[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014163386A1 - 수력 발전장치 및 수력 발전장치용 수차 - Google Patents

수력 발전장치 및 수력 발전장치용 수차 Download PDF

Info

Publication number
WO2014163386A1
WO2014163386A1 PCT/KR2014/002804 KR2014002804W WO2014163386A1 WO 2014163386 A1 WO2014163386 A1 WO 2014163386A1 KR 2014002804 W KR2014002804 W KR 2014002804W WO 2014163386 A1 WO2014163386 A1 WO 2014163386A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
aberration
wings
main body
water inlet
Prior art date
Application number
PCT/KR2014/002804
Other languages
English (en)
French (fr)
Inventor
박성구
Original Assignee
Park Sungkoo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130036519A external-priority patent/KR20140061204A/ko
Application filed by Park Sungkoo filed Critical Park Sungkoo
Publication of WO2014163386A1 publication Critical patent/WO2014163386A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a hydroelectric generator and aberrations for a hydroelectric generator.
  • Common power generation methods include hydroelectric power generation, fossil fuel-fired power generation, and nuclear power-based nuclear power generation. These power generation methods require large-scale power generation facilities and enormous amounts of energy sources. It causes problems such as constraints, environmental pollution and resource depletion.
  • power supply is performed using a small hydro power generation having a power generation amount of 200 kW or less.
  • Small-scale power generation is a method of generating electricity by using the flow of nearby small rivers.It is an efficient run of river type in the upstream areas where river slopes are urgent depending on the power generation method, An efficient dam type and a tunnel type suitable for a river with severe bends due to a mixed method of a waterway type and a dam type, etc. There are impact aberration type and reaction type aberration type.
  • Impact aberrations include Pelton aberrations, Turgo aberrations, and Ossberger aberrations.
  • Recoil aberrations include Kaplan, Tubular, Bulb, and Rim.
  • Propeller aberrations such as Rim) and Francis aberrations.
  • the hydropower generation method which is relatively less constrained in the installation location and capable of continuously generating electricity, is known to be very useful where small power is required, such as rural areas and mountainous areas, and the Republic of Korea Patent Publication No. 1991-0001971 No. "Small hydroelectric power generation device that produces electric power using river flow” and Korean Utility Model Publication No. 1993-8538, "Small hydroelectric power generation device using hydrological equipment of dam” has been filed.
  • the hydrophobic power generation apparatus described in Korean Patent Publication No. 1991-0001971 is a waterwheel generator of a watermill type that meshes with a beam installed in water, and rotates the generator using a drop of about 2.5 m. Therefore, a topographic location condition having a large drop in the river channel is required, and the topography affects the power generation efficiency.
  • Republic of Korea Utility Model Publication No. 1993-8538 is a structure that requires a free fall because the installation of a reservoir dam, the generator installed in the water gate installed in the reservoir dam to obtain power by using water waterproof from the dam. And it is possible to generate power only when the water is waterproof in the dam, so it is difficult to continuously develop.
  • the conventional hydroelectric power generation device is a structure that is difficult to operate in the topographical terrain, such as farming waterway, horizontal waterway, which is not large, it is not very helpful in the area that really needs to benefit from hydroelectric power generation.
  • the technical problem to be achieved by the present invention is to improve the power generation efficiency of the hydroelectric generator.
  • Hydroelectric generator includes a body including a water inlet through which water is introduced and a water outlet through which the water introduced into the water inlet is discharged, and by water introduced onto the body and introduced into the water inlet.
  • Aberrations to rotate to generate rotational force to generate electricity using the rotational force wherein the aberration includes a plurality of wings whose positions are changed by water introduced into the water inlet, and the plurality of wings are spaced apart
  • a rotation shaft that rotates by a change in position of the plurality of blades to generate the rotational force, and an angle formed by each of the plurality of blades and an installation surface of the rotation shaft where each of the blades is installed is 106 to 165 degrees.
  • Each of the plurality of wings may further include a reinforcing bar positioned at at least one of an edge portion and an inner portion of the hydraulic pressure application surface that the water introduced through the water inlet contacts.
  • the reinforcing bar located at one end of each wing may include an opening.
  • Each of the plurality of vanes may be an arc-shaped curved plate that protrudes convexly in the rotational direction of the aberration.
  • Each of the plurality of wings may include at least one chamfer at the edge portion.
  • the rotation axis may have a circular cross-sectional shape or a polygonal cross-sectional shape.
  • the rotating shaft may include a plurality of installation grooves into which the plurality of wings are inserted.
  • each of the plurality of vanes may be located one on a flat surface of the axis of rotation.
  • the axis of rotation may have a cross-sectional shape of 5 to 12 polygons.
  • the upper surface of the body adjacent to the water inlet is preferably an inclined surface inclined along the longitudinal direction of the body.
  • the distance from the lower surface to the upper surface of the main body is preferably reduced toward the water inlet toward the water outlet.
  • Hydroelectric aberration is a plurality of wings that are changed in position by the incoming water, and the plurality of wings are spaced apart to rotate by a change in the position of the plurality of wings to generate a rotational force
  • An angle formed by an installation surface of each of the plurality of blades and the rotary shaft on which the respective blades are installed, including the rotation shaft, is 106 to 165 degrees.
  • Each of the plurality of wings may further include a reinforcing rod positioned at at least one of an edge portion and an inner portion of the hydraulic pressure-applying surface to which the incoming water is in contact.
  • the reinforcing bar located at one end of each wing may include an opening.
  • Each of the plurality of vanes may be an arc-shaped curved plate that protrudes convexly in the rotational direction of the aberration.
  • Each of the plurality of wings may include at least one chamfer at the edge portion.
  • the rotation axis may have a cross-sectional shape of a pentagonal to octagonal.
  • the passage of the water inlet is narrower along the longitudinal direction of the main body, so that the magnitude of the hydraulic pressure applied to the wing located in the main body increases. For this reason, the rotational force of the aberration increases, and the efficiency of the hydroelectric generator is further increased.
  • FIG. 1 is an exploded perspective view of an example of a hydroelectric power generator according to an embodiment of the present invention.
  • FIG. 2 is a perspective view when the components other than the cover are coupled to the hydroelectric generator shown in FIG. 1.
  • FIG. 3 is a cross-sectional view of the hydroelectric generator shown in FIG. 2 taken along the line III-III.
  • FIG. 4 is a perspective view of an example of aberration used in a hydroelectric generator according to an embodiment of the present invention.
  • FIG. 5 is a schematic side view of the aberration shown in FIG. 4.
  • FIG. 6 is a perspective view of another example of the aberration used in the hydroelectric generator according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of another example of the aberration used in the hydroelectric generator according to an embodiment of the present invention.
  • FIG. 8 is a view schematically showing an operating state of a hydroelectric generator according to an embodiment of the present invention.
  • FIG. 9 is a view for explaining the relationship between the inclination angle of the blade and the water acting on the blade, (a) is a view when the blade is installed perpendicular to the installation surface of the rotary shaft 90 degrees, (b) is It is a figure when a blade is installed at 130 degree with respect to an installation surface.
  • FIG. 10 is a view showing an operating state of the hydroelectric generator according to an embodiment of the present invention.
  • the hydroelectric generator 100 may include a main body 110 installed in a waterway, an aberration 120 installed on the main body 110, and an aberration in the main body 110.
  • the cover 160 is installed on the cover 110 and covers a part of the main body 110 in which the aberration 120 is incorporated.
  • the main body 110 has a rectangular planar shape, and includes both side surfaces S11, lower surfaces S12, and upper surfaces S13a and S13b.
  • the inner space of the main body 110 is empty, and the front and rear are open, water is introduced into the open front and then passed through the main body 110 to be output to the rear and discharged to the outside.
  • the open front serves as a water inlet 112 through which water is introduced and the open back serves as a water outlet 113 through which water is discharged.
  • the upper surfaces S13a and S13b of the main body 110 facing the lower surface S12 do not cover the entire upper portion, but are disposed on the upper portion adjacent to the water inlet 111 and the first upper surface S13a and the water outlet ( The second upper surface S13a located in the upper part adjacent to 112 is provided, and the center part between the first and second upper surfaces S13a and S13b is opened.
  • the upper part 111, S13a, S13b does not have the opening part OP1 which exposes a part of lower surface S11, and this opening part OP1 exists in the upper center part of the main body 110, Through the aberration 120 is installed inside the main body 110.
  • the first upper surface S13a is an inclined surface having an inclined surface
  • the second lower surface 13b has a flat surface
  • the first upper surface S13a is connected to the inclined portion a1 and the inclined portion a1 inclined toward the lower surface S12 and stands in a direction crossing the lower surface S11 (eg, a vertical direction).
  • a vertical portion a2 is provided.
  • the inclined portion (a1) serves as a guide plate for inducing the flow of water
  • the vertical portion (11b) serves as a locking jaw to prevent the separation of the cover 160
  • the vertical portion (11b) is a locking jaw.
  • the inclined portion 11a and the vertical portion 11b are connected seamlessly, so that the inclined portion 11a and the vertical portion 11b are integrally formed.
  • the height H1 of the main body 110 provided with the inclined portion 11a that is, the lower surface S11 to the upper surface S13a.
  • the distance decreases toward the water outlet 112, so that the height H1 of the main body 110 decreases from the water inlet 111 to the water outlet 112.
  • the height H1 of the portion where the inclined portion 11a is provided has a size smaller than the height H2 of the portion of the main body 110 in which the inclined portion 11a is not provided.
  • the thickness H1 of the main body 110 provided with the inclined portion 11a also varies depending on the position, and the thickness H1 decreases toward the water outlet 112.
  • the thickness H1 of the discharge passage of the water decreases toward the center portion of the main body 110 rather than the thickness H1 of the end portion of the water inlet 111, so that the inclined portion of the water inlet 111 initially enters the water inlet 111.
  • the pressure of water flowing through (11a) into the center portion increases.
  • the pressure of the water supplied to the aberration 120 installed in the opening OP1 is increased to increase the rotational speed of the aberration 120.
  • the water introduced into the main body 110 may be prevented from rising upwards, thereby preventing each phenomenon of the aberration 120.
  • the contact with water 121 reduces the degree of dispersion of water pressure applied to the wings 121. For this reason, the pushing force of the wing 121 is increased and the rotational force of the aberration 120 is improved.
  • the aberration 120 has a plurality of vanes 121 and a plurality of vanes 121 are spaced apart by a set distance, each of which has a rotating shaft 122, each of which is located on a pair of supports 150.
  • the spacing between two adjacent wings 121 is constant, but is not limited thereto, and in an alternative example, the spacing between two adjacent wings 121 may be different.
  • the plurality of wings 121 all have the same shape, and each wing 121 may have a plate shape having a rectangular planar shape.
  • the plurality of blades 121 are positioned along the rotation shaft 122 and are installed on the outer circumferential surface of the rotation shaft 122 through a fastening device such as welding or bolt.
  • Each vane 121 is a smooth curved plate that is curved in an arc shape projecting convexly toward the rotation direction A of the aberration 120 and is not formed with irregularities, and one surface of the curved plate, that is, the water inlet A reinforcing rod 121b is provided on a surface (hereinafter, referred to as a “hydraulic pressure application surface”) 121a to which water pressure is applied in direct contact with water introduced through the 111. At this time, each wing 121 is bent toward both sides around the center portion to form a curved plate.
  • each vane 121 is provided with the hydraulic pressure application surface 121a and the reinforcement stand 121b.
  • the reinforcing rod 121b completely surrounds the edge portion of the hydraulic pressure applying surface 121a, but is not limited thereto and may be located only at a portion of the edge portion of the hydraulic pressure applying surface 121a.
  • reinforcing rod 121b is located at a part of the inner portion of the hydraulic pressure applying surface 121a, in an alternative example, the reinforcing rod 121b located at the inner portion of the hydraulic pressure applying surface 121a may be omitted.
  • the edge portion of the hydraulic pressure applying surface 121a is surrounded by the reinforcing rod 121b, and the inner portion of the hydraulic pressure applying surface 121a surrounded by the reinforcing rod 121b is divided into a plurality of regions.
  • the number of regions divided by the reinforcing bar 121b is four in this example, the present invention is not limited thereto and may be added or subtracted.
  • the installation height of the reinforcing rod 121b provided on the hydraulic pressure applying surface 121a is the same regardless of the position.
  • the hydraulic pressure applying surface 121a and the opposite surface 121c which is the opposite surface of the hydraulic pressure applying surface 121a by the wing 121 of the curved plate, also have a curved shape protruding toward the rotation direction A of the aberration 120. Since it has, the thickness (that is, thickness in the vertical direction) H3 of the reinforcement stand 121b differs according to a position. That is, the thickness H3 of the reinforcing rod 121b increases from the edge of each wing 121 toward the center.
  • the water accumulated in the plurality of areas is moved to the center portion of the hydraulic pressure applying surface 121a to further increase the rotational force of the wing 121.
  • one end 21a of the wing 121 that is, the other end 21b which is the end of the wing 121 provided on the rotation shaft 122 Reinforcing bar (121b) located at the end located in is omitted, in addition to at least one chamfer 123 to one end 21a and the side of the wing 121, that is, the edge portion of each wing 121 Equipped.
  • the edge part of the hydraulic pressure applying surface 121a is opened through the one end 21a in which the reinforcing rod 121b was omitted instead of being completely surrounded by the reinforcing rod 121b.
  • At least one chamfer 123 is located in the center portion of the one end portion 21a located between both side edge portions and both side edges of each wing 121, but the number of such chamfer 123 The formation position can be changed as needed.
  • At least one chamfer 123 is provided at the edge portion of the wing 121 as shown in FIG. 6, in an alternative example, at least a portion of the reinforcement part 121b located on the import application surface 121a of the wing 121. Can be omitted.
  • another example of the wing 121 includes a reinforcing part 121b positioned at an edge of one end 21a of each wing 121 having an opening 124 which is a water passage. have.
  • the size of the contact surface which the wings 121 and water contact with each other can be obtained by the water is reduced, the flow rate passing through the inside of the main body 110 To reduce its impact. For this reason, the flow rate passing through the main body 110 by the aberration 120 reduces the amount of decrease.
  • the flow rate of the front hydroelectric generator 100 is prevented from being reduced, and thus, each hydro power generator connected in series due to the decrease of the flow rate.
  • the power generation amount of 100 is prevented from decreasing.
  • the wing 121 is a curved plate, but is not limited thereto, and in an alternative example, each wing 121 may be a flat surface that is not inclined and at least a reinforcing rod 121b provided on the hydraulic pressure applying surface 121a. Some may also be omitted. In this case, the manufacturing of the wing 121 is easy, and the manufacturing time and manufacturing cost of the hydroelectric generator are reduced.
  • the rotating shaft 122 extends in a bar shape and has a polygonal cross-sectional shape as shown in FIGS. 1 to 7 or a circular cross-sectional shape as shown in FIG. 8.
  • a plurality of installation grooves 22 are formed in the outer peripheral surface portion of the rotary shaft 122 on which each blade 121 is mounted, but is not limited thereto. Do not.
  • each blade 121 is inserted into the installation groove 22, so that the plurality of blades 121 are installed on the rotation shaft 122 by welding or the like. Installation of the wing 121 becomes easy.
  • the rotation shaft 122 rotates in the same direction (A) as the rotation direction of the aberration 120 as the aberration 120 rotates by moving the position in the corresponding direction (A) by the water flowing into the main body 110.
  • the rotation speed of the rotation shaft 122 is determined according to the rotation speed of the aberration 120.
  • the main body 110 is inserted in the support part 150 and positioned transversely in the horizontal direction (that is, the direction orthogonal to the longitudinal direction that is the extension direction of the main body 110) on the upper ends of both side surfaces S11 of the main body 110. .
  • a part of the aberration 120 is located inside the main body 110 through the opening part OP1, and at this time, a part of the aberration 120 located inside the main body 110 is approximately about the rotation axis 122.
  • the portion of the aberration 120, which is located at the lower portion of the body 110, is located at the upper portion of the upper portion of the rotation shaft 122.
  • the rotation shaft 122 when the rotation shaft 122 has a polygonal cross-sectional shape, a portion where the wing 121 is installed has a polygonal cross-sectional shape, while a portion of the rotation shaft 122 inserted into the support 150 is circular. It has a cross-sectional shape. As a result, the frictional force between the rotation shaft 122 and the support part 150 is reduced to reduce the amount by which the rotational force of the rotation shaft 122 is reduced.
  • the present invention is not limited thereto, and a portion of the rotation shaft 122 connected to the support 150 may also have a polygonal cross-sectional shape.
  • the thickness of the portion of the rotary shaft 122 inserted into the support 150 is smaller than the thickness (that is, the diameter) of the portion of the rotary shaft 122 on which the wing 121 is installed, so that the coupling with the support 150 can be easily performed. To help.
  • the virtual flat surface DS1 formed by the reinforcing rod 121b located on the hydraulic pressure applying surface 121a of the outer circumferential surface portion of the rotary shaft 122 provided with each blade 121 and the other end portion of each blade 121 ( 21b), the angle ⁇ formed by the virtual surface DS2 parallel to the lower surface S11 of the main body 110 is 91 degrees to 165 degrees.
  • the angle ⁇ is 106 degrees to 165 degrees.
  • the vane 121 Since the vane 121 is inclined in the rotation direction A with respect to the imaginary surface DS2 which is the installation surface on which the vane 121 is installed at such an angle ⁇ , the vane 121 is caused by the water pressure applied to the vane 121 by the flow of water. While pushing, the aberration 120 can be rotated more easily.
  • the angle ⁇ is 91 degrees or more
  • the resistance of the water received by the wing 121 is further reduced, so that the rotation operation of the aberration 120 is more smoothly performed.
  • the angle ⁇ is 165 degrees or less
  • the degree of inclination of the wing 121 is not excessive and flowed into the main body 110. The water pressure of the water is applied without a great loss, the rotation of the water wheel 120 is made smoothly.
  • the vanes 121 are positioned one on each side 231 of the flat rotation shaft 122. At this time, the number of faces 231 is equal to the number of angles forming a polygon.
  • the number of polygons of the polygon of the rotation shaft 122 may vary depending on the size of the angle ⁇ formed between the installation surface DS2 of the wing 121 and the virtual flat surface DS1, for example, five pieces. There may be from twelve to twelve, and thus, the rotation shaft 122 may have a cross-sectional shape of a five to twelve hexagonal shape.
  • the rotation shaft 122 When the rotation shaft 122 is smaller than the pentagon, the number of the wings 121 to be installed becomes five or less, so that the spacing between two adjacent wings 121 is increased. Therefore, the water pressure is not applied to the wing 121 by the reduced water quantity during the dry season, so that the smooth rotation of the aberration 120 may be difficult.
  • the number of the wings 121 installed on the wing shaft 123 becomes a set number (eg, five) or more, so that the gap between the wings 121 is increased. It decreases below the set interval, the water quantity is reduced during the dry season, even if the water pressure is reduced, the rotation of the aberration 120 is made smoothly. For this reason, the hydroelectric generator 100 according to the present example is smoothly rotated by the aberration 120 even though the quantity of water decreases due to the reduced spacing between the wings 121, so that the generated power does not decrease.
  • the number of the rotating shaft 122 is larger than the octagon 12
  • the number of the blades 121 installed on the rotating shaft 122 is too large, the manufacturing cost and manufacturing time according to the production of the blade increases, the water resistance increases, so that the aberration 120 Adversely affects the smooth rotation of the.
  • the rotating shaft 122 is 12 or less in size, the increase in manufacturing time and manufacturing cost due to the number of wings installed on the rotating shaft 122 is prevented and the resistance of water applied to the wings 121 is reduced.
  • the number of wings W11-W18 and W21-W28 provided on the rotation shaft 122 is equal to eight, and (a) is a diagram of aberration according to the comparative example, and the mounting surface DS2 and each The size of the angle ⁇ formed by the blades W11-W18 is 90 degrees, and (b) is a diagram of aberration according to an embodiment of the present invention, wherein the mounting surface DS2 and each blade W21-W28 are The magnitude of the angle ⁇ is 130 degrees.
  • each of the corresponding blades W21-W28 in (b) is inclined 40 degrees further toward the channel 200 compared to the respective blades W11-W18 in FIG. 9A.
  • each wing (eg, W23) of FIG. 9 (b) is formed before the corresponding wing (eg, W13) of (a) of the waterway 200.
  • the vane W23 is pushed in the water by the water pressure and is pushed in the water flow direction, and the rotating shaft 122 rotates.
  • the rotation speed of the rotation shaft 122 increases in the case of (b) than in the case of (a) of FIG. 9, and thus, the rotation speed of the rotation shaft 122 also becomes faster than the case of (b).
  • the angle of inclination of the surface in contact with the water in the wing (W14) shown in (a) when incident into the water of the two wings (for example, W14, W24) channel 200 located at the same position of the rotary shaft 122 (B) becomes smaller than the inclination angle of the corresponding surface of the said blade W24.
  • the inclination angle of the blade W24 of (b) becomes closer to 90 degrees with respect to the bottom surface of the channel 20 than in the case of (a).
  • the water in contact with the surface of the wing (W24) is more generated than the case of (b) in the upward direction along the wing (W24), the pushing force of the wing (W14) Is smaller than the force acting on the blade W24.
  • the amount of water in contact with the wing W14 of (a) is less than the amount of water in contact with the wing W24 of (b), and the magnitude of the hydraulic pressure acting on the wing W14 is equal to the wing W24 of (b). Much less than the magnitude of the working hydraulic pressure.
  • each wing e.g., W15, W24
  • the magnitude of the adverse effect of the wing e.g., W14, W23
  • (A) is much greater than
  • the magnitude of the hydraulic pressure acting on the blade W24 of (b) is greater than the magnitude of the hydraulic pressure acting on the blade W15 of (a). It can be seen that easily made quickly.
  • Each of the pair of supports 150 has a through hole 151 into which the rotation shaft 122 of the aberration 120 is inserted, and a bearing is built in the through hole 151, and the aberration 121 is provided.
  • the rotating shaft 122 is inserted into the through hole 151 and penetrates the through hole 151 and is connected to the speed increaser 130.
  • the rotation shaft 122 is smoothly rotated within the through hole 151 by the operation of the bearing.
  • the pair of support parts 150 are positioned on the pedestal 152 located on the upper end of the side (S11) of the main body 110.
  • the speed increaser 130 is provided with a plurality of acceleration gears to increase the rotational speed of the rotary shaft 122 to a predetermined acceleration ratio and transmit it to the generator 140.
  • the generator 140 is connected to the speed increaser 130 to generate electricity using the rotational force of the rotation shaft 122 transmitted through the speed increaser 130.
  • the generator 140 converts the rotational force of the aberration 120 into electrical energy to generate and output power of a corresponding magnitude.
  • the cover 160 covers the opening OP1 of the main body 110 to prevent the accumulation of foreign matter such as fallen leaves that adversely affects the rotation of the aberration 120 inside the main body 110 where the aberration 120 is located. do.
  • the cover 160 is positioned on the upper surfaces S13a and S13b of the main body 110.
  • the cover 160 is located between the inclined portion a1 and the vertical portion a2 of the upper surface S13a, the cover 160 is easily caused by the flow of wind or water by the action of the vertical portion a2. It does not come off.
  • the speed increaser 130 and the generator 140 is installed on the side surface (S11) of the main body 110, but is not limited to this may be installed on the water outlet 112 side of the main body 110,
  • the rotational force of the rotation shaft 122 installed on the support 150 may be transmitted to the speed increaser 130 using a pulley connected to the rotation shaft 122 and the speed increaser 130 and a power transmission belt connected to the pulley.
  • the hydro power generator 100 having the above structure has a water inlet 112. Water flowing into the main body 110 in contact with the hydraulic pressure applying surface 121a of the blade 121 facing the) while pushing the blade 121 while passing through the water outlet 113 through the main body 110 Will flow outside.
  • the position of the wing 121 is moved along the direction A by the water pressure acting on the wing 121 by the pushing action of the water introduced into the main body 110 and integrated with the wing 121.
  • Rotating shaft 122 is also rotated in accordance with the position change of the wing 121, the rotation operation of the aberration 120 is made in the corresponding direction (A).
  • the speed increaser 130 in which the support 150 is connected to the rotation shaft 122 through the through hole 151 increases the rotation speed of the rotation shaft 122 by a predetermined acceleration ratio. , To pass to the generator 140.
  • the generator 140 generates electricity of a magnitude corresponding to the transmitted rotational force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

본 발명은 수력 발전장치에 관한 것으로서, 상기 수력 발전장치의 한 특징은 수로에 설치되며, 물 유입구로 통해 유입된 물이 물 배출구로 배출되는 본체, 상기 본체 위에 설치되고 상기 물 유입구로 유입된 물에 의해 회전 동작이 행해지는 수차, 그리고 그리고 상기 수차와 연결되어 상기 수차의 회전 동작을 이용하여 전기를 발생시키는 발전기를 포함하고, 상기 수차는 상기 물 유입구로 유입된 물에 의해 위치가 변하는 복수의 날개, 그리고 상기 발전기와 연결되어 있어, 상기 복수의 날개가 이격되게 위치하여 상기 복수의 날개의 위치 변화에 의해 회전하여 회전력을 상기 발전기로 전달하는 회전축을 포함한다. 이때, 상기 복수의 날개 각각과 상기 각 날개가 설치된 상기 회전축의 설치면이 이루는 각도는 106도 내지 165도이다.

Description

수력 발전장치 및 수력 발전장치용 수차
본 발명은 수력 발전장치 및 수력 발전장치용 수차에 관한 것이다.
일반적인 발전 방법에는 수력을 이용한 수력발전, 화석 연료를 이용한 화력 발전, 원자력을 이용한 원자력 발전 등을 들 수 있는데, 이러한 발전 방법들은 대규모의 발전설비와 막대한 양의 에너지원을 필요로 하며, 설치장소의 제약과 환경오염 및 자원 고갈과 같은 문제를 야기한다.
따라서, 최근에는 태양열, 조력, 파력, 풍력 및 수력 등의 자연 에너지를 이용하여 친환경적이면서도 영구적으로 에너지원을 활용할 수 있는 발전 방법들이 개발되어 적용되고 있다.
하지만, 태양열이나 바람을 이용한 태양열 발전과 풍력발전은 날씨와 환경에 상당한 제약을 받으며, 조석현상을 이용한 조력 발전과 파랑(波浪) 에너지를 이용한 파력 발전은 조수 간만의 차가 심한 지역에 설치해야 필요한 전력을 얻을 수 있어 설치 장소의 제약이 따르는 등의 문제점을 갖는다.
특히, 산간이나 농촌지역과 같이 대규모 발전이 곤란한 지역에서는 액 200kW 이하의 발전량을 갖는 소수력 발전을 이용하여 전력공급이 행해지는 것이 좋다.
소수력 발전은 인근 소하천의 유수를 이용하여 전력을 생산하는 방법으로, 발전 방식에 따라 하천경사가 급한 상류지역에 효율적인 수로식(Run of river type)과, 하천경사가 적은 중하류의 유량이 풍부한 지역에 효율적인 댐식(Storage type), 그리고 수로식과 댐식의 혼합방식으로 굴곡이 심한 하천지역에 적합한 터널식(tunnel type) 등이 있으며, 발전용 수차로는 충격형 수차와 반동형 수차가 있다.
충격형 수차로는 펠톤(Pelton) 수차, 튜고(Turgo) 수차, 오스버그(Ossberger) 수차 등이 있으며, 반동형 수차로는 카프란(Kaplan), 튜브라(Tubular), 벌브(Bulb), 림(Rim) 등의 프로펠러 수차와 프란시스(Francis) 수차 등이 있다.
이처럼 다른 발전 방법에 비해 비교적 설치장소에 제약을 덜 받으며 지속적인 전력 생산이 가능한 소수력 발전 방법이 농촌 및 산간지역과 같이 소규모의 전력이 요구되는 곳에 매우 요긴한 것으로 알려지면서 대한민국 공개특허공보 제1991-0001971호 "하천 유수를 이용해 전력을 생산하는 소수력 발전장치" 및 대한민국 공고실용신안공보 제1993-8538호 "댐의 수문설비를 이용한 소수력 발전장치" 등이 출원된 바 있다.
그러나 대한민국 공개특허공보 제1991-0001971호에 기재된 소수력 발전장치는 수중에 설치되는 보에 맞물려 돌아가는 물레방아형의 수차 발전기로서, 대략 2.5m의 낙차를 이용하여 발전기를 회전시키도록 되어 있다. 따라서, 하천 수로에 커다란 낙차를 갖는 지형적 입지조건이 필요하게 되어 지형에 의해 발전 효율에 영향을 받는다.
또한 대한민국 공고실용신안공보 제1993-8538호는 저수댐을 설치하고, 상기 저수댐에 설치되는 수문에 발전기를 설치하여 댐에서 방수되는 물을 이용하여 전력을 얻는 구조여서 이 역시 낙차가 요구되는 구조이고 댐에서 물이 방수되는 경우에만 발전이 가능한 구조여서 지속적인 발전이 곤란한 단점을 갖는다.
따라서 종래 소수력 발전장치는 농수로와 같은 낙차가 크지 못한 지형, 수평형 수로에서는 작동이 곤란한 구조인 것이어서 실질적으로 소수력 발전의 혜택을 보아야 하는 지역에서는 그다지 큰 도움이 되지 못하는 실정이다.
따라서 본 발명이 이루고자 하는 기술적 과제는 수력 발전 장치의 발전 효율을 향상시키기 위한 것이다.
본 발명의 한 특징에 따른 수력 발전장치는 물이 유입되는 물 유입구와 상기 물 유입구로 유입된 물이 배출되는 물 배출구를 포함하는 본체, 그리고 상기 본체 위에 설치되고 상기 물 유입구로 유입된 물에 의해 회전하여 회전력을 발생시켜 회전력을 이용한 전기를 생성하도록 하는 수차를 포함하고, 상기 수차는, 상기 물 유입구로 유입된 물에 의해 위치가 변하는 복수의 날개, 그리고 상기 복수의 날개가 이격되게 위치하여 상기 복수의 날개의 위치 변화에 의해 회전하여 상기 회전력을 발생시키는 회전축을 포함하고, 상기 복수의 날개 각각과 상기 각 날개가 설치된 상기 회전축의 설치면이 이루는 각도는 106도 내지 165도이다.
상기 복수의 날개 각각은 상기 물 유입구를 통해 유입된 물이 접하는 수압 인가면의 가장자리 부분과 내측 부분 중 적어도 한 부분에 위치하는 보강대를 더 포함할 수 있다.
상기 각 날개의 일단부에 위치한 상기 보강대는 개구부를 포함할 수 있다.
상기 복수의 날개 각각은 상기 수차의 회전 방향으로 볼록하게 돌출된 호 형상의 곡면판인 것이 좋다.
상기 복수의 날개 각각은 가장자리 부분에 적어도 하나의 모따기를 포함할 수 있다.
상기 회전축은 원형의 단면 형상 또는 다각형의 단면 형상을 가질 수 있다.
상기 회전축이 상기 원형의 단면 형상을 가질 경우, 상기 회전축은 상기 복수의 날개가 각각 삽입되는 복수의 설치홈을 포함할 수 있다.
상기 회전축이 다각형의 단면 형상을 가질 경우, 상기 복수의 날개 각각은 상기 회전축의 평탄한 면에 하나씩 위치할 수 있다.
상기 회전축이 다각형의 단면 형상을 가질 경우, 상기 회전축은 5각형 내지 12각형의 단면 형상을 가질 수 있다.
상기 물 유입구에 인접한 상기 본체의 상부면은 상기 본체의 길이 방향으로 따라 경사진 경사면인 것이 좋다.
상기 본체의 하부면에서부터 상부면까지의 거리는 상기 물 유입구에서부터 상기 물 배출구 쪽으로 갈수록 감소하는 것이 좋다.
본 발명의 다른 특징에 따른 수력 발전장치용 수차는 유입되는 물에 의해 위치가 변하는 복수의 날개, 그리고 상기 복수의 날개가 이격되게 위치하여 상기 복수의 날개의 위치 변화에 의해 회전하여 회전력을 발생시키는 회전축을 포함하고, 상기 복수의 날개 각각과 상기 각 날개가 설치된 상기 회전축의 설치면이 이루는 각도는 106도 내지 165도이다.
상기 복수의 날개 각각은 유입되는 물이 접하는 수압 인가면의 가장자리 부분과 내측 부분 중 적어도 한 부분에 위치하는 보강대를 더 포함할 수 있다.
상기 각 날개의 일단부에 위치한 상기 보강대는 개구부를 포함할 수 있다.
상기 복수의 날개 각각은 상기 수차의 회전 방향으로 볼록하게 돌출된 호 형상의 곡면판인 것이 좋다.
상기 복수의 날개 각각은 가장자리 부분에 적어도 하나의 모따기를 포함할 수 있다.
상기 회전축은 5각형 내지 12각형의 단면 형상을 가질 수 있다.
이러한 특징에 따르면, 각 날개와 각 날개가 설치된 설치면과의 각도가 106도 내지 165도이므로, 수차의 회전력과 회전 속도가 증가하여, 수력 발전장치의 발전 효율이 증가한다.
또한, 물 유입구의 통로가 본체의 길이 방향을 따라 갈수록 좁아서 본체 내에 위치한 날개로 인가되는 수압의 크기가 증가한다. 이로 인해, 수차의 회전력이 증가하여 수력 발전장치의 효율은 더욱 증가한다.
이에 더하여, 각 날개에 형성된 모따기부와 개구부에 의해 각 날개와 물에 입사될 때 물과 접하는 날개의 접촉면의 크기를 감소시키므로, 유속이 감소되는 현상이 방지된다.
도 1은 본 발명의 한 실시예에 따른 수력 발전장치의 한 예에 따른 분해 사시도이다.
도 2는 도 1에 도시한 수력 발전장치에서 덮개를 제외한 나머지 구성요소가 결합될 때의 사시도이다.
도 3은 도 2에 도시한 수력 발전장치를 Ⅲ-Ⅲ 선을 따라 잘라 도시한 단면도이다.
도 4는 본 발명의 한 실시예에 따른 수력 발전장치에 사용된 수차의 한 예에 대한 사시도이다.
도 5는 도 4에 도시한 수차의 개략적인 측면도이다.
도 6은 본 발명의 한 실시예에 따른 수력 발전장치에 사용된 수차의 다른 예에 대한 사시도이다.
도 7은 본 발명의 한 실시예에 따른 수력 발전장치에 사용된 수차의 또 다른 예에 대한 사시도이다.
도 8은 본 발명의 한 실시예에 따른 수력 발전장치의 동작 상태를 개략적으로 도시한 도면이다
도 9는 날개의 경사 각도와 날개에 작용하는 물의 관계를 설명하기 위한 도면으로서, (a)는 회전축의 설치면에 대해 90도로 수직하게 날개가 설치될 때의 도면이고, (b)는 회전축의 설치면에 대해 130도로 날개가 설치될 때의 도면이다.
도 10은 본 발명의 한 실시예에 따른 수력 발전장치의 동작 상태를 도시한 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
그러면 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 수력 발전장치 및 수력 발전장치에 사용되는 수력 발전장치용 수차에 대하여 설명한다.
도 1 내지 도 8를 참고로 하여 본 발명의 한 실시예에 따른 수력 발전장치에 대하여 상세하게 설명한다.
도 1을 참고로 하면, 본 발명의 한 실시예에 따른 수력 발전장치(100)는 수로에 설치되는 본체(110), 본체(110) 위에 설치되는 수차(120), 본체(110)에 수차(120)를 설치하기 위한 한 쌍의 지지부(150), 지지부(150)를 통해 수차(120)와 연결되는 증속기(130), 증속기(130)에 연결되어 있는 발전기(140), 그리고 본체(110) 위에 설치되어 수차(120)를 내장한 본체(110)의 일부를 덮는 덮개(160)를 구비한다.
본체(110)는 사각형의 평면 형상을 갖고 있고, 양 측면(S11), 하부면(S12) 및 상부면(S13a, S13b)을 구비하고 있다.
이러한 본체(110)의 내부 공간은 비어 있고, 전면과 후면은 개방되어, 개방된 전면으로 물이 유입된 후 본체(110) 내부를 통과하여 후면으로 출력되어 외부로 배출된다.
따라서, 개방된 전면은 물이 유입되는 물 유입구(112)로 기능하며 개방된 후면은 물이 배출되는 물 배출구(113)로 기능한다.
하부면(S12)과 대향하고 있는 본체(110)의 상부면(S13a, S13b)은 상부 전체를 덮고 있지 않고 물 유입구(111)에 인접한 상부에 위치하는 제1 상부면(S13a)과 물 배출구(112)에 인접한 상부에 위치한 제2 상부면(S13a)을 구비하고, 제1 및 제2 상부면(S13a, S13b) 사이의 가운데 부분을 개방되어 있다.
따라서, 본체(110)의 상부 가운데 부분에는 상부면(111, S13a, S13b)이 위치하지 않고 하부면(S11)의 일부를 노출하는 개방부(OP1)가 존재하고, 이 개방부(OP1)를 통해 수차(120)가 본체(110) 내부에 설치된다.
이 때, 제1 상부면(S13a)은 경사진 면을 갖고 있는 경사면이고, 제2 하부면(13b)는 평탄면을 갖고 있다.
따라서, 제1 상부면(S13a)은 하부면(S12) 쪽으로 경사져 있는 경사부(a1)과 경사부(a1)과 연결되어 하부면(S11)에 대해 교차하는 방향(예, 수직 방향)으로 기립되어 있는 수직부(a2)를 구비한다.
이때, 경사부(a1)는 물의 흐름을 유도하는 유도판으로서 기능하며, 수직부(11b)는 덮개(160)의 이탈을 방지하는 걸림턱으로 기능하므로, 수직부(11b)는 걸림턱이다.
본 예에서, 경사부(11a)와 수직부(11b)는 끊김 없이 연결되어 있어, 경사부(11a)와 수직부(11b)는 일체로 형성된다.
이처럼, 경사진 상부면(S13a)의 경사부(11a)에 의해, 경사부(11a)가 설치된 본체(110)의 높이(H1), 즉, 하부면(S11)에서부터 상부면(S13a)까지의 거리는 물 배출구(112) 쪽으로 갈수록 감소하여, 물 유입구(111)에서부터 물 배출구(112)로 갈수록 본체(110)의 높이(H1)는 감소한다.
또한, 경사부(11a)가 설치된 부분의 높이(H1)는 경사부(11a)가 설치되지 않은 본체(110)의 부분의 높이(H2))보다 작은 크기를 갖는다.
이때, 경사부(11a)가 설치된 본체(110)의 두께(H1) 또한 위치에 따라 상이하여 물 배출구(112) 쪽으로 갈수록 두께(H1)는 감소한다.
이로 인해, 물 유입구(111) 단부의 두께(H1)보다 본체(110)의 가운데 부분으로 갈수록 물의 배출 통로의 두께(H1)가 감소하여, 물 유입구(111)로 초기 유입되 물의 압력보다 경사부(11a)를 통과하여 가운데 부분으로 유입되는 물의 압력이 증가한다.
따라서, 개방부(OP1)에 설치된 수차(120)로 공급되는 물의 압력이 증가하여 수차(120)의 회전 속도를 증가시킨다.
또한, 물이 유입되는 물 유입구(111)의 통로가 제1 상부면(S13a)에 의해 좁아짐에 따라 본체(110) 내부로 유입된 물이 위쪽으로 솟구치는 현상을 방지하여 수차(120)의 각 날개(121)에 물이 접하는 감소하여 날개(121)에 인가되는 수압의 분산 정도를 감소시킨다. 이로 인해, 날개(121)의 미는 힘이 증가하여 수차(120)의 회전력이 향상된다.
수차(120)는 복수의 날개(121)와 복수의 날개(121)가 설정된 거리만큼 이격되게 위치하고, 양 단부 각각이 한 쌍의 지지대(150)에 위치하는 회전축(122)을 구비한다.
본 예에서, 인접한 두 날개(121) 사이의 간격은 일정하지만, 이에 한정되지 않고, 대안적인 예에서 인접한 두 날개(121) 사이의 간격은 상이할 수 있다.
복수의 날개(121)는 모두 동일한 형상을 갖고 있고, 각 날개(121)는 사각형의 평면 형상을 갖는 판 형상일 수 있다.
이러한 복수의 날개(121)는, 이미 설명한 것처럼, 회전축(122)을 따라 이격되게 위치하고 있고, 용접이나 볼트(bolt) 등과 같은 체결 장치를 통해 해당 회전축(122)의 외주면에 설치된다.
각 날개(121)은 수차(120)의 회전 방향(A) 쪽으로 볼록하게 돌출된 호(弧) 형상으로 굽어지고 요철이 형성되지 않은 매끄러운 곡면판이고, 이 곡면판의 한 면, 즉, 물 유입구(111)를 통해 유입된 물과 직접적으로 접하여 수압이 인가되는 면(이하, 이 면은 '수압 인가면'이라 함)(121a)에 보강대(121b)를 구비하고 있다. 이때, 각 날개(121)는 가운데 부분을 중심으로 하여 양 측부 쪽으로 굽어져 곡면판을 형성한다.
이로 인해, 각 날개(121)는 수압 인가면(121a)과 보강대(121b)를 구비한다.
본 예에서, 보강대(121b)는 수압 인가면(121a)의 가장자리 부분을 완전히 에워싸고 있지만, 이에 한정되지 않고 수압 인가면(121a)의 가장자리 부분 일부에만 위치할 수 있다.
또한, 보강대(121b)는 수압 인가면(121a)의 내측 부분 일부에 위치하지만, 대안적인 예에서, 수압 인가면(121a)의 내측 부분에 위치한 보강대(121b)는 생략될 수 있다.
따라서, 수압 인가면(121a)의 가장자리 부분이 보강대(121b)에 의해 에워싸여져 있고 보강대(121b)에 에워싸여진 수압 인가면(121a)의 내측 부분은 복수의 영역으로 분할된다. 보강대(121b)에 의해 분할된 영역의 개수는 본 예의 경우 4개이지만 이에 한정되지 않고 가감될 수 있다.
이때, 수압 인가면(121a)에 설치된 보강대(121b)의 설치 높이는 위치에 무관하게 동일하다.
따라서, 곡면판의 날개(121)에 의해 수압 인가면(121a)과 이 수압 인가면(121a)의 반대쪽 면인 반대면(121c) 역시 수차(120)의 회전 방향(A) 쪽으로 돌출된 곡면 형상을 갖고 있으므로, 보강대(121b)의 두께(즉, 세로 방향으로의 두께)(H3)는 위치에 따라 상이하다. 즉, 각 날개(121)의 가장 자리에서 가운데로 갈수록 보강대(121b)의 두께(H3)는 증가한다.
이로 인해, 수압 인가면(121a)에 물의 수압이 작용하더라고 날개(121)에 가해지는 충격은 보강대(121b)에 의해 분산되고, 날개(121)의 가장자리 부분과 가운데 부분은 순간적으로 작용하는 수압을 지탱하게 되어, 날개(121)가 손상되거나 파손되는 문제가 해소되거나 감소한다.
또한, 복수의 영역에 고인 물은 수압 인가면(121a) 의 가운데 부분으로 이동하게 되어 날개(121)의 회전력을 더욱더 증가시킨다.
이러한 날개(121)의 다른 예는, 도 6에 도시한 것처럼, 날개(121)의 일단부(21a), 즉, 회전축(122)에 설치된 날개(121)의 단부인 타단부(21b)의 반대편에 위치한 단부에 위치한 보강대(121b)는 생략되며, 이에 더하여 날개(121)의 일단부(21a)와 측면, 즉, 각 날개(121)의 가장자리 부분에 적어도 하나의 모따기부(123)를 추가로 구비한다.
이로 인해, 수압 인가면(121a)의 가장자리 부분은 보강대(121b)에 의해 완전히 에워싸여져 있는 대신 보강대(121b)가 생략된 일단부(21a)를 통해 개방되어 있다.
도 6의 경우, 적어도 하나의 모따기부(123)는 각 날개(121)의 양 측 모서리 부분과 양측 모서리 사이에 위치한 일단부(21a)의 가운데 부분에 위치하지만, 이러한 모따기부(123)의 개수와 형성 위치는 필요에 따라 변경 가능하다.
도 6과 같이 날개(121)의 가장자리 부분에 적어도 하나의 모따기부(123)를 구비할 때, 대안적인 예에서 날개(121)의 수입 인가면(121a)에 위치한 보강부(121b)의 적어도 일부는 생략 가능하다.
또한, 도 7과 같이, 날개(121)의 또 다른 예는 각 날개(121)의 일단부(21a)의 가장자리부에 위치한 보강부(121b)는 물 통과부인 개방된 개구부(124)를 구비하고 있다.
이러한 도 6 및 도 7의 날개(121) 구조에 의해, 각 날개(121)가 물에 입수될 수 날개(121)와 물이 접하는 접촉면의 크기가 감소되어, 본체(110) 내부를 통과하는 유속에 미치는 영향을 감소시킨다. 이로 인해, 수차(120)에 의해 본체(110)를 통과하는 유속이 감소량을 감소시킨다.
이로 인해, 복수의 수력 발전장치(100)가 일정 간격으로 수로에 직렬로 설치될 때, 전단의 수력 발전장치(100)로 인한 유속 감소를 방지하므로, 유속 감소로 인해 직렬로 연결된 각 수력 발전장치(100)의 발전량이 줄어드는 것을 방지한다.
이러한 본 예에 따른 날개(121)는 곡면판이지만, 이에 한정되지 않고 대안적인 예에서 각 날개(121)는 경사지지 않은 평탄면일 수 있고 또한 수압 인가면(121a)에 설치된 보강대(121b)의 적어도 일부 역시 생략될 수 있다. 이럴 경우, 날개(121)의 제조가 용이하여 수력 발전장치의 제조 시간과 제조 비용이 감소한다.
회전축(122)은 바(bar) 형태로 길게 뻗어 있고, 도 1 내지 도 7에 도시한 것처럼 다각형의 단면 형상을 갖고 있거나 도 8과 같이 원형의 단면 형상을 갖는다.
이때, 도 8과 같이, 회전축(122)이 원형의 단면 형상을 가질 경우, 각 날개(121)가 장착되는 회전축(122)의 외주면 부분에는 복수의 설치홈(22)이 형성되지만, 이에 한정되지 않는다.
따라서, 회전축(122)에 설치홈(22)이 형성될 때, 설치홈(22) 내로 각 날개(121)는 삽입한 후 용접 등을 통해 회전축(122)에 복수의 날개(121)를 설치하므로, 날개(121)의 설치가 용이해진다.
이러한 회전축(122)은 본체(110) 내부로 유입되는 물에 의해 수차(120)가 해당 방향(A)으로 위치 이동을 하여 회전함에 따라 수차(120)의 회전 방향과 동일한 방향(A)으로 회전하고, 회전축(122)의 회전 속도는 수차(120)의 회전 속도에 따라 정해진다.
지지부(150)에 삽입되어 본체(110)의 양 측면(S11)의 상단부 위에 본체(110)를 가로 방향[즉, 본체(110)의 연장 방향인 길이 방향과 직교하는 방향]으로 가로 지르게 위치한다.
이로 인해, 수차(120)의 일부는 개방부(OP1)를 통해 본체(110) 내부에 위치하고, 이때, 본체(110) 내부에 위치하는 수차(120)의 부분은 회전축(122)을 중심으로 대략 하부에 위치한 부분이고, 본체(110)의 외부에 위치하는 수차(120)의 부분은 회전축(122)을 중심으로 대략 상부에 위치하는 부분이다.
본 예의 경우, 회전축(122)이 다각형의 단면 형상을 가질 경우, 날개(121)가 설치되는 부분은 다각형의 단면 형상을 가지는 반면, 지지부(150)에 삽입되는 회전축(122)의 부분은 원형의 단면 형상을 가진다. 이로 인해, 회전축(122)과 지지부(150) 간의 마찰력을 감소시켜 회전축(122)의 회전력이 감소되는 양을 감소시킨다. 하지만 이에 한정되지 않고, 지지부(150)에 연결되는 회전축(122)의 부분 역시 다각형의 단면 형상을 가질 수 있다.
또한, 날개(121)가 설치되는 회전축(122)의 부분의 두께(즉, 지름)보다 지지부(150)에 삽입되는 회전축(122)의 부분의 두께가 작아 지지부(150)와의 결합이 용이하게 행해질 수 있도록 한다.
이때, 각 날개(121)가 설치된 회전축(122)의 외주면 부분 중 수압 인가면(121a)에 위치한 보강대(121b)에 의해 형성되는 가상의 평탄면(DS1)과 각 날개(121)의 타단부(21b)에서 본체(110)의 하부면(S11)과 평행한 가상면(DS2)이 이루는 각도(θ)는 91도~165도이다. 바람직하게, 각도(θ)는 106도~165도이다.
대안적인 예에서, 보강대(121b)가 생략될 경우, 날개(121)의 수입 인가면의 양 측면을 가상으로 직선으로 연결하여 형성된 가상의 면이 가상의 평탄면이 된다.
이러한 각도(θ)로 날개(121)가 설치된 설치면인 가상면(DS2)에 대해 회전 방향(A)으로 경사지게 위치하므로, 물의 흐름에 의해 날개(121)에 인가되는 수압에 의해 날개(121)가 밀리면서 수차(120)가 보다 용이하게 회전할 수 있도록 한다.
이때, 각도(θ)가 91도이상일 경우, 날개(121)가 받게 되는 물의 저항이 좀더 감소하여 수차(120)의 회전 동작은 좀더 원활하게 행해지고, 특히,106도 이상일 경우, 날개(121)가 받게 되는 물의 저항이 더욱더 감소하여 수차(120)의 회전 동작은 좀더 원활하게 행해지고, 각도(θ)가 165도이하일 경우, 날개(121)의 경사 정도가 과도하지 않게 되어 본체(110)로 유입된 물의 수압을 큰 손실없이 인가 받아 수차(120)의 회전 동작이 원활하게 이루어진다.
회전축(122)이 다각형의 단면 형상을 가질 경우, 날개(121)는 평탄한 회전축(122)의 각 면(231)에 하나씩 위치한다. 이때, 면(231)의 개수는 다각형을 형성하는 각의 개수와 동일하다.
이때, 회전축(122)의 다각형의 각형 수는 날개(121)의 설치면(DS2)과 가상의 평탄면(DS1)이 이루는 각도(θ)의 크기에 따라 달라질 수 있고, 예를 들어, 5개 내지 12개일 수 있고, 이로 인해, 회전축(122)은 5각형 내지 12각형의 단면 형상을 가질 수 있다.
회전축(122)이 5각형보다 적을 경우 설치되는 날개(121)의 개수가 5개 이하가 되어 인접한 두 날개(121) 사이의 간격이 증가하게 된다. 이로 인해, 갈수기 때 줄어든 수량(水量)에 의해 날개(121)에 수압이 작용하지 않게 되어 수차(120)의 원활한 회전이 어려워질 수 있다.
따라서, 날개축(123)이 5각형 이상의 단면 형상을 가질 경우, 날개축(123)에 설치되는 날개(121)의 개수가 설정 개수(예, 5개) 이상이 되어 날개(121)간의 간격이 설정 간격 이하로 감소하여, 갈수기 때 수량이 감소하여 수압이 감소하더라고 수차(120)의 회전이 원활하게 이루어진다. 이로 인해, 본 예에 따른 수력 발전장치(100)는 감소한 날개(121) 사이의 간격에 의해 수량이 감소하더라고 수차(120)의 회전이 원활하게 행해져 발전 전력이 감소하지 않게 된다.
또한, 회전축(122)이 12각형보다 많을 경우 회전축(122)에 설치되는 날개(121)의 개수가 너무 많아, 날개 제작에 따른 제조 비용과 제조 시간이 증가하고, 물의 저항이 증가하여 수차(120)의 원활한 회전 동작에 악영향을 미친다.
따라서, 회전축(122)이 12각형 이하일 경우, 회전축(122)에 설치되는 날개의 개수로 인한 제작 시간과 제작 비용의 증가를 방지하고 날개121)에 인가되는 물의 저항을 감소시킨다.
다음, 도 9의 (a)와 (b)를 참고로 하여, 회전축(122)의 설치면(DS2)에 대해 90도보다 큰 각도(θ)로 경사지게 설치될 때와 회전축(122)의 설치면(DS2)에 대해 90도 이하의 각도(θ)로 경사지게 설치될 때, 각 날개(121)와 각 날개(121)에 작용하는 물의 관계에 대하여 설명한다.
도 9에서, 회전축(122)에 설치된 날개(W11-W18, W21-W28)의 개수는 동일하게 8개이고, 이때, (a)는 비교예에 따른 수차의 도면으로서, 설치면(DS2)과 각 날개(W11-W18)가 이루는 각도(θ)의 크기는 90도이고, (b)는 본 발명의 한 실시예에 따른 수차의 도면으로서, 설치면(DS2)과 각 날개(W21-W28)가 이루는 각도(θ)의 크기는 130도이다.
따라서, 도 9의 (a)의 각 날개(W11-W18)에 비해 (b)의 대응되는 각 날개(W21-W28)는 수로(200) 쪽으로 40도 더 기울어져 있다.
이로 인해, 회전축(122)의 회전 정도가 서로 동일할 때, 도 9의 (b)의 각 날개(예, W23)는 (a)의 대응되는 날개(예, W13)보다 먼저 수로(200)의 물 속으로 입사되어 수압에 의해 해당 날개(W23)는 물의 흐름 방향으로 밀리게 되어 회전축(122)이 회전 동작이 행해진다.
따라서, 도 9의 (a)의 경우보다 (b)의 경우 회전축(122)의 회전수가 증가하고 이로 인해 회전축(122)의 회전 속도 역시 (a)보다 (b)의 경우가 빨라진다.
또한, 회전축(122)의 동일한 위치에 위치한 두 날개(예, W14, W24) 수로(200)의 물 속으로 입사되는 경우, (a)에 도시한 날개(W14)에서 물과 접하는 면의 경사 각도가 (b)의 해당 날개(W24)의 해당 면의 경사 각도보다 작게 된다.
따라서, (b)의 날개(W24)의 경사 각도가 (a)의 경우보다 수로(20)의 바닥면에 대해 90도에 가깝게 된다.
이에 따라, (a)의 경우, 해당 날개(W24)의 면에 접하는 물은 날개(W24)을 따라 위쪽 방향으로 솟구치는 현상의 발생량이 (b)의 경우보다 많게 되어 해당 날개(W14)의 미는 힘은 날개(W24)에 작용하는 힘 보다 작게 된다. 또한, (a)의 날개(W14)에 접하는 물의 양이 (b)의 날개(W24)에 접하는 물의 양보다 적게 되어 날개(W14)에 작용하는 수압의 크기는 (b)의 날개(W24)에 작용하는 수압의 크기보다 훨씬 적다.
따라서, (b)의 경우가 (a)의 경우보다 회전축(122)의 회전 동작이 좀더 용이하게 회전력 역시 크다.
이에 더하여, 각 날개(예, W15, W24)의 위치가 수압의 힘을 가장 크게 받을 위치에 존재할 경우, 바로 앞쪽에 인접하게 위치한 날개(예, W14, W23)에 의한 악영향의 크기가 (b)보다 (a)가 훨씬 크다.
즉, 도 9의 (a)의 경우, 날개(W15)가 바로 앞 날개(W14)의 방해 없이 물을 유입 받을 수 있는 경로의 크기는 'd11'인 반면, 도 9의 (b)의 경우, 날개(W24)가 바로 앞 날개(W23)의 방해 없이 물을 유입 받을 수 있는 경로의 크기는 'd11'보다 큰 'd21'가 된다.
따라서, (b)의 날개(W24)에 작용하는 수압의 크기가 (a)의 날개(W15)에 작용하는 수압의 크기보다 커 회전축(122)의 회전 동작은 (a)보다 (b)의 경우가 용이하게 신속하게 이루어짐을 알 수 있다.
한 쌍의 지지부(150) 각각은 수차(120)의 회전축(122)이 삽입되는 관통구(151)를 구비하고 있고 관통구(151) 내에는 베어링(bearing)을 내장하고 있으며, 수차(121)의 회전축(122)은 관통구(151) 내에 삽입되어 관통구(151)를 관통해 증속기(130)와 연결된다.
따라서, 베어링의 동작에 의해 회전축(122)은 관통구(151) 내에서 원활하게 회전 동작이 이루어진다. 이때, 본 예의 수차(120)의 설치 높이를 조정하기 위해, 한 쌍의 지지부(150)는 본체(110)의 측면(S11) 상단부에 위치한 받침대(152) 위에 위치한다.
증속기(130)는 복수의 가속 기어를 구비하고 있어 회전축(122)의 회전 속도를 정해진 가속비로 증가시켜 발전기(140)로 전달한다.
발전기(140)는 증속기(130)와 연결되어 있어 증속기(130)를 통해 전달된 회전축(122)의 회전력을 이용하여 전기를 발생한다.
따라서, 발전기(140)는 수차(120)의 회전력을 전기 에너지로 변환하여 해당 크기의 전력을 발생하여 출력한다.
덮개(160)는 본체(110)의 개방부(OP1)를 덮어, 수차(120)가 위치한 본체(110) 내부에 수차(120)의 회전 동작에 악영항을 미치는 낙엽 등과 같은 이물질이 쌓이는 것을 방지한다.
따라서, 덮개(160)는 본체(110)의 상부면(S13a, S13b) 위에 위치한다.
이때, 덮개(160)는 상부면(S13a)의 경사부(a1)와 수직부(a2) 사이에 위치하므로, 덮개(160)는 수직부(a2)의 작용에 의해 바람이나 물의 흐름에 의해 쉽게 벗겨지지 않는다.
본 예의 경우, 증속기(130)와 발전기(140)는 본체(110)의 측면(S11)에 설치되지만, 이에 한정되지 않고 본체(110)의 물 배출구(112)쪽에 설치될 수 있고, 이때, 지지부(150)에 설치된 회전축(122)의 회전력은 회전축(122)과 증속기(130)에 연결된 풀리(pulley)와 풀리에 연결된 동력 전달 벨트 등을 이용하여 증속기(130)로 전달할 수 있다.
이러한 구조를 갖고 있는 수력 발전장치(100)는 도 10에 도시한 것처럼, 본체(110)의 물 유입구(112)로 물이 유입되어 본체(110) 내부를 통해 물이 흐르게 되면, 물 유입구(112)와 대면하고 있는 해당 날개(121)의 수압 인가면(121a)에 본체(110)로 내부로 유입된 물이 접하면서 해당 날개(121)를 밀면서 물 배출구(113)를 통과해 본체(110) 외부로 흐르게 된다.
이처럼, 본체(110) 내부로 유입된 물의 미는 동작에 의해 해당 날개(121)에 작용한 수압에 의해 해당 날개(121)의 위치가 해당 방향(A)을 따라 이동하게 되고 날개(121)과 일체로 연결된 회전축(122) 역시 날개(121)의 위치 변화에 따라 회전하여 수차(120)의 회전 동작이 해당 방향(A)으로 이루어진다.
이처럼, 회전축(122)의 회전이 이루어지면, 지지부(150)이 관통구(151)를 통해 회전축(122)과 연결된 증속기(130)는 정해진 가속비를 회전축(122)의 회전 속도를 증가시키고, 발전기(140)로 전달한다.
따라서, 발전기(140)는 전달된 회전력에 해당하는 크기의 전기를 생성하게 된다.
상기한 바와 같은 구성을 갖는 본 발명이 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구 범위의 균등범위 내에서 다양한 수정 및 변형이 가능하다 할 것이다.

Claims (19)

  1. 물이 유입되는 물 유입구와 상기 물 유입구로 유입된 물이 배출되는 물 배출구를 포함하는 본체, 그리고
    상기 본체 위에 설치되고 상기 물 유입구로 유입된 물에 의해 회전하여 회전력을 발생시켜 회전력을 이용한 전기를 생성하도록 하는 수차
    를 포함하고,
    상기 수차는
    상기 물 유입구로 유입된 물에 의해 위치가 변하는 복수의 날개, 그리고
    상기 복수의 날개가 이격되게 위치하여 상기 복수의 날개의 위치 변화에 의해 회전하여 상기 회전력을 발생시키는 회전축
    을 포함하고,
    상기 복수의 날개 각각과 상기 각 날개가 설치된 상기 회전축의 설치면이 이루는 각도는 106도 내지 165도인
    수력 발전장치.
  2. 제1항에서,
    상기 복수의 날개 각각은 상기 물 유입구를 통해 유입된 물이 접하는 수압 인가면의 가장자리 부분과 내측 부분 중 적어도 한 부분에 위치하는 보강대를 더 포함하는 수력 발전장치.
  3. 제2항에서,
    상기 각 날개의 일단부에 위치한 상기 보강대는 개구부를 포함하는 수력 발전장치.
  4. 제1항에서,
    상기 복수의 날개 각각은 상기 수차의 회전 방향으로 볼록하게 돌출된 호 형상의 곡면판인 수력 발전 장치.
  5. 제4항에서,
    상기 복수의 날개 각각은 상기 물 유입구를 통해 유입된 물이 접하는 수압 인가면의 가장자리 부분와 내측 부분 중 적어도 한 부분에 위치하는 보강대를 더 포함하는 수력 발전장치.
  6. 제5항에서,
    상기 각 날개의 일단부에 위치한 상기 보강대는 개구부를 포함하는 수력 발전장치.
  7. 제1항에서,
    상기 복수의 날개 각각은 가장자리 부분에 적어도 하나의 모따기를 포함하는 수력 발전장치.
  8. 제1항에서,
    상기 회전축은 원형의 단면 형상 또는 다각형의 단면 형상을 갖는 수력 발전장치.
  9. 제8항에서,
    상기 회전축이 상기 원형의 단면 형상을 가질 경우, 상기 회전축은 상기 복수의 날개가 각각 삽입되는 복수의 설치홈을 포함하는 수력 발전장치.
  10. 제8항에서,
    상기 회전축이 다각형의 단면 형상을 가질 경우, 상기 복수의 날개 각각은 상기 회전축의 평탄한 면에 하나씩 위치하는 수력 발전장치.
  11. 제8항에서,
    상기 회전축이 다각형의 단면 형상을 가질 경우, 상기 회전축은 5각형 내지 12각형의 단면 형상을 갖는 수력 발전장치.
  12. 제1항에서,
    상기 물 유입구에 인접한 상기 본체의 상부면은 상기 본체의 길이 방향으로 따라 경사진 경사면인 수력 발전장치.
  13. 제1항에서,
    상기 본체의 하부면에서부터 상부면까지의 거리는 상기 물 유입구에서부터 상기 물 배출구 쪽으로 갈수록 감소하는 수력 발전장치.
  14. 유입되는 물에 의해 위치가 변하는 복수의 날개, 그리고
    상기 복수의 날개가 이격되게 위치하여 상기 복수의 날개의 위치 변화에 의해 회전하여 회전력을 발생시키는 회전축
    을 포함하고,
    상기 복수의 날개 각각과 상기 각 날개가 설치된 상기 회전축의 설치면이 이루는 각도는 106도 내지 165도인
    수력 발전장치용 수차.
  15. 제14항에서,
    상기 복수의 날개 각각은 유입되는 물이 접하는 수압 인가면의 가장자리 부분과 내측 부분 중 적어도 한 부분에 위치하는 보강대를 더 포함하는 수력 발전장치용 수차.
  16. 제15항에서,
    상기 각 날개의 일단부에 위치한 상기 보강대는 개구부를 포함하는 수력 발전장치용 수차.
  17. 제14항에서,
    상기 복수의 날개 각각은 상기 수차의 회전 방향으로 볼록하게 돌출된 호 형상의 곡면판인 수력 발전장치용 수차.
  18. 제14항에서,
    상기 복수의 날개 각각은 가장자리 부분에 적어도 하나의 모따기를 포함하는 수력 발전장치용 수차.
  19. 제14항에서,
    상기 회전축은 5각형 내지 12각형의 단면 형상을 갖는 수력 발전장치용 수차.
PCT/KR2014/002804 2013-04-03 2014-04-01 수력 발전장치 및 수력 발전장치용 수차 WO2014163386A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0036519 2013-04-03
KR1020130036519A KR20140061204A (ko) 2012-11-12 2013-04-03 수로를 이용한 소수력 발전장치
KR1020130137068A KR20140061270A (ko) 2012-11-12 2013-11-12 수로를 이용한 소수력 발전장치
KR10-2013-0137068 2013-11-12

Publications (1)

Publication Number Publication Date
WO2014163386A1 true WO2014163386A1 (ko) 2014-10-09

Family

ID=51658615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002804 WO2014163386A1 (ko) 2013-04-03 2014-04-01 수력 발전장치 및 수력 발전장치용 수차

Country Status (2)

Country Link
KR (1) KR101590070B1 (ko)
WO (1) WO2014163386A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994337A (zh) * 2021-02-20 2021-06-18 浙江富春江水电设备有限公司 一种流体机械转动部件应力自适应结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393192B2 (en) * 2004-03-25 2008-07-01 Gregory P Wood Rotary vane pump
US20090261596A1 (en) * 2008-04-17 2009-10-22 Windenergy Co., Ltd. Wind power generator
KR101043174B1 (ko) * 2009-02-16 2011-06-20 최찬목 소수력 발전장치
KR20120028110A (ko) * 2010-09-14 2012-03-22 세종메탈 주식회사 수면 상에 임의 설치가능한 수력 발전 장치
KR101202678B1 (ko) * 2011-05-31 2012-11-19 장석남 하수방류관용 수력발전장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040107916A (ko) * 2003-06-16 2004-12-23 박수조 소수력 발전장치 및 이를 위한 수차
KR101062190B1 (ko) * 2009-07-07 2011-09-05 허정 수력 또는 풍력발전기의 수평회전자
KR101196357B1 (ko) * 2010-06-18 2012-11-01 한국에너지기술연구원 에너지 집약형 자력가동식 수직축 수류수차 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393192B2 (en) * 2004-03-25 2008-07-01 Gregory P Wood Rotary vane pump
US20090261596A1 (en) * 2008-04-17 2009-10-22 Windenergy Co., Ltd. Wind power generator
KR101043174B1 (ko) * 2009-02-16 2011-06-20 최찬목 소수력 발전장치
KR20120028110A (ko) * 2010-09-14 2012-03-22 세종메탈 주식회사 수면 상에 임의 설치가능한 수력 발전 장치
KR101202678B1 (ko) * 2011-05-31 2012-11-19 장석남 하수방류관용 수력발전장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994337A (zh) * 2021-02-20 2021-06-18 浙江富春江水电设备有限公司 一种流体机械转动部件应力自适应结构
CN114530979A (zh) * 2021-02-20 2022-05-24 浙江富春江水电设备有限公司 一种流体机械转动部件应力自适应结构
CN114530979B (zh) * 2021-02-20 2023-12-12 浙江富春江水电设备有限公司 一种流体机械转动部件应力自适应结构

Also Published As

Publication number Publication date
KR20140120843A (ko) 2014-10-14
KR101590070B1 (ko) 2016-02-01

Similar Documents

Publication Publication Date Title
CN107642448B (zh) 低水头大流量川渠水轮机
US9765752B2 (en) Modularized ocean energy generating device
WO2017000555A1 (zh) 模块化双向潮流能发电装置
WO2016129836A1 (ko) 하천용 수력 발전장치
WO2014171629A1 (ko) 공기부양식 소수력 발전장치
WO2016129835A1 (ko) 해수의 밀물과 썰물을 이용한 수력 발전장치
WO2012030051A1 (ko) 수차 및 이를 이용한 수력발전 구조물
CN102828890B (zh) 一种用于微水头水能开发的水力发电机组
KR20110084023A (ko) 집풍 구조물의 수직 상승기류를 이용한 풍력발전 터빈
WO2016133294A1 (ko) 관로용 수력 발전장치
WO2012130037A1 (zh) 一种水流发电装置
WO2014163386A1 (ko) 수력 발전장치 및 수력 발전장치용 수차
KR20110026069A (ko) 풍과 수력을 이용한 전기 발전장치
JP2015113832A (ja) 水力発電装置
WO2010074381A1 (ko) 파력발전장치
WO2011019094A1 (ko) 유체 배관을 이용한 발전장치
CN202811180U (zh) 一种用于微水头水能开发的水力发电机组
KR101295812B1 (ko) 듀얼 블레이드형 해양 발전장치
CN101886378A (zh) 一种水力真空发电站
KR20110024040A (ko) 풍력발전기
KR101022346B1 (ko) 수력발전장치
KR20130114557A (ko) 수로를 이용한 소수력 발전장치
CN203856638U (zh) 一种川流水斗式发电水车结构
CN114458518A (zh) 一种高效水动能转盘式发电机组
WO2016171352A1 (ko) 자유조절 발전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779608

Country of ref document: EP

Kind code of ref document: A1