[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014174351A1 - Device for the solar thermal gasification of starting material containing carbon - Google Patents

Device for the solar thermal gasification of starting material containing carbon Download PDF

Info

Publication number
WO2014174351A1
WO2014174351A1 PCT/IB2014/000545 IB2014000545W WO2014174351A1 WO 2014174351 A1 WO2014174351 A1 WO 2014174351A1 IB 2014000545 W IB2014000545 W IB 2014000545W WO 2014174351 A1 WO2014174351 A1 WO 2014174351A1
Authority
WO
WIPO (PCT)
Prior art keywords
drawer
loading
drawers
gasification
gasification chamber
Prior art date
Application number
PCT/IB2014/000545
Other languages
German (de)
French (fr)
Other versions
WO2014174351A8 (en
Inventor
Peter Von Zedtwitz
Christina WIECKERT
Albert Obrist
Werner Voramwald
Aldo Steinfeld
Original Assignee
Holcim Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holcim Technology Ltd filed Critical Holcim Technology Ltd
Priority to MX2015014837A priority Critical patent/MX2015014837A/en
Priority to US14/785,398 priority patent/US20160068769A1/en
Priority to AU2014259104A priority patent/AU2014259104A1/en
Priority to EP14726760.3A priority patent/EP2989184B1/en
Publication of WO2014174351A1 publication Critical patent/WO2014174351A1/en
Publication of WO2014174351A8 publication Critical patent/WO2014174351A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/30Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/36Fixed grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/448Waste feed arrangements in which the waste is fed in containers or the like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/154Pushing devices, e.g. pistons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1284Heating the gasifier by renewable energy, e.g. solar energy, photovoltaic cells, wind
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1284Heating the gasifier by renewable energy, e.g. solar energy, photovoltaic cells, wind
    • C10J2300/1292Heating the gasifier by renewable energy, e.g. solar energy, photovoltaic cells, wind mSolar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/80Furnaces with other means for moving the waste through the combustion zone
    • F23G2203/801Furnaces with other means for moving the waste through the combustion zone using conveyors
    • F23G2203/8016Belt conveyors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/508Providing additional energy for combustion, e.g. by using supplementary heating
    • F23G2900/50803Providing additional energy for combustion, e.g. by using supplementary heating using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/54001Hearths or supports movable into and from the furnace, e.g. by a conveyor

Definitions

  • the invention relates to a device for solar thermal gasification of carbonaceous feedstock comprising a solar reactor with at least one, preferably a plurality of translucent window (s) for the introduction of concentrated solar radiation and a gasification chamber with a preferably rectangular bottom and receiving means for the feedstock.
  • the solar thermal gasification of carbonaceous feedstock serves the thermal decomposition of various starting materials under a controlled atmosphere for the production of a synthesis gas and is described, for example, in CH 692927 A5, WO 2008/027980 A1 or the article by P. v. Chem. Zedtwitz, A. Steinfeld: "The solar thermal gasification of coal - energy convergence efficiency and C0 2 mitigation potential" in Energy 28 (2.003) 441-456.
  • Characteristic of solar thermal gasification is that radiation energy of an external source, preferably concentrated solar energy is used to produce the process heat required for the gasification reaction.
  • the quality of the synthesis gas obtained is of course essentially determined by the ratio H 2 to CO and by the ratio C0 2 to CO.
  • the shift of the ratio H 2 to CO can be achieved at temperatures of 250 to 450 ° C in a particularly simple manner with water vapor (water gas shift). Otherwise, the option exists to gasify with a mixture of H 2 0 and C0 2 and thus influence the ratio of H 2 to CO.
  • Coal, biomass and various carbonaceous waste materials, such as contaminated soils, sewage sludge, filter residues and the like, have been proposed as feedstock for solar thermal gasification.
  • Carbon-containing wastes are often used as low-grade secondary fuels for the operation of clinker or cement kilns.
  • the use of such lower-grade fuels is associated with a number of disadvantages.
  • the replacement of high quality leads Coal due to lower-grade fuels leads to a decrease in the adiabatic flame temperature in the sintering zone or main firing of 2300 ° C. to temperatures below 1900 ° C., with significant disadvantages in the clinker process already being observed at temperatures below 2100 ° C.
  • a decrease in the flame temperature by 200 to 300 ° C by using low-grade fuels and in particular by using alternative fuels leads to a less favorable temperature profile over the longitudinal axis of the rotary kiln and usually leads to the ideal over a short range extending temperature maximum on a extends longer range at a lower temperature.
  • the observed reduction in the quality of the clinker primarily affects the clinker reactivity.
  • Fluidized bed reactors are unsuitable for particulate materials, their use would therefore require a large crushing effort. They are also eliminated for large capacities for design reasons, so that constructions with a stationary material bed must be used. In particular, there is the requirement to distribute the feedstock while minimizing the bed height on the largest possible area and to find ways to feed the reactor in a simple manner and in the shortest possible time with material and then discharge the ash just as easily and quickly.
  • the present invention therefore aims to develop a device of the type mentioned in that the above requirements are taken into account.
  • the invention provides in a device of the type mentioned above, that the receiving means of at least one relative to .Vergasungshunt movable, preferably elongated drawer are formed.
  • a plurality of juxtaposed, along parallel movable tracks movable, preferably elongated drawers is provided.
  • the one or more drawers serve to receive a stationary material bed and can according to the limited height of the solar reactor of example Im accordingly. be formed flat.
  • the at least one drawer has a height between the bottom and the upper edge of the side walls of less than 50 cm, in particular less than 40 cm.
  • the material bed may be at most 35 cm thick to ensure that the material is gasified over the entire layer thickness on the same day. If the layer thickness is too high, there may also be the risk that an insulating ash layer is formed on the upper side of the material bed, which prevents gasification of the underlying residual quantity.
  • the at least one drawer is movably arranged, this can be pushed out of the solar reactor in a simple manner and pushed into this again.
  • the material loading and unloading can take place outside the solar reactor or outside the gasification chamber, so that loading and unloading together with operating personnel must penetrate into the because of the low height poorly accessible and also laden with hot and toxic atmosphere gasification chamber ,
  • the configuration is devised preferred in this context that the at least one deposition drawer between a loading located outside of the gasification chamber and Entla 'and a working position located in the gasification chamber is slidable.
  • a first and a second drawer are coupled together and arranged one behind the other in the longitudinal direction, so that the first drawer in the working position is when the second drawer is in the loading and unloading position, and the second drawer is in the working position when the first drawer is in the loading and unloading position.
  • a loading and unloading building is preferably arranged on both sides of the solar reactor, in which the drawers for taking the loading and unloading position are displaced.
  • each portal-like cross-loading and / or unloading devices are arranged, which are movable in the longitudinal direction of the drawers.
  • the loading and unloading buildings are closed buildings so that the interior of the buildings can be controlled in terms of temperature conditions and atmospheric gas composition. This allows a controlled cooling of pushed out of the gasification chamber drawers and a controlled ventilation or ventilation of the building in order to deduct the possibly emerging from the ash gases.
  • the drawers are elongated, with the longer extent in the direction of displacement.
  • a correspondingly dimensioned solar reactor lengths of example ⁇ as 10 0m, preferably 20-40m or more.
  • guide means in particular rails for guiding the at least one drawer are provided along a displacement track.
  • the drawers preferably have a bottom with openings for supplying water vapor.
  • the openings connect the gasification chamber with a arranged below the bottom, integrated into the drawer distribution chamber.
  • the irradiation of the concentrated solar radiation into the solar reactor takes place, as already mentioned, via at least one transparent window.
  • the at least one window is preferably made of quartz.
  • the or the transparent window (s) is preferably assigned in each case a device for beam focusing in order to achieve the required concentration of the solar radiation.
  • the beamforming can be done, for example, each by means of a CPC (Compund Parabolic Concentrator).
  • the solar reactor above the gasification chamber has a further chamber, in which the concentrated solar radiation enters through the at least one translucent window.
  • the concentrated solar radiation thus does not get directly into the gasification chamber, but in the mentioned further chamber.
  • the direct irradiation in the further Chamber is observed there an immediate increase in temperature, wherein the heat transfer takes place in the gasification chamber through the ceiling of the gasification chamber.
  • the gasification chamber and the further chamber are separated from one another by a blanket composed of high-temperature-resistant panels.
  • the high-temperature resistant plates act here as radiation elements or radiation plates which radiate the thermal energy into the gasification chamber.
  • the said plates are usually available only in defined dimensions or can not be made arbitrarily large, with a corresponding support structure should be provided.
  • a support structure for the high-temperature resistant plates is provided, comprising supporting means for supporting the support structure, which are arranged between the drawers.
  • the support means in this case comprise at the bottom of the gasification chamber between the drawers extending, at a distance from the ceiling terminating partitions.
  • the support means preferably comprise support columns supporting the partitions and carrying the support structure.
  • the radiation plates separating the gasification chamber from the further chamber are therefore preferably made of graphite, preferably with a SiC coating.
  • the support columns are preferably made of SiC (silicon carbide).
  • the drawers can be made of steel and covered with a suitable refractory material. In order to be able to push the at least one drawer back and forth between the working position and the loading and unloading position, a closable opening is preferably provided on two opposite sides of the solar reactor.
  • the opening is preferably associated with a lock-type device, such as a curtain, in particular a metal curtain.
  • FIG. 2 shows a detailed representation of a section of FIG. 1
  • FIG. 3 shows a schematic representation of the drawer arrangement in a device according to FIG. 1
  • FIG. 4 shows a discharge device in a side view
  • FIG 5 shows a loading device in a side view
  • FIG. 6 shows the loading device according to FIG. 5 in a front view
  • FIG. 7 shows the device according to the invention in a reduced configuration
  • FIG. 8 shows the gasification chamber of the device according to FIG. 7
  • FIG. 9 shows a cross-sectional view of FIG Device according to FIG.
  • a solar reactor is denoted by 1, which has at its top a plurality of windows 2 through which concentrated solar radiation can be introduced into the interior of the solar reactor 1.
  • a plurality of beam condensing devices 3 are provided, " in which solar radiation according to the arrows 4 enters from above.
  • the incoming radiation is centered by reflection at parabolic or approximately parabolic surfaces and concentrated at the exit of the beam-splitting devices 3 and enters the solar reactor 1 via the windows 2.
  • To the solar reactor 1 close on both sides in each case a loading and unloading buildings 5 and 6, in which subsequently explained in more detail drawers 7 and 8 are loaded with material and unloaded. In the position shown in Fig.l position is the drawer 7 in loading and unloading building 6 and the drawer 8 is located in the solar rektor. 1
  • the solar reactor has two chambers, namely a chamber 10 into which the concentrated solar radiation enters via the windows 2 and a gas chamber 10 sufficiently gas-tight separated from the chamber 10 by means of a cover 11 in which the solar thermal gasification of the feed material 12 takes place with the radiated from the chamber 10 thermal energy.
  • the outer insulation of the solar reactor 1 is denoted by 13.
  • the feedstock 12 is received within the gasification chamber in the drawer 8 in the form of a bed of material, the bed of material for protecting the drawer 8 preferably rests on a gravel bed 14.
  • the bottom of the drawer is a filling with water vapor and / or C0 2 gas distribution chamber 15, wherein steam or C0 2 gas can be supplied via the terminal 16.
  • the bottom of the drawer 8 is provided with a hole pattern over which the water vapor contained in the distribution chamber 15 or the C0 2 gas can escape.
  • the perforated grid preferably extends over the entire bottom surface of the drawer 8, so that an almost uniform loading tion of the material bed with steam and / or carbon dioxide gas succeeds.
  • the located in the loading and unloading position drawer 7 is the same structure as the drawer 8.
  • the solar reactor 1 is provided with an opening 17 which is closed during operation by a vertically movable gate 18 and is opened after completion of .Vergasungsvorgangs.
  • guide rails 19 are provided.
  • FIG. 3 it can be seen that in the solar reactor 1, a plurality of drawers is arranged side by side, wherein two drawers are arranged in the longitudinal direction one behind the other and connected to each other. Only some of the drawers are shown in Fig. 3, namely the interconnected drawers 7 and 8, 20 and 21, and 22 and 23, of the two interconnected drawers each one in the working position, i. in the gasification chamber 9, and the other in the loading and unloading position, i. in one of the two loading and unloading 5 and 6, is. The other drawers are not shown for clarity. However, so many pairs of drawer can be used that the solar reactor 1 is used over its entire area. As a sliding drive for a drawer pair, a winch 24 is provided on the example of the drawers 22 and 23, which is anchored by means of an anchor 25 in the building 5.
  • the drawers are advantageously arranged so that each located in the loading and unloading position.
  • Drawers of adjacent drawer rows are positioned in different loading and unloading buildings.
  • the drawer of each second drawer row located in the loading and unloading position in the one loading and unloading building 5 and the corresponding drawer of each drawer rows between them in the other loading and unloading building 6 is positioned. This ensures that between the arranged in the respective loading and unloading 5 and 6 drawers remains a distance that facilitates the loading and unloading of the individual drawers.
  • the described arrangement of the drawers allows during the day a virtually uninterrupted operation of the solar reactor 1. While the feedstock located in the drawers 8, 20 and 22 is gasified in the gasification chamber, derived from a previous gasification process ash in the drawers 7, 23 and 26 are removed by means of unloading vehicles and the drawers 7, 23 and 26 are then filled by means of loading vehicles 26 with new material. After completion of the gasification process, the drawers 20 and 22 are moved into the loading and unloading building 6 and the drawer 8 in the loading and unloading building 5, wherein the respective coupled drawers 7, 23 and 26 simultaneously enter the solar reactor 1, where now new gasification process can begin. At the same time, the drawers 8, 20 and 22 in the respective loading and unloading. unload buildings 5 and 6 and then load them again. The described sequence can be repeated as often as desired.
  • FIG. 3 also shows a gas outlet 27 which is connected to the gasification chamber 9 of the solar reactor 1 and which is used to move the gas chambers between the valves during the displacement of the drawers. Beitsposition and the loading and unloading in the gasification chamber 9 to suck in penetrating false air.
  • an unloading vehicle 28 which serves to unload or collect the ash remaining in the drawer 21 after the gasification process.
  • the vehicle 28 has a for this purpose.
  • Suction nozzle 29, which has at its end a extending across the width of the drawer nozzle.
  • the vehicle 28 has a width exceeding the width of the drawer gauge and therefore (as shown in Figure 6 based on the loading vehicle 26) can be positioned with its suction nozzle on the drawer and extend the drawer in the longitudinal direction.
  • the vehicle 28 has a sump in which the sucked ash is collected.
  • the loading vehicle 26 is shown having a storage container for the feed to be deployed and a material distribution device for uniformly spreading the material over the entire width of the vehicle.
  • the application is preferably carried out by means of driven conveying means, the drive of which is coupled to the locomotion drive of the vehicle 26, so that the output quantity is proportional to the travel speed of the vehicle.
  • the track width of the vehicle exceeds the width of the drawer 21, so that there is a drawer portalartig cross-construction.
  • FIG.7 a reduced configuration of the solar reactor 1 is shown, the gasification chamber 9 only two drawers 8 'and 20' receives.
  • the embodiment according to FIG. 8 corresponds to the embodiment according to FIGS. 1-3.
  • the drawers are shown in an empty condition and it can be seen that the bottom of the drawers have a variety of Has openings 33 in the form of a hole pattern through which the water vapor and / or the carbon dioxide gas can escape from the distribution chamber 15.
  • the bottom of the drawers carries a grid-like subdivision 31, which forms a plurality of shallow trays for receiving the gravel bed 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention relates to a device for the solar thermal gasification of starting material containing carbon, comprising a solar reactor (1), which has least one, preferably a plurality of light-transmissive windows (2) for introducing concentrated solar radiation and a gasification chamber (9) having a preferably rectangular bottom and accommodating means for the starting material (21), wherein the accommodating means are formed by at least one preferably elongated drawer (7, 8, 20, 21, 22, 23) that can be moved in relation to the gasification chamber.

Description

Vorrichtung zur solarthermischen Vergasung von kohlenstoffhaltigem Einsatzmaterial Apparatus for the solar thermal gasification of carbonaceous feedstock
Die Erfindung betrifft eine Vorrichtung zur solarthermischen Vergasung von kohlenstoffhaltigem Einsatzmaterial umfassend einen Solarreaktor mit wenigstens einem, bevorzugt einer Mehrzahl von lichtdurchlässigen Fenster (n) für das Einbringen von konzentrierter Solarstrahlung und einer Vergasungskammer mit einem bevorzugt rechteckigen Boden und Aufnahmemitteln für das Einsatzmaterial. The invention relates to a device for solar thermal gasification of carbonaceous feedstock comprising a solar reactor with at least one, preferably a plurality of translucent window (s) for the introduction of concentrated solar radiation and a gasification chamber with a preferably rectangular bottom and receiving means for the feedstock.
Die solarthermische Vergasung von kohlenstoffhaltigem Einsatzmaterial dient der thermischen Zersetzung verschiedenster Ausgangsprodukte unter kontrollierter Atmosphäre zur Herstellung eines Synthesegases und ist beispielsweise in CH 692927 A5, WO 2008/027980 AI oder dem Artikel von P. v. Zedtwitz, A. Steinfeld: „The solar thermal gasification of coal — energy conver- sion efficiency and C02 mitigation potential" in Energy 28 (2.003) 441-456, beschrieben. Kennzeichnend für die solarthermische Vergasung ist, dass Strahlungsenergie einer externen Quelle, vorzugsweise konzentrierte Solarenergie, zur Erzeugung . der für die Vergasungsreaktion erforderlichen Prozesswärme verwendet wird. The solar thermal gasification of carbonaceous feedstock serves the thermal decomposition of various starting materials under a controlled atmosphere for the production of a synthesis gas and is described, for example, in CH 692927 A5, WO 2008/027980 A1 or the article by P. v. Chem. Zedtwitz, A. Steinfeld: "The solar thermal gasification of coal - energy convergence efficiency and C0 2 mitigation potential" in Energy 28 (2.003) 441-456. Characteristic of solar thermal gasification is that radiation energy of an external source, preferably concentrated solar energy is used to produce the process heat required for the gasification reaction.
Vereinfacht dargestellt läuft eine Vergasung in einem Solarre¬ aktor in Anwesenheit von Wasserdampf nach der Gleichung CHxOy + (l-y)H20 -> CO + (l+x/2-y)H2 und in Anwesenheit von Kohlendioxidgas nach der Gleichung CHxOy + (l-y)C02_-> (2-y)CO + (x/2)H2 ab. Diese Gleichungen sind allerdings eine grobe Vereinfachung der tatsächlich vorherrschenden Bedingungen, wobei hier im einzelnen folgende Reaktionen ' von besonderer Bedeutung sind: Die DampfVergasung -nach der Gleichung C(gr) + H20 = CO + H2 ist naturgemäß überlagert von dem Boudouard-Gleichgewicht nach der Simplified shown runs a gasification in a Solarre ¬ actuator in the presence of water vapor according to the equation CH x O y + (ly) H 2 0 -> CO + (l + x / 2-y) H 2 and in the presence of carbon dioxide gas after the Equation CH x O y + (ly) CO 2 _-> (2-y) CO + (x / 2) H 2 . However, these equations are a rough simplification of the actual prevailing conditions, with the following reactions in particular of particular importance: The steam gasification-according to the equation C (gr ) + H 2 O = CO + H 2 is naturally superposed by the Boudouard Balance after the
BESTÄTIGUNGSKOPIE Gleichung 2 CO = C(gr> + C02 sowie Nebenreaktionen, bei welchen aus Kohlenstoff beispielsweise Methan nach der Gleichung C(gr) + 2 H2 = CH4 gebildet wird. Eine Reformierreaktion verläuft nach der Gleichung CH4 + H20 = CO + 3H2, wobei schließlich eine Verschiebung des CO/C02-Gleichgewichts auch mit Wasserdampf erzielt werden kann, wofür die nachfolgende Gleichung CO + H20 = C02 + H2 charakteristisch ist.. Bei Temperaturen unter 550° C sind Graphit, Methan, CO? und H20 thermodynamisch stabil. Erst bei wesentlich höheren Temperaturen lässt sich eine im Wesentlichen einheitliche Phase aus H2 und CO erzielen. Temperaturen von 1000°C und 1300°C sind dabei bevorzugt, dies zum einen wegen der mit höherer Temperatur steigenden Umsatzrate und zum anderen auch wegen der thermischen Zersetzung von allenfalls im Einsatzmaterial vorhandenen teerbildenen Verbindungen, die erst in diesem Temperaturbereich sichergestellt ist. CONFIRMATION COPY Equation 2 CO = C ( gr > + C0 2 and side reactions in which, for example, methane is formed from carbon according to the equation C ( gr) + 2 H 2 = CH4 A reforming reaction proceeds according to the equation CH4 + H 2 0 = CO + 3H 2 , where finally a shift of the CO / C0 2 equilibrium can be achieved with water vapor, for which the following equation CO + H 2 0 = C0 2 + H 2 is characteristic .. At temperatures below 550 ° C are graphite, methane , CO? And H 2 0 thermodynamically stable Only at much higher temperatures, a substantially uniform phase of H 2 and CO can be achieved Temperatures of 1000 ° C and 1300 ° C are preferred, this one because of the higher temperature On the other hand, because of the thermal decomposition of any existing in the feed teerbildenen compounds, which is ensured only in this temperature range.
Die Qualität des erzielten Synthesegases ist naturgemäß vom Verhältnis H2 zu CO und vom Verhältnis C02 zu CO wesentlich bestimmt. Die Verschiebung des Verhältnisses H2 zu CO kann bei Temperaturen von 250 bis 450° C in besonders einfacher Weise mit Wasserdampf erzielt werden (Wasser Gas Shift) . Ansonsten besteht die Option mit einem Gemisch aus H20 und C02 zu vergasen und so das Verhältnis von H2 zu CO zu beeinflussen. Als Einsatzmaterial für die solarthermische Vergasung wurden unter anderem Kohle, Biomasse und verschiedene kohlenstoffhaltige Abfallstoffe, wie z.B. kontaminierte Böden, Klärschlämme, Filterrückstände und dgl., vorgeschlagen. The quality of the synthesis gas obtained is of course essentially determined by the ratio H 2 to CO and by the ratio C0 2 to CO. The shift of the ratio H 2 to CO can be achieved at temperatures of 250 to 450 ° C in a particularly simple manner with water vapor (water gas shift). Otherwise, the option exists to gasify with a mixture of H 2 0 and C0 2 and thus influence the ratio of H 2 to CO. Coal, biomass and various carbonaceous waste materials, such as contaminated soils, sewage sludge, filter residues and the like, have been proposed as feedstock for solar thermal gasification.
Kohlenstoffhältige Abfallstoffe werden häufig als geringerwertige sekundäre Brennstoffe für den Betrieb von Klinker- bzw. Zementöfen verwendet. Der Einsatz solcher geringerwertigen Brennstoffe ist allerdings mit einer Reihe von Nachteilen verbunden. So führt beispielsweise der Ersatz von hochwertiger Kohle durch geringerwertige Brennstoffe zu einem Absinken der adiabatischen Flammentemperatur in der Sinterzone oder Hauptfeuerung von 2300° C auf Temperaturen von unter 1900° C, wobei bereits bei Temperaturen von unter 2100° C bedeutende Nachteile beim Klinkerprozess beobachtet werden. Ein Absinken der Flammentemperatur um 200 bis 300° C durch Einsatz geringerwertiger Brennstoffe und insbesondere durch Einsatz alternativer Brennstoffe führt zu einem ungünstigeren Temperaturprofil über die Längsachse des Drehrohrofens und führt in aller Regel dazu, dass sich das idealerweise über einen, kurzen Bereich erstreckende Temperaturmaximum über einen längeren Bereich bei geringerer Temperatur erstreckt. Die dabei beobachtete Verringerung der Qualität des Klinkers betrifft in erster Linie die Klinkerreaktivität . Carbon-containing wastes are often used as low-grade secondary fuels for the operation of clinker or cement kilns. However, the use of such lower-grade fuels is associated with a number of disadvantages. For example, the replacement of high quality leads Coal due to lower-grade fuels leads to a decrease in the adiabatic flame temperature in the sintering zone or main firing of 2300 ° C. to temperatures below 1900 ° C., with significant disadvantages in the clinker process already being observed at temperatures below 2100 ° C. A decrease in the flame temperature by 200 to 300 ° C by using low-grade fuels and in particular by using alternative fuels leads to a less favorable temperature profile over the longitudinal axis of the rotary kiln and usually leads to the ideal over a short range extending temperature maximum on a extends longer range at a lower temperature. The observed reduction in the quality of the clinker primarily affects the clinker reactivity.
In der WO 2009/090478 A2 ist daher bereits vorgeschlagen worden, kohlenstoffhaltige Abfallstoffe einer solarthermischen Vergasung zu unterwerfen und das dabei erhaltene Synthesegas hoher Qualität zur Anhebung der Flammentemperatur den Brennern der Hauptfeuerung eines Klinkerkofens zuzuführen. Dadurch, dass die Vergasung unter Anwendung von Strahlungsenergie vorgenommen wird, wird eine Verunreinigung infolge von Verbrennungsabgasen wie bei der autothermen Vergasung vermieden, und der Energiegehalt des Synthesegases steigt infolge der absorbierten Strahlungsenergie, wodurch ein wesentlich höherwertiges Synthesegases entsteht, welches sich durch eine niedrige Verbrennungsgasmenge pro Energieeinheit auszeichnet. Dieses Synthesegas eignet sich daher zur Anhebung der Flammentemperatur und kann in entsprechender Teilmenge den Brennern zugeführt werden, um auf diese Weise den Klinkerprozess und das Temperaturprofil im Klinkerofen entsprechend zu verbessern. Für den Einsatz im großindustriellen Maßstab, wie z.B. im Zusammenhang mit der Verwertung von Abfallstoffen in der Klinkerherstellung, besteht eine Schwierigkeit dahingehend, Solarreaktoren mit entsprechend großer Kapazität zur Verfügung zu stellen. Wirbelbettreaktoren sind für stückige Materialen ungeeignet, ihre Verwendung würde deshalb einen großen Zerkleinerungsaufwand erfordern. Sie scheiden für große Kapazitäten auch aus konstruktiven Gründen aus, sodass auf Konstruktionen mit einem stationären Materialbett zurückgegriffen werden muss. Dabei besteht insbesondere die Anforderung, das Einsatzmaterial unter Minimierung der Betthöhe auf eine möglichst große Fläche zu verteilen und Möglichkeiten zu finden, den Reaktor in einfacher Weise und in möglichst kurzer Zeit mit Material zu beschicken und die Asche danach ebenso einfach und schnell auszutragen. In WO 2009/090478 A2, therefore, it has already been proposed to subject carbonaceous waste materials to solar thermal gasification and to supply the resulting high quality synthesis gas to increase the flame temperature of the burners of the main furnace of a clinker kiln. By conducting gasification using radiant energy, contamination due to combustion exhaust gases as in autothermal gasification is avoided, and the energy content of the syngas increases due to the absorbed radiant energy, thereby producing a much higher synthesis gas, which is characterized by a low amount of combustion gas per Energy unit distinguished. This synthesis gas is therefore suitable for raising the flame temperature and can be supplied to the burners in a corresponding subset in order to improve the clinker process and the temperature profile in the clinker furnace accordingly. For use on a large industrial scale, such as in connection with the utilization of waste materials in the clinker production, there is a difficulty in providing solar reactors with correspondingly large capacity. Fluidized bed reactors are unsuitable for particulate materials, their use would therefore require a large crushing effort. They are also eliminated for large capacities for design reasons, so that constructions with a stationary material bed must be used. In particular, there is the requirement to distribute the feedstock while minimizing the bed height on the largest possible area and to find ways to feed the reactor in a simple manner and in the shortest possible time with material and then discharge the ash just as easily and quickly.
Die vorliegende Erfindung zielt daher darauf ab, eine Vorrichtung der eingangs genannten Art dahingehend weiterzubilden, dass den oben genannten Anforderungen Rechnung getragen wird. The present invention therefore aims to develop a device of the type mentioned in that the above requirements are taken into account.
Zur Lösung dieser Aufgabe sieht die Erfindung bei einer Vorrichtung der eingangs genannten Art vor, dass die Aufnahmemittel von wenigstens einem relativ zur .Vergasungskammer bewegbaren, bevorzugt länglichen Schubkasten gebildet sind. Bevorzugt ist eine Mehrzahl von nebeneinander angeordneten, entlang von parallelen Verschiebebahnen bewegbaren, bevorzugt länglichen Schubkästen vorgesehen. Der bzw. die Schubkästen dienen dabei der Aufnahme eines stationären Materialbetts und können entsprechend der begrenzten Bauhöhe des Solarreaktors von beispielsweise Im entsprechend . flach ausgebildet sein. Bevorzugt weist der wenigstens eine Schubkasten eine Höhe zwischen dem Boden und der Oberkante der Seitenwände von kleiner als 50 cm, insbesondere kleiner 40 cm auf. Das Materialbett kann beispielsweise maximal 35 cm dick sein, um zu gewährleisten, dass das Material über die gesamte Schichtdicke am gleichen Tag vergast wird. Bei zu hoher Schichtdicke kann auch die Gefahr bestehen, dass sich an der Oberseite des Materialbettes eine isolierende Ascheschicht ausbildet, die eine Vergasung der darunterliegenden Restmenge verhindert. To achieve this object, the invention provides in a device of the type mentioned above, that the receiving means of at least one relative to .Vergasungskammer movable, preferably elongated drawer are formed. Preferably, a plurality of juxtaposed, along parallel movable tracks movable, preferably elongated drawers is provided. The one or more drawers serve to receive a stationary material bed and can according to the limited height of the solar reactor of example Im accordingly. be formed flat. Preferably, the at least one drawer has a height between the bottom and the upper edge of the side walls of less than 50 cm, in particular less than 40 cm. For example, the material bed may be at most 35 cm thick to ensure that the material is gasified over the entire layer thickness on the same day. If the layer thickness is too high, there may also be the risk that an insulating ash layer is formed on the upper side of the material bed, which prevents gasification of the underlying residual quantity.
Dadurch, dass der wenigstens eine Schubkasten bewegbar angeordnet ist, kann dieser in einfacher Weise aus dem Solarreaktor herausgeschoben und in diesen wieder hineingeschoben werden. Auf diese Weise kann die Materialbe- und -entladung außerhalb des Solarreaktors bzw. außerhalb der Vergasungskammer erfolgen, sodass vermieden wird, dass Be- und Entladevorrichtungen samt Bedienpersonal in die wegen der niedrigen Bauhöhe schlecht zugängliche und darüberhinaus mit heißer und toxischer Atmosphäre beladene Vergasungskammer eindringen müssen. Die Ausbildung ist in diesem Zusammenhang bevorzugt so getroffen, dass der wenigstens eine Schubkasten zwischen einer außerhalb der Vergasungskammer befindlichen Be- und Entla'deposition und einer in der Vergasungskammer befindlichen Arbeitsposition verschiebbar ist. The fact that the at least one drawer is movably arranged, this can be pushed out of the solar reactor in a simple manner and pushed into this again. In this way, the material loading and unloading can take place outside the solar reactor or outside the gasification chamber, so that loading and unloading together with operating personnel must penetrate into the because of the low height poorly accessible and also laden with hot and toxic atmosphere gasification chamber , The configuration is devised preferred in this context that the at least one deposition drawer between a loading located outside of the gasification chamber and Entla 'and a working position located in the gasification chamber is slidable.
Damit die durch das Be- und Entladen des wenigstens einen Schubkastens verursachte Unterbrechung des Vergasungsvorganges möglichst kurz gehalten werden kann, ist bevorzugt vorgesehen, dass jeweils ein erster und ein zweiter Schubkasten miteinander gekoppelt und in Längsrichtung hintereinander angeordnet sind, sodass der erste Schubkasten in der Arbeitsposition ist, wenn der zweite Schubkasten in der Be- und Entladeposition ist, und der zweite Schubkasten in der Arbeitsposition ist, wenn der erste Schubkasten in der Be- und Entladeposition ist. Dadurch kann ein Schubkasten ent- und wieder beladen werden, während der andere Schubkasten sich in der Vergasungskammer befindet. Für den Ent- und nachfolgenden Beladungsvorgang steht dabei genügend Zeit zur Verfügung, sodass eine ausreichende Abkühlung der Schubkästen erfolgen und die nach dem Vergasungsvorgang verbleibende Asche gefahrlos entfernt werden kann. Ein weiterer Vorteil liegt darin, dass die Schubkästen in der Be- und Entladeposition gegebenenfalls auch ohne weiteres instandgesetzt werden können ohne dass der Vergasungsvorgang unterbrochen werden muss. So that the interruption of the gasification process caused by the loading and unloading of the at least one drawer can be kept as short as possible, it is preferably provided that in each case a first and a second drawer are coupled together and arranged one behind the other in the longitudinal direction, so that the first drawer in the working position is when the second drawer is in the loading and unloading position, and the second drawer is in the working position when the first drawer is in the loading and unloading position. This allows a drawer to be unloaded and reloaded while the other drawer is in the gasification chamber. For the unloading and subsequent loading process there is enough time available, so that sufficient cooling the drawers done and the remaining after the gasification process ashes can be safely removed. Another advantage is that the drawers in the loading and unloading position can also be optionally repaired without the gasification process must be interrupted.
Um Umweltbeeinträchtigungen durch gegebenenfalls verschüttetes Einsatzmaterial zu vermeiden, ist bevorzugt zu beiden Seiten des Solarreaktors jeweils ein Be- und Entladegebäude angeordnet, in das die Schubkästen zur Einnahme der Be- und Entladeposition verschiebbar sind. Um die Be- bzw. Entladung zu automatisieren ist weiters bevorzugt vorgesehen, dass in den Be- und Entladegebäuden eine Mehrzahl von die Schubkästen jeweils portalartig übergreifenden Be- und/oder Entladevorrichtungen angeordnet sind, die in Längsrichtung der Schubkästen verfahrbar sind. Bei den Be- und Entladegebäuden handelt es sich insbesondere um geschlossene Gebäude, damit der Innenraum der Gebäude hinsichtlich der Temperaturbedingungen und der Gaszusammensetzung der Atmosphäre kontrolliert werden kann. Dies ermöglicht ein kontrolliertes Abkühlen der aus der Vergasungskammer herausgeschobenen Schubkästen und eine kontrollierte Ent- bzw. Belüftung des Gebäudes, um die ggf. aus der Asche austretenden Gase abziehen zu können. In order to avoid environmental damage caused by possibly spilled feedstock, a loading and unloading building is preferably arranged on both sides of the solar reactor, in which the drawers for taking the loading and unloading position are displaced. In order to automate the loading and unloading is further preferably provided that in the loading and unloading a plurality of the drawers each portal-like cross-loading and / or unloading devices are arranged, which are movable in the longitudinal direction of the drawers. In particular, the loading and unloading buildings are closed buildings so that the interior of the buildings can be controlled in terms of temperature conditions and atmospheric gas composition. This allows a controlled cooling of pushed out of the gasification chamber drawers and a controlled ventilation or ventilation of the building in order to deduct the possibly emerging from the ash gases.
Um die Aufnahmekapazität der Schubkästen zu maximieren ohne deren Verschiebbarkeit zu erschweren, ist bevorzugt vorgesehen, dass die Schubkästen länglich ausgebildet sind, und zwar mit der längeren Ausdehnung in Verschieberichtung. Dabei können bei entsprechend dimensioniertem Solarreaktor Längen von beispiels¬ weise 10- 0m, bevorzugt 20-40m oder mehr realisiert werden. Eine gute Beweglichkeit des wenigstens einen Schubkastens wird gemäß einer bevorzugten Weiterbildung dadurch gewährleistet, dass Führungsmittel, insbesondere Schienen zum Führen des wenigstens einen Schubkastens entlang einer Verschiebebahn vorgesehen sind. In order to maximize the capacity of the drawers without impeding their displaceability, it is preferably provided that the drawers are elongated, with the longer extent in the direction of displacement. Here can be realized with a correspondingly dimensioned solar reactor lengths of example ¬ as 10 0m, preferably 20-40m or more. Good mobility of the at least one drawer is ensured in accordance with a preferred development in that guide means, in particular rails for guiding the at least one drawer are provided along a displacement track.
Um in einfacher Weise eine DampfVergasung zu ermöglichen, weisen die Schubkästen bevorzugt einen Boden mit Öffnungen zum Zuführen von Wasserdampf auf. Besonders bevorzugt verbinden die Öffnungen die Vergasungskammer mit einer unterhalb des Bodens angeordneten, in den Schubkasten integrierten Verteilungskammer . In order to facilitate steam gasification in a simple manner, the drawers preferably have a bottom with openings for supplying water vapor. Particularly preferably, the openings connect the gasification chamber with a arranged below the bottom, integrated into the drawer distribution chamber.
Das Einstrahlen der konzentrierten Solarstrahlung in den Solarreaktor erfolgt wie bereits erwähnt über wenigstens ein lichtdurchlässiges Fenster. Mit Rücksicht auf die hohen Temperaturen besteht das wenigstens eine Fenster bevorzugt aus Quarz. Dem bzw. den lichtdurchlässigen Fenster (n) ist bevorzugt jeweils eine Vorrichtung zur Strahlenbündelung zugeordnet, um die erforderliche Konzentration der Solarstrahlung zu erreichen. Die Strahlenbündelung kann beispielsweise jeweils mittels eines CPC (Compund Parabolic Concentrator) erfolgen. The irradiation of the concentrated solar radiation into the solar reactor takes place, as already mentioned, via at least one transparent window. In view of the high temperatures, the at least one window is preferably made of quartz. The or the transparent window (s) is preferably assigned in each case a device for beam focusing in order to achieve the required concentration of the solar radiation. The beamforming can be done, for example, each by means of a CPC (Compund Parabolic Concentrator).
Generell sollte darauf geachtet werden, dass das bzw. die Fenster nicht mit den gasförmigen Zersetzungsprodukten der Vergasungsreaktion in Berührung kommen, da diese das Material der Fenster angreifen können. Eine bevorzugte Weiterbildung sieht daher vor, dass der Solarreaktor oberhalb der Vergasungskammer eine weitere Kammer aufweist, in welche die konzentrierte Solarstrahlung durch das wenigstens eine lichtdurchlässige Fenster eintritt. Die konzentrierte Solarstrahlung gelangt somit nicht direkt in die Vergasungskammer, sondern in die erwähnte weitere Kammer. Durch die direkte Einstrahlung in die weitere Kammer ist dort ein unmittelbarer Temperaturanstieg zu beobachten, wobei die Wärmeübertragung in die Vergasungskammer über die Decke der Vergasungskammer erfolgt. Eine bevorzugte Ausbildung sieht in diesem Zusammenhang vor, dass die Vergasungskammer und die weitere Kammer durch eine aus hochtemperaturfesten Platten zusammengesetzte Decke voneinander getrennt sind. Die hochtemperaturfesten Platten wirken hierbei als Strahlungselemente bzw. Strahlungsplatten, welche die thermische Energie in die Vergasungskammer einstrahlen. In general, care should be taken to ensure that the window or windows do not come into contact with the gaseous decomposition products of the gasification reaction, since they can attack the material of the windows. A preferred development therefore provides that the solar reactor above the gasification chamber has a further chamber, in which the concentrated solar radiation enters through the at least one translucent window. The concentrated solar radiation thus does not get directly into the gasification chamber, but in the mentioned further chamber. By the direct irradiation in the further Chamber is observed there an immediate increase in temperature, wherein the heat transfer takes place in the gasification chamber through the ceiling of the gasification chamber. A preferred embodiment provides in this connection that the gasification chamber and the further chamber are separated from one another by a blanket composed of high-temperature-resistant panels. The high-temperature resistant plates act here as radiation elements or radiation plates which radiate the thermal energy into the gasification chamber.
Die genannten Platten sind in der Regel nur in definierten Abmessungen erhältlich bzw. können nicht beliebig groß ausgebildet werden, wobei eine entsprechende Stützkonstruktion vorgesehen sein sollte. Bevorzugt ist hierbei eine Tragkonstruktion für die hochtemperaturfesten Platten vorgesehen, umfassend Abstützmittel zum Abstützen der Tragkonstruktion, die zwischen den Schubkästen angeordnet sind. Insbesondere umfassen die Abstützmittel hierbei am Boden der Vergasungskammer zwischen den Schubkästen verlaufende, in Abstand von der Decke endende Trennwände. Die Abstützmittel umfassen bevorzugt sich an den Trennwänden abstützende, die Tragkonstruktion tragende Stützsäulen . The said plates are usually available only in defined dimensions or can not be made arbitrarily large, with a corresponding support structure should be provided. Preferably, in this case a support structure for the high-temperature resistant plates is provided, comprising supporting means for supporting the support structure, which are arranged between the drawers. In particular, the support means in this case comprise at the bottom of the gasification chamber between the drawers extending, at a distance from the ceiling terminating partitions. The support means preferably comprise support columns supporting the partitions and carrying the support structure.
In der Vergasungskammer herrschen im Betrieb Temperaturen von bis zu 1.300°C. Es sind daher entsprechend temperaturbeständige bzw. feuerfeste Materialien erforderlich. Insbesondere soll vermieden werden, dass Metallteile der Strahlungsenergie bzw. den hohen Temperaturen ausgesetzt sind. Die die Vergasungskammer von der weiteren Kammer trennenden Strahlungsplatten bestehen daher bevorzugt aus Graphit, bevorzugt mit einer SiC- Beschichtung . Die Stützsäulen bestehen bevorzugt aus SiC (Sili- ziumcarbid) . Die Schubkästen können aus Stahl gefertigt und mit einem geeigneten Feuerfestmaterial verkleidet sein. Um den wenigstens einen Schubkasten zwischen der Arbeitsposition und der Be- und Entladeposition hin- und herschieben zu können, ist bevorzugt an zwei gegenüberliegenden Seiten des Solarreaktors jeweils eine verschließbare Öffnung vorgesehen. Beim Hinaus- und Hineinschieben der Schubkästen besteht die Gefahr, dass Umgebungsluft in die Vergasungskammer gelangt, was. zur Entstehung von Feuer führen kann. Diese Gefahr ist dann besonders groß, wenn, wie dies bevorzugt vorgesehen ist, in der Vergasungskammer gegenüber der Umgebung ein Unterdruck herrscht. Um den Eintrag von Falschluft in die Vergasungskammer zu minimieren, ist der Öffnung bevorzugt eine schleusenartige Vorrichtung, wie z.B. ein Vorhang, insbesondere ein Metallvorhang zugeordnet. ·' In the gasification chamber, temperatures of up to 1,300 ° C prevail during operation. There are therefore correspondingly temperature-resistant or refractory materials required. In particular, it should be avoided that metal parts of the radiation energy or the high temperatures are exposed. The radiation plates separating the gasification chamber from the further chamber are therefore preferably made of graphite, preferably with a SiC coating. The support columns are preferably made of SiC (silicon carbide). The drawers can be made of steel and covered with a suitable refractory material. In order to be able to push the at least one drawer back and forth between the working position and the loading and unloading position, a closable opening is preferably provided on two opposite sides of the solar reactor. When pushing out and pushing in the drawers there is a risk that ambient air enters the gasification chamber, which. can lead to the emergence of fire. This risk is particularly great when, as is preferably provided, there is a negative pressure in the gasification chamber relative to the environment. In order to minimize the entry of false air into the gasification chamber, the opening is preferably associated with a lock-type device, such as a curtain, in particular a metal curtain. · '
Die Erfindung wird nachfolgend anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher erläutert. In dieser zeigen Fig.l eine Gesamtansicht einer erfindungsgemäßen Vorrichtung, Fig.2 eine Detaildarstellung eines Ausschnitts der Fig.l, Fig.3 eine schematische Darstellung der Schubkastenanordnung bei einer Vorrichtung gemäß Fig.l, Fig.4 eine Entladevorrichtung in einer Seitenansicht, Fig.5 eine Beladevorrichtung in einer Seitenansicht, Fig.6 die Beladevorrichtung gemäß Fig.5 in einer Vorderansicht, Fig.7 die erfindungsgemäße Vorrichtung in einer verkleinerten Ausgestaltung, Fig.8 die Vergasungskammer der Vorrichtung gemäß Fig.7 und Fig.9 eine Querschnittsansicht der Vorrichtung gemäß Fig.7. The invention will be explained in more detail with reference to embodiments shown schematically in the drawing. 2 shows a detailed representation of a section of FIG. 1, FIG. 3 shows a schematic representation of the drawer arrangement in a device according to FIG. 1, FIG. 4 shows a discharge device in a side view, FIG 5 shows a loading device in a side view, FIG. 6 shows the loading device according to FIG. 5 in a front view, FIG. 7 shows the device according to the invention in a reduced configuration, FIG. 8 shows the gasification chamber of the device according to FIG. 7 and FIG. 9 shows a cross-sectional view of FIG Device according to FIG.
In Fig.l ist ein Solarrektor mit 1 bezeichnet, der an seiner Oberseite eine Mehrzahl von Fenstern 2 aufweist, durch welche konzentrierte Sonnenstrahlung in das Innere des Solarreaktors 1 eingebracht werden kann. Zur Strahlungskonzentration ist eine Mehrzahl von Strahlenbündelungsvorrichtungen 3 vorgesehen, " in welche Sonnenstrahlung entsprechend den Pfeilen 4 von oben eintritt. Die eintreffende Strahlung wird durch Reflexion an parabolischen oder annähern parabolischen Flächen mittig und am Ausgang der Strahlenbündelungsvorrichtungen 3 konzentriert und tritt über die Fenster 2 in den Solarreaktor 1 ein. An den Solarreaktor 1 schließen zu beiden Seiten jeweils ein Be- und Entladegebäude 5 bzw. 6 an, in welchem nachfolgend noch näher erläuterte Schubkästen 7 und 8 mit Material beladen und entladen werden. In der in Fig.l dargestellten Lage befindet sich der Schubkasten 7 im Be- und Entladegebäude 6 und der Schubkasten 8 befindet sich im Solarrektor 1. In Fig.l a solar reactor is denoted by 1, which has at its top a plurality of windows 2 through which concentrated solar radiation can be introduced into the interior of the solar reactor 1. For the radiation concentration, a plurality of beam condensing devices 3 are provided, " in which solar radiation according to the arrows 4 enters from above. The incoming radiation is centered by reflection at parabolic or approximately parabolic surfaces and concentrated at the exit of the beam-splitting devices 3 and enters the solar reactor 1 via the windows 2. To the solar reactor 1 close on both sides in each case a loading and unloading buildings 5 and 6, in which subsequently explained in more detail drawers 7 and 8 are loaded with material and unloaded. In the position shown in Fig.l position is the drawer 7 in loading and unloading building 6 and the drawer 8 is located in the solar rektor. 1
In Fig.2 ist das in Fig.l mit II bezeichnete Detail vergrößert dargestellt. Es ist ersichtlich, dass der Solarreaktor zwei Kammern aufweist, nämlich eine Kammer 10, in welche die konzentrierte Sonnenstrahlung über die Fenster 2 eintritt und eine von der Kammer 10 mittels einer Decke 11 hinreichend gasdicht abgetrennte Vergasungskammer 9, in der die solarthermische Vergasung des Einsatzmaterials 12 mit der von der Kammer 10 eingestrahlten thermischen Energie erfolgt. Die Außenisolierung des Solarreaktors 1 ist mit 13 bezeichnet. Das Einsatzmaterial 12 ist innerhalb der Vergasungskammer in dem Schubkasten 8 in Form eines Materialbetts aufgenommen, wobei das Materialbett zum Schutz des Schubkastens 8 bevorzugt auf einem Kiesbett 14 aufliegt. Im Boden des Schubkastens befindet sich eine mit Wasserdampf und/oder C02-Gas befüllbare Verteilungskammer 15, wobei Wasserdampf bzw. C02-Gas über den Anschluss 16 zugeführt werden kann. Der Boden des Schubkastens 8 ist mit einem Lochraster versehen, über den der in der Verteilungskammer 15 befindliche Wasserdampf bzw. das C02-Gas austreten kann. Der Lochraster erstreckt sich hierbei bevorzugt über die gesamte Bodenfläche des Schubkastens 8, sodass eine nahezu gleichmäßige Beaufschla- gung des Materialbetts mit Wasserdampf und/oder Kohlendioxidgas gelingt . 2, the detail denoted by II in Fig.l is shown enlarged. It can be seen that the solar reactor has two chambers, namely a chamber 10 into which the concentrated solar radiation enters via the windows 2 and a gas chamber 10 sufficiently gas-tight separated from the chamber 10 by means of a cover 11 in which the solar thermal gasification of the feed material 12 takes place with the radiated from the chamber 10 thermal energy. The outer insulation of the solar reactor 1 is denoted by 13. The feedstock 12 is received within the gasification chamber in the drawer 8 in the form of a bed of material, the bed of material for protecting the drawer 8 preferably rests on a gravel bed 14. In the bottom of the drawer is a filling with water vapor and / or C0 2 gas distribution chamber 15, wherein steam or C0 2 gas can be supplied via the terminal 16. The bottom of the drawer 8 is provided with a hole pattern over which the water vapor contained in the distribution chamber 15 or the C0 2 gas can escape. The perforated grid preferably extends over the entire bottom surface of the drawer 8, so that an almost uniform loading tion of the material bed with steam and / or carbon dioxide gas succeeds.
Der sich in der Be- und Entladeposition befindende Schubkasten 7 ist gleich aufgebaut wie der Schubkasten 8. Um die. Schubkästen 7,8 nun zwischen der Arbeitsposition und der Be- und Entladeposition hin- und herzuverschieben, ist der Solarreaktor 1 mit einer Öffnung 17 versehen, welche im Betrieb von einem in Höhenrichtung verschiebbaren Tor 18 verschlossen ist und nach Beendigung des .Vergasungsvorgangs geöffnet wird. Um die Schubkästen 7,8 entlang der Verschiebebahn zu führen, sind Führungsschienen 19 vorgesehen. The located in the loading and unloading position drawer 7 is the same structure as the drawer 8. To the. Drawers 7,8 now reciprocate between the working position and the loading and unloading position, the solar reactor 1 is provided with an opening 17 which is closed during operation by a vertically movable gate 18 and is opened after completion of .Vergasungsvorgangs. In order to guide the drawers 7,8 along the sliding track, guide rails 19 are provided.
In Fig.3 ist ersichtlich, dass im Solarreaktor 1 eine Mehrzahl von Schubkästen nebeneinander angeordnet ist, wobei jeweils zwei Schubkästen in Längsrichtung hintereinander angeordnet und miteinander verbunden sind. In Fig.3 sind nur einige der Schubkästen dargestellt, nämlich die miteinander verbundenen Schubkästen 7 und 8, 20 und 21 sowie 22 und 23, wobei von den beiden miteinander verbundenen Schubkästen jeweils der eine in der Arbeitsposition, d.h. in der Vergasungskammer 9, und der andere in der Be- und Entladeposition, d.h. in einem der beiden Be- und Entladegebäude 5 bzw. 6, ist. Die anderen Schubkästen sind der Übersichtlichkeit halber nicht dargestellt. Es können jedoch so viele Schubkastenpaare eingesetzt werden, dass der Solarreaktor 1 über seine gesamte Fläche genutzt wird. Als Verschiebantrieb für ein Schubkastenpaar ist am Beispiel der Schubkästen 22 und 23 eine Seilwinde 24 vorgesehen, die mittels einer Verankerung 25 im Gebäude 5 verankert ist. In Figure 3 it can be seen that in the solar reactor 1, a plurality of drawers is arranged side by side, wherein two drawers are arranged in the longitudinal direction one behind the other and connected to each other. Only some of the drawers are shown in Fig. 3, namely the interconnected drawers 7 and 8, 20 and 21, and 22 and 23, of the two interconnected drawers each one in the working position, i. in the gasification chamber 9, and the other in the loading and unloading position, i. in one of the two loading and unloading 5 and 6, is. The other drawers are not shown for clarity. However, so many pairs of drawer can be used that the solar reactor 1 is used over its entire area. As a sliding drive for a drawer pair, a winch 24 is provided on the example of the drawers 22 and 23, which is anchored by means of an anchor 25 in the building 5.
Wie in Fig.3 dargestellt, werden die Schubkästen vorteilhafterweise so angeordnet, dass die jeweils in der Be- und Entladeposition befindlichen. Schubkästen benachbarter Schubkastenreihen in unterschiedlichen Be- und Entladegebäuden positioniert sind. Anders gesagt ist der sich in der Be- und Entladeposition befindliche Schubkasten jeder zweiten Schubkastenreihe in dem einen Be- und Entladegebäude 5 und der entsprechende Schubkasten der jeweils dazwischen liegenden Schubkastenreihen in dem anderen Be- und Entladegebäude 6 positioniert. Dadurch wird sichergestellt, dass zwischen den in dem jeweiligen Be- und Entladegebäude 5 bzw. 6 angeordneten Schubkästen ein Abstand verbleibt, der das Be- und Entladen der einzelnen Schubkästen erleichtert. As shown in Figure 3, the drawers are advantageously arranged so that each located in the loading and unloading position. Drawers of adjacent drawer rows are positioned in different loading and unloading buildings. In other words, the drawer of each second drawer row located in the loading and unloading position in the one loading and unloading building 5 and the corresponding drawer of each drawer rows between them in the other loading and unloading building 6 is positioned. This ensures that between the arranged in the respective loading and unloading 5 and 6 drawers remains a distance that facilitates the loading and unloading of the individual drawers.
Die beschriebene Anordnung der Schubkästen erlaubt tagsüber eine nahezu unterbrechungsfreie Arbeitsweise des Solarreaktors 1. Während das in den Schubkästen 8, 20 und 22 befindliche Einsatzmaterial in der Vergasungskammer vergast wird, kann die aus einem vorangehenden Vergasungsvorgang stammende Asche, die sich in den Schubkästen 7, 23 und 26 befindet, mit Hilfe von Entladungsfahrzeugen entnommen werden und die Schubkästen 7, 23 und 26 danach mittels Beladungsfahrzeugen 26 mit neuem Material befüllt werden. Nach Abschluss des Vergasungsvorgangs werden die Schubkästen 20 und 22 in das Be- und Entladungsgebäude 6 und der Schubkasten 8 in das Be- und Entladungsgebäude 5 verschoben, wobei die jeweils angekoppelten Schubkästen 7, 23 und 26 gleichzeitig in den Solarreaktor 1 gelangen, wo nun ein neuer Vergasungsvorgang beginnen kann. Gleichzeitig werden die Schubkästen 8, 20 und 22 in dem jeweiligen Be- und Entladungs-. gebäude 5 bzw. 6 entladen und danach wieder beladen. Die beschriebene Abfolge kann beliebig oft wiederholt werden. The described arrangement of the drawers allows during the day a virtually uninterrupted operation of the solar reactor 1. While the feedstock located in the drawers 8, 20 and 22 is gasified in the gasification chamber, derived from a previous gasification process ash in the drawers 7, 23 and 26 are removed by means of unloading vehicles and the drawers 7, 23 and 26 are then filled by means of loading vehicles 26 with new material. After completion of the gasification process, the drawers 20 and 22 are moved into the loading and unloading building 6 and the drawer 8 in the loading and unloading building 5, wherein the respective coupled drawers 7, 23 and 26 simultaneously enter the solar reactor 1, where now new gasification process can begin. At the same time, the drawers 8, 20 and 22 in the respective loading and unloading. unload buildings 5 and 6 and then load them again. The described sequence can be repeated as often as desired.
In Fig.3 ist noch ein an die Vergasungskammer 9 des Solarreaktors 1 angeschlossener Gasabzug 27 dargestellt, der dazu dient, die während der Verschiebung der Schubkästen zwischen der Ar- beitsposition und der Be- und Entladeposition in die Vergasungskämmer 9 eindringende Falschluft abzusaugen. FIG. 3 also shows a gas outlet 27 which is connected to the gasification chamber 9 of the solar reactor 1 and which is used to move the gas chambers between the valves during the displacement of the drawers. Beitsposition and the loading and unloading in the gasification chamber 9 to suck in penetrating false air.
In Fig.4 ist ein Entladefahrzeug 28 dargestellt, das dazu dient, die nach dem Vergasungsprozess in dem Schubkasten 21 verbliebene Asche zu entladen bzw. aufzusammeln. Das Fahrzeug 28 weist zu diesem Zweck einen . Saugrüssel 29 auf, der an seinem Ende eine sich über die Breite des Schubkastens erstreckende Düse aufweist. Das Fahrzeug 28 hat eine die Breite des Schubkastens übersteigende Spurweite und kann daher (so wie in Fig.6 anhand des Beladefahrzeugs 26 gezeigt), mit seiner Saugdüse über dem Schubkasten positioniert werden und den Schubkasten in Längsrichtung abfahren. Das Fahrzeug 28 weist einen Sammelbehälter auf, in dem die aufgesaugte Asche gesammelt wird. 4, an unloading vehicle 28 is shown, which serves to unload or collect the ash remaining in the drawer 21 after the gasification process. The vehicle 28 has a for this purpose. Suction nozzle 29, which has at its end a extending across the width of the drawer nozzle. The vehicle 28 has a width exceeding the width of the drawer gauge and therefore (as shown in Figure 6 based on the loading vehicle 26) can be positioned with its suction nozzle on the drawer and extend the drawer in the longitudinal direction. The vehicle 28 has a sump in which the sucked ash is collected.
In Fig.5 und 6 ist das Beladefahrzeuge 26 dargestellt, das einen Speicherbehälter für das auszubringende Einsatzmaterial und eine Materialverteilungsvorrichtung zum gleichmäßigen Ausbringen des Materials über die gesamte Breite des Fahrzeugs aufweist. Die Ausbringung erfolgt bevorzugt mittels angetriebener Fördermittel, deren Antrieb mit dem Fortbewegungsantrieb des Fahrzeugs 26 gekoppelt ist, sodass die ausgebrachte Menge proportional der Fortbewegungsgeschwindigkeit des Fahrzeugs ist. Wie in Fig. 6 ersichtlich übersteigt die Spurweite des Fahrzeugs die Breite des Schubkastens 21, sodass sich eine den Schubkasten portalartig übergreifende Konstruktion ergibt. In FIGS. 5 and 6, the loading vehicle 26 is shown having a storage container for the feed to be deployed and a material distribution device for uniformly spreading the material over the entire width of the vehicle. The application is preferably carried out by means of driven conveying means, the drive of which is coupled to the locomotion drive of the vehicle 26, so that the output quantity is proportional to the travel speed of the vehicle. As can be seen in Fig. 6, the track width of the vehicle exceeds the width of the drawer 21, so that there is a drawer portalartig cross-construction.
In Fig.7 ist eine verkleinerte Ausgestaltung des Solarreaktors 1 dargestellt, dessen Vergasungskammer 9 lediglich zwei Schubkästen 8' und 20' aufnimmt. Abgesehen davon entspricht die Ausbildung gemäß Fig.8 jedoch der Ausbildung gemäß den Fig.1-3. Die Schubkästen sind in leerem Zustand dargestellt und es ist ersichtlich, dass der Boden der Schubkästen eine Vielzahl von Öffnungen 33 in Form eines Lochrasters aufweist, durch welche der Wasserdampf und/oder das Kohlendioxidgas aus der Verteilungskammer 15 austreten kann. Weiters trägt der Boden der Schubkästen eine rasterartige Unterteilung 31, die eine Mehrzahl von flachen Wannen zur Aufnahme des Kiesbettes 14 ausbildet. In Fig.7 a reduced configuration of the solar reactor 1 is shown, the gasification chamber 9 only two drawers 8 'and 20' receives. Apart from that, however, the embodiment according to FIG. 8 corresponds to the embodiment according to FIGS. 1-3. The drawers are shown in an empty condition and it can be seen that the bottom of the drawers have a variety of Has openings 33 in the form of a hole pattern through which the water vapor and / or the carbon dioxide gas can escape from the distribution chamber 15. Furthermore, the bottom of the drawers carries a grid-like subdivision 31, which forms a plurality of shallow trays for receiving the gravel bed 14.
In Fig.7 ist ersichtlich, dass das Dach 30 des Solarreaktors segmentiert ausgebildet ist. Weiters sind in die Vergasungskammer 9 mündende Öffnungen 32 dargestellt, die dem Einbringen von Träger- oder Spülgas dienen. In Figure 7 it can be seen that the roof 30 of the solar reactor is formed segmented. Furthermore, 9 opening openings 32 are shown in the gasification chamber, which serve the introduction of carrier or purge gas.
In Fig.8 ist nur der Unterteil des Solarreaktors 1, d.h. die Vergasungskammer 9 dargestellt. Es ist nun die Äustragsöffnung 34 zum Abziehen des bei der Vergasungsreaktion entstehenden Synthesegases ersichtlich. Diese Äustragsöffnung 34 liegt oberhalb der Schubkästen im heißen Reaktorraum. Dadurch wird gewährleistet, dass ggf. teerbildende, aus dem zu vergasenden Material austretende Substanzen thermisch in nicht teerbildende Synthesegaskomponenten wie CO, H2 etc. zerlegt werden bevor sie den Reaktionsraum verlassen. Weiters ist zwischen den beiden Schubkästen 8' und 20' eine Trennwand 36 vorgesehen, welche Abstützsäulen 37 trägt, die wiederum eine gittertörmige Tragkonstruktion 35 tragen. Die Tragkonstruktion 35 dient, wie in Fig.9 dargestellt, der Abstützung von hochtemperaturfesten Platten 38, welche die Decke 11 bilden. In Figure 8, only the lower part of the solar reactor 1, that is, the gasification chamber 9 is shown. The discharge opening 34 for withdrawing the synthesis gas formed during the gasification reaction can now be seen. This discharge opening 34 is located above the drawers in the hot reactor space. This ensures that any tar-forming substances emerging from the material to be gasified are thermally decomposed into non-tar-forming synthesis gas components such as CO, H 2, etc. before they leave the reaction space. Furthermore, between the two drawers 8 'and 20', a partition wall 36 is provided, which carries Abstützsäulen 37, which in turn carry a lattice-shaped support structure 35. The support structure 35 serves, as shown in Figure 9, the support of high temperature resistant plates 38, which form the ceiling 11.

Claims

Patentansprüche : Claims:
1. Vorrichtung zur solarthermischen Vergasung von kohlenstoffhaltigem Einsatzmaterial umfassend einen Solarreaktor mit wenigstens einem, bevorzugt einer Mehrzahl von lichtdurchlässigen Fenster (n) für das Einbringen von konzentrierter Solarstrahlung und einer Vergasungskammer mit einem bevorzugt rechteckigen Boden und Aufnahmemitteln für das Einsatzmaterial, dadurch gekennzeichnet, dass die Aufnahmemittel von wenigstens einem relativ zur Vergasungskammer bewegbaren, bevorzugt länglichen Schubkasten (7,8,20,21,22,23) gebildet sind. 1. An apparatus for solar thermal gasification of carbonaceous feedstock comprising a solar reactor having at least one, preferably a plurality of translucent window (s) for the introduction of concentrated solar radiation and a gasification chamber with a preferably rectangular bottom and receiving means for the feedstock, characterized in that the Receiving means of at least one relative to the gasification chamber movable, preferably elongated drawer (7,8,20,21,22,23) are formed.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine Mehrzahl von nebeneinander angeordneten, entlang von parallelen Verschiebebahnen bewegbaren, bevorzugt länglichen Schubkästen (7,8,20,21,22,23) vorgesehen ist. 2. Apparatus according to claim 1, characterized in that a plurality of juxtaposed, along parallel movable tracks movable, preferably elongated drawers (7,8,20,21,22,23) is provided.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass den lichtdurchlässigen Fenstern (2) jeweils eine Vorrichtung zur Strahlenbündelung (3) zugeordnet ist. 3. Apparatus according to claim 1 or 2, characterized in that the translucent windows (2) are each assigned a device for beam focusing (3).
4. Vorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der wenigstens eine Schubkasten (7,8,20,21,22,23) zwischen einer außerhalb der Vergasungskammer (9) befindlichen Be- und Entladeposition und einer in der Vergasungskammer (9) befindlichen Arbeitsposition verschiebbar sind . 4. Apparatus according to claim 1, 2 or 3, characterized in that the at least one drawer (7,8,20,21,22,23) located between a outside of the gasification chamber (9) loading and unloading position and one in the gasification chamber (9) working position are displaced.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Führungsmittel, insbesondere Schienen (19) zum Führen des wenigstens einen Schubkastens (7,8,20,21,22,23) entlang einer Verschiebebahn vorgesehen sind. 5. Device according to one of claims 1 to 4, characterized in that guide means, in particular rails (19) for guiding the at least one drawer (7,8,20,21,22,23) are provided along a displacement track.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der wenigstens eine Schubkasten (7,8,20,21,22,23) einen Boden mit Öffnungen (33) zum Zuführen von Wasserdampf und/oder Kohlendioxidgas aufweist. . 6. Device according to one of claims 1 to 5, characterized in that the at least one drawer (7,8,20,21,22,23) has a bottom with openings (33) for supplying water vapor and / or carbon dioxide gas. ,
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Öffnungen (33) die Vergasungskammer (9) mit einer unterhalb des Bodens angeordneten, in den Schubkasten (7,8,20,21,22,23) integrierten Verteilungskammer (15) verbinden. 7. The device according to claim 6, characterized in that the openings (33) connect the gasification chamber (9) with a arranged below the bottom, in the drawer (7,8,20,21,22,23) integrated distribution chamber (15) ,
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Solarreaktor (1) oberhalb der Vergasungskammer (9) eine weitere Kammer (10) aufweist, in welche die konzentrierte Solarstrahlung durch das wenigstens eine lichtdurchlässige Fenster (2) eintritt. 8. Device according to one of claims 1 to 7, characterized in that the solar reactor (1) above the gasification chamber (9) has a further chamber (10), in which the concentrated solar radiation through the at least one translucent window (2) occurs.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Vergasungskammer (9) und die weitere Kammer (10) durch eine aus hochtemperaturfesten Platten (38) zusammengesetzte Decke (11) voneinander getrennt sind. 9. Apparatus according to claim 8, characterized in that the gasification chamber (9) and the further chamber (10) by a high temperature resistant plates (38) composite ceiling (11) are separated from each other.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass eine Tragkonstruktion (35) für die hochtemperaturfesten Platten (38) vorgesehen ist, umfassend Abstützmittel zum Abstützen der Tragkonstruktion (35), die zwischen den Schubkästen (7,8,20, 21,22,23) angeordnet sind. 10. The device according to claim 9, characterized in that a support structure (35) for the high temperature resistant plates (38) is provided, comprising supporting means for supporting the supporting structure (35) between the drawers (7,8,20, 21,22 , 23) are arranged.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Abstützmittel am Boden der Vergasungskammer (9) zwischen den Schubkästen (7,8,20,21,22,23) verlaufende, in Abstand von der Decke (11) endende Trennwände (36) umfassen. 11. The device according to claim 10, characterized in that the supporting means at the bottom of the gasification chamber (9) between the drawers (7,8,20,21,22,23) extending, at a distance from the ceiling (11) ending partition walls (36 ).
12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Abstützmittel sich an den Trennwänden (36) abstützende, die Tragkonstruktion (35) tragende Stützsäulen (37) umfassen . 12. The device according to claim 10 or 11, characterized in that the support means on the partitions (36) supporting the support structure (35) supporting support columns (37).
13. Vorrichtung nach einem der Ansprüche 4 bis 12, dadurch gekennzeichnet, dass jeweils ein erster und ein zweiter Schubkasten (7,8,20,21,22,23) miteinander gekoppelt und in Längsrichtung hintereinander angeordnet sind, sodass der erste Schubkasten in der Arbeitsposition ist, wenn der zweite Schubkasten in der Be- und Entladeposition ist, und der zweite Schubkasten in der Arbeitsposition ist, wenn der erste Schubkasten in der Be- und Entladeposition ist. 13. Device according to one of claims 4 to 12, characterized in that in each case a first and a second drawer (7,8,20,21,22,23) are coupled together and arranged one behind the other in the longitudinal direction, so that the first drawer in the Working position is when the second drawer is in the loading and unloading position, and the second drawer is in the working position when the first drawer is in the loading and unloading position.
14. Vorrichtung nach einem der Ansprüche 4 bis 13, dadurch gekennzeichnet, dass zu beiden Seiten des Solarreaktors (1) jeweils ein Be- und Entladegebäude (5,6) angeordnet ist, in das die Schubkästen (7,8,20,21,22,23) zur Einnahme der Be- und Entladeposition verschiebbar sind. 14. Device according to one of claims 4 to 13, characterized in that on both sides of the solar reactor (1) in each case a loading and unloading building (5,6) is arranged, in which the drawers (7,8,20,21, 22,23) are displaceable for taking the loading and unloading position.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass in den Be- und Entladegebäuden (5,6) eine Mehrzahl von die Schubkästen (7,8,20,21,22,23) jeweils portalartig übergreifenden Be- und/oder Entladevorrichtungen (26,28) angeordnet sind, die in Längsrichtung der Schubkästen (7,8,20,21,22,23) verfahrbar sind. 15. The apparatus according to claim 14, characterized in that in the loading and unloading buildings (5,6) a plurality of the drawers (7,8,20,21,22,23) each portal-like cross-loading and / or unloading ( 26,28) are arranged, which are movable in the longitudinal direction of the drawers (7,8,20,21,22,23).
PCT/IB2014/000545 2013-04-23 2014-04-15 Device for the solar thermal gasification of starting material containing carbon WO2014174351A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2015014837A MX2015014837A (en) 2013-04-23 2014-04-15 Device for the solar thermal gasification of starting material containing carbon.
US14/785,398 US20160068769A1 (en) 2013-04-23 2014-04-15 Device for the solar thermal gasification of starting material containing carbon
AU2014259104A AU2014259104A1 (en) 2013-04-23 2014-04-15 Device for the solar thermal gasification of starting material containing carbon
EP14726760.3A EP2989184B1 (en) 2013-04-23 2014-04-15 Device for solar thermal gasifcation of carbonaceous feedstock

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA342/2013A AT514211B1 (en) 2013-04-23 2013-04-23 Apparatus for the solar thermal gasification of carbonaceous feedstock
ATA342/2013 2013-04-23

Publications (2)

Publication Number Publication Date
WO2014174351A1 true WO2014174351A1 (en) 2014-10-30
WO2014174351A8 WO2014174351A8 (en) 2015-02-26

Family

ID=50829214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/000545 WO2014174351A1 (en) 2013-04-23 2014-04-15 Device for the solar thermal gasification of starting material containing carbon

Country Status (7)

Country Link
US (1) US20160068769A1 (en)
EP (1) EP2989184B1 (en)
AR (1) AR096044A1 (en)
AT (1) AT514211B1 (en)
AU (1) AU2014259104A1 (en)
MX (1) MX2015014837A (en)
WO (1) WO2014174351A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019120641A1 (en) * 2019-07-31 2021-02-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Process for the production of synthesis gas from waste

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5802993A (en) * 1996-10-31 1998-09-08 Meador; W. R. Pyrolysis system and method
US6257157B1 (en) * 1999-10-19 2001-07-10 Synturian Enterprises, Inc. Refuse incineration plant and exhaust gas filtration system and method for use therewith
CH692927A5 (en) 1998-11-18 2002-12-13 Scherrer Inst Paul Furnace for thermal and thermochemical treatment of raw materials, comprises rotary chamber surrounded by casing with window passing heating radiation
US20060051720A1 (en) * 2004-09-03 2006-03-09 Jarrell James F Apparatus and process for the treatment of materials
WO2008027980A1 (en) 2006-08-29 2008-03-06 The Regents Of The University Of Colorado, A Body Corporate Rapid solar-thermal conversion of biomass to syngas
WO2009090478A2 (en) 2007-12-21 2009-07-23 Holcim Technology Ltd Method of improving the product properties of clinker in the firing of raw meal
US20120012040A1 (en) * 2010-07-13 2012-01-19 Stefan Johansson Waste combustion chamber
DE102011109780B3 (en) * 2011-08-09 2013-01-31 B & 0 Saatinvest Heizhaus OHG Heating device for dried woodchips for heat supply of e.g. large buildings, has switching device switching empty storage unit from another storage unit, where emptied storage unit is exchanged against full storage unit
CN202754961U (en) * 2012-03-17 2013-02-27 成都奥能普科技有限公司 Mobile lattice array solar biomass gasification system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036152A (en) * 1975-11-17 1977-07-19 General Motors Corporation Refuse compactor-incinerator disposer
US4382850A (en) * 1981-04-28 1983-05-10 The United States Of America As Represented By The United States Department Of Energy Solar retorting of oil shale
US8771387B2 (en) * 2009-06-09 2014-07-08 Sundrop Fuels, Inc. Systems and methods for solar-thermal gasification of biomass

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5802993A (en) * 1996-10-31 1998-09-08 Meador; W. R. Pyrolysis system and method
CH692927A5 (en) 1998-11-18 2002-12-13 Scherrer Inst Paul Furnace for thermal and thermochemical treatment of raw materials, comprises rotary chamber surrounded by casing with window passing heating radiation
US6257157B1 (en) * 1999-10-19 2001-07-10 Synturian Enterprises, Inc. Refuse incineration plant and exhaust gas filtration system and method for use therewith
US20060051720A1 (en) * 2004-09-03 2006-03-09 Jarrell James F Apparatus and process for the treatment of materials
WO2008027980A1 (en) 2006-08-29 2008-03-06 The Regents Of The University Of Colorado, A Body Corporate Rapid solar-thermal conversion of biomass to syngas
WO2009090478A2 (en) 2007-12-21 2009-07-23 Holcim Technology Ltd Method of improving the product properties of clinker in the firing of raw meal
US20120012040A1 (en) * 2010-07-13 2012-01-19 Stefan Johansson Waste combustion chamber
DE102011109780B3 (en) * 2011-08-09 2013-01-31 B & 0 Saatinvest Heizhaus OHG Heating device for dried woodchips for heat supply of e.g. large buildings, has switching device switching empty storage unit from another storage unit, where emptied storage unit is exchanged against full storage unit
CN202754961U (en) * 2012-03-17 2013-02-27 成都奥能普科技有限公司 Mobile lattice array solar biomass gasification system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VON P. V. ZEDTWITZ; A. STEINFELD: "The solar thermal gasification of coal - energy conversion efficiency and CO mitigation potential", ENERGY, vol. 28, 2003, pages 441 - 456

Also Published As

Publication number Publication date
AT514211B1 (en) 2017-03-15
US20160068769A1 (en) 2016-03-10
EP2989184A1 (en) 2016-03-02
MX2015014837A (en) 2016-07-26
AR096044A1 (en) 2015-12-02
AT514211A1 (en) 2014-11-15
WO2014174351A8 (en) 2015-02-26
EP2989184B1 (en) 2017-03-29
AU2014259104A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
DE10317197A1 (en) Electrically heated reactor and method for carrying out gas reactions at high temperature using this reactor
DE112011100718T5 (en) Carbon conversion system with integrated processing zones
WO2011026630A2 (en) Method and device for using oxygen in the steam reforming of biomass
DE3341748A1 (en) METHOD AND OVEN FOR REMOVING RADIOACTIVE WASTE
EP2989184B1 (en) Device for solar thermal gasifcation of carbonaceous feedstock
DE1063579B (en) Fluidized bed system with continuous flow of solids
DE102004008621A1 (en) Transportable or stationary hearth-type furnace reactor, to transform solid and paste organic materials to processed gas, comprises cubic reactor, vapor inlet, a chain conveyor, a cover with passages and a supporting flame mechanism
DE102009003441B4 (en) Method for operating a coupling unit of a microwave reactor for the pyrolysis of carbonaceous material
WO2005054423A2 (en) Large-scale fermenter for the generation of biogas from biomass and a biogas plant for the generation of thermal electrical and/or mechanical energy from biogas comprising such a large-scale fermenter
EP3516011B1 (en) Process for producing biocoal and plant therefor
AT516178B1 (en) Process and apparatus for producing synthesis gas from carbonaceous waste
DE202009002781U1 (en) Reactor for the thermal treatment of a feedstock
WO2011079948A1 (en) Device for continuously converting biomass and system for obtaining energy therefrom
EP0417343B1 (en) Process and apparatus for the pyrolysis of sewage sludge and/or other organic wastes
AT517016B1 (en) pyrolysis
EP0404881B1 (en) Gas generator for combustion
DE2925879C2 (en) Process for the thermal treatment of solids in a hearth furnace
EP4374122B1 (en) Method and device for burning mineral, carbonatic raw material
DE102014209529A1 (en) Combustion of lithium at different temperatures, pressures and gas surplus with porous tubes as a burner
EP4353801A1 (en) Reactor device for producing a pyrolysis product
DE102008030679A1 (en) Device for the diffusion treatment of workpieces
DE102022102460A1 (en) Thermochemical reactor system and solar system with thermochemical reactor system
DE20318783U1 (en) Large-scale fermenter, to form a biogas from a biomass for a power station, comprises a support structure to carry a film shrouding which is gas tight for batch processing
DE472345C (en) Process and device for the pyrogenic decomposition of light hydrocarbons
DE708888C (en) Device for activating carbonaceous substances using gases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14726760

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2014726760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014726760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14785398

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/014837

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014259104

Country of ref document: AU

Date of ref document: 20140415

Kind code of ref document: A