[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014167720A1 - Movable element and linear motor - Google Patents

Movable element and linear motor Download PDF

Info

Publication number
WO2014167720A1
WO2014167720A1 PCT/JP2013/061097 JP2013061097W WO2014167720A1 WO 2014167720 A1 WO2014167720 A1 WO 2014167720A1 JP 2013061097 W JP2013061097 W JP 2013061097W WO 2014167720 A1 WO2014167720 A1 WO 2014167720A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnets
shaft
thrust
magnet
mover
Prior art date
Application number
PCT/JP2013/061097
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 高石
勝巳 速水
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/061097 priority Critical patent/WO2014167720A1/en
Priority to KR1020157031673A priority patent/KR20150127748A/en
Priority to CN201380075384.7A priority patent/CN105103422A/en
Priority to JP2015511055A priority patent/JP5872108B2/en
Priority to TW102139040A priority patent/TWI500238B/en
Publication of WO2014167720A1 publication Critical patent/WO2014167720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Definitions

  • the present invention relates to a mover and a linear motor.
  • a linear motor in which the mover performs a linear operation has been used.
  • a linear motor there is a shaft type linear motor in which a shaft penetrating through a through hole formed in a stator operates as a mover.
  • a shaft that functions as a mover in a shaft type linear motor may have a plurality of cylindrical magnets attached thereto.
  • a magnet attached to a shaft includes a magnet that generates a magnetic flux in a direction parallel to the extending direction of the shaft (hereinafter also simply referred to as a thrust magnet), and a magnet that generates a magnetic flux in a cylindrical radial direction (hereinafter simply referred to as a magnet).
  • a magnets may be arranged in a so-called Halbach arrangement in which thrust magnets and radial magnets are alternately arranged.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a mover that can suppress leakage magnetic flux from magnets arranged in a Halbach array and improve the thrust characteristics of a linear motor. To do.
  • the present invention includes a shaft that has a rod-like shape extending in a first direction, and a plurality of magnets that have a cylindrical shape and through which the shaft passes.
  • the plurality of magnets includes a thrust magnet that generates a magnetic flux parallel to the first direction and a radial magnet that generates a magnetic flux in the radial direction of the cylindrical shape, and the thrust magnets are disposed at both ends.
  • the thrust magnets and the radial magnets are arranged alternately and are made of a magnetic body arranged adjacent to the outer side along the first direction with respect to the respective thrust magnets arranged at both ends. It further has a fixing part.
  • the movable element according to the present invention has an effect that it is possible to obtain a movable element capable of improving the thrust characteristics of the linear motor by suppressing generation of leakage magnetic flux.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a linear motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a manufacturing procedure of the mover.
  • FIG. 3 is a diagram illustrating a manufacturing procedure of the mover.
  • FIG. 4 is a diagram illustrating a manufacturing procedure of the mover.
  • FIG. 5 is a diagram illustrating a manufacturing procedure of the mover.
  • FIG. 6 is a diagram for explaining the magnetic flux generated from the magnet included in the mover in the linear motor according to the first embodiment.
  • FIG. 7 is a diagram for describing magnetic flux generated from a magnet included in a mover in a linear motor shown as a comparative example.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a linear motor according to Embodiment 1 of the present invention.
  • the linear motor 50 is a linear motor in which the shaft 11 pierced through the through hole 1a formed in the casing 1 operates linearly along the direction indicated by the arrow Z (first direction). That is, the linear motor 50 is a shaft type linear motor in which the shaft 11 side functions as a mover and the casing 1 side functions as a stator.
  • a space capable of accommodating the shaft 11 is formed inside the casing 1.
  • the casing 1 is formed with a through hole 1a that penetrates both ends of the shaft 11 accommodated therein.
  • a linear bush 4 that holds the shaft 11 movably along the direction indicated by the arrow Z is attached to the through hole 1a.
  • a coil 2 and a yoke 3 are provided inside the casing 1 inside the casing 1 so as to surround the periphery of the shaft 11.
  • the yoke 3 is provided outside the coil 2 inside the casing 1.
  • the stator of the linear motor 50 is configured including the casing 1, the coil 2, the yoke 3, and the linear bush 4 described above.
  • the mover of the linear motor 50 includes a shaft 11, magnets 12 and 13, and a retaining ring (snap ring, fixed portion) 14.
  • 2 to 4 are diagrams showing a procedure for manufacturing the mover. Hereinafter, the description of the manufacturing procedure of the mover will be made including the detailed configuration of the mover.
  • the shaft 11 has a rod-like shape extending in the direction indicated by the arrow Z.
  • the shaft 11 is formed with two grooves 11a extending along the circumferential direction.
  • the retaining ring 14 is fitted into one of the two grooves 11a.
  • the retaining ring 14 is made of a magnetic material such as iron.
  • a plurality of magnets 12 and 13 having a cylindrical shape are attached to the shaft 11. More specifically, the shaft 11 is passed inside the plurality of magnets 12 and 13 having a cylindrical shape. The magnets 12 and 13 that are initially attached to the shaft 11 are pressed against a retaining ring 14 that has been previously fitted into one groove 11a. Further, the plurality of magnets 12 and 13 are disposed adjacent to each other between the two grooves 11a.
  • the magnets 12 and 13 attached to the shaft 11 include a thrust magnet 12 in which the direction of the generated magnetic flux is parallel to the direction in which the shaft 11 extends, and a radial magnet 13 in which the direction of the generated magnetic flux is the radial direction of the shaft 11. Is done.
  • the first magnet and the last magnet attached to the shaft 11 are the thrust magnets 12. Further, the thrust magnets 12 and the radial magnets 13 are alternately arranged. That is, the magnets 12 and 13 are attached to the shaft 11 in a Halbach array in which both ends are thrust magnets 12.
  • one retaining ring 14 is disposed so that the thrust magnet 12 provided at the end is in close contact therewith.
  • a gap is provided between the other retaining ring 14 and the thrust magnet 12.
  • the clearance between the other retaining ring 14 and the thrust magnet 12 is filled with a hardened portion 15.
  • the curing unit 15 is, for example, an adhesive, and is fixed between the retaining rings 14 by being cured after being filled with a gap.
  • the curing unit 15 is not limited to an adhesive, and any curing unit 15 may be used as long as it is cured after filling the gap.
  • the region where at least the magnets 12 and 13 are arranged in the movable part is accommodated in the casing 1.
  • the magnets 12 and 13 of the mover and the coil 2 of the stator are opposed to each other. Then, by controlling the current flowing through the coil 2, the mover can be moved in the direction indicated by the arrow Z.
  • FIG. 6 is a diagram for explaining the magnetic flux generated from the magnet included in the mover in the linear motor 50 according to the first embodiment.
  • the linear motor 50 among the magnets 12 and 13 arranged on the shaft 11, adjacent to the outer side along the extending direction of the shaft 11 with respect to the thrust magnets 12 arranged at both ends.
  • a retaining ring 14 made of a magnetic material is provided.
  • the magnetic flux generated from the thrust magnet 12 at the end passes through the outer peripheral surface of the retaining ring 14 that is a magnetic body.
  • the magnetic flux generated from the thrust magnet 12 at the end passes through the same path as that in which a radial magnet is further provided outside the thrust magnet 12.
  • the magnetic flux generated from the thrust magnet 12 at the end passes through the same path as the radial magnet 13 provided on both sides of the thrust magnet 12.
  • the magnetic flux paths X1 and X5 generated on the end side and the magnetic flux paths X2 to X4 generated in other portions, that is, the portions where the radial magnets 13 are provided on both sides of the thrust magnet 12 are provided. It is possible to make the distance that the air passes through the air uniform. As a result, the magnetic resistances of the paths X1 to X5 of the magnetic flux generated from the magnets 12 and 13 of the mover can be made uniform, and the amount of magnetic flux passing through the paths X1 to X5 can be made uniform.
  • FIG. 7 is a diagram for explaining the magnetic flux generated from the magnets 12 and 13 included in the mover in the linear motor 100 shown as the comparative example.
  • the linear motor 100 shown as a comparative example no magnetic body is provided on both sides of the magnets 12 and 13 arranged on the shaft 11.
  • the paths Y1 and Y5 of the magnetic flux generated from the thrust magnet 12 at the end are portions that pass through the air as compared to the paths Y2 to Y5 of the magnetic flux generated from the magnets 12 and 13 provided at the other portions. Will increase. Therefore, in the paths Y1 and Y5, the magnetic resistance increases and the amount of magnetic flux decreases, and the amount of magnetic flux in the adjacent paths Y2 and Y4 increases accordingly. Thereby, in the paths Y2 and Y4, a leakage magnetic flux that leaks to the outside of the yoke 3 is likely to be generated, and the thrust of the linear motor 100 may be reduced.
  • the amount of magnetic flux passing through the paths X1 to X5 is made uniform as described with reference to FIG.
  • the thrust characteristics can be improved.
  • the thrust magnet 12 that is first attached to the shaft 11 is positioned only by abutting against a retaining ring 14 that is previously fitted in the groove 11a. Further, the magnets 12 and 13 attached thereafter are also positioned by simply contacting the magnets 12 and 13 attached in front thereof. Therefore, it is possible to facilitate the positioning work when attaching the magnets 12 and 13 to the shaft 11.
  • the hardened portion 15 is filled in the gap between the retaining ring 14 fitted after the magnets 12 and 13 are attached and the thrust magnet 12, the retaining ring 14 and Even when there is a gap between the thrust magnet 12, the magnets 12 and 13 can be more firmly fixed.
  • thrust is applied to the magnets 12 and 13 attached to the shaft 11 in a direction parallel to the moving direction of the mover.
  • the inner peripheral surfaces of the magnets 12 and 13 and the outer peripheral surface of the shaft 11 are bonded by an adhesive or the like, and inertia force is applied to the bonded surfaces in a direction parallel to the thrust during acceleration / deceleration of the mover. Join. Since the adhesive surface between the inner peripheral surface of the magnets 12 and 13 and the outer peripheral surface of the shaft 11 is parallel to the direction in which the inertial force is applied, it may be difficult to exhibit sufficient adhesive strength against the inertial force.
  • the retaining ring 14 or the hardened portion 15 is provided on both sides in the direction along the thrust (inertia force) applied to the magnets 12 and 13, the thrust (inertia force) is generated.
  • the magnets 12 and 13 can be mechanically fixed. Thereby, it can prevent more reliably that the magnets 12 and 13 shift
  • the magnets 12 and 13 can be obtained simply by fitting the retaining ring 14 into the groove 11 a formed in the shaft 11 or filling the hardened portion 15 between the retaining ring 14 and the thrust magnet 12. Can be prevented from shifting due to thrust (inertial force), so that the manufacturing cost can be suppressed.
  • the shaft 11 and the magnets 12 and 13 become smaller as the linear motor 50 becomes smaller, the bonding surface between the magnets 12 and 13 and the shaft 11 becomes smaller. In this way, even when the adhesion surface between the magnets 12 and 13 and the shaft 11 is small and sufficient adhesion strength is difficult to be exhibited, the retaining rings 14 and the hardened portion 15 can surely shift the magnets 12 and 13. Can be prevented.
  • a plurality of magnets 12 and 13 are arranged in a Halbach arrangement in which thrust magnets are arranged at both ends. Therefore, the magnets 12 and 13 attached to the shaft 11 have fewer radial magnets 13 than the thrust magnets 12.
  • the mover according to the first embodiment that can reduce the number of the radial magnets 13 can reduce the manufacturing cost.
  • the hardening portion 15 may not be provided.
  • the cross-sectional shape of the shaft 11 may be a circular shape as shown in FIG. 2 or a polygonal shape such as a quadrangle.
  • the shaft 11 may have a columnar shape as shown in FIG. 2 or a cylindrical shape.
  • the shaft 11 may be a magnetic material or a non-magnetic material.
  • the mover according to the present invention is useful for a mover of a shaft type linear motor in which the shaft side functions as a mover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

A movable element according to the present invention comprises: a shaft (11) having a rod shape extending in a first direction; and a plurality of magnets (12, 13) having a cylindrical shape through which the shaft (11) is inserted, the plurality of magnets (12, 13) having thrust magnets (12) generating magnetic flux parallel to a first direction and radial magnets (13) generating magnetic flux in the radial direction of the cylindrical shape. The thrust magnets (12) and the radial magnets (13) are alternately arranged side by side so that the thrust magnets (12) are arranged at both ends. Fixing members (14) made of a magnetic material are further provided adjacently further outward along the first direction with respect to each thrust magnet (12) arranged at both ends.

Description

可動子およびリニアモータMover and linear motor
 本発明は、可動子およびリニアモータに関する。 The present invention relates to a mover and a linear motor.
 従来より、可動子が直線的動作を行うリニアモータが用いられている。このようなリニアモータには、固定子に形成された貫通穴に貫通されたシャフトが可動子として動作するシャフト型リニアモータがある。 Conventionally, a linear motor in which the mover performs a linear operation has been used. As such a linear motor, there is a shaft type linear motor in which a shaft penetrating through a through hole formed in a stator operates as a mover.
 シャフト型リニアモータにおいて可動子として機能するシャフトには、円筒形状を呈する複数の磁石が取り付けられる場合がある。例えば、シャフトに取り付けられる磁石には、シャフトの延びる方向と平行な方向に磁束を発生させる磁石(以下、単にスラスト磁石ともいう)と、円筒形状の径方向に磁束を発生させる磁石(以下、単にラジアル磁石ともいう)が用いられる。そして、例えば特許文献1に開示されているように、スラスト磁石とラジアル磁石とが交互に配列された、いわゆるハルバッハ配列で磁石が配列される場合がある。 A shaft that functions as a mover in a shaft type linear motor may have a plurality of cylindrical magnets attached thereto. For example, a magnet attached to a shaft includes a magnet that generates a magnetic flux in a direction parallel to the extending direction of the shaft (hereinafter also simply referred to as a thrust magnet), and a magnet that generates a magnetic flux in a cylindrical radial direction (hereinafter simply referred to as a magnet). (Also referred to as a radial magnet). For example, as disclosed in Patent Document 1, the magnets may be arranged in a so-called Halbach arrangement in which thrust magnets and radial magnets are alternately arranged.
特開2011-147333号公報JP 2011-147333 A
 しかしながら、上記従来の技術によれば、ハルバッハ配列で配列された磁石のうち、端部に配列された磁石から発生する磁束の経路と、中央部に配列された磁石から発生する磁束の経路が異なることで、漏れ磁束が発生しやすくなる。そして、漏れ磁束の発生により、リニアモータの推力特性が悪化する場合があるという問題があった。 However, according to the conventional technique, among the magnets arranged in the Halbach arrangement, the path of the magnetic flux generated from the magnet arranged at the end is different from the path of the magnetic flux generated from the magnet arranged at the center. As a result, leakage magnetic flux is likely to be generated. And there existed a problem that the thrust characteristic of a linear motor may deteriorate by generation | occurrence | production of leakage magnetic flux.
 本発明は、上記に鑑みてなされたものであって、ハルバッハ配列で配列された磁石からの漏れ磁束を抑制し、リニアモータの推力特性の向上を図ることのできる可動子を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a mover that can suppress leakage magnetic flux from magnets arranged in a Halbach array and improve the thrust characteristics of a linear motor. To do.
 上述した課題を解決し、目的を達成するために、本発明は、第1の方向に延びる棒状形状を呈するシャフトと、筒状形状を呈してその内側にシャフトが通される複数の磁石と、を備え、複数の磁石は、第1の方向に平行な磁束を発生させるスラスト磁石と、筒状形状の径方向に磁束を発生させるラジアル磁石と、を有し、スラスト磁石が両端に配置されるようにスラスト磁石とラジアル磁石とが交互に並べて配列され、両側の端部に配置されたそれぞれのスラスト磁石に対して第1の方向に沿ったさらに外側に隣接して配置された磁性体からなる固定部をさらに備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention includes a shaft that has a rod-like shape extending in a first direction, and a plurality of magnets that have a cylindrical shape and through which the shaft passes. The plurality of magnets includes a thrust magnet that generates a magnetic flux parallel to the first direction and a radial magnet that generates a magnetic flux in the radial direction of the cylindrical shape, and the thrust magnets are disposed at both ends. In this way, the thrust magnets and the radial magnets are arranged alternately and are made of a magnetic body arranged adjacent to the outer side along the first direction with respect to the respective thrust magnets arranged at both ends. It further has a fixing part.
 本発明にかかる可動子は、漏れ磁束の発生を抑えてリニアモータの推力特性の向上を図ることのできる可動子を得ることができるという効果を奏する。 The movable element according to the present invention has an effect that it is possible to obtain a movable element capable of improving the thrust characteristics of the linear motor by suppressing generation of leakage magnetic flux.
図1は、本発明の実施の形態1にリニアモータの概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a linear motor according to Embodiment 1 of the present invention. 図2は、可動子の製造手順を示す図である。FIG. 2 is a diagram illustrating a manufacturing procedure of the mover. 図3は、可動子の製造手順を示す図である。FIG. 3 is a diagram illustrating a manufacturing procedure of the mover. 図4は、可動子の製造手順を示す図である。FIG. 4 is a diagram illustrating a manufacturing procedure of the mover. 図5は、可動子の製造手順を示す図である。FIG. 5 is a diagram illustrating a manufacturing procedure of the mover. 図6は、実施の形態1にかかるリニアモータにおいて、可動子が備える磁石から発生する磁束について説明するための図である。FIG. 6 is a diagram for explaining the magnetic flux generated from the magnet included in the mover in the linear motor according to the first embodiment. 図7は、比較例として示すリニアモータにおいて、可動子が備える磁石から発生する磁束について説明するための図である。FIG. 7 is a diagram for describing magnetic flux generated from a magnet included in a mover in a linear motor shown as a comparative example.
 以下に、本発明の実施の形態にかかる可動子およびリニアモータを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a mover and a linear motor according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にリニアモータの概略構成を示す断面図である。リニアモータ50は、ケーシング1に形成された貫通穴1aに貫通されたシャフト11が、矢印Zに示す方向(第1の方向)に沿って直線的に動作するリニアモータである。すなわち、リニアモータ50は、シャフト11側が可動子として機能し、ケーシング1側が固定子として機能するシャフト型リニアモータである。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a schematic configuration of a linear motor according to Embodiment 1 of the present invention. The linear motor 50 is a linear motor in which the shaft 11 pierced through the through hole 1a formed in the casing 1 operates linearly along the direction indicated by the arrow Z (first direction). That is, the linear motor 50 is a shaft type linear motor in which the shaft 11 side functions as a mover and the casing 1 side functions as a stator.
 ケーシング1の内側には、シャフト11を内部に収容可能な空間が形成されている。ケーシング1には、内部に収容したシャフト11の両端を貫通させる貫通穴1aが形成されている。貫通穴1aには、シャフト11を矢印Zに示す方向に沿って移動可能に保持するリニアブッシュ4が取り付けられている。 A space capable of accommodating the shaft 11 is formed inside the casing 1. The casing 1 is formed with a through hole 1a that penetrates both ends of the shaft 11 accommodated therein. A linear bush 4 that holds the shaft 11 movably along the direction indicated by the arrow Z is attached to the through hole 1a.
 ケーシング1の内部には、コイル2とヨーク3とが設けられている。コイル2は、ケーシング1の内部において、シャフト11の周囲を囲むように設けられる。ヨーク3は、ケーシング1の内部において、コイル2の外側に設けられる。上述した、ケーシング1、コイル2、ヨーク3、リニアブッシュ4を有してリニアモータ50の固定子が構成される。 Inside the casing 1, a coil 2 and a yoke 3 are provided. The coil 2 is provided inside the casing 1 so as to surround the periphery of the shaft 11. The yoke 3 is provided outside the coil 2 inside the casing 1. The stator of the linear motor 50 is configured including the casing 1, the coil 2, the yoke 3, and the linear bush 4 described above.
 リニアモータ50の可動子は、シャフト11、磁石12,13、止め輪(スナップリング,固定部)14を有して構成される。図2~図4は、可動子の製造手順を示す図である。以下に、可動子の製造手順の説明に、可動子の詳細な構成の説明も含めて説明する。 The mover of the linear motor 50 includes a shaft 11, magnets 12 and 13, and a retaining ring (snap ring, fixed portion) 14. 2 to 4 are diagrams showing a procedure for manufacturing the mover. Hereinafter, the description of the manufacturing procedure of the mover will be made including the detailed configuration of the mover.
 図2に示すように、シャフト11は矢印Zに示す方向に延びる棒状形状を呈する。シャフト11には、周方向に沿って延びる2本の溝11aが形成されている。図3に示すように、2本の溝11aのうち一方の溝11aに、止め輪14が嵌め込まれる。止め輪14は、鉄等の磁性体で構成される。 As shown in FIG. 2, the shaft 11 has a rod-like shape extending in the direction indicated by the arrow Z. The shaft 11 is formed with two grooves 11a extending along the circumferential direction. As shown in FIG. 3, the retaining ring 14 is fitted into one of the two grooves 11a. The retaining ring 14 is made of a magnetic material such as iron.
 そして、筒状形状を呈する複数の磁石12,13がシャフト11に取り付けられる。より具体的には、筒状形状を呈する複数の磁石12,13の内側にシャフト11が通される。シャフト11に最初に取り付けられる磁石12、13は、予め一方の溝11aに嵌め込まれていた止め輪14に押し当てられる。さらに、複数の磁石12,13が、2本の溝11aの間に互いに隣接するように配置される。 A plurality of magnets 12 and 13 having a cylindrical shape are attached to the shaft 11. More specifically, the shaft 11 is passed inside the plurality of magnets 12 and 13 having a cylindrical shape. The magnets 12 and 13 that are initially attached to the shaft 11 are pressed against a retaining ring 14 that has been previously fitted into one groove 11a. Further, the plurality of magnets 12 and 13 are disposed adjacent to each other between the two grooves 11a.
 シャフト11に取り付けられる磁石12,13は、発生させる磁束の方向がシャフト11の延びる方向と平行となるスラスト磁石12と、発生させる磁束の方向がシャフト11の径方向となるラジアル磁石13とで構成される。 The magnets 12 and 13 attached to the shaft 11 include a thrust magnet 12 in which the direction of the generated magnetic flux is parallel to the direction in which the shaft 11 extends, and a radial magnet 13 in which the direction of the generated magnetic flux is the radial direction of the shaft 11. Is done.
 最初にシャフト11に取り付けられる磁石と最後に取り付けられる磁石がスラスト磁石12である。また、スラスト磁石12とラジアル磁石13とが交互に並べられる。すなわち、シャフト11には、両端がスラスト磁石12となるハルバッハ配列で磁石12,13が取り付けられる。 The first magnet and the last magnet attached to the shaft 11 are the thrust magnets 12. Further, the thrust magnets 12 and the radial magnets 13 are alternately arranged. That is, the magnets 12 and 13 are attached to the shaft 11 in a Halbach array in which both ends are thrust magnets 12.
 図4に示すようにシャフト11にすべての磁石12,13が取り付けられたら、図5に示すように他方の溝11aにも止め輪14が嵌め込まれる。磁石12,13の内周面とシャフト11の外周面とが、接着剤等によって接着される。これにより、磁石12,13がシャフト11に固定される。 When all the magnets 12 and 13 are attached to the shaft 11 as shown in FIG. 4, the retaining ring 14 is fitted into the other groove 11a as shown in FIG. The inner peripheral surfaces of the magnets 12 and 13 and the outer peripheral surface of the shaft 11 are bonded by an adhesive or the like. Thereby, the magnets 12 and 13 are fixed to the shaft 11.
 図1に戻って、一方の止め輪14には、端部に設けられたスラスト磁石12が密着するように配置される。他方の止め輪14とスラスト磁石12との間にはすき間が設けられる。他方の止め輪14とスラスト磁石12との間のすき間には、硬化部15が充填される。硬化部15は、例えば接着剤であり、すき間に充填された後、硬化することで磁石12,13を止め輪14の間に固定させる。硬化部15は、接着剤に限られず、すき間に充填された後で硬化するものであればよい。 Referring back to FIG. 1, one retaining ring 14 is disposed so that the thrust magnet 12 provided at the end is in close contact therewith. A gap is provided between the other retaining ring 14 and the thrust magnet 12. The clearance between the other retaining ring 14 and the thrust magnet 12 is filled with a hardened portion 15. The curing unit 15 is, for example, an adhesive, and is fixed between the retaining rings 14 by being cured after being filled with a gap. The curing unit 15 is not limited to an adhesive, and any curing unit 15 may be used as long as it is cured after filling the gap.
 可動部のうち少なくとも磁石12,13が配列された領域がケーシング1の内部に収容される。また、ケーシング1の内部において、可動子の磁石12,13と固定子のコイル2とが対向する。そして、コイル2に流す電流を制御することで、矢印Zに示す方向に可動子を移動させることが可能となる。 The region where at least the magnets 12 and 13 are arranged in the movable part is accommodated in the casing 1. In the casing 1, the magnets 12 and 13 of the mover and the coil 2 of the stator are opposed to each other. Then, by controlling the current flowing through the coil 2, the mover can be moved in the direction indicated by the arrow Z.
 図6は、実施の形態1にかかるリニアモータ50において、可動子が備える磁石から発生する磁束について説明するための図である。リニアモータ50では、シャフト11上に配列された磁石12,13のうち、両側の端部に配置されたそれぞれのスラスト磁石12に対して、シャフト11の延びる方向に沿ったさらに外側に隣接して、磁性体である止め輪14が設けられている。 FIG. 6 is a diagram for explaining the magnetic flux generated from the magnet included in the mover in the linear motor 50 according to the first embodiment. In the linear motor 50, among the magnets 12 and 13 arranged on the shaft 11, adjacent to the outer side along the extending direction of the shaft 11 with respect to the thrust magnets 12 arranged at both ends. A retaining ring 14 made of a magnetic material is provided.
 端部のスラスト磁石12の外側に止め輪14が設けられることで、端部のスラスト磁石12から発生した磁束は、磁性体である止め輪14の外周面を通る。これより、端部のスラスト磁石12から発生する磁束は、スラスト磁石12の外側にさらにラジアル磁石が設けられているのと同様の経路を通る。これは、端部のスラスト磁石12から発生する磁束が、スラスト磁石12の両側にラジアル磁石13が設けられているのと同様の経路を通ると換言することができる。 By providing the retaining ring 14 outside the thrust magnet 12 at the end, the magnetic flux generated from the thrust magnet 12 at the end passes through the outer peripheral surface of the retaining ring 14 that is a magnetic body. Thus, the magnetic flux generated from the thrust magnet 12 at the end passes through the same path as that in which a radial magnet is further provided outside the thrust magnet 12. In other words, the magnetic flux generated from the thrust magnet 12 at the end passes through the same path as the radial magnet 13 provided on both sides of the thrust magnet 12.
 したがって、端部側で発生する磁束の経路X1,X5と、それ以外の部分、すなわちスラスト磁石12の両側にラジアル磁石13が設けられている部分で発生する磁束の経路X2~X4とで、磁束が空気中を通過する距離の均一化を図ることができる。これにより、可動子の磁石12,13から発生される磁束の経路X1~X5の磁気抵抗の均一化を図り、経路X1~X5を通過する磁束量の均一化を図ることができる。 Therefore, the magnetic flux paths X1 and X5 generated on the end side and the magnetic flux paths X2 to X4 generated in other portions, that is, the portions where the radial magnets 13 are provided on both sides of the thrust magnet 12 are provided. It is possible to make the distance that the air passes through the air uniform. As a result, the magnetic resistances of the paths X1 to X5 of the magnetic flux generated from the magnets 12 and 13 of the mover can be made uniform, and the amount of magnetic flux passing through the paths X1 to X5 can be made uniform.
 図7は、比較例として示すリニアモータ100において、可動子が備える磁石12,13から発生する磁束について説明するための図である。比較例として示すリニアモータ100では、シャフト11上に配列された磁石12,13の両側に磁性体が設けられていない。 FIG. 7 is a diagram for explaining the magnetic flux generated from the magnets 12 and 13 included in the mover in the linear motor 100 shown as the comparative example. In the linear motor 100 shown as a comparative example, no magnetic body is provided on both sides of the magnets 12 and 13 arranged on the shaft 11.
 そのため、端部のスラスト磁石12から発生する磁束の経路Y1,Y5は、それ以外の部分に設けられた磁石12,13から発生する磁束の経路Y2~Y5に比べて、空気中を通過する部分が多くなる。そのため、経路Y1,Y5では、磁気抵抗が大きくなって磁束量が減少し、その分、隣の経路Y2,Y4の磁束量が増加する。これにより、経路Y2,Y4では、ヨーク3の外部に漏れる漏れ磁束が発生しやすくなり、リニアモータ100の推力の低下を招いてしまう場合がある。 Therefore, the paths Y1 and Y5 of the magnetic flux generated from the thrust magnet 12 at the end are portions that pass through the air as compared to the paths Y2 to Y5 of the magnetic flux generated from the magnets 12 and 13 provided at the other portions. Will increase. Therefore, in the paths Y1 and Y5, the magnetic resistance increases and the amount of magnetic flux decreases, and the amount of magnetic flux in the adjacent paths Y2 and Y4 increases accordingly. Thereby, in the paths Y2 and Y4, a leakage magnetic flux that leaks to the outside of the yoke 3 is likely to be generated, and the thrust of the linear motor 100 may be reduced.
 一方、本実施の形態1にかかるリニアモータ50の可動子では、図6を用いて説明したように、経路X1~X5を通過する磁束量の均一化が図られるので、漏れ磁束が発生しにくく、推力特性の向上を図ることができる。 On the other hand, in the mover of the linear motor 50 according to the first embodiment, the amount of magnetic flux passing through the paths X1 to X5 is made uniform as described with reference to FIG. The thrust characteristics can be improved.
 また、最初にシャフト11に取り付けられるスラスト磁石12は、予め溝11aに嵌め込まれた止め輪14に当接させるだけで位置決めがなされる。また、その後に取り付けられる磁石12,13も、その前に取り付けられた磁石12,13に当接させるだけで位置決めがなされる。したがって、磁石12,13をシャフト11に取り付ける際の、位置決め作業の容易化を図ることができる。 Further, the thrust magnet 12 that is first attached to the shaft 11 is positioned only by abutting against a retaining ring 14 that is previously fitted in the groove 11a. Further, the magnets 12 and 13 attached thereafter are also positioned by simply contacting the magnets 12 and 13 attached in front thereof. Therefore, it is possible to facilitate the positioning work when attaching the magnets 12 and 13 to the shaft 11.
 また、磁石12,13を取り付けた後に嵌め込まれる止め輪14とスラスト磁石12との間のすき間には、硬化部15が充填されているので、磁石12,13の寸法誤差によって、止め輪14とスラスト磁石12との間にすき間がある場合にも、磁石12,13をより強固に固定することができる。 In addition, since the hardened portion 15 is filled in the gap between the retaining ring 14 fitted after the magnets 12 and 13 are attached and the thrust magnet 12, the retaining ring 14 and Even when there is a gap between the thrust magnet 12, the magnets 12 and 13 can be more firmly fixed.
 また、シャフト11に取り付けられた磁石12,13には、可動子の移動方向と平行な方向に推力が加わる。また、磁石12,13の内周面とシャフト11の外周面とが、接着剤等によって接着されているが、その接着面には、可動子の加減速時に推力と平行な方向に慣性力が加わる。磁石12,13の内周面とシャフト11の外周面との接着面は、慣性力の加わる方向と平行であるため、慣性力に対して十分な接着強度を発揮しにくい場合がある。 Further, thrust is applied to the magnets 12 and 13 attached to the shaft 11 in a direction parallel to the moving direction of the mover. Further, the inner peripheral surfaces of the magnets 12 and 13 and the outer peripheral surface of the shaft 11 are bonded by an adhesive or the like, and inertia force is applied to the bonded surfaces in a direction parallel to the thrust during acceleration / deceleration of the mover. Join. Since the adhesive surface between the inner peripheral surface of the magnets 12 and 13 and the outer peripheral surface of the shaft 11 is parallel to the direction in which the inertial force is applied, it may be difficult to exhibit sufficient adhesive strength against the inertial force.
 本実施の形態1にかかる可動子では、磁石12,13に加わる推力(慣性力)に沿った方向となる両側に止め輪14または硬化部15が設けられているため、推力(慣性力)に対して機械的に磁石12,13を固定することができる。これにより、可動子に加わる推力(慣性力)によって磁石12,13がずれることをより確実に防ぐことができる。 In the mover according to the first embodiment, since the retaining ring 14 or the hardened portion 15 is provided on both sides in the direction along the thrust (inertia force) applied to the magnets 12 and 13, the thrust (inertia force) is generated. On the other hand, the magnets 12 and 13 can be mechanically fixed. Thereby, it can prevent more reliably that the magnets 12 and 13 shift | deviate by the thrust (inertial force) added to a needle | mover.
 また、例えば、止め輪14に代えてシャフト11の外周面に凸部を形成して、推力(慣性力)によって磁石12,13がずれることを防ぐ場合には、凸部以外の部分を研磨してシャフト11の太さに形成する必要がある。そのため、加工精度の要求や、加工手順の増加により製造コストの増大を招いてしまう場合がある。 Further, for example, when a convex portion is formed on the outer peripheral surface of the shaft 11 instead of the retaining ring 14 to prevent the magnets 12 and 13 from being displaced by thrust (inertial force), the portion other than the convex portion is polished. It is necessary to form the thickness of the shaft 11. For this reason, there is a case where the manufacturing cost increases due to a request for processing accuracy or an increase in processing procedures.
 本実施の形態1では、シャフト11に形成された溝11aに止め輪14を嵌め込んだり、止め輪14とスラスト磁石12との間に硬化部15を充填したりするだけで、磁石12,13が推力(慣性力)によってずれることを防ぐことができるので、製造コストの抑制を図ることもできる。 In the first embodiment, the magnets 12 and 13 can be obtained simply by fitting the retaining ring 14 into the groove 11 a formed in the shaft 11 or filling the hardened portion 15 between the retaining ring 14 and the thrust magnet 12. Can be prevented from shifting due to thrust (inertial force), so that the manufacturing cost can be suppressed.
 また、リニアモータ50が小型化されるほどシャフト11や磁石12,13も小型になるため、磁石12,13とシャフト11との接着面が小さくなる。このように磁石12,13とシャフト11との接着面が小さくなって十分な接着強度が発揮されにくい場合であっても、止め輪14や硬化部15によって磁石12,13のずれをより確実に防ぐことができる。 Moreover, since the shaft 11 and the magnets 12 and 13 become smaller as the linear motor 50 becomes smaller, the bonding surface between the magnets 12 and 13 and the shaft 11 becomes smaller. In this way, even when the adhesion surface between the magnets 12 and 13 and the shaft 11 is small and sufficient adhesion strength is difficult to be exhibited, the retaining rings 14 and the hardened portion 15 can surely shift the magnets 12 and 13. Can be prevented.
 また、本実施の形態1では、両端にスラスト磁石が配置されるハルバッハ配列で複数の磁石12,13が配列されている。したがって、シャフト11に取り付けられる磁石12,13は、スラスト磁石12よりもラジアル磁石13の個数のほうが少なくなる。一般的に、スラスト磁石12よりもラジアル磁石13のほうが高価であるため、ラジアル磁石13の個数を抑えることのできる本実施の形態1にかかる可動子では、製造コストの抑制を図ることができる。 In the first embodiment, a plurality of magnets 12 and 13 are arranged in a Halbach arrangement in which thrust magnets are arranged at both ends. Therefore, the magnets 12 and 13 attached to the shaft 11 have fewer radial magnets 13 than the thrust magnets 12. In general, since the radial magnet 13 is more expensive than the thrust magnet 12, the mover according to the first embodiment that can reduce the number of the radial magnets 13 can reduce the manufacturing cost.
 なお、後から取り付けられる止め輪14とスラスト磁石12との間にすき間が形成されない場合には、硬化部15を設けなくともよい。また、シャフト11の断面形状は、図2に示すような円形形状であってもよいし、四角形のような多角形形状であってもよい。また、シャフト11は、図2に示すような柱状形状であってもよいし、筒状形状であってもよい。また、シャフト11は、磁性体であってもよいし、非磁性体であってもよい。 In addition, when a gap is not formed between the retaining ring 14 and the thrust magnet 12 to be attached later, the hardening portion 15 may not be provided. Further, the cross-sectional shape of the shaft 11 may be a circular shape as shown in FIG. 2 or a polygonal shape such as a quadrangle. Further, the shaft 11 may have a columnar shape as shown in FIG. 2 or a cylindrical shape. The shaft 11 may be a magnetic material or a non-magnetic material.
 以上のように、本発明にかかる可動子は、シャフト側が可動子として機能するシャフト型リニアモータの可動子に有用である。 As described above, the mover according to the present invention is useful for a mover of a shaft type linear motor in which the shaft side functions as a mover.
 1 ケーシング、1a 貫通穴、2 コイル、3 ヨーク、4 リニアブッシュ、11 シャフト、11a 溝、12 スラスト磁石、13 ラジアル磁石、14 止め輪(固定部)、15 硬化部、50,100 リニアモータ。 1 casing, 1a through hole, 2 coil, 3 yoke, 4 linear bush, 11 shaft, 11a groove, 12 thrust magnet, 13 radial magnet, 14 retaining ring (fixed part), 15 hardened part, 50, 100 linear motor.

Claims (4)

  1.  第1の方向に延びる棒状形状を呈するシャフトと、
     筒状形状を呈してその内側に前記シャフトが通される複数の磁石と、を備え、
     前記複数の磁石は、前記第1の方向に平行な磁束を発生させるスラスト磁石と、前記筒状形状の径方向に磁束を発生させるラジアル磁石と、を有し、
     前記スラスト磁石が両端に配置されるように前記スラスト磁石と前記ラジアル磁石とが交互に並べて配列され、
     両側の端部に配置されたそれぞれの前記スラスト磁石に対して前記第1の方向に沿ったさらに外側に隣接して配置された磁性体からなる固定部をさらに備えることを特徴とする可動子。
    A shaft having a rod-like shape extending in a first direction;
    A plurality of magnets exhibiting a cylindrical shape and through which the shaft passes,
    The plurality of magnets include a thrust magnet that generates a magnetic flux parallel to the first direction, and a radial magnet that generates a magnetic flux in the radial direction of the cylindrical shape,
    The thrust magnets and the radial magnets are alternately arranged so that the thrust magnets are arranged at both ends,
    A mover further comprising: a fixed portion made of a magnetic body disposed adjacent to the outer side along the first direction with respect to each of the thrust magnets disposed at both end portions.
  2.  前記シャフトには、前記固定部が設けられる位置に周方向に沿って溝が形成され、
     前記固定部は、前記溝に嵌め込まれる止め輪であることを特徴とする請求項1に記載の可動子。
    A groove is formed in the shaft along the circumferential direction at a position where the fixing portion is provided,
    The mover according to claim 1, wherein the fixed portion is a retaining ring fitted into the groove.
  3.  前記固定部のうち、一方の固定部には前記スラスト磁石が密着するように配置され、他方の固定部には前記スラスト磁石との間にすき間が設けられ、
     前記すき間に充填されて硬化した硬化部をさらに備えることを特徴とする請求項2に記載の可動子。
    Among the fixed parts, one fixed part is arranged so that the thrust magnet is in close contact, and the other fixed part is provided with a gap between the thrust magnet,
    The mover according to claim 2, further comprising a hardened portion that is filled and hardened in the gap.
  4.  請求項1~3のいずれか1つに記載された可動子と、
     前記可動子を前記第1の方向に沿って移動させる固定子と、を備え、
     前記固定子は、
     前記シャフトのうち少なくとも前記磁石が配列された領域を内部に収容し、前記シャフトの両端を貫通させる貫通穴が形成されたケーシングと、
     前記ケーシングの内部に設けられて前記シャフトの周囲を囲むコイルと、
     前記ケーシングの内部であって前記コイルの外側に設けられたヨークと、を有することを特徴とするリニアモータ。
    A mover according to any one of claims 1 to 3,
    A stator that moves the mover along the first direction, and
    The stator is
    A casing in which at least the magnet is arranged in the shaft, and a through-hole is formed to penetrate both ends of the shaft;
    A coil provided inside the casing and surrounding the shaft;
    A linear motor comprising: a yoke provided inside the casing and outside the coil.
PCT/JP2013/061097 2013-04-12 2013-04-12 Movable element and linear motor WO2014167720A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/061097 WO2014167720A1 (en) 2013-04-12 2013-04-12 Movable element and linear motor
KR1020157031673A KR20150127748A (en) 2013-04-12 2013-04-12 Movable element and linear motor
CN201380075384.7A CN105103422A (en) 2013-04-12 2013-04-12 Movable element and linear motor
JP2015511055A JP5872108B2 (en) 2013-04-12 2013-04-12 Mover and linear motor
TW102139040A TWI500238B (en) 2013-04-12 2013-10-29 Mover and linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061097 WO2014167720A1 (en) 2013-04-12 2013-04-12 Movable element and linear motor

Publications (1)

Publication Number Publication Date
WO2014167720A1 true WO2014167720A1 (en) 2014-10-16

Family

ID=51689148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061097 WO2014167720A1 (en) 2013-04-12 2013-04-12 Movable element and linear motor

Country Status (5)

Country Link
JP (1) JP5872108B2 (en)
KR (1) KR20150127748A (en)
CN (1) CN105103422A (en)
TW (1) TWI500238B (en)
WO (1) WO2014167720A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103888A (en) * 2014-11-27 2016-06-02 山洋電気株式会社 Linear motor
US11717607B2 (en) 2014-12-22 2023-08-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device with electromagnetic drive unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6667403B2 (en) 2016-08-29 2020-03-18 日本電産コパル株式会社 Vibration motor
TWI664795B (en) * 2017-03-24 2019-07-01 日商日立金屬股份有限公司 Linear motor
WO2019151232A1 (en) * 2018-02-01 2019-08-08 アダマンド並木精密宝石株式会社 Linear vibration actuator
CN111769713A (en) * 2020-07-21 2020-10-13 西安工业大学 Coreless cylindrical permanent magnet synchronous linear motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079081U (en) * 1993-06-07 1995-02-07 ティーディーケイ株式会社 Movable magnet type actuator
JP2001008430A (en) * 1999-06-16 2001-01-12 Nikon Corp Motor device, stage device, and aligner
JP2001320868A (en) * 2000-05-02 2001-11-16 Railway Technical Res Inst Linear actuator
JP2010158140A (en) * 2009-01-05 2010-07-15 Toshiba Mach Co Ltd Linear motor
JP2010193584A (en) * 2009-02-17 2010-09-02 Tamagawa Seiki Co Ltd Trapezoidal magnet skew structure for cylindrical linear motor with core
JP2011147333A (en) * 2010-01-15 2011-07-28 Maxon Motor Ag Linear drive
WO2012137241A1 (en) * 2011-04-04 2012-10-11 三菱電機株式会社 Linear motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434549B2 (en) * 1974-06-03 1979-10-27
JP3483959B2 (en) * 1994-10-14 2004-01-06 Tdk株式会社 Magnet movable linear actuator and pump
US6800966B2 (en) * 2000-12-26 2004-10-05 Bei Technologies, Inc. Linear brushless DC motor with ironless armature assembly
CN100499325C (en) * 2006-09-28 2009-06-10 哈尔滨工业大学 Axially magnetizing circular column permanent-magnet linear motor
JP5422175B2 (en) * 2008-11-05 2014-02-19 三菱重工業株式会社 Linear actuator
CN101741215B (en) * 2008-11-20 2012-07-04 中国科学院宁波材料技术与工程研究所 Permanent magnet synchronous linear motor
CN101741213B (en) * 2010-02-21 2012-05-23 哈尔滨工业大学 Cylindrical permanent magnet linear motor
CN101795048B (en) * 2010-03-04 2011-08-24 哈尔滨工业大学 Cylindrical permanent magnet linear motor with high thrust density
CN101938208A (en) * 2010-09-10 2011-01-05 中国科学院宁波材料技术与工程研究所 Axial linear motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079081U (en) * 1993-06-07 1995-02-07 ティーディーケイ株式会社 Movable magnet type actuator
JP2001008430A (en) * 1999-06-16 2001-01-12 Nikon Corp Motor device, stage device, and aligner
JP2001320868A (en) * 2000-05-02 2001-11-16 Railway Technical Res Inst Linear actuator
JP2010158140A (en) * 2009-01-05 2010-07-15 Toshiba Mach Co Ltd Linear motor
JP2010193584A (en) * 2009-02-17 2010-09-02 Tamagawa Seiki Co Ltd Trapezoidal magnet skew structure for cylindrical linear motor with core
JP2011147333A (en) * 2010-01-15 2011-07-28 Maxon Motor Ag Linear drive
WO2012137241A1 (en) * 2011-04-04 2012-10-11 三菱電機株式会社 Linear motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103888A (en) * 2014-11-27 2016-06-02 山洋電気株式会社 Linear motor
US11717607B2 (en) 2014-12-22 2023-08-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device with electromagnetic drive unit

Also Published As

Publication number Publication date
JPWO2014167720A1 (en) 2017-02-16
KR20150127748A (en) 2015-11-17
TW201440388A (en) 2014-10-16
JP5872108B2 (en) 2016-03-01
TWI500238B (en) 2015-09-11
CN105103422A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5872108B2 (en) Mover and linear motor
US10399122B2 (en) Vibration motor
JP4661261B2 (en) Rotor structure of rotating electrical machine
JP5936425B2 (en) Motor with brake
JP6314833B2 (en) Actuator and manufacturing method of actuator
JP5602815B2 (en) Rotor having a protrusion for positioning a permanent magnet and electric motor comprising such a rotor
JP2015122842A (en) Rotor for motor with magnet, motor, and manufacturing method of rotor
JP2016029880A (en) Magnet unit and method of manufacturing magnet unit
JPWO2016185829A1 (en) Rotor, rotating electric machine, and method of manufacturing rotor
JP2015104180A (en) Rotor of rotary electric machine
US10476359B2 (en) Motor rotor and method for manufacturing the same
JP5932141B2 (en) Rotating machine rotor
JP5359452B2 (en) Brushless motor
JP5989415B2 (en) Method for assembling cylindrical magnetic circuit
JP6556589B2 (en) Linear motor
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
JP5852418B2 (en) Rotor and motor
JP7295432B2 (en) Manufacturing method for stator and eddy current reduction gear
JP5818949B2 (en) Rotating electric machine
JP2019054684A (en) motor
JP2021158853A (en) Plate laminate, lamination iron core, and motor
JP2016032424A (en) Manufacturing method of rotor core
JP3187632U (en) Hybrid stepping motor rotor
JP2015173580A (en) linear motor
JP2015008557A (en) Rotor for motor and motor using the rotor for motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075384.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031673

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13882010

Country of ref document: EP

Kind code of ref document: A1