[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014174809A1 - 双方向dc/dcコンバータ - Google Patents

双方向dc/dcコンバータ Download PDF

Info

Publication number
WO2014174809A1
WO2014174809A1 PCT/JP2014/002178 JP2014002178W WO2014174809A1 WO 2014174809 A1 WO2014174809 A1 WO 2014174809A1 JP 2014002178 W JP2014002178 W JP 2014002178W WO 2014174809 A1 WO2014174809 A1 WO 2014174809A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
switching element
resonance
current
switching elements
Prior art date
Application number
PCT/JP2014/002178
Other languages
English (en)
French (fr)
Inventor
裕一 芥川
田村 秀樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US14/785,592 priority Critical patent/US9570991B2/en
Priority to EP14788920.8A priority patent/EP2991215A4/en
Publication of WO2014174809A1 publication Critical patent/WO2014174809A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention generally relates to a bidirectional DC / DC converter, and more particularly, to an LLC type bidirectional DC / DC converter.
  • a transformer winding is connected to a full-bridge switching circuit using four sets (a total of eight) of switching elements.
  • an LC full bridge type converter is configured by connecting an LC resonance circuit of a resonance inductor and a resonance capacitor in series to the winding of the transformer.
  • the resonance current flowing through the LC resonance circuit is periodically inverted by controlling the switching circuit on and off.
  • the waveform of the switching current is shaped into a sine wave by the LC resonance circuit, and the timing at which the switching element is turned off is set near the zero cross of the switching current.
  • the switching circuit has a dead time for maintaining four sets of switching elements in the OFF state simultaneously.
  • resonance occurs between the resonant inductor and the capacitance existing in parallel with the switching element, and high-frequency noise is generated.
  • capacitance put in parallel with a switching element is a parasitic capacity of a switching element, a capacitor
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide a bidirectional DC / DC converter capable of improving efficiency by suppressing high-frequency noise generated during dead time.
  • the bidirectional DC / DC converter of the present invention includes a first operation for outputting a DC voltage obtained by DC / DC conversion of a DC voltage between the first terminals between the second terminals, and a DC voltage between the second terminals. Bidirectional voltage conversion is performed by switching between a second operation in which a DC voltage obtained by DC / DC conversion of the voltage is output between the first terminals.
  • the bidirectional DC / DC converter includes a first switching circuit, a resonant inductor, a resonant capacitor, a series circuit of a first winding of a transformer, a second switching circuit, a second winding of the transformer, a rectifying element, And a control unit.
  • the first switching circuit includes a series circuit of a first switching element and a second switching element connected between the first terminals, a third switching element connected between the first terminals, and a fourth switching circuit. It consists of a series circuit of switching elements.
  • the first winding of the resonant inductor, resonant capacitor, and transformer is between the connection point of the first switching element and the second switching element and the connection point of the third switching element and the fourth switching element.
  • the second switching circuit includes a series circuit of a fifth switching element and a sixth switching element connected between the second terminals, a seventh switching element and an eighth switch connected between the second terminals. It consists of a series circuit of switching elements.
  • the second winding is connected between a connection point of the fifth switching element and the sixth switching element and a connection point of the seventh switching element and the eighth switching element.
  • the rectifying element is connected in antiparallel to each of the first to eighth switching elements.
  • the control unit alternately turns on / off the set of switching elements located at the diagonal of the full bridge among the first to fourth switching elements with a dead time.
  • the control unit alternately turns on / off the set of switching elements located at the diagonal of the full bridge among the fifth to eighth switching elements by providing a dead time.
  • the resonance circuit of the resonance inductor and the capacitance existing in parallel with each of the first to eighth switching elements has a resonance current due to a load current flowing through the resonance inductor and an excitation current of the transformer.
  • the control unit turns off each of the first to eighth switching elements at a timing at which the resonance current generated by the load current becomes a current value that cancels the resonance current generated by the excitation current in the dead time. It is characterized by performing an operation.
  • the bidirectional DC / DC converter includes a current measurement unit that measures the load current, and the control unit is configured such that when the measured value of the load current by the current measurement unit becomes a predetermined threshold value, Each turn-off operation of the first to eighth switching elements is preferably performed.
  • control unit may turn off each of the first to eighth switching elements when the resonance current generated by the load current has a current value that cancels the resonance current generated by the excitation current.
  • the inductance of the resonant inductor, the capacitance of the resonant capacitor, and the dead time are set.
  • the resonance phenomenon generated due to the excitation current and the resonance phenomenon generated due to the load current can be canceled each other, so that the resonance noise can be reduced. Further, since the resonance noise during the dead time is reduced, zero-cross switching can be performed without increasing the dead time. In other words, the present invention has the effect of suppressing the high frequency noise generated during the dead time and improving the efficiency.
  • FIG. 1 is a circuit diagram showing a bidirectional DC / DC converter of Embodiment 1.
  • FIG. 3 is a circuit diagram illustrating an equivalent circuit during a dead time of the bidirectional DC / DC converter of Embodiment 1.
  • FIG. 6 is a circuit diagram showing a bidirectional DC / DC converter of Embodiment 2.
  • FIG. 1 shows a circuit configuration of a bidirectional DC / DC converter according to this embodiment, and the bidirectional DC / DC converter includes an LLC full-bridge converter.
  • This bidirectional DC / DC converter includes a switching circuit 11, a high-frequency transformer Tr1, a switching circuit 12, resonant inductors L1 and L2, resonant capacitors C1 and C2, and a control unit K1.
  • the switching circuit 11 includes a parallel circuit of switching elements Q11 and Q12 connected in series and switching elements Q13 and Q14 connected in series, and the parallel circuit is connected between terminals T1 and T2 (between the first terminals). .
  • Switching elements Q11 and Q14 are located at the diagonal of the full bridge, and switching elements Q12 and Q13 are located at the diagonal of the full bridge.
  • surge countermeasure capacitors C11 to C14 are connected in parallel in a one-to-one relationship, and diodes D11 to D14 (rectifier elements) are connected in reverse parallel.
  • a series circuit of the first winding N1, the resonant inductors L1 and L2, and the resonant capacitors C1 and C2 of the high-frequency transformer Tr1 is connected between the connection midpoint of the switching elements Q11 and Q12 and the connection midpoint of the switching elements Q13 and Q14.
  • a smoothing capacitor C15 is connected between the terminals T1 and T2.
  • the switching elements Q11 to Q14 correspond to the first to fourth switching elements on a one-to-one basis.
  • the switching circuit 12 includes a parallel circuit of switching elements Q21 and Q22 connected in series and switching elements Q23 and Q24 connected in series, and this parallel circuit is connected between terminals T3 and T4 (between the second terminals).
  • Switching elements Q21 and Q24 are located at the diagonal of the full bridge, and switching elements Q22 and Q23 are located at the diagonal of the full bridge.
  • surge countermeasure capacitors C21 to C24 are connected in parallel in a one-to-one relationship, and diodes D21 to D24 (rectifier elements) are connected in a reverse parallel connection in a one-to-one relationship.
  • a second winding N2 is connected between the connection midpoint of switching elements Q21 and Q22 and the connection midpoint of switching elements Q23 and Q24.
  • a smoothing capacitor C25 is connected between the terminals T3 and T4. Each of switching elements Q21 to Q24 corresponds to the fifth to eighth switching elements.
  • a current measuring unit M1 for measuring a load current Io1 flowing toward the terminal T1 is provided in the high voltage side electric circuit from the first winding N1 to the capacitor C15.
  • a current measuring unit M2 that measures a load current Io2 flowing toward the terminal T3 is provided in the high-voltage side electric circuit from the second winding N2 to the capacitor C25.
  • Each measurement data of the current measurement units M1 and M2 is output from the current measurement units M1 and M2 to the control unit K1.
  • the power conversion is performed by the control unit K1 performing on / off control of the switching elements Q11 to Q14 and the switching elements Q21 to Q24.
  • Power conversion in which a DC voltage obtained by DC / DC conversion of a DC voltage input between terminals T1 and T2 is output between terminals T3 and T4 is referred to as a first operation.
  • Power conversion in which a DC voltage obtained by DC / DC conversion of a DC voltage input between terminals T3 and T4 is output between terminals T1 and T2 is referred to as a second operation.
  • the output voltage Vo1 between the terminals T3 and T4 Vi1 / n.
  • the control unit K1 alternately turns on / off the set of the switching elements Q11, Q14, Q22, and Q23 and the set of the switching elements Q12, Q13, Q21, and Q24. To do. That is, switching elements Q11, Q14, Q22, and Q23 are simultaneously turned on / off, and switching elements Q12, Q13, Q21, and Q24 are simultaneously turned on / off.
  • Each set of switching elements Q11, Q14, Q22, and Q23 and each set of switching elements Q12, Q13, Q21, and Q24 is referred to as a switching element group.
  • the control unit K1 provides a dead time between turning on the set of the switching elements Q11, Q14, Q22, and Q23 and turning on the set of the switching elements Q12, Q13, Q21, and Q24. In this dead time, all of switching elements Q11 to Q14 and Q21 to Q24 are maintained in the off state.
  • a sinusoidal load current Io1 flows on the output side (first winding N1 side).
  • the control unit K1 turns on one of the switching element groups (one of the group of switching elements Q11, Q14, Q22, and Q23 and the group of switching elements Q12, Q13, Q21, and Q24).
  • the load current Io (Io1 or Io2) increases or decreases in a sine wave shape.
  • the control unit K1 decreases to the predetermined threshold value X1, One switching element group that is turned on is turned off.
  • control unit K1 turns on the other switching element group after the dead time in which all the switching elements Q11 to Q14 and Q21 to Q24 maintain the OFF state has elapsed. Then, when the measured value of the load current Io increases and passes the maximum value and then decreases to the threshold value X1, the control unit K1 turns off the other switching element group that is currently turned on. Thereafter, the control unit K1 alternately repeats turn-on and turn-off of one switching element group and the other switching element group with a dead time interposed therebetween.
  • FIG. 2 shows an equivalent circuit of the bidirectional DC / DC converter during the dead time in which all the switching elements Q11 to Q14 and Q21 to Q24 are kept off.
  • the equivalent circuit shown in FIG. 2 is an equivalent circuit of the bidirectional DC / DC converter in the dead time immediately after the set of switching elements Q12, Q13, Q21, and Q24 is turned off.
  • a load current Io1 Ioff flows through the resonant inductor Ls.
  • the resonance capacitors C1 and C2 are approximately used as a voltage source E1 of the voltage Voff that is a charging voltage.
  • the excitation inductance Lp of the high-frequency transformer Tr1 is designed to be sufficiently larger than the resonance inductor Ls. Therefore, the excitation inductance Lp of the high-frequency transformer Tr1 is approximately considered as a current source S1 that flows the excitation current Ip immediately after the set of the switching elements Q12, Q13, Q21, and Q24 is turned off.
  • the switching elements Q11 to Q14 and Q21 to Q24 are all off during the dead time, the current flowing through the switching elements Q11 to Q14 and Q21 to Q24 need not be considered.
  • resonance during the dead time is reduced, and almost no current flows through the diodes D11 to D14 and D21 to D24 connected in parallel to the switching elements Q11 to Q14 and Q21 to Q24. . Therefore, the current flowing through the diodes D11 to D14 and D21 to D24 need not be considered.
  • the terminals T1, T2, T3, and T4 are fixed potentials. Therefore, focusing attention only on the AC signal, the parasitic capacitors of the switching elements Q11 to Q14 and the switching elements Q21 to Q24 are connected in parallel to the capacitors C11 to C14 and the capacitors C21 to C24, respectively.
  • the combined capacitance of the capacitances of the capacitors C11 to C14 connected in parallel to the switching elements Q11 to Q14 and the parasitic capacitances of the parasitic capacitors of the switching elements Q11 to Q14 is Cp1.
  • the combined capacitance of the capacitances of the capacitors C21 to C24 connected in parallel to the switching elements Q21 to Q24 and the parasitic capacitances of the parasitic capacitors of the switching elements Q21 to Q24 is Cp2.
  • a resonant circuit is formed by the resonant inductor Ls, the input-side combined capacitance Cp1, and the output-side combined capacitance Cp2.
  • the resonance circuit generates resonance noise during the dead time.
  • the causes of the resonance noise include the load current Ioff flowing through the resonance inductor Ls at turn-off, the voltage Voff of the voltage source E1 at turn-off, and the excitation current Ip of the current source S1 at turn-off.
  • the resonance capacitors C1 and C2 are selected to be sufficiently large, the resonance due to the voltage Voff can be reduced.
  • a resonance current caused by the load current Ioff and the excitation current Ip flows through the resonance circuit of the resonance inductor Ls, the combined capacitor Cp1, and the combined capacitor Cp2.
  • the voltages of the composite capacitors Cp1 and Cp2 do not cause resonance noise because the charge voltage of the composite capacitor Cp1 and the charge voltage of the composite capacitor Cp2 have equivalent values.
  • the threshold value X1 ⁇ Ip ⁇ ⁇ Cp1 / ⁇ Cp1 + (Cp2 / n 2 ) ⁇ (1) It becomes.
  • the exciting current Ip is a value that can be calculated from the input voltage between the terminals T3 and T4 and the exciting inductance Lp of the high-frequency transformer Tr1, and the control unit K1 stores a preset value of the threshold value X1.
  • control part K1 will turn off switching element Q12, Q13, Q21, Q24, if it reduces to the threshold value X1, after the measured value of the load current Io1 by the current measurement part M1 increases.
  • the control part K1 will turn off switching element Q12, Q13, Q21, Q24, if it reduces to the threshold value X1, after the measured value of the load current Io1 by the current measurement part M1 increases.
  • control unit K1 turns off the switching element group at a timing when the resonance current generated by the load current Ioff in the dead time becomes a current value that cancels the resonance current generated by the excitation current Ip. Accordingly, the control unit K1 can cancel the resonance phenomenon caused by the excitation current Ip and the resonance phenomenon caused by the load current Ioff, so that the resonance noise can be reduced. Therefore, the bidirectional DC / DC converter can suppress high frequency noise generated during the dead time.
  • each of the set of switching elements Q11, Q14, Q22, and Q23 and the set of switching elements Q12, Q13, Q21, and Q24 is turned on at the zero crossing point of the both-end voltages. be able to. Therefore, since the bidirectional DC / DC converter can perform zero-cross switching for both input and output without extending the dead time, the efficiency can be improved.
  • the power conversion (first operation) in which the DC voltage obtained by DC / DC conversion of the DC voltage between the terminals T1 and T2 is output between the terminals T3 and T4 is configured in the same manner as the second operation described above. Thus, the same effect can be obtained.
  • the positions of the current measuring units M1 and M2 are not limited as long as the load currents Io1 and Io2 can be measured. Further, the circuit configuration is not limited as long as it is an LLC type bidirectional DC / DC converter.
  • FIG. 3 shows a circuit configuration of the bidirectional DC / DC converter of the present embodiment.
  • the current measuring units M1 and M2 are omitted from the configuration of the first embodiment.
  • Other configurations are the same as those of the first embodiment, and the same reference numerals are given to the same configurations and the description thereof is omitted.
  • the control unit K1a turns off the switching element group at a timing when the resonance current generated by the load current Ioff in the dead time becomes a current value that cancels the resonance current generated by the excitation current Ip.
  • the bidirectional DC / DC converter sets the inductances of the resonance inductors L1 and L2, the capacitances of the resonance capacitors C1 and C2, and the dead time so that the switching element group is turned off at the above-described timing.
  • f SW is a switching frequency
  • f LC is a resonance frequency due to the resonance inductors L1 and L2, and the resonance capacitors C1 and C2, and D T is a dead time.
  • control unit K1a can turn off the switching element group at a timing when the resonance current generated by the load current Ioff in the dead time becomes a current value that cancels the resonance current generated by the excitation current Ip. Therefore, the control unit K1a can cancel the resonance phenomenon caused by the excitation current Ip and the resonance phenomenon caused by the load current Ioff, thereby reducing the resonance noise. Therefore, the bidirectional DC / DC converter can suppress high frequency noise generated during the dead time.
  • each of the set of switching elements Q11, Q14, Q22, and Q23 and the set of switching elements Q12, Q13, Q21, and Q24 is turned on at the zero crossing point of the both-end voltages. be able to. Therefore, since the bidirectional DC / DC converter can perform zero-cross switching for both input and output without extending the dead time, the efficiency can be improved.
  • circuit configuration is not limited as long as it is an LLC type bidirectional DC / DC converter.
  • the control unit K1 or the control unit K1a alternately turns on / off the switching elements Q11, Q14 and the switching elements Q12, Q13 during the first operation, and switches the switching elements Q21 to Q24. May be kept off.
  • the switching circuit 11 operates as a switching circuit whose output is on the high-frequency transformer Tr1 side
  • the switching circuit 12 operates as a rectifier circuit whose input is on the high-frequency transformer Tr1 side. Then, the turn-off timing of the switching elements Q11 to Q14 is set in the same manner as in the first or second embodiment.
  • the control unit K1 or the control unit K1a alternately turns on / off the switching elements Q21, Q24 and the switching elements Q22, Q23 during the second operation, thereby switching the switching elements Q11 to Q14. May be kept off.
  • the switching circuit 12 operates as a switching circuit with the high frequency transformer Tr1 side as an output
  • the switching circuit 11 operates as a rectifier circuit with the high frequency transformer Tr1 side as an input. Then, the turn-off timing of the switching elements Q21 to Q24 is set in the same manner as in the first or second embodiment.
  • the DC / DC converter according to the first or second embodiment performs bidirectional voltage conversion by switching between the first operation and the second operation.
  • the first operation is an operation in which a DC voltage obtained by DC / DC conversion of a DC voltage between the terminals T1 and T2 (between the first terminals) is output between the second terminals.
  • the second operation is an operation in which a DC voltage obtained by DC / DC conversion of a DC voltage between the terminals T3 and T4 (between the second terminals) is output between the first terminals.
  • the DC / DC converter includes a switching circuit 11 (first switching circuit), a series circuit of resonant inductors L1 and L2, resonant capacitors C1 and C2, and a first winding N1 of a transformer Tr1. Further, the DC / DC converter includes a switching circuit 12 (second switching circuit), a second winding N2 of the transformer Tr1, diodes D11 to D14, D21 to D24 (rectifier elements), a control unit K1 or a control unit. K1a.
  • the switching circuit 11 includes two series circuits. One is a series circuit of switching elements Q11 and Q12 (first and second switching elements) connected between terminals T1 and T2.
  • the other is a series circuit of switching elements Q13 and Q14 (third and fourth switching elements) connected between terminals T1 and T2.
  • the resonant inductors L1 and L2, the resonant capacitors C1 and C2, and the first winding N1 are connected between the connection point of the switching element Q11 and the switching element Q12 and the connection point of the switching element Q13 and the switching element Q14.
  • the switching circuit 12 includes two series circuits. One is a series circuit of switching elements Q21 and Q22 (fifth and sixth switching elements) connected between terminals T3 and T4.
  • the other is a series circuit of switching elements Q23 and Q24 (seventh and eighth switching elements) connected between terminals T3 and T4.
  • the second winding N2 is connected between the connection point of the switching element Q21 and the switching element Q22 and the connection point of the switching element Q23 and the switching element Q24.
  • the diodes D11 to D14 and D21 to D24 are connected in antiparallel to the switching elements Q11 to Q14 and Q21 to Q24, respectively.
  • the control unit K1 or the control unit K1a alternately turns on / off the set of switching elements located at the diagonal of the full bridge among the switching elements Q11 to Q14 with a dead time.
  • the control unit K1 or the control unit K1a alternately turns on / off the set of switching elements located at the diagonal of the full bridge among the switching elements Q21 to Q24 with a dead time.
  • the control unit K1 or the control unit K1a sets each of the switching elements Q11 to Q14 and Q21 to Q24 at a timing at which the resonance current generated by the load current Ioff becomes a current value that cancels the resonance current generated by the excitation current Ip in the dead time. Turn off operation.
  • the DC / DC converter of Embodiment 1 can further include current measuring units M1 and M2 that measure load current.
  • the control unit K1 may perform each turn-off operation of the switching elements Q11 to Q14 and Q21 to Q24 when the measured value of the load current Ioff by the current measuring units M1 and M2 reaches a predetermined threshold value X1.
  • the control unit K1a may set the inductances of the resonant inductors L1 and L2, the capacitances of the resonant capacitors C1 and C2, and the dead time so as to perform the following operations.
  • the control unit K1a performs each turn-off of the switching elements Q11 to Q14 and Q21 to Q24 when the resonance current generated by the load current Ioff becomes a current value that cancels the resonance current generated by the excitation current Ip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 デッドタイムにおいて、共振インダクタとスイッチング素子のそれぞれに並列に存在する容量との共振回路には、共振インダクタに流れる負荷電流とトランスの励磁電流とによる共振電流が流れ、制御部は、デッドタイムにおいて、負荷電流によって発生する共振電流が励磁電流によって発生する共振電流を打ち消す電流値となるタイミングに、スイッチング素子の各ターンオフ動作を行う。

Description

双方向DC/DCコンバータ
 本発明は、一般に双方向DC/DCコンバータ、より詳細にはLLC型の双方向DC/DCコンバータに関する発明である。
 従来、直流電圧を双方向に電力変換する双方向DC/DCコンバータがある。
 特許文献1,2の双方向DC/DCコンバータは、4組(合計8個)のスイッチング素子を用いたフルブリッジのスイッチング回路にトランスの巻線を接続している。そして、このトランスの巻線に、共振インダクタおよび共振コンデンサのLC共振回路を直列接続して、LLCフルブリッジ型のコンバータを構成している。
 そして、スイッチング回路をオン・オフ制御することによって、LC共振回路に流れる共振電流を周期的に反転させている。この双方向DC/DCコンバータは、LC共振回路によって、スイッチング電流の波形を正弦波状に成形しており、スイッチング素子がターンオフするタイミングを、スイッチング電流のゼロクロス付近に設定している。
特開2004-282828号公報 特表2008-541689号公報
 特許文献1,2の双方向DC/DCコンバータにおいて、スイッチング回路は、4組のスイッチング素子を同時にオフ状態に維持するデッドタイムを設けている。しかしながら、このデッドタイムにおいて、共振インダクタと、スイッチング素子に並列に存在する容量との間で共振が起こり、高周波ノイズが発生する。なお、スイッチング素子と並列に入る容量とは、例えば、スイッチング素子の寄生容量、サージ対策用のコンデンサ等である。
 また、特許文献1に記載されているように、トランスの一次側および二次側の各スイッチング回路を完全同期で駆動すると、上述の共振現象により、一次側および二次側の各電圧のゼロクロスでスイッチング素子をターンオンすることが困難となる。そのため、ハードスイッチングが発生する。そこで、ハードスイッチングによって発生する損失を抑制するために、デッドタイムを長くする方向に調整が必要となる。
 すなわち、デッドタイム中に発生する高周波ノイズが、双方向DC/DCコンバータの効率を悪化させる要因となっていた。
 本発明は、上記事由に鑑みてなされており、その目的は、デッドタイム中に発生する高周波ノイズを抑制して、効率を改善できる双方向DC/DCコンバータを提供することにある。
 本発明の双方向DC/DCコンバータは、第1の端子間の直流電圧をDC/DC変換した直流電圧を第2の端子間に出力する第1の動作と、前記第2の端子間の直流電圧をDC/DC変換した直流電圧を前記第1の端子間に出力する第2の動作とを切り換えて、双方向の電圧変換を行う。双方向DC/DCコンバータは、第1のスイッチング回路と、共振インダクタ、共振コンデンサ、トランスの第1巻線の直列回路と、第2のスイッチング回路と前記トランスの第2巻線と、整流素子と制御部とを備える。第1のスイッチング回路は、前記第1の端子間に接続された第1のスイッチング素子及び第2のスイッチング素子の直列回路、前記第1の端子間に接続された第3のスイッチング素子及び第4のスイッチング素子の直列回路からなる。共振インダクタ、共振コンデンサ、トランスの第1巻線は、前記第1のスイッチング素子及び前記第2のスイッチング素子の接続点と前記第3のスイッチング素子及び前記第4のスイッチング素子の接続点との間に接続される。第2のスイッチング回路は、前記第2の端子間に接続された第5のスイッチング素子及び第6のスイッチング素子の直列回路、前記第2の端子間に接続された第7のスイッチング素子及び第8のスイッチング素子の直列回路からなる。第2巻線は、前記第5のスイッチング素子及び前記第6のスイッチング素子の接続点と前記第7のスイッチング素子及び前記第8のスイッチング素子の接続点との間に接続される。整流素子は、前記第1~第8のスイッチング素子のそれぞれに逆並列接続される。制御部は、前記第1の動作時において、前記第1~第4のスイッチング素子のうちフルブリッジの対角に位置するスイッチング素子の組をデッドタイムを設けて交互にオン・オフ制御する。制御部は、前記第2の動作時において、前記第5~第8のスイッチング素子のうちフルブリッジの対角に位置するスイッチング素子の組をデッドタイムを設けて交互にオン・オフ制御する。前記デッドタイムにおいて、前記共振インダクタと前記第1~第8のスイッチング素子のそれぞれに並列に存在する容量との共振回路には、前記共振インダクタに流れる負荷電流と前記トランスの励磁電流とによる共振電流が流れる。前記制御部は、前記デッドタイムにおいて、前記負荷電流によって発生する前記共振電流が前記励磁電流によって発生する前記共振電流を打ち消す電流値となるタイミングに、前記第1~第8のスイッチング素子の各ターンオフ動作を行うことを特徴とする。
 この発明において、双方向DC/DCコンバータは、前記負荷電流を計測する電流計測部を備え、前記制御部は、前記電流計測部による前記負荷電流の計測値が所定の閾値となった場合に、前記第1~第8のスイッチング素子の各ターンオフ動作を行うことが好ましい。
 この発明において、前記制御部は、前記負荷電流によって発生する前記共振電流が前記励磁電流によって発生する前記共振電流を打ち消す電流値となった場合に、前記第1~第8のスイッチング素子の各ターンオフを行うように、前記共振インダクタのインダクタンス、前記共振コンデンサの容量、前記デッドタイムを設定したことが好ましい。
 以上説明したように、本発明では、励磁電流に起因して発生する共振現象と負荷電流に起因して発生する共振現象とを互いに打ち消すことができるので、共振ノイズを小さくできる。また、デッドタイム中の共振ノイズが小さくなることによって、デッドタイムを広げることなく、ゼロクロススイッチングが可能になる。すなわち、本発明では、デッドタイム中に発生する高周波ノイズを抑制して、効率を改善できるという効果がある。
実施形態1の双方向DC/DCコンバータを示す回路図である。 実施形態1の双方向DC/DCコンバータのデッドタイム中の等価回路を示す回路図である。 実施形態2の双方向DC/DCコンバータを示す回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
  (実施形態1)
 図1は、本実施形態の双方向DC/DCコンバータの回路構成を示しており、双方向DC/DCコンバータは、LLCフルブリッジ型のコンバータからなる。この双方向DC/DCコンバータは、スイッチング回路11と、高周波トランスTr1と、スイッチング回路12と、共振インダクタL1,L2と、共振コンデンサC1,C2と、制御部K1とで構成される。
 スイッチング回路11は、直列接続したスイッチング素子Q11,Q12と直列接続したスイッチング素子Q13,Q14との並列回路を備え、この並列回路が端子T1-T2間(第1の端子間)に接続されている。スイッチング素子Q11,Q14がフルブリッジの対角に位置し、スイッチング素子Q12,Q13がフルブリッジの対角に位置する。そして、スイッチング素子Q11~Q14は、サージ対策用のコンデンサC11~C14が1対1に並列接続され、さらにダイオードD11~D14(整流素子)が逆並列接続されている。スイッチング素子Q11,Q12接続中点とスイッチング素子Q13,Q14の接続中点との間には、高周波トランスTr1の第1巻線N1、共振インダクタL1,L2、共振コンデンサC1,C2の直列回路が接続されている。また、端子T1-T2間には、平滑用のコンデンサC15が接続されている。なお、スイッチング素子Q11~Q14が、第1~第4のスイッチング素子に1対1に相当する。
 次に、スイッチング回路12は、直列接続したスイッチング素子Q21,Q22と直列接続したスイッチング素子Q23,Q24との並列回路を備え、この並列回路が端子T3-T4間(第2の端子間)に接続されている。スイッチング素子Q21,Q24がフルブリッジの対角に位置し、スイッチング素子Q22,Q23がフルブリッジの対角に位置する。そして、スイッチング素子Q21~Q24は、サージ対策用のコンデンサC21~C24が1対1に並列接続され、さらにダイオードD21~D24(整流素子)が1対1に逆並列接続されている。スイッチング素子Q21,Q22接続中点とスイッチング素子Q23,Q24の接続中点との間には、第2巻線N2が接続されている。また、端子T3-T4間には、平滑用のコンデンサC25が接続されている。なお、スイッチング素子Q21~Q24のそれぞれが、第5~第8のスイッチング素子に相当する。
 また、第1巻線N1からコンデンサC15に至る高圧側電路には、端子T1に向かって流れる負荷電流Io1を計測する電流計測部M1が設けられている。また、第2巻線N2からコンデンサC25に至る高圧側電路には、端子T3に向かって流れる負荷電流Io2を計測する電流計測部M2が設けられている。電流計測部M1,M2の各計測データは、電流計測部M1,M2から制御部K1へ出力される。
 そして、制御部K1が、スイッチング素子Q11~Q14、スイッチング素子Q21~Q24をオン・オフ制御することによって、電力変換が行われる。端子T1-T2間に入力された直流電圧をDC/DC変換した直流電圧を端子T3-T4間に出力する電力変換を第1の動作と称す。端子T3-T4間に入力された直流電圧をDC/DC変換した直流電圧を端子T1-T2間に出力する電力変換を第2の動作と称す。
 例えば、第1の動作において、端子T1-T2間の入力電圧Vi1、第1巻線N1の巻数:第2巻線N2の巻数=n:1とすると、端子T3-T4間の出力電圧Vo1=Vi1/nとなる。また、第2の動作において、端子T3-T4間の入力電圧Vi2、第1巻線N1の巻数:第2巻線N2の巻数=n:1とすると、端子T1-T2間の出力電圧Vo2=n・Vi2となる。
 以下、端子T3-T4間の直流電圧をDC/DC変換した直流電圧を端子T1-T2間に出力する電力変換(第2の動作)について、スイッチング回路11,12を完全同期で駆動した場合を例示する。
 スイッチング回路11,12を完全同期で駆動する場合、制御部K1は、スイッチング素子Q11,Q14,Q22,Q23の組と、スイッチング素子Q12,Q13,Q21,Q24の組とを交互にオン・オフ駆動する。すなわち、スイッチング素子Q11,Q14,Q22,Q23は同時にオン・オフし、スイッチング素子Q12,Q13,Q21,Q24は同時にオン・オフする。なお、スイッチング素子Q11,Q14,Q22,Q23の組、スイッチング素子Q12,Q13,Q21,Q24の組のそれぞれを、スイッチング素子群と称す。
 制御部K1は、スイッチング素子Q11,Q14,Q22,Q23の組のオンと、スイッチング素子Q12,Q13,Q21,Q24の組のオンとの間には、デッドタイムを設けている。このデッドタイムでは、スイッチング素子Q11~Q14,Q21~Q24の全てがオフ状態を維持する。
 そして、スイッチング素子Q11,Q14,Q22,Q23の組と、スイッチング素子Q12,Q13,Q21,Q24の組とのいずれかがオンしている場合、共振コンデンサC1,C2と共振インダクタL1,L2とによる共振が発生する。そして、出力側(第1巻線N1側)に正弦波状の負荷電流Io1が流れる。
 具体的に、制御部K1が、一方のスイッチング素子群(スイッチング素子Q11,Q14,Q22,Q23の組と、スイッチング素子Q12,Q13,Q21,Q24の組とのいずれか一方)をターンオンさせる。負荷電流Io(Io1またはIo2)は、正弦波状に増減する。そして、制御部K1は、電流計測部M1または電流計測部M2による負荷電流Ioの計測値(絶対値)が増加して最大値を通過した後に、予め決められた閾値X1にまで減少すると、現在オンさせている一方のスイッチング素子群をターンオフさせる。そして、制御部K1は、全てのスイッチング素子Q11~Q14,Q21~Q24がオフ状態を維持するデッドタイムが経過した後、他方のスイッチング素子群をターンオンさせる。そして、制御部K1は、負荷電流Ioの計測値が増加して最大値を通過した後に閾値X1にまで減少すると、現在オンさせている他方のスイッチング素子群をターンオフさせる。以降、制御部K1は、デッドタイムを挟んで、一方のスイッチング素子群および他方のスイッチング素子群のターンオン、ターンオフを交互に繰り返す。
 上述のターンオフのタイミングを決定する閾値X1について、図2の等価回路を用いて説明する。図2は、全てのスイッチング素子Q11~Q14,Q21~Q24がオフ状態を維持するデッドタイム中における双方向DC/DCコンバータの等価回路を示す。なお、図2で示す等価回路は、スイッチング素子Q12,Q13,Q21,Q24の組がターンオフした直後のデッドタイムにおける双方向DC/DCコンバータの等価回路である。
 まず、共振インダクタL1,L2を合成して共振インダクタLsとすると、スイッチング素子Q12,Q13,Q21,Q24の組がターンオフした直後には、共振インダクタLsに負荷電流Io1=Ioffが流れている。また、共振コンデンサC1,C2の各容量は、コンデンサC11~C14、C21~C24の各容量よりも十分大きいので、共振コンデンサC1,C2を、充電電圧である電圧Voffの電圧源E1として近似的に考える。また、高周波トランスTr1の励磁インダクタンスLpは、共振インダクタLsよりも十分大きい値に設計されている。そのため、高周波トランスTr1の励磁インダクタンスLpを、スイッチング素子Q12,Q13,Q21,Q24の組がターンオフした直後に励磁電流Ipを流す電流源S1として近似的に考える。
 さらに、デッドタイム中は、スイッチング素子Q11~Q14,Q21~Q24が全てオフしているので、スイッチング素子Q11~Q14,Q21~Q24を流れる電流は考慮しなくてよい。また、後で説明するが、本実施形態ではデッドタイム中の共振が小さくなり、スイッチング素子Q11~Q14、Q21~Q24に並列接続されたダイオードD11~D14、D21~D24には電流が殆ど流れない。したがって、ダイオードD11~D14、D21~D24を流れる電流は考慮しなくてよい。
 また、端子T1,T2,T3,T4は固定電位である。したがって、交流信号のみに着目すると、スイッチング素子Q11~Q14、スイッチング素子Q21~Q24の各寄生キャパシタは、コンデンサC11~C14、コンデンサC21~C24のそれぞれに並列接続している。なお、図2の等価回路において、スイッチング素子Q11~Q14に1対1に並列接続しているコンデンサC11~C14の各容量とスイッチング素子Q11~Q14の各寄生キャパシタの寄生容量との合成容量をCp1とする。また、図2の等価回路において、スイッチング素子Q21~Q24に1対1に並列接続しているコンデンサC21~C24の各容量とスイッチング素子Q21~Q24の各寄生キャパシタの寄生容量との合成容量をCp2とする。
 図2の等価回路は、共振インダクタLsと、入力側の合成容量Cp1および出力側の合成容量Cp2とによって、共振回路が形成されている。そして、この共振回路によってデッドタイムの期間中に共振ノイズが発生する。この共振ノイズの原因としては、ターンオフ時に共振インダクタLsを流れている負荷電流Ioff、ターンオフ時の電圧源E1の電圧Voff、ターンオフ時の電流源S1の励磁電流Ipがある。
 ここで、共振コンデンサC1,C2を十分大きく選べば、電圧Voffによる共振は小さくできる。この場合、デッドタイムにおいて、共振インダクタLsと合成容量Cp1および合成容量Cp2との共振回路には、負荷電流Ioffと励磁電流Ipとを原因とする共振電流が流れる。なお、合成容量Cp1,Cp2の電圧については、合成容量Cp1の充電電圧と合成容量Cp2の充電電圧とが等価な値になるので、共振ノイズの原因にならない。
 そして、負荷電流Ioffおよび励磁電流Ipによる共振は同位相であるため、共振の影響を互いに打ち消すことができる。この共振の影響を打ち消すことができる負荷電流Ioffを閾値X1とすると、閾値X1は
X1=-Ip・{Cp1/{Cp1+(Cp2/n)}}     (1)
となる。なお、励磁電流Ipは、端子T3-T4間の入力電圧、高周波トランスTr1の励磁インダクタンスLpから計算可能な値であり、制御部K1は、予め設定された閾値X1の値を記憶している。
 そして、制御部K1は、電流計測部M1による負荷電流Io1の計測値が増加した後に、閾値X1にまで減少すると、スイッチング素子Q12,Q13,Q21,Q24をターンオフさせる。スイッチング素子Q12,Q13,Q21,Q24のターンオフタイミングを、Io1=X1となるタイミングに設定することによって、負荷電流Ioffによって発生する共振電流が励磁電流Ipによって発生する共振電流を打ち消すことができる。したがって、ターンオフ後の共振ノイズを小さくできる。
 そして、この共振ノイズを無視できるとすると、高周波トランスTr1には、デッドタイム時の励磁電流Ipのみが流れる。したがって、デッドタイムにおいて、入力側のスイッチング素子Q21~Q24の両端電圧の変化と、出力側のスイッチング素子Q11~Q14の両端電圧の変化とが同相になる。而して、次に同時にターンオンするスイッチング素子Q11,Q14,Q22,Q23の各両端電圧(ドレイン-ソース間電圧)を同一タイミングでゼロにすることができる。したがって、制御部K1は、スイッチング素子Q11,Q14,Q22,Q23のターンオン時にゼロクロススイッチングが可能になる。そして、制御部K1は、スイッチング素子Q11,Q14,Q22,Q23のターンオフタイミングも、Io2=X1となるタイミングに設定することによって、ターンオフ後の共振ノイズを小さくできる。
 すなわち、制御部K1は、デッドタイムにおいて負荷電流Ioffによって発生する共振電流が励磁電流Ipによって発生する共振電流を打ち消す電流値となるタイミングに、スイッチング素子群をターンオフさせる。したがって、制御部K1は、励磁電流Ipに起因して発生する共振現象と負荷電流Ioffに起因して発生する共振現象とを互いに打ち消すことができるので、共振ノイズを小さくできる。したがって、双方向DC/DCコンバータは、デッドタイム中に発生する高周波ノイズを抑制できる。
 また、デッドタイム中の共振ノイズが小さくなることによって、スイッチング素子Q11,Q14,Q22,Q23の組、およびスイッチング素子Q12,Q13,Q21,Q24の組のそれぞれは、両端電圧のゼロクロス点でターンオンすることができる。したがって、双方向DC/DCコンバータは、デッドタイムを広げることなく、入出力共にゼロクロススイッチングが可能になるので、効率を改善できる。
 また、端子T1-T2間の直流電圧をDC/DC変換した直流電圧を端子T3-T4間に出力する電力変換(第1の動作)についても、上述の第2の動作と同様に構成することによって、同一の効果を得ることができる。
 また、負荷電流Io1,Io2が測定できる箇所であれば、電流測定部M1,M2の位置は限定しない。また、LLC型の双方向DC/DCコンバータであれば、その回路構成は限定しない。
  (実施形態2)
 図3は、本実施形態の双方向DC/DCコンバータの回路構成を示している。本実施形態の双方向DC/DCコンバータの回路構成では、実施形態1の構成から電流計測部M1,M2が省略されている。他の構成は、実施形態1と同様であり、同様の構成には同一の符号を付して説明は省略する。
 まず、制御部K1aは、デッドタイムに負荷電流Ioffによって発生する共振電流が励磁電流Ipによって発生する共振電流を打ち消す電流値となるタイミングに、スイッチング素子群をターンオフさせる。そして、双方向DC/DCコンバータは、上述のタイミングにスイッチング素子群がターンオフするように、共振インダクタL1,L2のインダクタンス、共振コンデンサC1,C2の容量、デッドタイムを設定している。
 具体的に、fSW:スイッチング周波数、fLC:共振インダクタL1,L2と共振コンデンサC1,C2とによる共振周波数、D:デッドタイムとする。この場合、以下の(2)式を満たすように、共振インダクタL1,L2のインダクタンス、共振コンデンサC1,C2の容量、デッドタイムが設定される。
1/fSW=1/fLC+2・D     (2)
 そして、スイッチング回路11,12は、制御部K1aの制御により、(2)式を満たすスイッチング周波数fSWでスイッチングする。これにより、制御部K1aは、デッドタイムに負荷電流Ioffによって発生する共振電流が励磁電流Ipによって発生する共振電流を打ち消す電流値となるタイミングに、スイッチング素子群をターンオフさせることができる。したがって、制御部K1aは、励磁電流Ipに起因して発生する共振現象と負荷電流Ioffに起因して発生する共振現象とを互いに打ち消すことができるので、共振ノイズを小さくできる。したがって、双方向DC/DCコンバータは、デッドタイム中に発生する高周波ノイズを抑制できる。
 また、デッドタイム中の共振ノイズが小さくなることによって、スイッチング素子Q11,Q14,Q22,Q23の組、およびスイッチング素子Q12,Q13,Q21,Q24の組のそれぞれは、両端電圧のゼロクロス点でターンオンすることができる。したがって、双方向DC/DCコンバータは、デッドタイムを広げることなく、入出力共にゼロクロススイッチングが可能になるので、効率を改善できる。
 また、電流計測部M1,M2を用いる必要がないので、回路構成を簡略化できる。
 また、LLC型の双方向DC/DCコンバータであれば、その回路構成は限定しない。
 また、上述の各実施形態において、制御部K1または制御部K1aは、第1の動作時に、スイッチング素子Q11,Q14とスイッチング素子Q12,Q13とを交互にオン・オフ駆動し、スイッチング素子Q21~Q24をオフ状態に維持してもよい。この場合、スイッチング回路11は、高周波トランスTr1側を出力とするスイッチング回路として動作し、スイッチング回路12は、高周波トランスTr1側を入力とする整流回路として動作する。そして、スイッチング素子Q11~Q14のターンオフタイミングを実施形態1または2と同様に設定する。
 また、上述の各実施形態において、制御部K1または制御部K1aは、第2の動作時に、スイッチング素子Q21,Q24とスイッチング素子Q22,Q23とを交互にオン・オフ駆動し、スイッチング素子Q11~Q14をオフ状態に維持してもよい。この場合、スイッチング回路12は、高周波トランスTr1側を出力とするスイッチング回路として動作し、スイッチング回路11は、高周波トランスTr1側を入力とする整流回路として動作する。そして、スイッチング素子Q21~Q24のターンオフタイミングを実施形態1または2と同様に設定する。
 なお、上述の各実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
  (まとめ)
 以上説明したように、実施形態1または実施形態2のDC/DCコンバータは、第1の動作と第2の動作とを切り換えて、双方向の電圧変換を行う。第1の動作とは、端子T1-T2間(第1の端子間)の直流電圧をDC/DC変換した直流電圧を第2の端子間に出力する動作である。第2の動作とは、端子T3-T4間(第2の端子間)の直流電圧をDC/DC変換した直流電圧を第1の端子間に出力する動作である。DC/DCコンバータは、スイッチング回路11(第1のスイッチング回路)と、共振インダクタL1,L2、共振コンデンサC1,C2、トランスTr1の第1巻線N1の直列回路とを備える。さらに、DC/DCコンバータは、スイッチング回路12(第2のスイッチング回路)と、トランスTr1の第2巻線N2と、ダイオードD11~D14,D21~D24(整流素子)と、制御部K1または制御部K1aとを備える。スイッチング回路11は、2つの直列回路からなる。1つは、端子T1-T2間に接続されたスイッチング素子Q11,Q12(第1及び第2のスイッチング素子)の直列回路である。もう1つは、端子T1-T2間に接続されたスイッチング素子Q13,Q14(第3及び第4のスイッチング素子)の直列回路である。共振インダクタL1,L2、共振コンデンサC1,C2、第1巻線N1は、スイッチング素子Q11及びスイッチング素子Q12の接続点とスイッチング素子Q13及びスイッチング素子Q14の接続点との間に接続されている。スイッチング回路12は、2つの直列回路からなる。1つは、端子T3-T4間に接続されたスイッチング素子Q21,Q22(第5及び第6のスイッチング素子)の直列回路である。もう1つは、端子T3-T4間に接続されたスイッチング素子Q23,Q24(第7及び第8のスイッチング素子)の直列回路である。第2巻線N2は、スイッチング素子Q21及びスイッチング素子Q22の接続点とスイッチング素子Q23及びスイッチング素子Q24の接続点との間に接続されている。ダイオードD11~D14,D21~D24は、スイッチング素子Q11~Q14,Q21~Q24のそれぞれに逆並列接続されている。制御部K1または制御部K1aは、第1の動作時において、スイッチング素子Q11~Q14のうちフルブリッジの対角に位置するスイッチング素子の組をデッドタイムを設けて交互にオン・オフ制御する。制御部K1または制御部K1aは、第2の動作時において、スイッチング素子Q21~Q24のうちフルブリッジの対角に位置するスイッチング素子の組をデッドタイムを設けて交互にオン・オフ制御する。デッドタイムにおいて、共振インダクタL1,L2とスイッチング素子Q11~Q14,Q21~Q24のそれぞれに並列に存在する容量との共振回路には、共振インダクタL1,L2に流れる負荷電流Ioffとトランスの励磁電流Ipとによる共振電流が流れる。制御部K1または制御部K1aは、デッドタイムにおいて、負荷電流Ioffによって発生する共振電流が励磁電流Ipによって発生する共振電流を打ち消す電流値となるタイミングに、スイッチング素子Q11~Q14,Q21~Q24の各ターンオフ動作を行う。
 実施形態1のDC/DCコンバータは、さらに、負荷電流を計測する電流計測部M1,M2を備えることができる。制御部K1は、電流計測部M1,M2による負荷電流Ioffの計測値が所定の閾値X1となった場合に、スイッチング素子Q11~Q14,Q21~Q24の各ターンオフ動作を行うとしてもよい。
 実施形態2のDC/DCコンバータでは、制御部K1aは、以下の動作を行うように、共振インダクタL1,L2のインダクタンス、共振コンデンサC1,C2の容量、デッドタイムを設定してもよい。制御部K1aは、負荷電流Ioffによって発生する共振電流が励磁電流Ipによって発生する共振電流を打ち消す電流値となった場合に、スイッチング素子Q11~Q14,Q21~Q24の各ターンオフを行う。

Claims (3)

  1.  第1の端子間の直流電圧をDC/DC変換した直流電圧を第2の端子間に出力する第1の動作と、前記第2の端子間の直流電圧をDC/DC変換した直流電圧を前記第1の端子間に出力する第2の動作とを切り換えて、双方向の電圧変換を行う双方向DC/DCコンバータであって、
     前記第1の端子間に接続された第1のスイッチング素子及び第2のスイッチング素子の直列回路、前記第1の端子間に接続された第3のスイッチング素子及び第4のスイッチング素子の直列回路からなるフルブリッジ回路である第1のスイッチング回路と、
     前記第1のスイッチング素子及び前記第2のスイッチング素子の接続点と前記第3のスイッチング素子及び前記第4のスイッチング素子の接続点との間に接続された共振インダクタ、共振コンデンサ、トランスの第1巻線の直列回路と、
     前記第2の端子間に接続された第5のスイッチング素子及び第6のスイッチング素子の直列回路、前記第2の端子間に接続された第7のスイッチング素子及び第8のスイッチング素子の直列回路からなるフルブリッジ回路である第2のスイッチング回路と、
     前記第5のスイッチング素子及び前記第6のスイッチング素子の接続点と前記第7のスイッチング素子及び前記第8のスイッチング素子の接続点との間に接続された前記トランスの第2巻線と、
     前記第1~第8のスイッチング素子のそれぞれに逆並列接続された整流素子と、
     前記第1の動作時において、前記第1~第4のスイッチング素子のうちフルブリッジの対角に位置するスイッチング素子の2組をデッドタイムを設けて交互にオン・オフ制御し、前記第2の動作時において、前記第5~第8のスイッチング素子のうちフルブリッジの対角に位置するスイッチング素子の2組をデッドタイムを設けて交互にオン・オフ制御する制御部とを備え、
     前記デッドタイムにおいて、前記共振インダクタと前記第1~第8のスイッチング素子のそれぞれに並列に存在する容量との共振回路には、前記共振インダクタに流れる負荷電流と前記トランスの励磁電流とによる共振電流が流れ、
     前記制御部は、前記デッドタイムにおいて、前記負荷電流によって発生する前記共振電流が前記励磁電流によって発生する前記共振電流を打ち消す電流値となるタイミングに、前記第1~第8のスイッチング素子の各ターンオフ動作を行う
     ことを特徴とする双方向DC/DCコンバータ。
  2.  前記負荷電流を計測する電流計測部を備え、
     前記制御部は、前記電流計測部による前記負荷電流の計測値が所定の閾値となった場合に、前記第1~第8のスイッチング素子の各ターンオフ動作を行う
     ことを特徴とする請求項1記載の双方向DC/DCコンバータ。
  3.  前記制御部は、前記負荷電流によって発生する前記共振電流が前記励磁電流によって発生する前記共振電流を打ち消す電流値となった場合に、前記第1~第8のスイッチング素子の各ターンオフを行うように、前記共振インダクタのインダクタンス、前記共振コンデンサの容量、前記デッドタイムを設定したことを特徴とする請求項1記載の双方向DC/DCコンバータ。
PCT/JP2014/002178 2013-04-26 2014-04-17 双方向dc/dcコンバータ WO2014174809A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/785,592 US9570991B2 (en) 2013-04-26 2014-04-17 Bidirectional DC/DC converter
EP14788920.8A EP2991215A4 (en) 2013-04-26 2014-04-17 BIDIRECTIONAL CONTINUOUS CONVERTER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013093277A JP2014217196A (ja) 2013-04-26 2013-04-26 双方向dc/dcコンバータ
JP2013-093277 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014174809A1 true WO2014174809A1 (ja) 2014-10-30

Family

ID=51791398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002178 WO2014174809A1 (ja) 2013-04-26 2014-04-17 双方向dc/dcコンバータ

Country Status (4)

Country Link
US (1) US9570991B2 (ja)
EP (1) EP2991215A4 (ja)
JP (1) JP2014217196A (ja)
WO (1) WO2014174809A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186977B2 (en) 2015-03-02 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Resonant power converter

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179054B2 (ja) * 2013-07-02 2017-08-16 パナソニックIpマネジメント株式会社 双方向dc/dcコンバータ、双方向電力変換器
JP6372607B2 (ja) * 2015-02-17 2018-08-15 株式会社村田製作所 Dc−dcコンバータ
FR3033102B1 (fr) * 2015-02-20 2018-05-11 Devialet Alimentation a decoupage a branches commandees
JP6439602B6 (ja) * 2015-06-12 2019-01-30 Tdk株式会社 スイッチング電源装置
US9973099B2 (en) 2015-08-26 2018-05-15 Futurewei Technologies, Inc. AC/DC converters with wider voltage regulation range
WO2017213030A1 (ja) * 2016-06-09 2017-12-14 株式会社村田製作所 電力変換装置
JP6707003B2 (ja) * 2016-09-14 2020-06-10 ローム株式会社 スイッチ駆動回路及びこれを用いたスイッチング電源装置
CN106300702B (zh) * 2016-11-04 2018-11-23 北京恒泰万博石油技术股份有限公司 非接触电能传输系统及其在井下旋转导向机构中的应用
JP6883489B2 (ja) * 2017-08-22 2021-06-09 ダイヤモンド電機株式会社 コンバータ
CN108039822B (zh) * 2017-12-12 2020-07-28 西安交通大学 一种双有源全桥直流变换器的瞬时电流控制方法
FR3076123B1 (fr) * 2017-12-21 2021-01-08 Renault Sas Convertisseur dc-dc pour chargeur bidirectionnel.
EP3787168A4 (en) * 2018-04-26 2021-06-23 Panasonic Intellectual Property Management Co., Ltd. CURRENT CONVERSION DEVICE
CN110620512B (zh) * 2018-06-20 2020-09-15 台达电子工业股份有限公司 谐振变换器及控制方法
JP7036680B2 (ja) * 2018-06-25 2022-03-15 ダイヤゼブラ電機株式会社 Dc-dcコンバータ
JP2020005330A (ja) * 2018-06-25 2020-01-09 ダイヤモンド電機株式会社 Dc−dcコンバータ
US10483862B1 (en) * 2018-10-25 2019-11-19 Vanner, Inc. Bi-directional isolated DC-DC converter for the electrification of transportation
CN109842302B (zh) * 2019-02-15 2020-08-14 矽力杰半导体技术(杭州)有限公司 串联谐振变换器及其原边反馈控制电路和控制方法
JP6747569B1 (ja) * 2019-11-21 2020-08-26 富士電機株式会社 電力変換装置、制御方法、および制御プログラム
CN111181410A (zh) * 2020-03-06 2020-05-19 深圳英飞源技术有限公司 一种减小电解电容纹波电流的双向变换电路
JP7491080B2 (ja) * 2020-06-22 2024-05-28 富士電機株式会社 電力変換装置
CN114301297B (zh) * 2021-06-23 2024-06-25 华为数字能源技术有限公司 一种功率变换器、增大逆向增益范围的方法、装置、介质
KR102464118B1 (ko) * 2021-08-18 2022-11-07 주식회사 원익피앤이 배터리 충방전을 위한 컨버터를 제어하는 컨트롤러 및 충방전기
JP7391920B2 (ja) * 2021-09-13 2023-12-05 株式会社東芝 電子回路及び方法
US20230412083A1 (en) * 2022-05-31 2023-12-21 Texas Instruments Incorporated Quasi-resonant isolated voltage converter
CN115882734B (zh) * 2023-02-22 2023-06-06 浙江日风电气股份有限公司 一种dab变换器的控制方法及相关组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282828A (ja) 2003-03-13 2004-10-07 Honda Motor Co Ltd 双方向dc−dcコンバータ
JP2006230075A (ja) * 2005-02-16 2006-08-31 Toyota Industries Corp スイッチング電源回路
JP2008541689A (ja) 2005-05-18 2008-11-20 ピーエステック カンパニーリミテッド 間歇モードで動作する同期整流型直列共振コンバータ
JP2014087134A (ja) * 2012-10-22 2014-05-12 Mitsubishi Electric Corp Dc/dcコンバータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560127B2 (en) * 2000-05-04 2003-05-06 Texas Instruments Incorporated Power conversion circuit having improved zero voltage switching
JP4318174B2 (ja) 2003-12-11 2009-08-19 本田技研工業株式会社 Dc−dcコンバータ
JP4527616B2 (ja) 2005-06-24 2010-08-18 株式会社日立製作所 絶縁共振形双方向dc/dcコンバータ及びその制御方法
JP4378400B2 (ja) * 2007-08-28 2009-12-02 日立コンピュータ機器株式会社 双方向dc−dcコンバータ及び双方向dc−dcコンバータの制御方法
JP2011130577A (ja) 2009-12-17 2011-06-30 Shihen Tech Corp 直流電源装置
JP5577933B2 (ja) * 2010-08-09 2014-08-27 サンケン電気株式会社 コンバータ
JPWO2012153799A1 (ja) * 2011-05-12 2014-07-31 株式会社村田製作所 スイッチング電源装置
CN104143919A (zh) * 2013-05-07 2014-11-12 台达电子工业股份有限公司 双向直流变换器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282828A (ja) 2003-03-13 2004-10-07 Honda Motor Co Ltd 双方向dc−dcコンバータ
JP2006230075A (ja) * 2005-02-16 2006-08-31 Toyota Industries Corp スイッチング電源回路
JP2008541689A (ja) 2005-05-18 2008-11-20 ピーエステック カンパニーリミテッド 間歇モードで動作する同期整流型直列共振コンバータ
JP2014087134A (ja) * 2012-10-22 2014-05-12 Mitsubishi Electric Corp Dc/dcコンバータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2991215A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186977B2 (en) 2015-03-02 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Resonant power converter

Also Published As

Publication number Publication date
US20160072390A1 (en) 2016-03-10
EP2991215A1 (en) 2016-03-02
EP2991215A4 (en) 2016-11-30
JP2014217196A (ja) 2014-11-17
US9570991B2 (en) 2017-02-14

Similar Documents

Publication Publication Date Title
WO2014174809A1 (ja) 双方向dc/dcコンバータ
JP2021035328A (ja) 広出力電圧範囲用の絶縁型dc/dcコンバータ及びその制御方法
CN110383663B (zh) Dc-dc变换器
WO2017038294A1 (ja) Dc-dcコンバータ
JP2008048483A (ja) 直流交流変換装置
US11296607B2 (en) DC-DC converter
JP5280766B2 (ja) Dcdcコンバータ、スイッチング電源および無停電電源装置
CN112134474A (zh) 半导体装置
JP2012050264A (ja) 負荷駆動装置
US20230223856A1 (en) Power conversion apparatus having multiple llc converters and capable of achieving desired output voltage even in changes in load current
JP6388154B2 (ja) 共振型dc−dcコンバータ
JP5919750B2 (ja) 電源装置
JP7329971B2 (ja) コンバータ
JP5888016B2 (ja) フルブリッジ型dc/dcコンバータ
CN111903047B (zh) 电力转换装置
JP5418910B2 (ja) Dc−dcコンバータ
US9871450B2 (en) Isolated step-up converter
WO2016036783A1 (en) Extremely-sparse parallel ac-link power converter
JP4635584B2 (ja) スイッチング電源装置
JP6314734B2 (ja) 電力変換装置
TWI543513B (zh) 諧振轉換器
JP2020022299A (ja) 電源装置
WO2024185002A1 (ja) 電力変換装置
JP7386737B2 (ja) 整流回路及びこれを用いたスイッチング電源
US8760893B2 (en) Full bridge switching circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014788920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14785592

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE