WO2014175147A1 - Method for cutting glass plate - Google Patents
Method for cutting glass plate Download PDFInfo
- Publication number
- WO2014175147A1 WO2014175147A1 PCT/JP2014/060872 JP2014060872W WO2014175147A1 WO 2014175147 A1 WO2014175147 A1 WO 2014175147A1 JP 2014060872 W JP2014060872 W JP 2014060872W WO 2014175147 A1 WO2014175147 A1 WO 2014175147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass plate
- axis direction
- laser beam
- cutting
- laser
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/003—Cooling means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
- B23K26/046—Automatically focusing the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
- B23K26/364—Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D1/00—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
- B28D1/22—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
- B28D1/221—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/09—Severing cooled glass by thermal shock
- C03B33/091—Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/18—Sheet panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/52—Ceramics
Definitions
- the present invention relates to a method for cutting a glass plate, and more particularly to a method for cutting a glass plate using internal heating by laser light.
- the glass plate is usually cut by introducing a scribe line mechanically into the main surface with a hard roller or chip such as diamond and applying a bending force along the scribe line.
- a scribe line mechanically into the main surface with a hard roller or chip such as diamond and applying a bending force along the scribe line.
- a chamfering process is performed on a cut end surface (particularly a corner portion) of a glass plate after cutting from the viewpoint of preventing breakage.
- a chamfering process is performed on a cut end surface (particularly a corner portion) of a glass plate after cutting from the viewpoint of preventing breakage.
- the present invention has been made in view of the above, and an object of the present invention is to provide a method for cutting a glass plate with excellent productivity.
- One aspect of the present invention provides the following glass plate cutting method.
- the first principal surface constitutes an xy plane
- the scanning direction of the laser light is an x-axis plus direction
- the first direction in the normal direction of the first principal surface When the main surface side is the z-axis direction plus side and the second main surface side is the z-axis direction minus side,
- the glass plate cut end surface on the y-axis direction plus side of the glass plate divided into the y-axis direction plus side and the y-axis direction minus side by shifting the region from the scanning path to the y-axis direction plus side.
- the first main surface constitutes an xy plane
- the scanning direction of the laser beam is an x-axis plus direction
- the first direction in the normal direction of the first main surface When the main surface side is the z-axis direction plus side and the second main surface side is the z-axis direction minus side,
- the wavelength of the laser beam is 250 to 5000 nm.
- FIG. 4 is an axial sectional view taken along line IV-IV in FIG. 2.
- FIG. 5 is a cross-sectional view taken along line VV in FIG. 2. It is sectional drawing of the cooling nozzle used for the cutting
- FIG. 1 is a perspective view for explaining a method of forming scribe lines on the upper and lower surfaces of a glass plate.
- FIG. 2 is a plan view showing a beam shape of laser light on the upper surface of the glass plate of FIG.
- FIG. 3 is a plan view showing a beam shape of laser light on the lower surface of the glass plate of FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
- FIG. 5 is a sectional view taken along line VV in FIG.
- the arrow direction indicates the displacement direction of the irradiation position of the laser beam on the glass plate.
- the arrow direction indicates the direction of action of stress. 4 and 5, the thermal deformation of the glass plate is exaggerated. The state of thermal deformation of the glass plate can be confirmed by finite element analysis.
- both main surfaces (upper surface 11 and lower surface 12) of the glass plate 10 are both parallel to the xy plane.
- the laser light is irradiated in the z-axis minus direction and scanned in the x-axis plus direction.
- the optical axis of the laser beam is parallel to the z axis.
- the glass plate cutting method includes a scribing step of forming scribe lines 31 and 32 on the glass plate 10.
- the kind of glass of the glass plate 10 is not specifically limited, For example, soda-lime glass, an alkali free glass, etc. are mentioned.
- the thickness of the glass plate 10 is appropriately set according to the use of the glass plate 10, and is, for example, 0.005 cm to 2.5 cm.
- the glass plate 10 may be either non-tempered glass or tempered glass, but non-tempered glass is preferred.
- the glass plate 10 is locally heated by the laser light 20 that passes through the glass plate 10 from the upper surface 11 side to the lower surface 12 side, and the irradiation position of the laser light 20 on the glass plate 10 is displaced.
- the scribe lines 31 are formed on the lower surface 12 of the glass plate 10 at the same time as the scribe lines 31 are formed on the upper surface 11 of the glass plate 10 due to the thermal stress generated in the glass plate 10.
- the scribe line 31 is also formed on the upper surface 11 of the glass plate 10, the cutting accuracy on the upper surface 11 and the lower surface 12 of the glass plate 10 is good. Furthermore, in the present embodiment, the scribe lines are simultaneously formed on the upper surface 11 and the lower surface 12 of the glass plate 10 with one laser beam 20, so that the scribe lines formed on the upper surface 11 and the lower surface 12 of the glass plate 10 are formed. The positional relationship tends to be a desired positional relationship.
- the scribe line 32 formed on the lower surface 12 of the glass plate 10 tends to overlap. Therefore, the fractured surface of the glass plate 10 tends to be perpendicular to the upper surface 11 and the lower surface 12 of the glass plate 10.
- the initial crack 33 which becomes the starting point of the scribe lines 31 and 32 may be formed in advance on the end surface 13 of the glass plate 10 as shown in FIG.
- the initial crack 33 may reach the upper surface 11 and the lower surface 12 of the glass plate 10, and may also be formed on the upper surface 11 and the lower surface 12 of the glass plate 10.
- the initial crack 33 is a common starting point for the scribe lines 31 and 32.
- an initial crack when an initial crack is formed in the end surface 13 of the glass plate 10, it may reach only the upper surface 11 of the glass plate 10, may reach only the lower surface 12 of the glass plate 10, or the glass plate 10 The upper surface 11 and the lower surface 12 may not be reached. Further, the initial crack may be formed on each of the upper surface 11 and the lower surface 12 of the glass plate 10, and in this case, it may reach the end surface 13 or may not reach the end surface 13. The initial crack may be formed on at least one of both the upper surface 11 and the lower surface 12 of the glass plate 10 and the end surface 13 of the glass plate 10.
- the formation method of the initial crack 33 may be a general method, for example, a method using a cutter, a file, a laser, or the like.
- a method using a cutter, a file, a laser, or the like When the end surface 13 of the glass plate 10 is ground with a grindstone, microcracks formed by grinding can be used as initial cracks.
- Part of the upper surface 11 of the glass plate 10 is heated by the laser beam 20 and bulges upward and symmetrically about the movement locus of the irradiation position of the laser beam 20 as shown in FIGS.
- a tensile stress in a direction orthogonal to the direction of displacement of the irradiation position of the laser beam 20 is generated. Due to this tensile stress, the crack starting from the initial crack 33 extends along the movement locus of the irradiation position of the laser beam 20, and the scribe line 31 is formed.
- the tip of the scribe line 31 is at the irradiation position of the laser beam 20 on the upper surface 11 of the glass plate 10 or in the vicinity of the front thereof.
- a part of the lower surface 12 of the glass plate 10 is heated by the laser beam 20, and as shown in FIGS. 4 and 5, protrudes downward symmetrically about the movement locus of the irradiation position of the laser beam 20. Swell. In the portion that bulges downward, a tensile stress in a direction orthogonal to the direction of displacement of the irradiation position of the laser beam 20 is generated. Due to the tensile stress, the crack starting from the initial crack 33 extends along the movement locus of the irradiation position of the laser beam 20, and the scribe line 32 is formed. The tip of the scribe line 32 is at the irradiation position of the laser beam 20 on the lower surface 12 of the glass plate 10 or in the vicinity of the front thereof.
- the scribe lines 31 and 32 both extend with the displacement of the irradiation position of the laser beam 20 on the glass plate 10.
- the displacement of the irradiation position of the laser beam 20 on the glass plate 10 is performed by the movement or rotation of the support of the glass plate 10 relative to the frame of the cutting device, or the movement of the light source 22 of the laser beam 20, even if both are performed. Good. Further, the displacement of the irradiation position of the laser beam 20 on the glass plate 10 may be performed by rotation of a galvanometer mirror that reflects the laser beam 20 emitted from the light source 22 toward the glass plate 10.
- Whether or not a scribe line can be formed on each of the upper surface 11 and the lower surface 12 of the glass plate 10 is mainly determined by the formation position of the initial crack 33 and the irradiation condition of the laser beam 20.
- the irradiation conditions of the laser beam 20 include, for example, (1) the output of the light source 22, (2) the transmittance of the laser beam 20 with respect to the glass plate 10, and (3) the beam of the laser beam 20 on the upper surface 11 and the lower surface 12 of the glass plate 10. (4) Ratio (P1 / P2) of the power density (P1) of the laser beam 20 on the upper surface 11 of the glass plate 10 and the power density (P2) of the laser beam 20 on the lower surface 12 of the glass plate 10 It is done.
- the product of ( ⁇ ⁇ M) is preferably larger than 0 and not larger than 3.0.
- the internal transmittance of the laser beam 20 with respect to the glass plate 10 is high, and the lower surface 12 of the glass plate 10 can be sufficiently heated.
- ⁇ ⁇ M is more preferably 2.3 or less (internal transmittance of 10% or more), and further preferably 1.6 or less (internal transmittance of 20% or more).
- ⁇ ⁇ M is too small, the internal transmittance is too high and the absorption efficiency is too low. Therefore, it is preferably 0.002 or more (internal transmittance 99.8% or less), more preferably 0.01 or more (internal transmittance). 99% or less), more preferably 0.02 or more (internal transmittance of 98% or less).
- the internal transmittance is a transmittance when there is no reflection on the upper surface 11 of the glass plate 10.
- the heating temperature of the glass plate 10 is the temperature below the annealing point of glass.
- the heating temperature of the glass plate exceeds the temperature of the annealing point of the glass, the glass is viscously flowed, the thermal stress is relaxed, and the scribe lines 31 and 32 are difficult to form.
- the distance (M) that the laser beam 20 moves from the upper surface 11 to the lower surface 12 of the glass plate 10 is the same as the thickness (t) of the glass plate 10. Value.
- the laser beam 20 is incident obliquely on the upper surface 11 of the glass plate 10
- the laser beam 20 is refracted according to Snell's law. Therefore, when the refraction angle is ⁇ , the laser beam 20 moves from the upper surface 11 to the lower surface 12 of the glass plate 10.
- a near-infrared (hereinafter simply referred to as “near-infrared”) laser having a wavelength of 800 to 1100 nm is used.
- the near-infrared laser for example, a Yb fiber laser (wavelength: 1000 to 1100 nm), a Yb disk laser (wavelength: 1000 to 1100 nm), an Nd: YAG laser (wavelength: 1064 nm), a high-power semiconductor laser (wavelength: 808 to 980 nm) ).
- These near-infrared lasers are high-powered and inexpensive, and it is easy to adjust ⁇ ⁇ M within a desired range.
- a high-power and inexpensive near-infrared laser is used as the light source 22, but a light source having a wavelength of 250 to 5000 nm can be used.
- a light source having a wavelength of 250 to 5000 nm can be used.
- UV laser wavelength: 355 nm
- green laser wavelength: 532 nm
- Ho: YAG laser wavelength: 2080 nm
- Er YAG laser (2940 nm)
- laser using a mid-infrared light parametric oscillator (wavelength: 2600) To 3450 nm).
- the oscillation method of the laser beam 20 is not limited, and either a CW laser that continuously oscillates the laser beam or a pulse laser that oscillates the laser beam intermittently can be used.
- the intensity distribution of the laser beam 20 is not limited, and may be a Gaussian type or a top hat type.
- the absorption coefficient ( ⁇ ) increases as the content of iron (Fe), the content of cobalt (Co), and the content of copper (Cu) in the glass plate 10 increase.
- the absorption coefficient ( ⁇ ) increases in the vicinity of the absorption wavelength of the rare earth atom as the content of the rare earth element (for example, Yb) in the glass plate 10 increases.
- the adjustment of the absorption coefficient ( ⁇ ) uses iron from the viewpoints of glass transparency and cost, and cobalt, copper, and rare earth elements may not be substantially contained in the glass plate 10.
- the laser beam 20 preferably has a beam width W1 in the y-axis direction on the upper surface 11 equal to or less than the thickness of the glass plate 10. Further, the laser beam 20 preferably has a beam width W2 in the y-axis direction on the lower surface 12 equal to or less than the thickness of the glass plate 10. A portion bulging upward on the upper surface 11 of the glass plate 10 and a portion bulging downward on the lower surface 12 of the glass plate 10 are sufficiently steep, and scribe lines are formed on the upper surface 11 and the lower surface 12 of the glass plate 10. Sufficient tensile stress is generated to do this.
- the beam width L1 in the displacement direction (x-axis direction) of the laser beam 20 on the upper surface 11 and the beam width L2 in the displacement direction (x-axis direction) of the laser beam 20 on the lower surface 12 are not particularly limited. If L1 and L2 are short, the curved scribe lines 31 and 32 can be easily formed. Moreover, if L1 and L2 are long, when the heating time of the specific position in the glass plate 10 is the same, the displacement speed of the irradiation position of the laser beam 20 in the glass plate 10 is fast, and the scribe lines 31 and 32 can be formed in a short time. .
- the beam shape of the laser beam 20 on the upper surface 11 and the lower surface 12 of the glass plate 10 is not particularly limited, but is preferably circular.
- the width of the locus of the irradiation position of the laser beam 20 is constant, and the position accuracy of the scribe line is good.
- the intensity (W) of the laser beam 20 is attenuated according to Lambert-Beer's law.
- transmits is mainly determined by the power density (unit [W / cm ⁇ 2 >]) of the laser beam 20, etc.
- the laser beam 20 has a ratio (P1 / P2) of the power density (P1) on the upper surface 11 of the glass plate 10 and the power density (P2) on the lower surface 12 of the glass plate 10 to 0.5-2. 0 is preferred.
- S1 represents the irradiation area of the laser beam 20 on the upper surface 11 of the glass plate 10
- S2 represents the irradiation area of the laser beam 20 on the lower surface 12 of the glass plate 10.
- P1 / P2 When P1 / P2 is 0.5 to 2.0, the temperature of the irradiation position of the laser beam 20 on the upper surface 11 of the glass plate 10 and the temperature of the irradiation position of the laser beam 20 on the lower surface 12 of the glass plate 10 are the same. It will be about. Accordingly, the portion that bulges upward on the upper surface 11 of the glass plate 10 and the portion that bulges downward on the lower surface 12 of the glass plate 10 are steep to the same extent. As a result, the depth of the scribe line 31 formed on the upper surface 11 of the glass plate 10 and the depth of the scribe line 32 formed on the lower surface 12 of the glass plate 10 are approximately the same depth.
- P1 / P2 is more preferably 0.6 or more, and further preferably 0.67 or more. Further, P1 / P2 is more preferably 1.67 or less, and further preferably 1.5 or less.
- a condensing lens or the like (not shown) is disposed between the glass plate 10 and the like.
- S1 / S2 is larger than 1.
- the method for cutting the glass plate may further include a breaking step in which an external force is applied to the glass plate 10 and the glass plate 10 is cut along the scribe lines 31 and 32.
- a glass plate can be cut.
- the scribe lines 31 and 32 are coupled to each other by adjusting the irradiation condition of the laser light 20 and changing the generated thermal stress. You can also. That is, a full cut can be performed only by laser irradiation without going through a break process.
- a tensile stress is generated in the entire plate thickness.
- This tensile stress is formed behind the irradiation position of the laser beam 20 as a reaction force of the compressive stress generated by heating at the irradiation position of the laser beam 20. Therefore, when the tensile stress behind the irradiation position of the laser beam 20 is larger, the scribe line 31 on the upper surface 11 side and the scribe line 32 on the lower surface 12 side extend in the plate thickness inside direction and are combined.
- the shape of the crack formed by combining the scribe lines 31 and 32 is determined by the difference in the thermal stress field and the rigidity of the glass plate 10.
- Whether or not the scribe lines 31 and 32 are coupled by the thermal stress based on the irradiation of the laser beam 20 is mainly determined by the transmittance of the laser beam 20 with respect to the glass plate 10 and the output of the light source 22.
- the scribe lines 31 and 32 are coupled.
- the glass plate 10 may be irradiated with heating light emitted from a heating light source different from the light source 22 in order to combine the scribe lines 31 and 32.
- the cutting of the glass plate 10 according to the present embodiment has better cutting accuracy on the upper surface 11 and the lower surface 12 of the glass plate 10 than the full cut disclosed in Patent Document 1.
- tensile stress is generated by cooling the rear of the irradiation position of the laser beam with a refrigerant, and a crack penetrating the glass plate 10 in the thickness direction is formed by this tensile stress. That is, in Patent Document 1, no scribe line is formed by laser light irradiation.
- the scribe lines 31 and 32 are formed by the tensile stress generated at the irradiation position of the laser beam 20 on the upper surface 11 and the lower surface 12 of the glass plate 10. Therefore, the tip positions of the scribe lines 31 and 32 are close to the irradiation position of the laser light 20, and the positions of the scribe lines 31 and 32 and the locus of the laser light 20 are likely to coincide with each other. Therefore, the positional accuracy of the scribe lines 31 and 32 formed on the upper surface 11 and the lower surface 12 of the glass plate 10 is good, and the cutting accuracy on the upper surface 11 and the lower surface 12 of the glass plate 10 is good.
- FIG. 6 is a cross-sectional view of a cooling nozzle used for cutting a glass plate. Gas is blown to the upper surface 11 of the glass plate 10 by the cooling nozzle 28 shown in FIG. As shown in FIG. 6, the cooling nozzle 28 is formed with a tapered cavity so that gas (air, nitrogen, etc.) flows in the direction of the arrow.
- the axis of the cooling nozzle 28 coincides with the optical axis of the laser beam 20, and the laser beam 20 collected by the lens 25 passes through the inside of the cooling nozzle 28 and is provided at the tip of the cooling nozzle 28.
- the light is emitted from an opening having a diameter ⁇ n. Further, it can move in synchronization with the movement of the irradiation region of the laser beam 20 (that is, at the same scanning speed as the laser beam). With such a configuration, the laser irradiation unit is cooled by the gas. It is preferable to cool an area wider than the laser irradiation part. By this cooling, tensile stress is easily generated in the laser light irradiation region. That is, a scribe line is easily generated and stable processing is possible.
- the cooling gas flow rate, the diameter ⁇ n of the opening of the cooling nozzle 28, and the gap G2 between the tip of the cooling nozzle 28 and the upper surface 11 of the glass plate 10 can be arbitrarily determined.
- the cooling capability in the upper surface 11 of the glass plate 10 improves, so that the gap G2 between the front-end
- FIG. 7 is a plan view of the glass plate 10 as viewed from the upper surface 11 side.
- the glass plate 10 is divided into a main body portion 10a on the positive side in the y-axis direction and a cut-out portion 10b on the negative side in the y-axis direction by scanning the laser beam 20 in the positive direction along the x-axis.
- FIG. 8 is a side view of the glass plate 10 cut along the scribe line formed by the laser scanning shown in FIG. 7 as viewed from the end face 13 side (the negative side in the x-axis direction). Note that the xyz coordinates in FIGS. 7 and 8 coincide with those in FIG.
- the upper surface 11 and the lower surface 12 are rearward (a negative amount in the x-axis direction) by a predetermined distance (shift amount) ⁇ x from the optical axis of the laser light 20 and laser scanning is performed. Cooling is performed aiming at a position shifted from the path by a predetermined distance ⁇ y in the y-axis direction.
- the region 40a on the upper surface 11 and the region 40b on the lower surface 12 that are shifted from the laser scanning path by the distance ⁇ y in the y-axis direction are cooled.
- only one of the region 40a on the upper surface 11 and the region 40b on the lower surface 12 may be cooled, but it is preferable to cool both. In particular, when the plate is thick, it is effective to cool both.
- the regions 40a and 40b that are shifted from the laser scanning path to the positive side in the y-axis direction are cooled.
- chamfered portions 10c are formed at both corner portions of the cut end surface of the main body portion 10a.
- protrusions 10d are formed at both corners of the cut end surface of the cut portion 10b.
- the laser beam is cooled while cooling the region 40a on the upper surface 11 and the region 40b on the lower surface 12 which are shifted from the laser scanning path to the plus side in the y-axis direction behind the laser beam 20 (minus side in the x-axis direction). 20 is scanned.
- the chamfering part 10c can be formed in the glass plate (main-body part 10a) of the plus side of a y-axis among the divided
- the scribe lines 31 and 32 extend from the upper surface 11 and the lower surface 12 of the glass plate 10 in the depth direction while being inclined in the y-axis direction minus side instead of the z-axis direction (perpendicular to the main surface).
- the scribe lines 31 and 32 inclined in the depth direction are chamfered portions 10c. That is, the method for cutting a glass plate according to the present embodiment can perform chamfering simultaneously with the introduction of the scribe line, and thus has higher productivity than the conventional method for cutting a glass plate.
- FIG. 9 is a side view of the glass plate 10 that is scanning the laser beam 20 in the positive x-axis direction as viewed from the positive y-axis direction.
- the region 40a is cooled by the cooling nozzle 29a from the upper surface 11 side
- the region 40b is cooled by the cooling nozzle 29b from the lower surface 12 side.
- the cooling nozzles 29a and 29b move in the plus direction of the x axis in synchronization with the laser beam 20.
- the angle between the central axis of the cooling nozzles 29a and 29b and the main surface (upper surface 11 and lower surface 12) of the glass plate 10 is set to an angle ⁇ (0 ° ⁇ ⁇ ⁇ 90 °). ing.
- FIG. 10 and 11 show a case where the regions 40a and 40b that are shifted from the laser scanning path to the negative side in the y-axis direction are cooled.
- 10 and 11 correspond to FIGS. 7 and 8, respectively. That is, FIG. 10 is a plan view of the glass plate 10 viewed from the upper surface 11 side.
- the glass plate 10 is divided into a main body portion 10a on the negative side in the y-axis direction and a cut-out portion 10b on the positive side in the y-axis direction in the same manner as FIG. The That is, in FIG.
- FIG. 11 is a side view of the glass plate 10 cut along the scribe lines 31 and 32 formed by the laser scanning shown in FIG. 10 when viewed from the end face 13 side (x-axis direction minus side).
- the xyz coordinate in FIG. 10, FIG. 11 corresponds with FIG.
- the laser beam is cooled while cooling the region 40a on the upper surface 11 and the region 40b on the lower surface 12 which are shifted from the laser scanning path to the minus side in the y-axis direction behind the laser beam 20 (minus side in the x-axis direction). 20 is scanned.
- the chamfered portion 10c can be formed on the glass plate (main body portion 10a) on the negative side in the y-axis direction among the two divided glass plates.
- the scribe lines 31 and 32 extend from the upper surface 11 and the lower surface 12 of the glass plate 10 in the depth direction so as to incline in the y-axis direction plus side rather than in the z-axis direction (perpendicular to the main surface).
- the scribe lines 31 and 32 inclined in the depth direction are chamfered portions 10c. That is, the method for cutting a glass plate according to the present embodiment can perform chamfering simultaneously with the introduction of the scribe line, and thus has higher productivity than the conventional method for cutting a glass plate.
- FIG. 12 and 13 show a case where the regions 40a and 40b that are shifted from the laser scanning path to the minus side in the y-axis direction are cooled, as in FIGS. 12 and 13 correspond to FIGS. 10 and 11, respectively. That is, FIG. 12 is a plan view of the glass plate 10 viewed from the upper surface 11 side. In the example of FIG. 12, the glass plate 10 is divided into a main body portion 10a on the positive side in the y-axis direction and a cut-out portion 10b on the negative side in the y-axis direction in the same manner as in FIG.
- FIG. 13 is a side view of the glass plate 10 cut along the scribe lines 31 and 32 formed by the laser scanning shown in FIG. 12 when viewed from the end face 13 side (x-axis direction minus side). Note that the xyz coordinates in FIGS. 12 and 13 are the same as those in FIG.
- a protrusion 10d is formed on the main body portion 10a on the y axis direction plus side, and a chamfered portion 10c is formed on the cut portion 10b on the minus side in the y axis direction.
- the protruding portion 10d can be formed on the cut end surface of the main body portion 10a instead of the chamfered portion 10c.
- the scribe lines 31 and 32 extend from the upper surface 11 and the lower surface 12 of the glass plate 10 in the depth direction of the glass plate 10 while being inclined in the y-axis direction plus side instead of the z-axis direction (perpendicular to the main surface). is doing.
- the scribe lines 31 and 32 inclined in the depth direction become the protrusions 10d. That is, the glass plate cutting method according to the present embodiment can form a protrusion on the cut end face simultaneously with the introduction of the scribe line. Therefore, it is excellent in productivity of such an end surface-shaped glass plate.
- the glass plate which has a projection part in an end surface in this way is useful for the use which fixes the said end surface to a resin material, for example. By having the protrusion, it is easy to fix to the resin material.
- the regions 40a and 40b that are shifted in the y-axis direction from the laser scanning path are cooled behind the laser beam 20 (minus side in the x-axis direction). While scanning, the laser beam 20 is scanned. Thereby, the chamfered portion 10 c can be formed on the cut end surface of the glass plate 10 at the same time when the scribe lines 31 and 32 are introduced into the glass plate 10. Therefore, the cutting method of the glass plate which concerns on Embodiment 1 is excellent in productivity compared with the cutting method of the conventional glass plate.
- the chamfered portion 10c is formed on the y-axis direction plus side glass plate out of the two divided glass plates. Can be formed.
- the chamfered portion 10c is formed on the glass plate on the negative side in the y-axis direction among the two divided glass plates. Can do.
- the inclination of the scribe lines 31 and 32 that is, the inclination of the chamfered portion 10c can be controlled.
- Example 1 In Example 1, in Test Examples 11 and 12, the distance from the laser scanning path of the regions 40a and 40b to be cooled (shift amount in the y-axis direction) ⁇ y was changed for each test example, and the shape of the cut end face was investigated. .
- FIG. 14 is a plan view of the glass plate 10 schematically showing test conditions.
- Test Examples 11 and 12 on the upper surface of a rectangular glass plate (long side 100 mm, short side 50 mm, plate thickness 3.1 mm, green colored transparent soda lime silica glass manufactured by Asahi Glass Co., Ltd.), as shown in FIG.
- a laser beam was vertically incident.
- a Yb fiber laser (wavelength: 1070 nm) was used as a laser light source.
- the absorption coefficient ( ⁇ ) of the glass plate with respect to the laser beam was 2.86 cm ⁇ 1 , and ⁇ ⁇ M was 0.89 (that is, the internal transmittance was 41.2%).
- the laser output was 30 W, the upper surface beam width of the laser light was 2.73 mm, the lower surface beam width was 1.75 mm, and the scanning speed was 10 mm / s.
- the beam shape of the laser light was circular on the upper and lower surfaces of the glass plate 10.
- the laser beam was scanned from one long side of the glass plate 10 to the other long side in parallel with the short side of the glass plate 10.
- the diameter of the opening provided at the tip of the cooling nozzles 29a and 29b was 1.0 mm.
- the flow rates of the cooling air blown from the cooling nozzles 29a and 29b to the regions 40a and 40b were 10 L / min, respectively.
- the angle ⁇ between the central axes of the cooling nozzles 29a and 29b and the main surface (upper surface 11 and lower surface 12) of the glass plate 10 was set to 45 °.
- the initial crack was formed in the end surface 13 of the glass plate 10 so that it might reach the lower surface 12 from the upper surface 11 of the glass plate 10 using the wheel cutter.
- the scribe lines 31 and 32 were introduced into the upper and lower surfaces by laser light irradiation, and then cleaved by applying a bending force.
- FIG. 15 is a photograph of the cut parts of Test Examples 11 and 12 observed from the minus side in the x-axis direction. Note that the xyz coordinates in FIG. 15 coincide with those in FIG.
- Test Example 11 in which a region shifted from the laser scanning path (x axis) to the y axis direction minus side is cooled behind the laser beam 20 (x axis direction minus side), the y axis of the two divided glass plates A chamfered portion 10c was formed on the glass plate on the minus side in the direction, and a protrusion 10d was formed on the glass plate on the plus side in the y-axis direction. That is, it became the same as the cross-sectional shape shown in FIG. In FIG. 15, the photograph of the cut part about the test example 11 was shown.
- Test Example 12 in which the region shifted from the laser scanning path (x axis) to the y axis direction plus side is cooled behind the laser beam 20 (x axis direction minus side), among the two divided glass plates, A chamfered portion 10c was formed on the glass plate on the positive side in the y-axis direction, and a protrusion 10d was formed on the glass plate on the negative side in the y-axis direction. That is, it became the same as the cross-sectional shape shown in FIG. In FIG. 15, the photograph of the cut part about the test example 12 was shown.
- Example 1 the laser beam 20 was scanned while cooling a region shifted in the y-axis direction from the laser scanning path (x-axis) behind the laser beam 20 (minus side in the x-axis direction). Thereby, the chamfered part 10c was able to be formed in the cut end surface of the glass plate 10 simultaneously with introducing the scribe lines 31 and 32 into the glass plate 10. Therefore, the cutting method of the glass plate which concerns on Example 1 is excellent in productivity compared with the cutting method of the conventional glass plate.
- Example 2 Next, also in Example 2, in Test Examples 21 to 23, the distance (shift amount in the y-axis direction) ⁇ y from the laser scanning path of the regions 40a and 40b to be cooled is changed for each test example, and the shape of the cut end face investigated.
- the scribe lines 31 and 32 were introduced by laser light irradiation, and then manually cleaved.
- the laser power absorbed by the glass plate is increased and a full cut is performed only by laser light irradiation.
- the scribe lines 31 and 32 are formed on the upper and lower surfaces by laser light irradiation. And these two scribe lines 31 and 32 couple
- Test Examples 21 to 23 In all Test Examples 21 to 23, as shown in FIG. 14, the upper surface of a rectangular glass plate (long side 100 mm, short side 50 mm, plate thickness 3.1 mm, green colored transparent soda lime silica glass manufactured by Asahi Glass Co., Ltd.) The laser beam was made to enter perpendicularly to.
- a Yb fiber laser (wavelength: 1070 nm) was used as a laser light source.
- the absorption coefficient ( ⁇ ) of the glass plate with respect to the laser beam was 2.86 cm ⁇ 1 , and ⁇ ⁇ M was 0.89 (that is, the internal transmittance was 41.2%).
- the laser output was 70 W, the top beam width of the laser light was 5.19 mm, the bottom beam width was 4.22 mm, and the scanning speed was 10 mm / s.
- the beam shape of the laser light was circular on the upper and lower surfaces of the glass plate 10.
- the laser beam was scanned in parallel with the short side of the glass plate 10 from one long side of the glass plate 10 to the other long side.
- the diameter of the opening provided at the tip of the cooling nozzles 29a and 29b was 1.0 mm.
- the flow rates of the cooling air blown from the cooling nozzles 29a and 29b to the regions 40a and 40b were 10 L / min, respectively.
- the angle ⁇ between the central axes of the cooling nozzles 29a and 29b and the main surface (upper surface 11 and lower surface 12) of the glass plate 10 was set to 45 °.
- Example 1 the test results are described below assuming that the main surface of the glass plate 10 is parallel to the xy plane, the laser beam is irradiated in the z-axis minus direction, and scanned in the x-axis plus direction. To do.
- Example 1 in the test example 22 in which the region shifted from the laser scanning path (x-axis) to the y-axis direction minus side behind the laser beam 20 (x-axis direction minus side) was cooled, Among the glass plates, the chamfered portion 10c was formed on the glass plate on the negative side in the y-axis direction, and the protruding portion 10d was formed on the glass plate on the positive side in the y-axis direction. That is, it became the same as the cross-sectional shape shown in FIG.
- Test Example 23 in which the region shifted from the laser scanning path (x axis) to the y axis direction plus side is cooled behind the laser beam 20 (x axis direction minus side), of the two divided glass plates, A chamfered portion 10c was formed on the glass plate on the positive side in the y-axis direction, and a protrusion 10d was formed on the glass plate on the negative side in the y-axis direction. That is, it became the same as the cross-sectional shape shown in FIG. In Test Example 21, it was not determined in which of the two divided glass plates the chamfered portion 10c was formed.
- Example 2 the laser beam 20 was scanned while cooling a region shifted in the y-axis direction from the laser scanning path (x-axis) behind the laser beam 20 (minus side in the x-axis direction). Thereby, the chamfered part 10c was able to be formed in the cut end surface of the glass plate 10 simultaneously with introducing the scribe lines 31 and 32 into the glass plate 10. Therefore, the glass plate cutting method according to Example 2 is also more productive than the conventional glass plate cutting method.
- the glass plate 10 may be either a flat plate or a curved plate, and may be any one of a template glass with a concavo-convex pattern on the surface, a meshed glass containing a metal net or wire inside, a laminated glass, and a tempered glass. May be.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Thermal Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Laser Beam Processing (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Provided is a method that is for cutting a glass plate and that has superior production characteristics. One embodiment of this method for cutting a glass plate is provided with a step for forming scribe lines (31, 32) at the first primary surface (11) and second primary surface (12) of the glass plate (10) by means of scanning laser light (20) while causing the laser light (20) to be transmitted from the first primary surface (11) to the second primary surface (12). The laser light (20) is scanned while cooling regions (40a, 40b) offset from the scanning path of the laser light (20) to the rear of the scanning laser light (20).
Description
本発明は、ガラス板の切断方法に関し、特にレーザ光による内部加熱を利用したガラス板の切断方法に関する。
The present invention relates to a method for cutting a glass plate, and more particularly to a method for cutting a glass plate using internal heating by laser light.
ガラス板の切断は、通常、ダイヤモンド等の硬質のローラやチップにより、主面に機械的にスクライブ線を導入し、当該スクライブ線に沿って折り曲げ力を加えることによりなされる。このような手法では、スクライブ線の導入により、ガラス板の切断端面に多数の微細クラックが生成されることになる。従って、切断端部に充分な強度が得られないという問題があった。
The glass plate is usually cut by introducing a scribe line mechanically into the main surface with a hard roller or chip such as diamond and applying a bending force along the scribe line. In such a technique, a lot of fine cracks are generated on the cut end face of the glass plate by introducing the scribe line. Therefore, there is a problem that sufficient strength cannot be obtained at the cut end.
このような問題に対し、近年、レーザ光の照射によりガラス板の内部を加熱し、ガラス板の主面でなく端面に導入した初期クラックの伸展を制御することにより、ガラス板を切断する方法が提案されている(例えば、特許文献1)。このようなレーザ光を用いた切断(以下、「レーザ切断」ともいう)では、ガラス板の主面に機械的にスクライブ線を導入する必要がない。そのため、切断端面に上述の微細クラックが生成されることもなく、切断端部の強度に優れたガラス板を得ることができる。
In recent years, with respect to such problems, there is a method of cutting a glass plate by heating the inside of the glass plate by laser light irradiation and controlling the extension of initial cracks introduced into the end surface instead of the main surface of the glass plate. It has been proposed (for example, Patent Document 1). In such cutting using laser light (hereinafter also referred to as “laser cutting”), it is not necessary to mechanically introduce a scribe line into the main surface of the glass plate. Therefore, the above-mentioned fine crack is not generated on the cut end face, and a glass plate excellent in strength at the cut end can be obtained.
発明者は、以下の課題を見出した。
一般に、ガラス板の切断端面(特にコーナー部)には、欠損防止などの観点から切断後に面取加工が施される。例えば、特許文献1に記載のガラス板の切断方法では、ガラス板をレーザ切断した後に、別途面取加工を行う必要があった。このように、従来のガラス板の切断方法では、切断と面取加工とを別々に行う必要があり、生産性に劣る問題があった。 The inventor has found the following problems.
Generally, a chamfering process is performed on a cut end surface (particularly a corner portion) of a glass plate after cutting from the viewpoint of preventing breakage. For example, in the method for cutting a glass plate described in Patent Document 1, it is necessary to perform chamfering separately after laser cutting the glass plate. Thus, in the conventional method for cutting a glass plate, it is necessary to perform cutting and chamfering separately, and there is a problem of poor productivity.
一般に、ガラス板の切断端面(特にコーナー部)には、欠損防止などの観点から切断後に面取加工が施される。例えば、特許文献1に記載のガラス板の切断方法では、ガラス板をレーザ切断した後に、別途面取加工を行う必要があった。このように、従来のガラス板の切断方法では、切断と面取加工とを別々に行う必要があり、生産性に劣る問題があった。 The inventor has found the following problems.
Generally, a chamfering process is performed on a cut end surface (particularly a corner portion) of a glass plate after cutting from the viewpoint of preventing breakage. For example, in the method for cutting a glass plate described in Patent Document 1, it is necessary to perform chamfering separately after laser cutting the glass plate. Thus, in the conventional method for cutting a glass plate, it is necessary to perform cutting and chamfering separately, and there is a problem of poor productivity.
本発明は、上記に鑑みなされたものであって、生産性に優れたガラス板の切断方法を提供することを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a method for cutting a glass plate with excellent productivity.
本発明の一の態様は、以下のガラス板の切断方法を提供する。
(1)ガラス板の第1主面から第2主面へレーザ光を透過させつつ当該レーザ光を走査することにより、前記第1主面及び前記第2主面にスクライブ線を形成するステップを備え、
走査する前記レーザ光の後方において、前記レーザ光の走査経路からずらした領域を冷却しながら前記レーザ光を走査する、ガラス板の切断方法。
(2)右手系のxyz直交座標空間において、前記第1主面がxy平面を構成し、前記レーザ光の走査方向をx軸プラス方向とし、前記第1主面の法線方向の前記第1主面側をz軸方向プラス側、前記第2主面側をz軸方向マイナス側とした場合、
前記領域を前記走査経路からy軸方向プラス側にずらすことにより、y軸方向プラス側とy軸方向マイナス側とに分割される前記ガラス板の前記y軸方向プラス側の前記ガラス板の切断端面に面取部を形成する、上記(1)に記載のガラス板の切断方法。
(3)前記y軸方向マイナス側の前記ガラス板の切断端面に突起部を形成する、
上記(2)に記載のガラス板の切断方法。
(4)右手系のxyz直交座標空間において、前記第1主面がxy平面を構成し、前記レーザ光の走査方向をx軸プラス方向とし、前記第1主面の法線方向の前記第1主面側をz軸方向プラス側、前記第2主面側をz軸方向マイナス側とした場合、
前記領域を前記走査経路からy軸方向マイナス側にずらすことにより、y軸方向プラス側とy軸方向マイナス側とに分割される前記ガラス板の前記y軸方向マイナス側の前記ガラス板の切断端面に面取部を形成する、上記(1)に記載のガラス板の切断方法。
(5)前記y軸方向プラス側の前記ガラス板の切断端面に突起部を形成する、
上記(4)に記載のガラス板の切断方法。
(6)前記スクライブ線が形成された前記ガラス板に折り曲げ力を加えることにより、前記スクライブ線に沿って前記ガラス板を分割するステップを更に備える、上記(1)~(5)のいずれか一つに記載のガラス板の切断方法。
(7)前記レーザ光の光軸を前記第1主面の法線方向と平行にする、
上記(1)~(6)のいずれか一つに記載のガラス板の切断方法。
(8)前記ガラス板の端面に前記スクライブ線の起点となる初期クラックを形成するステップを更に備える、上記(1)~(7)のいずれか一つに記載のガラス板の切断方法。
(9)前記レーザ光の波長を250~5000nmとする、
上記(1)~(8)のいずれか一つに記載のガラス板の切断方法。 One aspect of the present invention provides the following glass plate cutting method.
(1) A step of forming a scribe line on the first main surface and the second main surface by scanning the laser light while transmitting the laser light from the first main surface of the glass plate to the second main surface. Prepared,
A method for cutting a glass plate, wherein the laser beam is scanned behind the laser beam to be scanned while cooling a region shifted from the scanning path of the laser beam.
(2) In a right-handed xyz orthogonal coordinate space, the first principal surface constitutes an xy plane, the scanning direction of the laser light is an x-axis plus direction, and the first direction in the normal direction of the first principal surface When the main surface side is the z-axis direction plus side and the second main surface side is the z-axis direction minus side,
The glass plate cut end surface on the y-axis direction plus side of the glass plate divided into the y-axis direction plus side and the y-axis direction minus side by shifting the region from the scanning path to the y-axis direction plus side. The method for cutting a glass plate according to (1), wherein a chamfered portion is formed on the glass plate.
(3) forming a protrusion on the cut end surface of the glass plate on the negative side in the y-axis direction;
The cutting method of the glass plate as described in said (2).
(4) In a right-handed xyz orthogonal coordinate space, the first main surface constitutes an xy plane, the scanning direction of the laser beam is an x-axis plus direction, and the first direction in the normal direction of the first main surface When the main surface side is the z-axis direction plus side and the second main surface side is the z-axis direction minus side,
The glass plate cut end surface on the y-axis direction minus side of the glass plate divided into the y-axis direction plus side and the y-axis direction minus side by shifting the region from the scanning path to the y-axis direction minus side. The method for cutting a glass plate according to (1), wherein a chamfered portion is formed on the glass plate.
(5) forming a protrusion on the cut end surface of the glass plate on the positive side in the y-axis direction;
The cutting method of the glass plate as described in said (4).
(6) The method according to any one of (1) to (5), further comprising a step of dividing the glass plate along the scribe line by applying a bending force to the glass plate on which the scribe line is formed. A method for cutting a glass plate as described in 1.
(7) The optical axis of the laser beam is parallel to the normal direction of the first main surface.
The method for cutting a glass plate according to any one of the above (1) to (6).
(8) The method for cutting a glass plate according to any one of (1) to (7), further comprising a step of forming an initial crack serving as a starting point of the scribe line on an end surface of the glass plate.
(9) The wavelength of the laser beam is 250 to 5000 nm.
The method for cutting a glass plate according to any one of the above (1) to (8).
(1)ガラス板の第1主面から第2主面へレーザ光を透過させつつ当該レーザ光を走査することにより、前記第1主面及び前記第2主面にスクライブ線を形成するステップを備え、
走査する前記レーザ光の後方において、前記レーザ光の走査経路からずらした領域を冷却しながら前記レーザ光を走査する、ガラス板の切断方法。
(2)右手系のxyz直交座標空間において、前記第1主面がxy平面を構成し、前記レーザ光の走査方向をx軸プラス方向とし、前記第1主面の法線方向の前記第1主面側をz軸方向プラス側、前記第2主面側をz軸方向マイナス側とした場合、
前記領域を前記走査経路からy軸方向プラス側にずらすことにより、y軸方向プラス側とy軸方向マイナス側とに分割される前記ガラス板の前記y軸方向プラス側の前記ガラス板の切断端面に面取部を形成する、上記(1)に記載のガラス板の切断方法。
(3)前記y軸方向マイナス側の前記ガラス板の切断端面に突起部を形成する、
上記(2)に記載のガラス板の切断方法。
(4)右手系のxyz直交座標空間において、前記第1主面がxy平面を構成し、前記レーザ光の走査方向をx軸プラス方向とし、前記第1主面の法線方向の前記第1主面側をz軸方向プラス側、前記第2主面側をz軸方向マイナス側とした場合、
前記領域を前記走査経路からy軸方向マイナス側にずらすことにより、y軸方向プラス側とy軸方向マイナス側とに分割される前記ガラス板の前記y軸方向マイナス側の前記ガラス板の切断端面に面取部を形成する、上記(1)に記載のガラス板の切断方法。
(5)前記y軸方向プラス側の前記ガラス板の切断端面に突起部を形成する、
上記(4)に記載のガラス板の切断方法。
(6)前記スクライブ線が形成された前記ガラス板に折り曲げ力を加えることにより、前記スクライブ線に沿って前記ガラス板を分割するステップを更に備える、上記(1)~(5)のいずれか一つに記載のガラス板の切断方法。
(7)前記レーザ光の光軸を前記第1主面の法線方向と平行にする、
上記(1)~(6)のいずれか一つに記載のガラス板の切断方法。
(8)前記ガラス板の端面に前記スクライブ線の起点となる初期クラックを形成するステップを更に備える、上記(1)~(7)のいずれか一つに記載のガラス板の切断方法。
(9)前記レーザ光の波長を250~5000nmとする、
上記(1)~(8)のいずれか一つに記載のガラス板の切断方法。 One aspect of the present invention provides the following glass plate cutting method.
(1) A step of forming a scribe line on the first main surface and the second main surface by scanning the laser light while transmitting the laser light from the first main surface of the glass plate to the second main surface. Prepared,
A method for cutting a glass plate, wherein the laser beam is scanned behind the laser beam to be scanned while cooling a region shifted from the scanning path of the laser beam.
(2) In a right-handed xyz orthogonal coordinate space, the first principal surface constitutes an xy plane, the scanning direction of the laser light is an x-axis plus direction, and the first direction in the normal direction of the first principal surface When the main surface side is the z-axis direction plus side and the second main surface side is the z-axis direction minus side,
The glass plate cut end surface on the y-axis direction plus side of the glass plate divided into the y-axis direction plus side and the y-axis direction minus side by shifting the region from the scanning path to the y-axis direction plus side. The method for cutting a glass plate according to (1), wherein a chamfered portion is formed on the glass plate.
(3) forming a protrusion on the cut end surface of the glass plate on the negative side in the y-axis direction;
The cutting method of the glass plate as described in said (2).
(4) In a right-handed xyz orthogonal coordinate space, the first main surface constitutes an xy plane, the scanning direction of the laser beam is an x-axis plus direction, and the first direction in the normal direction of the first main surface When the main surface side is the z-axis direction plus side and the second main surface side is the z-axis direction minus side,
The glass plate cut end surface on the y-axis direction minus side of the glass plate divided into the y-axis direction plus side and the y-axis direction minus side by shifting the region from the scanning path to the y-axis direction minus side. The method for cutting a glass plate according to (1), wherein a chamfered portion is formed on the glass plate.
(5) forming a protrusion on the cut end surface of the glass plate on the positive side in the y-axis direction;
The cutting method of the glass plate as described in said (4).
(6) The method according to any one of (1) to (5), further comprising a step of dividing the glass plate along the scribe line by applying a bending force to the glass plate on which the scribe line is formed. A method for cutting a glass plate as described in 1.
(7) The optical axis of the laser beam is parallel to the normal direction of the first main surface.
The method for cutting a glass plate according to any one of the above (1) to (6).
(8) The method for cutting a glass plate according to any one of (1) to (7), further comprising a step of forming an initial crack serving as a starting point of the scribe line on an end surface of the glass plate.
(9) The wavelength of the laser beam is 250 to 5000 nm.
The method for cutting a glass plate according to any one of the above (1) to (8).
本発明によれば、生産性に優れたガラス板の切断方法を提供することができる。
According to the present invention, it is possible to provide a method for cutting a glass plate with excellent productivity.
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.
<実施の形態1>
まず、図1~図5を参照して、ガラス板の上面及び下面にそれぞれスクライブ線を形成する方法について説明する。図1は、ガラス板の上下面にそれぞれスクライブ線を形成する方法を説明するための斜視図である。図2は、図1のガラス板の上面におけるレーザ光のビーム形状を示す平面図である。図3は、図1のガラス板の下面におけるレーザ光のビーム形状を示す平面図である。図4は、図2のIV-IV線に沿った断面図である。図5は、図2のV-V線に沿った断面図である。 <Embodiment 1>
First, a method of forming scribe lines on the upper and lower surfaces of a glass plate will be described with reference to FIGS. FIG. 1 is a perspective view for explaining a method of forming scribe lines on the upper and lower surfaces of a glass plate. FIG. 2 is a plan view showing a beam shape of laser light on the upper surface of the glass plate of FIG. FIG. 3 is a plan view showing a beam shape of laser light on the lower surface of the glass plate of FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. FIG. 5 is a sectional view taken along line VV in FIG.
まず、図1~図5を参照して、ガラス板の上面及び下面にそれぞれスクライブ線を形成する方法について説明する。図1は、ガラス板の上下面にそれぞれスクライブ線を形成する方法を説明するための斜視図である。図2は、図1のガラス板の上面におけるレーザ光のビーム形状を示す平面図である。図3は、図1のガラス板の下面におけるレーザ光のビーム形状を示す平面図である。図4は、図2のIV-IV線に沿った断面図である。図5は、図2のV-V線に沿った断面図である。 <Embodiment 1>
First, a method of forming scribe lines on the upper and lower surfaces of a glass plate will be described with reference to FIGS. FIG. 1 is a perspective view for explaining a method of forming scribe lines on the upper and lower surfaces of a glass plate. FIG. 2 is a plan view showing a beam shape of laser light on the upper surface of the glass plate of FIG. FIG. 3 is a plan view showing a beam shape of laser light on the lower surface of the glass plate of FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. FIG. 5 is a sectional view taken along line VV in FIG.
図1~図4において、矢印方向はガラス板におけるレーザ光の照射位置の変位方向を示す。図5において、矢印方向は応力の作用方向を示す。図4及び図5において、ガラス板の熱変形を誇張して示す。ガラス板の熱変形の様子は有限要素法解析によって確認できる。
図1~図5に示した右手系のxyz直交座標空間において、ガラス板10の両方の主面(上面11及び下面12)は、いずれもxy平面に平行である。また、レーザ光は、z軸マイナス方向に照射され、かつ、x軸プラス方向に走査される。レーザ光の光軸はz軸に平行である。 1 to 4, the arrow direction indicates the displacement direction of the irradiation position of the laser beam on the glass plate. In FIG. 5, the arrow direction indicates the direction of action of stress. 4 and 5, the thermal deformation of the glass plate is exaggerated. The state of thermal deformation of the glass plate can be confirmed by finite element analysis.
In the right-handed xyz orthogonal coordinate space shown in FIGS. 1 to 5, both main surfaces (upper surface 11 and lower surface 12) of the glass plate 10 are both parallel to the xy plane. The laser light is irradiated in the z-axis minus direction and scanned in the x-axis plus direction. The optical axis of the laser beam is parallel to the z axis.
図1~図5に示した右手系のxyz直交座標空間において、ガラス板10の両方の主面(上面11及び下面12)は、いずれもxy平面に平行である。また、レーザ光は、z軸マイナス方向に照射され、かつ、x軸プラス方向に走査される。レーザ光の光軸はz軸に平行である。 1 to 4, the arrow direction indicates the displacement direction of the irradiation position of the laser beam on the glass plate. In FIG. 5, the arrow direction indicates the direction of action of stress. 4 and 5, the thermal deformation of the glass plate is exaggerated. The state of thermal deformation of the glass plate can be confirmed by finite element analysis.
In the right-handed xyz orthogonal coordinate space shown in FIGS. 1 to 5, both main surfaces (
ガラス板の切断方法は、ガラス板10にスクライブ線31、32を形成するスクライブ工程を有する。ガラス板10のガラスの種類は、特に限定されないが、例えばソーダライムガラス、無アルカリガラス等が挙げられる。ガラス板10の厚さは、ガラス板10の用途に応じて適宜設定され、例えば0.005cm~2.5cmである。ガラス板10は、非強化ガラスと強化ガラスのいずれであってもよいが、非強化ガラスの方が好ましい。
The glass plate cutting method includes a scribing step of forming scribe lines 31 and 32 on the glass plate 10. Although the kind of glass of the glass plate 10 is not specifically limited, For example, soda-lime glass, an alkali free glass, etc. are mentioned. The thickness of the glass plate 10 is appropriately set according to the use of the glass plate 10, and is, for example, 0.005 cm to 2.5 cm. The glass plate 10 may be either non-tempered glass or tempered glass, but non-tempered glass is preferred.
スクライブ工程は、ガラス板10を上面11側から下面12側に透過するレーザ光20によってガラス板10を局所的に加熱し、ガラス板10におけるレーザ光20の照射位置を変位させる。ガラス板10に生じる熱応力によって、ガラス板10の上面11にスクライブ線31が形成されると同時に、ガラス板10の下面12にスクライブ線32が形成される。これにより、ガラス板10を裏返さずに、ガラス板10に外力を加えて、ガラス板10を割断することができる。例えば、ガラス板10を裏返さずに弾性体上に載せ、ガラス板10を上方から押すことで、ガラス板10の下面12に引張応力が生じ、ガラス板10がスクライブ線32に沿って割断できる。
In the scribing process, the glass plate 10 is locally heated by the laser light 20 that passes through the glass plate 10 from the upper surface 11 side to the lower surface 12 side, and the irradiation position of the laser light 20 on the glass plate 10 is displaced. The scribe lines 31 are formed on the lower surface 12 of the glass plate 10 at the same time as the scribe lines 31 are formed on the upper surface 11 of the glass plate 10 due to the thermal stress generated in the glass plate 10. Thereby, it is possible to cleave the glass plate 10 by applying an external force to the glass plate 10 without turning the glass plate 10 upside down. For example, by placing the glass plate 10 on an elastic body without turning over and pushing the glass plate 10 from above, tensile stress is generated on the lower surface 12 of the glass plate 10, and the glass plate 10 can be cleaved along the scribe line 32. .
また、本実施の形態では、ガラス板10の上面11にもスクライブ線31が形成されているので、ガラス板10の上面11及び下面12における切断精度が良い。さらに、本実施の形態では、1本のレーザ光20でガラス板10の上面11及び下面12にそれぞれスクライブ線を同時に形成するので、ガラス板10の上面11及び下面12に形成されるスクライブ線の位置関係が所望の位置関係になりやすい。例えば、レーザ光20がガラス板10の上面11に対して垂直に入射する場合、ガラス板10の上面11の法線方向から見て、ガラス板10の上面11に形成されるスクライブ線31と、ガラス板10の下面12に形成されるスクライブ線32とが重なりやすい。よって、ガラス板10の割断面が、ガラス板10の上面11や下面12に対して垂直になりやすい。
In this embodiment, since the scribe line 31 is also formed on the upper surface 11 of the glass plate 10, the cutting accuracy on the upper surface 11 and the lower surface 12 of the glass plate 10 is good. Furthermore, in the present embodiment, the scribe lines are simultaneously formed on the upper surface 11 and the lower surface 12 of the glass plate 10 with one laser beam 20, so that the scribe lines formed on the upper surface 11 and the lower surface 12 of the glass plate 10 are formed. The positional relationship tends to be a desired positional relationship. For example, when the laser beam 20 is perpendicularly incident on the upper surface 11 of the glass plate 10, a scribe line 31 formed on the upper surface 11 of the glass plate 10 when viewed from the normal direction of the upper surface 11 of the glass plate 10; The scribe line 32 formed on the lower surface 12 of the glass plate 10 tends to overlap. Therefore, the fractured surface of the glass plate 10 tends to be perpendicular to the upper surface 11 and the lower surface 12 of the glass plate 10.
スクライブ線31、32の起点となる初期クラック33は、例えば図1に示すようにガラス板10の端面13に予め形成されてよい。初期クラック33は、ガラス板10の上面11や下面12に達していてよく、ガラス板10の上面11や下面12にも形成されてよい。初期クラック33は、スクライブ線31、32の共通の起点となる。
The initial crack 33 which becomes the starting point of the scribe lines 31 and 32 may be formed in advance on the end surface 13 of the glass plate 10 as shown in FIG. The initial crack 33 may reach the upper surface 11 and the lower surface 12 of the glass plate 10, and may also be formed on the upper surface 11 and the lower surface 12 of the glass plate 10. The initial crack 33 is a common starting point for the scribe lines 31 and 32.
なお、初期クラックは、ガラス板10の端面13に形成される場合、ガラス板10の上面11のみに達してもよいし、ガラス板10の下面12のみに達していてもよいし、ガラス板10の上面11及び下面12に達していなくてもよい。また、初期クラックは、ガラス板10の上面11及び下面12のそれぞれに形成されてもよく、この場合、端面13に達していてもよいし、端面13に達していなくてもよい。初期クラックは、ガラス板10の上面11及び下面12の両面、及びガラス板10の端面13の少なくとも一方に形成されていればよい。
In addition, when an initial crack is formed in the end surface 13 of the glass plate 10, it may reach only the upper surface 11 of the glass plate 10, may reach only the lower surface 12 of the glass plate 10, or the glass plate 10 The upper surface 11 and the lower surface 12 may not be reached. Further, the initial crack may be formed on each of the upper surface 11 and the lower surface 12 of the glass plate 10, and in this case, it may reach the end surface 13 or may not reach the end surface 13. The initial crack may be formed on at least one of both the upper surface 11 and the lower surface 12 of the glass plate 10 and the end surface 13 of the glass plate 10.
初期クラック33の形成方法は、一般的な方法であってよく、例えばカッター、ヤスリ、レーザ等を用いる方法であってよい。ガラス板10の端面13が砥石で研削されたものである場合、研削によって形成されるマイクロクラックが初期クラックとして利用可能である。
The formation method of the initial crack 33 may be a general method, for example, a method using a cutter, a file, a laser, or the like. When the end surface 13 of the glass plate 10 is ground with a grindstone, microcracks formed by grinding can be used as initial cracks.
ガラス板10の上面11の一部は、レーザ光20で加熱され、図4及び図5に示すように、レーザ光20の照射位置の移動軌跡を中心として左右対称に上に凸に膨らむ。上に凸に膨らむ部分では、レーザ光20の照射位置の変位方向と直交する方向の引張応力が生じる。この引張応力によって、初期クラック33を起点とするクラックがレーザ光20の照射位置の移動軌跡に沿って伸び、スクライブ線31が形成される。スクライブ線31の先端は、ガラス板10の上面11におけるレーザ光20の照射位置、またはその前方近傍にある。
Part of the upper surface 11 of the glass plate 10 is heated by the laser beam 20 and bulges upward and symmetrically about the movement locus of the irradiation position of the laser beam 20 as shown in FIGS. In the portion that bulges upward, a tensile stress in a direction orthogonal to the direction of displacement of the irradiation position of the laser beam 20 is generated. Due to this tensile stress, the crack starting from the initial crack 33 extends along the movement locus of the irradiation position of the laser beam 20, and the scribe line 31 is formed. The tip of the scribe line 31 is at the irradiation position of the laser beam 20 on the upper surface 11 of the glass plate 10 or in the vicinity of the front thereof.
同様に、ガラス板10の下面12の一部は、レーザ光20で加熱され、図4及び図5に示すように、レーザ光20の照射位置の移動軌跡を中心として左右対称に下に凸に膨らむ。下に凸に膨らむ部分では、レーザ光20の照射位置の変位方向と直交する方向の引張応力が生じる。この引張応力によって、初期クラック33を起点とするクラックがレーザ光20の照射位置の移動軌跡に沿って伸び、スクライブ線32が形成される。スクライブ線32の先端は、ガラス板10の下面12におけるレーザ光20の照射位置、またはその前方近傍にある。
Similarly, a part of the lower surface 12 of the glass plate 10 is heated by the laser beam 20, and as shown in FIGS. 4 and 5, protrudes downward symmetrically about the movement locus of the irradiation position of the laser beam 20. Swell. In the portion that bulges downward, a tensile stress in a direction orthogonal to the direction of displacement of the irradiation position of the laser beam 20 is generated. Due to the tensile stress, the crack starting from the initial crack 33 extends along the movement locus of the irradiation position of the laser beam 20, and the scribe line 32 is formed. The tip of the scribe line 32 is at the irradiation position of the laser beam 20 on the lower surface 12 of the glass plate 10 or in the vicinity of the front thereof.
スクライブ線31、32は、いずれもガラス板10におけるレーザ光20の照射位置の変位に伴って伸びる。ガラス板10におけるレーザ光20の照射位置の変位は、切断装置のフレームに対する、ガラス板10の支持体の移動もしくは回転、またはレーザ光20の光源22の移動によって行われ、両者で行われてもよい。また、ガラス板10におけるレーザ光20の照射位置の変位は、光源22から出射したレーザ光20をガラス板10に向けて反射するガルバノミラーの回転によって行われてもよい。
The scribe lines 31 and 32 both extend with the displacement of the irradiation position of the laser beam 20 on the glass plate 10. The displacement of the irradiation position of the laser beam 20 on the glass plate 10 is performed by the movement or rotation of the support of the glass plate 10 relative to the frame of the cutting device, or the movement of the light source 22 of the laser beam 20, even if both are performed. Good. Further, the displacement of the irradiation position of the laser beam 20 on the glass plate 10 may be performed by rotation of a galvanometer mirror that reflects the laser beam 20 emitted from the light source 22 toward the glass plate 10.
ガラス板10の上面11や下面12にそれぞれスクライブ線を形成できるか否かは、主に、初期クラック33の形成位置、レーザ光20の照射条件で決まる。レーザ光20の照射条件としては、例えば(1)光源22の出力、(2)ガラス板10に対するレーザ光20の透過率、(3)ガラス板10の上面11や下面12におけるレーザ光20のビーム形状、(4)ガラス板10の上面11におけるレーザ光20のパワー密度(P1)と、ガラス板10の下面12におけるレーザ光20のパワー密度(P2)との比(P1/P2)などが挙げられる。
Whether or not a scribe line can be formed on each of the upper surface 11 and the lower surface 12 of the glass plate 10 is mainly determined by the formation position of the initial crack 33 and the irradiation condition of the laser beam 20. The irradiation conditions of the laser beam 20 include, for example, (1) the output of the light source 22, (2) the transmittance of the laser beam 20 with respect to the glass plate 10, and (3) the beam of the laser beam 20 on the upper surface 11 and the lower surface 12 of the glass plate 10. (4) Ratio (P1 / P2) of the power density (P1) of the laser beam 20 on the upper surface 11 of the glass plate 10 and the power density (P2) of the laser beam 20 on the lower surface 12 of the glass plate 10 It is done.
ガラス板10の上面11におけるレーザ光20の強度をI0とし、ガラス板10中を距離(D)(単位[cm])だけ移動したときのレーザ光20の強度をIとすると、I=I0×exp(-α×D)の式が成立する。この式は、ランベルト・ベールの法則と呼ばれるものである。αはレーザ光20に対するガラス板10の吸収係数(単位[cm-1])を表し、レーザ光20の波長やガラス板10の化学組成等で決まる。αは紫外可視近赤外分光光度計等により測定される。
Assuming that the intensity of the laser beam 20 on the upper surface 11 of the glass plate 10 is I 0 and the intensity of the laser beam 20 when moving through the glass plate 10 by a distance (D) (unit [cm]) is I, I = I The expression 0 × exp (−α × D) is established. This equation is called Lambert-Beer's law. α represents the absorption coefficient (unit [cm −1 ]) of the glass plate 10 with respect to the laser light 20, and is determined by the wavelength of the laser light 20, the chemical composition of the glass plate 10, and the like. α is measured by an ultraviolet visible near infrared spectrophotometer or the like.
レーザ光20に対するガラス板10の吸収係数(α)(単位[cm-1])と、レーザ光20がガラス板10の上面11から下面12まで移動する距離(M)(単位[cm])との積(α×M)は、好ましくは0よりも大きく3.0以下である。ガラス板10に対するレーザ光20の内部透過率が高く、ガラス板10の下面12が十分に加熱できる。α×Mは、より好ましくは2.3以下(内部透過率10%以上)、さらに好ましくは1.6以下(内部透過率20%以上)である。α×Mが小さすぎると、内部透過率が高すぎ、吸収効率が低すぎるので、好ましくは0.002以上(内部透過率99.8%以下)、より好ましくは0.01以上(内部透過率99%以下)、さらに好ましくは0.02以上(内部透過率98%以下)である。内部透過率は、ガラス板10の上面11で反射がないとしたときの透過率である。
The absorption coefficient (α) (unit [cm −1 ]) of the glass plate 10 with respect to the laser beam 20, the distance (M) (unit [cm]) that the laser beam 20 moves from the upper surface 11 to the lower surface 12 of the glass plate 10, The product of (α × M) is preferably larger than 0 and not larger than 3.0. The internal transmittance of the laser beam 20 with respect to the glass plate 10 is high, and the lower surface 12 of the glass plate 10 can be sufficiently heated. α × M is more preferably 2.3 or less (internal transmittance of 10% or more), and further preferably 1.6 or less (internal transmittance of 20% or more). If α × M is too small, the internal transmittance is too high and the absorption efficiency is too low. Therefore, it is preferably 0.002 or more (internal transmittance 99.8% or less), more preferably 0.01 or more (internal transmittance). 99% or less), more preferably 0.02 or more (internal transmittance of 98% or less). The internal transmittance is a transmittance when there is no reflection on the upper surface 11 of the glass plate 10.
なお、ガラス板10の加熱温度は、ガラスの徐冷点以下の温度であることが好ましい。ガラス板の加熱温度がガラスの徐冷点の温度を超えると、ガラスが粘性流動し、熱応力が緩和され、スクライブ線31、32の形成が困難である。
In addition, it is preferable that the heating temperature of the glass plate 10 is the temperature below the annealing point of glass. When the heating temperature of the glass plate exceeds the temperature of the annealing point of the glass, the glass is viscously flowed, the thermal stress is relaxed, and the scribe lines 31 and 32 are difficult to form.
レーザ光20がガラス板10の上面11に垂直に入射する場合、レーザ光20がガラス板10の上面11から下面12まで移動する距離(M)は、ガラス板10の板厚(t)と同じ値となる。一方、レーザ光20は、ガラス板10の上面11に斜めに入射する場合、スネルの法則に従って屈折するので、屈折角をγとすると、レーザ光20がガラス板10の上面11から下面12まで移動する距離(M)は、M=t/cosγの式で近似的に求められる。
When the laser beam 20 is perpendicularly incident on the upper surface 11 of the glass plate 10, the distance (M) that the laser beam 20 moves from the upper surface 11 to the lower surface 12 of the glass plate 10 is the same as the thickness (t) of the glass plate 10. Value. On the other hand, when the laser beam 20 is incident obliquely on the upper surface 11 of the glass plate 10, the laser beam 20 is refracted according to Snell's law. Therefore, when the refraction angle is γ, the laser beam 20 moves from the upper surface 11 to the lower surface 12 of the glass plate 10. The distance (M) to be obtained is approximately obtained by the equation M = t / cos γ.
光源22としては、例えば波長が800~1100nmの近赤外線(以下、単に「近赤外線」という)のレーザが用いられる。近赤外線レーザとしては、例えば、Ybファイバーレーザ(波長:1000~1100nm)、Ybディスクレーザ(波長:1000~1100nm)、Nd:YAGレーザ(波長:1064nm)、高出力半導体レーザ(波長:808~980nm)が挙げられる。これらの近赤外線レーザは、高出力で安価であり、また、α×Mを所望の範囲に調整するのが容易である。
As the light source 22, for example, a near-infrared (hereinafter simply referred to as “near-infrared”) laser having a wavelength of 800 to 1100 nm is used. As the near-infrared laser, for example, a Yb fiber laser (wavelength: 1000 to 1100 nm), a Yb disk laser (wavelength: 1000 to 1100 nm), an Nd: YAG laser (wavelength: 1064 nm), a high-power semiconductor laser (wavelength: 808 to 980 nm) ). These near-infrared lasers are high-powered and inexpensive, and it is easy to adjust α × M within a desired range.
なお、本実施の形態では、光源22として高出力で安価な近赤外線レーザが用いられるが、波長が250~5000nmの光源が使用可能である。例えば、UVレーザ(波長:355nm)、グリーンレーザ(波長:532nm)、Ho:YAGレーザ(波長:2080nm)、Er:YAGレーザ(2940nm)、中赤外光パラメトリック発振器を使用したレーザ(波長:2600~3450nm)等が挙げられる。また、レーザ光20の発振方式に制限はなく、レーザ光を連続発振するCWレーザ、レーザ光を断続発振するパルスレーザのいずれも使用可能である。また、レーザ光20の強度分布に制限はなく、ガウシアン型であっても、トップハット型であってもよい。
In the present embodiment, a high-power and inexpensive near-infrared laser is used as the light source 22, but a light source having a wavelength of 250 to 5000 nm can be used. For example, UV laser (wavelength: 355 nm), green laser (wavelength: 532 nm), Ho: YAG laser (wavelength: 2080 nm), Er: YAG laser (2940 nm), laser using a mid-infrared light parametric oscillator (wavelength: 2600) To 3450 nm). The oscillation method of the laser beam 20 is not limited, and either a CW laser that continuously oscillates the laser beam or a pulse laser that oscillates the laser beam intermittently can be used. The intensity distribution of the laser beam 20 is not limited, and may be a Gaussian type or a top hat type.
近赤外線レーザの場合、ガラス板10中の鉄(Fe)の含有量、コバルト(Co)の含有量、銅(Cu)の含有量が多くなるほど、吸収係数(α)が大きくなる。また、この場合、ガラス板10中の希土類元素(例えばYb)の含有量が多くなるほど、希土類原子の吸収波長付近で吸収係数(α)が大きくなる。吸収係数(α)の調節にはガラスの透明性、及びコストの観点から鉄が用いられ、コバルト、銅、及び希土類元素はガラス板10中に実質的に含まれていなくてもよい。
In the case of a near-infrared laser, the absorption coefficient (α) increases as the content of iron (Fe), the content of cobalt (Co), and the content of copper (Cu) in the glass plate 10 increase. In this case, the absorption coefficient (α) increases in the vicinity of the absorption wavelength of the rare earth atom as the content of the rare earth element (for example, Yb) in the glass plate 10 increases. The adjustment of the absorption coefficient (α) uses iron from the viewpoints of glass transparency and cost, and cobalt, copper, and rare earth elements may not be substantially contained in the glass plate 10.
ところで、上面11におけるレーザ光20のy軸方向のビーム幅W1が小さいほど、上に凸に膨らむ部分が急峻であり、レーザ光20の変位方向(x軸方向)に直交する方向(y軸方向)の引張応力が大きい。同様に、下面12におけるレーザ光20のy軸方向のビーム幅W2が小さいほど、下に凸に膨らむ部分が急峻であり、レーザ光20の変位方向(x軸方向)に直交する方向(y軸方向)の引張応力が大きい。
By the way, the smaller the beam width W1 of the laser beam 20 in the y-axis direction on the upper surface 11, the steeper the portion that bulges upward, and the direction perpendicular to the displacement direction (x-axis direction) of the laser beam 20 (y-axis direction). ) Tensile stress is large. Similarly, the smaller the beam width W2 of the laser beam 20 in the y-axis direction on the lower surface 12, the steeper the portion that bulges downward, and the direction (y-axis) orthogonal to the displacement direction (x-axis direction) of the laser beam 20 Direction) tensile stress is large.
そこで、レーザ光20は、上面11におけるy軸方向のビーム幅W1がガラス板10の板厚以下であることが好ましい。また、レーザ光20は、下面12におけるy軸方向のビーム幅W2がガラス板10の板厚以下であることが好ましい。ガラス板10の上面11において上に凸に膨らむ部分、及び、ガラス板10の下面12において下に凸に膨らむ部分が十分に急峻であり、ガラス板10の上面11や下面12にスクライブ線を形成するのに十分な引張応力が生じる。
Therefore, the laser beam 20 preferably has a beam width W1 in the y-axis direction on the upper surface 11 equal to or less than the thickness of the glass plate 10. Further, the laser beam 20 preferably has a beam width W2 in the y-axis direction on the lower surface 12 equal to or less than the thickness of the glass plate 10. A portion bulging upward on the upper surface 11 of the glass plate 10 and a portion bulging downward on the lower surface 12 of the glass plate 10 are sufficiently steep, and scribe lines are formed on the upper surface 11 and the lower surface 12 of the glass plate 10. Sufficient tensile stress is generated to do this.
上面11におけるレーザ光20の変位方向(x軸方向)のビーム幅L1、及び、下面12におけるレーザ光20の変位方向(x軸方向)のビーム幅L2は、それぞれ、特に限定されない。L1、L2が短ければ、曲線状のスクライブ線31、32の形成が容易である。また、L1、L2が長ければ、ガラス板10における特定の位置の加熱時間が同じ場合、ガラス板10におけるレーザ光20の照射位置の変位速度が速く、スクライブ線31、32が短時間で形成できる。
The beam width L1 in the displacement direction (x-axis direction) of the laser beam 20 on the upper surface 11 and the beam width L2 in the displacement direction (x-axis direction) of the laser beam 20 on the lower surface 12 are not particularly limited. If L1 and L2 are short, the curved scribe lines 31 and 32 can be easily formed. Moreover, if L1 and L2 are long, when the heating time of the specific position in the glass plate 10 is the same, the displacement speed of the irradiation position of the laser beam 20 in the glass plate 10 is fast, and the scribe lines 31 and 32 can be formed in a short time. .
ガラス板10の上面11や下面12におけるレーザ光20のビーム形状は、特に限定されないが、好ましくは円形である。スクライブ線の曲線部分を形成する場合、レーザ光20の照射位置の軌跡の幅が一定であり、スクライブ線の位置精度が良い。
The beam shape of the laser beam 20 on the upper surface 11 and the lower surface 12 of the glass plate 10 is not particularly limited, but is preferably circular. When the curved portion of the scribe line is formed, the width of the locus of the irradiation position of the laser beam 20 is constant, and the position accuracy of the scribe line is good.
レーザ光20がガラス板10を上面11側から下面12側に透過する間、レーザ光20の強度(W)はランベルト・ベールの法則に従って減衰する。そして、ガラス板10のレーザ光20が透過する部分の温度は、主にレーザ光20のパワー密度(単位[W/cm2])などで決まる。
While the laser beam 20 passes through the glass plate 10 from the upper surface 11 side to the lower surface 12 side, the intensity (W) of the laser beam 20 is attenuated according to Lambert-Beer's law. And the temperature of the part which the laser beam 20 of the glass plate 10 permeate | transmits is mainly determined by the power density (unit [W / cm < 2 >]) of the laser beam 20, etc. FIG.
そこで、レーザ光20は、ガラス板10の上面11でのパワー密度(P1)と、ガラス板10の下面12でのパワー密度(P2)との比(P1/P2)が0.5~2.0であることが好ましい。P1/P2は、P1/P2=S2/S1/exp(-α×M)の式で算出する。S1はガラス板10の上面11におけるレーザ光20の照射面積を表し、S2はガラス板10の下面12におけるレーザ光20の照射面積を表す。P1/P2が0.5~2.0であると、ガラス板10の上面11におけるレーザ光20の照射位置の温度と、ガラス板10の下面12におけるレーザ光20の照射位置の温度とが同程度になる。よって、ガラス板10の上面11において上に凸に膨らむ部分と、ガラス板10の下面12において下に凸に膨らむ部分とが、同程度に急峻になる。その結果、ガラス板10の上面11に形成されるスクライブ線31の深さと、ガラス板10の下面12に形成されるスクライブ線32の深さとが、同程度の深さとなる。P1/P2は、より好ましくは0.6以上、さらに好ましくは0.67以上である。また、P1/P2は、より好ましくは1.67以下、さらに好ましくは1.5以下である。
Therefore, the laser beam 20 has a ratio (P1 / P2) of the power density (P1) on the upper surface 11 of the glass plate 10 and the power density (P2) on the lower surface 12 of the glass plate 10 to 0.5-2. 0 is preferred. P1 / P2 is calculated by the equation P1 / P2 = S2 / S1 / exp (−α × M). S1 represents the irradiation area of the laser beam 20 on the upper surface 11 of the glass plate 10, and S2 represents the irradiation area of the laser beam 20 on the lower surface 12 of the glass plate 10. When P1 / P2 is 0.5 to 2.0, the temperature of the irradiation position of the laser beam 20 on the upper surface 11 of the glass plate 10 and the temperature of the irradiation position of the laser beam 20 on the lower surface 12 of the glass plate 10 are the same. It will be about. Accordingly, the portion that bulges upward on the upper surface 11 of the glass plate 10 and the portion that bulges downward on the lower surface 12 of the glass plate 10 are steep to the same extent. As a result, the depth of the scribe line 31 formed on the upper surface 11 of the glass plate 10 and the depth of the scribe line 32 formed on the lower surface 12 of the glass plate 10 are approximately the same depth. P1 / P2 is more preferably 0.6 or more, and further preferably 0.67 or more. Further, P1 / P2 is more preferably 1.67 or less, and further preferably 1.5 or less.
ガラス板10の上面11におけるレーザ光20の照射面積(S1)と、ガラス板10の下面12におけるレーザ光20の照射面積(S2)との比(S1/S2)の調節のため、光源22とガラス板10との間には、図示されない集光レンズ等が配設される。レーザ光20の集光位置がガラス板10よりも下側の場合、S1/S2は1よりも大きい。
In order to adjust the ratio (S1 / S2) between the irradiation area (S1) of the laser beam 20 on the upper surface 11 of the glass plate 10 and the irradiation area (S2) of the laser beam 20 on the lower surface 12 of the glass plate 10, A condensing lens or the like (not shown) is disposed between the glass plate 10 and the like. When the condensing position of the laser beam 20 is below the glass plate 10, S1 / S2 is larger than 1.
ガラス板の切断方法は、ガラス板10に外力を加え、スクライブ線31、32に沿ってガラス板10を割断するブレイク工程をさらに有してよい。ガラス板を切断できる。
また、図1のようにスクライブ線31、32を別々に形成するだけでなく、レーザ光20の照射条件を調整し、生じる熱応力を変化させることにより、スクライブ線31、32を互いに結合させることもできる。すなわち、ブレイク工程を経ずに、レーザ照射のみによりフルカットすることもできる。 The method for cutting the glass plate may further include a breaking step in which an external force is applied to theglass plate 10 and the glass plate 10 is cut along the scribe lines 31 and 32. A glass plate can be cut.
In addition to forming the scribe lines 31 and 32 separately as shown in FIG. 1, the scribe lines 31 and 32 are coupled to each other by adjusting the irradiation condition of thelaser light 20 and changing the generated thermal stress. You can also. That is, a full cut can be performed only by laser irradiation without going through a break process.
また、図1のようにスクライブ線31、32を別々に形成するだけでなく、レーザ光20の照射条件を調整し、生じる熱応力を変化させることにより、スクライブ線31、32を互いに結合させることもできる。すなわち、ブレイク工程を経ずに、レーザ照射のみによりフルカットすることもできる。 The method for cutting the glass plate may further include a breaking step in which an external force is applied to the
In addition to forming the scribe lines 31 and 32 separately as shown in FIG. 1, the scribe lines 31 and 32 are coupled to each other by adjusting the irradiation condition of the
レーザ光20の照射位置よりも後方では、レーザ光20の照射位置近傍と異なり、板厚全体に引張応力が発生する。この引張応力は、レーザ光20の照射位置での加熱により発生する圧縮応力の反力としてレーザ光20の照射位置よりも後方で形成される。そのため、レーザ光20の照射位置よりも後方の引張応力が大きい場合、上面11側のスクライブ線31と下面12側のスクライブ線32とがそれぞれ板厚内部方向に伸展し、結合する。ここで、スクライブ線31、32が結合することにより形成されるクラックの形状は、熱応力場やガラス板10の剛性の違いによって決定される。
In the rear of the irradiation position of the laser light 20, unlike the vicinity of the irradiation position of the laser light 20, a tensile stress is generated in the entire plate thickness. This tensile stress is formed behind the irradiation position of the laser beam 20 as a reaction force of the compressive stress generated by heating at the irradiation position of the laser beam 20. Therefore, when the tensile stress behind the irradiation position of the laser beam 20 is larger, the scribe line 31 on the upper surface 11 side and the scribe line 32 on the lower surface 12 side extend in the plate thickness inside direction and are combined. Here, the shape of the crack formed by combining the scribe lines 31 and 32 is determined by the difference in the thermal stress field and the rigidity of the glass plate 10.
レーザ光20の照射に基づく熱応力によりスクライブ線31、32が結合するか否かは、主に、ガラス板10に対するレーザ光20の透過率、光源22の出力などで決まる。光源22の出力が大きく、レーザ光20の照射位置よりも後方の引張応力が大きくなると、スクライブ線31、32が結合する。光源22の出力が小さい場合、スクライブ線31、32を結合させるために、光源22とは別の加熱光源から出射された加熱光をガラス板10に対して照射してもよい。
Whether or not the scribe lines 31 and 32 are coupled by the thermal stress based on the irradiation of the laser beam 20 is mainly determined by the transmittance of the laser beam 20 with respect to the glass plate 10 and the output of the light source 22. When the output of the light source 22 is large and the tensile stress behind the irradiation position of the laser beam 20 becomes large, the scribe lines 31 and 32 are coupled. When the output of the light source 22 is small, the glass plate 10 may be irradiated with heating light emitted from a heating light source different from the light source 22 in order to combine the scribe lines 31 and 32.
本実施の形態によるガラス板10の切断は、特許文献1に開示されたフルカットよりも、ガラス板10の上面11及び下面12における切断精度が良い。特許文献1に開示されたフルカットでは、レーザ光の照射位置の後方を冷媒で冷却することにより引張応力を発生させ、この引張応力によりガラス板10を板厚方向に貫通するクラックを形成する。つまり、特許文献1では、レーザ光の照射によりスクライブ線を形成していない。
The cutting of the glass plate 10 according to the present embodiment has better cutting accuracy on the upper surface 11 and the lower surface 12 of the glass plate 10 than the full cut disclosed in Patent Document 1. In the full cut disclosed in Patent Document 1, tensile stress is generated by cooling the rear of the irradiation position of the laser beam with a refrigerant, and a crack penetrating the glass plate 10 in the thickness direction is formed by this tensile stress. That is, in Patent Document 1, no scribe line is formed by laser light irradiation.
これに対し、本実施の形態では、ガラス板10の上面11及び下面12におけるレーザ光20の照射位置に生じた引張応力によりスクライブ線31、32を形成する。よって、スクライブ線31、32の先端位置とレーザ光20の照射位置とが近く、スクライブ線31、32の位置とレーザ光20の軌跡とが一致しやすい。従って、ガラス板10の上面11及び下面12に形成されるスクライブ線31、32の位置精度が良く、ガラス板10の上面11及び下面12における切断精度が良い。
In contrast, in the present embodiment, the scribe lines 31 and 32 are formed by the tensile stress generated at the irradiation position of the laser beam 20 on the upper surface 11 and the lower surface 12 of the glass plate 10. Therefore, the tip positions of the scribe lines 31 and 32 are close to the irradiation position of the laser light 20, and the positions of the scribe lines 31 and 32 and the locus of the laser light 20 are likely to coincide with each other. Therefore, the positional accuracy of the scribe lines 31 and 32 formed on the upper surface 11 and the lower surface 12 of the glass plate 10 is good, and the cutting accuracy on the upper surface 11 and the lower surface 12 of the glass plate 10 is good.
また、本実施の形態に係るガラス板の切断方法では、レーザ光20の照射領域に空気を吹き付けることにより冷却する。図6は、ガラス板の切断に用いる冷却ノズルの断面図である。図6に示す冷却ノズル28により、ガラス板10の上面11に気体を吹き付ける。図6に示すように、冷却ノズル28は、内部を気体(空気や窒素など)が矢印方向へ流れるように、テーパー状の空洞が形成されている。ここで、冷却ノズル28の軸はレーザ光20の光軸と一致しており、レンズ25で集光されたレーザ光20は、冷却ノズル28の内部を通過し、冷却ノズル28の先端に設けられた直径φnの開口部から出射される。また、レーザ光20の照射領域の移動と同期して(つまり、レーザ光と同じ走査速度で)移動することができる。このような構成により、レーザ照射部が気体により冷却される。レーザ照射部よりも広い領域を冷却することが好ましい。この冷却により、レーザ光の照射領域で引張応力が発生しやすくなる。すなわち、スクライブ線が生じやすくなり安定した加工が可能になる。
Further, in the method for cutting a glass plate according to the present embodiment, cooling is performed by blowing air to the irradiation region of the laser beam 20. FIG. 6 is a cross-sectional view of a cooling nozzle used for cutting a glass plate. Gas is blown to the upper surface 11 of the glass plate 10 by the cooling nozzle 28 shown in FIG. As shown in FIG. 6, the cooling nozzle 28 is formed with a tapered cavity so that gas (air, nitrogen, etc.) flows in the direction of the arrow. Here, the axis of the cooling nozzle 28 coincides with the optical axis of the laser beam 20, and the laser beam 20 collected by the lens 25 passes through the inside of the cooling nozzle 28 and is provided at the tip of the cooling nozzle 28. The light is emitted from an opening having a diameter φn. Further, it can move in synchronization with the movement of the irradiation region of the laser beam 20 (that is, at the same scanning speed as the laser beam). With such a configuration, the laser irradiation unit is cooled by the gas. It is preferable to cool an area wider than the laser irradiation part. By this cooling, tensile stress is easily generated in the laser light irradiation region. That is, a scribe line is easily generated and stable processing is possible.
冷却ガス流量、冷却ノズル28の開口部の直径φn、及び冷却ノズル28の先端とガラス板10の上面11とのギャップG2は任意に決定することができる。ここで、冷却ノズル28の開口部の直径φnが小さい程、ガラス板10に吹き付けられる気体の流速が速くなり、ガラス板10の上面11における冷却能力が向上する。また、冷却ノズル28の先端とガラス板10の上面11とのギャップG2が小さい程、ガラス板10の上面11における冷却能力が向上する。例えば、ビーム径0.3mmのレーザ照射部に対して、直径φn=1mmの冷却ノズル28を用いて、室温の冷却エアを流量20L/minで吹き付ける。なお、下面12側にも同様の冷却ノズルを設ければ、一層効果的である。
The cooling gas flow rate, the diameter φn of the opening of the cooling nozzle 28, and the gap G2 between the tip of the cooling nozzle 28 and the upper surface 11 of the glass plate 10 can be arbitrarily determined. Here, the smaller the diameter φn of the opening of the cooling nozzle 28, the faster the flow rate of the gas blown to the glass plate 10, and the cooling capacity on the upper surface 11 of the glass plate 10 is improved. Moreover, the cooling capability in the upper surface 11 of the glass plate 10 improves, so that the gap G2 between the front-end | tip of the cooling nozzle 28 and the upper surface 11 of the glass plate 10 is small. For example, room temperature cooling air is blown at a flow rate of 20 L / min using a cooling nozzle 28 having a diameter φn = 1 mm to a laser irradiation portion having a beam diameter of 0.3 mm. It is more effective if a similar cooling nozzle is provided on the lower surface 12 side.
続けて、図7、図8を参照して、本実施の形態に係るガラス板の切断方法について詳細に説明する。図7は、ガラス板10を上面11側から見た平面図である。図7の例では、x軸プラス方向へのレーザ光20の走査により、ガラス板10がy軸方向プラス側の本体部10aとy軸方向マイナス側の切除部10bとに分割される。図8は、図7に示したレーザ走査により形成されたスクライブ線に沿って割断されたガラス板10を端面13側(x軸方向マイナス側)から見た側面図である。なお、図7、図8におけるxyz座標は、図1と一致している。
Subsequently, the glass plate cutting method according to the present embodiment will be described in detail with reference to FIGS. FIG. 7 is a plan view of the glass plate 10 as viewed from the upper surface 11 side. In the example of FIG. 7, the glass plate 10 is divided into a main body portion 10a on the positive side in the y-axis direction and a cut-out portion 10b on the negative side in the y-axis direction by scanning the laser beam 20 in the positive direction along the x-axis. FIG. 8 is a side view of the glass plate 10 cut along the scribe line formed by the laser scanning shown in FIG. 7 as viewed from the end face 13 side (the negative side in the x-axis direction). Note that the xyz coordinates in FIGS. 7 and 8 coincide with those in FIG.
図7に示すように、本実施の形態に係る切断方法では、上面11及び下面12においてレーザ光20の光軸から所定の距離(シフト量)Δxだけ後方(x軸方向マイナス側)かつレーザ走査経路からy軸方向に所定の距離Δyだけずれた位置を目掛けて冷却する。これにより、レーザ光20の後方において、レーザ走査経路からy軸方向に距離Δyずれた上面11の領域40a及び下面12の領域40bが冷却される。なお、上面11における領域40a及び下面12における領域40bのいずれか一方のみを冷却してもよいが、両方を冷却することが好ましい。特に板厚が厚い場合は、両方を冷却することが有効である。
As shown in FIG. 7, in the cutting method according to the present embodiment, the upper surface 11 and the lower surface 12 are rearward (a negative amount in the x-axis direction) by a predetermined distance (shift amount) Δx from the optical axis of the laser light 20 and laser scanning is performed. Cooling is performed aiming at a position shifted from the path by a predetermined distance Δy in the y-axis direction. Thereby, behind the laser beam 20, the region 40a on the upper surface 11 and the region 40b on the lower surface 12 that are shifted from the laser scanning path by the distance Δy in the y-axis direction are cooled. Note that only one of the region 40a on the upper surface 11 and the region 40b on the lower surface 12 may be cooled, but it is preferable to cool both. In particular, when the plate is thick, it is effective to cool both.
図7の例では、レーザ走査経路からy軸方向プラス側にずれた領域40a、40bを冷却する。この場合、図8に示すように、本体部10aの切断端面の両コーナー部に、面取部10cが形成される。一方、切除部10bの切断端面の両コーナー部に、突起部10dが形成される。このように、レーザ光20よりも後方かつレーザ走査経路からずれた領域を冷却しながらレーザ光20を走査することにより、スクライブ線31、32を形成すると同時に、切断端面に面取部10cを形成することができる。
In the example of FIG. 7, the regions 40a and 40b that are shifted from the laser scanning path to the positive side in the y-axis direction are cooled. In this case, as shown in FIG. 8, chamfered portions 10c are formed at both corner portions of the cut end surface of the main body portion 10a. On the other hand, protrusions 10d are formed at both corners of the cut end surface of the cut portion 10b. In this way, by scanning the laser beam 20 while cooling the region behind the laser beam 20 and shifted from the laser scanning path, the scribe lines 31 and 32 are formed, and at the same time, the chamfered portion 10c is formed on the cut end surface. can do.
具体的には、レーザ光20の後方(x軸方向マイナス側)において、レーザ走査経路からy軸方向プラス側にずれた上面11上の領域40a及び下面12上の領域40bを冷却しながらレーザ光20を走査する。これにより、図8に示すように、分割した2つのガラス板のうち、y軸方向プラス側のガラス板(本体部10a)に面取部10cを形成することができる。ここで、スクライブ線31、32が、ガラス板10の上面11及び下面12から深さ方向へ、それぞれz軸方向(主面に垂直)でなくy軸方向マイナス側に傾いて伸張している。この深さ方向に傾いたスクライブ線31、32がすなわち面取部10cとなる。つまり、本実施の形態に係るガラス板の切断方法は、スクライブ線の導入と同時に面取加工を行うことができるため、従来のガラス板の切断方法に比べて生産性に優れている。
Specifically, the laser beam is cooled while cooling the region 40a on the upper surface 11 and the region 40b on the lower surface 12 which are shifted from the laser scanning path to the plus side in the y-axis direction behind the laser beam 20 (minus side in the x-axis direction). 20 is scanned. Thereby, as shown in FIG. 8, the chamfering part 10c can be formed in the glass plate (main-body part 10a) of the plus side of a y-axis among the divided | segmented two glass plates. Here, the scribe lines 31 and 32 extend from the upper surface 11 and the lower surface 12 of the glass plate 10 in the depth direction while being inclined in the y-axis direction minus side instead of the z-axis direction (perpendicular to the main surface). The scribe lines 31 and 32 inclined in the depth direction are chamfered portions 10c. That is, the method for cutting a glass plate according to the present embodiment can perform chamfering simultaneously with the introduction of the scribe line, and thus has higher productivity than the conventional method for cutting a glass plate.
ここで、図9は、x軸プラス方向へレーザ光20を走査中のガラス板10をy軸方向プラス側から見た側面図である。図9に示すように、上面11側から冷却ノズル29aにより領域40aを冷却し、下面12側から冷却ノズル29bにより領域40bを冷却する。冷却ノズル29a、29bは、レーザ光20と同調してx軸プラス方向へ移動する。図9の例では、冷却ノズル29a、29bの中心軸とガラス板10の主面(上面11及び下面12)とのなす角が角度θ(0°≦θ≦90°)となるように設置されている。角度θは特に限定されないが、角度θが大きい程、ガラス板10の冷却効率も増す。すなわち、θ=90°の場合(冷却ノズル29a、29bの中心軸とガラス板10の主面の法線とが一致する場合)、ガラス板10の冷却効率が最大となる。なお、図9におけるxyz座標は、図1と一致している。
Here, FIG. 9 is a side view of the glass plate 10 that is scanning the laser beam 20 in the positive x-axis direction as viewed from the positive y-axis direction. As shown in FIG. 9, the region 40a is cooled by the cooling nozzle 29a from the upper surface 11 side, and the region 40b is cooled by the cooling nozzle 29b from the lower surface 12 side. The cooling nozzles 29a and 29b move in the plus direction of the x axis in synchronization with the laser beam 20. In the example of FIG. 9, the angle between the central axis of the cooling nozzles 29a and 29b and the main surface (upper surface 11 and lower surface 12) of the glass plate 10 is set to an angle θ (0 ° ≦ θ ≦ 90 °). ing. The angle θ is not particularly limited, but the cooling efficiency of the glass plate 10 increases as the angle θ increases. That is, when θ = 90 ° (when the central axes of the cooling nozzles 29a and 29b coincide with the normal line of the main surface of the glass plate 10), the cooling efficiency of the glass plate 10 is maximized. Note that the xyz coordinates in FIG. 9 coincide with those in FIG.
続けて、図10、図11を参照して、本実施の形態に係るガラス板の切断方法について詳細に説明する。図10、図11は、レーザ走査経路からy軸方向マイナス側にずれた領域40a、40bを冷却する場合を示している。図10、図11は、それぞれ図7、図8に対応している。すなわち、図10は、ガラス板10を上面11側から見た平面図である。図10の例では、図7と同様にx軸プラス方向へのレーザ光の走査により、ガラス板10がy軸方向マイナス側の本体部10aとy軸方向プラス側の切除部10bとに分割される。つまり、図7では図面上側の端部を切除しているのに対し、図10では図面下側の端部を切除している。そのため、本体部10aと切除部10bとの位置関係が逆転している。図11は、図10に示したレーザ走査により形成されたスクライブ線31、32に沿って割断されたガラス板10を端面13側(x軸方向マイナス側)から見た側面図である。なお、図10、図11におけるxyz座標は、図1と一致している。
Subsequently, with reference to FIG. 10 and FIG. 11, the method for cutting the glass plate according to the present embodiment will be described in detail. 10 and 11 show a case where the regions 40a and 40b that are shifted from the laser scanning path to the negative side in the y-axis direction are cooled. 10 and 11 correspond to FIGS. 7 and 8, respectively. That is, FIG. 10 is a plan view of the glass plate 10 viewed from the upper surface 11 side. In the example of FIG. 10, the glass plate 10 is divided into a main body portion 10a on the negative side in the y-axis direction and a cut-out portion 10b on the positive side in the y-axis direction in the same manner as FIG. The That is, in FIG. 7, the upper end of the drawing is cut away, whereas in FIG. 10, the lower end of the drawing is cut off. Therefore, the positional relationship between the main body portion 10a and the cut portion 10b is reversed. FIG. 11 is a side view of the glass plate 10 cut along the scribe lines 31 and 32 formed by the laser scanning shown in FIG. 10 when viewed from the end face 13 side (x-axis direction minus side). In addition, the xyz coordinate in FIG. 10, FIG. 11 corresponds with FIG.
図10に示すように、レーザ走査経路からy軸方向マイナス側にずれた領域40a、40bを冷却する場合、図11に示すように、本体部10aの切断端面の両コーナー部に、面取部10cが形成される。一方、切除部10bの切断端面の両コーナー部に、突起部10dが形成される。このように、レーザ光20よりも後方かつレーザ走査経路からずれた領域を冷却しながらレーザ光20を走査することにより、スクライブ線31、32を形成すると同時に、切断端面に面取部10cを形成することができる。
As shown in FIG. 10, when cooling the regions 40a and 40b shifted from the laser scanning path to the negative side in the y-axis direction, as shown in FIG. 11, chamfered portions are formed at both corners of the cut end surface of the main body 10a. 10c is formed. On the other hand, protrusions 10d are formed at both corners of the cut end surface of the cut portion 10b. In this way, by scanning the laser beam 20 while cooling the region behind the laser beam 20 and shifted from the laser scanning path, the scribe lines 31 and 32 are formed, and at the same time, the chamfered portion 10c is formed on the cut end surface. can do.
具体的には、レーザ光20の後方(x軸方向マイナス側)において、レーザ走査経路からy軸方向マイナス側にずれた上面11上の領域40a及び下面12上の領域40bを冷却しながらレーザ光20を走査する。これにより、図11に示すように、分割した2つのガラス板のうち、y軸方向マイナス側のガラス板(本体部10a)に面取部10cを形成することができる。ここで、スクライブ線31、32が、ガラス板10の上面11及び下面12から深さ方向へ、それぞれz軸方向(主面に垂直)でなくy軸方向プラス側に傾いて伸張している。この深さ方向に傾いたスクライブ線31、32がすなわち面取部10cとなる。つまり、本実施の形態に係るガラス板の切断方法は、スクライブ線の導入と同時に面取加工を行うことができるため、従来のガラス板の切断方法に比べて生産性に優れている。
Specifically, the laser beam is cooled while cooling the region 40a on the upper surface 11 and the region 40b on the lower surface 12 which are shifted from the laser scanning path to the minus side in the y-axis direction behind the laser beam 20 (minus side in the x-axis direction). 20 is scanned. Accordingly, as shown in FIG. 11, the chamfered portion 10c can be formed on the glass plate (main body portion 10a) on the negative side in the y-axis direction among the two divided glass plates. Here, the scribe lines 31 and 32 extend from the upper surface 11 and the lower surface 12 of the glass plate 10 in the depth direction so as to incline in the y-axis direction plus side rather than in the z-axis direction (perpendicular to the main surface). The scribe lines 31 and 32 inclined in the depth direction are chamfered portions 10c. That is, the method for cutting a glass plate according to the present embodiment can perform chamfering simultaneously with the introduction of the scribe line, and thus has higher productivity than the conventional method for cutting a glass plate.
<実施の形態1の変形例>
続けて、図12、図13を参照して、実施の形態1の変形例に係るガラス板の切断方法について詳細に説明する。図12、図13は、図10、図11と同様に、レーザ走査経路からy軸方向マイナス側にずれた領域40a、40bを冷却する場合を示している。図12、図13は、それぞれ図10、図11に対応している。すなわち、図12は、ガラス板10を上面11側から見た平面図である。図12の例では、図10と同様にx軸プラス方向へのレーザ光の走査により、ガラス板10がy軸方向プラス側の本体部10aとy軸方向マイナス側の切除部10bとに分割される。つまり、図10では図面下側の端部を切除しているのに対し、図12では図面上側の端部を切除している。そのため、本体部10aと切除部10bとの位置関係が逆転している。図13は、図12に示したレーザ走査により形成されたスクライブ線31、32に沿って割断されたガラス板10を端面13側(x軸方向マイナス側)から見た側面図である。なお、図12、図13におけるxyz座標は、図1と一致している。 <Modification of Embodiment 1>
Next, with reference to FIG. 12 and FIG. 13, a glass plate cutting method according to a modification of the first embodiment will be described in detail. 12 and 13 show a case where the regions 40a and 40b that are shifted from the laser scanning path to the minus side in the y-axis direction are cooled, as in FIGS. 12 and 13 correspond to FIGS. 10 and 11, respectively. That is, FIG. 12 is a plan view of the glass plate 10 viewed from the upper surface 11 side. In the example of FIG. 12, the glass plate 10 is divided into a main body portion 10a on the positive side in the y-axis direction and a cut-out portion 10b on the negative side in the y-axis direction in the same manner as in FIG. The That is, in FIG. 10, the lower end of the drawing is cut out, whereas in FIG. 12, the upper end of the drawing is cut off. Therefore, the positional relationship between the main body portion 10a and the cut portion 10b is reversed. FIG. 13 is a side view of the glass plate 10 cut along the scribe lines 31 and 32 formed by the laser scanning shown in FIG. 12 when viewed from the end face 13 side (x-axis direction minus side). Note that the xyz coordinates in FIGS. 12 and 13 are the same as those in FIG.
続けて、図12、図13を参照して、実施の形態1の変形例に係るガラス板の切断方法について詳細に説明する。図12、図13は、図10、図11と同様に、レーザ走査経路からy軸方向マイナス側にずれた領域40a、40bを冷却する場合を示している。図12、図13は、それぞれ図10、図11に対応している。すなわち、図12は、ガラス板10を上面11側から見た平面図である。図12の例では、図10と同様にx軸プラス方向へのレーザ光の走査により、ガラス板10がy軸方向プラス側の本体部10aとy軸方向マイナス側の切除部10bとに分割される。つまり、図10では図面下側の端部を切除しているのに対し、図12では図面上側の端部を切除している。そのため、本体部10aと切除部10bとの位置関係が逆転している。図13は、図12に示したレーザ走査により形成されたスクライブ線31、32に沿って割断されたガラス板10を端面13側(x軸方向マイナス側)から見た側面図である。なお、図12、図13におけるxyz座標は、図1と一致している。 <Modification of Embodiment 1>
Next, with reference to FIG. 12 and FIG. 13, a glass plate cutting method according to a modification of the first embodiment will be described in detail. 12 and 13 show a case where the
図13に示すように、レーザ走査経路からy軸方向マイナス側にずれた領域40a、40bを冷却する場合、図11と同様に、分割された2つのガラス板のうち、y軸方向マイナス側のガラス板に面取部10cが形成される。そのため、y軸方向プラス側の本体部10aに突起部10dが形成され、y軸方向マイナス側の切除部10bに面取部10cが形成される。このように、本実施の形態に係るガラス板の切断方法により、本体部10aの切断端面に、面取部10cではなく、突起部10dを形成することもできる。
As shown in FIG. 13, when cooling the regions 40a and 40b shifted from the laser scanning path to the negative side in the y-axis direction, as in FIG. A chamfered portion 10c is formed on the glass plate. Therefore, a protrusion 10d is formed on the main body portion 10a on the y axis direction plus side, and a chamfered portion 10c is formed on the cut portion 10b on the minus side in the y axis direction. Thus, by the method for cutting a glass plate according to the present embodiment, the protruding portion 10d can be formed on the cut end surface of the main body portion 10a instead of the chamfered portion 10c.
ここで、スクライブ線31、32が、ガラス板10の上面11及び下面12からガラス板10の深さ方向へ、それぞれz軸方向(主面に垂直)でなくy軸方向プラス側に傾いて伸張している。この深さ方向に傾いたスクライブ線31、32がすなわち突起部10dとなる。つまり、本実施の形態に係るガラス板の切断方法は、スクライブ線の導入と同時に切断端面に突起部を形成することができる。そのため、そのような端面形状のガラス板の生産性に優れている。なお、このように端面に突起部を有するガラス板は、例えば当該端面を樹脂材料に固定するような用途に有用である。突起部を有することにより、樹脂材料に固定しやすくなる。
Here, the scribe lines 31 and 32 extend from the upper surface 11 and the lower surface 12 of the glass plate 10 in the depth direction of the glass plate 10 while being inclined in the y-axis direction plus side instead of the z-axis direction (perpendicular to the main surface). is doing. The scribe lines 31 and 32 inclined in the depth direction become the protrusions 10d. That is, the glass plate cutting method according to the present embodiment can form a protrusion on the cut end face simultaneously with the introduction of the scribe line. Therefore, it is excellent in productivity of such an end surface-shaped glass plate. In addition, the glass plate which has a projection part in an end surface in this way is useful for the use which fixes the said end surface to a resin material, for example. By having the protrusion, it is easy to fix to the resin material.
以上に説明したように、実施の形態1に係るガラス板の切断方法では、レーザ光20の後方(x軸方向マイナス側)において、レーザ走査経路からy軸方向にずれた領域40a、40bを冷却しながらレーザ光20を走査する。これにより、ガラス板10にスクライブ線31、32を導入すると同時に、ガラス板10の切断端面に面取部10cを形成することができる。そのため、実施の形態1に係るガラス板の切断方法は、従来のガラス板の切断方法に比べて生産性に優れている。具体的には、レーザ走査経路からy軸方向プラス側にずれた領域40a、40bを冷却することにより、分割した2つのガラス板のうち、y軸方向プラス側のガラス板に面取部10cを形成することができる。一方、レーザ走査経路からy軸方向マイナス側にずれた領域40a、40bを冷却することにより、分割した2つのガラス板のうち、y軸方向マイナス側のガラス板に面取部10cを形成することができる。また、レーザ出力や上面11または下面12におけるレーザ光の照射領域の大きさを調整することにより、スクライブ線31、32の傾き、すなわち面取部10cの傾きを制御することができる。
As described above, in the glass plate cutting method according to the first embodiment, the regions 40a and 40b that are shifted in the y-axis direction from the laser scanning path are cooled behind the laser beam 20 (minus side in the x-axis direction). While scanning, the laser beam 20 is scanned. Thereby, the chamfered portion 10 c can be formed on the cut end surface of the glass plate 10 at the same time when the scribe lines 31 and 32 are introduced into the glass plate 10. Therefore, the cutting method of the glass plate which concerns on Embodiment 1 is excellent in productivity compared with the cutting method of the conventional glass plate. Specifically, by cooling the regions 40a and 40b that are shifted to the y-axis direction plus side from the laser scanning path, the chamfered portion 10c is formed on the y-axis direction plus side glass plate out of the two divided glass plates. Can be formed. On the other hand, by cooling the regions 40a and 40b shifted from the laser scanning path to the negative side in the y-axis direction, the chamfered portion 10c is formed on the glass plate on the negative side in the y-axis direction among the two divided glass plates. Can do. Further, by adjusting the laser output and the size of the laser light irradiation region on the upper surface 11 or the lower surface 12, the inclination of the scribe lines 31 and 32, that is, the inclination of the chamfered portion 10c can be controlled.
以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.
(実施例1)
実施例1では、試験例11、12において、冷却する領域40a、40bのレーザ走査経路からの距離(y軸方向へのずれ量)Δyを試験例毎に変化させ、切断端面の形状を調査した。 (Example 1)
In Example 1, in Test Examples 11 and 12, the distance from the laser scanning path of the regions 40a and 40b to be cooled (shift amount in the y-axis direction) Δy was changed for each test example, and the shape of the cut end face was investigated. .
実施例1では、試験例11、12において、冷却する領域40a、40bのレーザ走査経路からの距離(y軸方向へのずれ量)Δyを試験例毎に変化させ、切断端面の形状を調査した。 (Example 1)
In Example 1, in Test Examples 11 and 12, the distance from the laser scanning path of the
[試験例11、12]
図14は、試験条件を模式的に示すガラス板10の平面図である。両試験例11、12において、図14に示すように、矩形状のガラス板(長辺100mm、短辺50mm、板厚3.1mm、旭硝子社製グリーン系有色透明ソーダライムシリカガラス)の上面に対してレーザ光を垂直に入射させた。レーザ光の光源は、Ybファイバーレーザ(波長1070nm)を用いた。レーザ光に対するガラス板の吸収係数(α)は2.86cm-1であり、α×Mは0.89(つまり、内部透過率は41.2%)であった。レーザ出力は30W、レーザ光の上面ビーム幅は2.73mm、下面ビーム幅は1.75mm、走査速度は10mm/sとした。 [Test Examples 11 and 12]
FIG. 14 is a plan view of theglass plate 10 schematically showing test conditions. In both Test Examples 11 and 12, on the upper surface of a rectangular glass plate (long side 100 mm, short side 50 mm, plate thickness 3.1 mm, green colored transparent soda lime silica glass manufactured by Asahi Glass Co., Ltd.), as shown in FIG. On the other hand, a laser beam was vertically incident. A Yb fiber laser (wavelength: 1070 nm) was used as a laser light source. The absorption coefficient (α) of the glass plate with respect to the laser beam was 2.86 cm −1 , and α × M was 0.89 (that is, the internal transmittance was 41.2%). The laser output was 30 W, the upper surface beam width of the laser light was 2.73 mm, the lower surface beam width was 1.75 mm, and the scanning speed was 10 mm / s.
図14は、試験条件を模式的に示すガラス板10の平面図である。両試験例11、12において、図14に示すように、矩形状のガラス板(長辺100mm、短辺50mm、板厚3.1mm、旭硝子社製グリーン系有色透明ソーダライムシリカガラス)の上面に対してレーザ光を垂直に入射させた。レーザ光の光源は、Ybファイバーレーザ(波長1070nm)を用いた。レーザ光に対するガラス板の吸収係数(α)は2.86cm-1であり、α×Mは0.89(つまり、内部透過率は41.2%)であった。レーザ出力は30W、レーザ光の上面ビーム幅は2.73mm、下面ビーム幅は1.75mm、走査速度は10mm/sとした。 [Test Examples 11 and 12]
FIG. 14 is a plan view of the
ガラス板10の上下面において、レーザ光のビーム形状は円形とした。両試験例について、図14に示すように、レーザ光はガラス板10の一方の長辺から他方の長辺までガラス板10の短辺と平行に走査した。レーザ走査位置のガラス板10の短辺からの距離dについては、d=10mmとした。
The beam shape of the laser light was circular on the upper and lower surfaces of the glass plate 10. For both test examples, as shown in FIG. 14, the laser beam was scanned from one long side of the glass plate 10 to the other long side in parallel with the short side of the glass plate 10. The distance d from the short side of the glass plate 10 at the laser scanning position was set to d = 10 mm.
冷却する領域40a、40bのレーザ光20の光軸からのx軸方向へのシフト量Δxについては、いずれもΔx=-2mmとした。
冷却ノズル29a、29bの先端に設けられた開口部の直径は1.0mmとした。冷却ノズル29a、29bから領域40a、40bへ吹き付ける冷却エアの流量は、それぞれ10L/minとした。冷却ノズル29a、29bの中心軸とガラス板10の主面(上面11及び下面12)との角度θ=45°とした。
変数である冷却する領域40a、40bのレーザ走査経路からの距離Δyについては、試験例11ではΔy=-2mm、試験例12ではΔy=2mmとした。 The shift amount Δx in the x-axis direction from the optical axis of thelaser light 20 in the cooling regions 40a and 40b is both set to Δx = −2 mm.
The diameter of the opening provided at the tip of the cooling nozzles 29a and 29b was 1.0 mm. The flow rates of the cooling air blown from the cooling nozzles 29a and 29b to the regions 40a and 40b were 10 L / min, respectively. The angle θ between the central axes of the cooling nozzles 29a and 29b and the main surface (upper surface 11 and lower surface 12) of the glass plate 10 was set to 45 °.
The distances Δy from the laser scanning path of the cooling regions 40a and 40b, which are variables, were Δy = −2 mm in Test Example 11 and Δy = 2 mm in Test Example 12.
冷却ノズル29a、29bの先端に設けられた開口部の直径は1.0mmとした。冷却ノズル29a、29bから領域40a、40bへ吹き付ける冷却エアの流量は、それぞれ10L/minとした。冷却ノズル29a、29bの中心軸とガラス板10の主面(上面11及び下面12)との角度θ=45°とした。
変数である冷却する領域40a、40bのレーザ走査経路からの距離Δyについては、試験例11ではΔy=-2mm、試験例12ではΔy=2mmとした。 The shift amount Δx in the x-axis direction from the optical axis of the
The diameter of the opening provided at the tip of the
The distances Δy from the laser scanning path of the
初期クラックは、ホイールカッターを用いて、ガラス板10の上面11から下面12に達するようにガラス板10の端面13に形成した。両試験例11、12について、レーザ光照射により上下面にスクライブ線31、32を導入した後、折り曲げ力を加えて割断した。
The initial crack was formed in the end surface 13 of the glass plate 10 so that it might reach the lower surface 12 from the upper surface 11 of the glass plate 10 using the wheel cutter. In both Test Examples 11 and 12, the scribe lines 31 and 32 were introduced into the upper and lower surfaces by laser light irradiation, and then cleaved by applying a bending force.
上述の実施の形態の説明と同様に、ガラス板10の主面をxy平面と平行とし、レーザ光がz軸マイナス方向に照射され、かつ、x軸プラス方向に走査されるものとして、以下に試験結果について説明する。図15は、試験例11、12の切断部をx軸方向マイナス側から観察した写真である。なお、図15におけるxyz座標は、図1と一致している。
Similarly to the description of the above-described embodiment, the main surface of the glass plate 10 is parallel to the xy plane, laser light is irradiated in the z-axis minus direction, and scanned in the x-axis plus direction. The test results will be described. FIG. 15 is a photograph of the cut parts of Test Examples 11 and 12 observed from the minus side in the x-axis direction. Note that the xyz coordinates in FIG. 15 coincide with those in FIG.
レーザ光20の後方(x軸方向マイナス側)において、レーザ走査経路(x軸)からy軸方向マイナス側にずれた領域を冷却した試験例11では、分割した2つのガラス板のうち、y軸方向マイナス側のガラス板に面取部10cが形成され、y軸方向プラス側のガラス板に突起部10dが形成された。つまり、図13に示した断面形状と同様になった。図15には、試験例11についての切断部の写真を示した。
In Test Example 11 in which a region shifted from the laser scanning path (x axis) to the y axis direction minus side is cooled behind the laser beam 20 (x axis direction minus side), the y axis of the two divided glass plates A chamfered portion 10c was formed on the glass plate on the minus side in the direction, and a protrusion 10d was formed on the glass plate on the plus side in the y-axis direction. That is, it became the same as the cross-sectional shape shown in FIG. In FIG. 15, the photograph of the cut part about the test example 11 was shown.
一方、レーザ光20の後方(x軸方向マイナス側)において、レーザ走査経路(x軸)からy軸方向プラス側にずれた領域を冷却した試験例12では、分割した2つのガラス板のうち、y軸方向プラス側のガラス板に面取部10cが形成され、y軸方向マイナス側のガラス板に突起部10dが形成された。つまり、図8に示した断面形状と同様になった。図15には、試験例12についての切断部の写真を示した。
On the other hand, in Test Example 12 in which the region shifted from the laser scanning path (x axis) to the y axis direction plus side is cooled behind the laser beam 20 (x axis direction minus side), among the two divided glass plates, A chamfered portion 10c was formed on the glass plate on the positive side in the y-axis direction, and a protrusion 10d was formed on the glass plate on the negative side in the y-axis direction. That is, it became the same as the cross-sectional shape shown in FIG. In FIG. 15, the photograph of the cut part about the test example 12 was shown.
実施例1では、レーザ光20の後方(x軸方向マイナス側)において、レーザ走査経路(x軸)からy軸方向にずれた領域を冷却しながらレーザ光20を走査した。これにより、ガラス板10にスクライブ線31、32を導入すると同時に、ガラス板10の切断端面に面取部10cを形成することができた。そのため、実施例1に係るガラス板の切断方法は、従来のガラス板の切断方法に比べて生産性に優れている。
In Example 1, the laser beam 20 was scanned while cooling a region shifted in the y-axis direction from the laser scanning path (x-axis) behind the laser beam 20 (minus side in the x-axis direction). Thereby, the chamfered part 10c was able to be formed in the cut end surface of the glass plate 10 simultaneously with introducing the scribe lines 31 and 32 into the glass plate 10. Therefore, the cutting method of the glass plate which concerns on Example 1 is excellent in productivity compared with the cutting method of the conventional glass plate.
(実施例2)
次に、実施例2でも、試験例21~23において、冷却する領域40a、40bのレーザ走査経路からの距離(y軸方向へのずれ量)Δyを試験例毎に変化させ、切断端面の形状を調査した。実施例1では、レーザ光照射によりスクライブ線31、32を導入した後、手動にて割断した。これに対し、実施例2では、ガラス板に吸収されるレーザパワーを増加させ、レーザ光照射のみによりフルカットする。この場合も、レーザ光照射により上下面にスクライブ線31、32が形成される。そして、この2つのスクライブ線31、32が、レーザ光照射位置よりも後方で結合することにより、ガラス板が切断される。すなわち、特許文献1に開示された切断方法とは、同じフルカットでも切断のメカニズムが異なる。 (Example 2)
Next, also in Example 2, in Test Examples 21 to 23, the distance (shift amount in the y-axis direction) Δy from the laser scanning path of the regions 40a and 40b to be cooled is changed for each test example, and the shape of the cut end face investigated. In Example 1, the scribe lines 31 and 32 were introduced by laser light irradiation, and then manually cleaved. On the other hand, in Example 2, the laser power absorbed by the glass plate is increased and a full cut is performed only by laser light irradiation. Also in this case, the scribe lines 31 and 32 are formed on the upper and lower surfaces by laser light irradiation. And these two scribe lines 31 and 32 couple | bond together behind a laser beam irradiation position, and a glass plate is cut | disconnected. That is, the cutting method disclosed in Patent Document 1 is different in cutting mechanism even with the same full cut.
次に、実施例2でも、試験例21~23において、冷却する領域40a、40bのレーザ走査経路からの距離(y軸方向へのずれ量)Δyを試験例毎に変化させ、切断端面の形状を調査した。実施例1では、レーザ光照射によりスクライブ線31、32を導入した後、手動にて割断した。これに対し、実施例2では、ガラス板に吸収されるレーザパワーを増加させ、レーザ光照射のみによりフルカットする。この場合も、レーザ光照射により上下面にスクライブ線31、32が形成される。そして、この2つのスクライブ線31、32が、レーザ光照射位置よりも後方で結合することにより、ガラス板が切断される。すなわち、特許文献1に開示された切断方法とは、同じフルカットでも切断のメカニズムが異なる。 (Example 2)
Next, also in Example 2, in Test Examples 21 to 23, the distance (shift amount in the y-axis direction) Δy from the laser scanning path of the
[試験例21~23]
全ての試験例21~23において、図14に示すように、矩形状のガラス板(長辺100mm、短辺50mm、板厚3.1mm、旭硝子社製グリーン系有色透明ソーダライムシリカガラス)の上面に対してレーザ光を垂直に入射させた。レーザ光の光源は、Ybファイバーレーザ(波長1070nm)を用いた。レーザ光に対するガラス板の吸収係数(α)は2.86cm-1であり、α×Mは0.89(つまり、内部透過率は41.2%)であった。レーザ出力は70W、レーザ光の上面ビーム幅は5.19mm、下面ビーム幅は4.22mm、走査速度は10mm/sとした。 [Test Examples 21 to 23]
In all Test Examples 21 to 23, as shown in FIG. 14, the upper surface of a rectangular glass plate (long side 100 mm, short side 50 mm, plate thickness 3.1 mm, green colored transparent soda lime silica glass manufactured by Asahi Glass Co., Ltd.) The laser beam was made to enter perpendicularly to. A Yb fiber laser (wavelength: 1070 nm) was used as a laser light source. The absorption coefficient (α) of the glass plate with respect to the laser beam was 2.86 cm −1 , and α × M was 0.89 (that is, the internal transmittance was 41.2%). The laser output was 70 W, the top beam width of the laser light was 5.19 mm, the bottom beam width was 4.22 mm, and the scanning speed was 10 mm / s.
全ての試験例21~23において、図14に示すように、矩形状のガラス板(長辺100mm、短辺50mm、板厚3.1mm、旭硝子社製グリーン系有色透明ソーダライムシリカガラス)の上面に対してレーザ光を垂直に入射させた。レーザ光の光源は、Ybファイバーレーザ(波長1070nm)を用いた。レーザ光に対するガラス板の吸収係数(α)は2.86cm-1であり、α×Mは0.89(つまり、内部透過率は41.2%)であった。レーザ出力は70W、レーザ光の上面ビーム幅は5.19mm、下面ビーム幅は4.22mm、走査速度は10mm/sとした。 [Test Examples 21 to 23]
In all Test Examples 21 to 23, as shown in FIG. 14, the upper surface of a rectangular glass plate (long side 100 mm, short side 50 mm, plate thickness 3.1 mm, green colored transparent soda lime silica glass manufactured by Asahi Glass Co., Ltd.) The laser beam was made to enter perpendicularly to. A Yb fiber laser (wavelength: 1070 nm) was used as a laser light source. The absorption coefficient (α) of the glass plate with respect to the laser beam was 2.86 cm −1 , and α × M was 0.89 (that is, the internal transmittance was 41.2%). The laser output was 70 W, the top beam width of the laser light was 5.19 mm, the bottom beam width was 4.22 mm, and the scanning speed was 10 mm / s.
ガラス板10の上下面において、レーザ光のビーム形状は円形とした。全ての試験例について、図14に示すように、レーザ光はガラス板10の一方の長辺から他方の長辺までガラス板10の短辺と平行に走査した。レーザ走査位置のガラス板10の短辺からの距離dについては、d=10mmとした。
The beam shape of the laser light was circular on the upper and lower surfaces of the glass plate 10. For all the test examples, as shown in FIG. 14, the laser beam was scanned in parallel with the short side of the glass plate 10 from one long side of the glass plate 10 to the other long side. The distance d from the short side of the glass plate 10 at the laser scanning position was set to d = 10 mm.
冷却する領域40a、40bのレーザ光20の光軸からのx軸方向へのシフト量Δxについては、いずれもΔx=-2mmとした。
冷却ノズル29a、29bの先端に設けられた開口部の直径は1.0mmとした。冷却ノズル29a、29bから領域40a、40bへ吹き付ける冷却エアの流量は、それぞれ10L/minとした。冷却ノズル29a、29bの中心軸とガラス板10の主面(上面11及び下面12)との角度θ=45°とした。
変数である冷却する領域40a、40bのレーザ走査経路からの距離Δyについては、試験例21ではΔy=0mm、試験例22ではΔy=-2mm、試験例23ではΔy=2mmとした。
初期クラックは、ホイールカッターを用いて、ガラス板10の上面11から下面12に達するようにガラス板10の端面13に形成した。 The shift amount Δx in the x-axis direction from the optical axis of thelaser light 20 in the cooling regions 40a and 40b is both set to Δx = −2 mm.
The diameter of the opening provided at the tip of the cooling nozzles 29a and 29b was 1.0 mm. The flow rates of the cooling air blown from the cooling nozzles 29a and 29b to the regions 40a and 40b were 10 L / min, respectively. The angle θ between the central axes of the cooling nozzles 29a and 29b and the main surface (upper surface 11 and lower surface 12) of the glass plate 10 was set to 45 °.
Regarding the distance Δy from the laser scanning path of the cooling regions 40a and 40b, which are variables, Δy = 0 mm in Test Example 21, Δy = −2 mm in Test Example 22, and Δy = 2 mm in Test Example 23.
The initial crack was formed in theend surface 13 of the glass plate 10 so that it might reach the lower surface 12 from the upper surface 11 of the glass plate 10 using the wheel cutter.
冷却ノズル29a、29bの先端に設けられた開口部の直径は1.0mmとした。冷却ノズル29a、29bから領域40a、40bへ吹き付ける冷却エアの流量は、それぞれ10L/minとした。冷却ノズル29a、29bの中心軸とガラス板10の主面(上面11及び下面12)との角度θ=45°とした。
変数である冷却する領域40a、40bのレーザ走査経路からの距離Δyについては、試験例21ではΔy=0mm、試験例22ではΔy=-2mm、試験例23ではΔy=2mmとした。
初期クラックは、ホイールカッターを用いて、ガラス板10の上面11から下面12に達するようにガラス板10の端面13に形成した。 The shift amount Δx in the x-axis direction from the optical axis of the
The diameter of the opening provided at the tip of the
Regarding the distance Δy from the laser scanning path of the
The initial crack was formed in the
実施例1と同様に、ガラス板10の主面をxy平面と平行とし、レーザ光がz軸マイナス方向に照射され、かつ、x軸プラス方向に走査されるものとして、以下に試験結果について説明する。
As in Example 1, the test results are described below assuming that the main surface of the glass plate 10 is parallel to the xy plane, the laser beam is irradiated in the z-axis minus direction, and scanned in the x-axis plus direction. To do.
実施例1と同様に、レーザ光20の後方(x軸方向マイナス側)において、レーザ走査経路(x軸)からy軸方向マイナス側にずれた領域を冷却した試験例22では、分割した2つのガラス板のうち、y軸方向マイナス側のガラス板に面取部10cが形成され、y軸方向プラス側のガラス板に突起部10dが形成された。つまり、図13に示した断面形状と同様になった。
As in Example 1, in the test example 22 in which the region shifted from the laser scanning path (x-axis) to the y-axis direction minus side behind the laser beam 20 (x-axis direction minus side) was cooled, Among the glass plates, the chamfered portion 10c was formed on the glass plate on the negative side in the y-axis direction, and the protruding portion 10d was formed on the glass plate on the positive side in the y-axis direction. That is, it became the same as the cross-sectional shape shown in FIG.
一方、レーザ光20の後方(x軸方向マイナス側)において、レーザ走査経路(x軸)からy軸方向プラス側にずれた領域を冷却した試験例23では、分割した2つのガラス板のうち、y軸方向プラス側のガラス板に面取部10cが形成され、y軸方向マイナス側のガラス板に突起部10dが形成された。つまり、図8に示した断面形状と同様になった。
なお、試験例21では、分割した2つのガラス板のうち、いずれに面取部10cが形成されるか定まらなかった。 On the other hand, in Test Example 23 in which the region shifted from the laser scanning path (x axis) to the y axis direction plus side is cooled behind the laser beam 20 (x axis direction minus side), of the two divided glass plates, A chamferedportion 10c was formed on the glass plate on the positive side in the y-axis direction, and a protrusion 10d was formed on the glass plate on the negative side in the y-axis direction. That is, it became the same as the cross-sectional shape shown in FIG.
In Test Example 21, it was not determined in which of the two divided glass plates the chamferedportion 10c was formed.
なお、試験例21では、分割した2つのガラス板のうち、いずれに面取部10cが形成されるか定まらなかった。 On the other hand, in Test Example 23 in which the region shifted from the laser scanning path (x axis) to the y axis direction plus side is cooled behind the laser beam 20 (x axis direction minus side), of the two divided glass plates, A chamfered
In Test Example 21, it was not determined in which of the two divided glass plates the chamfered
実施例2でも、レーザ光20の後方(x軸方向マイナス側)において、レーザ走査経路(x軸)からy軸方向にずれた領域を冷却しながらレーザ光20を走査した。これにより、ガラス板10にスクライブ線31、32を導入すると同時に、ガラス板10の切断端面に面取部10cを形成することができた。そのため、実施例2に係るガラス板の切断方法も、従来のガラス板の切断方法に比べて生産性に優れている。
Also in Example 2, the laser beam 20 was scanned while cooling a region shifted in the y-axis direction from the laser scanning path (x-axis) behind the laser beam 20 (minus side in the x-axis direction). Thereby, the chamfered part 10c was able to be formed in the cut end surface of the glass plate 10 simultaneously with introducing the scribe lines 31 and 32 into the glass plate 10. Therefore, the glass plate cutting method according to Example 2 is also more productive than the conventional glass plate cutting method.
以上、ガラス板の切断方法の実施の形態等を説明したが、本発明は上記実施の形態等に限定されず、特許請求の範囲に記載された範囲で、種々の変形及び改良が可能である。
例えば、ガラス板10の両面にスクライブ線31、32を形成するレーザ光を複数本同時にガラス板10に照射してもよい。
また、上記実施の形態等では、切断開始から切断終了までの期間において、レーザ光の走査経路からずらした領域を冷却しながらレーザ光を走査する例について述べたが、少なくとも切断開始時に冷却していればよい。
また、ガラス板10は、平板、湾曲板のいずれでもよく、表面に凹凸模様をつけた型板ガラス、金属製の網または線を内部に含む網入りガラス、合わせガラス、強化ガラスのいずれかであってもよい。 As mentioned above, although embodiment etc. of the cutting method of a glass plate were demonstrated, this invention is not limited to the said embodiment etc., A various deformation | transformation and improvement are possible in the range described in the claim. .
For example, a plurality of laser beams for forming the scribe lines 31 and 32 on both surfaces of theglass plate 10 may be irradiated onto the glass plate 10 simultaneously.
In the above-described embodiment and the like, the example in which the laser beam is scanned while cooling the region shifted from the laser beam scanning path in the period from the start of cutting to the end of cutting has been described. Just do it.
Further, theglass plate 10 may be either a flat plate or a curved plate, and may be any one of a template glass with a concavo-convex pattern on the surface, a meshed glass containing a metal net or wire inside, a laminated glass, and a tempered glass. May be.
例えば、ガラス板10の両面にスクライブ線31、32を形成するレーザ光を複数本同時にガラス板10に照射してもよい。
また、上記実施の形態等では、切断開始から切断終了までの期間において、レーザ光の走査経路からずらした領域を冷却しながらレーザ光を走査する例について述べたが、少なくとも切断開始時に冷却していればよい。
また、ガラス板10は、平板、湾曲板のいずれでもよく、表面に凹凸模様をつけた型板ガラス、金属製の網または線を内部に含む網入りガラス、合わせガラス、強化ガラスのいずれかであってもよい。 As mentioned above, although embodiment etc. of the cutting method of a glass plate were demonstrated, this invention is not limited to the said embodiment etc., A various deformation | transformation and improvement are possible in the range described in the claim. .
For example, a plurality of laser beams for forming the scribe lines 31 and 32 on both surfaces of the
In the above-described embodiment and the like, the example in which the laser beam is scanned while cooling the region shifted from the laser beam scanning path in the period from the start of cutting to the end of cutting has been described. Just do it.
Further, the
本出願は、2013年4月26日出願の日本特許出願2013-094108に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on Japanese Patent Application No. 2013-094108 filed on Apr. 26, 2013, the contents of which are incorporated herein by reference.
本発明によれば、生産性に優れたガラス板の切断方法を提供することができる。
According to the present invention, it is possible to provide a method for cutting a glass plate with excellent productivity.
10 ガラス板
10a 本体部
10b 切除部
10c 面取部
10d 突起部
11 上面
12 下面
13 端面
20 レーザ光
22 光源
25 レンズ
28、29a、29b 冷却ノズル
31、32 スクライブ線
33 初期クラック
40a、40b 領域 DESCRIPTION OFSYMBOLS 10 Glass plate 10a Main part 10b Cutting part 10c Chamfering part 10d Projection part 11 Upper surface 12 Lower surface 13 End surface 20 Laser light 22 Light source 25 Lens 28, 29a, 29b Cooling nozzle 31, 32 Scribe line 33 Initial crack 40a, 40b area | region
10a 本体部
10b 切除部
10c 面取部
10d 突起部
11 上面
12 下面
13 端面
20 レーザ光
22 光源
25 レンズ
28、29a、29b 冷却ノズル
31、32 スクライブ線
33 初期クラック
40a、40b 領域 DESCRIPTION OF
Claims (9)
- ガラス板の第1主面から第2主面へレーザ光を透過させつつ当該レーザ光を走査することにより、前記第1主面及び前記第2主面にスクライブ線を形成するステップを備え、
走査する前記レーザ光の後方において、前記レーザ光の走査経路からずらした領域を冷却しながら前記レーザ光を走査する、ガラス板の切断方法。 Forming a scribe line on the first main surface and the second main surface by scanning the laser light while transmitting the laser light from the first main surface of the glass plate to the second main surface;
A method for cutting a glass plate, wherein the laser beam is scanned behind the laser beam to be scanned while cooling a region shifted from the scanning path of the laser beam. - 右手系のxyz直交座標空間において、前記第1主面がxy平面を構成し、前記レーザ光の走査方向をx軸プラス方向とし、前記第1主面の法線方向の前記第1主面側をz軸方向プラス側、前記第2主面側をz軸方向マイナス側とした場合、
前記領域を前記走査経路からy軸方向プラス側にずらすことにより、y軸方向プラス側とy軸方向マイナス側とに分割される前記ガラス板の前記y軸方向プラス側の前記ガラス板の切断端面に面取部を形成する、請求項1に記載のガラス板の切断方法。 In the right-handed xyz orthogonal coordinate space, the first principal surface forms an xy plane, the scanning direction of the laser light is the x-axis plus direction, and the first principal surface side in the normal direction of the first principal surface Is the z-axis direction plus side, and the second main surface side is the z-axis direction minus side,
The glass plate cut end surface on the y-axis direction plus side of the glass plate divided into the y-axis direction plus side and the y-axis direction minus side by shifting the region from the scanning path to the y-axis direction plus side. The method for cutting a glass plate according to claim 1, wherein a chamfered portion is formed on the glass plate. - 前記y軸方向マイナス側の前記ガラス板の切断端面に突起部を形成する、
請求項2に記載のガラス板の切断方法。 Forming a protrusion on the cut end surface of the glass plate on the negative side in the y-axis direction;
The method for cutting a glass plate according to claim 2. - 右手系のxyz直交座標空間において、前記第1主面がxy平面を構成し、前記レーザ光の走査方向をx軸プラス方向とし、前記第1主面の法線方向の前記第1主面側をz軸方向プラス側、前記第2主面側をz軸方向マイナス側とした場合、
前記領域を前記走査経路からy軸方向マイナス側にずらすことにより、y軸方向プラス側とy軸方向マイナス側とに分割される前記ガラス板の前記y軸方向マイナス側の前記ガラス板の切断端面に面取部を形成する、請求項1に記載のガラス板の切断方法。 In the right-handed xyz orthogonal coordinate space, the first principal surface forms an xy plane, the scanning direction of the laser light is the x-axis plus direction, and the first principal surface side in the normal direction of the first principal surface Is the z-axis direction plus side, and the second main surface side is the z-axis direction minus side,
The glass plate cut end surface on the y-axis direction minus side of the glass plate divided into the y-axis direction plus side and the y-axis direction minus side by shifting the region from the scanning path to the y-axis direction minus side. The method for cutting a glass plate according to claim 1, wherein a chamfered portion is formed on the glass plate. - 前記y軸方向プラス側の前記ガラス板の切断端面に突起部を形成する、
請求項4に記載のガラス板の切断方法。 Forming a protrusion on the cut end surface of the glass plate on the positive side in the y-axis direction;
The method for cutting a glass plate according to claim 4. - 前記スクライブ線が形成された前記ガラス板に折り曲げ力を加えることにより、前記スクライブ線に沿って前記ガラス板を分割するステップを更に備える、請求項1~5のいずれか一項に記載のガラス板の切断方法。 The glass plate according to any one of claims 1 to 5, further comprising a step of dividing the glass plate along the scribe line by applying a bending force to the glass plate on which the scribe line is formed. Cutting method.
- 前記レーザ光の光軸を前記第1主面の法線方向と平行にする、
請求項1~6のいずれか一項に記載のガラス板の切断方法。 The optical axis of the laser beam is parallel to the normal direction of the first main surface,
The method for cutting a glass plate according to any one of claims 1 to 6. - 前記ガラス板の端面に前記スクライブ線の起点となる初期クラックを形成するステップを更に備える、請求項1~7のいずれか一項に記載のガラス板の切断方法。 The method for cutting a glass plate according to any one of claims 1 to 7, further comprising a step of forming an initial crack serving as a starting point of the scribe line on an end face of the glass plate.
- 前記レーザ光の波長を250~5000nmとする、
請求項1~8のいずれか一項に記載のガラス板の切断方法。 The wavelength of the laser beam is 250 to 5000 nm.
The method for cutting a glass plate according to any one of claims 1 to 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013094108A JP2016128365A (en) | 2013-04-26 | 2013-04-26 | Cutting method of glass plate |
JP2013-094108 | 2013-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014175147A1 true WO2014175147A1 (en) | 2014-10-30 |
Family
ID=51791726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/060872 WO2014175147A1 (en) | 2013-04-26 | 2014-04-16 | Method for cutting glass plate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016128365A (en) |
WO (1) | WO2014175147A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016047518A1 (en) * | 2014-09-24 | 2016-03-31 | 旭硝子株式会社 | Glass plate, laminated plate, method for manufacturing glass plate and method for manufacturing laminated plate |
JP2016060677A (en) * | 2014-09-19 | 2016-04-25 | 旭硝子株式会社 | Processing method of glass plate and processing device of glass plate |
WO2016156233A1 (en) * | 2015-03-27 | 2016-10-06 | Schott Ag | Method and device for the continuous cutting of glass |
CN112384481A (en) * | 2018-08-10 | 2021-02-19 | 日本电气硝子株式会社 | Method for manufacturing glass plate |
CN114845964A (en) * | 2020-02-05 | 2022-08-02 | 日本电气硝子株式会社 | Method for manufacturing glass plate |
CN114981221A (en) * | 2020-02-04 | 2022-08-30 | 日本电气硝子株式会社 | Glass plate and method for manufacturing glass plate |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018119560A1 (en) * | 2016-12-26 | 2018-07-05 | 江南大学 | Chemical salt coating assisted processing method for laser front-side etching of inorganic transparent material |
DE112020005047T5 (en) * | 2019-11-21 | 2022-11-03 | AGC Inc. | GLASS PLATE PROCESSING PROCESS AND GLASS PLATE |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01108006A (en) * | 1987-10-21 | 1989-04-25 | Nagasaki Pref Gov | Splitting of brittle material |
JPH07328781A (en) * | 1994-06-08 | 1995-12-19 | Souei Tsusho Kk | Splitting method of brittle material |
JP2002241141A (en) * | 2001-02-08 | 2002-08-28 | Nippon Steel Techno Research Corp | Working method for glass by means of laser and device therefor |
JP2004035315A (en) * | 2002-07-02 | 2004-02-05 | Mitsuboshi Diamond Industrial Co Ltd | Method and apparatus for dividing brittle material substrates |
JP2010090010A (en) * | 2008-10-10 | 2010-04-22 | Mitsuboshi Diamond Industrial Co Ltd | Method for cutting brittle material substrate and cutting device |
-
2013
- 2013-04-26 JP JP2013094108A patent/JP2016128365A/en active Pending
-
2014
- 2014-04-16 WO PCT/JP2014/060872 patent/WO2014175147A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01108006A (en) * | 1987-10-21 | 1989-04-25 | Nagasaki Pref Gov | Splitting of brittle material |
JPH07328781A (en) * | 1994-06-08 | 1995-12-19 | Souei Tsusho Kk | Splitting method of brittle material |
JP2002241141A (en) * | 2001-02-08 | 2002-08-28 | Nippon Steel Techno Research Corp | Working method for glass by means of laser and device therefor |
JP2004035315A (en) * | 2002-07-02 | 2004-02-05 | Mitsuboshi Diamond Industrial Co Ltd | Method and apparatus for dividing brittle material substrates |
JP2010090010A (en) * | 2008-10-10 | 2010-04-22 | Mitsuboshi Diamond Industrial Co Ltd | Method for cutting brittle material substrate and cutting device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016060677A (en) * | 2014-09-19 | 2016-04-25 | 旭硝子株式会社 | Processing method of glass plate and processing device of glass plate |
WO2016047518A1 (en) * | 2014-09-24 | 2016-03-31 | 旭硝子株式会社 | Glass plate, laminated plate, method for manufacturing glass plate and method for manufacturing laminated plate |
JPWO2016047518A1 (en) * | 2014-09-24 | 2017-08-03 | 旭硝子株式会社 | Glass plate, laminated plate, method for producing glass plate, and method for producing laminated plate |
WO2016156233A1 (en) * | 2015-03-27 | 2016-10-06 | Schott Ag | Method and device for the continuous cutting of glass |
US10407336B2 (en) | 2015-03-27 | 2019-09-10 | Schott Ag | Method and apparatus for continuously cutting glass |
CN112384481A (en) * | 2018-08-10 | 2021-02-19 | 日本电气硝子株式会社 | Method for manufacturing glass plate |
CN114981221A (en) * | 2020-02-04 | 2022-08-30 | 日本电气硝子株式会社 | Glass plate and method for manufacturing glass plate |
CN114981221B (en) * | 2020-02-04 | 2024-10-11 | 日本电气硝子株式会社 | glass plate |
CN114845964A (en) * | 2020-02-05 | 2022-08-02 | 日本电气硝子株式会社 | Method for manufacturing glass plate |
Also Published As
Publication number | Publication date |
---|---|
JP2016128365A (en) | 2016-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014175147A1 (en) | Method for cutting glass plate | |
WO2013031655A1 (en) | Cutting method for reinforced glass plate and reinforced glass plate cutting device | |
JP5201295B2 (en) | Cutting method of tempered glass sheet | |
WO2013031778A1 (en) | Cutting method for reinforced glass plate and reinforced glass plate cutting device | |
JP5102846B2 (en) | Method and apparatus for chamfering a brittle material substrate | |
JP2009066851A (en) | Method of chamfering brittle substrate | |
WO2012172960A1 (en) | Method for cutting glass plate | |
JP2013203630A (en) | Method for cutting tempered glass plate | |
JP2013203631A (en) | Method for cutting tempered glass plate and apparatus for cutting tempered glass plate | |
KR101306673B1 (en) | Chamfering apparatus | |
JPWO2011002089A1 (en) | Cleaving method and cleaving apparatus for brittle material substrate, and vehicle window glass obtained by the cleaving method | |
JP5987829B2 (en) | Sheet glass manufacturing method and apparatus for manufacturing the same | |
WO2014010488A1 (en) | Method for processing glass plate | |
JP2011230940A (en) | Cutting method for brittle material substrate | |
JP2010150068A (en) | Method for breaking brittle material substrate | |
JP2010090010A (en) | Method for cutting brittle material substrate and cutting device | |
WO2010092964A1 (en) | Method for cutting brittle material substrate | |
WO2014175146A1 (en) | Method for cutting glass plate | |
WO2014010600A1 (en) | Curved plate manufacturing method | |
WO2014171396A1 (en) | Method for cutting glass sheet | |
JP6303950B2 (en) | Glass plate processing method | |
JP2002153984A (en) | Method for dividing substrate and method for manufacturing liquid crystal device using the same | |
WO2014175145A1 (en) | Method for cutting glass plate | |
JP5678816B2 (en) | Glass substrate cleaving method and cleaving apparatus | |
JP2021024753A (en) | Cutting method and cutting device of glass substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14788788 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14788788 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |