WO2014180620A1 - Silber-komposit-sinterpasten für niedertemperatur sinterverbindungen - Google Patents
Silber-komposit-sinterpasten für niedertemperatur sinterverbindungen Download PDFInfo
- Publication number
- WO2014180620A1 WO2014180620A1 PCT/EP2014/057129 EP2014057129W WO2014180620A1 WO 2014180620 A1 WO2014180620 A1 WO 2014180620A1 EP 2014057129 W EP2014057129 W EP 2014057129W WO 2014180620 A1 WO2014180620 A1 WO 2014180620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- equal
- tin
- liquid
- solid material
- weight
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
- B23K35/025—Pastes, creams, slurries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/107—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1035—Liquid phase sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
- B23K1/0016—Brazing of electronic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3006—Ag as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3612—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3612—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
- B23K35/3618—Carboxylic acids or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/362—Selection of compositions of fluxes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29301—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29311—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29347—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/832—Applying energy for connecting
- H01L2224/83201—Compression bonding
- H01L2224/83203—Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8384—Sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/201—Temperature ranges
- H01L2924/20106—Temperature range 200 C=<T<250 C, 473.15 K =<T < 523.15K
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/201—Temperature ranges
- H01L2924/20107—Temperature range 250 C=<T<300 C, 523.15K =<T< 573.15K
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/201—Temperature ranges
- H01L2924/20108—Temperature range 300 C=<T<350 C, 573.15K =<T< 623.15K
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/201—Temperature ranges
- H01L2924/20109—Temperature range 350 C=<T<400 C, 623.15K =<T< 673.15K
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/201—Temperature ranges
- H01L2924/2011—Temperature range 400 C=<T<450 C, 673.15K =<T< 723.15K
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/201—Temperature ranges
- H01L2924/20111—Temperature range 450 C=<T<500 C, 723.15K =<T< 773.15K
Definitions
- the invention relates to a liquid-phase sintered composition
- a liquid-phase sintered composition comprising low molecular weight organic auxiliaries, at least one silver salt, silver particles and another metallic solid material, characterized in that the further solid material is particulate and comprises tin.
- MCPP multi-chip power packages
- the power semiconductors are currently soldered directly onto Cu stamped grid or Cu heat sink.
- the lead-free solders used here typically have one
- solder joints are known, for example, lead-free solder joints of tin-silver or tin-silver-copper. At higher operating temperatures, lead-containing soldered joints can be used. However, lead-containing solder joints are severely limited by legal regulations for reasons of environmental protection in terms of their permissible technical applications.
- lead-free brazing alloys are suitable for use at elevated or high temperatures, in particular above 200 ° C. Lead-free brazing alloys generally have higher levels
- silver-sintered compounds Another way to achieve higher operating temperatures in the field of power electronics offers the use of silver-sintered compounds. These silver-sintered compounds can be used for joining electronic components and, theoretically, reach an operating temperature up to the melting point of the silver (961.8 ° C). These compounds are characterized by their high electrical and thermal conductivity and allow electronic components to be operated at higher temperatures, since the compounds do not melt and at the same time more heat from the
- WO 2009 012450 A1 a method for fixing a semiconductor component on a substrate by means of a sintering paste is described, which has coated nanoparticles of Ag, Au, Cu, Ni, Pd, Fe or their alloys and thus to a Reduction of the sintering temperature can contribute.
- a semiconductor device is mounted on a substrate by means of a sintered paste.
- the sintering paste can consist of one or a combination of several metal powders with a certain purity and a defined size distribution.
- Au, Ag, Pt or Pd powder By using, for example, Au, Ag, Pt or Pd powder, a reduction of the required sintering temperatures can be achieved.
- DE 10 2009 000192 A1 relates to a sintered material with metallic structural particles provided with an organic coating. According to the invention, it is disclosed within the document that non-organically coated, metallic and / or ceramic auxiliary particles which do not degas during the sintering process are provided.
- a liquid-phase sintered composition containing low molecular weight organic auxiliaries, at least one Silver salt, silver particles and another solid metal material, characterized in that the further solid material is particulate and comprises tin, in comparison to the prior art sintered compounds has significantly improved properties.
- the use of another particulate solid material comprising tin results in that the material cost of the sintered compound can be significantly reduced.
- the process costs can be significantly reduced, since using tin-containing solid material lower processing temperatures sufficient to produce a dense sintered connection. The melting point of the tin is well below the silver melting point.
- the silver and the tin-containing solid material can partially melt under heat and form a eutectic compound by the partial incorporation of the tin-containing particles in the silver particle matrix.
- This reactive sintering step involves a drastic reduction in the melting temperature. In this way melting temperature reductions down to 221 ° C can be realized.
- These sintered compounds also have a higher electrical and thermal conductivity, in particular in comparison to the solder joints mentioned in the prior art.
- the sintering composition according to the invention also provides a connection between components which, due to their high melting temperature, enables substantially higher temperatures of use. As a result, a higher efficiency of the components can be made possible.
- this composition can also be sintered without pressure, which leads to a lower expenditure on equipment.
- a liquid-phase sintered composition in the context of this invention is a composition which has metallic solid particles which partially melt in the course of a sintering process, under the effect of temperature and optionally under pressure.
- the liquid, metallic phase can also lead to the formation of a particularly intimate joint between different components within the sintering process. In this way, particularly dense and mechanically / thermally stable connections between the components can be obtained.
- the sintering composition may contain low molecular weight organic adjuvants.
- These organic auxiliaries can be present both in liquid form, in the form of organic solvents, or solid, for example as coating material for the particulate solid materials.
- the liquid organic solvents can thereby contribute to the cohesion of the compound in the form of a paste or to a better flow of the composition in the context of the sintering process.
- these agents can improve the adhesion of the composition to the devices.
- Other low molecular weight organic compounds can be used, for example, in the form of low molecular weight organic compounds as coating material.
- fatty acids may be mentioned at this point.
- auxiliaries are listed, for example, in DE 10 2010 042 702 A1 and DE 10 2010 042 721 A1.
- low molecular weight in the context of this invention are considered organic compounds whose molecular weight is less than or equal to 1000 g / mol.
- Silver salts in the sense of the invention are ionic compounds which contain the silver in cationic form.
- Possible usable silver salts are compounds containing anions from the group of carbonates, oxides, hydroxides or organic anions.
- Silver particles are in particular particles which differ from a surrounding medium through a solid phase interface.
- the particles comprise metallic silver and are optionally provided with a coating layer.
- the particles preferably have a size greater than or equal to 0.01 ⁇ and less than or equal to 1000 ⁇ .
- the geometry of the silver particles may be spherical, sparse, platy or wholly irregular.
- the core of the silver particles, without consideration of a surface coating consists of elemental silver.
- a metallic solid material in the sense of the invention is a material which, in the
- Substantially comprises a non-salt particulate metal.
- the solid material may have a hole content of less than or equal to 5% by volume in the interior and optionally be coated on the surface by further metallic or non-metallic constituents.
- Particulate solid material comprising tin corresponds to the definition of a solid material in the above-mentioned sense, with the proviso that the metallic solid material is in the form of particles and comprises tin in elemental form or in the form of an alloy.
- the proportion by weight of the tin on the tin-containing particulate solid material is variable and can be greater than or equal to 2.5
- Wt .-% preferably greater than or equal to 5 wt .-% and particularly preferably greater than or equal to 7.5 wt .-% amount.
- the weight fractions of the metals in the solid state can be determined either wet-chemically or via a suitable calibration by means of an X-ray analysis (energy dispersive X-ray spectroscopy (EDX)).
- EDX energy dispersive X-ray spectroscopy
- the particulate solid material comprising tin in the liquid-phase sintering composition may be spherical, sparse or plate-shaped. These geometries of the tin-comprising solid material have proven to be particularly suitable for obtaining a dense sintered compound. Without being bound by theory, this may in particular result from a simplified alloying of these particle geometries between the silver and the tin-comprising solid material in the context of the sintering process.
- the proportion of the particulate solid material comprising tin on the Sinter composition greater than or equal to 0.1% by volume and less than or equal to 50% by volume.
- This volume fraction of the tin-comprising solid material in the total sintered composition has proved to be particularly advantageous.
- this proportion results in a significant cost reduction of the sintered compound due to the material savings and the reduction of the sintering temperature to be used. This, while largely maintaining the mechanical and thermal properties of the resulting sintered compound. Smaller proportions lead to an insufficient formation of an elektica mixture, whereas higher proportions can reduce the thermal stability of the resulting sintered compound too much.
- Tin full material results from the weight fraction taking into account the particle density.
- the subject of a further preferred embodiment is a liquid-phase sintering composition, wherein the maximum extent of the particulate,
- Tin full material greater than or equal to 0.1 ⁇ and less than or equal to 1000 ⁇ .
- This size of the tin-comprising solid material has proved to be particularly advantageous for obtaining a dense sintered compound with intimate mixing of the tin-comprising solid material with the silver particles. Smaller maximum expansions can lead to mechanically unstable and larger maximum expansions to inhomogeneous sintered connections. The maximum expansion of the particles results from the greatest distance between two surface points of the same particle.
- the particulate solid material comprising tin is not necessarily monodisperse.
- tin-comprising solid material there may also be a size distribution of the tin-comprising solid material, wherein the above-mentioned magnitudes in the case of a size distribution may correspond to an average particle diameter in the sense of a D 50 value.
- the order of magnitude of the expansion of the tin-comprising solid material can be determined conventionally by an optical method (microscope) or by scattering methods (MALS).
- the results of the scattering methods can be interpreted to a first approximation by means of a spherical geometry of the particles.
- the liquid phase sintered composition may have a composition, wherein the proportion
- the organic auxiliaries greater than or equal to 0.1% by weight and less than or equal to 10% by weight
- the silver salt is greater than or equal to 5% by weight and less than or equal to 20% by weight
- This composition of the liquid-phase sintered composition according to the invention has proved to be particularly advantageous from a process-economical and procedural point of view.
- the available sintered compounds have a good mechanical strength, good thermal conductivity, long service life of the components and, compared to the listed in the prior art compositions without tin comprehensive solid material, lower costs.
- the composition may contain further metallic or non-metallic particles. It is particularly expedient if the other metallic or non-metallic particles are formed in such a way that they combine with the solid material comprising silver and / or tin during the sintering process.
- the further metallic or non-metallic particles may, for example, have a sinterable surface which can be realized for example by means of a suitable coating.
- inert particles which are enclosed only by the sinter material and have no direct connection to the metallic solid material. It is also possible to select the further metallic or non-metallic particles in such a way that they diffuse into the solid material comprising tin.
- non-metallic particles for example, ceramic particles such as, in particular, aluminum oxide (also doped), aluminum nitride, beryllium oxide, silicon oxide and silicon nitride can be used.
- electrically conductive ceramics such as, for example, boron carbide or silicon carbide.
- metallic particles may be selected from the group consisting of silver, copper, gold, platinum, palladium or a mixture of the aforementioned particles. These further metallic particles can be used, for example, to adapt the CTE mismatch or to realize certain microstructure densities of the sintered joint.
- the proportion by weight of the other metallic or non-metallic particles may be greater than or equal to 0.1% by weight to less than or equal to 10% by weight, preferably greater than or equal to 0.5% by weight to less than or equal to 5% by weight and particularly preferably greater than or equal to zero , 5 wt .-% to less than or equal to 2.5 wt .-%, amount.
- the particulate solid material comprising tin can be present in the liquid-phase sintering composition in the form of a tin-containing alloy or mixed phase.
- the full material comprising tin can have further metallic constituents.
- these other metallic constituents are not spatially separated, but are present in the form of mixed phases or alloys within the particle.
- the melting behavior of the particles comprising tin and the further alloy formation with the solid silver material can be influenced in terms of process engineering. Furthermore, this can include the mechanical hardness of the tin
- the particulate solid material comprising tin in the liquid-phase sintered composition may additionally contain copper.
- Copper as a further constituent of the tin-comprising solid material may be particularly preferred, since copper / tin alloys can lead to a reduction of the CTE compared to pure tin.
- the CTE of bronze is about 17E-6 1 / K
- Ag has a CTE of 19E-6 1 / K
- Sn has one of 23E-6 1 / K.
- the proportion of copper in the particulate solid material comprising tin in the liquid-phase sintered composition may be greater than or equal to 85 mol% and less than or equal to 95 mol%.
- This tin-bronze solid material together with the silver particles can lead to a significant reduction in material costs as well as to dense sinter layers compared to the solid materials mentioned in the prior art.
- Especially the favorable alloy formation of the tin bronze with the silver particles can contribute to a fast process control at low sintering temperatures.
- this type of sintered connections a compared to sintered compounds with pure silver particles, only insignificantly worse thermal conductivity.
- the tin material comprising tin may consist of tin.
- the tin-comprising solid material can be made entirely of tin. This means that the tin content of the solid particle can be greater than or equal to 98% by weight. This proportion of tin in the solid particle can facilitate the process by allowing the use of lower process temperatures. In addition, a positive effect on the
- step b) introducing a liquid-phase sintering composition between at least part of the surfaces of the components to be joined from step a) c) sintering the liquid-phase sintered composition
- liquid-phase sintered composition in step b) contains particulate solid material comprising tin.
- carriers also represent electronic components in the sense of step a).
- the surfaces of the electronic components are preferably made of metal.
- the electronic components may belong to the classes of electronic components which are standard within the field of power electronics, consumer electronics, and similar fields use. In particular, these include carrier materials and base plates such as populated circuit carriers, housings, DCB, AMB, IMS, PCB, LTCC, standard ceramic substrates, lead frames and leadframes.
- the sintering composition may be wholly or partially applied to one or more of the components both surfaces of the components are applied. For example, by brushing, sprinkling, spraying, knife coating, printing or applying in the form of a foil, a wire or a plate.
- the two components are either positioned beforehand at the desired distance from each other or this is then, after the application of the liquid phases
- step c) the liquid-phase sintered composition is sintered by means of a heating step with or without application of static pressure.
- the full particles present in the liquid-phase sintered composition are completely or partially melted and thus the surfaces of the electronic components are joined in a materially cohesive manner.
- the process can be carried out in several temperature steps or ramps or at a constant temperature.
- the tin-comprising solid material of the sintered composition in step b) can consist of tin or bronze.
- Tin and bronze solid materials are perfect for silver because of their properties
- the tin / copper alloy can be obtained mechanically and thermally very stable sintered layers.
- the melting points of the compounds allow economical process management with the use of only low sintering temperatures.
- the solid material made of tin or bronze may optionally be equipped with a further metallic or non-metallic surface coating.
- Sintering the liquid-phase sintered composition in step c) be greater than or equal to 200 ° C and less than or equal to 500 ° C. Due to the use of solid material comprising tin, these low sintering temperatures can be sufficient to provide a sufficient degree of joining quality of the electronic components through the sintering process. Preferably, the temperature during
- step c) Sintering the liquid-phase sintered composition in step c) larger or equal to 200 ° C and less than or equal to 400 ° C, further preferably greater than or equal to 230 ° C and less than or equal to 350 ° C.
- the joining parts may additionally be subjected to a joining pressure greater than or equal to 0.1 MPa and less than or equal to 150 MPa.
- the process pressure may preferably be at most 150 MPa, preferably less than 100 MPa, more preferably less than 50 MPa.
- the joining process can be carried out completely without pressure. This can contribute to a significant cost reduction of the process, since complex hydraulic devices to achieve an otherwise necessary contact pressure are not required.
- the presented embodiments of the method according to the invention for joining power electronic components can be used.
- Examples of fields of application are the joining of electronic components for: power output stages of electric power steering systems, power output stages of universal inverter units, control electronics, in particular on the starter and / or generator, press-in diodes on generator shields, high-temperature-stable semiconductors, such as silicon carbide, or also sensors which are operated at high temperature and a Sensor-near evaluation need. It is also possible to use semiconductor diodes and modules for inverters, in particular photovoltaic systems.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Die vorliegende Erfindung betrifft eine flüssigphasen Sinterzusammensetzung enthaltend niedermolekulare organische Hilfsstoffe, mindestens ein Silbersalz, Silberpartikel und ein weiteres metallisches Vollmaterial, dadurch gekennzeichnet, dass das weitere Vollmaterial partikulär vorliegt und Zinn umfasst.
Description
Beschreibung Titel
Silber-Komposit-Sinterpasten für Niedertemperatur Sinterverbindungen
Die Erfindung betrifft eine flüssigphasen Sinterzusammensetzung enthaltend niedermolekulare organische Hilfsstoffe, mindestens ein Silbersalz, Silberpartikel und ein weiteres metallisches Vollmaterial, dadurch gekennzeichnet, dass das weitere Vollmaterial partikulär vorliegt und Zinn umfasst.
Stand der Technik Moderne Leistungselektronik wird in vielen Bereichen der Technik eingesetzt und ist innerhalb dieser Anwendungen immer höheren Qualitätsansprüchen ausgesetzt. So sind insbesondere die Ansprüche an Ausfallsicherheit und Standzeit der Elemente in den letzten Jahren deutlich gestiegen. Berücksichtigt man ferner, dass die geforderten Stromstärken in einigen Anwendungen in immer höhere Be- reiche verschoben werden, so ergibt sich eine besondere thermische Belastungssituation der Bauelemente. Dies ist insbesondere dann kritisch, wenn durch die Anwendung hoher Stromstärken eine deutliche Eigenerwärmung der Bauteile verursacht wird und zudem weitere ungünstige Umgebungsbedingungen, wie zum Beispiel durch wechselnde Temperaturen in der Bauteilumgebung, vorhan- den sind. Exemplarisch sind an dieser Stelle Steuergeräte im Automobilbereich zu nennen, welche unmittelbar im Motor- oder im Getrieberaum angeordnet sind. Diese Steuergeräte sind einem ständigen Temperaturwechsel ausgesetzt, welcher eine Temperaturdifferenz von bis zu 200°C am Bauteil erreichen kann. Diese Beanspruchungen müssen bei der Auswahl der Fügetechnik der Bauelemente berücksichtigt werden.
Desweiteren ist eine höhere thermische Flexibilität auch in der Konzeption und dem Aufbau von Multi Chip Power Packages (MCPP) gewünscht, wobei die Leistungs-Halbleiter derzeit direkt auf Cu-Stanzgitter bzw. Cu-Wärmesenke gelötet werden. Die verwendeten bleifreien Lote haben hierbei typischerweise einen
Schmelzpunkt im Bereich von 220-260°C, welches insgesamt die Einsatztempe-
ratur der Lotverbindung beschränkt. Wünschenswert wäre hier der Einsatz höherer Temperaturen (Tjunction), um den Wirkungsgrad der Bauelemente zu erhöhen.
Diese Umstände führen zu der Designanforderung, dass die elektronischen Bau- teile und deren Verbindungsstellen untereinander (respektive einem Trägersubstrat) thermisch belastungs- und ausfallsicher ausgestaltet sein müssen. Üblicherweise erfolgt eine Anbindung der elektronischen Komponenten durch eine Verbindungsschicht. Als eine derartige Verbindungsschicht sind Lotverbindungen bekannt, beispielsweise bleifreie Lotverbindungen aus Zinn-Silber oder Zinn- Silber-Kupfer. Bei höheren Einsatztemperaturen sind bleihaltige Lotverbindungen einsetzbar. Bleihaltige Lotverbindungen sind jedoch durch gesetzliche Bestimmungen aus Gründen des Umweltschutzes hinsichtlich ihrer zulässigen technischen Anwendungen stark beschränkt. Alternativ bieten sich für den Einsatz bei erhöhten, beziehungsweise hohen Temperaturen, insbesondere über 200°C, bleifreie Hartlote an. Bleifreie Hartlote weisen in der Regel einen höheren
Schmelzpunkt als 200°C auf.
Einen weiteren Weg zur Erzielung höherer Einsatztemperaturen im Bereich der Leistungselektronik bietet die Verwendung von Silber-Sinterverbindungen. Diese Silber-Sinterverbindungen können zum Fügen elektronischer Bauelemente verwendet werden und erreichen, theoretisch, eine Einsatztemperatur bis hin zum Schmelzpunkt des Silbers (961 , 8°C). Diese Verbindungen zeichnen sich durch ihre hohe elektrische und thermische Leitfähigkeit aus und erlauben es, dass elektronische Bauelemente bei höheren Temperaturen betrieben werden können, da die Verbindungen nicht aufschmelzen und gleichzeitig mehr Wärme aus dem
System abgeleitet werden kann.
Nachteilig an den reinen Silber-Sinterverbindungen hingegen ist, dass recht hohe Sintertemperaturen und/oder Sinterdrücke benötigt werden, um das Gefüge dicht zu sintern und die Materialkosten deutlich höher liegen als bei den anderen Fügetechniken. Diese Faktoren erhöhen die Prozesskosten und schlagen somit natürlich auf die Bauteilkosten durch.
Eine mögliche technische Lösung stellt zum Beispiel die US 2008 0073776 A1 bereit. In diesem Dokument wird eine wärmeableitende Zusammensetzung für mikroelektronische Bauteile beschrieben, welche ein mikroelektronisches Bauelement, einen Hitzeverteiler und ein thermisches Interfacematerial (TIM) auf-
weist, welches das mikroelektronische Bauelement und den Hitzeverteiler verbindet und die TIM eine gesinterte metallische Nanopaste aufweist.
In einem weiteren Dokument, der WO 2009 012450 A1 , wird hingegen eine Methode zur Befestigung eines Halbleiterbauteils auf einem Substrat mittels einer Sinterpaste beschrieben, welche beschichtete Nanoteilchen aus Ag, Au, Cu, Ni, Pd, Fe oder deren Legierungen aufweist und derart zu einer Verringerung der Sintertemperatur beitragen kann.
Eine andere Möglichkeit bietet die US 2009 0230172 A1 . Hierin wird ein Halbleiterbauteil mittels einer Sinterpaste auf einem Substrat befestigt. Die Sinterpaste kann aus einem oder einer Kombination mehrerer Metallpulver mit bestimmter Reinheit und definierter Größenverteilung bestehen. Durch den Einsatz von beispielsweise Au-, Ag-, Pt-, oder Pd-Pulver kann eine Reduktion der benötigten Sintertemperaturen erreicht werden.
Desweiteren betrifft die DE 10 2009 000192 A1 einen Sinterwerkstoff mit metallischen, mit einer organischen Beschichtung versehenen Strukturpartikeln. Erfindungsgemäß ist innerhalb des Dokumentes offenbart, dass nicht-organisch beschichtete, metallische und/oder keramische, beim Sinterprozess nicht ausgasende Hilfspartikel vorgesehen sind.
Es ist die Aufgabe der vorliegenden Erfindung eine Sinterzusammensetzung und ein -Verfahren zum Fügen leistungselektronischer Bauteile bereitzustellen, welche die Nachteile des Standes der Technik ausräumen und eine kostengünstige und reproduzierbare Herstellung mechanisch und thermisch stabiler Fügestellen erlaubt. Diese Aufgabe wird gelöst durch eine Sinterzusammensetzung mit den Merkmalen des Anspruchs 1 und ein Sinterverfahren gemäß des Anspruchs 1 1 . Die Unteransprüche hingegen geben bevorzugte Ausführungsformen an.
Offenbarung der Erfindung
Überraschenderweise wurde gefunden, dass eine flüssigphasen Sinterzusammensetzung enthaltend niedermolekulare organische Hilfsstoffe, mindestens ein
Silbersalz, Silberpartikel und ein weiteres metallisches Vollmaterial, dadurch gekennzeichnet, dass das weitere Vollmaterial partikulär vorliegt und Zinn umfasst, im Vergleich zum Stand der Technik aufgeführten Sinterverbindungen deutlich verbesserte Eigenschaften aufweist. Im Vergleich zu den reinen Silber- Sinterverbindungen, welche partikuläres Silber aufweisen können, führt die Verwendung eines weiteren partikulären Vollmaterials, welches Zinn umfasst, dazu, dass die Materialkosten der Sinterverbindung deutlich reduziert werden können. Desweiteren lassen sich die Prozesskosten signifikant reduzieren, da unter Verwendung zinnhaltigen Vollmaterials geringere Verarbeitungstemperaturen ausreichen um eine dichte Sinterverbindung herzustellen. Der Schmelzpunkt des Zinns liegt deutlich unterhalb des Silber-Schmelzpunktes. Das Silber- und das Zinn enthaltende Vollmaterial kann unter Wärmezufuhr partiell aufschmelzen und durch den partiellen Einbau der Zinn enthaltenden Partikel in die Silberpartikel- Matrix eine eutektische Verbindung ausbilden. Dieser reaktive Sinterschritt ist mit einer drastischen Reduzierung der Schmelztemperatur verbunden. Derart können Schmelztemperaturerniedrigungen bis hinunter zu 221 °C realisiert werden. Diese Sinterverbindungen weisen zudem eine höhere elektrische wie auch thermische Leitfähigkeit, insbesondere im Vergleich zu den im Stand der Technik genannten Lotverbindungen auf. Durch die erfindungsgemäße Sinterzusammensetzung wird außerdem eine Verbindung zwischen Bauteilen geschaffen, welche bedingt durch ihre hohe Schmelztemperatur wesentlich höhere Einsatztemperaturen ermöglicht. Dadurch kann ein höherer Wirkungsgrad der Bauelemente ermöglicht werden.
Weitere Vorteile gegenüber reinen Silber-Sinterverbindungen können sich zudem ergeben durch:
• die Möglichkeit, dass die vorliegenden Partikel lokal und partiell aufschmelzen können, sodass ein flüssigphasen Sinterprozess erhältlich ist. Dies kann die Prozesstemperatur verringern, und hohe Gefüge-Dichten bei schon relativ geringen Sinterdrücken bereitstellen. Gegebenenfalls lässt sich diese Zusammensetzung auch drucklos sintern, welches zu einem geringeren apparativen Aufwand führt.
• die im Vergleich zu Standard-Lotverbindungen nur unwesentlicher Erniedrigung der thermischen und elektrischen Leitfähigkeit der Sinterzusammensetzung, da nur ein Teil des Silbers ausgetauscht wird.
• die Möglichkeit zur Adaption des CTE-Missmatches, ggf. auch durch die Beimengung weiterer Partikel.
• die material- und prozessbedinge Kosten red uktion im Vergleich zu der Verwendung reiner Silber-Sinterverbindungen.
Eine flüssigphasen Sinterzusammensetzung im Sinne dieser Erfindung ist eine Zusammensetzung, welche metallische Vollpartikel aufweist, die im Rahmen eines Sinterprozesses, unter Temperatur- und ggf. unter Druckeinwirkung, partiell aufschmelzen. Durch die Verwendung unterschiedlicher metallischer Vollmateria- lien kann es zur Ausbildung von Mischphasen kommen, welche eine niedrigere
Schmelztemperatur aufweisen. Durch die flüssige, metallische Phase kann es innerhalb des Sinterprozesses außerdem zur Ausbildung einer besonders innigen Fügestelle zwischen unterschiedlichen Bauteilen kommen. Derart können besonders dichte und mechanisch/thermisch stabile Verbindungen zwischen den Bauelementen erhalten werden.
Die Sinterzusammensetzung kann niedermolekulare organische Hilfsstoffe enthalten. Diese organischen Hilfsstoffe können dabei sowohl flüssig, in Form organischer Lösungsmittel, oder fest, zum Beispiel als Beschichtungsmaterial für die partikulären Vollmaterialien, vorliegen. Die flüssigen organischen Lösemittel können dabei zum Zusammenhalt der Verbindung in Form einer Paste oder zu einem besseren Fließen der Zusammensetzung im Rahmen des Sinterprozesses beitragen. Zudem können diese Mittel die Anhaftung der Zusammensetzung an den Bauelementen verbessern. Weitere niedermolekulare organische Verbin- düngen, können zum Beispiel in Form niedermolekularer organischer Verbindungen als Beschichtungsmaterial eingesetzt werden. Beispielhaft seien an dieser Stelle Fettsäuren genannt. Weitere mögliche Ausgestaltungen dieser Hilfsstoffe sind beispielsweise in der DE 10 2010 042 702 A1 und der DE 10 2010 042 721 A1 aufgeführt. Als insbesondere niedermolekular im Sinne dieser Erfindung wer- den organische Verbindungen angesehen, deren Molekulargewicht kleiner oder gleich 1000 g/mol beträgt.
Silbersalze im Sinne der Erfindung sind ionische Verbindungen, welche das Silber in kationischer Form enthalten. Mögliche einsetzbare Silbersalze sind Ver- bindungen aufweisend Anionen aus der Gruppe der-Carbonate, Oxide, Hydroxide oder organischer Anionen.
Silberpartikel sind insbesondere Teilchen, welche sich von einem umgebenden, Medium durch eine feste Phasengrenzfläche unterscheiden. Die Partikel umfassen metallisches Silber und sind gegebenenfalls mit einer Coatingschicht versehen. Die Partikel weisen bevorzugt eine Größe größer oder gleich 0,01 μηη und kleiner oder gleich 1000 μηη auf. Die Geometrie der Silberpartikel kann kugelförmig, spratzig, plättchenförmig oder gänzlich irregulär sein. Bevorzugt besteht der Kern der Silberpartikel, ohne Berücksichtigung einer Oberflächenbeschichtung, aus elementaren Silber. Ein metallisches Vollmaterial im Sinne der Erfindung ist ein Material, welches im
Wesentlichen ein nicht als Salz vorliegendes partikuläres Metall umfasst. Das Vollmaterial kann im Inneren einen Lochanteil von kleiner oder gleich 5 Vol.-% aufweisen und gegebenenfalls an der Oberfläche durch weitere metallische oder nicht-metallische Bestandteile beschichtet vorliegen.
Partikuläres, Zinn umfassendes Vollmaterial entspricht der Definition eines Vollmaterials im oben genannten Sinne, unter der Maßgabe, dass das metallische Vollmaterial in Form von Partikeln vorliegt und Zinn in elementarer Form oder als in Form einer Legierung umfasst. Der Gewichtsanteil des Zinns am Zinn enthal- tenden partikulären Vollmaterial ist variabel und kann größer oder gleich 2,5
Gew.-%, bevorzugt größer oder gleich 5 Gew.-% und besonders bevorzugt größer oder gleich 7,5 Gew.-% betragen. Die Gewichtsanteile der Metalle im Vollkörper lassen sich entweder nasschemisch oder über eine geeignete Kalibrierung mittels einer Röntgenanalyse (Energiedispersive Röntgenspektroskopie (EDX)) quantitativ bestimmen.
In einer bevorzugten Ausführungsform kann das partikuläre, Zinn umfassende Vollmaterial in der flüssigphasen Sinterzusammensetzung kugelig, spratzig oder plattenförmig vorliegen. Diese Geometrien des Zinn umfassenden Vollmaterials haben sich zum Erhalt einer dichten Sinterverbindung als besonders geeignet erwiesen. Ohne durch die Theorie gebunden zu sein kann sich dies insbesondere aus einer vereinfachten Legierungsbildung dieser Partikel-Geometrien zwischen den Silber- und den Zinn umfassenden Vollmaterial im Rahmen des Sinterprozesses ergeben.
In einer alternativen Ausführungsform der flüssigphasen Sinterzusammensetzung kann der Anteil des partikulären, Zinn umfassenden Vollmaterials an der
Sinterzusammensetzung größer oder gleich 0,1 Vol-% und kleiner oder gleich 50 Vol-% betragen. Dieser Volumenanteil des Zinn umfassenden Vollmaterials an der gesamt Sinterzusammensetzung hat sich als besonders vorteilhaft erwiesen. Insbesondere erhält man durch diesen Anteil eine signifikante Kostenreduktion der Sinterverbindung durch die Materialeinsparung und die Reduktion der aufzuwendenden Sintertemperatur. Dies unter weitgehender Beibehaltung der mechanischen und thermischen Eigenschaften der resultierenden Sinterverbindung. Kleinere Anteile führen zu einer nur ungenügenden Ausbildung einer elektischen Mischung, wohingegen höhere Anteile die thermische Stabilität der resul- tierenden Sinterverbindung zu stark reduzieren können. Der Volumen-Anteil des
Zinn umfassenden Vollmaterials ergibt sich aus dem Gewichtsanteil unter Berücksichtigung der Partikeldichte.
Gegenstand einer weiteren bevorzugten Ausführungsform ist eine flüssigphasen Sinterzusammensetzung, wobei die maximale Ausdehnung des partikulären,
Zinn umfassenden Vollmaterials größer oder gleich 0,1 μηη und kleiner oder gleich 1000 μηη beträgt. Diese Größenordnung des Zinn umfassenden Vollmaterials hat sich für den Erhalt einer dichten Sinterverbindung mit einer innigen Vermengung des Zinn umfassenden Vollmaterials mit den Silberpartikeln als beson- ders vorteilhaft erwiesen. Kleinere maximale Ausdehnungen können zu mechanisch instabilen und größere maximale Ausdehnungen zu inhomogenen Sinterverbindungen führen. Die maximale Ausdehnung der Partikel ergibt sich dabei aus der größten Entfernung zweier Oberflächenpunkte desselben Partikels. Das partikuläre, Zinn umfassende Vollmaterial liegt dabei nicht zwingend monodis- pers vor. Es kann auch eine Größenverteilung des Zinn umfassenden Vollmaterials vorliegen, wobei die oben angegebenen Größenordnungen im Falle einer Größenverteilung einem mittleren Partikeldurchmesser im Sinne eines D50- Wertes entsprechen können. Die Größenordnung der Ausdehnung des Zinn umfassenden Vollmaterials kann dabei konventionell über eine optische Methode (Mikroskop) oder über Streumethoden (MALS) bestimmt werden. Zum Erhalt der
Größenverteilung können die Ergebnisse der Streumethoden in erster Näherung mittels einer kugelförmigen Geometrie der Partikel interpretiert werden.
In einer weiteren Ausgestaltung der Erfindung kann die flüssigphasen Sinterzu- sammensetzung eine Zusammensetzung aufweisen, wobei der Anteil
- der organischen Hilfsstoffe größer oder gleich 0,1 Gew-% und kleiner oder gleich 10 Gew-%,
- der Silbersalze größer oder gleich 5 Gew-% und kleiner oder gleich 20 Gew-%,
- der Silberpartikel größer oder gleich 40 Gew-% und kleiner oder gleich 94 Gew- % und
- des partikulären, Zinn umfassenden Vollmaterials größer oder gleich 0,1 Gew- % und kleiner oder gleich 50 Gew-%
beträgt und die Summe der einzelnen Anteile 100 Gew-% entspricht. Diese Zusammensetzung der erfindungsgemäßen flüssigphasen Sinterzusammensetzung hat sich aus prozess-ökonomischer und verfahrenstechnischer Sicht als besonders vorteilhaft erwiesen. Die erhältlichen Sinterverbindungen weisen eine gute mechanische Festigkeit, gute Wärmeleitfähigkeit, hohe Standzeiten der Bauteile und, im Vergleich zu den im Stand der Technik aufgeführten Zusammensetzungen ohne Zinn umfassendes Vollmaterial, geringere Kosten auf.
In einer weiteren Ausführungsform der flüssigphasen Sinterzusammensetzung kann die Zusammensetzung weitere metallische oder nichtmetallische Partikel enthalten. Besonders zweckmäßig ist es, wenn die weiteren metallischen oder nichtmetallischen Partikel derart ausgebildet sind, dass diese während des Sinterprozesses mit den Silber- und/oder den Zinn umfassenden Vollmaterial vereintem. Hierzu können die weiteren metallischen oder nichtmetallischen Partikel beispielsweise eine sinterfähige Oberfläche aufweisen, die beispielsweise mittels einer geeigneten Beschichtung realisierbar ist. Desweiteren lassen sich aber auch inerte Partikel zusetzen, welche nur vom Sintermaterial umschlossen werden und keine direkte Anbindung an das metallische Vollmaterial aufweisen. Auch ist es möglich, die weiteren metallischen oder nichtmetallischen Partikel derart auszuwählen, dass diese in das Zinn umfassende Vollmaterial ein diffundieren. Dies kann die Struktur und Dichte der Sinterverbindung positiv beeinflussen. Als nichtmetallische Partikel können zum Beispiel keramische Partikel wie insbesondere Aluminiumoxid (auch dotiert), Aluminiumnitrid, Berylliumoxid, Siliziumoxid und Siliziumnitrid eingesetzt werden. Um die elektrische Leitfähigkeit durch den Zusatz nichtmetallischer Partikel nicht zu sehr zu verschlechtern, können auch elektrisch leitfähige Keramiken, wie beispielsweise Borkarbid oder Siliziumkarbid eingesetzt werden. Metallische Partikel können zum Beispiel ausgewählt sein aus der Gruppe umfassend Silber-, Kupfer-, Gold-, Platin-, Palladiumpartikel oder einer Mischung der vorgenannten Partikel. Diese weiteren metalli- sehen Partikel können zum Beispiel genutzt werden um den CTE-Mismatch anzupassen oder bestimmte Gefügedichten der gesinterten Fügestelle zu realisieren. Der Gewichtsanteil der weiteren metallischen oder nichtmetallischen Partikel
kann größer oder gleich 0,1 Gew.-% bis zu kleiner oder gleich 10 Gew.-%, bevorzugt größer oder gleich 0,5 Gew.-% bis zu kleiner oder gleich 5 Gew.-% und insbesondere bevorzugt größer oder gleich 0,5 Gew.-% bis zu kleiner oder gleich 2,5 Gew.-%, betragen.
In einer weiteren, erfindungsgemäßen Ausgestaltung kann das partikuläre, Zinn umfassende Vollmaterial in der flüssigphasen Sinterzusammensetzung in Form einer zinnhaltigen Legierung oder Mischphase vorliegen. Zur Anpassung des Schmelz- und Legierungsverhaltens des Zinns kann das Zinn umfassende Voll- material weitere metallische Bestandteile aufweisen. Bevorzugt liegen diese weiteren metallischen Bestandteile dabei nicht räumlich separiert, sondern in Form von Mischphasen oder Legierungen innerhalb des Partikels vor. Dadurch lassen sich insbesondere das Schmelzverhalten der Zinn umfassenden Partikel und die weitere Legierungsbildung mit den Silber-Vollmaterial verfahrenstechnisch beein- flussen. Desweiteren kann so die mechanische Härte des Zinn umfassenden
Vollmaterials angepasst werden.
In einer bevorzugten Ausführungsform kann das partikuläre, Zinn umfassende Vollmaterial in der flüssigphasen Sinterzusammensetzung zusätzlich Kupfer ent- halten. Kupfer als weiterer Bestandteil des Zinn umfassenden Vollmaterials kann besonders bevorzugt sein, da Kupfer/Zinn-Legierungen im Vergleich zu reinem Zinn zu einer Verringerung des CTE führen können. So liegt zum Beispiel der CTE von Bronze bei ungefähr 17E-6 1/K, wohingegen Ag einen CTE von 19 E-6 1/K und Sn einen von 23 E-6 1/K aufweist.-Durch Beimischungen von Kupfer kann der CTE also auf die jeweilige vorliegende Fügesituation angepasst werden.
Desweiteren kann in einer zusätzlichen Ausgestaltung der Kupferanteil an dem partikulären, Zinn umfassenden Vollmaterial in der flüssigphasen Sinterzusam- mensetzung größer oder gleich 85 mol-% und kleiner oder gleich 95 mol-% betragen. Dieses Zinn-Bronzen Vollmaterial kann zusammen mit den Silberpartikeln im Vergleich zu den im Stand der Technik genannten Vollmaterialien sowohl zu einer signifikanten Reduzierung der Materialkosten wie auch zu dichten Sinterschichten führen. Gerade die günstige Legierungsbildung der Zinn-Bronze mit den Silberpartikeln kann zu einer schnellen Verfahrensführung bei niedrigen Sintertemperaturen beitragen. Desweiteren zeigen diese Art der Sinterverbindungen
eine, im Vergleich zu Sinterverbindungen mit reinen Silberpartikeln, nur unwesentlich schlechtere Wärmeleitfähigkeit.
In einer weiteren Ausführungsvariante der flüssigphasen Sinterzusammenset- zung kann das Zinn umfassende Vollmaterial aus Zinn bestehen. Zum Erhalt möglichst niedrigschmelzender Vollpartikel kann das Zinn umfassende Vollmaterial ganz aus Zinn bestehen. Dies bedeutet, dass der Zinnanteil an dem Vollpartikel größer oder gleich 98 Gew-% betragen kann. Dieser Anteil an Zinn im Vollpartikel kann die Verfahrensführung erleichtern, indem es die Anwendung niedri- gerer Prozesstemperaturen erlaubt. Zudem kann sich ein positiver Effekt auf die
Sinterzeit einstellen.
Desweiteren erfindungsgemäß ist ein Verfahren zum stoffschlüssigen Fügen elektronischer Bauelemente umfassend die Verfahrensschritte
a) Bereitstellen zweier Bauelemente mit zu fügenden Oberflächen
b) Einbringen einer flüssigphasen Sinterzusammensetzung zwischen mindestens einem Teil der Oberflächen der zu fügenden Bauelemente aus Schritt a) c) Sintern der flüssigphasen Sinterzusammensetzung
dadurch gekennzeichnet, dass die flüssigphasen Sinterzusammensetzung in Schritt b) partikuläres, Zinn umfassendes Vollmaterial enthält.
Im Hinblick auf das Verfahren zum stoffschlüssigen Fügen elektronischer Bauelemente existieren zwei unterschiedliche Anwendungsfälle. Zum einen können zwei elektronische Bauelemente direkt an- oder aufeinander oder es können ein oder mehrere Bauelemente auf einen Träger gefügt werden. Die elektrisch leitende Verbindung der einzelnen elektronischen Bauelemente kann dann über den Träger erfolgen. Demzufolge stellen auch Träger elektronische Bauelemente im Sinne des Schrittes a) dar. Die Oberflächen der elektronischen Bauelemente sind vorzugsweise aus Metall. Die elektronischen Bauelemente können dabei zu den Klassen elektronischer Bauelemente gehören, welche standardmäßig innerhalb des Gebietes der Leistungselektronik, Consumer Elektronik, und ähnlicher Gebiete Verwendung finden. Insbesondere zählen dazu Trägermaterialien und Grundplatten wie bestückte Schaltungsträger, Gehäuse, DCB-, AMB-, IMS-, PCB-, LTCC-, Standartkeramik-Substrate, Stanzgitter und Leadframes.
Im Schritt b) kann, als Funktion der Viskosität der flüssigphasen Sinterzusammensetzung, die Sinterzusammensetzung ganz oder nur partiell auf eine oder
beide Oberflächen der Bauelemente aufgetragen werden. Dies zum Beispiel durch Bestreichen, Aufstreuen, Bespritzen, Rakeln, Drucken oder Aufbringen in Form einer Folie, eines Drahtes oder einer Platte. Die beiden Bauelemente werden dabei entweder schon vorher auf den gewünschten Abstand zueinander po- sitioniert oder dieser wird anschließend, nach dem Aufbringen der flüssigphasen
Sinterzusammensetzung, mechanisch eingestellt.
In Schritt c) wird die flüssigphasen Sinterzusammensetzung mittels eines Erwärmungsschrittes mit oder ohne Applikation statischen Druckes gesintert. Hierbei werden die in der flüssigphasen Sinterzusammensetzung vorhandenen Vollpartikel ganz oder partiell aufgeschmolzen und so die Oberflächen der elektronischen Bauelemente stoffschlüssig gefügt. Das Verfahren kann in mehreren Temperaturschritten oder -Rampen oder bei einer konstanten Temperatur durchgeführt werden.
In einer zusätzlichen Ausgestaltung des Verfahrens zum stoffschlüssigen Fügen elektronischer Bauelemente kann das Zinn umfassende Vollmaterial der Sinterzusammensetzung in Schritt b) aus Zinn oder Bronze bestehen. Zinn und Bronze Vollmaterialien eignen sich aufgrund Ihrer Eigenschaften mit Silber eine
Schmelzpunkterniedrigende Mischphase einzugehen im besonderen Maße zum
Einsatz innerhalb des erfindungsgemäßen Fügeverfahrens. Durch den Einsatz des Zinns, respektive der Zinn/Kupfer-Legierung lassen sich mechanisch und thermisch sehr stabile Sinterschichten erhalten. Zudem erlauben die Schmelzpunkte der Verbindungen eine ökonomische Prozessführung mit der Anwendung nur geringer Sintertemperaturen. Das aus Zinn oder Bronze bestehende Vollmaterial kann gegebenenfalls mit einer weiteren metallischen oder nichtmetallischen Oberflächenbeschichtung ausgerüstet sein.
Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens zum stoffschlüssigen Fügen elektronischer Bauelemente kann die Temperatur beim
Sintern der flüssigphasen Sinterzusammensetzung im Schritt c) größer oder gleich 200 °C und kleiner oder gleich 500°C betragen. Diese niedrigen Sintertemperaturen können, bedingt durch die Verwendung Zinn umfassenden Vollmaterials, ausreichen, eine hinreichende Fügegüte der elektronischen Bauelemente durch den Sinterprozess bereitzustellen. Bevorzugt kann die Temperatur beim
Sintern der flüssigphasen Sinterzusammensetzung im Schritt c) größer oder
gleich 200 °C und kleiner oder gleich 400°C, desweiteren bevorzugt größer oder gleich 230 °C und kleiner oder gleich 350°C betragen.
In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens zum stoff- schlüssigen Fügen elektronischer Bauelemente können im Schritt c) die Fügeteile zusätzlich mit einem Fügedruck größer oder gleich 0,1 MPa und kleiner oder gleich 150 MPa beaufschlagt werden. Bevorzugt kann der Prozessdruck maximal 150 MPa, vorzugsweise weniger als 100 MPa, weiter bevorzugt weniger als 50 MPa betragen. In einer weiteren bevorzugten Ausführungsform der Erfindung kann das Fügeverfahren gänzlich drucklos erfolgen. Dies kann zu einer erheblichen Kosten red uktion des Verfahrens beitragen, da aufwendige hydraulische Vorrichtungen zum Erreichen eines ansonsten nötigen Anpressdruckes nicht vonnöten sind. Desweiteren können die vorgestellten Ausführungsformen des erfindungsgemäßen Verfahrens zum Fügen leistungselektronischer Bauteile verwendet werden. Beispiele für Einsatzgebiete sind das Fügen elektronischer Bauelemente für: Leistungsendstufen elektrischer Servolenkungen, Leistungsendstufen universeller Wechselrichteinheiten, Regelelektroniken, insbesondere am Starter und/oder Generator, Einpressdioden an Generatorschilden, hochtemperaturstabile Halbleiter, wie Siliziumkarbid, oder auch Sensoren, die unter hoher Temperatur betrieben werden und eine sensornahe Auswerteelektronik benötigen. Auch ist der Einsatz bei Halbleiterdioden und Modulen für Wechselrichter, insbesondere an Photovoltaik-Anlagen, möglich.
Claims
1 . Flüssigphasen Sinterzusammensetzung enthaltend niedermolekulare organische Hilfsstoffe, mindestens ein Silbersalz, Silberpartikel und ein weiteres metallisches Vollmaterial, dadurch gekennzeichnet, dass das weitere Vollmaterial partikulär vorliegt und Zinn umfasst.
2. Flüssigphasen Sinterzusammensetzung nach Anspruch 1 , wobei das partikuläre, Zinn umfassende Vollmaterial kugelig, spratzig oder plattenförmig vorliegt.
3. Flüssigphasen Sinterzusammensetzung nach einem der vorhergehenden Ansprüche, wobei der Anteil des partikulären, Zinn umfassenden Vollmaterials an der Sinterzusammensetzung größer oder gleich 0,1 Vol-% und kleiner oder gleich 50 Vol-% beträgt.
4. Flüssigphasen Sinterzusammensetzung nach einem der vorhergehenden Ansprüche, wobei die maximale Ausdehnung des partikulären, Zinn umfassenden Vollmaterials größer oder gleich 0,1 μηη und kleiner oder gleich 1000 μηη beträgt.
5. Flüssigphasen Sinterzusammensetzung nach einem der vorhergehenden Ansprüche, wobei der Anteil
- der organischen Hilfsstoffe größer oder gleich 0,1 Gew-% und kleiner oder gleich 10 Gew-%,
- der Silbersalze größer oder gleich 5 Gew-% und kleiner oder gleich 20 Gew-%,
- der Silberpartikel größer oder gleich 40 Gew-% und kleiner oder gleich 94 Gew-% und
- des partikulären, Zinn umfassenden Vollmaterials größer oder gleich 0,1 Gew-% und kleiner oder gleich 50 Gew-%
beträgt und die Summe der einzelnen Anteile 100 Gew-% entspricht.
6. Flüssigphasen Sinterzusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Zusammensetzung weitere metallische oder nichtmetallische Partikel enthält.
7. Flüssigphasen Sinterzusammensetzung nach einem der vorhergehenden Ansprüche, wobei das partikuläre, Zinn umfassende Vollmaterial in Form einer zinnhaltigen Legierung oder Mischphase vorliegt.
8. Flüssigphasen Sinterzusammensetzung nach einem der vorhergehenden Ansprüche, wobei das partikuläre, Zinn umfassende Vollmaterial zusätzlich Kupfer enthält.
9. Flüssigphasen Sinterzusammensetzung nach Anspruch 8, wobei der Kupferanteil an dem partikulären, Zinn umfassenden Vollmaterial größer oder gleich 85 mol-% und kleiner oder gleich 95 mol-% beträgt.
10. Flüssigphasen Sinterzusammensetzung nach einem der Ansprüche 1 - 6, wobei das Zinn umfassende Vollmaterial aus Zinn besteht.
1 1 . Verfahren zum stoffschlüssigen Fügen elektronischer Bauelemente umfassend die Verfahrensschritte
a) Bereitstellen zweier Bauelemente mit zu fügenden Oberflächen b) Einbringen einer flüssigphasen Sinterzusammensetzung zwischen mindestens einen Teil der Oberflächen der zu fügenden Bauelemente aus Schritt a)
c) Sintern der flüssigphasen Sinterzusammensetzung
dadurch gekennzeichnet, dass die flüssigphasen Sinterzusammensetzung in Schritt b) partikuläres, Zinn umfassendes Vollmaterial enthält.
12. Verfahren zum stoffschlüssigen Fügen elektronischer Bauelemente nach Anspruch 1 1 , wobei das Zinn umfassende Vollmaterial der Sinterzusammensetzung in Schritt b) aus Zinn oder Bronze besteht.
13. Verfahren zum stoffschlüssigen Fügen elektronischer Bauelemente nach Anspruch 1 1 oder 12, wobei die Temperatur beim Sintern der flüssigphasen Sinterzusammensetzung im Schritt c) größer oder gleich 200 °C und kleiner oder gleich 500°C beträgt.
14. Verfahren zum stoffschlüssigen Fügen elektronischer Bauelemente nach Anspruch 1 1 - 13, wobei im Schritt c) die Fügeteile zusätzlich mit einem Fü-
gedruck größer oder gleich 0,1 MPa und kleiner oder gleich 150 MPa beaufschlagt werden.
15. Verwendung des Verfahrens nach einem der Ansprüche 1 1 -14 zum Fügen leistungselektronischer Bauteile.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14716310.9A EP2994265A1 (de) | 2013-05-07 | 2014-04-09 | Silber-komposit-sinterpasten für niedertemperatur sinterverbindungen |
US14/890,136 US20160121431A1 (en) | 2013-05-07 | 2014-04-09 | Silver-composite sintering pastes for low-temperature sintering-bonding |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013208387.4A DE102013208387A1 (de) | 2013-05-07 | 2013-05-07 | Silber-Komposit-Sinterpasten für Niedertemperatur Sinterverbindungen |
DE102013208387.4 | 2013-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014180620A1 true WO2014180620A1 (de) | 2014-11-13 |
Family
ID=50473308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/057129 WO2014180620A1 (de) | 2013-05-07 | 2014-04-09 | Silber-komposit-sinterpasten für niedertemperatur sinterverbindungen |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160121431A1 (de) |
EP (1) | EP2994265A1 (de) |
DE (1) | DE102013208387A1 (de) |
WO (1) | WO2014180620A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017009586A1 (fr) * | 2015-07-16 | 2017-01-19 | Valeo Equipements Electriques Moteur | Procede de brasage par frittage d'une poudre conductrice par thermo-compression ultrasonique et module electronique de puissance realise par ce procede |
EP3086361A3 (de) * | 2015-04-02 | 2017-01-25 | Heraeus Deutschland GmbH & Co. KG | Verfahren zum herstellen einer substratanordnung mit einem vorfixiermittel, entsprechende substratanordnung, verfahren zum verbinden eines elektronikbauteils mit einer substratanordnung mit anwendung eines auf dem elektronikbauteil und/oder der substratanordnung aufgebrachten vorfixiermittels und mit einer substratanordnung verbundenes elektronikbauteil |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105591006A (zh) * | 2014-10-20 | 2016-05-18 | 展晶科技(深圳)有限公司 | 覆晶式led封装体 |
DE102016114963B3 (de) | 2016-08-11 | 2018-01-11 | Endress+Hauser Flowtec Ag | Sensor für ein thermisches Durchflussmessgerät, ein thermisches Durchflussmessgerät und ein Verfahren zum Herstellen eines Sensors eines thermischen Durchflussmessgeräts |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998039105A1 (en) * | 1997-03-03 | 1998-09-11 | Ormet Corporation | Metal-plating of cured and sintered transient liquid phase sintering pastes |
US20100252616A1 (en) * | 2009-04-02 | 2010-10-07 | Ormet Circuits, Inc. | Conductive compositions containing blended alloy fillers |
US20100270515A1 (en) * | 2009-04-28 | 2010-10-28 | Yasuda Yuusuke | Electrically conductive bonding material, method of bonding with the same, and semiconductor device bonded with the same |
WO2012052191A1 (de) * | 2010-10-20 | 2012-04-26 | Robert Bosch Gmbh | Ausgangswerkstoff und verfahren zur herstellung einer sinterverbindung |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2950184A (en) * | 1957-06-06 | 1960-08-23 | Glidden Co | Process for preparing powdered silversolder compositions |
JP4638825B2 (ja) * | 2006-02-01 | 2011-02-23 | 三井金属鉱業株式会社 | 多成分系金属粒子スラリー及びそのスラリーを用いた導電性インク又は導電性ペースト |
JP4638382B2 (ja) | 2006-06-05 | 2011-02-23 | 田中貴金属工業株式会社 | 接合方法 |
US7535099B2 (en) | 2006-09-26 | 2009-05-19 | Intel Corporation | Sintered metallic thermal interface materials for microelectronic cooling assemblies |
US8555491B2 (en) | 2007-07-19 | 2013-10-15 | Alpha Metals, Inc. | Methods of attaching a die to a substrate |
JP2009059814A (ja) * | 2007-08-30 | 2009-03-19 | Denso Corp | 多層プリント基板の製造方法 |
DE102009000192A1 (de) | 2009-01-14 | 2010-07-15 | Robert Bosch Gmbh | Sinterwerkstoff, Sinterverbindung sowie Verfahren zum Herstellen eines Sinterverbindung |
DE102009040078A1 (de) * | 2009-09-04 | 2011-03-10 | W.C. Heraeus Gmbh | Metallpaste mit CO-Vorläufern |
DE102010042702A1 (de) | 2010-10-20 | 2012-04-26 | Robert Bosch Gmbh | Ausgangswerkstoff einer Sinterverbindung und Verfahren zur Herstellung der Sinterverbindung |
DE102010042721A1 (de) | 2010-10-20 | 2012-04-26 | Robert Bosch Gmbh | Ausgangswerkstoff einer Sinterverbindung und Verfahren zur Herstellung der Sinterverbindung |
SG11201502567TA (en) * | 2012-10-29 | 2015-05-28 | Alpha Metals | Sintering powder |
-
2013
- 2013-05-07 DE DE102013208387.4A patent/DE102013208387A1/de not_active Withdrawn
-
2014
- 2014-04-09 US US14/890,136 patent/US20160121431A1/en not_active Abandoned
- 2014-04-09 EP EP14716310.9A patent/EP2994265A1/de not_active Withdrawn
- 2014-04-09 WO PCT/EP2014/057129 patent/WO2014180620A1/de active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998039105A1 (en) * | 1997-03-03 | 1998-09-11 | Ormet Corporation | Metal-plating of cured and sintered transient liquid phase sintering pastes |
US20100252616A1 (en) * | 2009-04-02 | 2010-10-07 | Ormet Circuits, Inc. | Conductive compositions containing blended alloy fillers |
US20100270515A1 (en) * | 2009-04-28 | 2010-10-28 | Yasuda Yuusuke | Electrically conductive bonding material, method of bonding with the same, and semiconductor device bonded with the same |
WO2012052191A1 (de) * | 2010-10-20 | 2012-04-26 | Robert Bosch Gmbh | Ausgangswerkstoff und verfahren zur herstellung einer sinterverbindung |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3086361A3 (de) * | 2015-04-02 | 2017-01-25 | Heraeus Deutschland GmbH & Co. KG | Verfahren zum herstellen einer substratanordnung mit einem vorfixiermittel, entsprechende substratanordnung, verfahren zum verbinden eines elektronikbauteils mit einer substratanordnung mit anwendung eines auf dem elektronikbauteil und/oder der substratanordnung aufgebrachten vorfixiermittels und mit einer substratanordnung verbundenes elektronikbauteil |
WO2017009586A1 (fr) * | 2015-07-16 | 2017-01-19 | Valeo Equipements Electriques Moteur | Procede de brasage par frittage d'une poudre conductrice par thermo-compression ultrasonique et module electronique de puissance realise par ce procede |
FR3039025A1 (fr) * | 2015-07-16 | 2017-01-20 | Valeo Equip Electr Moteur | Procede de soudure avec apport de matiere et module electronique de puissance realise par ce procede |
Also Published As
Publication number | Publication date |
---|---|
US20160121431A1 (en) | 2016-05-05 |
DE102013208387A1 (de) | 2014-11-13 |
EP2994265A1 (de) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10208635B4 (de) | Diffusionslotstelle, Verbund aus zwei über eine Diffusionslotstelle verbundenen Teilen und Verfahren zur Herstellung der Diffusionslotstelle | |
EP2845453B1 (de) | Leiterplatte, insbesondere für ein leistungselektronikmodul, umfassend ein elektrisch leitfähiges substrat | |
EP2387477B1 (de) | Verfahren zum herstellen einer sinterverbindung | |
EP2456589B1 (de) | Bleifreie hochtemperaturverbindung | |
EP2743973A2 (de) | Verfahren zur Kontaktierung eines Halbleiterelements mittels Schweißens eines Kontaktelements an eine Sinterschicht auf dem Halbleiterelement und Halbleiterbauelement mit erhöhter Stabilität gegenüber thermomechanischen Einflüssen | |
DE112017000184T5 (de) | Lotverbindung | |
EP2760613B1 (de) | Schichtverbund aus einem elektronischen substrat und einer schichtanordnung umfassend ein reaktionslot | |
DE102012104948A1 (de) | Lotlegierungen und Anordnungen | |
WO2012116846A1 (de) | Paste zum verbinden von bauteilen elektronischer module, system und verfahren zum auftragen der paste | |
EP3698400B1 (de) | Verfahren zum erzeugen eines kühlkörpers auf einer elektronischen baugruppe | |
WO2018210361A1 (de) | Bleifreie lötfolie zum diffusionslöten und verfahren zu deren herstellung | |
WO2014180620A1 (de) | Silber-komposit-sinterpasten für niedertemperatur sinterverbindungen | |
JP2007268569A (ja) | 粉末はんだ材料および接合材料 | |
DE112011102028B4 (de) | Bi-Al-Zn-basierte Pb-freie Lotlegierung | |
DE102006005271B4 (de) | Halbleitervorrichtung unter Verwendung einer Lötlegierung und Verfahren zum Herstellen einer Halbleitervorrichtung | |
DE102008011265B4 (de) | Verfahren zum Herstellen eines Substrats zum Bonden von Vorrichtungen mit einer Lötschicht | |
DE102010013610A1 (de) | Verfahren zum stoffschlüssigen Verbinden von elektronischen Bauelementen oder Kontaktelementen und Substraten | |
EP2844414B1 (de) | Verfahren zur herstellung eines metallisierten aus aluminium bestehenden substrats | |
DE3740773A1 (de) | Verfahren zum herstellen elektrisch leitender verbindungen | |
WO2022128228A1 (de) | Vorrichtung mit bauelement und angekoppeltem kühlkörper | |
DE1298387C2 (de) | Halbleiter-Anordnung | |
DE102017204887B4 (de) | Verfahren mit Nutzung eines Flüssigmetalls zur Fügung thermoelektrischer Module in einem SLID-Prozess und damit hergestellte Anordnung und Verwendung zur Fügung thermoelektrischer Module | |
WO2024099822A1 (de) | Halbleiteranordnung mit einem schaltbaren halbleiterelement und verfahren zur herstellung derselben | |
WO2021018713A1 (de) | Verfahren zum thermischen sprühen von leiterbahnen und elektronikmodul |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14716310 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014716310 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14890136 Country of ref document: US |