[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014171553A1 - Metal-clad laminate body - Google Patents

Metal-clad laminate body Download PDF

Info

Publication number
WO2014171553A1
WO2014171553A1 PCT/JP2014/061201 JP2014061201W WO2014171553A1 WO 2014171553 A1 WO2014171553 A1 WO 2014171553A1 JP 2014061201 W JP2014061201 W JP 2014061201W WO 2014171553 A1 WO2014171553 A1 WO 2014171553A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
melt
group
base material
Prior art date
Application number
PCT/JP2014/061201
Other languages
French (fr)
Japanese (ja)
Inventor
辰也 村上
洋之 吉本
一也 河原
剛志 稲葉
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2014171553A1 publication Critical patent/WO2014171553A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive

Definitions

  • the present invention relates to a metal-clad laminate.
  • a metal-polyimide composite having excellent adhesion, a polyimide resin from which the metal-polyimide composite is obtained, and a polyamic acid varnish composition are disclosed (for example, see Patent Document 1).
  • the flexible printed circuit board includes a laminated board constituted by two layers of a base material and a copper foil layer, and a laminated board constituted by three layers of a base material, an adhesive layer and a copper foil layer.
  • a laminated board constituted by three layers of a base material, an adhesive layer and a copper foil layer.
  • polyimide has been used for the base material
  • epoxy resin or acrylic resin has been used for the adhesive layer, but insulation, adhesion and heat resistance are not sufficient.
  • Laminates composed of two layers that do not use an adhesive are also known, but the polyimide resin used for the base material has low adhesion to the metal foil, so the laminating method, casting method, metalizing method, etc. It was necessary to create using a special method, or an adhesive layer with a thermoplastic polyimide layer was required.
  • Patent Document 2 an adhesive layer and an insulating layer made of a fluororesin are laminated in order of an adhesive layer, an insulating layer, and an adhesive layer on both surfaces of a film made of polyimide resin, and a copper foil layer is provided as a conductor layer on the outer surface.
  • a disclosed high frequency substrate is disclosed.
  • Patent Document 3 discloses a multilayer fluororesin film in which functional group-containing thermoplastic fluororesin layers are laminated on both sides of a polyimide film, and a printed wiring board using the film.
  • An object of the present invention is to provide a metal-clad laminate in which a metal layer and a base material are firmly bonded in view of the above-described situation and exhibit excellent electrical characteristics.
  • the present invention comprises a base material layer (A), a layer (B) made of a melt-processable fluororesin provided on both surfaces of the base material layer, and each of the melt-processable fluororesins.
  • the layer (B) having a metal layer (C) provided on the layer (B) and made of the melt-processable fluororesin has a surface that is in contact with the base material layer (A). This is a metal-clad laminate.
  • the surface treatment is preferably a discharge treatment in an atmosphere in which a reactive organic compound is mixed with an inert gas.
  • the melt-processable fluororesin is at least one fluorine-containing copolymer selected from the group consisting of tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymers and tetrafluoroethylene-hexafluoropropylene. It is preferable.
  • the metal layer and the base material are firmly bonded, and exhibit excellent electrical characteristics.
  • the metal-clad laminate of the present invention comprises a base material layer (A), a layer (B) made of a melt-processable fluororesin provided on both surfaces of the base material layer (A), and each of the above layers ( B) has a metal layer (C) provided thereon, and the layer (B) made of the melt-processable fluororesin has a surface that is in contact with the base material layer (A).
  • a feature of the metal-clad laminate. For this reason, the metal-clad laminate of the present invention is obtained by firmly bonding a metal layer and a base material layer through a layer made of a fluororesin. In addition, it exhibits excellent electrical characteristics.
  • FIG. 1 the cross-sectional schematic diagram of an example of the metal-clad laminated body of this invention is shown.
  • a base material layer (A) a layer (B) made of a melt-processable fluororesin provided on both surfaces of the base material layer, and a layer provided on each of the layers (B) A metal layer (C) formed.
  • the metal-clad laminate of the present invention comprises a metal layer (C) 1, a layer (B) 2 made of a melt-processable fluororesin, a base layer (A) 3, and a layer made of a melt-processable fluororesin ( B) 4 and the metal layer (C) 5 are laminated in this order.
  • Each layer is described in detail below.
  • Base material layer (A) As a component which comprises a base material layer (A), a polyimide, a polyethylene terephthalate, a polyethylene naphthalate, a liquid crystal polymer etc. are mentioned, for example. Especially, the base material layer (A) is preferably made of polyimide from the viewpoint of adhesiveness.
  • the base material layer (A) preferably has a thickness of 5 to 100 ⁇ m.
  • a thickness of a base material layer (A) 7.5 micrometers or more are more preferable, 55 micrometers or less are more preferable, and 50 micrometers or less are still more preferable.
  • melt-processable fluororesin is a polymer (homopolymer or copolymer) having a repeating unit derived from at least one fluorine-containing ethylenic monomer, and is a polymer having melt processability.
  • the fluorine-containing ethylenic monomer is an olefinically unsaturated monomer having at least one fluorine atom.
  • Specific examples of the fluorine-containing ethylenic monomer include tetrafluoroethylene [TFE], vinylidene fluoride [VdF], chlorotrifluoroethylene [CTFE], vinyl fluoride, hexafluoropropylene [HFP], hexafluoroisobutene.
  • TFE tetrafluoroethylene
  • VdF vinylidene fluoride
  • CTFE chlorotrifluoroethylene
  • vinyl fluoride vinyl fluoride
  • HFP hexafluoropropylene
  • HFP hexafluoroisobutene.
  • Formula (1): CH 2 CX 1 (CF 2 ) n X 2 (1) (Wherein, X 1 is H or F, X 2 is H, F or Cl, and n is an integer of 1 to 10), and per
  • perfluoro (alkyl vinyl ether) [PAVE] examples include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro ( Butyl vinyl ether) and the like.
  • the fluororesin may be a copolymer having the fluorine-containing ethylenic monomer unit and an ethylenic monomer unit having no fluorine.
  • the ethylenic monomer having no fluorine is preferably an ethylenic monomer having 5 or less carbon atoms from the viewpoint of good heat resistance and chemical resistance, specifically, ethylene, propylene, 1-butene. 2-butene, vinyl chloride, vinylidene chloride and the like.
  • fluororesin examples include polytetrafluoroethylene [PTFE], polychlorotrifluoroethylene [PCTFE], ethylene [Et] -TFE copolymer [ETFE], Et-chlorotrifluoroethylene [CTFE] copolymer, CTFE. It is preferably at least one selected from the group consisting of -TFE copolymer, TFE-HFP copolymer [FEP], TFE-PAVE copolymer [PFA], and polyvinylidene fluoride [PVdF]. . In particular, the fluororesin is more preferably at least one fluorine-containing copolymer selected from the group consisting of PFA and FEP.
  • PFA is a copolymer including polymerized units based on TFE (TFE units) and polymerized units based on PAVE (PAVE units).
  • TFE units TFE units
  • PAVE units PAVE units
  • Rf 1 represents a perfluoro organic group.
  • the perfluoro unsaturated compound represented by these is mentioned.
  • the “perfluoro organic group” means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • the perfluoro organic group may have an etheric oxygen atom.
  • Rf 1 is preferably a perfluoroalkyl group having 1 to 10 carbon atoms.
  • the number of carbon atoms of the perfluoroalkyl group is more preferably 1 to 5.
  • the PAVE is selected from the group consisting of perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro (butyl vinyl ether). It is more preferably at least one, more preferably at least one selected from the group consisting of PMVE, PEVE and PPVE, and particularly preferably PPVE in terms of excellent heat resistance.
  • the PFA preferably has 1 to 10 mol% of PAVE units, and more preferably 3 to 6 mol% of PAVE units.
  • the PFA preferably has a total of 90 to 100 mol% of TFE units and PAVE units with respect to all polymerized units.
  • the PFA may be a copolymer including TFE units, PAVE units, and polymerized units based on monomers copolymerizable with TFE and PAVE.
  • X 4 represents a hydrogen atom, a fluorine atom or a chlorine atom
  • n represents an integer of 2 to 10.
  • alkyl perfluorovinyl ether derivatives represented by 2- Rf 2 (wherein Rf 2 represents a perfluoroalkyl group having 1 to 5 carbon atoms).
  • Rf 2 represents a perfluoroalkyl group having 1 to 5 carbon atoms.
  • Rf 2 represents a perfluoroalkyl group having 1 to 5 carbon atoms.
  • At least one selected from the group consisting of alkyl perfluorovinyl ether derivatives represented is preferable.
  • alkyl perfluorovinyl ether derivative those in which Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ⁇ CF—OCH 2 —CF 2 CF 3 is more preferable.
  • PFA has polymerized units based on monomers copolymerizable with TFE and PAVE
  • PFA has 0 to 10 monomer units derived from monomers copolymerizable with TFE and PAVE.
  • the total amount of TFE units and PAVE units is 90 to 100 mol%. More preferably, the monomer units derived from monomers copolymerizable with TFE and PAVE are 0.1 to 10 mol%, and the total of TFE units and PAVE units is 90 to 99.9 mol%. .
  • the adhesiveness of a layer (A) and a layer (B) and a layer (B) and a layer (C) may be inferior.
  • FEP is a copolymer containing polymerized units (TFE units) based on tetrafluoroethylene and polymerized units (HFP units) based on hexafluoropropylene.
  • FEP is not particularly limited, but a copolymer having a molar ratio of TFE units to HFP units (TFE units / HFP units) of 70 to 99/30 to 1 is preferable. A more preferred molar ratio is 80 to 97/20 to 3.
  • TFE units there exists a tendency for a mechanical physical property to fall, and when too much, melting
  • FEP has a monomer unit derived from a monomer copolymerizable with TFE and HFP in an amount of 0.1 to 10 mol%, and a total of 90 to 99.9 mol% of TFE units and HFP units.
  • a polymer is also preferred.
  • monomers copolymerizable with TFE and HFP include PAVE and alkyl perfluorovinyl ether derivatives.
  • the content of each monomer in the copolymer described above can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
  • the fluororesin preferably has a carbonyl group-containing functional group at the main chain terminal.
  • the fluororesin for example, PFA
  • the fluororesin may have a carbonyl group-containing functional group at both ends of the main chain or only at one end.
  • the fluororesin preferably has no carbonyl group-containing functional group in the side chain.
  • a hydrogen atom bonded to a nitrogen atom such as an amide group, an imide group, a urethane group, a carbamoyl group, a carbamoyloxy group, a ureido group, or an oxamoyl group may be substituted with a hydrocarbon group such as an alkyl group.
  • the carbonyl group-containing functional group includes a carboxyl group, an ester group, and an isocyanate group because of excellent adhesion between the layer (A) and the layer (B) and excellent adhesion between the layer (B) and the layer (C). At least one selected from the group consisting of groups is preferred, and among these, a carboxyl group is particularly preferred.
  • the fluororesin preferably has 5 or more carbonyl group-containing functional groups per 10 6 main chain carbon atoms.
  • the carbonyl group-containing functional group is more preferably 20 or more per 10 6 main chain carbon atoms, more preferably 50 or more, particularly preferably 80 or more, and particularly preferably 100 or more, because the adhesion is more excellent. preferable.
  • the melt-processable fluororesin preferably has a melt flow rate (MFR) of 20 g / 10 min or more.
  • MFR melt flow rate
  • the MFR is more preferably 30 g / 10 min or more, and more preferably 60 g / 10 min or more, because the adhesiveness is more excellent.
  • the upper limit of MFR is, for example, 100 g / 10 minutes.
  • the MFR is a value that can be measured under conditions of a temperature of 372 ° C. and a load of 5.0 kg in accordance with ASTM D3307.
  • the melting point of the melt-processable fluororesin is preferably 310 ° C. or lower. Since melting
  • the melting point is a temperature corresponding to a melting peak when the temperature is raised at a rate of 10 ° C./min using a DSC (Differential Scanning Calorimetry) apparatus.
  • the melt-processable fluororesin layer (B) may contain an inorganic pigment, a filler, an adhesion promoter, an antioxidant, a lubricant, a dye, and the like.
  • the inorganic pigment is preferably stable when it is molded, and examples thereof include titanium, iron oxide, and carbon powder.
  • the melt-processable layer (B) made of a fluororesin is a layer provided on both surfaces of the base material layer (A), and any of the surfaces in contact with the base material layer (A) is surface-treated. It is a thing. By performing the surface treatment, the adhesiveness to the substrate can be made stronger and the electrical properties can be made excellent.
  • the surface treatment is preferably a discharge treatment in an atmosphere in which a reactive organic compound is mixed with an inert gas.
  • the reactive organic compound is a polymerizable or non-polymerizable organic compound containing an oxygen atom, for example, vinyl esters such as vinyl acetate and vinyl formate; acrylic acid esters such as glycidyl methacrylate; vinyl ethyl ether, vinyl Ethers such as methyl ether and glycidyl methyl ether; Carboxylic acids such as acetic acid and formic acid; Alcohols such as methyl alcohol, ethyl alcohol, phenol, and ethylene glycol; Ketones such as acetone and methyl ethyl ketone; Carboxes such as ethyl acetate and ethyl formate Acid esters; acrylic acids such as acrylic acid and methacrylic acid; and the like.
  • the modified surface is less likely to be deactivated (long life), and is easy to handle from the viewpoint of safety, vinyl esters, acrylate esters, acrylate esters, acrylate esters, acrylate esters, acryl
  • the concentration of the reactive organic compound varies depending on the type of organic compound, the type of fluororesin, etc., but is preferably 0.1 to 3.0% by volume, more preferably 0.1 to 1.0% by volume.
  • the discharge treatment can be performed in the above atmospheric gas by various discharge methods such as corona discharge and glow discharge. However, it is not necessary to depressurize the inside of the apparatus. In some respects, corona discharge treatment is preferred because it is less affected by atmospheric gas in the vicinity of the electrode and stable discharge can be easily obtained.
  • the discharge condition is preferably a charge density of 0.3 to 9.0 W ⁇ sec / cm 2 from the viewpoint of processing efficiency.
  • the charge density is more preferably 3.0 W ⁇ sec / cm 2 or less.
  • the thickness of the melt-processable fluororesin layer (B) varies depending on the application, but is preferably 5 to 100 ⁇ m.
  • the thickness of the layer (B) is more preferably 10 ⁇ m or more, further preferably 12.5 ⁇ m or more, more preferably 75 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • the metal constituting the metal layer (C) is preferably at least one selected from the group consisting of copper, stainless steel, aluminum, iron, and alloys thereof. When the metal is as described above, the layer (B) and the layer (C) are firmly bonded. In view of excellent electrical characteristics, the metal is more preferably at least one selected from the group consisting of copper and aluminum, and more preferably copper.
  • the stainless steel include austenitic stainless steel, martensitic stainless steel, and ferritic stainless steel.
  • the metal layer (C) may be a layer formed by sputtering, vacuum deposition, or the like, or may be formed by bonding a metal foil. From the viewpoint of simplicity in manufacturing a wiring board, those formed by bonding metal foils are preferable, and those formed by bonding the metal foils by hot pressing are more preferable.
  • the thickness of the metal layer (C) is preferably 5 to 200 ⁇ m.
  • the metal-clad laminated body of this invention does not specifically limit as a method to manufacture the metal-clad laminated body of this invention, What is necessary is just to manufacture by a well-known method.
  • the layers may be laminated and bonded to obtain a laminated body, or a laminated body of a metal layer (C) and a layer (B) made of a melt-processable fluororesin.
  • the laminate may be formed by bonding the laminate and the substrate.
  • Examples of the method for forming the layer (B) made of a melt-processable fluororesin include a method of forming a film by molding the melt-processable fluororesin or a composition containing the fluororesin.
  • the said layer (B) is obtained by giving the above-mentioned surface treatment to one surface of the obtained film.
  • Examples of the molding method include melt extrusion molding, solvent casting, and spraying.
  • the composition containing a melt-processable fluororesin may contain an organic solvent, a curing agent, etc., and if necessary, a curing accelerator, a pigment dispersant, an antifoaming agent, a leveling agent, a UV absorption.
  • Additives such as an agent, a light stabilizer, a thickener, an adhesion improver, and a matting agent may be included.
  • the curing agent include isocyanate, melamine resin, and phenol resin.
  • the curing accelerator include conventionally known tin-based, other metal-based, organic acid-based, amino-based, and phosphorus-based curing accelerators.
  • the composition containing the melt-processable fluororesin may be prepared by a known method.
  • a laminate of a metal layer (C) and a layer (B) made of a melt-processable fluororesin is applied by applying the composition containing the melt-processable fluororesin onto a metal foil and drying or heating.
  • Examples of the method for applying the melt-processable fluororesin-containing composition include, for example, brush coating, dip coating, spray coating, comma coating, knife coating, die coating, lip coating, roll coater coating, curtain coating, and the like. A method is mentioned.
  • a film (layer (B)) made of a melt-processable fluororesin is formed first, and a metal layer is formed on the film using a vacuum coating method such as vapor deposition, sputtering, or ion plating, By forming a metal layer by a wet plating method such as electroless plating or electroplating, a laminate of the metal layer (C) and a layer (B) made of a melt-processable fluororesin may be obtained. In the laminate, the surface treatment is performed on the surface on the layer (B) side.
  • a base material layer (A ) Using two laminates of the metal layer (C) obtained above and a layer (B) made of a melt-processable fluororesin, a base material layer (A ) Are sandwiched and bonded, and the metal-clad laminate of the present invention can be manufactured.
  • Examples of the method of bonding each layer or laminate include a method in which the formed layer or laminate is stacked and then thermocompression bonded by a hot press.
  • the thermocompression bonding temperature is preferably 300 to 350 ° C.
  • the pressure for thermocompression bonding is preferably from 0.1 to 30 MPa, more preferably from 1 to 10 MPa.
  • the metal-clad laminate of the present invention can be formed into a printed circuit board by etching the surface of the metal layer and providing a pattern circuit. That is, this invention is also a printed circuit board provided with the pattern circuit obtained by etching the surface of the metal layer (C) of the said metal-clad laminated body.
  • the pattern circuit may be formed on one or both of the two metal layers.
  • the printed circuit board may include a coverlay film on the printed circuit board.
  • the sample was compression molded to 350 ° C. to produce a film having a thickness of 0.25 to 0.3 mm. This film was scanned 40 times with a Fourier transform infrared spectrometer [FT-IR] (trade name: Model 1760X, manufactured by PerkinElmer), analyzed to obtain an infrared absorption spectrum, and completely fluorinated. A difference spectrum from the base spectrum in which no end group was present was obtained. From the absorption peak of the carbonyl group appearing in this difference spectrum, the number N of carbonyl group-containing functional groups per 1 ⁇ 10 6 carbon atoms in the sample was calculated according to the following formula.
  • FT-IR Fourier transform infrared spectrometer
  • N I ⁇ K / t I: Absorbance K: Correction coefficient t: Film thickness (mm)
  • Table 1 shows the absorption frequency, molar extinction coefficient, and correction coefficient for the carboxyl group, which is one of the carbonyl group-containing functional groups.
  • the molar extinction coefficient is determined from FT-IR measurement data of a low molecular weight model compound.
  • MFR mass of the polymer flowing out per unit time (10 minutes) from a nozzle with a diameter of 2 mm and a length of 8 mm under a temperature of 372 ° C. under a 5 kg load ( g) was measured.
  • the melting point is a temperature corresponding to a melting peak when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) apparatus.
  • Comparative Example 1 In Reference Example 5, the PFA film and the PI film were laminated in the order of PFA / PI / PFA in the same manner as in Reference Example 5 except that a PFA film not subjected to surface treatment was used, and 310 ° C., preheating 60 seconds.
  • a laminate (sample F) was produced by hot pressing with a vacuum heat press at 10.2 MPa and a pressurization time of 120 seconds. Table 2 shows sample preparation conditions.
  • Comparative Example 2 A polyimide resin film (trade name “Kapton V”, manufactured by Toray DuPont, thickness 48 ⁇ m) was used as sample G.
  • a film (thickness 25 ⁇ m, 10 ⁇ 10 cm) is stacked, and a copper foil (thickness 50 ⁇ m, 10 ⁇ 10 cm) is applied to the untreated side of the PFA film.
  • a metal-clad laminate (sample H) was produced by hot pressing with a vacuum heat press at 310 ° C., preheating 60 seconds, pressurizing pressure 10.2 MPa, pressing time 120 seconds.
  • the metal-clad laminate of the present invention has a strong adhesion between the metal layer and the base material and exhibits excellent electrical characteristics, it can be suitably used for various electric devices, electronic devices, communication devices, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing a metal-clad laminate body demonstrating excellent electrical characteristics, in which a metal layer and a substrate are strongly bonded. The present invention is a metal-clad laminate body characterized in having: a substrate layer (A) (3); layers (B) (2, 4) provided on both surfaces of the substrate layer (A), the layers (B) (2, 4) comprising a melt-processable fluorine resin; and metal layers (C) (1, 5) provided on each of the layers (B) comprising a melt-processable fluorine resin, and also characterized in that the surfaces of the layers (B) comprising the melt-processable fluorine resin that contact the substrate layer (A) are surface-processed.

Description

金属張積層体Metal-clad laminate
本発明は、金属張積層体に関する。 The present invention relates to a metal-clad laminate.
近年、電気機器や、電子機器、通信機器は、非常にめざましく発展している。現在、これらの機器では、より高周帯域の周波数が使用される傾向にある。ところで、通常、これらの機器には、様々なフレキシブルプリント基板が使用されている。したがって、フレキシブルプリント基板にも、高周帯域の周波数に対応する優れた電気的特性や、ハンダ作業に耐え得るだけの優れた耐熱性等が求められている。 In recent years, electrical devices, electronic devices, and communication devices have been remarkably developed. Currently, these devices tend to use higher frequency bands. Incidentally, various flexible printed boards are usually used for these devices. Therefore, the flexible printed circuit board is also required to have excellent electrical characteristics corresponding to a high frequency band and excellent heat resistance that can withstand soldering work.
これまでに知られているフレキシブルプリント基板用の材料としては、例えば、ガラス転移温度の低下、高線熱膨張率化、高吸湿膨張率化、高弾性率化をもたらすことなく、金属箔との密着性に優れる金属-ポリイミド複合体、およびそれが得られるポリイミド樹脂、ポリアミド酸ワニス組成物が開示されている(例えば、特許文献1参照。)。 As a material for a flexible printed circuit board known so far, for example, without reducing the glass transition temperature, increasing the linear thermal expansion coefficient, increasing the hygroscopic expansion coefficient, and increasing the elastic modulus, A metal-polyimide composite having excellent adhesion, a polyimide resin from which the metal-polyimide composite is obtained, and a polyamic acid varnish composition are disclosed (for example, see Patent Document 1).
特開2009-299008号公報JP 2009-299008 A 特開2006-059865号公報JP 2006-059865 A 国際公開第2010/084867号パンフレットInternational Publication No. 2010/084867 Pamphlet
フレキシブルプリント基板には、基材及び銅箔層の2層で構成される積層板、基材、接着剤層及び銅箔層の3層で構成される積層板がある。このうち、3層で構成される積層板の場合、基材にポリイミドが使用され、接着剤層にエポキシ樹脂やアクリル樹脂などが使用されてきたが、絶縁性や接着性や耐熱性が充分ではなかった。接着剤を使用しない2層で構成される積層板も知られているが、基材に使用されるポリイミド樹脂は金属箔との接着性が低いため、ラミネート法、キャスティング法、メタライジング法等の特殊な方法を利用して作成する必要があったり、熱可塑性ポリイミド層による接着層が必要であったりした。 The flexible printed circuit board includes a laminated board constituted by two layers of a base material and a copper foil layer, and a laminated board constituted by three layers of a base material, an adhesive layer and a copper foil layer. Of these, in the case of a laminate composed of three layers, polyimide has been used for the base material and epoxy resin or acrylic resin has been used for the adhesive layer, but insulation, adhesion and heat resistance are not sufficient. There wasn't. Laminates composed of two layers that do not use an adhesive are also known, but the polyimide resin used for the base material has low adhesion to the metal foil, so the laminating method, casting method, metalizing method, etc. It was necessary to create using a special method, or an adhesive layer with a thermoplastic polyimide layer was required.
特許文献2には、ポリイミド樹脂からなるフィルムの両面にフッ素樹脂からなる接着層と絶縁層が、接着層、絶縁層、接着層の順に積層され、その外表面に導体層として銅箔層が設けられた高周波基板が開示されている。
特許文献3には、官能基含有熱可塑性フッ素樹脂層をポリイミドフィルムの両面に積層した多層フッ素樹脂フィルム、該フィルムを用いたプリント配線板が開示されている。
In Patent Document 2, an adhesive layer and an insulating layer made of a fluororesin are laminated in order of an adhesive layer, an insulating layer, and an adhesive layer on both surfaces of a film made of polyimide resin, and a copper foil layer is provided as a conductor layer on the outer surface. A disclosed high frequency substrate is disclosed.
Patent Document 3 discloses a multilayer fluororesin film in which functional group-containing thermoplastic fluororesin layers are laminated on both sides of a polyimide film, and a printed wiring board using the film.
本発明の目的は、上記現状に鑑み、金属層と基材とが強固に接着しており、優れた電気特性を示す金属張積層体を提供する。 An object of the present invention is to provide a metal-clad laminate in which a metal layer and a base material are firmly bonded in view of the above-described situation and exhibit excellent electrical characteristics.
すなわち、本発明は、基材層(A)と、上記基材層の両面上に設けられた溶融加工可能なフッ素樹脂からなる層(B)と、それぞれの上記溶融加工可能なフッ素樹脂からなる層(B)上に設けられた金属層(C)とを有し、上記溶融加工可能なフッ素樹脂からなる層(B)は、上記基材層(A)に接する面が表面処理されていることを特徴とする金属張積層体である。
上記表面処理は、不活性ガスに反応性有機化合物を混合した雰囲気下での放電処理であることが好ましい。
上記溶融加工可能なフッ素樹脂は、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体、及び、テトラフルオロエチレン-ヘキサフルオロプロピレンからなる群より選択される少なくとも1種の含フッ素共重合体であることが好ましい。
That is, the present invention comprises a base material layer (A), a layer (B) made of a melt-processable fluororesin provided on both surfaces of the base material layer, and each of the melt-processable fluororesins. The layer (B) having a metal layer (C) provided on the layer (B) and made of the melt-processable fluororesin has a surface that is in contact with the base material layer (A). This is a metal-clad laminate.
The surface treatment is preferably a discharge treatment in an atmosphere in which a reactive organic compound is mixed with an inert gas.
The melt-processable fluororesin is at least one fluorine-containing copolymer selected from the group consisting of tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymers and tetrafluoroethylene-hexafluoropropylene. It is preferable.
本発明の金属張積層体は、金属層と基材とが強固に接着しており、優れた電気特性を示す。 In the metal-clad laminate of the present invention, the metal layer and the base material are firmly bonded, and exhibit excellent electrical characteristics.
本発明の金属張積層体の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the metal-clad laminated body of this invention.
本発明の金属張積層体は、基材層(A)と、上記基材層(A)の両面上に設けられた溶融加工可能なフッ素樹脂からなる層(B)と、それぞれの上記層(B)上に設けられた金属層(C)とを有し、上記溶融加工可能なフッ素樹脂からなる層(B)は、上記基材層(A)に接する面が表面処理されていることを特徴とする金属張積層体である。
このため、本発明の金属張積層体は、金属層と基材層とがフッ素樹脂からなる層を介して強固に接着されたものである。また、優れた電気特性を示す。
The metal-clad laminate of the present invention comprises a base material layer (A), a layer (B) made of a melt-processable fluororesin provided on both surfaces of the base material layer (A), and each of the above layers ( B) has a metal layer (C) provided thereon, and the layer (B) made of the melt-processable fluororesin has a surface that is in contact with the base material layer (A). A feature of the metal-clad laminate.
For this reason, the metal-clad laminate of the present invention is obtained by firmly bonding a metal layer and a base material layer through a layer made of a fluororesin. In addition, it exhibits excellent electrical characteristics.
図1に、本発明の金属張積層体の一例の断面模式図を示す。図1に示すように、基材層(A)と、上記基材層の両面上に設けられた溶融加工可能なフッ素樹脂からなる層(B)と、それぞれの上記層(B)上に設けられた金属層(C)とを有する。
すなわち、本発明の金属張積層体は、金属層(C)1、溶融加工可能なフッ素樹脂からなる層(B)2、基材層(A)3、溶融加工可能なフッ素樹脂からなる層(B)4、及び、金属層(C)5がこの順に積層されてなるものである。
各層について以下に詳述する。
In FIG. 1, the cross-sectional schematic diagram of an example of the metal-clad laminated body of this invention is shown. As shown in FIG. 1, a base material layer (A), a layer (B) made of a melt-processable fluororesin provided on both surfaces of the base material layer, and a layer provided on each of the layers (B) A metal layer (C) formed.
That is, the metal-clad laminate of the present invention comprises a metal layer (C) 1, a layer (B) 2 made of a melt-processable fluororesin, a base layer (A) 3, and a layer made of a melt-processable fluororesin ( B) 4 and the metal layer (C) 5 are laminated in this order.
Each layer is described in detail below.
<基材層(A)>
基材層(A)を構成する成分としては、例えば、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、液晶ポリマー等が挙げられる。
なかでも、基材層(A)は、接着性の観点からポリイミドからなるものが好ましい。
<Base material layer (A)>
As a component which comprises a base material layer (A), a polyimide, a polyethylene terephthalate, a polyethylene naphthalate, a liquid crystal polymer etc. are mentioned, for example.
Especially, the base material layer (A) is preferably made of polyimide from the viewpoint of adhesiveness.
基材層(A)は、厚みが5~100μmであることが好ましい。基材層(A)の厚みは、7.5μm以上がより好ましく、55μm以下がより好ましく、50μm以下が更に好ましい。 The base material layer (A) preferably has a thickness of 5 to 100 μm. As for the thickness of a base material layer (A), 7.5 micrometers or more are more preferable, 55 micrometers or less are more preferable, and 50 micrometers or less are still more preferable.
<溶融加工可能なフッ素樹脂からなる層(B)>
溶融加工可能なフッ素樹脂は、少なくとも1種の含フッ素エチレン性モノマーから誘導される繰り返し単位を有する重合体(単独重合体又は共重合体)であって、溶融加工性を有する重合体である。
<Layer made of melt-processable fluororesin (B)>
The melt-processable fluororesin is a polymer (homopolymer or copolymer) having a repeating unit derived from at least one fluorine-containing ethylenic monomer, and is a polymer having melt processability.
上記含フッ素エチレン性モノマーは、少なくとも1つのフッ素原子を有するオレフィン性不飽和モノマーである。上記含フッ素エチレン性モノマーとしては、具体的には、テトラフルオロエチレン〔TFE〕、フッ化ビニリデン〔VdF〕、クロロトリフルオロエチレン〔CTFE〕、フッ化ビニル、ヘキサフルオロプロピレン〔HFP〕、ヘキサフルオロイソブテン、式(1):
 CH=CX(CF (1)
(式中、XはH又はFであり、XはH、F又はClであり、nは1~10の整数である。)で示されるモノマー、及び、パーフルオロ(アルキルビニルエーテル)等が挙げられる。
The fluorine-containing ethylenic monomer is an olefinically unsaturated monomer having at least one fluorine atom. Specific examples of the fluorine-containing ethylenic monomer include tetrafluoroethylene [TFE], vinylidene fluoride [VdF], chlorotrifluoroethylene [CTFE], vinyl fluoride, hexafluoropropylene [HFP], hexafluoroisobutene. Formula (1):
CH 2 = CX 1 (CF 2 ) n X 2 (1)
(Wherein, X 1 is H or F, X 2 is H, F or Cl, and n is an integer of 1 to 10), and perfluoro (alkyl vinyl ether) Can be mentioned.
上記パーフルオロ(アルキルビニルエーテル)〔PAVE〕としては、例えば、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、及び、パーフルオロ(ブチルビニルエーテル)等が挙げられる。 Examples of the perfluoro (alkyl vinyl ether) [PAVE] include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro ( Butyl vinyl ether) and the like.
上記フッ素樹脂は、上記含フッ素エチレン性モノマー単位及びフッ素を有さないエチレン性モノマー単位を有する共重合体であってもよい。 The fluororesin may be a copolymer having the fluorine-containing ethylenic monomer unit and an ethylenic monomer unit having no fluorine.
上記フッ素を有さないエチレン性モノマーは、耐熱性や耐薬品性が良好となる点で、炭素数5以下のエチレン性モノマーであることが好ましく、具体的には、エチレン、プロピレン、1-ブテン、2-ブテン、塩化ビニル、塩化ビニリデン等が挙げられる。 The ethylenic monomer having no fluorine is preferably an ethylenic monomer having 5 or less carbon atoms from the viewpoint of good heat resistance and chemical resistance, specifically, ethylene, propylene, 1-butene. 2-butene, vinyl chloride, vinylidene chloride and the like.
上記フッ素樹脂としては、ポリテトラフルオロエチレン〔PTFE〕、ポリクロロトリフルオロエチレン〔PCTFE〕、エチレン〔Et〕-TFE共重合体〔ETFE〕、Et-クロロトリフルオロエチレン〔CTFE〕共重合体、CTFE-TFE共重合体、TFE-HFP共重合体〔FEP〕、TFE-PAVE共重合体〔PFA〕、及び、ポリビニリデンフルオライド〔PVdF〕からなる群より選択される少なくとも1種であることが好ましい。
なかでも上記フッ素樹脂は、PFA及びFEPからなる群より選択される少なくとも1種の含フッ素共重合体であることがより好ましい。
Examples of the fluororesin include polytetrafluoroethylene [PTFE], polychlorotrifluoroethylene [PCTFE], ethylene [Et] -TFE copolymer [ETFE], Et-chlorotrifluoroethylene [CTFE] copolymer, CTFE. It is preferably at least one selected from the group consisting of -TFE copolymer, TFE-HFP copolymer [FEP], TFE-PAVE copolymer [PFA], and polyvinylidene fluoride [PVdF]. .
In particular, the fluororesin is more preferably at least one fluorine-containing copolymer selected from the group consisting of PFA and FEP.
PFAは、TFEに基づく重合単位(TFE単位)、及び、PAVEに基づく重合単位(PAVE単位)を含む共重合体である。
上記PFAにおいて、PAVEは特に限定されず、例えば、下記一般式(1):
CF=CF-ORf  (1)
(式中、Rfは、パーフルオロ有機基を表す。)
で表されるパーフルオロ不飽和化合物が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル結合性の酸素原子を有していてもよい。
PFA is a copolymer including polymerized units based on TFE (TFE units) and polymerized units based on PAVE (PAVE units).
In the PFA, PAVE is not particularly limited, and for example, the following general formula (1):
CF 2 = CF-ORf 1 (1)
(In the formula, Rf 1 represents a perfluoro organic group.)
The perfluoro unsaturated compound represented by these is mentioned. In the present specification, the “perfluoro organic group” means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms. The perfluoro organic group may have an etheric oxygen atom.
上記PAVEとしては、例えば、上記一般式(1)において、Rfが炭素数1~10のパーフルオロアルキル基であるものが好ましい。上記パーフルオロアルキル基の炭素数として、より好ましくは1~5である。 As the PAVE, for example, in the general formula (1), Rf 1 is preferably a perfluoroalkyl group having 1 to 10 carbon atoms. The number of carbon atoms of the perfluoroalkyl group is more preferably 1 to 5.
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、及び、パーフルオロ(ブチルビニルエーテル)からなる群より選択される少なくとも1種であることがより好ましく、PMVE、PEVE及びPPVEからなる群より選択される少なくとも1種であることが更に好ましく、耐熱性に優れる点でPPVEであることが特に好ましい。 The PAVE is selected from the group consisting of perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro (butyl vinyl ether). It is more preferably at least one, more preferably at least one selected from the group consisting of PMVE, PEVE and PPVE, and particularly preferably PPVE in terms of excellent heat resistance.
上記PFAは、PAVE単位が1~10モル%であるものが好ましく、PAVE単位が3~6モル%であるものがより好ましい。また、上記PFAは、全重合単位に対して、TFE単位及びPAVE単位が合計で90~100モル%であることが好ましい。 The PFA preferably has 1 to 10 mol% of PAVE units, and more preferably 3 to 6 mol% of PAVE units. The PFA preferably has a total of 90 to 100 mol% of TFE units and PAVE units with respect to all polymerized units.
上記PFAは、TFE単位、PAVE単位、並びに、TFE及びPAVEと共重合可能な単量体に基づく重合単位を含む共重合体であってもよい。TFE及びPAVEと共重合可能な単量体としては、ヘキサフルオロプロピレン、CX=CX(CF(式中、X、X及びXは、同一又は異なって、水素原子又はフッ素原子を表し、Xは、水素原子、フッ素原子又は塩素原子を表し、nは2~10の整数を表す。)で表されるビニル単量体、CF=CF-OCH-Rf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるアルキルパーフルオロビニルエーテル誘導体等が挙げられる。TFE及びPAVEと共重合可能な単量体としては、ヘキサフルオロプロピレン及びCF=CF-OCH-Rf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるアルキルパーフルオロビニルエーテル誘導体からなる群より選択される少なくとも1種が好ましい。 The PFA may be a copolymer including TFE units, PAVE units, and polymerized units based on monomers copolymerizable with TFE and PAVE. As a monomer copolymerizable with TFE and PAVE, hexafluoropropylene, CX 1 X 2 = CX 3 (CF 2 ) n X 4 (wherein X 1 , X 2 and X 3 are the same or different. Represents a hydrogen atom or a fluorine atom, X 4 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n represents an integer of 2 to 10.), CF 2 ═CF—OCH And alkyl perfluorovinyl ether derivatives represented by 2- Rf 2 (wherein Rf 2 represents a perfluoroalkyl group having 1 to 5 carbon atoms). As a monomer copolymerizable with TFE and PAVE, hexafluoropropylene and CF 2 ═CF—OCH 2 —Rf 2 (wherein Rf 2 represents a perfluoroalkyl group having 1 to 5 carbon atoms). At least one selected from the group consisting of alkyl perfluorovinyl ether derivatives represented is preferable.
上記アルキルパーフルオロビニルエーテル誘導体としては、Rfが炭素数1~3のパーフルオロアルキル基であるものが好ましく、CF=CF-OCH-CFCFがより好ましい。 As the alkyl perfluorovinyl ether derivative, those in which Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ═CF—OCH 2 —CF 2 CF 3 is more preferable.
PFAが、TFE及びPAVEと共重合可能な単量体に基づく重合単位を有するものである場合、PFAは、TFE及びPAVEと共重合可能な単量体に由来する単量体単位が0~10モル%であり、TFE単位及びPAVE単位が合計で90~100モル%であることが好ましい。より好ましくは、TFE及びPAVEと共重合可能な単量体に由来する単量体単位が0.1~10モル%であり、TFE単位及びPAVE単位が合計で90~99.9モル%である。共重合可能な単量体単位が多すぎると、層(A)と層(B)、及び、層(B)と層(C)との接着性が劣るおそれがある。 When PFA has polymerized units based on monomers copolymerizable with TFE and PAVE, PFA has 0 to 10 monomer units derived from monomers copolymerizable with TFE and PAVE. Preferably, the total amount of TFE units and PAVE units is 90 to 100 mol%. More preferably, the monomer units derived from monomers copolymerizable with TFE and PAVE are 0.1 to 10 mol%, and the total of TFE units and PAVE units is 90 to 99.9 mol%. . When there are too many copolymerizable monomer units, there exists a possibility that the adhesiveness of a layer (A) and a layer (B) and a layer (B) and a layer (C) may be inferior.
FEPは、テトラフルオロエチレンに基づく重合単位(TFE単位)、及び、ヘキサフルオロプロピレンに基づく重合単位(HFP単位)を含む共重合体である。
FEPとしては、特に限定されないが、TFE単位とHFP単位とのモル比(TFE単位/HFP単位)が70~99/30~1である共重合体が好ましい。より好ましいモル比は、80~97/20~3である。TFE単位が少なすぎると機械物性が低下する傾向があり、多すぎると融点が高くなりすぎ成形性が低下する傾向がある。
FEP is a copolymer containing polymerized units (TFE units) based on tetrafluoroethylene and polymerized units (HFP units) based on hexafluoropropylene.
FEP is not particularly limited, but a copolymer having a molar ratio of TFE units to HFP units (TFE units / HFP units) of 70 to 99/30 to 1 is preferable. A more preferred molar ratio is 80 to 97/20 to 3. When there are too few TFE units, there exists a tendency for a mechanical physical property to fall, and when too much, melting | fusing point becomes high too much and there exists a tendency for a moldability to fall.
FEPは、TFE及びHFPと共重合可能な単量体に由来する単量体単位が0.1~10モル%であり、TFE単位及びHFP単位が合計で90~99.9モル%である共重合体であることも好ましい。TFE及びHFPと共重合可能な単量体としては、PAVE、アルキルパーフルオロビニルエーテル誘導体等が挙げられる。 FEP has a monomer unit derived from a monomer copolymerizable with TFE and HFP in an amount of 0.1 to 10 mol%, and a total of 90 to 99.9 mol% of TFE units and HFP units. A polymer is also preferred. Examples of monomers copolymerizable with TFE and HFP include PAVE and alkyl perfluorovinyl ether derivatives.
上述した共重合体の各単量体の含有量は、NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせることで算出できる。 The content of each monomer in the copolymer described above can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
上記フッ素樹脂は、主鎖末端にカルボニル基含有官能基を有することが好ましい。上記フッ素樹脂(例えば、PFA)が主鎖末端にカルボニル基含有官能基を有すると、層(A)と層(B)、及び、層(B)と層(C)とをより強固に接着させることができる。上記フッ素樹脂は、カルボニル基含有官能基を主鎖の両方の末端に有していてもよいし、片方の末端のみに有していてもよい。上記フッ素樹脂は、側鎖にカルボニル基含有官能基を有さないことが好ましい。 The fluororesin preferably has a carbonyl group-containing functional group at the main chain terminal. When the fluororesin (for example, PFA) has a carbonyl group-containing functional group at the end of the main chain, the layer (A) and the layer (B), and the layer (B) and the layer (C) are bonded more firmly. be able to. The fluororesin may have a carbonyl group-containing functional group at both ends of the main chain or only at one end. The fluororesin preferably has no carbonyl group-containing functional group in the side chain.
上記カルボニル基含有官能基としては、例えば、カーボネート基、カルボン酸ハライド基(ハロゲノホルミル基)、ホルミル基、カルボキシル基、エステル基〔-C(=O)O-〕、酸無水物基〔-C(=O)O-C(=O)-〕、イソシアネート基、アミド基、イミド基〔-C(=O)-NH-C(=O)-〕、ウレタン基〔-NH-C(=O)O-〕、カルバモイル基〔NH-C(=O)-〕、カルバモイルオキシ基〔NH-C(=O)O-〕、ウレイド基〔NH-C(=O)-NH-〕、オキサモイル基〔NH-C(=O)-C(=O)-〕等の化学構造上の一部分であるもの等が挙げられる。
アミド基、イミド基、ウレタン基、カルバモイル基、カルバモイルオキシ基、ウレイド基、オキサモイル基等の窒素原子に結合する水素原子は、例えばアルキル基等の炭化水素基により置換されていてもよい。
カルボニル基含有官能基としては、層(A)と層(B)との接着性、及び、層(B)と層(C)との接着性が優れることからカルボキシル基、エステル基、及び、イソシアネート基からなる群より選択される少なくとも1種が好ましく、これらの中でも、特に、カルボキシル基が好ましい。
Examples of the carbonyl group-containing functional group include a carbonate group, a carboxylic acid halide group (halogenoformyl group), a formyl group, a carboxyl group, an ester group [—C (═O) O—], an acid anhydride group [—C (= O) O—C (═O) —], isocyanate group, amide group, imide group [—C (═O) —NH—C (═O) —], urethane group [—NH—C (═O ) O—], carbamoyl group [NH 2 —C (═O) —], carbamoyloxy group [NH 2 —C (═O) O—], ureido group [NH 2 —C (═O) —NH—] , An oxamoyl group [NH 2 —C (═O) —C (═O) —] and the like, which are part of the chemical structure.
A hydrogen atom bonded to a nitrogen atom such as an amide group, an imide group, a urethane group, a carbamoyl group, a carbamoyloxy group, a ureido group, or an oxamoyl group may be substituted with a hydrocarbon group such as an alkyl group.
The carbonyl group-containing functional group includes a carboxyl group, an ester group, and an isocyanate group because of excellent adhesion between the layer (A) and the layer (B) and excellent adhesion between the layer (B) and the layer (C). At least one selected from the group consisting of groups is preferred, and among these, a carboxyl group is particularly preferred.
上記フッ素樹脂は、接着性の観点から、主鎖炭素数10個あたり5個以上のカルボニル基含有官能基を有することが好ましい。接着性がより優れることから、カルボニル基含有官能基は、主鎖炭素数10個あたり20個以上がより好ましく、50個以上が更に好ましく、80個以上が特に好ましく、100個以上が殊更に好ましい。 From the viewpoint of adhesiveness, the fluororesin preferably has 5 or more carbonyl group-containing functional groups per 10 6 main chain carbon atoms. The carbonyl group-containing functional group is more preferably 20 or more per 10 6 main chain carbon atoms, more preferably 50 or more, particularly preferably 80 or more, and particularly preferably 100 or more, because the adhesion is more excellent. preferable.
上記溶融加工可能なフッ素樹脂は、メルトフローレート(MFR)が20g/10分以上であることが好ましい。MFRは、接着性がより優れることから、30g/10分以上であることがより好ましく、60g/10分以上が更に好ましい。MFRの上限は、例えば、100g/10分である。
上記MFRは、ASTM D3307に準拠して、温度372℃、荷重5.0kgの条件下で測定し得られる値である。
The melt-processable fluororesin preferably has a melt flow rate (MFR) of 20 g / 10 min or more. The MFR is more preferably 30 g / 10 min or more, and more preferably 60 g / 10 min or more, because the adhesiveness is more excellent. The upper limit of MFR is, for example, 100 g / 10 minutes.
The MFR is a value that can be measured under conditions of a temperature of 372 ° C. and a load of 5.0 kg in accordance with ASTM D3307.
上記溶融加工可能なフッ素樹脂の融点は、310℃以下であることが好ましい。融点は、接着性がより優れることから、307℃以下がより好ましく、305℃以下が更に好ましい。また、融点は、300℃以上が好ましく、302℃以上がより好ましい。
上記融点は、DSC(示差走査熱量測定)装置を用い、10℃/分の速度で昇温したときの融解ピークに対応する温度である。
The melting point of the melt-processable fluororesin is preferably 310 ° C. or lower. Since melting | fusing point is more excellent in adhesiveness, 307 degrees C or less is more preferable, and 305 degrees C or less is still more preferable. Moreover, 300 degreeC or more is preferable and, as for melting | fusing point, 302 degreeC or more is more preferable.
The melting point is a temperature corresponding to a melting peak when the temperature is raised at a rate of 10 ° C./min using a DSC (Differential Scanning Calorimetry) apparatus.
上記溶融加工可能なフッ素樹脂からなる層(B)は、無機顔料、フィラー、密着付与剤、酸化防止剤、潤滑剤、染料等を含むものであってもよい。上記無機顔料は成形する際に安定なものが好ましく、例えば、チタン、鉄の酸化物、カーボン粉末などが挙げられる。 The melt-processable fluororesin layer (B) may contain an inorganic pigment, a filler, an adhesion promoter, an antioxidant, a lubricant, a dye, and the like. The inorganic pigment is preferably stable when it is molded, and examples thereof include titanium, iron oxide, and carbon powder.
上記溶融加工可能なフッ素樹脂からなる層(B)は、上記基材層(A)の両面上に備えられた層であり、いずれも、上記基材層(A)に接する面が表面処理されたものである。表面処理を施すことにより、基材との接着性がより強固なものとすることができ、また、電気特性にも優れたものとすることができる。 The melt-processable layer (B) made of a fluororesin is a layer provided on both surfaces of the base material layer (A), and any of the surfaces in contact with the base material layer (A) is surface-treated. It is a thing. By performing the surface treatment, the adhesiveness to the substrate can be made stronger and the electrical properties can be made excellent.
上記表面処理は、不活性ガスに反応性有機化合物を混合した雰囲気下での放電処理であることが好ましい。 The surface treatment is preferably a discharge treatment in an atmosphere in which a reactive organic compound is mixed with an inert gas.
不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、アルゴンガス等が挙げられる。
反応性有機化合物としては、酸素原子を含有する重合性又は非重合性有機化合物であり、例えば、酢酸ビニル、ギ酸ビニル等のビニルエステル類;グリシジルメタクリレート等のアクリル酸エステル類;ビニルエチルエーテル、ビニルメチルエーテル、グリシジルメチルエーテル等のエーテル類;酢酸、ギ酸等のカルボン酸類;メチルアルコール、エチルアルコール、フェノール、エチレングリコール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル、ギ酸エチル等のカルボン酸エステル類;アクリル酸、メタクリル酸等のアクリル酸類等が挙げられる。これらのうち改質された表面が失活しにくい(寿命が長い)点、安全性の面で取扱いが容易な点から、ビニルエステル類、アクリル酸エステル類又はケトン類が好ましく、特に酢酸ビニル又はグリシジルメタクリレートが好ましい。
Examples of the inert gas include nitrogen gas, helium gas, and argon gas.
The reactive organic compound is a polymerizable or non-polymerizable organic compound containing an oxygen atom, for example, vinyl esters such as vinyl acetate and vinyl formate; acrylic acid esters such as glycidyl methacrylate; vinyl ethyl ether, vinyl Ethers such as methyl ether and glycidyl methyl ether; Carboxylic acids such as acetic acid and formic acid; Alcohols such as methyl alcohol, ethyl alcohol, phenol, and ethylene glycol; Ketones such as acetone and methyl ethyl ketone; Carboxes such as ethyl acetate and ethyl formate Acid esters; acrylic acids such as acrylic acid and methacrylic acid; and the like. Of these, the modified surface is less likely to be deactivated (long life), and is easy to handle from the viewpoint of safety, vinyl esters, acrylate esters or ketones are preferable, especially vinyl acetate or Glycidyl methacrylate is preferred.
反応性有機化合物の濃度は、有機化合物の種類、フッ素樹脂の種類等によって異なるが、好ましくは0.1~3.0容量%、より好ましくは0.1~1.0容量%である。 The concentration of the reactive organic compound varies depending on the type of organic compound, the type of fluororesin, etc., but is preferably 0.1 to 3.0% by volume, more preferably 0.1 to 1.0% by volume.
放電処理は上記雰囲気ガス中でコロナ放電、グロー放電等の各種の放電方法により実施することができるが、装置内を減圧しなくてもよい点、フィルムの場合などに片面だけの処理が容易である点、電極近傍の雰囲気ガスの影響が小さく安定した放電が得やすい点からコロナ放電処理が好ましい。 The discharge treatment can be performed in the above atmospheric gas by various discharge methods such as corona discharge and glow discharge. However, it is not necessary to depressurize the inside of the apparatus. In some respects, corona discharge treatment is preferred because it is less affected by atmospheric gas in the vicinity of the electrode and stable discharge can be easily obtained.
放電条件は、処理効率の観点から、荷電密度が0.3~9.0W・sec/cmであることが好ましい。荷電密度は、3.0W・sec/cm以下がより好ましい。 The discharge condition is preferably a charge density of 0.3 to 9.0 W · sec / cm 2 from the viewpoint of processing efficiency. The charge density is more preferably 3.0 W · sec / cm 2 or less.
上記溶融加工可能なフッ素樹脂からなる層(B)の厚みは、用途によって異なるが、5~100μmであることが好ましい。
上記層(B)の厚みは、10μm以上がより好ましく、12.5μm以上が更に好ましく、75μm以下がより好ましく、50μm以下が更に好ましい。
The thickness of the melt-processable fluororesin layer (B) varies depending on the application, but is preferably 5 to 100 μm.
The thickness of the layer (B) is more preferably 10 μm or more, further preferably 12.5 μm or more, more preferably 75 μm or less, and further preferably 50 μm or less.
<金属層(C)>
金属層(C)を構成する金属は、銅、ステンレス、アルミニウム、鉄、及び、それらの合金からなる群より選択される少なくとも1種であることが好ましい。金属が上記のものであることで、層(B)と層(C)とが強固に接着する。電気特性に優れることから、金属は、銅及びアルミニウムからなる群より選択される少なくとも1種であることがより好ましく、銅であることが更に好ましい。
上記ステンレスとしては、例えば、オーステナイト系ステンレス、マルテンサイト系ステンレス、フェライト系ステンレス等が挙げられる。
<Metal layer (C)>
The metal constituting the metal layer (C) is preferably at least one selected from the group consisting of copper, stainless steel, aluminum, iron, and alloys thereof. When the metal is as described above, the layer (B) and the layer (C) are firmly bonded. In view of excellent electrical characteristics, the metal is more preferably at least one selected from the group consisting of copper and aluminum, and more preferably copper.
Examples of the stainless steel include austenitic stainless steel, martensitic stainless steel, and ferritic stainless steel.
金属層(C)は、スパッタリング、真空蒸着等により形成された層であってもよいし、金属箔を接着して形成されたものであってもよい。
配線板製造における簡便性の観点から、金属箔を接着して形成されたものが好ましく、上記金属箔を熱プレスにより接着して形成されたものがより好ましい。
The metal layer (C) may be a layer formed by sputtering, vacuum deposition, or the like, or may be formed by bonding a metal foil.
From the viewpoint of simplicity in manufacturing a wiring board, those formed by bonding metal foils are preferable, and those formed by bonding the metal foils by hot pressing are more preferable.
金属層(C)の厚みは、5~200μmであることが好ましい。金属層(C)の厚みは、12μm以上がより好ましく、50μm以下がより好ましく、25μm以下が更に好ましい。 The thickness of the metal layer (C) is preferably 5 to 200 μm. As for the thickness of a metal layer (C), 12 micrometers or more are more preferable, 50 micrometers or less are more preferable, and 25 micrometers or less are still more preferable.
本発明の金属張積層体を製造する方法としては、特に限定されず、公知の方法で製造すればよい。例えば、各層をそれぞれ形成した後、それらの層を積層し接着させて積層体を得てもよいし、金属層(C)と溶融加工可能なフッ素樹脂からなる層(B)との積層体を形成し、該積層体と基材とを接着させて積層体を得てもよい。 It does not specifically limit as a method to manufacture the metal-clad laminated body of this invention, What is necessary is just to manufacture by a well-known method. For example, after each layer is formed, the layers may be laminated and bonded to obtain a laminated body, or a laminated body of a metal layer (C) and a layer (B) made of a melt-processable fluororesin. The laminate may be formed by bonding the laminate and the substrate.
溶融加工可能なフッ素樹脂からなる層(B)を形成する方法としては、上記溶融加工可能なフッ素樹脂又は該フッ素樹脂を含む組成物を成形して、フィルムを得る方法が挙げられる。得られたフィルムの一方の表面に上述の表面処理を施すことにより、上記層(B)が得られる。
成形方法としては、溶融押出し成形法、溶媒キャスト法、スプレー法等の方法が挙げられる。
溶融加工可能なフッ素樹脂を含む組成物は、有機溶剤、硬化剤等を含むものであってもよいし、必要に応じて、硬化促進剤、顔料分散剤、消泡剤、レベリング剤、UV吸収剤、光安定剤、増粘剤、密着改良剤、つや消し剤等の添加剤を含んでも良い。
上記硬化剤としては、イソシアネート、メラミン樹脂、又は、フェノール樹脂が挙げられる。
上記硬化促進剤としては、従来公知のスズ系、他の金属系、有機酸系、アミノ系、リン系の硬化促進剤が挙げられる。
上記溶融加工可能なフッ素樹脂を含む組成物は、公知の方法で調製するとよい。
Examples of the method for forming the layer (B) made of a melt-processable fluororesin include a method of forming a film by molding the melt-processable fluororesin or a composition containing the fluororesin. The said layer (B) is obtained by giving the above-mentioned surface treatment to one surface of the obtained film.
Examples of the molding method include melt extrusion molding, solvent casting, and spraying.
The composition containing a melt-processable fluororesin may contain an organic solvent, a curing agent, etc., and if necessary, a curing accelerator, a pigment dispersant, an antifoaming agent, a leveling agent, a UV absorption. Additives such as an agent, a light stabilizer, a thickener, an adhesion improver, and a matting agent may be included.
Examples of the curing agent include isocyanate, melamine resin, and phenol resin.
Examples of the curing accelerator include conventionally known tin-based, other metal-based, organic acid-based, amino-based, and phosphorus-based curing accelerators.
The composition containing the melt-processable fluororesin may be prepared by a known method.
金属箔上に上記溶融加工可能なフッ素樹脂を含む組成物を塗布して、乾燥又は加熱することにより、金属層(C)と溶融加工可能なフッ素樹脂からなる層(B)との積層体を得ることができる。
上記溶融加工可能なフッ素樹脂を含む組成物を塗布する方法としては、例えば、刷毛塗り、浸漬塗布、スプレー塗布、コンマコート、ナイフコート、ダイコート、リップコート、ロールコーター塗布、カーテン塗布等の公知の方法が挙げられる。
A laminate of a metal layer (C) and a layer (B) made of a melt-processable fluororesin is applied by applying the composition containing the melt-processable fluororesin onto a metal foil and drying or heating. Obtainable.
Examples of the method for applying the melt-processable fluororesin-containing composition include, for example, brush coating, dip coating, spray coating, comma coating, knife coating, die coating, lip coating, roll coater coating, curtain coating, and the like. A method is mentioned.
また、溶融加工可能なフッ素樹脂からなるフィルム(層(B))を先に形成し、該フィルム上に、蒸着、スパッタリング、イオンプレーティング等の真空コーティング方法を用いて金属層を形成したり、無電解めっき、電気メッキ等の湿式めっき法により金属層を形成することにより、金属層(C)と溶融加工可能なフッ素樹脂からなる層(B)との積層体を得てもよい。
なお、上記積層体において、層(B)側表面は、上述の表面処理が施される。
In addition, a film (layer (B)) made of a melt-processable fluororesin is formed first, and a metal layer is formed on the film using a vacuum coating method such as vapor deposition, sputtering, or ion plating, By forming a metal layer by a wet plating method such as electroless plating or electroplating, a laminate of the metal layer (C) and a layer (B) made of a melt-processable fluororesin may be obtained.
In the laminate, the surface treatment is performed on the surface on the layer (B) side.
上記で得られた金属層(C)と溶融加工可能なフッ素樹脂からなる層(B)との積層体を2つ用いて、該層(B)の表面処理された面で基材層(A)を挟むように積層して、接着することにより、本発明の金属張積層体を製造することができる。 Using two laminates of the metal layer (C) obtained above and a layer (B) made of a melt-processable fluororesin, a base material layer (A ) Are sandwiched and bonded, and the metal-clad laminate of the present invention can be manufactured.
各層または積層体を接着する方法としては、形成された層又は積層体を重ねた後、加熱プレス機により熱圧着させる方法が挙げられる。熱圧着の温度は、300~350℃が好ましい。
熱圧着の圧力は、0.1~30MPaであることが好ましく、1~10MPaであることがより好ましい。
Examples of the method of bonding each layer or laminate include a method in which the formed layer or laminate is stacked and then thermocompression bonded by a hot press. The thermocompression bonding temperature is preferably 300 to 350 ° C.
The pressure for thermocompression bonding is preferably from 0.1 to 30 MPa, more preferably from 1 to 10 MPa.
本発明の金属張積層体は、金属層の表面にエッチングしてパターン回路を備えることにより、プリント基板とすることができる。すなわち、本発明は、上記金属張積層体の金属層(C)の表面をエッチングして得られたパターン回路を備えるプリント基板でもある。
パターン回路の形成は、2つある金属層のうち、片方になされても両方になされてもよい。
上記プリント基板は、上記プリント基板上にカバーレイフィルムを備えることもできる。
The metal-clad laminate of the present invention can be formed into a printed circuit board by etching the surface of the metal layer and providing a pattern circuit. That is, this invention is also a printed circuit board provided with the pattern circuit obtained by etching the surface of the metal layer (C) of the said metal-clad laminated body.
The pattern circuit may be formed on one or both of the two metal layers.
The printed circuit board may include a coverlay film on the printed circuit board.
本発明を実施例により更に詳細に説明するが、本発明はこの実施例により限定されるものではない。 The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
実施例等の各数値は以下の方法により測定した。 Each numerical value in Examples and the like was measured by the following method.
(重合体組成)
19F-NMR分析により測定した。
(Polymer composition)
It was measured by 19 F-NMR analysis.
(カルボニル基含有官能基数)
試料を350℃に圧縮成形し、厚さ0.25~0.3mmのフィルムを作製した。このフィルムをフーリエ変換赤外分光分析装置〔FT-IR〕(商品名:1760X型、パーキンエルマー社製)により40回スキャンし、分析して赤外吸収スペクトルを得て、完全にフッ素化されて末端基が存在しないベーススペクトルとの差スペクトルを得た。この差スペクトルに現れるカルボニル基の吸収ピークから、下記式に従って試料における炭素原子1×10個あたりのカルボニル基含有官能基数Nを算出した。
N=I×K/t
I:吸光度
K:補正係数
t:フィルムの厚さ(mm)
参考までに、カルボニル基含有官能基の一つであるカルボキシル基について、吸収周波数、モル吸光係数及び補正係数を表1に示す。また、モル吸光係数は低分子モデル化合物のFT-IR測定データから決定したものである。
(Number of functional groups containing carbonyl group)
The sample was compression molded to 350 ° C. to produce a film having a thickness of 0.25 to 0.3 mm. This film was scanned 40 times with a Fourier transform infrared spectrometer [FT-IR] (trade name: Model 1760X, manufactured by PerkinElmer), analyzed to obtain an infrared absorption spectrum, and completely fluorinated. A difference spectrum from the base spectrum in which no end group was present was obtained. From the absorption peak of the carbonyl group appearing in this difference spectrum, the number N of carbonyl group-containing functional groups per 1 × 10 6 carbon atoms in the sample was calculated according to the following formula.
N = I × K / t
I: Absorbance K: Correction coefficient t: Film thickness (mm)
For reference, Table 1 shows the absorption frequency, molar extinction coefficient, and correction coefficient for the carboxyl group, which is one of the carbonyl group-containing functional groups. The molar extinction coefficient is determined from FT-IR measurement data of a low molecular weight model compound.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(MFR)
メルトインデクサー(東洋精機製作所製)を用い、ASTM D3307に準拠して、温度372℃、5kg荷重下で直径2mm、長さ8mmのノズルから単位時間(10分間)あたりに流出するポリマーの質量(g)を測定した。
(MFR)
Using a melt indexer (manufactured by Toyo Seiki Seisakusho), in accordance with ASTM D3307, the mass of the polymer flowing out per unit time (10 minutes) from a nozzle with a diameter of 2 mm and a length of 8 mm under a temperature of 372 ° C. under a 5 kg load ( g) was measured.
(融点)
融点は、示差走査熱量測定(DSC)装置を用い、10℃/分の速度で昇温したときの融解ピークに対応する温度である。
(Melting point)
The melting point is a temperature corresponding to a melting peak when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimetry (DSC) apparatus.
参考例1
PFA(組成TFE/PPVE=97.2/2.8(モル%)、MFR:70.2g/10分、融点:290℃、主鎖末端カルボキシル基数:主鎖炭素数10個あたり115個)フィルム(厚み25μm、10×10cm)と、銅箔(厚み50μm、10×10cm)とを積層し、310℃、予熱60秒、加圧力10.2MPa、加圧時間120秒で真空ヒートプレス機にて熱プレスすることにより、金属張積層体(サンプルA)を作製した。
サンプル作製条件を表2に示す。
Reference example 1
PFA (composition TFE / PPVE = 97.2 / 2.8 (mol%), MFR: 70.2 g / 10 min, melting point: 290 ° C., main chain terminal carboxyl group number: 115 per 10 6 main chain carbon atoms) A film (thickness 25 μm, 10 × 10 cm) and a copper foil (thickness 50 μm, 10 × 10 cm) are laminated, and the vacuum heat press machine is applied at 310 ° C., preheating 60 seconds, pressing force 10.2 MPa, pressing time 120 seconds. Then, a metal-clad laminate (sample A) was produced by hot pressing.
Table 2 shows sample preparation conditions.
参考例2
PFA(組成TFE/PPVE=97.9/2.1(モル%)、MFR:24.7g/10分、融点:294℃、主鎖末端カルボキシル基数:主鎖炭素数10個あたり80個)フィルム(厚み25μm、10×10cm)と、銅箔(厚み50μm、10×10cm)とを積層し、310℃、予熱60秒、加圧力10.2MPa、加圧時間120秒で真空ヒートプレス機にて熱プレスすることにより、金属張積層体(サンプルB)を作製した。
サンプル作製条件を表2に示す。
Reference example 2
PFA (composition TFE / PPVE = 97.9 / 2.1 (mol%), MFR: 24.7 g / 10 min, melting point: 294 ° C., number of main chain terminal carboxyl groups: 80 per 10 6 main chain carbon atoms) A film (thickness 25 μm, 10 × 10 cm) and a copper foil (thickness 50 μm, 10 × 10 cm) are laminated, and the vacuum heat press machine is applied at 310 ° C., preheating 60 seconds, pressing force 10.2 MPa, pressing time 120 seconds. Then, a metal-clad laminate (sample B) was produced by hot pressing.
Table 2 shows sample preparation conditions.
参考例3
PFA(TFE/PPVE=98.5/1.5(モル%)、MFR:14.8g/10分、融点:305℃、主鎖末端カルボキシル基数:主鎖炭素数10個あたり21個)フィルム(厚み25μm、10×10cm)と、銅箔(厚み50μm、10×10cm)とを積層し、310℃、予熱60秒、加圧力10.2MPa、加圧時間120秒で真空ヒートプレス機にて熱プレスすることにより、金属張積層体(サンプルC)を作製した。
サンプル作製条件を表2に示す。
Reference example 3
PFA (TFE / PPVE = 98.5 / 1.5 (mol%), MFR: 14.8 g / 10 min, melting point: 305 ° C., number of main chain terminal carboxyl groups: 21 per 10 6 main chain carbon atoms) film (Thickness 25 μm, 10 × 10 cm) and copper foil (thickness 50 μm, 10 × 10 cm) are laminated, and 310 ° C., preheating 60 seconds, pressurizing pressure 10.2 MPa, pressurization time 120 seconds with a vacuum heat press. A metal-clad laminate (sample C) was produced by hot pressing.
Table 2 shows sample preparation conditions.
参考例4
PFA(TFE/PPVE=98.5/1.5モル%、MFR:2.2g/10分、融点:307℃、主鎖末端カルボキシル基数:主鎖炭素数10個あたり9個)フィルム(厚み25μm、10×10cm)と、銅箔(厚み50μm、10×10cm)とを積層し、310℃、予熱60秒、加圧力10.2MPa、加圧時間120秒で真空ヒートプレス機にて熱プレスすることにより、金属張積層体(サンプルD)を作製した。
サンプル作製条件を表2に示す。
Reference example 4
PFA (TFE / PPVE = 98.5 / 1.5 mol%, MFR: 2.2 g / 10 min, melting point: 307 ° C., main chain terminal carboxyl group number: 9 per 10 6 main chain carbon atoms) film (thickness) 25 [mu] m, 10 * 10 cm) and copper foil (thickness 50 [mu] m, 10 * 10 cm) are laminated and hot pressed with a vacuum heat press machine at 310 [deg.] C., preheating 60 seconds, pressurizing pressure 10.2 MPa, pressurization time 120 seconds. As a result, a metal-clad laminate (sample D) was produced.
Table 2 shows sample preparation conditions.
参考例5
PFA(TFE/PPVE=97.9/2.1(モル%)、MFR:24.7g/10分、融点:294℃、主鎖末端カルボキシル基数:主鎖炭素数10個あたり80個)表面処理フィルム(厚み50μm、10×10cm)と、ポリイミド(PI)フィルム(厚み50μm、10×10cm)とをPFA/PI/PFAの順に積層し、310℃、予熱60秒、加圧力10.2MPa、加圧時間120秒で真空ヒートプレス機にて熱プレスすることにより、積層体(サンプルE)を作製した。
表面処理は、PFAフィルムを、窒素ガスに反応性有機化合物を混合した雰囲気下で、コロナ放電することにより行った。
サンプル作製条件を表2に示す。
Reference Example 5
PFA (TFE / PPVE = 97.9 / 2.1 (mol%), MFR: 24.7 g / 10 min, melting point: 294 ° C., number of main chain terminal carboxyl groups: 80 per 10 6 main chain carbon atoms) surface A treated film (thickness 50 μm, 10 × 10 cm) and a polyimide (PI) film (thickness 50 μm, 10 × 10 cm) are laminated in the order of PFA / PI / PFA, 310 ° C., preheating 60 seconds, applied pressure 10.2 MPa, A laminate (sample E) was produced by hot pressing with a vacuum heat press with a pressurization time of 120 seconds.
The surface treatment was performed by corona discharge of the PFA film in an atmosphere in which a reactive organic compound was mixed with nitrogen gas.
Table 2 shows sample preparation conditions.
比較例1
参考例5において、表面処理を行っていないPFAフィルムを用いた点以外は、参考例5と同様にして、PFAフィルムとPIフィルムをPFA/PI/PFAの順に積層し、310℃、予熱60秒、10.2MPa、加圧時間120秒で真空ヒートプレス機にて熱プレスすることにより、積層体(サンプルF)を作製した。
サンプル作製条件を表2に示す。
Comparative Example 1
In Reference Example 5, the PFA film and the PI film were laminated in the order of PFA / PI / PFA in the same manner as in Reference Example 5 except that a PFA film not subjected to surface treatment was used, and 310 ° C., preheating 60 seconds. A laminate (sample F) was produced by hot pressing with a vacuum heat press at 10.2 MPa and a pressurization time of 120 seconds.
Table 2 shows sample preparation conditions.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(剥離試験)
上記で得られたサンプルA~Dを用いて、下記方法により剥離強度の積分平均、極大平均、最大点を求めて接着力を評価した。
(Peel test)
Using the samples A to D obtained above, the integral strength, maximum average, and maximum point of the peel strength were determined by the following method to evaluate the adhesive strength.
(積分平均)
測定区間における荷重を平均して求めた。
(極大平均)
測定区間における最大点の平均値荷重として求めた。
(最大点)
測定区間における最大荷重点として求めた。
測定結果を表3に示す。
(Integral average)
The load in the measurement section was averaged.
(Maximum average)
It calculated | required as an average value load of the maximum point in a measurement area.
(Maximum point)
The maximum load point in the measurement section was obtained.
Table 3 shows the measurement results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(剥離試験)
上記で得られたサンプルEと、サンプルFとを用いて、下記方法により剥離強度の積分平均、最大点を求めて接着力を評価した。
(Peel test)
Using sample E and sample F obtained above, the integral strength of peel strength and the maximum point were determined by the following method to evaluate the adhesive strength.
(積分平均)
測定区間における荷重を平均して求めた。
(最大点)
測定区間における最大荷重点として求めた。
測定結果を表4に示す。
(Integral average)
The load in the measurement section was averaged.
(Maximum point)
The maximum load point in the measurement section was obtained.
Table 4 shows the measurement results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
比較例2
ポリイミド樹脂フィルム(商品名「カプトンV」、東レ・デュポン社製、厚み48μm)をサンプルGとした。
Comparative Example 2
A polyimide resin film (trade name “Kapton V”, manufactured by Toray DuPont, thickness 48 μm) was used as sample G.
(電気特性)
ネットワークアナライザーを使用し、空洞共振器により、上記で作製したサンプルE及びサンプルG(商品名「カプトンV」、ポリイミド樹脂フィルム、東レ・デュポン社製)の共振周波数およびQ値の変化を測定し、12GHzにおけるtanδを次式にしたがって算出した。空洞共振器法は、埼玉大学小林教授[空洞共振器法による誘電体平板材料の複素誘電率の非破壊測定 MW87-53]による。
tanδ=(1/Qu)×{1+(W/W)}-(Pc/ωW
Figure JPOXMLDOC01-appb-M000005
(Electrical characteristics)
Using a network analyzer, the change in resonance frequency and Q value of sample E and sample G (trade name “Kapton V”, polyimide resin film, manufactured by Toray DuPont Co., Ltd.) prepared above is measured with a cavity resonator. Tan δ at 12 GHz was calculated according to the following equation. The cavity resonator method is based on Prof. Kobayashi, Saitama University [Non-destructive measurement of complex permittivity of dielectric flat plate material by cavity resonator method MW87-53].
tan δ = (1 / Qu) × {1+ (W 2 / W 1 )} − (Pc / ωW 1 )
Figure JPOXMLDOC01-appb-M000005
ただし、式中の記号はつぎのものである。
D:空洞共振器直径(mm)
M:空洞共振器片側長さ(mm)
L:サンプル長さ(mm)
c:光速(m/s)
Id:減衰量(dB)
:共振周波数(Hz)
:共振点からの減衰量が3dBである上側周波数(Hz)
:共振点からの減衰量が3dBである下側周波数(Hz)
ε:真空の誘電率(H/m)
ε:サンプルの比誘電率
μ:真空の透磁率(H/m)
Rs:導体空洞の表面粗さも考慮した実効表面抵抗(Ω)
:-0.402759+
:3.83171
結果を表5に示す。
However, the symbols in the formula are as follows.
D: Cavity resonator diameter (mm)
M: Length of one side of cavity resonator (mm)
L: Sample length (mm)
c: Speed of light (m / s)
Id: Attenuation (dB)
F 0 : Resonance frequency (Hz)
F 1 : upper frequency (Hz) at which the attenuation from the resonance point is 3 dB
F 2 : Lower frequency (Hz) at which the attenuation from the resonance point is 3 dB
ε 0 : dielectric constant of vacuum (H / m)
ε r : relative permittivity of sample μ 0 : permeability of vacuum (H / m)
Rs: Effective surface resistance considering the surface roughness of the conductor cavity (Ω)
J 0 : -0.402759+
J 1 : 3.83171
The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例1
ポリイミド樹脂フィルム(厚み25μm、東レ・デュポン社製)の両面に片面表面処理されたPFA(組成TFE/PPVE=97.9/2.1(モル%)、MFR:24.7g/10分、融点:294℃、主鎖末端カルボキシル基数:主鎖炭素数10個あたり80個)フィルム(厚み25μm、10×10cm)を重ね、PFAフィルムの未処理側に銅箔(厚み50μm、10×10cm)を積層し、310℃、予熱60秒、加圧力10.2MPa、加圧時間120秒で真空ヒートプレス機にて熱プレスすることにより、金属張積層体(サンプルH)を作製した。
Example 1
PFA (composition TFE / PPVE = 97.9 / 2.1 (mol%), MFR: 24.7 g / 10 min, melting point) having a single-side surface-treated on both sides of a polyimide resin film (thickness 25 μm, manufactured by Toray DuPont) : 294 ° C., number of main chain terminal carboxyl groups: 80 per 10 6 main chain carbon atoms) A film (thickness 25 μm, 10 × 10 cm) is stacked, and a copper foil (thickness 50 μm, 10 × 10 cm) is applied to the untreated side of the PFA film. And a metal-clad laminate (sample H) was produced by hot pressing with a vacuum heat press at 310 ° C., preheating 60 seconds, pressurizing pressure 10.2 MPa, pressing time 120 seconds.
実施例1で得られた金属張積層体及び比較例1で得られた積層体(サンプルF)のカール性を評価した。 The curl properties of the metal-clad laminate obtained in Example 1 and the laminate (Sample F) obtained in Comparative Example 1 were evaluated.
(カール性)
積層体を50mm×50mmにカットし、その際に発生するカールと、200℃×10分間電気炉に入れて加熱した後に発生するカールを、積層体の曲率半径を測定して評価した。評価基準を以下に示す。また、評価結果を表6に示す。
◎:曲率半径が80mm以上
○:曲率半径が50mm以上80mm未満
△:曲率半径が20mm以上50mm未満
×:曲率半径が20mm未満
(Curl property)
The laminate was cut into 50 mm × 50 mm, and the curl generated at that time and the curl generated after heating in an electric furnace at 200 ° C. for 10 minutes were evaluated by measuring the radius of curvature of the laminate. The evaluation criteria are shown below. The evaluation results are shown in Table 6.
A: Curvature radius is 80 mm or more B: Curvature radius is 50 mm or more and less than 80 mm B: Curvature radius is 20 mm or more and less than 50 mm X: Curvature radius is less than 20 mm
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
本発明の金属張積層体は、金属層と基材とが強固に接着しており、優れた電気特性を示すため、種々の電気機器や、電子機器、通信機器等に好適に用いることができる。 Since the metal-clad laminate of the present invention has a strong adhesion between the metal layer and the base material and exhibits excellent electrical characteristics, it can be suitably used for various electric devices, electronic devices, communication devices, and the like. .
1、5 金属層
2、4 溶融加工可能なフッ素樹脂からなる層
3 基材層
1, 5 Metal layer 2, 4 Layer 3 made of melt-processable fluororesin 3 Base material layer

Claims (4)

  1. 基材層(A)と、
    前記基材層の両面上に設けられた溶融加工可能なフッ素樹脂からなる層(B)と、
    それぞれの前記溶融加工可能なフッ素樹脂からなる層(B)上に設けられた金属層(C)とを有し、
    前記溶融加工可能なフッ素樹脂からなる層(B)は、前記基材層(A)に接する面が表面処理されている
    ことを特徴とする金属張積層体。
    A base material layer (A);
    A layer (B) comprising a melt-processable fluororesin provided on both surfaces of the base material layer;
    Each having a metal layer (C) provided on the layer (B) made of melt-processable fluororesin,
    The layer (B) made of the melt-processable fluororesin has a surface that is in contact with the base material layer (A) and is surface-treated.
  2. 表面処理は、不活性ガスに反応性有機化合物を混合した雰囲気下での放電処理である請求項1記載の金属張積層体。 The metal-clad laminate according to claim 1, wherein the surface treatment is a discharge treatment in an atmosphere in which a reactive organic compound is mixed with an inert gas.
  3. 溶融加工可能なフッ素樹脂は、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体、及び、テトラフルオロエチレン-ヘキサフルオロプロピレンからなる群より選択される少なくとも1種の含フッ素共重合体である請求項1又は2記載の金属張積層体。 The melt-processable fluororesin is a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer and at least one fluorine-containing copolymer selected from the group consisting of tetrafluoroethylene-hexafluoropropylene. Item 3. A metal-clad laminate according to item 1 or 2.
  4. 請求項1、2又は3記載の金属張積層体の金属層(C)の表面をエッチングして得られたパターン回路を備えるプリント基板。 A printed circuit board provided with the pattern circuit obtained by etching the surface of the metal layer (C) of the metal-clad laminated body of Claim 1, 2, or 3.
PCT/JP2014/061201 2013-04-19 2014-04-21 Metal-clad laminate body WO2014171553A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-088768 2013-04-19
JP2013088768 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014171553A1 true WO2014171553A1 (en) 2014-10-23

Family

ID=51731485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061201 WO2014171553A1 (en) 2013-04-19 2014-04-21 Metal-clad laminate body

Country Status (2)

Country Link
JP (1) JP2014223798A (en)
WO (1) WO2014171553A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4331835A4 (en) * 2021-04-27 2025-05-07 Univ Tokyo Bonded body, substrate, method for producing a bonded body and method for producing a substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108925132B (en) * 2016-04-11 2020-07-07 Agc株式会社 Laminate, printed board, and method for producing laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912900B1 (en) * 1969-09-16 1974-03-28
JPH0726128U (en) * 1993-10-14 1995-05-16 鐘淵化学工業株式会社 Laminated film for copper-clad laminate and copper-clad laminate
WO2000020489A1 (en) * 1998-10-06 2000-04-13 Daikin Industries, Ltd. Non-perfluoro fluororesin molded article having low-temperature heat sealability
JP2004216830A (en) * 2003-01-17 2004-08-05 Ube Ind Ltd Manufacturing method of low dielectric constant polyimide substrate
WO2010084867A1 (en) * 2009-01-20 2010-07-29 東洋紡績株式会社 Multilayer fluororesin film and printed circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318553A (en) * 1992-05-26 1993-12-03 Daikin Ind Ltd Tubular laminate and production thereof
CN102481767A (en) * 2009-08-10 2012-05-30 美国圣戈班性能塑料公司 Fluoropolymer/microparticle filled protective sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912900B1 (en) * 1969-09-16 1974-03-28
JPH0726128U (en) * 1993-10-14 1995-05-16 鐘淵化学工業株式会社 Laminated film for copper-clad laminate and copper-clad laminate
WO2000020489A1 (en) * 1998-10-06 2000-04-13 Daikin Industries, Ltd. Non-perfluoro fluororesin molded article having low-temperature heat sealability
JP2004216830A (en) * 2003-01-17 2004-08-05 Ube Ind Ltd Manufacturing method of low dielectric constant polyimide substrate
WO2010084867A1 (en) * 2009-01-20 2010-07-29 東洋紡績株式会社 Multilayer fluororesin film and printed circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4331835A4 (en) * 2021-04-27 2025-05-07 Univ Tokyo Bonded body, substrate, method for producing a bonded body and method for producing a substrate

Also Published As

Publication number Publication date
JP2014223798A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
JP5850082B2 (en) Metal-clad laminate and printed wiring board
KR102628572B1 (en) Method for producing fluororesin films and laminates, and heat press laminates
TWI636885B (en) Method of manufacturing metal-clad laminate and uses of the same
JP5403130B2 (en) Laminate and method for producing laminate
KR102660542B1 (en) Long-length laminate, manufacturing method and printed wiring board
JP6977716B2 (en) Laminates, printed circuit boards, and methods for manufacturing laminates
JP6819579B2 (en) Materials for printed circuit boards, metal laminates, their manufacturing methods and printed circuit board manufacturing methods
TWI720206B (en) Double-sided circuit substrate suitable for high-frequency circuits
JP6816722B2 (en) Manufacturing method of wiring board
US10729018B2 (en) Process for producing laminate and process for producing printed board
WO2016021666A1 (en) Double-sided circuit substrate suitable for high-frequency circuits
JP2019104171A (en) Metal-resin laminate
CN113348208A (en) Dispersion liquid
JP2019104170A (en) Metal-resin laminate
JPWO2020137828A1 (en) Powder dispersion, method for manufacturing laminate, method for manufacturing polymer film, and method for manufacturing coated woven fabric
KR20210016322A (en) Manufacturing method of resin-attached metal foil, resin-attached metal foil, laminate and printed circuit board
JP2020158720A (en) Composite particles, dispersion liquid, method for producing laminate, method for producing film and method for producing coated woven fabric
JPWO2019235439A1 (en) Dispersion liquid, method for manufacturing metal foil with resin, and method for manufacturing printed circuit board
WO2014171553A1 (en) Metal-clad laminate body
CN112004610A (en) Method for producing laminate, and laminate
WO2019124268A1 (en) Method for manufacturing a processing circuit board, multilayer circuit board and circuit board with coverlay film, and film with adhesive layer
JP2020055241A (en) Metal foil with resin and method for producing metal foil with resin
JP7247536B2 (en) Composite manufacturing method and composite
JPWO2020171024A1 (en) Laminated body and manufacturing method of the laminated body
JP2019176958A (en) Base material, printed wiring board, biological contact device, biological implant device and artificial organ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785533

Country of ref document: EP

Kind code of ref document: A1