WO2014174682A1 - 永久磁石電動機の磁石温度推定装置および永久磁石電動機の磁石温度推定方法 - Google Patents
永久磁石電動機の磁石温度推定装置および永久磁石電動機の磁石温度推定方法 Download PDFInfo
- Publication number
- WO2014174682A1 WO2014174682A1 PCT/JP2013/062475 JP2013062475W WO2014174682A1 WO 2014174682 A1 WO2014174682 A1 WO 2014174682A1 JP 2013062475 W JP2013062475 W JP 2013062475W WO 2014174682 A1 WO2014174682 A1 WO 2014174682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnet temperature
- magnet
- voltage
- order component
- temperature estimation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 26
- 238000001514 detection method Methods 0.000 claims abstract description 47
- 238000004804 winding Methods 0.000 claims abstract description 10
- 238000013507 mapping Methods 0.000 abstract 1
- 230000008859 change Effects 0.000 description 19
- 230000005672 electromagnetic field Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/0094—Structural association with other electrical or electronic devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/60—Controlling or determining the temperature of the motor or of the drive
- H02P29/66—Controlling or determining the temperature of the rotor
- H02P29/662—Controlling or determining the temperature of the rotor the rotor having permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/25—Devices for sensing temperature, or actuated thereby
Definitions
- the present invention relates to a magnet temperature estimation device and a magnet temperature estimation method capable of estimating the magnet temperature of a permanent magnet motor with high accuracy.
- Patent Document 1 the magnet temperature is estimated from the induced voltage constant (that is, a value corresponding to the fundamental wave component of the voltage).
- the fundamental wave component has a small change with respect to the magnet temperature. Therefore, high measurement accuracy is required for estimating the magnet temperature.
- the present invention has been made to solve the above-described problems, and a permanent magnet motor temperature estimation device and a permanent magnet capable of estimating a magnet temperature with high accuracy without being based on a fundamental wave component.
- An object is to obtain a method for estimating the magnet temperature of an electric motor.
- a magnet temperature estimation device for a permanent magnet electric motor is a magnet temperature estimation device for a permanent magnet electric motor composed of an annular stator having windings wound thereon and a rotor core having a permanent magnet.
- the voltage detector that detects the voltage when the winding is energized
- the higher-order component detector that detects the higher-order component of the voltage detected by the voltage detector, and the voltage that detects the higher-order component are affected.
- a reference database that stores in advance a correspondence relationship between two or more parameters including a magnet temperature and one or more other parameters and higher-order components, and a parameter value for detecting the value of one or more parameters
- the magnet temperature corresponding to the high-order component detected by the detection unit and the high-order component detection unit is stored in one or more parameters detected by the parameter value detection unit and the reference database It is intended and a magnet temperature estimating unit that estimates, based on Buru.
- the method for estimating the magnet temperature of the permanent magnet motor is a method for estimating the magnet temperature of a permanent magnet motor configured by an annular stator having windings wound thereon and a rotor core having a permanent magnet.
- a voltage detection step for detecting a voltage when the winding is energized a high-order component detection step for detecting a high-order component of the voltage detected in the voltage detection step, and a voltage for detecting the high-order component.
- a storage step for storing in advance a correspondence relationship between two or more parameters including the magnet temperature and one or more other parameters and higher order components as a parameter, and a value of one or more parameters.
- a magnet temperature corresponding to the higher-order component detected in the higher-order component detection step and at least one detected in the parameter-value detection step a magnet temperature corresponding to the higher-order component detected in the higher-order component detection step and at least one detected in the parameter-value detection step.
- the magnet temperature is estimated using the detection result of the high-order component of the voltage having a large change rate with respect to the magnet temperature, so that the magnet temperature is estimated with high accuracy without being based on the fundamental wave component.
- a permanent magnet motor magnet temperature estimation device and a permanent magnet motor magnet temperature estimation method that can be obtained.
- Embodiment 1 of this invention It is a block diagram of the magnet temperature estimation apparatus in Embodiment 1 of this invention. It is the figure which showed the specific example of the some table previously memorize
- Embodiment 1 of this invention it is the figure which showed the change rate with respect to magnet temperature of the 7th-order component of a line voltage. In the electromagnetic field analysis by Embodiment 1 of this invention, it is the figure which showed the change rate with respect to magnet temperature of the 11th-order component of a line voltage. In the electromagnetic field analysis by Embodiment 1 of this invention, it is the figure which showed the change rate with respect to magnet temperature of the 13th-order component of a line voltage. It is a block diagram of the magnet temperature estimation apparatus in Embodiment 2 of this invention.
- FIG. 1 is a block diagram of a magnet temperature estimation apparatus according to Embodiment 1 of the present invention.
- the magnet temperature estimation apparatus according to the first embodiment shown in FIG. 1 includes a voltage detection unit 1, a high-order component detection unit 2, a reference database 3, a parameter value detection unit 4, and a magnet temperature estimation unit 5. ing.
- the voltage detector 1 detects the line voltage or interphase voltage of the rotating electrical machine (permanent magnet motor).
- the detection method for example, a method of detecting from a voltage command value in a control system or a method of using an actually measured numerical value can be applied.
- the voltage detected by the voltage detection unit 1 is sent to the higher-order component detection unit 2. Then, the high-order component detection unit 2 calculates a high-order component of the voltage detected by the voltage detection unit 1.
- the calculation method for example, a method obtained from Fourier transform, a method of extracting a specific frequency component by a band pass filter, or the like can be applied.
- the reference database 3 defines the correspondence between parameters that affect the voltage detected by the voltage detector 1, such as magnet temperature, rotation speed, coil temperature, current, and current phase, and higher-order components of the voltage.
- the storage unit stores a plurality of tables in advance.
- FIG. 2 is a diagram showing a specific example of a plurality of tables stored in advance in the reference database 3 according to Embodiment 1 of the present invention.
- FIG. 2 shows, as a specific example, n ⁇ m tables including combinations of n rotational speeds ⁇ 1 to ⁇ n and m magnetic temperatures T1 to Tm.
- n ⁇ m tables including combinations of n rotational speeds ⁇ 1 to ⁇ n and m magnetic temperatures T1 to Tm.
- the measurement result of the high-order component of the voltage when the two parameters, d-axis current id and q-axis current iq are defined in advance as a two-dimensional table.
- one high-order component of the voltage corresponding to the four parameters of the rotational speed, the magnet temperature, the d-axis current id, and the q-axis current iq is specified by a plurality of tables stored in advance in the reference database 3. It becomes.
- the parameter value detection unit 4 is means for detecting a parameter used for estimating the magnet temperature. Specifically, the parameter value detection unit 4 can detect the three parameters of the rotation speed, the d-axis current id, and the q-axis current iq as follows. The parameter value detection unit 4 detects the rotational speed by using a rotational position sensor such as a resolver. Furthermore, the parameter value detection unit 4 acquires the d-axis current id and the q-axis current iq as current command values or actual measurement values.
- the magnet temperature estimator 5 includes three parameters: a high-order component of the voltage detected by the high-order component detector 2, a rotational speed detected by the parameter value detector 4, a d-axis current id, and a q-axis current iq. Based on a plurality of tables stored in the reference database 3, an estimated value of the magnet temperature is obtained.
- the magnet temperature estimation part 5 can estimate a magnet temperature with the following procedure as an example. (Procedure 1) The magnet temperature estimator 5 determines the voltage corresponding to the d-axis current id and the q-axis current iq detected by the parameter value detector 4 for each of the n ⁇ m tables stored in the reference database 3. Higher order components (n ⁇ m) are extracted.
- the magnet temperature estimator 5 is extracted from the m tables corresponding to the rotation speed detected by the parameter value detector 4 with respect to the high-order components of the n ⁇ m voltages extracted in Procedure 1. Narrow down to high-order components of m voltages.
- the magnet temperature estimator 5 uses a table having values closest to the high-order component of the voltage calculated by the high-order component detector 2 for the m high-order components of the m voltages narrowed down by the procedure 2.
- the magnet temperature corresponding to the table is specified as an estimated value of the magnet temperature.
- the above-described procedure is merely an example, and the estimated value of the magnet temperature can be obtained by changing the order of steps 1 to 3.
- the advantage of using a higher-order voltage component is that the rate of change of the voltage with respect to the magnet temperature is large compared to the case where the fundamental wave component of the voltage is used, so that it can be measured with high accuracy. . Then, since such an advantage was demonstrated using electromagnetic field analysis, it demonstrates in detail below.
- FIG. 3 is a schematic diagram of the rotating electrical machine used for electromagnetic field analysis in Embodiment 1 of the present invention.
- the rotating electrical machine illustrated in FIG. 3 includes a stator 10 and a rotor 20.
- the configuration of 8 poles and 12 slots will be described as an example.
- the shape of the rotating electrical machine including the combination of the number of poles and the number of slots is not limited to this.
- the stator 10 has an annular stator core 11 and a coil 12 wound around the stator core 11.
- the rotor 20 is composed of a rotor core 21 in which a permanent magnet 30 is embedded.
- Magnet temperature 3 patterns of normal temperature, 100 ° C, 180 ° C
- Input current 3000AT
- FIGS. 4A to 4E show the rate of change of each component of the line voltage (fundamental, fifth, seventh, eleventh, and thirteenth) with respect to the magnet temperature in the electromagnetic field analysis according to Embodiment 1 of the present invention.
- FIG. 4A shows the fundamental wave component of the line voltage
- FIG. 4B shows the quintic component of the line voltage
- FIG. 4C shows the seventh component of the line voltage
- 4D shows the 11th-order component of the line voltage
- FIG. 4E shows the rate of change related to the 13th-order component of the line voltage.
- the horizontal axis represents the magnet temperature
- the vertical axis represents the line voltage ratio.
- the ratio of the line voltage on the vertical axis represents the value of the line voltage when the magnet temperature is 100 ° C. and 180 ° C. as the rate of change based on the line voltage at room temperature of the magnet. Is.
- FIGS. 4A to 4E show the results of analyzing the rate of change for five patterns when the current phase ⁇ is changed to 0, 20, 40, 60, and 80 degrees.
- the rate of change in the higher-order components (fifth, seventh, eleventh, and thirteenth) of the line voltage shown in FIGS. 4B to 4E is the same as that shown in FIG. It can be seen that it is larger than the rate of change in the fundamental component of the voltage. Therefore, it can be said that the higher-order component is a more suitable parameter for the magnet temperature estimation because the higher-order component has a larger change with respect to the magnet temperature than the fundamental wave component.
- the fifth-order component or the seventh-order component belongs to a relatively low frequency among the existing higher-order components (the line voltage does not include even-order components and multiple components of 3). It can be said that measurement is relatively easy and practical.
- the fundamental wave component shown in FIG. 4A has an advantage that detection is easy because the frequency is low although the rate of change is small. Therefore, by combining not only higher-order components but also estimation results based on fundamental wave components, it is possible to increase variations in the magnet temperature estimation method and to facilitate detection.
- the voltage to be detected may be a phase voltage or a line voltage as described above.
- the phase voltage it is necessary to extract the neutral point. For this reason, there is an advantage that the line voltage is easier to actually measure.
- the voltage value is estimated from the command value, the ease of using both the phase voltage and the line voltage is the same.
- the magnet temperature is estimated using a high-order component of a voltage having a large change rate with respect to the magnet temperature.
- two or more parameters including the magnet temperature and one or more other parameters are employed as parameters that affect the voltage for detecting higher-order components.
- the correspondence relationship between the two or more parameters and the higher-order component of the voltage is tabulated in advance based on the actual measurement result or analysis result.
- the magnet temperature is estimated based on the detection result of the parameter values other than the magnet temperature, the extraction result of the high-order component of the voltage, and the data tabulated in relation to the high-order component of the voltage.
- the magnet temperature is estimated based on the detection result of the parameter values other than the magnet temperature, the extraction result of the high-order component of the voltage, and the data tabulated in relation to the high-order component of the voltage.
- the present invention is not limited to the number of parameters other than the magnet temperature or the physical quantity employed as the parameter.
- the present invention focuses on high-order components of a voltage having a large change rate with respect to the magnet temperature, and has a technical feature of accurately estimating the magnet temperature by using the detection result of the high-order components. It is. And what is selected as a secondary parameter as other parameters that affect the detection of higher-order components is not limited to those exemplified in the first embodiment.
- Embodiment 2 not only one high-order component but also a plurality of high-order components such as “5th & 7th order” and “7th & 11th & 13th order” are handled as high-order components of voltage.
- a magnet temperature estimation device for a permanent magnet motor that can improve the estimation accuracy of the magnet temperature will be described.
- FIG. 5 is a block diagram of the magnet temperature estimation apparatus in Embodiment 2 of the present invention. Compared to the block diagram of FIG. 1 in the first embodiment, the block diagram shown in FIG. 5 has an individual estimation unit 51 and an integrated estimation unit 52 as the internal configuration of the magnet temperature estimation unit 5. The point is different. Therefore, the following description will be focused on the individual estimation unit 51 and the integrated estimation unit 52 which are new configuration requirements.
- the individual estimation unit 51 in the magnet temperature estimation unit 5 calculates an individual magnet temperature estimation value for each of a plurality of higher-order components of the voltage by the estimation method described in the first embodiment.
- the individual estimation unit 51 individually estimates the magnet temperature estimation value for the three components of the fifth component, the seventh component, and the eleventh component.
- the integrated estimation unit 52 in the magnet temperature estimation unit 5 performs an integration process on the respective magnet temperature estimation values for the three components estimated by the individual estimation unit 51, thereby obtaining one magnet temperature estimation value. Is identified.
- the integrated estimation unit 52 can specify one magnet temperature estimated value by obtaining an average value of three components or adopting an intermediate value.
- one estimated magnet temperature value is specified based on the individually estimated magnet temperatures for a plurality of higher order components. As a result, measurement variations in each component can be suppressed, and the estimation accuracy can be further improved.
- Embodiment 3 FIG.
- the third embodiment a case will be described in which a plurality of components are handled to improve the estimation accuracy of the magnet temperature by a prescription different from that of the second embodiment.
- the blocks of the magnet temperature estimation apparatus in the third embodiment are the same as the block diagram shown in FIG. 5 in the second embodiment.
- the magnet temperature estimated by the magnet temperature estimation unit 5 is not necessarily one for a certain high-order component, and there may be a plurality of magnet temperatures.
- the individual estimation unit 51 obtains two estimated values of 90 ° C. and 120 ° C. for the fifth order component and obtains an estimated value of 90 ° C. for the seventh order component.
- the integrated estimation unit 52 can narrow the estimated value to 90 ° C.
- one higher-order component is compared with one estimated in other higher-order components.
- the estimated magnet temperature is specified. As a result, errors in magnet temperature estimation can be reduced, and further improvement in estimation accuracy can be realized.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
特許文献1では、誘起電圧定数(すなわち、電圧の基本波成分に相当する値)から磁石温度を推定している。しかしながら、基本波成分は、磁石温度に対して変化が小さい。このため、磁石温度を推定するに当たっては、高い計測精度が必要となる。
図1は、本発明の実施の形態1における磁石温度推定装置のブロック図である。図1に示した本実施の形態1における磁石温度推定装置は、電圧検出部1、高次成分検出部2、参照データベース3、パラメータ値検出部4、および磁石温度推定部5を備えて構成されている。
(手順1)磁石温度推定部5は、参照データベース3に記憶されたn×m個のテーブルのそれぞれについて、パラメータ値検出部4で検出されたd軸電流id、q軸電流iqに対応する電圧の高次成分(n×m個)を抽出する。
固定子10の外径φ138
回転子20の外径φ90
軸長:50mm
永久磁石30の残留磁束密度:1.2T(常温)
1.1T(100℃)
1.0T(180℃)
磁石温度:常温、100℃、180℃の3パターン
入力電流:3000AT
図4A~図4Eは、本発明の実施の形態1による電磁界解析において、線間電圧の各成分(基本波、5次、7次、11次、13次)の、磁石温度に対する変化率を示した図である。より具体的には、3000ATを通電した際に、図4Aは、線間電圧の基本波成分、図4Bは、線間電圧の5次成分、図4Cは、線間電圧の7次成分、図4Dは、線間電圧の11次成分、そして、図4Eは、線間電圧の13次成分に関する変化率をそれぞれ示すものである。
(1)図4B~図4Eに示した線間電圧の高次成分(5次、7次、11次、13次)における変化率は、どの電流位相βにおいても、図4Aに示した線間電圧の基本波成分における変化率と比較して、大きいことがわかる。よって、基本波成分よりも高次成分の方が、磁石温度に対して変化が大きいため、磁石温度推定には、より適したパラメータであるといえる。
本実施の形態2では、電圧の高次成分として、「5次&7次」,「7次&11次&13次」のように、1つの高次成分だけでなく、複数の高次成分を扱うことで、磁石温度の推定精度の向上を実現できる永久磁石電動機の磁石温度推定装置について説明する。
本実施の形態3では、複数の成分を扱うことで、先の実施の形態2とは異なる処方により、磁石温度の推定精度の向上を図る場合について説明する。なお、本実施の形態3における磁石温度推定装置のブロックズは、先の実施の形態2における図5で示したブロック図と同一である。
Claims (8)
- 巻線が巻装された円環状の固定子と、永久磁石を有する回転子コアとで構成された永久磁石電動機の磁石温度推定装置であって、
前記巻線に通電した際の電圧を検出する電圧検出部と、
前記電圧検出部で検出された前記電圧の高次成分を検出する高次成分検出部と、
前記高次成分を検出する前記電圧に影響を与えるパラメータとして、磁石温度および他の1以上のパラメータからなる2以上のパラメータと、前記高次成分との対応関係を、あらかじめテーブルとして記憶する参照データベースと、
前記1以上のパラメータの値を検出するパラメータ値検出部と、
前記高次成分検出部で検出された前記高次成分に対応する磁石温度を、前記パラメータ値検出部で検出された前記1以上のパラメータ、および前記参照データベースに記憶された前記テーブルに基づいて推定する磁石温度推定部と
を備える永久磁石電動機の磁石温度推定装置。 - 請求項1に記載の永久磁石電動機の磁石温度推定装置において、
前記高次成分検出部は、前記電圧検出部で検出された前記電圧に関して複数の高次成分を検出し、
前記参照データベースは、前記複数の高次成分のそれぞれに対応する個別のテーブルを記憶し、
前記磁石温度推定部は、前記複数の高次成分のそれぞれに対応する複数の磁石温度を、前記パラメータ値検出部で検出された前記1以上のパラメータ、および参照データベースに記憶された前記個別のテーブルに基づいて推定し、推定した前記複数の磁石温度に基づいて1つの磁石温度推定値を特定する
永久磁石電動機の磁石温度推定装置。 - 請求項1または2に記載の永久磁石電動機の磁石温度推定装置において、
前記高次成分検出部は、検出する前記高次成分として、5次成分または7次成分を含む
永久磁石電動機の磁石温度推定装置。 - 請求項1から3のいずれか1項に記載の永久磁石電動機の磁石温度推定装置において、
前記高次成分検出部は、前記電圧検出部で検出された前記電圧に関して基本波成分をさらに検出し、
前記参照データベースは、前記基本波成分に対応する基本波成分用テーブルをさらに記憶し、
前記磁石温度推定部は、推定前記高次成分検出部で検出された前記高次成分に対応する磁石温度を推定する際に、前記高次成分検出部で検出された前記基本波成分に対応して推定された磁石温度も参照する
永久磁石電動機の磁石温度推定装置。 - 請求項1から4のいずれか1項に記載の永久磁石電動機の磁石温度推定装置において、
前記電圧検出部は、前記巻線に通電した際に検出する前記電圧として、線間電圧を検出する
永久磁石電動機の磁石温度推定装置。 - 請求項2に記載の永久磁石電動機の磁石温度推定装置において、
前記磁石温度推定部は、前記複数の高次成分のそれぞれに対応して推定された複数の磁石温度の平均値を求めることで、前記1つの磁石温度推定値を特定する
永久磁石電動機の磁石温度推定装置。 - 請求項2に記載の永久磁石電動機の磁石温度推定装置において、
前記磁石温度推定部は、前記複数の高次成分のうちのある成分について、2つ以上の磁石温度が推定された場合には、前記2つ以上の磁石温度のうち、その他の成分について推定された磁石温度から所定量以上逸脱している推定値を誤推定として削除する
永久磁石電動機の磁石温度推定装置。 - 巻線が巻装された円環状の固定子と、永久磁石を有する回転子コアとで構成された永久磁石電動機の磁石温度推定方法であって、
前記巻線に通電した際の電圧を検出する電圧検出ステップと、
前記電圧検出ステップで検出された前記電圧の高次成分を検出する高次成分検出ステップと、
前記高次成分を検出する前記電圧に影響を与えるパラメータとして、磁石温度および他の1以上のパラメータからなる2以上のパラメータと、前記高次成分との対応関係を、あらかじめテーブルとして記憶部に記憶する記憶ステップと、
前記1以上のパラメータの値を検出するパラメータ値検出ステップと、
前記高次成分検出ステップで検出された前記高次成分に対応する磁石温度を、前記パラメータ値検出ステップで検出された前記1以上のパラメータ、および前記記憶ステップで前記記憶部に記憶された前記テーブルに基づいて推定する磁石温度推定ステップと
を備える永久磁石電動機の磁石温度推定方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/773,951 US9893598B2 (en) | 2013-04-26 | 2013-04-26 | Magnet temperature estimation device for permanent magnet motor and magnet temperature estimation method for permanent magnet motor |
JP2015513473A JP5976204B2 (ja) | 2013-04-26 | 2013-04-26 | 永久磁石電動機の磁石温度推定装置および永久磁石電動機の磁石温度推定方法 |
CN201380076006.0A CN105144574B (zh) | 2013-04-26 | 2013-04-26 | 永磁体电动机的磁体温度推定装置及永磁体电动机的磁体温度推定方法 |
PCT/JP2013/062475 WO2014174682A1 (ja) | 2013-04-26 | 2013-04-26 | 永久磁石電動機の磁石温度推定装置および永久磁石電動機の磁石温度推定方法 |
DE112013006997.0T DE112013006997B4 (de) | 2013-04-26 | 2013-04-26 | Magnettemperaturabschätzungseinrichtung für Permanentmagnetmotor und Magnettemperaturabschätzungsverfahren für Permanentmagnetmotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/062475 WO2014174682A1 (ja) | 2013-04-26 | 2013-04-26 | 永久磁石電動機の磁石温度推定装置および永久磁石電動機の磁石温度推定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014174682A1 true WO2014174682A1 (ja) | 2014-10-30 |
Family
ID=51791286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/062475 WO2014174682A1 (ja) | 2013-04-26 | 2013-04-26 | 永久磁石電動機の磁石温度推定装置および永久磁石電動機の磁石温度推定方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9893598B2 (ja) |
JP (1) | JP5976204B2 (ja) |
CN (1) | CN105144574B (ja) |
DE (1) | DE112013006997B4 (ja) |
WO (1) | WO2014174682A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019239657A1 (ja) * | 2018-06-12 | 2019-12-19 | 株式会社日立製作所 | 永久磁石同期電動機の駆動装置、駆動システムおよび駆動方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014174682A1 (ja) * | 2013-04-26 | 2014-10-30 | 三菱電機株式会社 | 永久磁石電動機の磁石温度推定装置および永久磁石電動機の磁石温度推定方法 |
DE102013225396A1 (de) * | 2013-12-10 | 2015-06-11 | Bayerische Motoren Werke Aktiengesellschaft | Elektrische Maschine mit optimierter Permanentmagnetverteilung |
KR101892011B1 (ko) * | 2016-12-22 | 2018-08-27 | 엘지전자 주식회사 | 동기기의 온도 상승 검출 장치, 동기기의 제어 장치, 동기기의 구동 장치 및 동기기의 온도 상승 판단 방법 |
CN108390617B (zh) * | 2017-12-11 | 2020-01-03 | 深圳腾势新能源汽车有限公司 | 电机转子温度监测方法、装置、存储介质和计算机设备 |
JP7363529B2 (ja) * | 2020-01-28 | 2023-10-18 | マツダ株式会社 | モータの磁石温度推定装置、及びそれを備えるハイブリッド車 |
CN113379233B (zh) * | 2021-06-08 | 2023-02-28 | 重庆大学 | 一种基于高阶矩的行程时间可靠性估计方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010130853A (ja) * | 2008-11-28 | 2010-06-10 | Yaskawa Electric Corp | 電動機制御装置と電動機巻線抵抗値変化検出方法 |
JP2010200515A (ja) * | 2009-02-26 | 2010-09-09 | Nissan Motor Co Ltd | 電動機の磁石温度推定装置 |
JP2012035946A (ja) * | 2010-08-05 | 2012-02-23 | Mitsubishi Electric Corp | エレベータ用電動機の温度保護装置 |
JP2012205341A (ja) * | 2011-03-24 | 2012-10-22 | Kobe Steel Ltd | モータの温度推定装置並びにこれを備えた発電システム及びモータの温度推定方法 |
JP2013005503A (ja) * | 2011-06-14 | 2013-01-07 | Toyota Motor Corp | 回転電機の制御装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3488043B2 (ja) * | 1997-05-26 | 2004-01-19 | 株式会社日立製作所 | 永久磁石型同期発電機を備えた駆動システム及びそれを用いた電気車の駆動制御方法 |
EP1211798B1 (en) * | 2000-11-22 | 2018-01-10 | Nissan Motor Co., Ltd. | Motor control apparatus and motor control method |
JP2003235286A (ja) | 2002-02-13 | 2003-08-22 | Nissan Motor Co Ltd | 同期機の制御装置 |
JP2008206323A (ja) | 2007-02-21 | 2008-09-04 | Matsushita Electric Ind Co Ltd | 電動機駆動装置 |
JP5098365B2 (ja) * | 2007-03-02 | 2012-12-12 | セイコーエプソン株式会社 | 電子機器、及び電子機器に搭載された電動機の制御方法 |
PL2006545T3 (pl) * | 2007-06-20 | 2010-11-30 | Grundfos Management As | Sposób określania temperatury tłoczonej cieczy pompy odśrodkowej |
US7839108B2 (en) * | 2008-01-24 | 2010-11-23 | Gm Global Technology Operations, Inc. | Electric motor stator winding temperature estimation |
US8773058B2 (en) * | 2010-07-08 | 2014-07-08 | Tesla Motors, Inc. | Rotor temperature estimation and motor control torque limiting for vector-controlled AC induction motors |
JP5318050B2 (ja) * | 2010-09-02 | 2013-10-16 | 三菱電機株式会社 | 永久磁石型モータの駆動装置及び圧縮機 |
US7979171B2 (en) * | 2010-09-21 | 2011-07-12 | Ford Global Technologies, Llc | Permanent magnet temperature estimation |
US8547045B2 (en) * | 2011-02-23 | 2013-10-01 | Deere & Company | Method and system controlling an electrical motor with temperature compensation |
US8866428B2 (en) * | 2011-06-02 | 2014-10-21 | GM Global Technology Operations LLC | Method and apparatus for thermally monitoring a permanent magnet electric motor |
CN104081652B (zh) * | 2012-01-20 | 2016-06-29 | 三菱电机株式会社 | 永磁体电动机的控制装置及控制方法 |
JP5616409B2 (ja) * | 2012-09-06 | 2014-10-29 | ファナック株式会社 | 永久磁石の不可逆減磁を防止する永久磁石同期電動機の制御装置及びそのような制御装置を備える制御システム |
JP2014057385A (ja) * | 2012-09-11 | 2014-03-27 | Toyota Motor Corp | 回転電機の制御装置及びその制御装置を備えた回転電機駆動システム |
JP5823055B2 (ja) * | 2012-10-11 | 2015-11-25 | 三菱電機株式会社 | モータ制御装置およびモータ制御方法 |
JP5607698B2 (ja) * | 2012-10-18 | 2014-10-15 | ファナック株式会社 | 電動機の温度を推定する温度推定装置 |
CN105144554B (zh) * | 2013-01-02 | 2018-01-09 | 特灵国际有限公司 | 永磁电动机降级诊断系统 |
DE112013006934T5 (de) * | 2013-04-11 | 2016-01-21 | Mitsubishi Electric Corporation | Kühlungssteuervorrichtung und Kühlungssteuerverfahren für einen Elektrofahrzeugmotor |
WO2014174682A1 (ja) * | 2013-04-26 | 2014-10-30 | 三菱電機株式会社 | 永久磁石電動機の磁石温度推定装置および永久磁石電動機の磁石温度推定方法 |
EP2894784B1 (en) * | 2014-01-13 | 2021-05-26 | Nissan Motor Co., Ltd. | Magnet temperature estimating system for synchronous electric motor |
US9372235B2 (en) * | 2014-09-30 | 2016-06-21 | Deere & Company | Methods of estimating rotor magnet temperature and systems thereof |
JP6333772B2 (ja) * | 2015-05-27 | 2018-05-30 | ファナック株式会社 | 同期電動機の温度推定装置 |
US20170115168A1 (en) * | 2015-10-23 | 2017-04-27 | Hyundai Motor Company | Method of estimating a temperature of a permanent magnet in a motor |
-
2013
- 2013-04-26 WO PCT/JP2013/062475 patent/WO2014174682A1/ja active Application Filing
- 2013-04-26 DE DE112013006997.0T patent/DE112013006997B4/de not_active Expired - Fee Related
- 2013-04-26 CN CN201380076006.0A patent/CN105144574B/zh not_active Expired - Fee Related
- 2013-04-26 JP JP2015513473A patent/JP5976204B2/ja not_active Expired - Fee Related
- 2013-04-26 US US14/773,951 patent/US9893598B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010130853A (ja) * | 2008-11-28 | 2010-06-10 | Yaskawa Electric Corp | 電動機制御装置と電動機巻線抵抗値変化検出方法 |
JP2010200515A (ja) * | 2009-02-26 | 2010-09-09 | Nissan Motor Co Ltd | 電動機の磁石温度推定装置 |
JP2012035946A (ja) * | 2010-08-05 | 2012-02-23 | Mitsubishi Electric Corp | エレベータ用電動機の温度保護装置 |
JP2012205341A (ja) * | 2011-03-24 | 2012-10-22 | Kobe Steel Ltd | モータの温度推定装置並びにこれを備えた発電システム及びモータの温度推定方法 |
JP2013005503A (ja) * | 2011-06-14 | 2013-01-07 | Toyota Motor Corp | 回転電機の制御装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019239657A1 (ja) * | 2018-06-12 | 2019-12-19 | 株式会社日立製作所 | 永久磁石同期電動機の駆動装置、駆動システムおよび駆動方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160043615A1 (en) | 2016-02-11 |
DE112013006997T5 (de) | 2016-01-21 |
DE112013006997B4 (de) | 2021-02-25 |
JPWO2014174682A1 (ja) | 2017-02-23 |
CN105144574B (zh) | 2018-01-30 |
JP5976204B2 (ja) | 2016-08-23 |
US9893598B2 (en) | 2018-02-13 |
CN105144574A (zh) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5976204B2 (ja) | 永久磁石電動機の磁石温度推定装置および永久磁石電動機の磁石温度推定方法 | |
Kazerooni et al. | Analytical modelling and parametric sensitivity analysis for the PMSM steady‐state performance prediction | |
Choi et al. | Experimental estimation of inductance for interior permanent magnet synchronous machine considering temperature distribution | |
CN103916066B (zh) | 无位置传感器的电励磁同步电机转子静止初始位置估算方法 | |
CN103916065B (zh) | 一种无位置传感器的电励磁同步电机转子静止初始位置估算方法 | |
Lin et al. | Improved rotor position estimation in sensorless-controlled permanent-magnet synchronous machines having asymmetric-EMF with harmonic compensation | |
Nasiri-Gheidari et al. | Performance evaluation of disk type variable reluctance resolvers | |
CN103066913B (zh) | 永磁同步电机参数识别系统、方法及控制装置 | |
WO2020186656A1 (zh) | 一种低速永磁同步电机的线性时变转子位置估计方法 | |
Chowdhury et al. | Modeling, parameter measurement and sensorless speed estimation of IPM synchronous generator for direct drive variable speed wind turbine application | |
CN104601069B (zh) | 一种永磁同步电机的电感参数获取方法及系统 | |
CN106160616B (zh) | 一种电机定子电阻在线辨识方法 | |
Lee et al. | Airgap flux search coil-based estimation of permanent magnet temperature for thermal protection of PMSMs | |
JP2007336708A (ja) | 永久磁石型回転機の永久磁石の温度検出装置 | |
Reigosa et al. | Permanent magnet temperature estimation in PMSMs using pulsating high frequency current injection | |
Hall et al. | Dynamic magnetic model identification of permanent magnet synchronous machines | |
Kano et al. | Design of saliency-based sensorless drive IPM motors for hybrid electric vehicles | |
Kwon et al. | Design of IPMSM with eccentric rotor and search coils for absolute position sensorless drive | |
Khreis et al. | Sensitivity analysis on electrical parameters for permanent magnet synchronous machine manufacturing tolerances in EV and HEV | |
Reigosa et al. | Magnet temperature estimation in permanent magnet synchronous machines using the high frequency inductance | |
Graus et al. | Improved accuracy of sensorless position estimation by combining resistance-and inductance-based saliency tracking | |
Jin et al. | Analysis of rotor anisotropy and position tracking error prediction for surface-mounted PMSM under high frequency signal injection | |
Deleanu et al. | Determination of parameters of a synchronous motor with radial permanent magnets and rotor damper bar cage | |
Yi et al. | Magnet Fault Diagnosis for Permanent Magnet Synchronous Motor Based on Flux Estimation With PWM Voltage Measurement | |
Zhan et al. | Nonintrusive online rotor permanent magnet temperature tracking for permanent magnet synchronous machine based on third harmonic voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380076006.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13883341 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015513473 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14773951 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112013006997 Country of ref document: DE Ref document number: 1120130069970 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13883341 Country of ref document: EP Kind code of ref document: A1 |