in which the discharge current to the load is higher than the predetermined value continues for a certain period of time, the discharge from the secondary battery becomes dominant with the passage of time. Therefore, in order to assist the discharge of the secondary battery for a certain period of time and reduce the burden on the secondary battery, a control different from the discharge assist control using the capacitor is required. That is, in the configuration in which the secondary battery and the capacitor are simply connected in parallel, the power of the capacitor cannot be used to reduce the burden on the secondary battery at an arbitrary timing.
 また、特許文献2に記載の電源装置のように、二次電池とキャパシタとの各々に接続された複数のDC/DCコンバータの動作を制御することによって、二次電池とキャパシタと出力を制御する場合には、二次電池からの電力をDC/DCコンバータが変換する際に変換ロスが生じ、この変換ロスの分、二次電池の負担が増える。 Further, like the power supply device described in Patent Document 2, the secondary battery, the capacitor, and the output are controlled by controlling the operations of a plurality of DC / DC converters connected to the secondary battery and the capacitor. In this case, a conversion loss occurs when the DC / DC converter converts the electric power from the secondary battery, and the burden on the secondary battery increases by this conversion loss.
 このため、任意のタイミングでキャパシタの電力を二次電池の負担軽減のために用いることができ、電力変換に伴う二次電池のロスを少なくできる手法が望まれているという課題があった。 For this reason, there has been a problem that a technique that can use the power of the capacitor at any timing to reduce the burden on the secondary battery and reduce the loss of the secondary battery due to power conversion is desired.
 本発明の目的は、上記課題を解決可能な電源装置および電力供給方法を提供することである。 An object of the present invention is to provide a power supply device and a power supply method capable of solving the above-described problems.
 本発明の電源装置は、
 二次電池と、
 キャパシタと、
 前記キャパシタの電圧を用いて前記二次電池の電圧以下である所定電圧を生成し、出力端子が負荷と接続された電圧生成手段と、
 前記二次電池と前記負荷との間に接続された特定スイッチと、
 前記特定スイッチを断続的にオンオフする制御手段と、を含む。
The power supply device of the present invention is
A secondary battery,
A capacitor;
A voltage generation unit that generates a predetermined voltage that is equal to or lower than the voltage of the secondary battery using the voltage of the capacitor, and an output terminal connected to a load;
A specific switch connected between the secondary battery and the load;
Control means for intermittently turning on and off the specific switch.
 本発明の電力供給方法は、
 二次電池と、キャパシタと、前記キャパシタの電圧を用いて前記二次電池の電圧以下である所定電圧を生成し、出力端子が負荷と接続された電圧生成手段と、前記二次電池と前記負荷との間に接続された特定スイッチと、を含む電源装置での電力供給方法であって、
 前記特定スイッチを断続的にオンオフする。
The power supply method of the present invention includes:
A secondary battery; a capacitor; a voltage generating means for generating a predetermined voltage equal to or lower than the voltage of the secondary battery using the voltage of the capacitor; and an output terminal connected to a load; the secondary battery and the load A power supply method including a specific switch connected between and a power supply device,
The specific switch is turned on and off intermittently.
 本発明によれば、任意のタイミングでキャパシタの電力を二次電池の負担軽減のために用いることができ、電力変換に伴う二次電池のロスを少なくすることが可能になる。 According to the present invention, the power of the capacitor can be used at any timing to reduce the burden on the secondary battery, and the loss of the secondary battery due to power conversion can be reduced.
本発明の第1実施形態の電源装置100を示した図である。It is the figure which showed the power supply device 100 of 1st Embodiment of this invention. 電源装置100の動作を説明するためのフロチャートである。3 is a flowchart for explaining the operation of the power supply apparatus 100. 第1実施形態におけるPWM制御の動作タイミングを説明するための図である。It is a figure for demonstrating the operation timing of the PWM control in 1st Embodiment. 第2の実施形態の電源装置100Aを示したブロック図である。It is the block diagram which showed power supply device 100A of 2nd Embodiment. 第2実施形態におけるPWM制御の動作タイミングを説明するための図である。It is a figure for demonstrating the operation timing of the PWM control in 2nd Embodiment. 第3実施形態におけるPWM制御の動作タイミングを説明するための図である。It is a figure for demonstrating the operation timing of the PWM control in 3rd Embodiment.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1実施形態)
 図1は、本発明の第1実施形態の電源装置100を示した図である。
(First embodiment)
FIG. 1 is a diagram showing a power supply device 100 according to the first embodiment of the present invention.
 図1において、電源装置100は、二次電池1と、スイッチ2と、PCS(Power Control System)3と、ダイオード4と、キャパシタ5と、スイッチ6と、DC/DCコンバータ7と、ダイオード8と、スイッチ9と、電流制限用抵抗10と、ダイオード11と、制御回路12と、電圧センサ13および14と、スナパ回路15と、を含む。 In FIG. 1, a power supply device 100 includes a secondary battery 1, a switch 2, a PCS (Power Control System) 3, a diode 4, a capacitor 5, a switch 6, a DC / DC converter 7, and a diode 8. , Switch 9, current limiting resistor 10, diode 11, control circuit 12, voltage sensors 13 and 14, and snapper circuit 15.
 二次電池1は、例えば、リチウムイオン二次電池である。なお、二次電池1は、リチウム二次電池に限らず他の二次電池でもよい。 The secondary battery 1 is, for example, a lithium ion secondary battery. Note that the secondary battery 1 is not limited to a lithium secondary battery, and may be another secondary battery.
 二次電池1は、放電の抑制および遮断用のスイッチ2とダイオード4とを介して、PCS3に接続されている。 The secondary battery 1 is connected to the PCS 3 through a switch 2 and a diode 4 for suppressing and interrupting discharge.
 スイッチ2は、特定スイッチの一例であり、例えば半導体スイッチ素子である。スイッチ2には、スイッチ2への突入電流を低減するため、スナバ回路15が並列に接続されている。 The switch 2 is an example of a specific switch, for example, a semiconductor switch element. A snubber circuit 15 is connected to the switch 2 in parallel to reduce the inrush current to the switch 2.
 PCS3は、負荷の一例である。PCS3は、直流電力を交流電力に変換する。 PCS3 is an example of a load. The PCS 3 converts DC power into AC power.
 本実施形態では、PCS3は、電流値I1の電流を必要とする駆動(以下「定常駆動」と称する)と、電流値I2(なお、I2>I1)の電流を必要とする駆動(以下「大電流駆動」と称する)と、を択一的に行う。PCS3は、大電流駆動を行う場合、制御信号(例えば、電流値I2の電流を要求する旨の制御信号)を出力する。 In the present embodiment, the PCS 3 is a drive that requires a current having a current value I1 (hereinafter referred to as “steady driving”) and a drive that requires a current having a current value I2 (hereinafter I2> I1) (hereinafter “large”). (Referred to as “current driving”). When performing a large current drive, the PCS 3 outputs a control signal (for example, a control signal for requesting a current having a current value I2).
 ダイオード4は、PCS3から二次電池1へ流れる電流を遮断する向きで配置されている。 The diode 4 is arranged in such a direction as to interrupt the current flowing from the PCS 3 to the secondary battery 1.
 キャパシタ5は、例えば、リチウムイオンキャパシタである。なお、キャパシタ5は、リチウムイオンキャパシタに限らず、二次電池1よりも急速な充放電が可能であれば、他の種類のキャパシタ、あるいは大容量コンデンサでもかまわない。 The capacitor 5 is, for example, a lithium ion capacitor. The capacitor 5 is not limited to a lithium ion capacitor, and may be another type of capacitor or a large-capacity capacitor as long as charging and discharging can be performed more rapidly than the secondary battery 1.
 本実施形態では、キャパシタ5として、定格電圧の上限値が二次電池1の定格電圧の上限値以上であり、定格電圧の下限値が二次電池1の定格電圧の下限値以下であるキャパシタが用いられる。 In the present embodiment, as the capacitor 5, a capacitor whose upper limit value of the rated voltage is not less than the upper limit value of the rated voltage of the secondary battery 1 and whose lower limit value of the rated voltage is not more than the lower limit value of the rated voltage of the secondary battery 1 is used. Used.
 キャパシタ5は、放電遮断用のスイッチ6を介して定電圧出力型のDC/DCコンバータ7の入力部(入力端子)7aに接続されている。 The capacitor 5 is connected to an input section (input terminal) 7a of a constant voltage output type DC / DC converter 7 through a switch 6 for interrupting discharge.
 スイッチ6は、所定スイッチの一例である。 The switch 6 is an example of a predetermined switch.
 DC/DCコンバータ7は、電圧生成手段の一例であり、DC/DCコンバータ7の出力部(出力端子)7bは、ダイオード8を介してPCS3に接続されている。 The DC / DC converter 7 is an example of a voltage generation unit, and an output unit (output terminal) 7b of the DC / DC converter 7 is connected to the PCS 3 via a diode 8.
 ダイオード8は、PCS3からDC/DCコンバータ7へ流れる電流を遮断する向きで配置されている。 The diode 8 is arranged in such a direction as to interrupt the current flowing from the PCS 3 to the DC / DC converter 7.
 また、二次電池1は、ダイオード11、スイッチ9および電流制限用抵抗10を介して、キャパシタ5に接続されている。ダイオード11、スイッチ9および電流制限用抵抗10にて形成される経路は、二次電池1からキャパシタ5に電流を流す充電経路として機能する。 Further, the secondary battery 1 is connected to the capacitor 5 through the diode 11, the switch 9 and the current limiting resistor 10. A path formed by the diode 11, the switch 9, and the current limiting resistor 10 functions as a charging path through which current flows from the secondary battery 1 to the capacitor 5.
 スイッチ9は、充電用スイッチの一例である。 The switch 9 is an example of a charging switch.
 ダイオード11は、キャパシタ5から二次電池1へ流れる電流を遮断する向きで配置されている。 The diode 11 is arranged in such a direction as to interrupt the current flowing from the capacitor 5 to the secondary battery 1.
 電圧センサ13は、第1検出手段の一例であり、二次電池1の電圧を検出する。 The voltage sensor 13 is an example of a first detection unit and detects the voltage of the secondary battery 1.
 電圧センサ14は、第2検出手段の一例であり、キャパシタ5の電圧を検出する。 The voltage sensor 14 is an example of a second detection unit and detects the voltage of the capacitor 5.
 制御回路12は、制御手段の一例である。制御回路12は、スイッチ2を断続的にオン・オフする。 The control circuit 12 is an example of a control means. The control circuit 12 turns on / off the switch 2 intermittently.
 本実施形態では、制御回路12は、電圧センサ13の検出結果(二次電池13の電圧)と、電圧センサ14の検出結果(キャパシタ5の電圧)と、PCS3からの制御信号(例えば、電流値I2の電流を要求する旨の制御信号)と、に基づいて、スイッチ2のPWM(Pulse Width Modulation)制御と、スイッチ6およびスイッチ9の単純なオン・オフを制御する。 In the present embodiment, the control circuit 12 includes a detection result of the voltage sensor 13 (voltage of the secondary battery 13), a detection result of the voltage sensor 14 (voltage of the capacitor 5), and a control signal (for example, current value) from the PCS 3. The control signal for requesting the current I2) is controlled based on the PWM (Pulse Width Modulation) control of the switch 2 and the simple on / off of the switch 6 and the switch 9.
 定常時、つまり、PCS3が定常駆動を行って制御信号を出力していない状況では、制御回路12は、電圧センサ13の検出結果に基づいて、二次電池1の電圧が所定値A以上であるかどうかをチェックする。 In a constant state, that is, in a situation where the PCS 3 performs steady driving and does not output a control signal, the control circuit 12 determines that the voltage of the secondary battery 1 is greater than or equal to a predetermined value A based on the detection result of the voltage sensor 13. Check whether or not.
 所定値Aは、二次電池1の使用可能電圧範囲(定格電圧)の下限値以上かつ上限値以下の値であり、第1閾値の一例である。本実施形態では、所定値Aは、二次電池1の使用可能電圧範囲の上限値よりも下限値に近い値であり、電圧低下による二次電池1の内部短絡を生じない値である。 The predetermined value A is a value not less than the lower limit value and not more than the upper limit value of the usable voltage range (rated voltage) of the secondary battery 1, and is an example of a first threshold value. In the present embodiment, the predetermined value A is a value that is closer to the lower limit than the upper limit of the usable voltage range of the secondary battery 1 and is a value that does not cause an internal short circuit of the secondary battery 1 due to a voltage drop.
 定常時に、二次電池1の電圧が所定値A以上のとき、制御回路12は、以下の動作を実行する。 In the steady state, when the voltage of the secondary battery 1 is equal to or higher than the predetermined value A, the control circuit 12 performs the following operation.
 制御回路12は、スイッチ2をオンし、二次電池1の電力をPCS3に放電する。さらに、制御回路12は、スイッチ9をオンし、二次電池1からキャパシタ5への充電を可能な状態にする。なお、二次電池1からキャパシタ5に流れる電流は、電流制限用抵抗10の抵抗値に応じて制限される。 The control circuit 12 turns on the switch 2 and discharges the power of the secondary battery 1 to the PCS 3. Further, the control circuit 12 turns on the switch 9 to enable charging of the capacitor 5 from the secondary battery 1. The current flowing from the secondary battery 1 to the capacitor 5 is limited according to the resistance value of the current limiting resistor 10.
 一方、定常時に、二次電池1の電圧が所定値A未満に到達した場合は、制御回路12は、以下の動作を実行する。 On the other hand, when the voltage of the secondary battery 1 reaches less than the predetermined value A during the steady state, the control circuit 12 performs the following operation.
 制御回路12は、スイッチ2とスイッチ9をオフし、二次電池1からPCS3とキャパシタ5への放電を停止する。そして、二次電池1は、充電手段(不図示)によって充電される。 The control circuit 12 turns off the switch 2 and the switch 9 and stops discharging from the secondary battery 1 to the PCS 3 and the capacitor 5. The secondary battery 1 is charged by charging means (not shown).
 なお、制御回路12は、二次電池1の電圧が所定値Aより高くなるまで放電経路を復帰させない。その理由は、所定値A付近でのリンギングを防止するためである。なお、制御回路12は、放電経路の復帰を、スイッチ2とスイッチ9をオンにすることにより行う。 The control circuit 12 does not return the discharge path until the voltage of the secondary battery 1 becomes higher than the predetermined value A. The reason is to prevent ringing around the predetermined value A. The control circuit 12 performs the return of the discharge path by turning on the switch 2 and the switch 9.
 また、定常時に、制御回路12は、電圧センサ14の検出結果に基づいて、キャパシタ5の電圧が所定値B以上であるかどうかをチェックする。 In a steady state, the control circuit 12 checks whether the voltage of the capacitor 5 is equal to or higher than the predetermined value B based on the detection result of the voltage sensor 14.
 所定値Bは、キャパシタ5の使用可能電圧範囲(定格電圧)の下限値以上かつ上限値以下の値であり、第2閾値の一例である。本実施形態では、所定値Bは、キャパシタ5の使用可能電圧範囲の上限値よりも下限値に近い値であり、電圧低下によるキャパシタ5の内部短絡を生じない値である。 The predetermined value B is a value not less than the lower limit value and not more than the upper limit value of the usable voltage range (rated voltage) of the capacitor 5, and is an example of a second threshold value. In the present embodiment, the predetermined value B is a value closer to the lower limit than the upper limit of the usable voltage range of the capacitor 5 and is a value that does not cause an internal short circuit of the capacitor 5 due to a voltage drop.
 定常時に、キャパシタ5の電圧が所定値B以上のとき、制御回路12は、以下の動作を実行する。 In the steady state, when the voltage of the capacitor 5 is equal to or higher than the predetermined value B, the control circuit 12 performs the following operation.
 制御回路12は、スイッチ6をオンし、キャパシタ5からDC/DCコンバータ7に電圧を供給する。DC/DCコンバータ7は、キャパシタ5の電圧を、電圧値が所定値Aとなる電圧に変換し、所定値Aの電圧を出力する。 The control circuit 12 turns on the switch 6 and supplies a voltage from the capacitor 5 to the DC / DC converter 7. The DC / DC converter 7 converts the voltage of the capacitor 5 into a voltage having a voltage value of a predetermined value A, and outputs a voltage of the predetermined value A.
 このようにして、DC/DCコンバータ7の出力は、ダイオード8を介して、ダイオード4から出力される二次電池1の出力と合流する。 Thus, the output of the DC / DC converter 7 merges with the output of the secondary battery 1 output from the diode 4 via the diode 8.
 この時、ダイオード4、ダイオード8のうち、より電圧が高い方からPCS3に電流が流れる。 At this time, a current flows to the PCS 3 from the diode 4 or the diode 8 having the higher voltage.
 二次電池1の放電時の電圧は、DC/DCコンバータ7の出力電圧である所定値A以上となっており、二次電池1は、二次電池1の電圧が低下して所定値A未満に到達した時点で放電を停止する。よって、定常時に、二次電池1が放電している状態では、DC/DCコンバータ7からはPCS3に電流が流れない。 The voltage at the time of discharging of the secondary battery 1 is equal to or higher than a predetermined value A that is an output voltage of the DC / DC converter 7, and the secondary battery 1 is less than the predetermined value A because the voltage of the secondary battery 1 decreases. Discharge is stopped when reaching. Therefore, no current flows from the DC / DC converter 7 to the PCS 3 in a state where the secondary battery 1 is discharged in a steady state.
 次に、動作を説明する。 Next, the operation will be described.
 図2は、電源装置100の動作を説明するためのフロチャートである。 FIG. 2 is a flowchart for explaining the operation of the power supply apparatus 100.
 まず、ステップ101において、制御回路12は、電圧センサ13から二次電池1の電圧を読み込み、続いて、ステップ102で、その電圧が所定値A以上であるかどうかをチェックする。 First, in step 101, the control circuit 12 reads the voltage of the secondary battery 1 from the voltage sensor 13, and then in step 102, checks whether the voltage is equal to or greater than a predetermined value A.
 二次電池1の電圧が所定値A以上であるときは、制御回路12は、ステップ103において、電圧センサ14からキャパシタ5の電圧を読み込み、続いて、ステップ104でその電圧値が所定値B以上であるかどうかをチェックする。 When the voltage of the secondary battery 1 is greater than or equal to the predetermined value A, the control circuit 12 reads the voltage of the capacitor 5 from the voltage sensor 14 in step 103, and then the voltage value is greater than or equal to the predetermined value B in step 104. Check if it is.
 キャパシタ5の電圧が所定値B以上であるときは、制御回路12は、ステップ105において、PWM制御のオンが可能な状態であると判断して、スイッチ2およびスイッチ6をオンとし、二次電池1とキャパシタ5の放電準備を整え、ステップ106に進む。 When the voltage of the capacitor 5 is equal to or higher than the predetermined value B, the control circuit 12 determines in step 105 that the PWM control can be turned on, turns on the switch 2 and the switch 6, and turns on the secondary battery. 1 and capacitor 5 are prepared for discharge, and the routine proceeds to step 106.
 なお、ステップ102で二次電池1の電圧が所定値A未満、またはステップ103でキャパシタ5の電圧が所定値B未満の場合は、制御回路12は、処理をステップ101に戻し、二次電池1の電圧の読み取りを繰り返す。 When the voltage of the secondary battery 1 is less than the predetermined value A in step 102 or the voltage of the capacitor 5 is less than the predetermined value B in step 103, the control circuit 12 returns the process to step 101, and the secondary battery 1 Repeat the voltage reading.
 ステップ106において、制御回路12は、PCS3から制御信号(電流値I2の電流を要求する旨の制御信号)を受信すると、ステップ107に進む。 In step 106, when the control circuit 12 receives a control signal (a control signal for requesting the current having the current value I2) from the PCS 3, the process proceeds to step 107.
 なお、ステップ106において、制御回路12は、制御信号を受信していない場合は、処理をステップ101に戻し、二次電池1の電圧の読み取りを繰り返す。 In step 106, when the control circuit 12 has not received a control signal, the control circuit 12 returns the process to step 101 and repeats the reading of the voltage of the secondary battery 1.
 ステップ107では、制御回路12は、二次電池1の電圧によらずスイッチ9をオフにして二次電池1からキャパシタ5への充電経路を強制的に遮断し、そして、スイッチ2についてのPWM制御をON状態にしてスイッチ2のオンとオフを繰り返す。 In step 107, the control circuit 12 turns off the switch 9 regardless of the voltage of the secondary battery 1 to forcibly cut off the charging path from the secondary battery 1 to the capacitor 5, and the PWM control for the switch 2. The switch 2 is turned on and off repeatedly.
 このため、PWM制御がオン状態であるときには、二次電池1は間欠放電を行い、二次電池1の放電が間欠的に遮断されている時間にDC/DCコンバータ7からPCS3に電流が流れる。 For this reason, when the PWM control is in the ON state, the secondary battery 1 performs intermittent discharge, and current flows from the DC / DC converter 7 to the PCS 3 during the time when the discharge of the secondary battery 1 is intermittently interrupted.
 よって、PWM制御中は、二次電池1とキャパシタ5とがPCS3への電力供給を分担する。 Therefore, during PWM control, the secondary battery 1 and the capacitor 5 share the power supply to the PCS 3.
 処理がステップ107に移行した後は、制御回路12は、すぐに処理をステップ108に進め、二次電池1の電圧が所定値A以上であるか判定する。 After the process proceeds to step 107, the control circuit 12 immediately proceeds to step 108 to determine whether the voltage of the secondary battery 1 is equal to or higher than the predetermined value A.
 制御回路12は、二次電池1の電圧が所定値A以上である場合は処理をステップ109に進め、二次電池1の電圧が所定値A未満である場合は処理をステップ111に進めPWM制御を終了する。 The control circuit 12 advances the process to step 109 when the voltage of the secondary battery 1 is equal to or higher than the predetermined value A, and advances the process to step 111 when the voltage of the secondary battery 1 is less than the predetermined value A, and performs PWM control. Exit.
 ステップ109では、制御回路12は、キャパシタ5の電圧が所定値B以上であるか判定する。 In step 109, the control circuit 12 determines whether the voltage of the capacitor 5 is equal to or higher than a predetermined value B.
 制御回路12は、キャパシタ5の電圧が所定値B以上である場合は処理をステップ110に進め、キャパシタ5の電圧が所定値B未満である場合は処理をステップ111に進めPWM制御を終了する。 The control circuit 12 advances the process to step 110 when the voltage of the capacitor 5 is equal to or higher than the predetermined value B, and advances the process to step 111 when the voltage of the capacitor 5 is less than the predetermined value B, and ends the PWM control.
 ステップ110では、制御回路12は、PCS3から制御信号を受信しているか判定する。 In step 110, the control circuit 12 determines whether a control signal is received from the PCS 3.
 制御回路12は、PCS3から制御信号を継続して受信している場合は処理をステップ108に戻し、PCS3からの制御信号の受信が終了した場合は処理をステップ111に進めPWM制御を終了する。 The control circuit 12 returns the process to step 108 when the control signal is continuously received from the PCS 3, and advances the process to step 111 when the reception of the control signal from the PCS 3 is finished, and ends the PWM control.
 このようにして、PWM制御を開始すると、二次電池1の容量切れ、または、キャパシタ5の容量切れ、または、PCS3からの制御信号(PWM制御要求)の終了まで、PWM制御が継続することとなる。 Thus, when PWM control is started, the PWM control continues until the secondary battery 1 runs out of capacity, the capacitor 5 runs out of capacity, or the control signal (PWM control request) from the PCS 3 ends. Become.
 なお、ステップ111において、二次電池1の電圧が所定値A以上になった場合、制御回路12は、スイッチ9を再びオンにし、二次電池1からキャパシタ5への充電経路を復帰する。 In step 111, when the voltage of the secondary battery 1 becomes equal to or higher than the predetermined value A, the control circuit 12 turns on the switch 9 again to restore the charging path from the secondary battery 1 to the capacitor 5.
 また、キャパシタ5の電圧がPWM制御の実施により所定値B未満に到達した場合は、制御回路12は、スイッチ6をオフし、キャパシタ5からDC/DCコンバータ7への放電を停止する。 Further, when the voltage of the capacitor 5 reaches less than the predetermined value B by performing the PWM control, the control circuit 12 turns off the switch 6 and stops the discharge from the capacitor 5 to the DC / DC converter 7.
 制御回路12は、二次電池1からキャパシタ5への充電によってキャパシタ5の電圧が所定値Bより高くなるまで、キャパシタ5からDC/DCコンバータ7への放電経路を復帰させない。その理由は、所定値B付近でのリンギングを防止するためである。 The control circuit 12 does not return the discharge path from the capacitor 5 to the DC / DC converter 7 until the voltage of the capacitor 5 becomes higher than the predetermined value B by charging the capacitor 5 from the secondary battery 1. The reason is to prevent ringing in the vicinity of the predetermined value B.
 なお、制御回路12は、放電経路の復帰を、スイッチ9をオンにすることにより実行する。このとき、キャパシタ5の定格電圧の上限値と下限値を二次電池1より広くしているため、キャパシタ5の電圧は、使用可能電圧範囲内で安全に推移する。 The control circuit 12 executes the return of the discharge path by turning on the switch 9. At this time, since the upper limit value and the lower limit value of the rated voltage of the capacitor 5 are made wider than those of the secondary battery 1, the voltage of the capacitor 5 safely transitions within the usable voltage range.
 図3は、第1実施形態におけるPWM制御の動作タイミングを説明するための図である。 FIG. 3 is a diagram for explaining the operation timing of the PWM control in the first embodiment.
 図3(A)に示すように、時刻t0から時刻t1までPCS3への定常的な電流が流れつつ、時刻t1のタイミングで大電流期間が発生する。 As shown in FIG. 3A, a steady current flows to the PCS 3 from time t0 to time t1, and a large current period occurs at the timing of time t1.
 図3(B)に示すように、時刻t1のタイミングで制御回路12は、PCS3からの制御信号を受信し、PWM制御を開始する。 As shown in FIG. 3B, the control circuit 12 receives a control signal from the PCS 3 at the timing of time t1, and starts PWM control.
 図3(C)、図3(D)に示すように、時刻t0から時刻t1まで、二次電池1のみで放電を行っていたものが、大電流期間の開始タイミングである時刻t1からは、二次電池1とキャパシタ5が放電を交互に行い、二次電池1の負担を減らしている。 As shown in FIGS. 3C and 3D, from the time t1 that is the start timing of the large current period from the time t0 to the time t1, only the secondary battery 1 was discharged. The secondary battery 1 and the capacitor 5 discharge alternately, reducing the burden on the secondary battery 1.
 図3(E)に示すように、時刻t1以降では、電圧が所定値A以上となる二次電池1の出力と、電圧が所定値AとなるDC/DCコンバータ7の電圧とが、交互にPCS3に出力される。このため、時刻t1以降では、PCS3に対して出力される電圧は、矩形波のようになる。 As shown in FIG. 3E, after time t1, the output of the secondary battery 1 whose voltage is equal to or higher than the predetermined value A and the voltage of the DC / DC converter 7 whose voltage is equal to the predetermined value A are alternately displayed. It is output to PCS3. For this reason, after time t1, the voltage output to the PCS 3 becomes a rectangular wave.
 キャパシタ5として急速放電可能なキャパシタを用いることで、PWM制御中、二次電池1の出力遮断後のDC/DCコンバータ7からの電力供給はスムーズに行われる。このため、二次電池1とキャパシタ5は、要求された電流を切れ間なく供給することができる。 By using a capacitor capable of rapid discharge as the capacitor 5, power supply from the DC / DC converter 7 after the output of the secondary battery 1 is cut off is smoothly performed during PWM control. For this reason, the secondary battery 1 and the capacitor 5 can supply the requested current without interruption.
 次に、本実施形態の効果を説明する。 Next, the effect of this embodiment will be described.
 本実施形態は以上のように構成され、二次電池1の出力と、DC/DCコンバータ7で定電圧化したキャパシタの出力を、PWM制御とダイオードを用いて合成して出力する。 The present embodiment is configured as described above, and the output of the secondary battery 1 and the output of the capacitor that has been made constant voltage by the DC / DC converter 7 are combined and output using PWM control and a diode.
 本実施形態は、二次電池1と、キャパシタ5と、出力端子7bがPCS3と接続されキャパシタ5の電力を用いて二次電池1の電圧以下である所定電圧(所定値A)を生成するDC/DCコンバータ7と、二次電池1とPCS3との間に接続されたスイッチ2と、スイッチ2を断続的にオンオフする制御回路12と、を含む。 In the present embodiment, the secondary battery 1, the capacitor 5, and the output terminal 7 b are connected to the PCS 3, and DC is used to generate a predetermined voltage (predetermined value A) that is equal to or lower than the voltage of the secondary battery 1 using the power of the capacitor 5. / DC converter 7, switch 2 connected between secondary battery 1 and PCS 3, and control circuit 12 for turning on / off switch 2 intermittently.
 このため、スイッチ2を断続的にオンオフすることによって、二次電池1の電圧を断続的にPCS3に供給しつつ、二次電池1の電圧の供給が断続的に停止されている間は、キャパシタ5の電圧を変換して出力するDC/DCコンバータ7の出力電圧をPCS3に供給することが可能になる。 Therefore, by intermittently turning on and off the switch 2, the voltage of the secondary battery 1 is intermittently supplied to the PCS 3 while the supply of the voltage of the secondary battery 1 is intermittently stopped. The output voltage of the DC / DC converter 7 that converts and outputs the voltage 5 can be supplied to the PCS 3.
 したがって、二次電池1を用いた電源装置100において、二次電池1と電圧特性の異なるキャパシタ5を、任意のタイミングで任意の時間、二次電池1の放電の負担を軽減するために使用でき、二次電池1の寿命を延ばすことが可能となる。また、二次電池1の出力を変換することなくPCS3に供給するため、電力変換に伴う二次電池のロスを少なくすることが可能になる。 Therefore, in the power supply device 100 using the secondary battery 1, the capacitor 5 having a voltage characteristic different from that of the secondary battery 1 can be used for reducing the discharge burden of the secondary battery 1 at an arbitrary timing for an arbitrary time. The life of the secondary battery 1 can be extended. Moreover, since the output of the secondary battery 1 is supplied to the PCS 3 without conversion, it is possible to reduce the loss of the secondary battery due to power conversion.
 なお、上記効果は、二次電池1と、キャパシタ5と、出力端子7bがPCS3と接続されキャパシタ5の電力を用いて二次電池1の電圧以下である所定電圧(所定値A)を生成するDC/DCコンバータ7と、二次電池1とPCS3との間に接続されたスイッチ2と、スイッチ2を断続的にオンオフする制御回路12と、からなる電源装置でも奏する。 In addition, the said effect produces | generates the predetermined voltage (predetermined value A) below the voltage of the secondary battery 1 using the electric power of the secondary battery 1, the capacitor 5, and the output terminal 7b being connected with PCS3, and the capacitor 5. The power supply apparatus includes the DC / DC converter 7, the switch 2 connected between the secondary battery 1 and the PCS 3, and the control circuit 12 that turns the switch 2 on and off intermittently.
 また、本実施形態では、制御回路12は、電圧センサ13の検出結果が所定値A以上であり電圧センサ14の検出結果が所定値B以上である場合に、スイッチ2を断続的にオンオフする。このため、二次電池1とキャパシタ5が予め設定された放電を行える状況で、二次電池1とキャパシタ5を放電させることが可能になる。 In the present embodiment, the control circuit 12 intermittently turns on and off the switch 2 when the detection result of the voltage sensor 13 is equal to or greater than the predetermined value A and the detection result of the voltage sensor 14 is equal to or greater than the predetermined value B. For this reason, it becomes possible to discharge the secondary battery 1 and the capacitor 5 in a situation where the secondary battery 1 and the capacitor 5 can perform a preset discharge.
 また、本実施形態では、制御回路12は、電圧センサ14の検出結果が所定値B以上である場合に、スイッチ6をオンする。このため、キャパシタ5が予め設定された放電を行える状況でキャパシタ5を放電させることが可能になる。 In this embodiment, the control circuit 12 turns on the switch 6 when the detection result of the voltage sensor 14 is equal to or greater than the predetermined value B. For this reason, it becomes possible to discharge the capacitor 5 in a situation where the capacitor 5 can perform a preset discharge.
 また、本実施形態では、制御回路12は、PCS3からの制御信号(電力の供給を指示する制御信号)に応じてスイッチ2を断続的にオンオフし、PCS3から制御信号を受け付けておらず電圧センサ13の検出結果が所定値A以上である場合には、スイッチ9をオンする。このため、二次電池1が放電可能な状況でPCS3への放電を行っていない場合に、二次電池1にてキャパシタ5を充電することが可能になる。 In the present embodiment, the control circuit 12 intermittently turns on and off the switch 2 in response to a control signal from the PCS 3 (a control signal instructing the supply of power), and does not accept the control signal from the PCS 3. When the detection result of 13 is equal to or greater than the predetermined value A, the switch 9 is turned on. For this reason, the capacitor 5 can be charged by the secondary battery 1 when the secondary battery 1 is not discharged to the PCS 3 in a state where the secondary battery 1 can be discharged.
 (第2実施形態)
 次に、本発明の第2実施形態の電源装置100Aを説明する。
(Second Embodiment)
Next, the power supply device 100A according to the second embodiment of the present invention will be described.
 図4は、第2の実施形態の電源装置100Aを示したブロック図である。なお、図4において、図1に示したものと同一構成のものには同一符号を付してある。 FIG. 4 is a block diagram showing a power supply device 100A of the second embodiment. In FIG. 4, the same components as those shown in FIG.
 第2の実施形態の電源装置100Aでは、PCS3に電流を供給する電流経路に電流センサ16が配置され、制御回路14の代わりに制御回路17が設けられた点が、第1実施形態の電源装置100との主な相違点である。 In the power supply device 100A of the second embodiment, the current sensor 16 is arranged in the current path for supplying current to the PCS 3, and the control circuit 17 is provided instead of the control circuit 14, which is the power supply device of the first embodiment. This is the main difference from 100.
 制御回路17は、電流センサ16にて検出された電流情報を基に、PCS3に流れる電流の平均値を演算し、その演算結果が所定値Cを超えたことをPWM制御を開始するためのトリガーとする点が、制御回路14と異なっている。 The control circuit 17 calculates the average value of the current flowing through the PCS 3 based on the current information detected by the current sensor 16, and triggers PWM control to start that the calculation result exceeds a predetermined value C. Is different from the control circuit 14.
 本実施形態では、制御回路17は、電流センサ16にて検出された電流情報を基に、所定期間(例えば1秒以上の期間)での電流の平均値を演算する。なお、所定期間は、1秒以上の期間に限らず適宜変更可能である。 In the present embodiment, the control circuit 17 calculates an average value of current in a predetermined period (for example, a period of 1 second or more) based on the current information detected by the current sensor 16. The predetermined period is not limited to a period of 1 second or longer and can be changed as appropriate.
 図5は、第2実施形態におけるPWM制御の動作タイミングを説明するための図である。 FIG. 5 is a diagram for explaining the operation timing of the PWM control in the second embodiment.
 図5(A)に示すように、時刻t0から時刻t1まで、PCS3への定常的な電流が流れつつ、時刻t1のタイミングで、PCS3への電流が所定値Cを超える大電流期間が発生する。 As shown in FIG. 5A, a constant current to PCS3 flows from time t0 to time t1, and a large current period in which the current to PCS3 exceeds a predetermined value C occurs at the timing of time t1. .
 図5(B)に示すように、時刻t1での大電流期間発生後、電流センサ16にて検出された電流値を基に演算されたPCS3への放電電流の平均値が所定値Cを超えたタイミングである時刻t2で、制御回路17は、PWM制御を開始する。 As shown in FIG. 5B, the average value of the discharge current to the PCS 3 calculated based on the current value detected by the current sensor 16 after the occurrence of the large current period at time t1 exceeds the predetermined value C. At time t2, which is the determined timing, the control circuit 17 starts PWM control.
 図5(C)、図5(D)に示すように、時刻t0から時刻t2までの期間では二次電池1のみで放電を行っていたものが、時刻t1以降におけるPCS3への放電電流の平均値が所定値Cを超える時刻t2からは、二次電池1とキャパシタ5で放電を交互に行い、二次電池1の負担が減らされている。 As shown in FIG. 5C and FIG. 5D, the average of the discharge current to the PCS 3 after the time t1 is the one that was discharged only by the secondary battery 1 in the period from the time t0 to the time t2. From time t2 when the value exceeds the predetermined value C, the secondary battery 1 and the capacitor 5 are alternately discharged, and the burden on the secondary battery 1 is reduced.
 図5(E)に示すように、時刻t2以降では、電圧が所定値A以上となる二次電池1の出力(電圧)と、電圧が所定値AとなるDC/DCコンバータ7の電圧とが、交互にPCS3に出力される。このため、時刻t2以降では、PCS3に対して出力される電圧は、矩形波のようになる。 As shown in FIG. 5E, after time t2, the output (voltage) of the secondary battery 1 at which the voltage is equal to or higher than the predetermined value A and the voltage of the DC / DC converter 7 at which the voltage is at the predetermined value A are obtained. Are alternately output to the PCS 3. For this reason, after time t2, the voltage output to the PCS 3 is a rectangular wave.
 本実施形態は以上のように構成され、第1実施形態と同じ効果を有するとともに電源装置から負荷へと大電流が引かれたときに、自動的にPWM制御が行われることにより、予期せぬ大電流放電時に二次電池の負担を減らすことが可能になり、電流変動に強いという利点を有する。 The present embodiment is configured as described above, and has the same effect as the first embodiment, and when a large current is drawn from the power supply device to the load, the PWM control is automatically performed, which is unexpected. It is possible to reduce the burden on the secondary battery during large current discharge, and it has an advantage of being resistant to current fluctuation.
 (第3実施形態)
 次に、本発明の第3実施形態の電源装置を説明する。
(Third embodiment)
Next, the power supply device of 3rd Embodiment of this invention is demonstrated.
 第3実施形態の電源装置は、第2実施形態の電源装置100Aにおいて、制御回路17が、PWM制御を行う際、PCS3に流れる電流の平均値の大きさに応じてPWM制御のデューティー比を変え、PCS3に流れる電流の平均値が大きくなるほどキャパシタ5の放電レートを上げる機能さらに有するものである。その他の構成は、図4に示した第2実施形態の電源装置100Aと同様である。 In the power supply device of the third embodiment, in the power supply device 100A of the second embodiment, when the control circuit 17 performs the PWM control, the duty ratio of the PWM control is changed according to the average value of the current flowing through the PCS3. The function of increasing the discharge rate of the capacitor 5 as the average value of the current flowing through the PCS 3 increases. Other configurations are the same as those of the power supply apparatus 100A of the second embodiment shown in FIG.
 図6は、第3実施形態におけるPWM制御の動作タイミングを説明するための図である。 FIG. 6 is a diagram for explaining the operation timing of PWM control in the third embodiment.
 図6(A)に示すように、時刻t0から時刻t1までの期間ではPCS3への定常的な電流が流れつつ、時刻t1のタイミングで、PCS3へ流れる電流が所定値Dを超える電流増加が起こり、さらに時刻t3でPCS3へ流れる電流が所定値Eを超える電流増加が起こっている。 As shown in FIG. 6A, a steady current flows to the PCS 3 during the period from the time t0 to the time t1, and the current flowing to the PCS 3 exceeds the predetermined value D at the timing of the time t1. Further, at time t3, the current flowing to the PCS 3 exceeds the predetermined value E.
 図6(B)に示すように、定常時のDC/DCコンバータ7からの電流が流れていない状態をPWM制御のデューティー比0とし、時刻t1の大電流発生後、制御回路17は、電流センサ16の電流値を基に演算されたPCS3への放電電流の平均値が所定値Dを超えたタイミングである時刻t2で、PWM制御を開始し、そのデューティー比を0から所定値Fに引き上げる。 As shown in FIG. 6B, the state in which no current flows from the DC / DC converter 7 in a steady state is set to a duty ratio 0 of PWM control, and after the generation of a large current at time t1, the control circuit 17 At time t2, which is the timing when the average value of the discharge current to the PCS 3 calculated based on the current value of 16 exceeds the predetermined value D, PWM control is started and the duty ratio is raised from 0 to the predetermined value F.
 その後、制御回路17は、放電電流の平均値が所定値Eを超えたタイミングである時刻t4でさらにそのデューティー比を所定値Fから所定値Gに引き上げる。 Thereafter, the control circuit 17 further increases the duty ratio from the predetermined value F to the predetermined value G at time t4, which is the timing when the average value of the discharge current exceeds the predetermined value E.
 図6(C)、図6(D)、図6(E)に示すように、制御回路17は、PCS3に流れる電流量が増加するのに応じて、二次電池1の放電レートを減らし、キャパシタ5の放電寄与率を上げている。 As shown in FIGS. 6 (C), 6 (D), and 6 (E), the control circuit 17 reduces the discharge rate of the secondary battery 1 as the amount of current flowing through the PCS 3 increases. The discharge contribution rate of the capacitor 5 is increased.
 本実施形態は以上のように構成され、第2実施形態と同じ効果を有するとともに、電流値の大小に対応した二次電池1の負荷低減が可能になり、負荷の要求する電流が定まらず放電レートが大きく変動する電源装置システムに適用可能となる。 The present embodiment is configured as described above, and has the same effect as the second embodiment. In addition, the load of the secondary battery 1 corresponding to the magnitude of the current value can be reduced, and the current required by the load is not determined and is discharged. The present invention can be applied to a power supply system in which the rate varies greatly.
 なお、上記各実施形態において、負荷としてPCSが用いられたが、負荷はPCSに限らず適宜変更可能である。 In each of the above embodiments, the PCS is used as the load. However, the load is not limited to the PCS and can be changed as appropriate.
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。 In each of the embodiments described above, the illustrated configuration is merely an example, and the present invention is not limited to the configuration.
 実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。この出願は、2013年5月8日に出願された日本出願特願2013-98455を基礎とする優先権を主張し、その開示の全てをここに取り込む。 Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above-described embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2013-98455 for which it applied on May 8, 2013, and takes in those the indications of all here.
   1   二次電池
   2   スイッチ
   3   PCS
   4   ダイオード
   5   キャパシタ
   6   スイッチ
   7   DC/DCコンバータ
   8   ダイオード
   9   スイッチ
  10   電流制限用抵抗
  11   ダイオード
  12   制御回路
  13、14 電圧センサ
  15   スナバ回路
  16   電流センサ
  17   制御回路
1 Secondary battery 2 Switch 3 PCS
4 Diode 5 Capacitor 6 Switch 7 DC / DC Converter 8 Diode 9 Switch 10 Current Limiting Resistor 11 Diode 12 Control Circuit 13, 14 Voltage Sensor 15 Snubber Circuit 16 Current Sensor 17 Control Circuit

Claims (10)

  1.  二次電池と、
     キャパシタと、
     前記キャパシタの電圧を用いて前記二次電池の電圧以下である所定電圧を生成し、出力端子が負荷と接続された電圧生成手段と、
     前記二次電池と前記負荷との間に接続された特定スイッチと、
     前記特定スイッチを断続的にオンオフする制御手段と、を含む電源装置。
    A secondary battery,
    A capacitor;
    A voltage generation unit that generates a predetermined voltage that is equal to or lower than the voltage of the secondary battery using the voltage of the capacitor, and an output terminal connected to a load;
    A specific switch connected between the secondary battery and the load;
    Control means for intermittently turning on and off the specific switch.
  2.  前記制御手段は、前記電力の供給を指示する制御信号に応じて、前記特定スイッチを断続的にオンオフする、請求項1に記載の電源装置。 The power supply device according to claim 1, wherein the control means intermittently turns on and off the specific switch in response to a control signal instructing the supply of power.
  3.  前記二次電池または前記電圧生成手段から前記負荷に流れる電流を検出する電流検出手段をさらに含み、
     前記制御手段は、前記電流検出手段の検出結果が所定値よりも大きくなると、前記特定スイッチを断続的にオンオフする、請求項1に記載の電源装置。
    Current detection means for detecting current flowing from the secondary battery or the voltage generation means to the load;
    The power supply device according to claim 1, wherein the control unit intermittently turns on and off the specific switch when a detection result of the current detection unit becomes larger than a predetermined value.
  4.  前記制御手段は、前記電流検出手段の検出結果が大きくなるほど、前記特定スイッチを断続的にオンオフする状況での前記特定スイッチのオフ期間を長くする、請求項3に記載の電源装置。 4. The power supply device according to claim 3, wherein the control means lengthens an off period of the specific switch in a situation where the specific switch is intermittently turned on / off as the detection result of the current detection means increases.
  5.  前記二次電池の電圧を検出する第1検出手段と、
     前記キャパシタの電圧を検出する第2検出手段と、をさらに含み、
     前記制御手段は、前記第1検出手段の検出結果が第1閾値以上であり前記第2検出手段の検出結果が第2閾値以上である場合に、前記特定スイッチを断続的にオンオフする、請求項1から4のいずれか1項に記載の電源装置。
    First detection means for detecting a voltage of the secondary battery;
    Second detection means for detecting the voltage of the capacitor,
    The control means intermittently turns on and off the specific switch when a detection result of the first detection means is a first threshold value or more and a detection result of the second detection means is a second threshold value or more. The power supply device according to any one of 1 to 4.
  6.  前記キャパシタと前記電圧生成手段の入力端子との間に接続された所定スイッチをさらに含み、
     前記制御手段は、前記第2検出手段の検出結果が前記第2閾値以上である場合に、前記所定スイッチをオンする、請求項5に記載の電源装置。
    A predetermined switch connected between the capacitor and the input terminal of the voltage generating means;
    The power supply device according to claim 5, wherein the control unit turns on the predetermined switch when a detection result of the second detection unit is equal to or greater than the second threshold value.
  7.  前記二次電池と前記キャパシタとの間に接続され前記二次電池の電荷を用いて前記キャパシタを充電するための充電用スイッチをさらに含み、
     前記制御手段は、前記特定スイッチを断続的にオンオフしていない状況で前記第1検出手段の検出結果が前記第1閾値以上である場合には、前記充電用スイッチをオンする、請求項5または6に記載の電源装置。
    A charge switch connected between the secondary battery and the capacitor for charging the capacitor using the charge of the secondary battery;
    The control unit turns on the charging switch when the detection result of the first detection unit is not less than the first threshold value in a situation where the specific switch is not intermittently turned on / off. 6. The power supply device according to 6.
  8.  前記電圧生成手段は、前記所定電圧として、前記二次電池の定格電圧の下限値の電圧を生成する、請求項1から7のいずれか1項に記載の電源装置。 The power supply device according to any one of claims 1 to 7, wherein the voltage generation unit generates a voltage of a lower limit value of a rated voltage of the secondary battery as the predetermined voltage.
  9.  前記キャパシタは、前記二次電池よりも急速な充放電が可能であり、定格電圧の上限値が前記二次電池の定格電圧の上限値以上であり、かつ、定格電圧の下限値が前記二次電池の定格電圧の下限値以下である、請求項1から8のいずれか1項に記載の電源装置。 The capacitor can be charged and discharged more rapidly than the secondary battery, the upper limit value of the rated voltage is equal to or higher than the upper limit value of the rated voltage of the secondary battery, and the lower limit value of the rated voltage is the secondary battery. The power supply device according to any one of claims 1 to 8, wherein the power supply device is equal to or lower than a lower limit value of a rated voltage of the battery.
  10.  二次電池と、キャパシタと、前記キャパシタの電圧を用いて前記二次電池の電圧以下である所定電圧を生成し、出力端子が負荷と接続された電圧生成手段と、前記二次電池と前記負荷との間に接続された特定スイッチと、を含む電源装置での電力供給方法であって、
     前記特定スイッチを断続的にオンオフする、電力供給方法。
    A secondary battery; a capacitor; a voltage generating means for generating a predetermined voltage equal to or lower than the voltage of the secondary battery using the voltage of the capacitor; and an output terminal connected to a load; the secondary battery and the load A power supply method including a specific switch connected between and a power supply device,
    A power supply method for intermittently turning on and off the specific switch.
PCT/JP2014/060373 2013-05-08 2014-04-10 Power source device and power supply method WO2014181631A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015515825A JPWO2014181631A1 (en) 2013-05-08 2014-04-10 Power supply device and power supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013098455 2013-05-08
JP2013-098455 2013-05-08

Publications (1)

Publication Number Publication Date
WO2014181631A1 true WO2014181631A1 (en) 2014-11-13

Family

ID=51867113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060373 WO2014181631A1 (en) 2013-05-08 2014-04-10 Power source device and power supply method

Country Status (2)

Country Link
JP (1) JPWO2014181631A1 (en)
WO (1) WO2014181631A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308032A (en) * 1994-05-10 1995-11-21 Nippondenso Co Ltd Two output voltage generator motor system
JP2002291169A (en) * 2001-03-28 2002-10-04 Denso Corp On-board double-power-supply circuit with motor- generator
JP2007237856A (en) * 2006-03-07 2007-09-20 Toyota Motor Corp Vehicular power supply system
JP2010273428A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Vehicle drive power supply unit
JP2012075280A (en) * 2010-09-29 2012-04-12 Panasonic Corp Power supply device for vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244741A (en) * 1991-01-28 1992-09-01 Matsushita Electric Works Ltd Battery-drives electric equipment
JPH0530608A (en) * 1991-07-17 1993-02-05 Aisin Aw Co Ltd Hybrid system for electric automobile
JPH11215735A (en) * 1998-01-26 1999-08-06 Oki Electric Ind Co Ltd Or circuit for power supply
JP2008086148A (en) * 2006-09-28 2008-04-10 Brother Ind Ltd Power circuit
JP5609226B2 (en) * 2010-04-12 2014-10-22 トヨタ自動車株式会社 Power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308032A (en) * 1994-05-10 1995-11-21 Nippondenso Co Ltd Two output voltage generator motor system
JP2002291169A (en) * 2001-03-28 2002-10-04 Denso Corp On-board double-power-supply circuit with motor- generator
JP2007237856A (en) * 2006-03-07 2007-09-20 Toyota Motor Corp Vehicular power supply system
JP2010273428A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Vehicle drive power supply unit
JP2012075280A (en) * 2010-09-29 2012-04-12 Panasonic Corp Power supply device for vehicle

Also Published As

Publication number Publication date
JPWO2014181631A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6541884B2 (en) DC / DC converter
US9868358B2 (en) Power conversion system suppressing reduction in conversion efficiency
JP6024706B2 (en) Power converter
US20140083988A1 (en) Systems and methods providing controlled ac arc welding processes
JP2007209056A (en) Capacitor device
JP2007159370A (en) Bidirectional power conversion device with reverse power flow prevention function
JP6365880B2 (en) Power converter
JP2012005265A (en) Dc-dc converter
US8817490B2 (en) DC-DC converter
JP2005197030A (en) Fuel cell system equipped with current sensor correcting function
US20130336014A1 (en) Electric power conversion circuit
JP7330817B2 (en) Power distribution system and method
JP2009142061A (en) Dc-dc converter
JP2015046992A (en) Vehicle power supply device
WO2014181631A1 (en) Power source device and power supply method
JP2006014570A (en) Power regeneration method and converter device using the same
JP2007267582A (en) Step-up/step-down chopper device and driving method therefor
WO2016129415A1 (en) Power conversion device
JP2011211812A (en) Power unit
JP2012175871A (en) Motor controller and system
CN110771023B (en) Synchronous rectification type DC-DC converter and switching power supply device
JP2015122937A (en) Driving device of synchronous rectification apparatus
TW201608795A (en) Charging method and charging system using the same
JP5429656B1 (en) DC power supply
JP5073847B1 (en) Secondary battery charge / discharge method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794876

Country of ref document: EP

Kind code of ref document: A1