[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014168334A1 - Light emitting diode having improved electrostatic and discharge characteristics - Google Patents

Light emitting diode having improved electrostatic and discharge characteristics Download PDF

Info

Publication number
WO2014168334A1
WO2014168334A1 PCT/KR2014/001570 KR2014001570W WO2014168334A1 WO 2014168334 A1 WO2014168334 A1 WO 2014168334A1 KR 2014001570 W KR2014001570 W KR 2014001570W WO 2014168334 A1 WO2014168334 A1 WO 2014168334A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type contact
active region
light emitting
band gap
Prior art date
Application number
PCT/KR2014/001570
Other languages
French (fr)
Korean (ko)
Inventor
윤준호
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to CN201480019694.1A priority Critical patent/CN105103311B/en
Publication of WO2014168334A1 publication Critical patent/WO2014168334A1/en

Links

Images

Classifications

    • H01L33/14
    • H01L33/06
    • H01L33/04
    • H01L33/32

Definitions

  • the present invention relates to light emitting diodes, and more particularly to light emitting diodes having improved electrostatic discharge characteristics.
  • gallium nitride-based semiconductors are widely used in ultraviolet light, blue / green light emitting diodes or laser diodes as a light source for full-color displays, traffic lights, general lighting and optical communication devices.
  • the gallium nitride-based light emitting device includes an active layer having an InGaN-based multi-quantum well structure positioned between n-type and p-type gallium nitride-based semiconductor layers.
  • FIG. 1 is a cross-sectional view illustrating a conventional light emitting diode
  • FIG. 2 is an enlarged cross-sectional view of an active region of FIG. 1
  • FIG. 3 is a schematic energy band diagram for explaining an energy band gap of the light emitting diode of FIG. 1. to be.
  • the light emitting diode includes a substrate 11, a buffer layer 13, an n-type contact layer 15, an active region 17, a p-type contact layer 19, and an n-electrode 21. ) And p-electrode 23.
  • the conventional light emitting diode includes the active region 17 of the multi-quantum well structure between the n-type contact layer 15 and the p-type contact layer 19 to improve the luminous efficiency, and the InGaN well in the multi-quantum well structure
  • the In content of the layer may be adjusted to emit light of a desired wavelength.
  • the n-type contact layer 17 typically has a doping concentration in the range of 1 ⁇ 10 18 / cm 3 to 1 ⁇ 10 19 / cm 3 and serves to supply electrons.
  • the well layer 17w and the barrier layer 17b in the active region 17 are generally formed of an undoped layer in order to prevent current leakage and achieve good crystal quality. Even when doping in the active region 17, the first barrier layer 17b is doped at a concentration of about 1 ⁇ 10 19 / cm 3 or less to prevent current leakage.
  • the depletion region is enlarged into the n-type contact layer 15. This depletion region is further increased with increasing doping concentration in the p-type contact layer 19. The enlargement of the depletion region increases the effective distance d between the n-type contact layer 15 and the p-type contact layer 19.
  • the capacitance C of the capacitor is inversely proportional to the distance d, the enlargement of the depletion region is the capacitance C of the capacitor formed between the n-type contact layer 15 and the p-type contact layer 19. Decrease). The reduction of the capacitance C consequently worsens the electrostatic discharge characteristics of the light emitting diode.
  • a portion of the n-type contact layer 15 in contact with the active region 17 or the first barrier layer 17b has a high concentration of 1E19 / cm 3 or more.
  • Doping Si may be considered.
  • the carriers generated by the high concentration doping easily move into the active region 17, the leakage current of the light emitting diode increases, thereby deteriorating the electrical characteristics of the light emitting diode.
  • An object of the present invention is to provide a light emitting diode having improved electrostatic discharge characteristics without increasing leakage current.
  • a light emitting diode an n-type contact layer; p-type contact layer; An active region interposed between the n-type contact layer and the p-type contact layer and including a barrier layer and a well layer; And a carrier holding region positioned between the n-type contact layer and the active region in contact with the active region and for holding a carrier.
  • the carrier holding region has a bandgap adjusting layer in which an energy bandgap is adjusted to prevent carriers therein from diffusing into the active region.
  • the bandgap adjusting layer may have a wider bandgap than the well layer and a narrower bandgap than the barrier layer.
  • the carrier holding region may include a plurality of bandgap adjusting layers.
  • the bandgap control layer may have a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3.
  • the bandgap adjusting layer has a narrower bandgap than the barrier layer, carriers can be retained in the bandgap adjusting layer to prevent current leakage.
  • the carrier retention region includes a heavily doped layer having a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3, wherein the bandgap adjusting layer is positioned between the heavily doped layer and the active region.
  • the bandgap adjusting layer may have a wider bandgap than the barrier layer.
  • the heavily doped layer may have a bandgap equal to or narrower than the barrier layer.
  • the bandgap adjusting layer has a wider bandgap than the barrier layer, carriers can be prevented from diffusing from the heavily doped layer into the active region, thereby preventing current leakage of the light emitting diode.
  • the well layer may be formed of InGaN
  • the barrier layer may be formed of GaN
  • the bandgap control layer may be formed of InGaN containing less In than the well layer.
  • the band gap control layer may have a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3.
  • the well layer may be formed of InGaN
  • the barrier layer may be formed of GaN
  • the band gap control layer may be formed of AlGaN.
  • the carrier holding region may further include a high concentration GaN layer having a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3.
  • the bandgap control layer may be located between the high concentration GaN layer and the active region.
  • a carrier holding region between the n-type contact layer and the active region, it is possible to retain the carrier and to prevent diffusion of the carrier into the active region, thereby preventing current leakage. While providing a light emitting diode capable of improving the electrostatic discharge characteristics.
  • 1 is a schematic cross-sectional view for describing a conventional light emitting diode.
  • FIG. 2 is an enlarged schematic cross-sectional view of the active region of FIG. 1.
  • FIG. 3 is a schematic energy band diagram for describing a band gap of the light emitting diode of FIG. 1.
  • FIG. 4 is a cross-sectional view illustrating a light emitting diode according to an embodiment of the present invention.
  • FIG. 5 is an enlarged schematic cross-sectional view of the active region of FIG. 4.
  • FIG. 6 is a schematic energy band diagram for describing a band gap of the light emitting diode of FIG. 4.
  • FIG. 7 is a schematic energy band diagram for describing a light emitting diode according to still another embodiment of the present invention.
  • FIG. 8 is a schematic energy band diagram for describing a light emitting diode according to another embodiment of the present invention.
  • 16 carrier retention region 16w bandgap adjustment layer (highly doped layer),
  • 16b bandgap adjusting layer, 16h high concentration doping layer, 17 active regions,
  • FIG. 4 is a cross-sectional view illustrating a light emitting diode according to an embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional view showing an enlarged active area of FIG. 4
  • FIG. 6 illustrates a band gap of the light emitting diode of FIG. 4.
  • the light emitting diode includes a substrate 11, a buffer layer 13, an n-type contact layer 15, a carrier holding region 16, an active region 17, and a p-type contact layer 19. ), n-electrode 21 and p-electrode 23.
  • the light emitting diode may include a p-type cladding layer (not shown) between the active region 17 and the p-type contact layer 19.
  • the substrate 51 is a substrate for growing a gallium nitride-based semiconductor layer, and is not particularly limited, such as a sapphire substrate, a SiC substrate, a spinel substrate, a silicon substrate, a GaN substrate, and may be, for example, a patterned sapphire substrate (PSS).
  • a sapphire substrate such as a SiC substrate, a spinel substrate, a silicon substrate, a GaN substrate
  • PSS patterned sapphire substrate
  • the buffer layer 13 may include a low temperature buffer layer and a high temperature buffer layer.
  • the low temperature buffer layer may be formed of, for example, (Al, Ga) N at a low temperature of 400 ° C. to 600 ° C., and in particular, GaN or AlN.
  • the high temperature buffer layer is a layer for alleviating defects such as dislocations between the substrate 11 and the n-type contact layer 15, and is grown at a relatively high temperature.
  • the high temperature buffer layer may be formed of, for example, undoped GaN.
  • the n-type contact layer 15 is formed of a gallium nitride based semiconductor layer doped with n-type impurities, such as Si.
  • the n-type contact layer may be formed of a single GaN layer, but is not limited thereto, and may be formed of multiple layers.
  • the Si doping concentration doped in the n-type contact layer may be in the range of about 1 ⁇ 10 18 / cm 3 to 1 ⁇ 10 19 / cm 3.
  • the active region 17 may have a multi-quantum well structure in which the barrier layer 17b and the well layer 17w are alternately stacked. Although four well layers 17w are shown in FIG. 5, fewer but more well layers 17w may be used.
  • the barrier layer 17b may be formed of a gallium nitride based semiconductor layer having a wider band gap than the well layer 17w, for example, GaN, InGaN, AlGaN, or AlInGaN.
  • the well layer 17w has a narrower bandgap than the barrier layer 17b.
  • the well layer 17w may also be formed of a gallium nitride based semiconductor layer, such as InGaN, having a narrower bandgap than the n-type contact layer 15.
  • the In composition ratio in the well layer 17w is determined by the desired light wavelength.
  • the first layer of active region 17 is barrier layer 17b and the last layer may be barrier layer 17b or well layer 17w.
  • the barrier layer 17b and the well layer 17w may be formed of an undoped layer which is not doped with impurities to improve the crystal quality of the active region 17, but the 1E19 may be formed in some or the entire active region to lower the forward voltage. Impurities up to / cm 3 may be doped.
  • the carrier holding region 16 is located between the n-type contact layer 15 and the active region 17 and is in contact with the active region 17.
  • the carrier retention region 16 may be comprised of a bandgap adjustment layer 16w with an energy bandgap adjusted to prevent carriers from diffusing into the active region 17 as shown in FIG. 6. That is, the bandgap adjustment layer 16w has a narrower bandgap than the barrier layer 17b and a bandgap is adjusted to have a wider bandgap than the well layer 17w.
  • the bandgap adjusting layer 16w may have a narrower bandgap than the n-type contact layer 15. The bandgap adjusting layer 16w is in contact with the first barrier layer 17b.
  • the bandgap adjusting layer 16w also has a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3.
  • the barrier layer 17b may be formed of GaN
  • the well layer 17w may be formed of InGaN
  • the bandgap adjusting layer 16w may have InGaN having a smaller In content than that of the well layer 17w. It can be formed as.
  • the p-type contact layer 19 is positioned on the active region 17.
  • a p-type cladding layer (not shown) may be interposed between the active region 17 and the p-type contact layer 19.
  • the p-type cladding layer may be AlGaN.
  • the p-type contact layer 19 may be a multi-layer structure including a single layer of GaN or a GaN layer.
  • the n-electrode 21 is in electrical contact with the n-type contact layer 15, and the p-electrode 23 is in electrical contact with the p-type contact layer 19.
  • the bandgap adjusting layer 16w in contact with the active region 17 has a high concentration of Si doping, it is possible to prevent the depletion region from expanding into the n-type contact layer 15.
  • the capacitance C between the n-type contact layer 15 and the p-type contact layer 19 may be increased to improve the electrostatic discharge characteristics of the light emitting diode.
  • the bandgap adjusting layer 16w may be used to prevent carriers therein from diffusing into the active region 17, thereby preventing current leakage of the light emitting diode.
  • FIG. 7 is a schematic energy band diagram for describing a light emitting diode according to still another embodiment of the present invention.
  • the light emitting diode according to the present embodiment is generally similar to the light emitting diode described with reference to FIGS. 4 to 6, but the carrier holding region 16 includes a plurality of bandgap adjusting layers 16w. There is a difference.
  • the plurality of bandgap adjusting layers 16w each have a narrower bandgap than the barrier layer 17b and a wider bandgap than the well layer 17w. Further, each bandgap adjusting layer 16w has a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3 as described with reference to FIG. 6.
  • the plurality of bandgap adjusting layers 16w may have the same bandgap, but are not limited thereto and may have different bandgaps.
  • the number, width, doping concentration, and bandgap of the plurality of bandgap adjusting layers 16w may be adjusted in various ways.
  • FIG. 8 is a schematic energy band diagram for describing a light emitting diode according to another embodiment of the present invention.
  • the light emitting diode according to the present embodiment is generally similar to the light emitting diode described with reference to FIGS. 4 to 6, but there is a difference in the band structure of the carrier holding region 16.
  • the carrier holding region 16 includes a high concentration doping layer 16h and a bandgap adjusting layer 16b.
  • the heavily doped layer 16h may have a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3, may have a bandgap equal to or narrower than the barrier layer 17b, and may also have an n-type contact layer 15. It may have a bandgap equal to or narrower than.
  • the barrier layer 17b may be formed of GaN
  • the well layer 17w may be formed of InGaN
  • the heavily doped layer 16h may be formed of GaN.
  • the bandgap adjusting layer 16b is positioned between the high concentration doping layer 16h and the active region 17.
  • the bandgap adjusting layer 16b has a wider bandgap than the barrier layer 17b and may be formed of, for example, AlGaN.
  • the bandgap adjusting layer 16b prevents carriers in the heavily doped layer 16h from diffusing into the active region 17 to prevent current leakage.
  • Epilayers were grown using MOCVD equipment to produce light emitting diodes having a size of about 600 ⁇ 600 ⁇ m 2 . All other conditions were the same, Comparative Example 1 doped Si to less than 1E19 / cm 3 in the first barrier layer, Comparative Example 2 doped Si to about 1E19 / cm 3 in the first barrier layer, and Comparative Example 3
  • the barrier layer was doped with Si at 1.5E19 / cm 3, and the embodiment forms a bandgap control layer (16w: quasi-well layer) having an In content of approximately 4% less than the well layer 17w before the first barrier layer, and the band Si of about 1.5E19 / cm 3 was doped into the gap control layer 16w.
  • the reverse current Ir did not show a large difference between Comparative Examples 1 and 2, but Comparative Example 3 showed a reverse current value of 10 times or more that of Comparative Example 1. Even at the chip level, the reverse current Ir (@ -5V) did not show a large difference between Comparative Examples 1, 2 and Examples, but Comparative Example 3 showed a reverse current value of three times or more that of Comparative Example 1.
  • Comparative Example 1 showed an ESD yield of about 30% (chip yield in a good state after the ESD test), Comparative Example 2 55.7%, Comparative Example 3 66.0%, Example 78.5% ESD yields are shown.
  • the embodiment according to the present invention exhibits the best ESD yield without worsening current leakage.

Landscapes

  • Led Devices (AREA)

Abstract

Disclosed is a light emitting diode having improved electrostatic and discharge characteristics. The light emitting diode comprises: an n-type contact layer; a p-type contact layer; an active region interposed between the n-type contact layer and the p-type contact layer and comprising a barrier layer and a well layer; and a carrier-containing region for containing carriers positioned between the n-type contact layer and the active region so as to be in contact with the active region. The carrier-containing region comprises a band gap control layer of which an energy band gap is controlled for preventing carriers inside the carrier-containing region from diffusing into the active region. As a result, provided is the light emitting diode having improved electrostatic and discharge characteristics while preventing current leakage.

Description

개선된 정전 방전 특성을 갖는 발광 다이오드Light Emitting Diodes with Improved Electrostatic Discharge Characteristics
본 발명은 발광 다이오드에 관한 것으로, 더욱 상세하게는 개선된 정전 방전 특성을 갖는 발광 다이오드에 관한 것이다.The present invention relates to light emitting diodes, and more particularly to light emitting diodes having improved electrostatic discharge characteristics.
일반적으로, 질화갈륨계 반도체는 풀컬러 디스플레이, 교통 신호등, 일반조명 및 광통신 기기의 광원으로 자외선, 청/녹색 발광 다이오드(light emitting diode) 또는 레이저 다이오드(laser diode)에 널리 이용되고 있다. 이러한 질화갈륨계 발광 소자는 n형 및 p형 질화갈륨계 반도체층 사이에 위치한 InGaN 계열의 다중양자우물 구조의 활성층을 포함한다.In general, gallium nitride-based semiconductors are widely used in ultraviolet light, blue / green light emitting diodes or laser diodes as a light source for full-color displays, traffic lights, general lighting and optical communication devices. The gallium nitride-based light emitting device includes an active layer having an InGaN-based multi-quantum well structure positioned between n-type and p-type gallium nitride-based semiconductor layers.
도 1은 종래의 발광 다이오드를 설명하기 위한 단면도이고, 도 2는 도 1의 활성 영역을 확대도시한 단면도이고, 도 3은 도 1의 발광 다이오드의 에너지 밴드갭을 설명하기 위해 개략적인 에너지 밴드 다이어그램이다.1 is a cross-sectional view illustrating a conventional light emitting diode, FIG. 2 is an enlarged cross-sectional view of an active region of FIG. 1, and FIG. 3 is a schematic energy band diagram for explaining an energy band gap of the light emitting diode of FIG. 1. to be.
도 1 및 도 2를 참조하면, 상기 발광 다이오드는 기판(11), 버퍼층(13), n형 콘택층(15), 활성영역(17), p형 콘택층(19), n-전극(21) 및 p-전극(23)을 포함한다.1 and 2, the light emitting diode includes a substrate 11, a buffer layer 13, an n-type contact layer 15, an active region 17, a p-type contact layer 19, and an n-electrode 21. ) And p-electrode 23.
이러한 종래의 발광 다이오드는 n형 콘택층(15)과 p형 콘택층(19) 사이에 다중양자우물 구조의 활성영역(17)을 포함하여 발광 효율을 개선하고 있으며, 다중양자우물 구조 내의 InGaN 우물층의 In 함량을 조절하여 원하는 파장의 광을 방출할 수 있다. The conventional light emitting diode includes the active region 17 of the multi-quantum well structure between the n-type contact layer 15 and the p-type contact layer 19 to improve the luminous efficiency, and the InGaN well in the multi-quantum well structure The In content of the layer may be adjusted to emit light of a desired wavelength.
상기 n형 콘택층(17)은 통상 1×1018/㎤ ~1×1019/㎤ 범위 내의 도핑 농도를 가지며 전자를 공급하는 역할을 한다. 한편, 전류 누설을 방지하고 양호한 결정 품질을 달성하기 위해 활성 영역(17) 내의 우물층(17w) 및 장벽층(17b)은 대체로 언도프트층으로 형성한다. 활성 영역(17) 내에 도핑을 하는 경우에도, 전류 누설을 방지하기 위해 첫 번째 장벽층(17b)에 약 1×1019/㎤ 이하의 농도로 도핑하고 있다.The n-type contact layer 17 typically has a doping concentration in the range of 1 × 10 18 / cm 3 to 1 × 10 19 / cm 3 and serves to supply electrons. On the other hand, the well layer 17w and the barrier layer 17b in the active region 17 are generally formed of an undoped layer in order to prevent current leakage and achieve good crystal quality. Even when doping in the active region 17, the first barrier layer 17b is doped at a concentration of about 1 × 10 19 / cm 3 or less to prevent current leakage.
전류 누설을 방지하기 위해 활성 영역(17)과 n형 콘택층(15) 사이의 소정 영역의 도핑 농도가 낮기 때문에, n형 콘택층(15) 내로 공핍 영역이 확대된다. 이러한 공핍 영역은 p형 콘택층(19) 내의 도핑 농도의 증가에 따라 더욱 증대된다. 상기 공핍 영역의 확대는 n형 콘택층(15)과 p형 콘택층(19) 사이의 실효적인 거리(d)를 증가시킨다. 한편, 커패시터의 정전 용량(C)은 거리(d)에 반비례하기 때문에, 상기 공핍 영역의 확대는 n형 콘택층(15)과 p형 콘택층(19) 사이에 형성되는 커패시터의 정전 용량(C)을 감소시킨다. 상기 정전 용량(C)의 감소는 결과적으로 발광 다이오드의 정전 방전 특성을 악화시킨다.Since the doping concentration of the predetermined region between the active region 17 and the n-type contact layer 15 is low to prevent current leakage, the depletion region is enlarged into the n-type contact layer 15. This depletion region is further increased with increasing doping concentration in the p-type contact layer 19. The enlargement of the depletion region increases the effective distance d between the n-type contact layer 15 and the p-type contact layer 19. On the other hand, since the capacitance C of the capacitor is inversely proportional to the distance d, the enlargement of the depletion region is the capacitance C of the capacitor formed between the n-type contact layer 15 and the p-type contact layer 19. Decrease). The reduction of the capacitance C consequently worsens the electrostatic discharge characteristics of the light emitting diode.
한편, 발광 다이오드의 정전 방전 특성을 향상시키기 위해 도 3에 도시한 바와 같이 활성 영역(17)에 접하는 n형 콘택층(15)의 일부 또는 첫 번째 장벽층(17b)에 1E19/㎤ 이상의 고농도의 Si을 도핑하는 것을 고려할 수 있다. 그러나, 앞서 설명한 바와 같이, 고농도 도핑에 따라 생성된 캐리어가 활성 영역(17) 내로 쉽게 이동하기 때문에, 발광 다이오드의 누설전류가 증가하여 발광 다이오드의 전기적 특성이 나빠진다.Meanwhile, in order to improve the electrostatic discharge characteristic of the light emitting diode, as shown in FIG. 3, a portion of the n-type contact layer 15 in contact with the active region 17 or the first barrier layer 17b has a high concentration of 1E19 / cm 3 or more. Doping Si may be considered. However, as described above, since the carriers generated by the high concentration doping easily move into the active region 17, the leakage current of the light emitting diode increases, thereby deteriorating the electrical characteristics of the light emitting diode.
본 발명이 해결하고자 하는 과제는, 누설전류를 증가시키지 않으면서 정전 방전 특성을 개선한 발광 다이오드를 제공하는 것이다.An object of the present invention is to provide a light emitting diode having improved electrostatic discharge characteristics without increasing leakage current.
본 발명의 일 실시예에 따른 발광 다이오드는, n형 콘택층; p형 콘택층; 상기 n형 콘택층과 p형 콘택층 사이에 개재되고, 장벽층과 우물층을 포함하는 활성 영역; 및 상기 n형 콘택층과 상기 활성 영역 사이에서 상기 활성 영역에 접하여 위치하며 캐리어를 보유하기 위한 캐리어 보유 영역을 포함한다. 상기 캐리어 보유 영역은 그 내부의 캐리어가 상기 활성 영역 내로 확산되는 것을 방지하도록 에너지 밴드갭이 조절된 밴드갭 조절층을 갖는다.A light emitting diode according to an embodiment of the present invention, an n-type contact layer; p-type contact layer; An active region interposed between the n-type contact layer and the p-type contact layer and including a barrier layer and a well layer; And a carrier holding region positioned between the n-type contact layer and the active region in contact with the active region and for holding a carrier. The carrier holding region has a bandgap adjusting layer in which an energy bandgap is adjusted to prevent carriers therein from diffusing into the active region.
상기 캐리어 보유 영역에 의해 공핍 영역이 n형 콘택층 내부로 확대되는 것을 방지할 수 있어, 발광 다이오드의 충분한 정전 용량을 확보할 수 있으며, 이에 따라 개선된 정전 방전 특성을 갖는 발광 다이오드를 제공할 수 있다. 나아가, 상기 캐리어 보유 영역 내의 캐리어가 상기 활성 영역 내로 확산되는 것을 방지함으로써 발광 다이오드의 전류 누설을 방지할 수 있다.It is possible to prevent the depletion region from expanding into the n-type contact layer by the carrier holding region, thereby ensuring sufficient capacitance of the light emitting diode, thereby providing a light emitting diode having improved electrostatic discharge characteristics. have. Furthermore, current leakage of the light emitting diode can be prevented by preventing carriers in the carrier holding region from being diffused into the active region.
일 실시예에 있어서, 상기 밴드갭 조절층은 상기 우물층보다 넓은 밴드갭을 갖고 상기 장벽층보다 좁은 밴드갭을 가질 수 있다. 또한, 상기 캐리어 보유 영역은 상기 밴드갭 조절층을 복수개 포함할 수 있다. 나아가, 상기 밴드갭 조절층은 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 가질 수 있다.In one embodiment, the bandgap adjusting layer may have a wider bandgap than the well layer and a narrower bandgap than the barrier layer. In addition, the carrier holding region may include a plurality of bandgap adjusting layers. Further, the bandgap control layer may have a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3.
상기 밴드갭 조절층이 장벽층보다 좁은 밴드갭을 갖기 때문에, 캐리어가 밴드갭 조절층 내에 보유될 수 있어 전류 누설을 방지할 수 있다.Since the bandgap adjusting layer has a narrower bandgap than the barrier layer, carriers can be retained in the bandgap adjusting layer to prevent current leakage.
다른 실시예에 있어서, 상기 캐리어 보유 영역은 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 갖는 고농도 도핑층을 포함하고, 상기 밴드갭 조절층은 상기 고농도 도핑층과 상기 활성 영역 사이에 위치할 수 있다. 나아가, 상기 밴드갭 조절층은 상기 장벽층보다 넓은 밴드갭을 가질 수 있다. 상기 고농도 도핑층은 상기 장벽층과 동일하거나 그보다 좁은 밴드갭을 가질 수 있다.In another embodiment, the carrier retention region includes a heavily doped layer having a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3, wherein the bandgap adjusting layer is positioned between the heavily doped layer and the active region. Can be. Furthermore, the bandgap adjusting layer may have a wider bandgap than the barrier layer. The heavily doped layer may have a bandgap equal to or narrower than the barrier layer.
상기 밴드갭 조절층이 상기 장벽층보다 넓은 밴드갭을 갖기 때문에, 캐리어가 상기 고농도 도핑층으로부터 활성 영역으로 확산하는 것을 방지할 수 있으며, 따라서 발광 다이오드의 전류 누설을 방지할 수 있다.Since the bandgap adjusting layer has a wider bandgap than the barrier layer, carriers can be prevented from diffusing from the heavily doped layer into the active region, thereby preventing current leakage of the light emitting diode.
몇몇 실시예들에 있어서, 상기 우물층은 InGaN으로 형성되고, 상기 장벽층은 GaN으로 형성되며, 상기 밴드갭 조절층은 상기 우물층보다 In을 적게 함유하는 InGaN으로 형성될 수 있다. 여기서, 상기 밴드갭 조절층은 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 가질 수 있다.In some embodiments, the well layer may be formed of InGaN, the barrier layer may be formed of GaN, and the bandgap control layer may be formed of InGaN containing less In than the well layer. Here, the band gap control layer may have a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3.
다른 실시예들에 있어서, 상기 우물층은 InGaN으로 형성되고, 상기 장벽층은 GaN으로 형성되며, 상기 밴드갭 조절층은 AlGaN으로 형성될 수 있다. 나아가, 상기 캐리어 보유 영역은 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 갖는 고농도 GaN층을 더 포함할 수 있다. 또한, 상기 밴드갭 조절층은 상기 고농도 GaN층과 상기 활성 영역 사이에 위치할 수 있다.In other embodiments, the well layer may be formed of InGaN, the barrier layer may be formed of GaN, and the band gap control layer may be formed of AlGaN. Further, the carrier holding region may further include a high concentration GaN layer having a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3. In addition, the bandgap control layer may be located between the high concentration GaN layer and the active region.
본 발명의 실시예들에 따르면, n형 콘택층과 활성 영역 사이에 캐리어 보유 영역을 배치함으로써 캐리어를 보유함과 아울러 활성 영역 내로의 캐리어의 확산을 방지할 수 있으며, 이에 따라, 전류 누설을 방지하면서 정전 방전 특성을 개선할 수 있는 발광 다이오드를 제공할 수 있다.According to embodiments of the present invention, by disposing a carrier holding region between the n-type contact layer and the active region, it is possible to retain the carrier and to prevent diffusion of the carrier into the active region, thereby preventing current leakage. While providing a light emitting diode capable of improving the electrostatic discharge characteristics.
도 1은 종래의 발광 다이오드를 설명하기 위한 개략적인 단면도이다.1 is a schematic cross-sectional view for describing a conventional light emitting diode.
도 2는 도 1의 활성 영역을 확대 도시한 개략적인 단면도이다.FIG. 2 is an enlarged schematic cross-sectional view of the active region of FIG. 1.
도 3은 도 1의 발광 다이오드의 밴드갭을 설명하기 위한 개략적인 에너지 밴드 다이어그램이다.FIG. 3 is a schematic energy band diagram for describing a band gap of the light emitting diode of FIG. 1.
도 4는 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이다.4 is a cross-sectional view illustrating a light emitting diode according to an embodiment of the present invention.
도 5는 도 4의 활성 영역을 확대 도시한 개략적인 단면도이다.5 is an enlarged schematic cross-sectional view of the active region of FIG. 4.
도 6은 도 4의 발광 다이오드의 밴드갭을 설명하기 위한 개략적인 에너지 밴드 다이어그램이다.FIG. 6 is a schematic energy band diagram for describing a band gap of the light emitting diode of FIG. 4.
도 7은 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 에너지 밴드 다이어그램이다.7 is a schematic energy band diagram for describing a light emitting diode according to still another embodiment of the present invention.
도 8은 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 에너지 밴드 다이어그램이다.8 is a schematic energy band diagram for describing a light emitting diode according to another embodiment of the present invention.
(부호의 설명)(Explanation of the sign)
11 기판, 13 버퍼층, 15 n형 콘택층, 15h 고농도 도핑층, 11 substrate, 13 buffer layer, 15 n-type contact layer, 15h high concentration doping layer,
16 캐리어 보유 영역, 16w 밴드갭 조절층(고농도 도핑층), 16 carrier retention region, 16w bandgap adjustment layer (highly doped layer),
16b: 밴드갭 조절층, 16h: 고농도 도핑층, 17 활성 영역, 16b: bandgap adjusting layer, 16h high concentration doping layer, 17 active regions,
17b 장벽층, 17w 우물층, 19 p형 콘택층, 21 n-전극, 23 p-전극17b barrier layer, 17w well layer, 19 p-type contact layer, 21 n-electrode, 23 p-electrode
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수 있다. 그리고, 도면에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; The following embodiments are provided as examples to ensure that the spirit of the present invention can be fully conveyed to those skilled in the art. Accordingly, the present invention is not limited to the embodiments described below and may be embodied in other forms. In the drawings, widths, lengths, thicknesses, and the like of components may be exaggerated for convenience. Like numbers refer to like elements throughout.
도 4는 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이고, 도 5는 도 4의 활성 영역을 확대 도시한 개략적인 단면도이며, 도 6은 도 4의 발광 다이오드의 밴드갭을 설명하기 위한 개략적인 에너지 밴드 다이어그램이다. 도 6에서는 설명의 편의를 위해 전도대(conduction band)만을 도시한다.4 is a cross-sectional view illustrating a light emitting diode according to an embodiment of the present invention, FIG. 5 is a schematic cross-sectional view showing an enlarged active area of FIG. 4, and FIG. 6 illustrates a band gap of the light emitting diode of FIG. 4. A schematic energy band diagram for this purpose. In FIG. 6, only a conduction band is shown for convenience of description.
도 4 및 도 5를 참조하면, 상기 발광 다이오드는 기판(11), 버퍼층(13), n형 콘택층(15), 캐리어 보유 영역(16), 활성영역(17), p형 콘택층(19), n-전극(21) 및 p-전극(23)을 포함할 수 있다. 또한, 상기 발광 다이오드는, 상기 활성 영역(17)과 p형 콘택층(19) 사이에 p형 클래드층(도시하지 않음)을 포함할 수 있다.4 and 5, the light emitting diode includes a substrate 11, a buffer layer 13, an n-type contact layer 15, a carrier holding region 16, an active region 17, and a p-type contact layer 19. ), n-electrode 21 and p-electrode 23. In addition, the light emitting diode may include a p-type cladding layer (not shown) between the active region 17 and the p-type contact layer 19.
상기 기판(51)은 질화갈륨계 반도체층을 성장시키기 위한 기판으로, 사파이어 기판, SiC 기판, 스피넬 기판, 실리콘 기판, GaN 기판 등 특별히 제한되지 않으며, 예컨대 패터닝된 사파이어 기판(PSS)일 수 있다.The substrate 51 is a substrate for growing a gallium nitride-based semiconductor layer, and is not particularly limited, such as a sapphire substrate, a SiC substrate, a spinel substrate, a silicon substrate, a GaN substrate, and may be, for example, a patterned sapphire substrate (PSS).
상기 버퍼층(13)은 저온 버퍼층 및 고온 버퍼층을 포함할 수 있다. 저온 버퍼층은, 예컨대, 400~600℃의 저온에서 (Al, Ga)N로 형성될 수 있으며, 특히, GaN 또는 AlN로 형성된다. 고온 버퍼층은 기판(11)과 n형 콘택층(15) 사이에서 전위와 같은 결함발생을 완화하기 위한 층으로, 상대적으로 고온에서 성장된다. 상기 고온 버퍼층은 예컨대, 언도프트 GaN로 형성될 수 있다.The buffer layer 13 may include a low temperature buffer layer and a high temperature buffer layer. The low temperature buffer layer may be formed of, for example, (Al, Ga) N at a low temperature of 400 ° C. to 600 ° C., and in particular, GaN or AlN. The high temperature buffer layer is a layer for alleviating defects such as dislocations between the substrate 11 and the n-type contact layer 15, and is grown at a relatively high temperature. The high temperature buffer layer may be formed of, for example, undoped GaN.
상기 n형 콘택층(15)은 n형 불순물, 예컨대 Si이 도핑된 질화갈륨계 반도체층으로 형성된다. 상기 n형 콘택층은 단일의 GaN층으로 형성될 수 있으나, 이에 한정되는 것은 아니며, 다중층으로 형성될 수도 있다. 상기 n형 콘택층에 도핑되는 Si 도핑농도는 약 1×1018/㎤ ~1×1019/㎤ 범위 내일 수 있다.The n-type contact layer 15 is formed of a gallium nitride based semiconductor layer doped with n-type impurities, such as Si. The n-type contact layer may be formed of a single GaN layer, but is not limited thereto, and may be formed of multiple layers. The Si doping concentration doped in the n-type contact layer may be in the range of about 1 × 10 18 / cm 3 to 1 × 10 19 / cm 3.
활성영역(17)은 장벽층(17b)과 우물층(17w)이 교대로 적층된 다중양자우물 구조를 가질 수 있다. 도 5에서 4개의 우물층(17w)이 도시되어 있지만 이에 한정되는 것은 아니며, 더 적거나 더 많은 우물층(17w)이 사용될 수 있다. 상기 장벽층(17b)은 우물층(17w)에 비해 밴드갭이 넓은 질화갈륨계 반도체층, 예컨대, GaN, InGaN, AlGaN 또는 AlInGaN로 형성될 수 있다. 우물층(17w)은 장벽층(17b)보다 좁은 밴드갭을 갖는다. 우물층(17w)은 또한 n형 콘택층(15)보다 좁은 밴드갭을 갖는 질화갈륨계 반도체층, 예컨대 InGaN으로 형성될 수 있다. 우물층(17w) 내의 In 조성비는 원하는 광 파장에 의해 결정된다. 활성 영역(17)의 첫번째 층은 장벽층(17b)이며, 마지막 층은 장벽층(17b) 또는 우물층(17w)일 수 있다.The active region 17 may have a multi-quantum well structure in which the barrier layer 17b and the well layer 17w are alternately stacked. Although four well layers 17w are shown in FIG. 5, fewer but more well layers 17w may be used. The barrier layer 17b may be formed of a gallium nitride based semiconductor layer having a wider band gap than the well layer 17w, for example, GaN, InGaN, AlGaN, or AlInGaN. The well layer 17w has a narrower bandgap than the barrier layer 17b. The well layer 17w may also be formed of a gallium nitride based semiconductor layer, such as InGaN, having a narrower bandgap than the n-type contact layer 15. The In composition ratio in the well layer 17w is determined by the desired light wavelength. The first layer of active region 17 is barrier layer 17b and the last layer may be barrier layer 17b or well layer 17w.
장벽층(17b) 및 우물층(17w)은 활성 영역(17)의 결정 품질을 향상시키기 위해 불순물이 도핑되지 않은 언도프트층으로 형성될 수 있으나, 순방향 전압을 낮추기 위해 일부 또는 전체 활성 영역 내에 1E19/㎤ 이하의 불순물이 도핑될 수도 있다.The barrier layer 17b and the well layer 17w may be formed of an undoped layer which is not doped with impurities to improve the crystal quality of the active region 17, but the 1E19 may be formed in some or the entire active region to lower the forward voltage. Impurities up to / cm 3 may be doped.
한편, 캐리어 보유 영역(16)은 상기 n형 콘택층(15)과 활성 영역(17) 사이에 위치하며, 활성 영역(17)에 접한다. 캐리어 보유 영역(16)은 도 6에 도시한 바와 같이 캐리어가 활성 영역(17)으로 확산되는 것을 방지하도록 에너지 밴드갭이 조절된 밴드갭 조절층(16w)으로 구성될 수 있다. 즉, 상기 밴드갭 조절층(16w)은 장벽층(17b)보다 좁은 밴드갭을 가지며 우물층(17w)보다 넓은 밴드갭을 갖도록 밴드갭이 조절된다. 또한, 밴드갭 조절층(16w)은 n형 콘택층(15)보다 좁은 밴드갭을 가질 수 있다. 상기 밴드갭 조절층(16w)이 첫 번째 장벽층(17b)에 접한다. 상기 밴드갭 조절층(16w)은 또한 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 갖는다. 예를 들어, 상기 장벽층(17b)은 GaN으로 형성되고, 우물층(17w)은 InGaN으로 형성될 수 있으며, 상기 밴드갭 조절층(16w)은 우물층(17w)보다 적은 In 함량을 갖는 InGaN으로 형성될 수 있다.Meanwhile, the carrier holding region 16 is located between the n-type contact layer 15 and the active region 17 and is in contact with the active region 17. The carrier retention region 16 may be comprised of a bandgap adjustment layer 16w with an energy bandgap adjusted to prevent carriers from diffusing into the active region 17 as shown in FIG. 6. That is, the bandgap adjustment layer 16w has a narrower bandgap than the barrier layer 17b and a bandgap is adjusted to have a wider bandgap than the well layer 17w. In addition, the bandgap adjusting layer 16w may have a narrower bandgap than the n-type contact layer 15. The bandgap adjusting layer 16w is in contact with the first barrier layer 17b. The bandgap adjusting layer 16w also has a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3. For example, the barrier layer 17b may be formed of GaN, the well layer 17w may be formed of InGaN, and the bandgap adjusting layer 16w may have InGaN having a smaller In content than that of the well layer 17w. It can be formed as.
상기 활성 영역(17) 상에 p형 콘택층(19)이 위치한다. 또한, 상기 활성 영역(17)과 p형 콘택층(19) 사이에 p형 클래드층(도시하지 않음)이 개재될 수 있다. p형 클래드층은 AlGaN일 수 있다. 또한, p형 콘택층(19)은 GaN의 단일층 또는 GaN층을 포함하는 다층 구조일 수 있다.The p-type contact layer 19 is positioned on the active region 17. In addition, a p-type cladding layer (not shown) may be interposed between the active region 17 and the p-type contact layer 19. The p-type cladding layer may be AlGaN. In addition, the p-type contact layer 19 may be a multi-layer structure including a single layer of GaN or a GaN layer.
한편, n-전극(21)은 n형 콘택층(15)에 전기적으로 접촉하고, p-전극(23)은 p형 콘택층(19)에 전기적으로 접촉한다.Meanwhile, the n-electrode 21 is in electrical contact with the n-type contact layer 15, and the p-electrode 23 is in electrical contact with the p-type contact layer 19.
본 실시예에 따르면, 활성 영역(17)에 접하는 밴드갭 조절층(16w)이 고농도의 Si 도핑 농도를 갖기 때문에, 공핍 영역이 n형 콘택층(15)으로 확대되는 것을 방지할 수 있으며, 따라서 n형 콘택층(15)과 p형 콘택층(19) 사이의 정전 용량(C)을 증가시켜 발광 다이오드의 정전 방전 특성을 개선할 수 있다. 나아가, 상기 밴드갭 조절층(16w)을 이용하여 그 내부의 캐리어가 활성 영역(17) 내로 확산하는 것을 방지할 수 있으며, 이에 따라, 발광 다이오드의 전류 누설을 방지할 수 있다.According to the present embodiment, since the bandgap adjusting layer 16w in contact with the active region 17 has a high concentration of Si doping, it is possible to prevent the depletion region from expanding into the n-type contact layer 15. The capacitance C between the n-type contact layer 15 and the p-type contact layer 19 may be increased to improve the electrostatic discharge characteristics of the light emitting diode. Furthermore, the bandgap adjusting layer 16w may be used to prevent carriers therein from diffusing into the active region 17, thereby preventing current leakage of the light emitting diode.
도 7은 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 에너지 밴드 다이어그램이다.7 is a schematic energy band diagram for describing a light emitting diode according to still another embodiment of the present invention.
도 7을 참조하면, 본 실시예에 따른 발광 다이오드는 도 4 내지 도 6을 참조하여 설명한 발광 다이오드와 대체로 유사하나, 캐리어 보유 영역(16)이 복수개의 밴드갭 조절층(16w)을 포함하는 것에 차이가 있다.Referring to FIG. 7, the light emitting diode according to the present embodiment is generally similar to the light emitting diode described with reference to FIGS. 4 to 6, but the carrier holding region 16 includes a plurality of bandgap adjusting layers 16w. There is a difference.
상기 복수개의 밴드갭 조절층(16w)은 각각 장벽층(17b)보다 좁은 밴드갭을 가지며 우물층(17w)보다 넓은 밴드갭을 갖는다. 또한, 각 밴드갭 조절층(16w)은 도 6을 참조하여 설명한 바와 같이 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 갖는다.The plurality of bandgap adjusting layers 16w each have a narrower bandgap than the barrier layer 17b and a wider bandgap than the well layer 17w. Further, each bandgap adjusting layer 16w has a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3 as described with reference to FIG. 6.
상기 복수개의 밴드갭 조절층(16w)은 서로 동일한 밴드갭을 가질 수 있으나 이에 한정되는 것은 아니며, 서로 다른 밴드갭을 가질 수도 있다. 복수개의 밴드갭 조절층(16w)의 개수, 폭, 도핑 농도, 밴드갭은 다양하게 조절될 수 있다.The plurality of bandgap adjusting layers 16w may have the same bandgap, but are not limited thereto and may have different bandgaps. The number, width, doping concentration, and bandgap of the plurality of bandgap adjusting layers 16w may be adjusted in various ways.
본 실시예에 따르면, 복수개의 밴드갭 조절층(16w)을 채택함으로써 공핍 영역이 확대되는 것을 효과적으로 방지할 수 있으며 또한 전류 누설을 쉽게 방지할 수 있다.According to this embodiment, by adopting the plurality of bandgap adjusting layers 16w, it is possible to effectively prevent the depletion region from expanding and also to easily prevent current leakage.
도 8은 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 에너지 밴드 다이어그램이다.8 is a schematic energy band diagram for describing a light emitting diode according to another embodiment of the present invention.
도 8을 참조하면, 본 실시예에 따른 발광 다이오드는 도 4 내지 도 6을 참조하여 설명한 발광 다이오드와 대체로 유사하나 캐리어 보유 영역(16)의 밴드 구조에 차이가 있다.Referring to FIG. 8, the light emitting diode according to the present embodiment is generally similar to the light emitting diode described with reference to FIGS. 4 to 6, but there is a difference in the band structure of the carrier holding region 16.
즉, 본 실시예에 따른 캐리어 보유 영역(16)은 고농도 도핑층(16h) 및 밴드갭 조절층(16b)을 포함한다. 상기 고농도 도핑층(16h)은 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 가질 수 있으며, 장벽층(17b)과 동일하거나 그보다 좁은 밴드갭을 가질 수 있으며, 또한 n형 콘택층(15)과 동일하거나 그보다 좁은 밴드갭을 가질 수 있다. 예를 들어 상기 장벽층(17b)은 GaN으로 형성되고, 우물층(17w)은 InGaN으로 형성될 수 있으며, 상기 고농도 도핑층(16h)은 GaN으로 형성될 수 있다.That is, the carrier holding region 16 according to the present embodiment includes a high concentration doping layer 16h and a bandgap adjusting layer 16b. The heavily doped layer 16h may have a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3, may have a bandgap equal to or narrower than the barrier layer 17b, and may also have an n-type contact layer 15. It may have a bandgap equal to or narrower than. For example, the barrier layer 17b may be formed of GaN, the well layer 17w may be formed of InGaN, and the heavily doped layer 16h may be formed of GaN.
한편, 상기 밴드갭 조절층(16b)은 고농도 도핑층(16h)과 활성 영역(17) 사이에 위치한다. 상기 밴드갭 조절층(16b)은 장벽층(17b)보다 넓은 밴드갭을 가지며, 예를 들어 AlGaN으로 형성될 수 있다. 밴드갭 조절층(16b)은 고농도 도핑층(16h) 내의 캐리어가 활성 영역(17)으로 확산하는 것을 방지하여 전류 누설을 방지한다.Meanwhile, the bandgap adjusting layer 16b is positioned between the high concentration doping layer 16h and the active region 17. The bandgap adjusting layer 16b has a wider bandgap than the barrier layer 17b and may be formed of, for example, AlGaN. The bandgap adjusting layer 16b prevents carriers in the heavily doped layer 16h from diffusing into the active region 17 to prevent current leakage.
(실험예)Experimental Example
MOCVD 장비를 사용하여 에피층들을 성장시켜 약 600×600 ㎛2 크기의 발광 다이오드를 제작하였다. 다른 조건은 모두 동일하게 하고, 비교예 1은 첫 번째 장벽층에 Si을 1E19/㎤ 미만 도핑하였고, 비교예 2는 첫 번째 장벽층에 Si을 약 1E19/㎤ 도핑하였으며, 비교예 3은 첫 번째 장벽층에 Si을 1.5E19/㎤ 도핑하였고, 실시예는 첫 번째 장벽층 앞에 우물층(17w)보다 대략 4% 적은 In 함량을 갖는 밴드갭 조절층(16w: 준 우물층)을 형성하고, 밴드갭 조절층(16w)에 약 1.5E19/㎤의 Si을 도핑하였다.Epilayers were grown using MOCVD equipment to produce light emitting diodes having a size of about 600 × 600 μm 2 . All other conditions were the same, Comparative Example 1 doped Si to less than 1E19 / cm 3 in the first barrier layer, Comparative Example 2 doped Si to about 1E19 / cm 3 in the first barrier layer, and Comparative Example 3 The barrier layer was doped with Si at 1.5E19 / cm 3, and the embodiment forms a bandgap control layer (16w: quasi-well layer) having an In content of approximately 4% less than the well layer 17w before the first barrier layer, and the band Si of about 1.5E19 / cm 3 was doped into the gap control layer 16w.
웨이퍼 레벨에서 역방향 전류 Ir(@-5V)는 비교예 1, 2 및 실시예가 큰 차이를 나타내지 않았으나, 비교예 3은 비교예 1의 10배 이상의 역방형 전류 값을 나타내었다. 칩 레벨에서도 역방향 전류 Ir(@-5V)는 비교예 1, 2 및 실시예가 큰 차이를 나타내지 않았으나, 비교예 3은 비교예 1의 3배 이상의 역방향 전류 값을 나타내었다. At the wafer level, the reverse current Ir (@ -5V) did not show a large difference between Comparative Examples 1 and 2, but Comparative Example 3 showed a reverse current value of 10 times or more that of Comparative Example 1. Even at the chip level, the reverse current Ir (@ -5V) did not show a large difference between Comparative Examples 1, 2 and Examples, but Comparative Example 3 showed a reverse current value of three times or more that of Comparative Example 1.
한편, ESD 테스트 결과, 비교예 1은 약 30%의 ESD 수율(ESD 테스트 후 양호한 상태의 칩 수율)을 나타내었으며, 비교예 2는 55.7%, 비교예 3은 66.0%, 실시예는 78.5%의 ESD 수율을 나타내었다.On the other hand, as a result of the ESD test, Comparative Example 1 showed an ESD yield of about 30% (chip yield in a good state after the ESD test), Comparative Example 2 55.7%, Comparative Example 3 66.0%, Example 78.5% ESD yields are shown.
결국, 본 발명에 따른 실시예는 전류 누설이 나빠지지 않으면서 가장 양호한 ESD 수율을 나타내는 것을 확인할 수 있다.As a result, it can be seen that the embodiment according to the present invention exhibits the best ESD yield without worsening current leakage.

Claims (11)

  1. n형 콘택층;n-type contact layer;
    p형 콘택층;p-type contact layer;
    상기 n형 콘택층과 p형 콘택층 사이에 개재되고, 장벽층과 우물층을 포함하는 활성 영역; 및An active region interposed between the n-type contact layer and the p-type contact layer and including a barrier layer and a well layer; And
    상기 n형 콘택층과 상기 활성 영역 사이에서 상기 활성 영역에 접하여 위치하며 캐리어를 보유하기 위한 캐리어 보유 영역을 포함하되,A carrier holding region positioned between the n-type contact layer and the active region and in contact with the active region to hold a carrier,
    상기 캐리어 보유 영역은 그 내부의 캐리어가 상기 활성 영역 내로 확산되는 것을 방지하도록 에너지 밴드갭이 조절된 밴드갭 조절층을 갖는 발광 다이오드.And the carrier holding region has a bandgap adjusting layer with an energy bandgap adjusted to prevent carriers therein from diffusing into the active region.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 밴드갭 조절층은 상기 우물층보다 넓은 밴드갭을 갖고 상기 장벽층보다 좁은 밴드갭을 갖는 발광 다이오드.The band gap control layer has a wider band gap than the well layer and a narrower band gap than the barrier layer.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 캐리어 보유 영역은 상기 밴드갭 조절층을 복수개 포함하는 발광 다이오드.The carrier holding region includes a plurality of the band gap control layer.
  4. 청구항 2 또는 청구항 3에 있어서,The method according to claim 2 or 3,
    상기 밴드갭 조절층은 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 갖는 발광 다이오드.The band gap control layer is a light emitting diode having a Si doping concentration in the range of 1E19 / cm 3 ~ 1E21 / cm 3.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 캐리어 보유 영역은 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 갖는 고농도 도핑층을 포함하고, 상기 밴드갭 조절층은 상기 고농도 도핑층과 상기 활성 영역 사이에 위치하는 발광 다이오드.And the carrier retention region comprises a heavily doped layer having a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3, wherein the bandgap control layer is positioned between the heavily doped layer and the active region.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 밴드갭 조절층은 상기 장벽층보다 넓은 밴드갭을 갖는 발광 다이오드.The band gap control layer has a wider band gap than the barrier layer.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 고농도 도핑층은 상기 장벽층과 동일하거나 그보다 좁은 밴드갭을 갖는 발광 다이오드.Wherein said heavily doped layer has a bandgap equal to or less than that of said barrier layer.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 우물층은 InGaN으로 형성되고, 상기 장벽층은 GaN으로 형성되며, 상기 밴드갭 조절층은 상기 우물층보다 In을 적게 함유하는 InGaN으로 형성된 발광 다이오드.The well layer is formed of InGaN, the barrier layer is formed of GaN, the band gap control layer is formed of InGaN containing less In than the well layer.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 밴드갭 조절층은 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 갖는 발광 다이오드.The band gap control layer is a light emitting diode having a Si doping concentration in the range of 1E19 / cm 3 ~ 1E21 / cm 3.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 우물층은 InGaN으로 형성되고, 상기 장벽층은 GaN으로 형성되며, 상기 밴드갭 조절층은 AlGaN으로 형성된 발광 다이오드.The well layer is formed of InGaN, the barrier layer is formed of GaN, the band gap control layer is formed of AlGaN.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 캐리어 보유 영역은 1E19/㎤~1E21/㎤ 범위의 Si 도핑 농도를 갖는 고농도 GaN층을 더 포함하고,The carrier holding region further comprises a high concentration GaN layer having a Si doping concentration in the range of 1E19 / cm 3 to 1E21 / cm 3,
    상기 밴드갭 조절층은 상기 고농도 GaN층과 상기 활성 영역 사이에 위치하는 발광 다이오드.The band gap control layer is positioned between the high concentration GaN layer and the active region.
PCT/KR2014/001570 2013-04-11 2014-02-26 Light emitting diode having improved electrostatic and discharge characteristics WO2014168334A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480019694.1A CN105103311B (en) 2013-04-11 2014-02-26 Light emitting diode with improved electro static discharge characteristic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0039697 2013-04-11
KR1020130039697A KR102035292B1 (en) 2013-04-11 2013-04-11 Light emitting diode having improved esd characteristics

Publications (1)

Publication Number Publication Date
WO2014168334A1 true WO2014168334A1 (en) 2014-10-16

Family

ID=51689710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001570 WO2014168334A1 (en) 2013-04-11 2014-02-26 Light emitting diode having improved electrostatic and discharge characteristics

Country Status (3)

Country Link
KR (1) KR102035292B1 (en)
CN (1) CN105103311B (en)
WO (1) WO2014168334A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088269A (en) * 2005-09-22 2007-04-05 Matsushita Electric Works Ltd Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element
KR20090084583A (en) * 2008-02-01 2009-08-05 삼성전기주식회사 Nitride semiconductor light emitting device
US20100276710A1 (en) * 2005-03-18 2010-11-04 United States Government As Represented By The Secretary Of The Army Ultraviolet Light Emitting AlGaN Composition And Ultraviolet Light Emitting Device Containing Same
KR20110081033A (en) * 2010-01-05 2011-07-13 서울옵토디바이스주식회사 Light emitting diode having spacer layer
KR20110090118A (en) * 2010-02-02 2011-08-10 삼성엘이디 주식회사 Semiconductor light emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859825A (en) * 2009-04-07 2010-10-13 山东璨圆光电科技有限公司 Multi-layer quantum well nitride light-emitting diode with carrier providing layer
JP5709899B2 (en) * 2010-01-05 2015-04-30 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting diode and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100276710A1 (en) * 2005-03-18 2010-11-04 United States Government As Represented By The Secretary Of The Army Ultraviolet Light Emitting AlGaN Composition And Ultraviolet Light Emitting Device Containing Same
JP2007088269A (en) * 2005-09-22 2007-04-05 Matsushita Electric Works Ltd Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element
KR20090084583A (en) * 2008-02-01 2009-08-05 삼성전기주식회사 Nitride semiconductor light emitting device
KR20110081033A (en) * 2010-01-05 2011-07-13 서울옵토디바이스주식회사 Light emitting diode having spacer layer
KR20110090118A (en) * 2010-02-02 2011-08-10 삼성엘이디 주식회사 Semiconductor light emitting device

Also Published As

Publication number Publication date
CN105103311A (en) 2015-11-25
CN105103311B (en) 2018-09-25
KR102035292B1 (en) 2019-10-22
KR20140122817A (en) 2014-10-21

Similar Documents

Publication Publication Date Title
WO2010021457A2 (en) Light emitting diode having a modulation doping layer
WO2014168339A1 (en) Ultraviolet light-emitting device
US8294178B2 (en) Light emitting device using compound semiconductor
WO2013191406A1 (en) Light emitting device having electron blocking layer
WO2014065530A1 (en) Nitride semiconductor light-emitting device having excellent brightness and esd protection properties
WO2013147552A1 (en) Near uv light emitting device
WO2013015472A1 (en) Semiconductor light-emitting device and method for manufacturing same
WO2014003402A1 (en) Near uv light emitting device
WO2021158016A1 (en) Single-chip multi-band light-emitting diode
WO2013165127A1 (en) Light emitting diode element and method for manufacturing same
WO2017116048A1 (en) Light-emitting element and light-emitting element package comprising same
WO2016018010A1 (en) Light-emitting device and lighting system
WO2015068980A1 (en) Nitride semiconductor ultraviolet light-emitting device
WO2013129812A1 (en) Light emitting diode having gallium nitride substrate
WO2016104958A1 (en) Red light emitting diode and lighting device
WO2022240179A1 (en) Multi-band light emitting diode
KR20100049451A (en) Nitride semiconductor device
WO2016052929A1 (en) Light emitting diode comprising porous transparent electrode
WO2016072661A1 (en) Ultraviolet light emitting element and lighting system
WO2023277608A1 (en) Multi-band light emitting diode
WO2016108423A1 (en) Light emitting device
WO2014168334A1 (en) Light emitting diode having improved electrostatic and discharge characteristics
WO2013018938A1 (en) Semiconductor light-emitting element
WO2016163595A1 (en) Nitride semiconductor light-emitting device, and method for manufacturing same
WO2017018767A1 (en) Ultraviolet light emitting diode and light emitting diode package

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019694.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783486

Country of ref document: EP

Kind code of ref document: A1