WO2014178310A1 - 焼結体、同焼結体からなる磁気記録膜形成用スパッタリングターゲット - Google Patents
焼結体、同焼結体からなる磁気記録膜形成用スパッタリングターゲット Download PDFInfo
- Publication number
- WO2014178310A1 WO2014178310A1 PCT/JP2014/061357 JP2014061357W WO2014178310A1 WO 2014178310 A1 WO2014178310 A1 WO 2014178310A1 JP 2014061357 W JP2014061357 W JP 2014061357W WO 2014178310 A1 WO2014178310 A1 WO 2014178310A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sintered body
- oxide
- mol
- boron
- body according
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 57
- 238000005477 sputtering target Methods 0.000 title claims description 35
- 230000015572 biosynthetic process Effects 0.000 title abstract 2
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052796 boron Inorganic materials 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 20
- 239000000956 alloy Substances 0.000 claims abstract description 20
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 15
- 239000010941 cobalt Substances 0.000 claims abstract description 15
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000011651 chromium Substances 0.000 claims description 89
- 239000002245 particle Substances 0.000 claims description 57
- 229910052810 boron oxide Inorganic materials 0.000 claims description 53
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 53
- 229910052804 chromium Inorganic materials 0.000 claims description 28
- 238000005245 sintering Methods 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 24
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 16
- 150000002739 metals Chemical class 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 239000000470 constituent Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 5
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 abstract description 18
- 239000000203 mixture Substances 0.000 description 35
- 239000010408 film Substances 0.000 description 28
- 239000000696 magnetic material Substances 0.000 description 18
- 239000002994 raw material Substances 0.000 description 18
- 238000004544 sputter deposition Methods 0.000 description 18
- 239000011159 matrix material Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 238000002845 discoloration Methods 0.000 description 11
- 238000002844 melting Methods 0.000 description 11
- 229910052697 platinum Inorganic materials 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 230000005294 ferromagnetic effect Effects 0.000 description 7
- 229910010272 inorganic material Inorganic materials 0.000 description 7
- 239000011147 inorganic material Substances 0.000 description 7
- 239000011572 manganese Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000010955 niobium Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000011575 calcium Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
Definitions
- the present invention relates to a sintered body, which is useful for forming a magnetic thin film of a magnetic recording medium, particularly a magnetic recording film used for forming a magnetic recording layer of a hard disk adopting a perpendicular magnetic recording system
- the present invention relates to a sputtering target made of the sintered body.
- a target prepared from a sintered body containing boron oxide particles of boron oxide are coarsened during or after sintering, so that many particles are generated during sputtering.
- This invention relates to the sputtering target which consists of a sintered compact which can solve such a problem, and the sintered compact.
- a material based on Co, Fe, or Ni which is a ferromagnetic metal, is used as a magnetic thin film material for recording.
- a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording method.
- a composite material composed of a Co—Cr—Pt ferromagnetic alloy containing Co as a main component and a non-magnetic inorganic material is often used for a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years. ing.
- a magnetic thin film of a magnetic recording medium such as a hard disk is often produced by sputtering a ferromagnetic material sputtering target containing the above material as a component because of high productivity. Further, boron oxide is added to such a sputtering target for a magnetic recording film in order to magnetically separate the alloy phase.
- a melting method or a powder metallurgy method can be considered as a method for producing a ferromagnetic material sputtering target. Which method is used depends on the required characteristics, so it cannot be generally stated, but the sputtering target made of a ferromagnetic alloy and non-magnetic inorganic particles used for the recording layer of a perpendicular magnetic recording hard disk is Generally, it is produced by a powder metallurgy method. This is because inorganic particles such as boron oxide need to be uniformly dispersed in the alloy substrate, and thus it is difficult to produce by the melting method.
- Patent Document 1 states that “a magnetic recording medium having a magnetic data recording layer, wherein the magnetic data recording layer has a magnetic difference of at least 0.5 ⁇ 10 7 erg / cm 3 (0.5 / Jcm 3 ).
- a magnetic recording medium comprising: a first alloy having an isotropic constant; and an oxide compound comprising oxygen and one or more elements in which at least one element has a negative reduction potential. 1) is described.
- “at least one of the one or more elements in the oxide compound is lithium (Li), beryllium (Be), boron (B), sodium (Na), magnesium.
- Mg aluminum (Al), silicon (Si), potassium (K), calcium (Ca), scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), cadmium (Cd), indium (In), cesium (Cs), barium (Ba), lanthanum (La), cerium (Ce), praseodymium (Pr), neo (Nd), samarium (Sm), europium (Eu), terbium (Tb), gadolinium (
- Claim 1 of the following Patent Document 2 states that “a target used for forming a Co-based magnetic layer of a magnetic recording medium by a sputtering method, wherein the target contains 5 mol% or more of Cr or Cr alloy, and contains CoO.
- the oxide having a melting point of 800 ° C. or lower is at least one selected from boron oxide, vanadium oxide, tellurium oxide, molybdenum oxide, and low-melting glass.
- “Target described in item 1" is described. In this case as well, there is no description about the problem of the presence of boron oxide in the sintered body or the target made of the sintered body and the solution to the problem, as in the case of the above-mentioned document 1.
- Patent Document 3 listed below is a sintered sputtering target made of a ferromagnetic alloy having a Cr content of 20 mol% or less and the balance being Co and a non-metallic inorganic material, and the volume ratio occupied by the non-metallic inorganic material is 40 vol% or less.
- the sputtering target is characterized in that the non-metallic inorganic material contains at least cobalt oxide and boron oxide.
- Sputtering which forms and sinters the mixed powder obtained by pulverizing and mixing the metal powder and the non-metallic inorganic material powder containing at least cobalt oxide and boron oxide at a holding temperature of 800 ° C or less.
- Patent Document 4 describes “a sputtering target for a magnetic recording film containing SiO 2 and containing 10 to 1000 wtppm of B (boron)”. Yes. In this case, boron oxide is also included. However, as in the above-mentioned documents 1, 2, and 3, the problem of the presence of boron oxide in the sintered body or the target composed of the sintered body, and the solution of the problem There is no mention of any method.
- a composite material composed of a ferromagnetic alloy and a nonmagnetic material is often used, and boron oxide is added as a nonmagnetic material.
- boron oxide particles become large after sintering. Therefore, if the sintering temperature is lowered in order to suppress grain growth, the density cannot be increased and many particles are generated. It was.
- boron oxide raw materials are highly hygroscopic and easily solidify, making it difficult to obtain fine boron oxide.
- the sintered body in which the boron oxide remains when wet-processed by machining or stored in a place with high humidity, it reacts with moisture to generate boric acid, which is baked. It precipitates on the surface of the bonded body (target) and causes stains and dirt, which also causes generation of particles during sputtering, and moisture is taken into the film and causes defects. It was. In order to ensure good quality of a sintered body for forming a magnetic recording film to which boron oxide is added, particularly a sputtering target, it is necessary to solve such a problem.
- the present invention 1) A sintered body comprising at least one metal selected from the group consisting of cobalt and one or more metals or alloys selected from boron and / or platinum group elements, and an oxide, wherein the phase comprising the oxide is Cr
- a sintered body characterized in that at least one of (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is present.
- the present invention also provides: 2) A sintered body comprising at least cobalt as a metal, chromium, one or more metals or alloys selected from boron and / or platinum group elements, and an oxide, the phase comprising the oxide And a sintered body characterized in that at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is present.
- the present invention also provides: 3) The sintered body according to any one of 1) or 2) above, wherein the sintered body has no discoloration when contacted or immersed in water. .
- the present invention also provides: 4) The sintered body according to any one of 2) or 3) above, wherein the atomic ratio of chromium to boron is Cr / B ⁇ 1.
- the present invention also provides: 5) The sintered body according to any one of 1) to 4) above, wherein the atomic ratio of boron to oxygen is B / O ⁇ 0.5.
- the present invention also provides: 6) The ratio of the metal component is such that the chromium content is 0 to 50 mol%, the boron and / or platinum group element content is 0 (excluding 0) to 40 mol%, and the balance is cobalt.
- the sintered body according to any one of 1) to 5) above is provided.
- the present invention also provides: 7) The sintered body according to any one of 1) to 6) above, wherein the boron oxide content is 0.5 to 10 mol% in terms of B 2 O 3 .
- the present invention also provides: 8) The sintered body according to any one of 1) to 7) above, wherein the total content of chromium oxide is 0.5 to 10 mol% in terms of Cr 2 O 3 .
- the present invention also provides: 9) Further, Al, Co, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, Nb, Ni, Sb, Si, Sn, Ta, Te, Ti, V, W, Y, Zn or Zr
- a sintered body is any one of 1) to 8) above, wherein an oxide containing at least one element selected from the group consisting of 2 to 8 wt% in terms of oxygen is contained.
- the present invention also provides: 10) The sintered body according to any one of 1) to 9) above, wherein the average area per one particle of the oxide in the sintered body is 2 ⁇ m 2 or less.
- the present invention also provides: 11) The sintered body according to any one of 1) to 10) described above further includes 0.5 mol% or more of at least one element selected from Ti, V, Mn, Zr, Nb, Mo, Ta, and W. A sintered body containing 10 mol% or less is provided.
- the present invention also provides: 12) The sintered body according to any one of 1) to 11) above, further comprising at least one selected from carbon, nitride, and carbide.
- the present invention also provides: 13) The sintered body according to any one of 1) to 12) above, wherein the relative density is 95% or more.
- the present invention also provides: 14) Provided is a sputtering target for forming a magnetic recording film comprising the sintered body according to any one of 1) to 13) above.
- the present invention also provides: 15) At least one of one or more metals or alloys selected from boron and / or platinum group elements, and at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 , including at least cobalt as a metal.
- a method for producing a sintered body characterized by mixing and sintering seeds or more oxides.
- the present invention also provides: 16) At least cobalt as a metal, one or more metals or alloys selected from chromium, boron and / or platinum group elements, Cr (BO 3 ), Co 2 B 2 O 5 , Co 3 B 2 O 6 There is provided a method for producing a sintered body comprising mixing and sintering at least one kind of oxide.
- the present invention also provides: 17) Boron oxide and chromium oxide and / or cobalt oxide are prepared, and this is fired in the atmosphere, and at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6
- the present invention also provides: 18) The sintered body according to any one of 1) to 13) above is manufactured by the method for manufacturing a sintered body according to any one of 15) to 17) above. A method for producing a sintered body is provided.
- the sintered body to which boron oxide is added has a problem that particles of boron oxide become large after sintering, and many particles are generated when used as a sputtering target for forming a magnetic recording film. .
- the cause is that boron oxide raw material is highly hygroscopic and solidifies easily, so it is difficult to obtain fine boron oxide.
- boron oxide has a low melting point, it easily liquefies during sintering, It grows into large particles.
- At least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is included in the phase of the oxide in the sintered body of the present invention, in particular, the sputtering target for a magnetic recording film.
- Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 can maintain a fine structure, increase the melting point of boron oxide, and suppress reaction with water. It has the characteristics that can be. As a result, it has become possible to solve the above-mentioned problems caused by boron oxide in the sintered body.
- the sintered body of the present invention particularly a sputtering target for a magnetic recording film, includes cobalt as a metal, one or more metals or alloys selected from chromium and platinum group elements, and an oxide containing boron oxide and chromium oxide. It is a sintered body, particularly a sputtering target for a magnetic recording film. In addition to this (other than the above component composition), other metal materials and inorganic materials described later can be further added.
- the “one or more metals or alloys selected from chromium and platinum group elements” may be chromium metal alone, one or more metals selected from platinum group elements, or these It means that an alloy may be used.
- the sintered body of the present invention is mainly used as a sputtering target. In that sense, the following will be described mainly with respect to the sputtering target of the main application, but this sintered body is not prevented from being used as another coating (coating) method. For example, it can be used for physical and chemical vapor deposition such as ion beam vapor deposition.
- the sintered body of the present invention includes these.
- the present invention requires that at least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is present in the phase comprising the oxide, and this is a requirement of the present application.
- This is one of the major features of the invention.
- boron oxide exists in the form of the compound as described above, it has characteristics and effects that can maintain a fine structure, increase the melting point of boron oxide, and suppress reaction with water. Can do.
- the atomic ratio of chromium and boron is preferably Cr / B ⁇ 1. This is confirmed by an experiment, and when it is out of this range, it easily reacts with water. Although other ranges can be used, this atomic ratio can be said to be a more preferable range.
- the atomic ratio of boron and oxygen is B / O ⁇ 0.5. This is confirmed by an experiment, and when it is out of this range, it easily reacts with water. Although other ranges can be used, this atomic ratio can be said to be a more preferable range.
- the sintered body of the present invention can be applied to a general magnetic material target.
- the chromium content is 0 to 50 mol%.
- the content of boron and / or platinum group elements is 0 (excluding 0) to 40 mol%, and the balance is cobalt.
- it may be a chromium metal alone, one or more metals selected from boron and / or platinum group elements, or an alloy thereof.
- inclusion of boron oxide in the above form is an important point of the invention, it can be said that it is not necessary to be limited to the above composition range, but as a basic composition of a suitable magnetic material, The above can be mentioned.
- the boron oxide content (also referred to as the addition amount) can be applied to 0.5 to 10 mol% in terms of B 2 O 3 .
- boron contained as a component exists as a compound of at least Cr (BO 3 ), Co 2 B 2 O 5 , or Co 3 B 2 O 6 .
- the total content of chromium oxide is preferably 0.5 to 10 mol% in terms of Cr 2 O 3 . This also shows a preferable range as a sputtering target for a magnetic recording film.
- An oxide containing one or more elements selected from Y, Zn, and Zr is included, and the total oxide amount is 2 to 8 wt% in terms of oxygen.
- These also show a suitable range as a sintered body, particularly as a sputtering target for a magnetic recording film.
- the addition of these oxides is not particularly shown in the examples, it is a suitable material generally added to the magnetic recording film, and can be similarly applied to the present invention.
- the average area per one particle of the oxide phase is desirably 2 ⁇ m 2 or less.
- an oxide phase can be observed, and it is desirable that the oxide phase is finely dispersed. This is because if there is a coarse oxide phase, arcing or particles are easily generated during sputtering.
- said area shows the suitable range as a sputtering target for magnetic recording films, and use of what exceeds these ranges is not prevented by the relation with the purpose of use or other materials.
- the sintered body of the present invention described above, particularly the sputtering target for a magnetic recording film, is additionally selected from Ti, V, Mn, Zr, Nb, Mo, Ta, and W as a single additive element. More than element and 0.5 mol% or more and 10 mol% or less can be contained. These additive elements are added as necessary in order to improve the characteristics as a magnetic recording medium. These additive elements are not particularly shown in the examples, but are suitable materials generally added to the magnetic recording film, and can be similarly applied to the present invention.
- an inorganic material having one or more components selected from carbon, nitride, and carbide can be contained as an additive material. These are elements that are added as necessary in order to improve the characteristics as a magnetic recording medium.
- the sintered body of the present invention having the above component composition, particularly a sputtering target for a magnetic recording film, a relative density of 95% or more, 98% or more, and 99% or more can be achieved.
- the density of the sintered body can be adjusted by the sintering temperature and the pressure of the hot press or HIP. However, if the temperature is too high, the oxide phase grows and coarsens, so the sintering temperature is lowered as much as possible to increase the pressure. It is desirable to do.
- the sintering temperature is desirably 1100 ° C. or lower and the pressure is preferably 250 kgf / cm 2 or higher. Molding / sintering is not limited to hot pressing, and plasma discharge sintering and hot isostatic pressing can also be used.
- the relative density is a value obtained by dividing the actually measured density of the target by the calculated density (also called the theoretical density).
- the calculation density is a density when it is assumed that the constituent components of the target are mixed without diffusing or reacting with each other, and is calculated by the following equation.
- Calculated density Sigma ⁇ (Molecular weight of constituent component x Molar ratio of constituent component) / ⁇ (Molecular weight of constituent component x Molar ratio of constituent component / Document value density of constituent component)
- ⁇ means taking the sum for all the constituent components of the target.
- the sintered body of the component composition range specified in the present invention particularly the sputtering target for magnetic recording film, It has the same effect as.
- the sintering raw material at least one metal containing cobalt as a metal and selected from chromium and platinum group elements, and further necessary raw material powders of oxides in the ratios shown in Table 1.
- a graphite die having a diameter of 50 ⁇ and subjected to hot press sintering at a sintering temperature of 900 to 1100 ° C. in vacuum.
- a sintering temperature of 900 to 1100 ° C. in vacuum.
- it was immersed in pure water for 1 hour at room temperature and then dried to observe the surface.
- the production method and test method were the same as those in this example.
- Each component composition of the magnetic material used as the matrix in Example 1 was Co: 69 mol%, Cr: 5 mol%, and Pt: 20 mol%.
- the oxides were Cr (BO 3 ): 2 mol%, Cr 2 O 3 : 2 mol%, and SiO 2 : 2 mol%.
- the ratio of Cr / B is 5.5.
- the B / O ratio was 0.1.
- the results are shown in Table 1.
- the average area per one particle of the oxide phase in the target was 1.5 ⁇ m 2 .
- grains of an oxide phase is calculated
- sputtering was performed by producing a target from a 180 ⁇ size sintered body produced with the same raw materials and production conditions, the number of particles generated in a steady state was 2, and thus a high-density target was obtained. The number of particles generated was small.
- Example 2 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- Each component composition of the magnetic material used as the matrix of Example 2 was set to Co: 60 mol%, Cr: 5 mol%, Pt: 20 mol%, Ru: 5 mol%.
- the oxide was Cr (BO 3 ): 10 mol%.
- the ratio of Cr / B is 1.5.
- the B / O ratio was 0.3.
- the results are also shown in Table 1.
- the average area per one particle of the oxide phase in the target was 1.9 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water had no discoloration.
- the relative density of this sintered compact was 95.8%.
- Example 3 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- Each component composition of the magnetic material used as the matrix of Example 3 was Co: 77.8 mol%, Cr: 5.3 mol%, and Pt: 10.5 mol%.
- the oxides were Cr (BO 3 ): 4.2 mol%, Co 2 B 2 O 5 : 1.1, and Co 3 B 2 O 6 : 1.1.
- the ratio of Cr / B is 1.7.
- the B / O ratio was 0.3.
- the results are also shown in Table 1.
- the average area per particle of the oxide phase in the target was 1.1 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water had no discoloration.
- the relative density of this sintered body was 96.1%.
- Example 4 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- Each component composition of the magnetic material used as the matrix of Example 4 was set to Co: 75.2 mol% and Pt: 21.5 mol%.
- the oxides were Co 2 B 2 O 5 : 2.2 and Co 3 B 2 O 6 : 1.1.
- the ratio of Cr / B is 0.0.
- the B / O ratio was 0.4. These satisfied the conditions of the present invention.
- the results are also shown in Table 1.
- the average area per one particle of the oxide phase in the target was 2.0 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water had no discoloration.
- the relative density of this sintered body was 97.1%.
- Example 5 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- the composition of each component of the magnetic material serving as the matrix of Example 5 was Co: 71.4 mol% and Pt: 20.4 mol%.
- the oxides were Cr (BO 3 ): 4.1 mol%, Co 2 B 2 O 5 : 1, TiO 2 : 3.1 mol%.
- the ratio of Cr / B is 0.7.
- the B / O ratio was 0.3. Except for the Cr / B ratio, the conditions of the present invention were satisfied.
- the results are also shown in Table 1.
- the average area per particle of the oxide phase in the target was 1.2 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water had no discoloration.
- the relative density of this sintered body was 97.5%.
- Example 6 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- the composition of each component of the magnetic material serving as the matrix of Example 6 was Co: 55 mol%, Cr: 30 mol%, and Ru: 5 mol%. Meanwhile, oxides, Cr (BO 3): 2mol %, TiO 2: was a 8 mol%.
- the ratio of Cr / B is 16. The B / O ratio was 0.09. All satisfied the conditions of the present invention.
- the results are also shown in Table 1.
- the average area per one particle of the oxide phase in the target was 1.9 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water had no discoloration.
- the relative density of this sintered body was 99.5%.
- Example 7 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- Each component composition of the magnetic material used as the matrix of Example 7 was set to Co: 55 mol%, Cr: 30 mol%, and B: 5 mol%. Meanwhile, oxides, CoO: 6mol%, TiO 2 : was 4 mol%.
- the ratio of Cr / B is 6.
- the B / O ratio was 0.36. All satisfied the conditions of the present invention. After sintering, it was confirmed that a part of Cr (BO 3 ) was produced by XRD measurement of the sample.
- the XRD measurement conditions were using Rigaku's Ultimate IV, using CuK ⁇ rays, tube voltage 40 kv, tube current 30 mA, scan speed 1 ° / min, step 0.01 °, and scan angle range (2 ⁇ ) of 24 to 35. °.
- the intensity of the first peak was 120 cps
- the intensity of the second peak was 70 cps (the background intensity was approximately 50 cps).
- strength values are fluctuate
- the results are also shown in Table 1.
- the average area per one particle of the oxide phase in the target was 1.9 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water had no discoloration.
- the relative density of this sintered body was 99%.
- Example 8 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- Each component composition of the magnetic material used as the matrix of Example 8 was Co: 60 mol%, Cr: 5 mol%, and Pt: 24 mol%.
- the oxides were Cr (BO 3 ): 4 mol%, SiO 2 : 4 mol%, and CoO: 3 mol%.
- the ratio of Cr / B is 2.25.
- the B / O ratio was 0.17. All satisfied the conditions of the present invention.
- the results are also shown in Table 1.
- the average area per particle of the oxide phase in the target was 1.1 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water had no discoloration.
- the relative density of this sintered body was 99.2%.
- Example 9 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- Each component composition of the magnetic material used as the matrix of Example 9 was Co: 73 mol%, Cr: 2 mol%, and Pt: 17 mol%.
- the ratio of Cr / B is 2.
- the B / O ratio was 0.07. All satisfied the conditions of the present invention.
- the results are also shown in Table 1.
- the average area per one particle of the oxide phase in the target was 1.5 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water had no discoloration.
- the relative density of this sintered body was 98%.
- Example 10 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- Each component composition of the magnetic material used as the matrix of Example 10 was Co: 65 mol%, Cr: 4 mol%, and Pt: 25 mol%.
- the ratio of Cr / B is 1.
- the B / O ratio was 0.27. All satisfied the conditions of the present invention.
- the results are also shown in Table 1.
- the average area per one particle of the oxide phase in the target was 1.6 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water had no discoloration.
- the relative density of this sintered body was 98.8%.
- Example 1 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- Each component composition of the magnetic material used as the matrix of Comparative Example 1 was Co: 63 mol%, Cr: 5 mol%, Pt: 20 mol%, Ru: 5 mol%.
- the oxide, B 2 O 3: 5mol% , SiO 2: was a 2 mol%.
- the ratio of Cr / B is 0.5.
- in the sintered body at a B / O ratio of 0.5, Cr (BO 3) Co 2 B 2 O 5, compounds of Co 3 B 2 O 6 was not confirmed. These did not satisfy the conditions of the present invention.
- the results are also shown in Table 1.
- the average area per particle of the oxide phase in the target was 4.3 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water was discolored.
- the relative density of this sintered body was 96%.
- Example 2 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1. However, compound powders of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 are not prepared in advance.
- Each component composition of the magnetic material used as the matrix of Comparative Example 2 was Co: 68 mol%, Cr: 5 mol%, and Pt: 20 mol%.
- the oxide, B 2 O 3: 5mol% , Cr 2 O 3: was a 2 mol%.
- the ratio of Cr / B is 0.9.
- the B / O ratio was 0.5.
- the Cr / B ratio did not satisfy the conditions of the present invention.
- the results are also shown in Table 1.
- the average area per particle of the oxide phase in the target was 1.8 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water was discolored.
- the relative density of this sintered body was 93%.
- Example 3 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- the composition of each component of the magnetic material serving as the matrix of Comparative Example 3 was Co: 73 mol% and Pt: 20 mol%.
- the oxide, B 2 O 3: 6mol% , Co 3 B 2 O 6: was 1 mol%.
- the ratio of Cr / B is zero.
- the B / O ratio was 0.6. These did not satisfy the conditions of the present invention.
- the results are also shown in Table 1.
- the average area per particle of the oxide phase in the target was 5.1 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water was discolored.
- the relative density of this sintered compact was 96.3%.
- Example 4 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- Each component composition of the magnetic material used as the matrix of Comparative Example 4 was Co: 66 mol%, Cr: 9 mol%, and B: 10 mol%. Meanwhile, oxides, CoO: 7mol%, TiO 2 : was a 8 mol%.
- the ratio of Cr / B is 0.9.
- the B / O ratio was 0.43.
- the conditions of the present invention were not satisfied. Further, in the XRD measurement of the sample after sintering, generation of Cr (BO 3) was not confirmed.
- the results are also shown in Table 1.
- the average area per one particle of the oxide phase in the target was 3.8 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water was discolored. This was thought to be because the ratio of Cr / B was small and the amount of B was large relative to the amount of Cr, so that a large amount of boron oxide was generated and the oxide particles were coarsened.
- the relative density of this sintered body was 99.0%.
- Example 5 A sintered body was produced under the same conditions as in Example 1 except that each component composition was adjusted to Table 1.
- Each component composition of the magnetic material used as the matrix of Comparative Example 5 was Co: 50 mol%, Cr: 30 mol%, and Ru: 10 mol%.
- the oxide, B 2 O 3: 7mol% , SiO 2: was a 3 mol%.
- the ratio of Cr / B is 2.1.
- the B / O ratio was 0.52.
- the conditions of the present invention were not satisfied. Further, in the XRD measurement of the sample after sintering, generation of Cr (BO 3) was not confirmed.
- the results are also shown in Table 1.
- the average area per one particle of the oxide phase in the target was 8.2 ⁇ m 2 .
- the appearance of the surface of the sintered body after being immersed in water was discolored. This is considered due to the coarsening of the oxide particles due to the presence of boron oxide.
- the relative density of this sintered body was 99.2%.
- At least one of Cr (BO 3 ), Co 2 B 2 O 5 , and Co 3 B 2 O 6 is included in the phase of the oxide in the sintered body of the present invention, particularly the sputtering target for a magnetic recording film. This is what exists.
- boric acid is generated by reacting with moisture and deposited on the target surface and the like. Although it was a cause of stains and dirt, this problem could be solved as well. Since particle generation can be suppressed, the magnetic recording film defect rate is reduced and the cost is reduced. This greatly contributes to the improvement of magnetic thin film quality and production efficiency. It is useful as a ferromagnetic sputtering target used for forming a magnetic thin film of a recording medium, particularly a hard disk drive recording layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Magnetic Record Carriers (AREA)
Abstract
Description
従来、酸化ホウ素を含有する焼結体から作製したターゲットを使用してスパッタリングした場合に、焼結時又はその後に酸化ホウ素の粒子が粗大化するために、スパッタリング時にパーティクルの発生が多く発生するという問題があった。
本願発明は、このような問題を解決できる焼結体及び同焼結体からなるスパッタリングターゲットに関する。
また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Cr-Pt系の強磁性合金と非磁性の無機物からなる複合材料が多く用いられている。
下記特許文献1には、「磁気データ記録層を有する磁気記録媒体であって、前記磁気データ記録層が、少なくとも0.5×107erg/cm3(0.5/Jcm3)の磁気異方性定数を有する第1の合金と、酸素と少なくとも1つの元素が負の還元電位を持つ1つ以上の元素とからなる酸化化合物と、を含むことを特徴とする磁気記録媒体」(請求項1)が記載されている。
上記に記載されている多量の酸化物の中には酸化ホウ素の記載もあるが、ターゲット中の酸化ホウ素の存在の問題点、その問題の解決方法については、一切記載がない。
この場合も、上記文献1と同様に、焼結体又は焼結体からなるターゲット中の酸化ホウ素の存在の問題点、その問題の解決方法については、一切記載がない。
この場合も、上記文献1、2と同様に、「ホウ素酸化物」を含有させることが記載されているが、ターゲット中の酸化ホウ素の存在の問題点、その問題の解決方法については、一切記載がない。
1)少なくとも金属としてコバルトを含み、ホウ素及び/又は白金族元素から選択した1種以上の金属若しくは合金と、酸化物から構成される焼結体であって、前記酸化物からなる相に、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上が存在することを特徴とする焼結体、を提供する。
2)少なくとも金属としてコバルトを含み、クロムと、ホウ素及び/又は白金族元素から選択した1種以上の金属又は合金と、酸化物から構成される焼結体であって、前記酸化物からなる相に、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上が存在することを特徴とする焼結体、を提供する。
3)焼結体が水に接触又は浸漬した際に、焼結体の表面に変色が無いことを特徴とする上記1)又は2)のいずれか一項に記載の焼結体、を提供する。
また、本発明は、
4)クロムとホウ素の原子比がCr/B≧1であることを特徴とする上記2)又は3)のいずれか一項に記載の焼結体、を提供する。
5)ホウ素と酸素の原子比がB/O≦0.5であることを特徴とする上記1)~4)のいずれか一項に記載の焼結体、を提供する。
また、本発明は、
6)金属成分の比率において、クロムの含有量が0~50mol%、ホウ素及び/又は白金族元素の含有量が0(但し、0を除く)~40mol%、残部がコバルトであることを特徴とする上記1)~5)のいずれか一項に記載の焼結体、を提供する。
7)酸化ホウ素の含有量がB2O3換算で0.5~10mol%であることを特徴とする上記1)~6)のいずれか一項に記載の焼結体、を提供する。
また、本発明は、
8)酸化クロムの合計含有量がCr2O3換算で0.5~10mol%であることを特徴とする上記1)~7)いずれか一項に記載の焼結体、を提供する。
9)さらにAl、Co、Cu、Fe、Ga、Ge、Hf、Li、Mg、Mn、Mo、Nb、Ni、Sb、Si、Sn、Ta、Te、Ti、V、W、Y、Zn又はZrから選択した一種以上の元素を構成成分とする酸化物が含まれ、全酸化物量が酸素換算で2~8wt%であることを特徴とする上記1)~8)のいずれか一項に記載の焼結体、を提供する。
10)焼結体中の酸化物の1粒子当たりの平均面積が2μm2以下であることを特徴とする上記1)~9)のいずれか一項に記載の焼結体、を提供する。
また、本発明は、
11)前記上記1)~10)のいずれか一項に記載の焼結体が、さらにTi、V、Mn、Zr、Nb、Mo、Ta、Wから選択した1元素以上を0.5mol%以上10mol%以下含有することを特徴とする焼結体、を提供する。
12)さらに炭素、窒化物、炭化物から選択した1種以上を含有することを特徴とする上記1)~11)のいずれか一項に記載の焼結体、を提供する。
また、本発明は、
13)相対密度が95%以上であることを特徴とする上記1)~12)のいずれか一項に記載の焼結体、を提供する。
14)上記1)~13)のいずれか一項に記載の焼結体からなる磁気記録膜形成用スパッタリングターゲット、を提供する。
15)少なくとも金属としてコバルトを含み、ホウ素及び/又は白金族元素から選択した1種以上の金属若しくは合金と、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上の酸化物を混合して焼結することを特徴とする焼結体の製造方法、を提供する。
16)少なくとも金属としてコバルトを含み、クロムと、ホウ素及び/又は白金族元素から選択した1種以上の金属又は合金と、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上の酸化物を混合して焼結することを特徴とする焼結体の製造方法、を提供する。
17)酸化ホウ素と、酸化クロム及び/又は酸化コバルトを準備し、これを大気中で焼成して、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上の酸化物を製造することを特徴とする上記15)又は16)のいずれか一項に記載の焼結体の製造方法、を提供する。
また、本発明は、
18)上記15)~17)のいずれか一項に記載の焼結体の製造方法により、上記1)~上記13)のいずれか一項に記載の焼結体を製造することを特徴とする焼結体の製造方法、を提供する。
これらのCr(BO3)、Co2B2O5、Co3B2O6の化合物は、微細な組織を維持し、かつ酸化ホウ素の融点を上げることができ、水と反応を抑制することができる特性を持つものである。これによって、焼結体中の酸化ホウ素に起因する上記の問題を解決することが可能となった。
なお、上記「クロムと白金族元素から選択した1種以上の金属又は合金」とは、クロム金属単体でも良いし、白金族元素から選択した1種又は2種以上の金属でも良く、又はこれらの合金でも良いことを意味する。
本願発明は、酸化ホウ素を上記の形態で含有させることが、発明の重点(要)であるので、上記の組成範囲に限定される必要はないと言えるが、好適な磁性材の基本組成としては、上記を挙げることができる。
酸化クロムの合計含有量はCr2O3換算で0.5~10mol%であることが望ましい。これも磁気記録膜用スパッタリングターゲットとしての好適な範囲を示すものである。
これらの酸化物の添加については、特に実施例には示さないが、磁気記録膜には一般的に添加される好適な材料であり、本願発明においても同様に適用できる。
粗大化した酸化物相があると、スパッタリング時のアーキング又はパーティクルの発生を伴い易くなるからである。なお、上記の面積は磁気記録膜用スパッタリングターゲットとしての好適な範囲を示すものであり、使用目的や他の材料との関連によって、これらの範囲を超えるものの使用を妨げるものではない。
これらの添加元素については、特に実施例には示さないが、磁気記録膜には一般的に添加される好適な材料であり、本願発明においても同様に適用できる。
式:計算密度=シグマΣ(構成成分の分子量×構成成分のモル比)/Σ(構成成分の分子量×構成成分のモル比/構成成分の文献値密度)
ここでΣは、ターゲットの構成成分の全てについて、和をとることを意味する。
酸化ホウ素と酸化クロム又は酸化コバルトを準備し、B2O3:Cr2O3=1:1、B2O3:CoO=1:2、B2O3:CoO=1:3となるようにそれぞれ秤量し、ボールミルにて混合した後、これを700~1200℃の範囲で5時間以上、大気中で焼成し、これによりCr(BO3)、Co2B2O5、Co3B2O6から選択した1種又は2種以上の化合物を製造した。なお、調合比率を変えて、複数の化合物及び単純酸化物が共存するように原料調整することも可能である。
そして機械加工により、円盤形状にした後、室温で純水に1時間浸漬し、その後乾燥して表面を観察した。なお、下記の実施例、比較例も製造法及び試験方法についても、本実施例と同様の条件とした。
それより酸化物相の全面積と個数を求め、1粒子当たりの平均面積(酸化物相の全面積÷個数)を算出した。以下の実施例、比較例も同様にして算出した。前記算出に際しては、ソフトウエア(KEYENCE社製形状解析アプリケーションVK-H1A1)を使用し、レーザー顕微鏡画像から求めた。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
実施例2のマトリックスとなる磁性材料の各成分組成は、Co:60mol%、Cr:5mol%、Pt:20mol%、Ru:5mol%とした。
一方、酸化物はCr(BO3):10mol%とした。Cr/Bの比は1.5である。またB/Oの比は0.3であった。これらは、本願発明の条件を満たしていた。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
実施例3のマトリックスとなる磁性材料の各成分組成は、Co:77.8mol%、Cr:5.3mol%、Pt:10.5mol%とした。
一方、酸化物はCr(BO3):4.2mol%、Co2B2O5:1.1、Co3B2O6:1.1とした。Cr/Bの比は1.7である。またB/Oの比は0.3であった。これらは、本願発明の条件を満たしていた。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
実施例4のマトリックスとなる磁性材料の各成分組成は、Co:75.2mol%、Pt:21.5mol%とした。
一方、酸化物はCo2B2O5:2.2、Co3B2O6:1.1とした。Cr/Bの比は0.0である。またB/Oの比は0.4であった。これらは、本願発明の条件を満たしていた。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
実施例5のマトリックスとなる磁性材料の各成分組成は、Co:71.4mol%、Pt:20.4mol%とした。
一方、酸化物は、Cr(BO3):4.1mol%、Co2B2O5:1、TiO2:3.1mol%とした。Cr/Bの比は0.7である。またB/Oの比は0.3であった。Cr/B比以外は、本願発明の条件を満たしていた。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
実施例6のマトリックスとなる磁性材料の各成分組成は、Co:55mol%、Cr:30mol%、Ru:5mol%とした。
一方、酸化物は、Cr(BO3):2mol%、TiO2:8mol%とした。Cr/Bの比は16である。またB/Oの比は0.09であった。いずれも、本願発明の条件を満たしていた。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
実施例7のマトリックスとなる磁性材料の各成分組成は、Co:55mol%、Cr:30mol%、B:5mol%とした。
一方、酸化物は、CoO:6mol%、TiO2:4mol%とした。Cr/Bの比は6である。またB/Oの比は0.36であった。いずれも、本願発明の条件を満たしていた。
焼結後、サンプルのXRD測定でCr(BO3)が一部生成していることが確認できた。XRD測定条件は、リガク社製のUltimaIVを用い、CuKα線を使用し、管電圧40kv、管電流30mA、スキャンスピード1°/min、ステップ0.01°、走査角度範囲(2θ)は24~35°である。33.79°付近に現れるCr(BO3)の第一ピーク又は25.68°付近に現れる第二ピークのうち、他の生成物のピークと重ならないピークにより確認できる。
本実施例では、第一ピークの強度が120cps、第二ピークの強度が70cpsであった(バックグランド強度は、およそ50cpsである)。なお、これらの強度値は、測定条件や試料調整により変動するので、上記の数値はあくまで一例であり、これらの数値に限定されるものではない。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
実施例8のマトリックスとなる磁性材料の各成分組成は、Co:60mol%、Cr:5mol%、Pt:24mol%とした。
一方、酸化物は、Cr(BO3):4mol%、SiO2:4mol%、CoO:3mol%とした。Cr/Bの比は2.25である。またB/Oの比は0.17であった。いずれも、本願発明の条件を満たしていた。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
実施例9のマトリックスとなる磁性材料の各成分組成は、Co:73mol%、Cr:2mol%、Pt:17mol%とした。
一方、酸化物は、Cr(BO3):2mol%、Ta2O5:2mol%、WO3:4mol%とした。Cr/Bの比は2である。またB/Oの比は0.07であった。いずれも、本願発明の条件を満たしていた。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
実施例10のマトリックスとなる磁性材料の各成分組成は、Co:65mol%、Cr:4mol%、Pt:25mol%とした。
一方、酸化物は、Cr(BO3):2mol%、B2O3:2mol%、Nb2O5:2mol%とした。Cr/Bの比は1である。またB/Oの比は0.27であった。いずれも、本願発明の条件を満たしていた。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
比較例1のマトリックスとなる磁性材料の各成分組成は、Co:63mol%、Cr:5mol%、Pt:20mol%、Ru:5mol%とした。
一方、酸化物は、B2O3:5mol%、SiO2:2mol%とした。Cr/Bの比は0.5である。また、B/Oの比は0.5で焼結体中には、Cr(BO3)、Co2B2O5、Co3B2O6の化合物は確認できなかった。これらは、本願発明の条件を満たしていなかった。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。但し、事前にCr(BO3)、Co2B2O5、Co3B2O6の化合物粉は作製していない。
比較例2のマトリックスとなる磁性材料の各成分組成は、Co:68mol%、Cr:5mol%、Pt:20mol%とした。一方、酸化物は、B2O3:5mol%、Cr2O3:2mol%とした。Cr/Bの比は0.9である。またB/Oの比は0.5であった。Cr/B比は、本願発明の条件を満たしていなかった。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
比較例3のマトリックスとなる磁性材料の各成分組成は、Co:73mol%、Pt:20mol%とした。一方、酸化物は、B2O3:6mol%、Co3B2O6:1mol%とした。Cr/Bの比は0である。またB/Oの比は0.6であった。これらは、本願発明の条件を満たしていなかった。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
比較例4のマトリックスとなる磁性材料の各成分組成は、Co:66mol%、Cr:9mol%とし、B:10mol%とした。一方、酸化物は、CoO:7mol%、TiO2:8mol%とした。Cr/Bの比は0.9である。またB/Oの比は0.43であった。本願発明の条件を満たしていなかった。また、焼結後のサンプルのXRD測定では、Cr(BO3)の生成が確認できなかった。
各成分組成を表1に調整した以外は、実施例1と同様の条件で焼結体を作製した。
比較例5のマトリックスとなる磁性材料の各成分組成は、Co:50mol%、Cr:30mol%とし、Ru:10mol%とした。一方、酸化物は、B2O3:7mol%、SiO2:3mol%とした。Cr/Bの比は2.1である。またB/Oの比は0.52であった。本願発明の条件を満たしていなかった。また、焼結後のサンプルのXRD測定では、Cr(BO3)の生成が確認できなかった。
その原因は、酸化ホウ素原料は吸湿性が高く容易に凝固してしまうため、細かい酸化ホウ素が得難いということ、さらに酸化ホウ素は融点が低いため焼結中に容易に液状化してしまい、焼結中に大きな粒子に成長してしまうことであった。
この点に鑑み、本願発明の焼結体、特に磁気記録膜用スパッタリングターゲットにおいて酸化物からなる相に、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上が存在するようにしたものである。
パーティクル発生を抑制することができるので、磁気記録膜の不良率が減少し、コスト低減化になるという大きな効果を有し、磁性薄膜の品質及び生産効率の向上に大きく貢献するものであり、磁気記録媒体の磁性体薄膜、特にハードディスクドライブ記録層の成膜に使用される強磁性材スパッタリングターゲットとして有用である。
Claims (18)
- 少なくとも金属としてコバルトを含み、ホウ素及び/又は白金族元素から選択した1種以上の金属若しくは合金と、酸化物から構成される焼結体であって、前記酸化物からなる相に、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上が存在することを特徴とする焼結体。
- 少なくとも金属としてコバルトを含み、クロムと、ホウ素及び/又は白金族元素から選択した1種以上の金属又は合金と、酸化物から構成される焼結体であって、前記酸化物からなる相に、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上が存在することを特徴とする焼結体。
- 焼結体が水に接触又は浸漬した際に、焼結体の表面に変色が無いことを特徴とする請求項1又は2のいずれか一項に記載の焼結体。
- クロムとホウ素の原子比がCr/B≧1であることを特徴とする請求項2又は3のいずれか一項に記載の焼結体。
- ホウ素と酸素の原子比がB/O≦0.5であることを特徴とする請求項1~4のいずれか一項に記載の焼結体。
- 金属成分の比率において、クロムの含有量が0~50mol%、ホウ素及び/又は白金族元素の含有量が0(但し、0を除く)~40mol%、残部がコバルトであることを特徴とする請求項1~5のいずれか一項に記載の焼結体。
- 酸化ホウ素の含有量がB2O3換算で0.5~10mol%であることを特徴とする請求項1~6のいずれか一項に記載の焼結体。
- 酸化クロムの合計含有量がCr2O3換算で0.5~10mol%であることを特徴とする請求項1~7いずれか一項に記載の焼結体。
- さらにAl、Co、Cu、Fe、Ga、Ge、Hf、Li、Mg、Mn、Mo、Nb、Ni、Sb、Si、Sn、Ta、Te、Ti、V、W、Y、Zn又はZrから選択した一種以上の元素を構成成分とする酸化物が含まれ、全酸化物量が酸素換算で2~8wt%であることを特徴とする請求項1~8のいずれか一項に記載の焼結体。
- 焼結体中の酸化物の1粒子当たりの平均面積が2μm2以下であることを特徴とする請求項1~9のいずれか一項に記載の焼結体。
- 前記請求項1~10のいずれか一項に記載の焼結体が、さらにTi、V、Mn、Zr、Nb、Mo、Ta、Wから選択した1元素以上を0.5mol%以上10mol%以下含有することを特徴とする焼結体。
- さらに炭素、窒化物、炭化物から選択した1種以上を含有することを特徴とする請求項1~11のいずれか一項に記載の焼結体。
- 相対密度が95%以上であることを特徴とする請求項1~12のいずれか一項に記載の焼結体。
- 上記請求項1~13のいずれか一項に記載の焼結体からなる磁気記録膜形成用スパッタリングターゲット。
- 少なくとも金属としてコバルトを含み、ホウ素及び/又は白金族元素から選択した1種以上の金属若しくは合金と、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上の酸化物を混合して焼結することを特徴とする焼結体の製造方法。
- 少なくとも金属としてコバルトを含み、クロムと、ホウ素及び/又は白金族元素から選択した1種以上の金属又は合金と、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上の酸化物を混合して焼結することを特徴とする焼結体の製造方法。
- 酸化ホウ素と、酸化クロム及び/又は酸化コバルトを準備し、これを大気中で焼成して、Cr(BO3)、Co2B2O5、Co3B2O6の少なくとも1種以上の酸化物を製造することを特徴とする請求項15又は16のいずれか一項に記載の焼結体の製造方法。
- 請求項15~17のいずれか一項に記載の焼結体の製造方法により、請求項1~請求項13のいずれか一項に記載の焼結体を製造することを特徴とする焼結体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201506155PA SG11201506155PA (en) | 2013-04-30 | 2014-04-23 | Sintered body, and sputtering target for forming magnetic recording film produced from said sintered body |
CN201480011201.XA CN105026589B (zh) | 2013-04-30 | 2014-04-23 | 烧结体、包含该烧结体的磁记录膜形成用溅射靶 |
JP2014541456A JP5878242B2 (ja) | 2013-04-30 | 2014-04-23 | 焼結体、同焼結体からなる磁気記録膜形成用スパッタリングターゲット |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013095486 | 2013-04-30 | ||
JP2013-095486 | 2013-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014178310A1 true WO2014178310A1 (ja) | 2014-11-06 |
Family
ID=51843443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/061357 WO2014178310A1 (ja) | 2013-04-30 | 2014-04-23 | 焼結体、同焼結体からなる磁気記録膜形成用スパッタリングターゲット |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5878242B2 (ja) |
CN (1) | CN105026589B (ja) |
MY (1) | MY170253A (ja) |
SG (1) | SG11201506155PA (ja) |
TW (1) | TWI615479B (ja) |
WO (1) | WO2014178310A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016133047A1 (ja) * | 2015-02-19 | 2016-08-25 | Jx金属株式会社 | 磁性体薄膜形成用スパッタリングターゲット |
JP2016160530A (ja) * | 2015-03-05 | 2016-09-05 | 光洋應用材料科技股▲分▼有限公司 | 磁気合金スパッタリングターゲット及び磁気記録媒体用記録層 |
WO2017090481A1 (ja) * | 2015-11-27 | 2017-06-01 | 田中貴金属工業株式会社 | スパッタリングターゲット |
WO2020066114A1 (ja) * | 2018-09-25 | 2020-04-02 | Jx金属株式会社 | スパッタリングターゲット及びスパッタリングターゲットを製造するための粉体 |
WO2020202603A1 (ja) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | スパッタリングターゲットの梱包物の作製方法及び輸送方法 |
CN113692457A (zh) * | 2019-03-29 | 2021-11-23 | Jx金属株式会社 | 溅射靶以及溅射靶的制造方法 |
US12312674B2 (en) | 2017-09-21 | 2025-05-27 | Jx Advanced Metals Corporation | Sputtering target |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11158607A (ja) * | 1997-11-28 | 1999-06-15 | Sumitomo Metal Mining Co Ltd | ZnO系焼結体およびその製法 |
JP2006351164A (ja) * | 2005-06-15 | 2006-12-28 | Heraeus Inc | スパッタターゲット、磁気記録媒体及び磁気記録媒体の製造方法 |
JP2012117147A (ja) * | 2010-11-12 | 2012-06-21 | Jx Nippon Mining & Metals Corp | コバルト酸化物が残留したスパッタリングターゲット |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4469506A (en) * | 1983-01-24 | 1984-09-04 | Mitsui Toatsu Chemicals, Incorporated | Production process of ferromagnetic iron powder |
CN102224276B (zh) * | 2009-03-03 | 2014-02-19 | 吉坤日矿日石金属株式会社 | 溅射靶及其制造方法 |
MY149640A (en) * | 2009-12-11 | 2013-09-13 | Jx Nippon Mining & Metals Corp | Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic thin film made of co or co alloy phase and oxide phase, and magnetic recording medium using the said thin film |
MY149437A (en) * | 2010-01-21 | 2013-08-30 | Jx Nippon Mining & Metals Corp | Ferromagnetic material sputtering target |
SG185768A1 (en) * | 2010-07-20 | 2013-01-30 | Jx Nippon Mining & Metals Corp | Sputtering target of ferromagnetic material with low generation of particles |
US8590717B2 (en) * | 2011-05-16 | 2013-11-26 | Miner Enterprises, Inc. | Railroad freight car draft gear |
-
2014
- 2014-04-23 SG SG11201506155PA patent/SG11201506155PA/en unknown
- 2014-04-23 WO PCT/JP2014/061357 patent/WO2014178310A1/ja active Application Filing
- 2014-04-23 JP JP2014541456A patent/JP5878242B2/ja active Active
- 2014-04-23 CN CN201480011201.XA patent/CN105026589B/zh active Active
- 2014-04-23 MY MYPI2015702803A patent/MY170253A/en unknown
- 2014-04-24 TW TW103114808A patent/TWI615479B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11158607A (ja) * | 1997-11-28 | 1999-06-15 | Sumitomo Metal Mining Co Ltd | ZnO系焼結体およびその製法 |
JP2006351164A (ja) * | 2005-06-15 | 2006-12-28 | Heraeus Inc | スパッタターゲット、磁気記録媒体及び磁気記録媒体の製造方法 |
JP2012117147A (ja) * | 2010-11-12 | 2012-06-21 | Jx Nippon Mining & Metals Corp | コバルト酸化物が残留したスパッタリングターゲット |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016133047A1 (ja) * | 2015-02-19 | 2017-11-09 | Jx金属株式会社 | 磁性体薄膜形成用スパッタリングターゲット |
CN108026631A (zh) * | 2015-02-19 | 2018-05-11 | 捷客斯金属株式会社 | 磁性体薄膜形成用溅射靶 |
CN108026631B (zh) * | 2015-02-19 | 2020-02-28 | 捷客斯金属株式会社 | 磁性体薄膜形成用溅射靶 |
WO2016133047A1 (ja) * | 2015-02-19 | 2016-08-25 | Jx金属株式会社 | 磁性体薄膜形成用スパッタリングターゲット |
JP2016160530A (ja) * | 2015-03-05 | 2016-09-05 | 光洋應用材料科技股▲分▼有限公司 | 磁気合金スパッタリングターゲット及び磁気記録媒体用記録層 |
WO2017090481A1 (ja) * | 2015-11-27 | 2017-06-01 | 田中貴金属工業株式会社 | スパッタリングターゲット |
JP2017095790A (ja) * | 2015-11-27 | 2017-06-01 | 田中貴金属工業株式会社 | スパッタリングターゲット |
US11072851B2 (en) | 2015-11-27 | 2021-07-27 | Tanaka Kikinzoku Kogyo K.K. | Sputtering target |
US12312674B2 (en) | 2017-09-21 | 2025-05-27 | Jx Advanced Metals Corporation | Sputtering target |
JP7072664B2 (ja) | 2018-09-25 | 2022-05-20 | Jx金属株式会社 | スパッタリングターゲット及びスパッタリングターゲットの製造方法 |
WO2020066114A1 (ja) * | 2018-09-25 | 2020-04-02 | Jx金属株式会社 | スパッタリングターゲット及びスパッタリングターゲットを製造するための粉体 |
JPWO2020066114A1 (ja) * | 2018-09-25 | 2021-10-21 | Jx金属株式会社 | スパッタリングターゲット及びスパッタリングターゲットの製造方法 |
WO2020202603A1 (ja) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | スパッタリングターゲットの梱包物の作製方法及び輸送方法 |
CN113692457A (zh) * | 2019-03-29 | 2021-11-23 | Jx金属株式会社 | 溅射靶以及溅射靶的制造方法 |
US12258164B2 (en) | 2019-03-29 | 2025-03-25 | Jx Advanced Metals Corporation | Method for preparing package of sputtering target, and method for transporting same |
JP2020164973A (ja) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | スパッタリングターゲットの梱包物の作製方法及び輸送方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105026589B (zh) | 2017-07-18 |
CN105026589A (zh) | 2015-11-04 |
TW201510232A (zh) | 2015-03-16 |
MY170253A (en) | 2019-07-13 |
JP5878242B2 (ja) | 2016-03-08 |
SG11201506155PA (en) | 2015-09-29 |
JPWO2014178310A1 (ja) | 2017-02-23 |
TWI615479B (zh) | 2018-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5878242B2 (ja) | 焼結体、同焼結体からなる磁気記録膜形成用スパッタリングターゲット | |
US9328412B2 (en) | Fe—Pt-based ferromagnetic material sputtering target | |
JP6526837B2 (ja) | 強磁性材スパッタリングターゲット | |
US12198911B2 (en) | Nonmagnetic material-dispersed Fe-Pt based sputtering target | |
JP5960287B2 (ja) | 焼結体スパッタリングターゲット | |
JP5801496B2 (ja) | スパッタリングターゲット | |
JP7513667B2 (ja) | スパッタリングターゲット、積層膜の製造方法および、磁気記録媒体の製造方法 | |
JP6100352B2 (ja) | クロム酸化物を含有する強磁性材スパッタリングターゲット | |
US9773653B2 (en) | Ferromagnetic material sputtering target containing chromium oxide | |
JP5944580B2 (ja) | スパッタリングターゲット | |
WO2021014760A1 (ja) | 非磁性層形成用スパッタリングターゲット部材 | |
JPWO2020053973A1 (ja) | 強磁性材スパッタリングターゲット | |
TWI812869B (zh) | 磁性記錄媒體用濺鍍靶 | |
US20130008784A1 (en) | Cocrpt-based alloy sputtering targets with cobalt oxide and non-magnetic oxide and manufacturing methods thereof | |
JP2009132976A (ja) | 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット | |
WO2023079857A1 (ja) | Fe-Pt-C系スパッタリングターゲット部材、スパッタリングターゲット組立品、成膜方法、及びスパッタリングターゲット部材の製造方法 | |
JP2015190017A (ja) | 軟磁性薄膜形成用スパッタリングターゲット | |
JP2019019402A (ja) | スパッタリングターゲット、スパッタリングターゲットの製造方法及び磁気媒体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480011201.X Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2014541456 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14792150 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14792150 Country of ref document: EP Kind code of ref document: A1 |