WO2014162942A1 - Resin film and method for producing same - Google Patents
Resin film and method for producing same Download PDFInfo
- Publication number
- WO2014162942A1 WO2014162942A1 PCT/JP2014/058475 JP2014058475W WO2014162942A1 WO 2014162942 A1 WO2014162942 A1 WO 2014162942A1 JP 2014058475 W JP2014058475 W JP 2014058475W WO 2014162942 A1 WO2014162942 A1 WO 2014162942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- acrylate
- resin film
- urethane
- active energy
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/06—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
- C08F299/065—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes from polyurethanes with side or terminal unsaturations
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
- C08F222/1006—Esters of polyhydric alcohols or polyhydric phenols
- C08F222/106—Esters of polycondensation macromers
- C08F222/1065—Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
Definitions
- the present invention relates to a resin film useful as an optical substrate such as a liquid crystal display, an organic EL display, a touch panel, a display substrate such as a color filter, an optical member, and the like, and a method for producing the same.
- This application claims the priority of Japanese Patent Application No. 2013-079128 for which it applied to Japan on April 5, 2013, and uses the content here.
- a glass substrate has been used as a display substrate for a liquid crystal display or the like, but in recent years, a display using a plastic substrate has been proposed from the viewpoint of lightness, thinning, resistance to cracking, mass productivity, manufacturing cost, and the like. It attracts attention.
- a hard coat film in which a hard coat layer is coated on a plastic substrate such as a polyethylene terephthalate film (PET film) is known.
- PET film polyethylene terephthalate film
- such a hard coat film not only has low pencil hardness, but when it is thickened, the hard coat layer curls or cracks in the hard coat layer due to curing shrinkage of the resin constituting the hard coat layer. There was a problem such as entering.
- Japanese Patent Application Laid-Open No. 2002-302517 discloses a resin molded article having excellent heat resistance and low birefringence when a polymerizable composition containing 75 wt% or more of a tri- to 8-functional aliphatic polyfunctional methacrylate is cured. It is described that JP-A-2003-292545 discloses a resin molded article having excellent heat resistance and a small linear expansion coefficient when a polymerizable composition containing an aliphatic difunctional methacrylate and a trifunctional or higher aliphatic polyfunctional methacrylate is cured. It is described that it is obtained.
- Japanese Patent No. 4690053 discloses (A) a polyfunctional urethane (meth) acrylate having an alicyclic structure obtained by reacting a polyisocyanate compound having an alicyclic structure with a hydroxyl group-containing (meth) acrylate, and (B When a (meth) acrylate photopolymerizable composition containing a bifunctional (meth) acrylate having an alicyclic structure is photocured, a resin molded product having a thickness of 50 to 400 ⁇ m and a pencil hardness of 4H or more is obtained. It is described.
- the conventional resin molded body tends to cause cracks and curls due to curing shrinkage of the resin, and it is difficult to increase the film thickness. Therefore, a resin film having a high surface hardness such as a pencil hardness of about 9H has not been obtained.
- the present inventors have found that when a curable composition containing a specific amount of a 4- to 12-functional urethane (meth) acrylate having a tricyclodecane skeleton is cured, curing shrinkage occurs.
- the inventors have found that the generation of cracks and curls is remarkably suppressed, the film thickness can be increased, and a resin film having a very high surface hardness can be obtained, and the present invention has been completed.
- this invention is a resin film obtained by hardening
- the said active energy ray curable composition is following formula (1).
- a resin film comprising 10 to 10% by weight or more of a 4- to 12-functional urethane (meth) acrylate (A) having a tricyclodecane skeleton group represented by provide.
- the thickness preferably exceeds 25 ⁇ m, and more preferably 500 ⁇ m or more.
- the active energy ray-curable composition includes a 4- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule, and other curing agents.
- a polyfunctional (meth) acrylate may be included as the functional compound (B).
- the active energy ray-curable composition includes a 4- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule, and the like.
- a polyfunctional (meth) acrylate having 4 or more functional groups may be contained.
- This invention is a manufacturing method of the said resin film, Comprising: following formula (1) From an active energy ray-curable composition containing 10 to 10% by weight or more of a 4- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by A method for producing a resin film is provided, wherein the thin film layer is irradiated with active energy rays to be cured.
- the resin film of the present invention is a resin film obtained by curing an active energy ray-curable composition containing a specific amount or more of a 4- to 12-functional urethane (meth) acrylate having a tricyclodecane skeleton.
- the occurrence of cracks and curls is remarkably suppressed, the film can be made thick, and the surface hardness can be very high.
- the resin film of the present invention can obtain the high surface hardness as described above without adding a filler such as fine particle silica.
- the resin film of the present invention is excellent in optical properties such as transparency, thermal properties, and mechanical properties.
- the resin film of the present invention has a 4- to 12-functional group having in its molecule a group containing a tricyclodecane skeleton represented by the above formula (1) (a group obtained by removing two hydrogen atoms of a hydroxyl group from tricyclodecane dimethanol).
- Urethane (meth) acrylate (A) [hereinafter sometimes simply referred to as “4- to 12-functional urethane (meth) acrylate (A)” or “urethane (meth) acrylate (A)”) It is the resin film obtained by hardening
- the amount of urethane (meth) acrylate (A) is preferably 15% by weight or more, more preferably 20% by weight or more, based on the entire curable compound in the active energy ray-curable composition.
- Urethane (meth) acrylate (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
- the number of functional groups of urethane (meth) acrylate means the number of (meth) acryloyl groups in one molecule.
- the number of functional groups of the urethane (meth) acrylate (A) is 3 or less, the surface hardness of the resin film tends to decrease.
- the number of functional groups of urethane (meth) acrylate (A) is 13 or more, the effect of suppressing the occurrence of cracks and curls due to curing shrinkage is reduced, and the impact resistance and accelerated weather resistance of the resin film are lowered. It becomes a trend.
- the number of functional groups of the urethane (meth) acrylate (A) is preferably 6 to 10, and more preferably 6 to 8.
- Urethane (meth) acrylate (A) is, for example, tricyclodecane dimethanol (X) [a compound in which hydrogen atoms are bonded to both ends of a group containing a tricyclodecane skeleton represented by the above formula (1)] and poly It can be produced by reacting isocyanate (Y) with hydroxy group-containing (meth) acrylate (Z).
- X tricyclodecane dimethanol
- Z hydroxy group-containing (meth) acrylate
- urethane (meth) acrylate (A) is simply “(A)” or “A”
- tricyclodecane dimethanol (X) is simply “(X)” or “X”
- polyisocyanate (Y) is The “(Y)” or “Y” may be simply referred to, and the hydroxy group-containing (meth) acrylate (Z) may be simply referred to as “(Z)” or “Z”.
- the number of functional groups of polyisocyanate means the number of isocyanate groups in one molecule
- the number of functional groups of hydroxy group-containing (meth) acrylate means the number of (meth) acryloyl groups in one molecule. Means.
- diisocyanate (bifunctional polyisocyanate) is used as polyisocyanate (Y)
- bifunctional (meth) acrylate compound is used as hydroxy group-containing (meth) acrylate (Z)
- tricyclodecane dimethanol (X)
- molar ratio of polyisocyanate (Y) and hydroxy group-containing (meth) acrylate (Z) is reacted at 1: 2: 2, tetrafunctional urethane (meth) acrylate (A) can be obtained.
- triisocyanate trifunctional polyisocyanate such as nurate polyisocyanate
- polyisocyanate (Y) polyisocyanate
- monofunctional (meth) acrylate compound is used as hydroxy group-containing (meth) acrylate (Z).
- X decanedimethanol
- polyisocyanate (Y) polyisocyanate
- hydroxy group-containing (meth) acrylate (Z) is 1: 2: 4
- a tetrafunctional urethane (meth) acrylate (A ) Can be obtained.
- the urethane (meth) acrylate (A) can be schematically represented by (Z) m —Y—XY— (Z) m (m is an integer of 1 or more, preferably 1 or 2). “-” In the above formula indicates that the components on both sides are reacted (hereinafter the same).
- Method 1 A method in which (X), (Y), and (Z) are mixed and reacted.
- Method 2 A method in which (X) and (Y) are reacted to form a urethane isocyanate prepolymer containing an isocyanate group, and then the prepolymer and (Z) are reacted.
- Method 3 A method of reacting (Y) and (Z) to form a urethane isocyanate prepolymer containing an isocyanate group, and then reacting the prepolymer with (X).
- urethane (meth) acrylate (A) increases the amount of urethane isocyanate prepolymer produced by repeating tricyclodecane dimethanol (X) and polyisocyanate (Y), ) Intramolecular density of the acryloyl group may decrease, and the surface hardness of the target resin film may decrease. Moreover, since various complicated compounds are irregularly generated, quality control may be difficult when the product is used as an active energy ray-curable resin composition.
- [Method 2] the following method may be mentioned as a method for synthesizing the urethane isocyanate prepolymer.
- [Method 2-1] A method in which (X) and (Y) are mixed and reacted.
- [Method 2-2] A method in which (Y) is dropped into (X) for reaction.
- [Method 2-3] A method in which (X) is dropped into (Y) for reaction.
- polyisocyanate (Y) is dropped into a large amount of tricyclodecane dimethanol (X).
- X tricyclodecane dimethanol
- a urethane isocyanate prepolymer having hydroxyl groups at both ends of the XYX type is formed, and this is further reacted with 2 moles of polyisocyanate (Y).
- Y- [XY] n -XY (n is an integer of 1 or more)
- the urethanization reaction proceeds in a non-uniform state of tricyclodecane dimethanol (X) and polyisocyanate (Y) at the stage of charging the polyisocyanate (Y).
- the molecular weight and viscosity of the resulting urethane isocyanate prepolymer change, and the reaction may be terminated in a state where unreacted polyisocyanate (Y) remains in the system.
- a by-product is generated due to the reaction of the hydroxy group-containing (meth) acrylate (Z) and the remaining polyisocyanate (Y) to be used later, which may cause a decrease in the surface hardness of the resin film. is there.
- the content of such a by-product is preferably less than 15% by weight based on the urethane (meth) acrylate (A) having a skeleton derived from the target tricyclodecane dimethanol (X).
- X tricyclodecane dimethanol
- a polyisocyanate (Y), a urethanization catalyst, and, if necessary, a diluting solvent are charged into a reactor and stirred until uniform. While stirring, the temperature is raised as necessary, and tricyclodecane dimethanol (X) is added dropwise.
- [Method 2-3] is preferable in that the following products described in [Method 2-2] are the least generated.
- urethane isocyanate prepolymer when synthesized by reaction of tricyclodecane dimethanol (X) and polyisocyanate (Y), tricyclodecane dimethanol (X) and polyisocyanate (Y) are combined.
- the reaction is preferably carried out until the isocyanate group concentration in the reaction solution is equal to or lower than the end-point isocyanate group concentration.
- the isocyanate group concentration in the reaction solution may be referred to as “NCO group concentration”.
- End-point isocyanate group concentration means the theoretical isocyanate group concentration (hereinafter, sometimes referred to as “theoretical end-point isocyanate group concentration”) assuming that all of the hydroxyl groups charged into the system have been urethanized. It means the higher isocyanate group concentration of the isocyanate group concentration when the isocyanate group concentration no longer changes.
- This reaction is preferably performed in the presence of a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, or phenothiazine for the purpose of preventing polymerization.
- a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, or phenothiazine for the purpose of preventing polymerization.
- the addition amount of these polymerization inhibitors is preferably 1 to 10,000 ppm (weight basis), more preferably 100 to 1000 ppm, and still more preferably 400 to 500 ppm with respect to the urethane (meth) acrylate (A) to be produced. If the addition amount of the polymerization inhibitor is less than 1 ppm relative to the urethane (meth) acrylate (A), a sufficient polymerization inhibition effect may not be obtained. If it exceeds 10000 ppm, the physical properties of the product may be adversely affected. There is.
- this reaction is preferably performed in a molecular oxygen-containing gas atmosphere.
- the oxygen concentration is appropriately selected in consideration of safety.
- the reaction may be performed using a catalyst (urethanization catalyst) in order to obtain a sufficient reaction rate.
- a catalyst urethanization catalyst
- dibutyltin dilaurate, tin octylate, tin chloride or the like can be used, but dibutyltin dilaurate is preferable from the viewpoint of reaction rate.
- the amount of these catalysts added is usually 1 to 3000 ppm (weight basis), preferably 50 to 1000 ppm. When the addition amount of the catalyst is less than 1 ppm, a sufficient reaction rate may not be obtained. When the addition amount is more than 3000 ppm, the physical properties of the target product may be adversely affected, such as a decrease in the surface hardness of the resin film.
- the reaction can be performed in the presence of a known volatile organic solvent.
- the volatile organic solvent include, but are not limited to, esters such as ethyl acetate, butyl acetate, and isobutyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, and cyclohexanone; ethylene glycol monomethyl ether and the like Ethers; glycol monoether acetates such as diethylene glycol monobutyl ether acetate and propylene glycol monomethyl ether acetate; hydrocarbons such as xylene and toluene; and mixtures thereof.
- ketones such as methyl isobutyl ketone and esters such as butyl acetate are preferable.
- the reaction is preferably carried out at a temperature of 130 ° C. or less, more preferably 40 to 130 ° C. When the temperature is lower than 40 ° C., a practically sufficient reaction rate may not be obtained. When the temperature is higher than 130 ° C., the double bond portion may be cross-linked by radical polymerization due to heat, and a gelled product may be generated.
- the reaction is usually carried out until the residual isocyanate group is 0.1% by weight or less.
- the residual isocyanate group concentration is analyzed by gas chromatography, titration method or the like.
- Tricyclodecane dimethanol (X) Tricyclodecane dimethanol (X) is not particularly limited, and a commercially available product may be used. Examples of commercially available products include “TCD alcohol DM” (manufactured by Oxea) (tricyclo [5.2.1.0 2,6 ] decanedimethanol).
- the polyisocyanate (Y) is not particularly limited, but aliphatic polyisocyanates (including those having an alicyclic skeleton) are preferable. Examples of such polyisocyanate (Y) include isophorone diisocyanate, 1,6-hexane diisocyanate (1,6-hexamethylene diisocyanate), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethyl.
- Hexamethylene diisocyanate, diisocyanate compounds obtained by hydrogenating aromatic diisocyanates for example, diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate
- trimers of these diisocyanates (biuret, nurate, or adducts); Trifunctional polyisocyanate) and the like.
- trimer of the diisocyanate compound nurate polyisocyanate is particularly preferable.
- Polyisocyanate (Y) may be used individually by 1 type, and may be used in combination of 2 or more.
- the hydroxy group-containing (meth) acrylate (Z) is not particularly limited.
- the active energy ray-curable composition in the present invention includes the urethane (meth) acrylate (A) and other curable compounds (B) [hereinafter sometimes referred to simply as “curable compounds (B)”]. May be included.
- the curable compound (B) may be any compound (a monomer or oligomer having a polymerizable group) that is cured by irradiation with active energy rays.
- a single compound having one (meth) acryloyl group in the molecule For example, a single compound having one (meth) acryloyl group in the molecule.
- Functional (meth) acrylates, polyfunctional (meth) acrylates having two or more (meth) acryloyl groups in the molecule can be used.
- Examples of the monofunctional (meth) acrylate include (meth) acrylate having an aromatic carbon ring such as phenoxyethyl (meth) acrylate and benzyl (meth) acrylate; cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and dicyclo (Meth) acrylates having an alicyclic skeleton such as pentenyloxyethyl (meth) acrylate; lactone-modified hydroxyalkyl (meth) acrylates such as polycaprolactone-modified hydroxyethyl (meth) acrylate; heterocycles such as acryloylmorpholine (meta ) Acrylate and the like.
- aromatic carbon ring such as phenoxyethyl (meth) acrylate and benzyl (meth) acrylate
- cyclohexyl (meth) acrylate isobornyl (meth) acrylate
- polyfunctional (meth) acrylate examples include 1,6-hexanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Of polyhydric alcohols (aliphatic polyhydric alcohols, alicyclic polyhydric alcohols, etc.) such as pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate ) Polyfunctional monomers such as acrylate; Urethane (meth) acrylate [excluding the urethane (meth) acrylate (A)], epoxy (meth) acrylate, polyester (meth) acrylate and other polyfunctional oligomers It is.
- polyhydric alcohols aliphatic polyhydric alcohols, alicyclic
- the curable compound (B) is preferably a polyfunctional (meth) acrylate, particularly a polyfunctional (functional 4 or more, preferably 6 to 15, preferably 6 to 12, more preferably 8 to 12 functional). (Meth) acrylate is preferred.
- polyfunctional (meth) acrylates polyfunctional urethane (meth) acrylate (B1) is preferable.
- the number of functional groups of the polyfunctional urethane (meth) acrylate is preferably 4 or more (for example, 4 to 15 functions, preferably 6 to 15 functions, more preferably 8 to 12 functions).
- Polyfunctional urethane (meth) acrylate (B1) can be produced by a known method. For example, (i) a method of reacting a polyisocyanate (Y ′) with a hydroxy group-containing (meth) acrylate (Z ′), (ii) a polyol (X ′), a polyisocyanate (Y ′), and a hydroxy group-containing (meta ) It can be produced by a method of reacting with acrylate (Z ′).
- polyol (X ′) examples include ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, and 3-methyl.
- Diols such as -1,5-pentanediol and tricyclodecane dimethanol; trivalent or higher polyols such as trimethylolpropane, ditrimethylolpropane, pentaerythritol and dipentaerythritol can be used.
- Polyol (X ') may be used individually by 1 type, and may be used in combination of 2 or more.
- polyisocyanate (Y ′) examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylene diisocyanate, 1,4-xylene diisocyanate, xylylene diisocyanate, 1,5 -Aromatic diisocyanates such as naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, diphenylmethane diisocyanate; isophorone diisocyanate, 1,6-hexane diisocyanate (1,6-hexamethylene diisocyanate), 2,2,4-trimethylhexa Diisocyanate compounds obtained by hydrogenating methylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, aromatic diisocyanate (for example, hydrogenated) Aliphatic polyisocyanates (including those having an alicyclic skeleton) such as silylene di
- aliphatic polyisocyanates including those having an alicyclic skeleton
- the nurate type polyisocyanate is also preferable.
- Polyisocyanate (Y ′) may be used alone or in combination of two or more.
- Examples of the hydroxy group-containing (meth) acrylate (Z ′) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxy-3- Monofunctional (meth) acrylate compounds having a hydroxyl group such as methoxypropyl (meth) acrylate and these lactone adducts (caprolactone adduct, etc.); pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, Polyfunctional (meth) acrylate compounds having hydroxyl groups such as dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, and these lactone adducts (caprolactone adducts, etc.) Such as things.
- the tetrafunctional or higher functional group containing the 4- to 12-functional urethane (meth) acrylate (A) is used.
- the total amount of polyfunctional (meth) acrylates (especially polyfunctional urethane (meth) acrylates having 4 or more functionalities) is 30% by weight or more based on the entire curable compound in the active energy ray-curable composition. It is preferably 50% by weight or more, more preferably 60% by weight or more.
- the active energy ray-curable composition in the present invention may contain a solvent, a photopolymerization initiator, an additive and the like as required in addition to the curable compound.
- the solvent can be appropriately selected in consideration of the solubility of the curable compound and is not particularly limited.
- esters such as ethyl acetate, butyl acetate, and isobutyl acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, and cyclohexanone.
- Ketones such as ethylene glycol monomethyl ether; glycol monoether acetates such as diethylene glycol monobutyl ether acetate and propylene glycol monomethyl ether acetate; hydrocarbons such as xylene and toluene; and mixtures thereof.
- the content of the solvent in the active energy ray-curable composition is, for example, 0 to 95% by weight, preferably 5 to 90% by weight, and more preferably 10 to 80% by weight.
- a known radical photopolymerization initiator can be used, and is not particularly limited.
- ⁇ -hydroxyalkylphenone polymerization initiators such as 1-hydroxycyclohexyl phenyl ketone and ⁇ -aminoalkyl such as 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one
- a phenone-based polymerization initiator When used in combination with a phenone-based polymerization initiator, it can be uniformly cured from the surface to the inside of the thin film layer made of the active energy ray-curable composition, and a homogeneous resin film can be obtained.
- the amount of the photopolymerization initiator used is, for example, 1 to 20 parts by weight, preferably 1.5 to 10 parts by weight with respect to 100 parts by weight of the curable compound in the active energy ray-curable composition. If it is less than 1 part by weight, there is a risk of causing poor curing. Conversely, if it exceeds 20 parts by weight, an odor derived from the photoinitiator may remain from the cured coating film.
- additives examples include fillers (particulate silica, etc.), dyes and pigments, leveling agents, ultraviolet absorbers, light stabilizers, antifoaming agents, dispersants, thixotropic agents, and the like.
- the amount of these additives to be added is, for example, 0 to 10 parts by weight, preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the curable compound in the active energy ray-curable composition.
- a resin film having a high surface hardness can be obtained without adding fine particle silica (or without adding filler such as fine particle silica). .
- the resin film of the present invention comprises a tetra- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the above formula (1) in the molecule, in an amount of 10 to the entire curable compound. It can manufacture by irradiating an active energy ray to the thin film layer which consists of an active energy ray curable composition containing weight% or more and making it harden
- the active energy ray-curable composition is cast on a substrate or in a mold to form a thin film and dried as necessary (after removing the solvent)
- the resin film of the present invention can be produced by curing by irradiation.
- the substrate is not particularly limited, and examples thereof include polyester resins, polyolefin resins, cellulose resins, polystyrene resins, methacrylic resins, polycarbonate resins, polymethylpentels, polysulfones, polyether ketones, and polyethers. Examples thereof include plastic base materials such as sulfone, polyetherimide, polyimide, and fluorine resin, glass base materials, metal base materials, and the like.
- the surface of the substrate is preferably subjected to a release treatment with a release agent (release agent).
- the material of the mold can be the same as that of the substrate, and the surface thereof is preferably subjected to a release treatment (fluorine resin coating or the like) with a release agent (release agent).
- the resin film of this invention can be obtained by irradiating the surface of the thinned active energy ray-curable composition with active energy rays such as ultraviolet rays or electron beams to cure the curable compound.
- active energy rays such as ultraviolet rays or electron beams
- a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like is used as a light source for ultraviolet irradiation.
- an irradiation source with a lamp output of about 80 to 300 W / cm is used.
- curing may be promoted by heating as necessary.
- the thickness of the resin film of the present invention is preferably more than 25 ⁇ m, more preferably 100 ⁇ m or more, further preferably 200 ⁇ m or more, and particularly preferably 500 ⁇ m or more in order to ensure high pencil hardness.
- the upper limit of the thickness of the resin film is not particularly limited, but is, for example, 4 mm, preferably 2 mm.
- the resin film of the present invention has a high surface hardness, for example, a pencil hardness of 4H or more when the film thickness is 100 ⁇ m or more, and a pencil hardness of 9H or more when the film thickness is 500 ⁇ m or more.
- the resin film of the present invention thus obtained can be used as an optical substrate such as a display substrate such as a liquid crystal display, an organic EL display, a touch panel, and a color filter, and an optical member.
- the isocyanate group concentration was measured as follows. In addition, the measurement was performed under stirring with a stirrer in a 100 mL glass flask.
- the blank value was measured as follows. First, 15 mL of a THF solution (0.1N) of dibutylamine was added to 15 mL of THF (tetrahydrofuran). Further, after adding 3 drops of bromophenol blue (diluted in 1% by weight of methanol) to give a blue color, titration was performed with an aqueous HCl solution having a normality of 0.1N. The titration amount of the aqueous HCl solution when the color change was observed was defined as V b (mL).
- the measured isocyanate group concentration was measured as follows. First, a sample of W s (g) was weighed and dissolved in 15 mL of THF, and 15 mL of dibutylamine in THF (0.1 N) was added. After confirming that the solution was formed, 3 drops of bromophenol blue (diluted in 1% by weight of methanol) were added to give a blue color, followed by titration with an aqueous HCl solution having a normality of 0.1N. The titer of the aqueous HCl solution when the color change was observed was defined as V s (mL).
- TCDDM Tricyclodecane dimethanol used in the synthesis example
- TCDDM Product name "TCD alcohol DM” (Oxea)
- HMDI trimer Product name “Sumijour N3300” (manufactured by Sumitomo Bayer Urethane Co., Ltd .; 1,6-hexamethylene diisocyanate-derived nurate compound)
- IPDI Product name “VESTANAT IPDI” (Evonik; isophorone diisocyanate)
- HEA Hydrophilicity group-containing (meth) acrylate used in synthesis example
- BHEA Product name “BHEA” (manufactured by Nippon Shokubai Co., Ltd .; 2-hydroxyethyl acrylate)
- PETIA Product name “PETRA” (manufactured by Cytec; mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate having a hydroxyl value of 120 mg KOH / g)
- M-403 Product name “Aronix M-403” (manufactured by Toagosei Co., Ltd .; mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate)
- the completion of the reaction was confirmed by confirming that the isocyanate group concentration in the reaction solution was not more than the theoretical end-point isocyanate group concentration (the same applies to other synthesis examples).
- the procedure shifted to the next operation.
- the internal temperature was raised to 70 ° C.
- 0.08 g of dibutyltin laurate was added, and 474.3 g of PETIA was added dropwise over 2 hours while maintaining the reaction temperature at 70 ° C. After completion of the dropping, stirring was continued at 70 ° C. for 1 hour.
- the reaction was terminated, and the backbone had an organic group obtained by removing two hydrogen atoms of a hydroxyl group from tricyclodecane dimethanol, and the number of functional groups was 2.
- the urethane (meth) acrylate containing material (UA3) was obtained.
- Examples and Comparative Examples The urethane (meth) acrylate-containing material prepared in the synthesis example, the photopolymerization initiator, and methyl isobutyl ketone (MIBK) are mixed in a light-shielding bottle so as to have the composition shown in Table 1 (numbers are parts by weight) An energy ray curable composition was prepared.
- photopolymerization initiator 1 is 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF, product name “IRGACURE184”)
- photopolymerization initiator 2 is 2-methyl-1- [4- ( Methylthio) phenyl] -2-morpholinopropan-1-one (product name “IRGACURE907” manufactured by BASF).
- the number in parentheses below “UA1” in the urethane (meth) acrylate column indicates the number of functional groups of the (meth) acryloyl group in one molecule.
- a resin film was produced by the following film production method 1 or 2.
- Film production method 1 An active energy ray-curable composition is flowed on a polyethylene terephthalate (PET) film (base material: thickness 125 ⁇ m, trade name “O321E”, manufactured by Mitsubishi Plastics) using a wire bar # 38. After extending, the solvent was removed by drying with a dryer at 80 ° C. After irradiating ultraviolet rays from a high pressure mercury lamp in a nitrogen atmosphere, the resin film having a predetermined thickness (20 ⁇ m, 100 ⁇ m) was obtained by peeling from the base material.
- PET polyethylene terephthalate
- Film production method 2 The active energy ray-curable composition was cast on a Teflon (registered trademark) petri dish, and then the solvent was removed by drying with a dryer at 80 ° C. After irradiating ultraviolet rays from a high pressure mercury lamp in a nitrogen atmosphere, the resin film having a predetermined thickness (200 ⁇ m, 1000 ⁇ m) was obtained by peeling from the teflon petri dish.
- the resin films of Examples 1 to 3 using a tetra- or hexafunctional urethane (meth) acrylate having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule Compared with a bifunctional urethane (meth) acrylate having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule, while the pencil hardness is “3H” even when the thickness is 20 ⁇ m.
- the resin film of Example 1 has a thickness of 20 ⁇ m and a pencil hardness of “H”.
- the resin films of Examples 5 to 11 using a tetra- or hexafunctional urethane (meth) acrylate having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule have a thickness of 200 ⁇ m or 1000 ⁇ m.
- Comparative Examples 2 to 4 using a bifunctional urethane (meth) acrylate having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule The resin film has a thickness of 200 ⁇ m or 1000 ⁇ m and a pencil hardness of “5H” to “7H”.
- the resin film of the present invention generation of cracks and curls due to curing shrinkage is remarkably suppressed, the film thickness can be increased, and the surface hardness can be very high. Further, high surface hardness can be obtained without adding a filler such as fine particle silica. Furthermore, the resin film of the present invention is excellent in optical properties such as transparency, thermal properties, and mechanical properties. Therefore, it is useful as an optical substrate such as a liquid crystal display, an organic EL display, a touch panel, a display substrate such as a color filter, an optical member, or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
This resin film is obtained by curing an active energy ray-curable composition, wherein the active energy ray-curable composition is characterized by containing 10 wt% or more, relative to all curable compounds, of a tetra- to dodecafunctional urethane (meth)acrylate (A) having in the molecule a group containing a tricyclodecane skeleton represented by formula (1). The thickness of the resin film preferably exceeds 25 μm, and is ideally 500 μm or greater.
Description
本発明は、液晶ディスプレイ、有機ELディスプレイ、タッチパネル、カラーフィルター等のディスプレイ基板などの光学用基板、光学部材等として有用な樹脂フィルム、及びその製造方法に関する。本願は、2013年4月5日に日本に出願した特願2013-079128の優先権を主張し、その内容をここに援用する。
The present invention relates to a resin film useful as an optical substrate such as a liquid crystal display, an organic EL display, a touch panel, a display substrate such as a color filter, an optical member, and the like, and a method for producing the same. This application claims the priority of Japanese Patent Application No. 2013-079128 for which it applied to Japan on April 5, 2013, and uses the content here.
従来、液晶ディスプレイ等のディスプレイ基板として、ガラス製基板が用いられていたが、近年、軽量性、薄型化、割れにくさ、量産性、製造コスト等の観点から、プラスチック製基板を用いたディスプレイが注目を集めている。
Conventionally, a glass substrate has been used as a display substrate for a liquid crystal display or the like, but in recent years, a display using a plastic substrate has been proposed from the viewpoint of lightness, thinning, resistance to cracking, mass productivity, manufacturing cost, and the like. It attracts attention.
光学用のプラスチック製基板として、ポリエチレンテレフタレートフィルム(PETフィルム)等のプラスチック基材上にハードコート層を塗工したハードコートフィルムが知られている。しかしながら、このようなハードコートフィルムは、鉛筆硬度が低いだけでなく、厚膜化すると、ハードコート層を構成する樹脂の硬化収縮により、ハードコート層側へカールしたり、ハードコート層にクラックが入るなどの問題があった。
As an optical plastic substrate, a hard coat film in which a hard coat layer is coated on a plastic substrate such as a polyethylene terephthalate film (PET film) is known. However, such a hard coat film not only has low pencil hardness, but when it is thickened, the hard coat layer curls or cracks in the hard coat layer due to curing shrinkage of the resin constituting the hard coat layer. There was a problem such as entering.
一方、光学用プラスチック部材として、重合性組成物を硬化して得られる硬化体からなるプラスチック部材が提案されている。例えば、特開2002-302517号公報には、3~8官能の脂肪族多官能メタクリレートを75重量%以上含む重合性組成物を硬化すると、耐熱性に優れ、複屈折が小さい樹脂成形体が得られることが記載されている。特開2003-292545号公報には、脂肪族2官能メタクリレートと3官能以上の脂肪族多官能メタクリレートを含有する重合性組成物を硬化すると、耐熱性に優れ、線膨張係数が小さい樹脂成形体が得られることが記載されている。
On the other hand, a plastic member made of a cured product obtained by curing a polymerizable composition has been proposed as an optical plastic member. For example, Japanese Patent Application Laid-Open No. 2002-302517 discloses a resin molded article having excellent heat resistance and low birefringence when a polymerizable composition containing 75 wt% or more of a tri- to 8-functional aliphatic polyfunctional methacrylate is cured. It is described that JP-A-2003-292545 discloses a resin molded article having excellent heat resistance and a small linear expansion coefficient when a polymerizable composition containing an aliphatic difunctional methacrylate and a trifunctional or higher aliphatic polyfunctional methacrylate is cured. It is described that it is obtained.
また、特許第4690053号公報には、(A)脂環構造を有するポリイソシアネート化合物と水酸基含有(メタ)アクリレートを反応させて得られる脂環構造を有する多官能ウレタン(メタ)アクリレートと、(B)脂環構造を有する2官能(メタ)アクリレートとを含有する(メタ)アクリレート系光重合性組成物を光硬化すると、厚さが50~400μmで鉛筆硬度が4H以上の樹脂成形体が得られることが記載されている。
Japanese Patent No. 4690053 discloses (A) a polyfunctional urethane (meth) acrylate having an alicyclic structure obtained by reacting a polyisocyanate compound having an alicyclic structure with a hydroxyl group-containing (meth) acrylate, and (B When a (meth) acrylate photopolymerizable composition containing a bifunctional (meth) acrylate having an alicyclic structure is photocured, a resin molded product having a thickness of 50 to 400 μm and a pencil hardness of 4H or more is obtained. It is described.
しかしながら、従来の樹脂成形体は、樹脂の硬化収縮によるクラックやカールが生じやすく、厚膜化が困難である。そのため、鉛筆硬度が例えば9H程度の高い表面硬度を有する樹脂フィルムは得られていない。
However, the conventional resin molded body tends to cause cracks and curls due to curing shrinkage of the resin, and it is difficult to increase the film thickness. Therefore, a resin film having a high surface hardness such as a pencil hardness of about 9H has not been obtained.
本発明の目的は、樹脂の硬化収縮に起因するクラックやカールがなく、しかも表面硬度の高い樹脂フィルム、及びその製造方法を提供することにある。
本発明の他の目的は、例えば500μm以上という厚膜であってもクラックがなく、表面硬度の高い樹脂フィルム、及びその製造方法を提供することにある。 An object of the present invention is to provide a resin film free from cracks and curls due to cure shrinkage of the resin and having a high surface hardness, and a method for producing the same.
Another object of the present invention is to provide a resin film having a high surface hardness without cracks even if it is a thick film of 500 μm or more, and a method for producing the same.
本発明の他の目的は、例えば500μm以上という厚膜であってもクラックがなく、表面硬度の高い樹脂フィルム、及びその製造方法を提供することにある。 An object of the present invention is to provide a resin film free from cracks and curls due to cure shrinkage of the resin and having a high surface hardness, and a method for producing the same.
Another object of the present invention is to provide a resin film having a high surface hardness without cracks even if it is a thick film of 500 μm or more, and a method for producing the same.
本発明者等は、上記目的を解決するため鋭意検討した結果、トリシクロデカン骨格を有する4~12官能のウレタン(メタ)アクリレートを特定量以上含む硬化性組成物を硬化させると、硬化収縮によるクラックやカールの発生が顕著に抑制され、厚膜化が可能になり、表面硬度の非常に高い樹脂フィルムが得られることを見出し、本発明を完成した。
As a result of diligent studies to solve the above-mentioned object, the present inventors have found that when a curable composition containing a specific amount of a 4- to 12-functional urethane (meth) acrylate having a tricyclodecane skeleton is cured, curing shrinkage occurs. The inventors have found that the generation of cracks and curls is remarkably suppressed, the film thickness can be increased, and a resin film having a very high surface hardness can be obtained, and the present invention has been completed.
すなわち、本発明は、活性エネルギー線硬化性組成物を硬化して得られる樹脂フィルムであって、前記活性エネルギー線硬化性組成物が、下記式(1)
で表されるトリシクロデカン骨格を含む基を分子内に有する4~12官能のウレタン(メタ)アクリレート(A)を硬化性化合物全体に対して10重量%以上含むことを特徴とする樹脂フィルムを提供する。
That is, this invention is a resin film obtained by hardening | curing an active energy ray curable composition, Comprising: The said active energy ray curable composition is following formula (1).
A resin film comprising 10 to 10% by weight or more of a 4- to 12-functional urethane (meth) acrylate (A) having a tricyclodecane skeleton group represented by provide.
上記の樹脂フィルムにおいて、厚みは25μmを超えるのが好ましく、500μm以上であることがさらに好ましい。
In the above resin film, the thickness preferably exceeds 25 μm, and more preferably 500 μm or more.
前記活性エネルギー線硬化性組成物は、前記式(1)で表されるトリシクロデカン骨格を含む基を分子内に有する4~12官能のウレタン(メタ)アクリレート(A)に加え、他の硬化性化合物(B)として多官能(メタ)アクリレートを含んでいてもよい。
The active energy ray-curable composition includes a 4- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule, and other curing agents. A polyfunctional (meth) acrylate may be included as the functional compound (B).
また、前記活性エネルギー線硬化性組成物は、前記式(1)で表されるトリシクロデカン骨格を含む基を分子内に有する4~12官能のウレタン(メタ)アクリレート(A)に加え、他の硬化性化合物(B)として4官能以上の多官能(メタ)アクリレートを含んでいてもよい。
In addition, the active energy ray-curable composition includes a 4- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule, and the like. As the curable compound (B), a polyfunctional (meth) acrylate having 4 or more functional groups may be contained.
前記式(1)で表されるトリシクロデカン骨格を含む基を分子内に有する4~12官能のウレタン(メタ)アクリレート(A)を含む4官能以上の多官能(メタ)アクリレートの総量が、活性エネルギー線硬化性組成物中の硬化性化合物全体に対して30重量%以上であることが好ましい。
The total amount of polyfunctional (meth) acrylates having 4 or more functional groups including 4- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule, It is preferable that it is 30 weight% or more with respect to the whole curable compound in an active energy ray curable composition.
本発明は、前記の樹脂フィルムの製造方法であって、下記式(1)
で表されるトリシクロデカン骨格を含む基を分子内に有する4~12官能のウレタン(メタ)アクリレート(A)を硬化性化合物全体に対して10重量%以上含む活性エネルギー線硬化性組成物からなる薄膜層に、活性エネルギー線を照射して硬化させることを特徴とする樹脂フィルムの製造方法を提供する。
This invention is a manufacturing method of the said resin film, Comprising: following formula (1)
From an active energy ray-curable composition containing 10 to 10% by weight or more of a 4- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by A method for producing a resin film is provided, wherein the thin film layer is irradiated with active energy rays to be cured.
本発明の樹脂フィルムは、トリシクロデカン骨格を有する4~12官能のウレタン(メタ)アクリレートを特定量以上含む活性エネルギー線硬化性組成物を硬化して得られる樹脂フィルムであるため、硬化収縮によるクラックやカールの発生が顕著に抑制され、厚膜化が可能であり、表面硬度が非常に高いものとすることができる。例えば、膜厚100μm以上で鉛筆硬度4H以上となり、膜厚500μm以上で鉛筆硬度9H以上となる。また、本発明の樹脂フィルムは、微粒子シリカ等のフィラーを添加しなくても上記のような高い表面硬度が得られる。さらに、本発明の樹脂フィルムは、透明性等の光学特性、熱特性、機械特性にも優れている。
The resin film of the present invention is a resin film obtained by curing an active energy ray-curable composition containing a specific amount or more of a 4- to 12-functional urethane (meth) acrylate having a tricyclodecane skeleton. The occurrence of cracks and curls is remarkably suppressed, the film can be made thick, and the surface hardness can be very high. For example, when the film thickness is 100 μm or more, the pencil hardness is 4H or more, and when the film thickness is 500 μm or more, the pencil hardness is 9H or more. Further, the resin film of the present invention can obtain the high surface hardness as described above without adding a filler such as fine particle silica. Furthermore, the resin film of the present invention is excellent in optical properties such as transparency, thermal properties, and mechanical properties.
本発明の樹脂フィルムは、前記式(1)で表されるトリシクロデカン骨格を含む基(トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた基)を分子内に有する4~12官能のウレタン(メタ)アクリレート(A)[以下、単に「4~12官能のウレタン(メタ)アクリレート(A)」又は「ウレタン(メタ)アクリレート(A)」と称する場合がある]を硬化性化合物全体に対して10重量%以上含む活性エネルギー線硬化性組成物を硬化して得られる樹脂フィルムである。
The resin film of the present invention has a 4- to 12-functional group having in its molecule a group containing a tricyclodecane skeleton represented by the above formula (1) (a group obtained by removing two hydrogen atoms of a hydroxyl group from tricyclodecane dimethanol). Urethane (meth) acrylate (A) [hereinafter sometimes simply referred to as “4- to 12-functional urethane (meth) acrylate (A)” or “urethane (meth) acrylate (A)”) It is the resin film obtained by hardening | curing the active energy ray curable composition containing 10 weight% or more with respect to this.
[ウレタン(メタ)アクリレート(A)]
本発明では、硬化性化合物全体に占めるウレタン(メタ)アクリレート(A)の割合を10重量%以上とすることにより、硬化収縮によるクラックやカールの発生を顕著に抑制でき、厚膜化が可能となり、表面硬度の高い樹脂フィルムとすることができる。ウレタン(メタ)アクリレート(A)の量が硬化性化合物全体の10重量%未満では、前記硬化収縮によるクラックやカールの抑制効果が小さくなる。ウレタン(メタ)アクリレート(A)の量は、好ましくは、活性エネルギー線硬化性組成物中の硬化性化合物全体に対して15重量%以上であり、より好ましくは20重量%以上である。ウレタン(メタ)アクリレート(A)は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 [Urethane (meth) acrylate (A)]
In the present invention, by setting the proportion of urethane (meth) acrylate (A) in the entire curable compound to 10% by weight or more, generation of cracks and curls due to curing shrinkage can be remarkably suppressed, and a thick film can be formed. A resin film having a high surface hardness can be obtained. When the amount of urethane (meth) acrylate (A) is less than 10% by weight of the entire curable compound, the effect of suppressing cracks and curls due to the curing shrinkage is reduced. The amount of urethane (meth) acrylate (A) is preferably 15% by weight or more, more preferably 20% by weight or more, based on the entire curable compound in the active energy ray-curable composition. Urethane (meth) acrylate (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
本発明では、硬化性化合物全体に占めるウレタン(メタ)アクリレート(A)の割合を10重量%以上とすることにより、硬化収縮によるクラックやカールの発生を顕著に抑制でき、厚膜化が可能となり、表面硬度の高い樹脂フィルムとすることができる。ウレタン(メタ)アクリレート(A)の量が硬化性化合物全体の10重量%未満では、前記硬化収縮によるクラックやカールの抑制効果が小さくなる。ウレタン(メタ)アクリレート(A)の量は、好ましくは、活性エネルギー線硬化性組成物中の硬化性化合物全体に対して15重量%以上であり、より好ましくは20重量%以上である。ウレタン(メタ)アクリレート(A)は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 [Urethane (meth) acrylate (A)]
In the present invention, by setting the proportion of urethane (meth) acrylate (A) in the entire curable compound to 10% by weight or more, generation of cracks and curls due to curing shrinkage can be remarkably suppressed, and a thick film can be formed. A resin film having a high surface hardness can be obtained. When the amount of urethane (meth) acrylate (A) is less than 10% by weight of the entire curable compound, the effect of suppressing cracks and curls due to the curing shrinkage is reduced. The amount of urethane (meth) acrylate (A) is preferably 15% by weight or more, more preferably 20% by weight or more, based on the entire curable compound in the active energy ray-curable composition. Urethane (meth) acrylate (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
本明細書において、ウレタン(メタ)アクリレートの官能基数とは、1分子中の(メタ)アクリロイル基の数を意味する。ウレタン(メタ)アクリレート(A)の官能基数が3以下では、樹脂フィルムの表面硬度が低下する傾向となる。一方、ウレタン(メタ)アクリレート(A)の官能基数が13以上では、硬化収縮に起因するクラックやカールの発生を抑制する効果が小さくなるとともに、樹脂フィルムの耐衝撃性、促進耐候性が低下する傾向となる。本発明において、ウレタン(メタ)アクリレート(A)の官能基数は、好ましくは6~10、さらに好ましくは6~8である。
In this specification, the number of functional groups of urethane (meth) acrylate means the number of (meth) acryloyl groups in one molecule. When the number of functional groups of the urethane (meth) acrylate (A) is 3 or less, the surface hardness of the resin film tends to decrease. On the other hand, when the number of functional groups of urethane (meth) acrylate (A) is 13 or more, the effect of suppressing the occurrence of cracks and curls due to curing shrinkage is reduced, and the impact resistance and accelerated weather resistance of the resin film are lowered. It becomes a trend. In the present invention, the number of functional groups of the urethane (meth) acrylate (A) is preferably 6 to 10, and more preferably 6 to 8.
ウレタン(メタ)アクリレート(A)は、例えば、トリシクロデカンジメタノール(X)[前記式(1)で表されるトリシクロデカン骨格を含む基の両末端に水素原子が結合した化合物]とポリイソシアネート(Y)とヒドロキシ基含有(メタ)アクリレート(Z)とを反応させることにより製造できる。なお、以下、ウレタン(メタ)アクリレート(A)を単に「(A)」又は「A」、トリシクロデカンジメタノール(X)を単に「(X)」又は「X」、ポリイソシアネート(Y)を単に「(Y)」又は「Y」、ヒドロキシ基含有(メタ)アクリレート(Z)を単に「(Z)」又は「Z」と称することがある。なお、本明細書において、ポリイソシアネートの官能基数とは1分子中のイソシアネート基の数を意味し、ヒドロキシ基含有(メタ)アクリレートの官能基数とは、1分子中の(メタ)アクリロイル基の数を意味すする。
Urethane (meth) acrylate (A) is, for example, tricyclodecane dimethanol (X) [a compound in which hydrogen atoms are bonded to both ends of a group containing a tricyclodecane skeleton represented by the above formula (1)] and poly It can be produced by reacting isocyanate (Y) with hydroxy group-containing (meth) acrylate (Z). Hereinafter, urethane (meth) acrylate (A) is simply “(A)” or “A”, tricyclodecane dimethanol (X) is simply “(X)” or “X”, and polyisocyanate (Y) is The “(Y)” or “Y” may be simply referred to, and the hydroxy group-containing (meth) acrylate (Z) may be simply referred to as “(Z)” or “Z”. In this specification, the number of functional groups of polyisocyanate means the number of isocyanate groups in one molecule, and the number of functional groups of hydroxy group-containing (meth) acrylate means the number of (meth) acryloyl groups in one molecule. Means.
例えば、ポリイソシアネート(Y)としてジイソシアネート(2官能のポリイソシアネート)を用い、ヒドロキシ基含有(メタ)アクリレート(Z)として2官能の(メタ)アクリレート化合物を用い、トリシクロデカンジメタノール(X)とポリイソシアネート(Y)とヒドロキシ基含有(メタ)アクリレート(Z)のモル比を1:2:2として反応させた場合には、4官能のウレタン(メタ)アクリレート(A)を得ることができる。また、上記において、ヒドロキシ基含有(メタ)アクリレート(Z)として3官能の(メタ)アクリレート化合物を用いた場合には、6官能のウレタン(メタ)アクリレート(A)を得ることができる。さらに、上記において、ヒドロキシ基含有(メタ)アクリレート(Z)として4官能の(メタ)アクリレート化合物を用いた場合には、8官能のウレタン(メタ)アクリレート(A)を得ることができる。
For example, diisocyanate (bifunctional polyisocyanate) is used as polyisocyanate (Y), bifunctional (meth) acrylate compound is used as hydroxy group-containing (meth) acrylate (Z), tricyclodecane dimethanol (X) and When the molar ratio of polyisocyanate (Y) and hydroxy group-containing (meth) acrylate (Z) is reacted at 1: 2: 2, tetrafunctional urethane (meth) acrylate (A) can be obtained. Moreover, in the above, when a trifunctional (meth) acrylate compound is used as the hydroxy group-containing (meth) acrylate (Z), a hexafunctional urethane (meth) acrylate (A) can be obtained. Furthermore, in the above, when a tetrafunctional (meth) acrylate compound is used as the hydroxy group-containing (meth) acrylate (Z), an octafunctional urethane (meth) acrylate (A) can be obtained.
また、ポリイソシアネート(Y)としてトリイソシアネート(ヌレート型ポリイソシアネート等の3官能のポリイソシアネート)を用い、ヒドロキシ基含有(メタ)アクリレート(Z)として単官能の(メタ)アクリレート化合物を用い、トリシクロデカンジメタノール(X)とポリイソシアネート(Y)とヒドロキシ基含有(メタ)アクリレート(Z)のモル比を1:2:4として反応させた場合には、4官能のウレタン(メタ)アクリレート(A)を得ることができる。また、上記において、ヒドロキシ基含有(メタ)アクリレート(Z)として2官能の(メタ)アクリレート化合物を用いた場合には、8官能のウレタン(メタ)アクリレート(A)を得ることができる。また、上記において、ヒドロキシ基含有(メタ)アクリレート(Z)として3官能の(メタ)アクリレート化合物を用いた場合には、12官能のウレタン(メタ)アクリレート(A)を得ることができる。
Also, triisocyanate (trifunctional polyisocyanate such as nurate polyisocyanate) is used as polyisocyanate (Y), and monofunctional (meth) acrylate compound is used as hydroxy group-containing (meth) acrylate (Z). When the molar ratio of decanedimethanol (X), polyisocyanate (Y), and hydroxy group-containing (meth) acrylate (Z) is 1: 2: 4, a tetrafunctional urethane (meth) acrylate (A ) Can be obtained. Moreover, in the above, when a bifunctional (meth) acrylate compound is used as the hydroxy group-containing (meth) acrylate (Z), an octafunctional urethane (meth) acrylate (A) can be obtained. In the above, when a trifunctional (meth) acrylate compound is used as the hydroxy group-containing (meth) acrylate (Z), a 12-functional urethane (meth) acrylate (A) can be obtained.
本発明において、ウレタン(メタ)アクリレート(A)としては、模式的に記すと、(Z)m-Y-X-Y-(Z)m (mは1以上の整数であり、好ましくは1又は2である)の構造であることが好ましい。上記式中の「-」は両側の成分が反応していることを示す(以下、同じ)。
In the present invention, the urethane (meth) acrylate (A) can be schematically represented by (Z) m —Y—XY— (Z) m (m is an integer of 1 or more, preferably 1 or 2). “-” In the above formula indicates that the components on both sides are reacted (hereinafter the same).
ウレタン(メタ)アクリレート(A)の製造方法としては特に限定されないが、例えば、次の方法が挙げられる。
[方法1]:(X)、(Y)、(Z)を一括混合して反応させる方法。
[方法2]:(X)及び(Y)を反応させて、イソシアネート基を含有するウレタンイソシアネートプレポリマーを形成した後、該プレポリマーと(Z)を反応させる方法。
[方法3]:(Y)及び(Z)を反応させて、イソシアネート基を含有するウレタンイソシアネートプレポリマーを形成した後、該プレポリマーと(X)を反応させる方法。 Although it does not specifically limit as a manufacturing method of urethane (meth) acrylate (A), For example, the following method is mentioned.
[Method 1]: A method in which (X), (Y), and (Z) are mixed and reacted.
[Method 2]: A method in which (X) and (Y) are reacted to form a urethane isocyanate prepolymer containing an isocyanate group, and then the prepolymer and (Z) are reacted.
[Method 3]: A method of reacting (Y) and (Z) to form a urethane isocyanate prepolymer containing an isocyanate group, and then reacting the prepolymer with (X).
[方法1]:(X)、(Y)、(Z)を一括混合して反応させる方法。
[方法2]:(X)及び(Y)を反応させて、イソシアネート基を含有するウレタンイソシアネートプレポリマーを形成した後、該プレポリマーと(Z)を反応させる方法。
[方法3]:(Y)及び(Z)を反応させて、イソシアネート基を含有するウレタンイソシアネートプレポリマーを形成した後、該プレポリマーと(X)を反応させる方法。 Although it does not specifically limit as a manufacturing method of urethane (meth) acrylate (A), For example, the following method is mentioned.
[Method 1]: A method in which (X), (Y), and (Z) are mixed and reacted.
[Method 2]: A method in which (X) and (Y) are reacted to form a urethane isocyanate prepolymer containing an isocyanate group, and then the prepolymer and (Z) are reacted.
[Method 3]: A method of reacting (Y) and (Z) to form a urethane isocyanate prepolymer containing an isocyanate group, and then reacting the prepolymer with (X).
[方法1]~[方法3]の中では、[方法2]が好ましい。
[Method 2] is preferable among [Method 1] to [Method 3].
一方、[方法1]で製造すると、ウレタン(メタ)アクリレート(A)は、トリシクロデカンジメタノール(X)とポリイソシアネート(Y)の繰り返しによるウレタンイソシアネートプレポリマーの生成量が多くなり、(メタ)アクリロイル基の分子内密度が低下して目的物である樹脂フィルムの表面硬度が低下する場合がある。また、複雑な各種の化合物が不規則に生成するため、生成物を活性エネルギー線硬化性樹脂組成物として使用する際、品質の管理が難しくなる場合がある。
On the other hand, when produced by [Method 1], urethane (meth) acrylate (A) increases the amount of urethane isocyanate prepolymer produced by repeating tricyclodecane dimethanol (X) and polyisocyanate (Y), ) Intramolecular density of the acryloyl group may decrease, and the surface hardness of the target resin film may decrease. Moreover, since various complicated compounds are irregularly generated, quality control may be difficult when the product is used as an active energy ray-curable resin composition.
また、[方法3]で反応させた場合、ポリイソシアネート(Y)のイソシアネート基全てがヒドロキシ基含有(メタ)アクリレート(Z)と反応した化合物が副生する。この副生物はトリシクロデカンジメタノール(X)に由来する骨格を含んでいないため、樹脂フィルムにカールやクラックが生じたり、表面硬度が低下する場合がある。
Further, when the reaction is carried out by [Method 3], a compound in which all isocyanate groups of the polyisocyanate (Y) have reacted with the hydroxy group-containing (meth) acrylate (Z) is by-produced. Since this by-product does not contain a skeleton derived from tricyclodecane dimethanol (X), the resin film may be curled or cracked, or the surface hardness may be reduced.
[方法2]において、ウレタンイソシアネートプレポリマーの合成方法として、次の方法が挙げられる。
[方法2-1]:(X)、(Y)を一括混合して反応させる方法。
[方法2-2]:(X)の中に(Y)を滴下して反応させる方法。
[方法2-3]:(Y)の中に(X)を滴下して反応させる方法。 In [Method 2], the following method may be mentioned as a method for synthesizing the urethane isocyanate prepolymer.
[Method 2-1]: A method in which (X) and (Y) are mixed and reacted.
[Method 2-2]: A method in which (Y) is dropped into (X) for reaction.
[Method 2-3]: A method in which (X) is dropped into (Y) for reaction.
[方法2-1]:(X)、(Y)を一括混合して反応させる方法。
[方法2-2]:(X)の中に(Y)を滴下して反応させる方法。
[方法2-3]:(Y)の中に(X)を滴下して反応させる方法。 In [Method 2], the following method may be mentioned as a method for synthesizing the urethane isocyanate prepolymer.
[Method 2-1]: A method in which (X) and (Y) are mixed and reacted.
[Method 2-2]: A method in which (Y) is dropped into (X) for reaction.
[Method 2-3]: A method in which (X) is dropped into (Y) for reaction.
[方法2-2]の場合、大量のトリシクロデカンジメタノール(X)の中にポリイソシアネート(Y)を滴下するので、ポリイソシアネート(Y)の両側のイソシアネート基が2モルのトリシクロデカンジメタノール(X)の水酸基とウレタン化して、模式的に書くとX-Y-X型の両末端が水酸基のウレタンイソシアネートプレポリマーが生成し、さらに、これに2モルのポリイソシアネート(Y)が反応し、模式的に書くと、Y-X-Y-X-Y型の両末端がイソシアネート基の化合物が生成し、さらに同様な反応が繰り返されるため、模式的に書くと以下の構造の化合物が大量に生成する。
Y-[X-Y]n-X-Y (nは1以上の整数) In the case of [Method 2-2], polyisocyanate (Y) is dropped into a large amount of tricyclodecane dimethanol (X). When urethanized with the hydroxyl group of methanol (X) and written schematically, a urethane isocyanate prepolymer having hydroxyl groups at both ends of the XYX type is formed, and this is further reacted with 2 moles of polyisocyanate (Y). However, when written schematically, a compound having an isocyanate group at both ends of the YXYXY type is generated, and the same reaction is repeated. Generate in large quantities.
Y- [XY] n -XY (n is an integer of 1 or more)
Y-[X-Y]n-X-Y (nは1以上の整数) In the case of [Method 2-2], polyisocyanate (Y) is dropped into a large amount of tricyclodecane dimethanol (X). When urethanized with the hydroxyl group of methanol (X) and written schematically, a urethane isocyanate prepolymer having hydroxyl groups at both ends of the XYX type is formed, and this is further reacted with 2 moles of polyisocyanate (Y). However, when written schematically, a compound having an isocyanate group at both ends of the YXYXY type is generated, and the same reaction is repeated. Generate in large quantities.
Y- [XY] n -XY (n is an integer of 1 or more)
このような生成物が大量に生成すると、これにヒドロキシ基含有(メタ)アクリレート(Z)を反応させて得られるウレタン(メタ)アクリレート[(Z)m-Y-[X-Y]n-X-Y-(Z)m (m、nは1以上の整数)]においては、(メタ)アクリロイル基の分子内密度が低くなり、硬化させても十分な架橋密度が得られず、目的物である樹脂フィルムの表面硬度が低下するおそれがある。従って、樹脂フィルムの表面硬度を高めるには、[方法2-1]、[方法2-3]が好ましく用いられる。
When such a product is produced in a large amount, urethane (meth) acrylate [(Z) m -Y- [XY] n -X obtained by reacting this with a hydroxy group-containing (meth) acrylate (Z). -Y- (Z) m (m, n is an integer of 1 or more)], the intramolecular density of the (meth) acryloyl group is low, and a sufficient crosslinking density cannot be obtained even when cured. There exists a possibility that the surface hardness of a certain resin film may fall. Therefore, [Method 2-1] and [Method 2-3] are preferably used to increase the surface hardness of the resin film.
[方法2-1]においては、反応器に、トリシクロデカンジメタノール(X)とポリイソシアネート(Y)、及び必要により希釈溶媒を仕込み、均一になるまで攪拌をしながら必要に応じて昇温後、ウレタン化触媒を投入してウレタン化を開始する方法が好ましい。ウレタン化触媒を投入後に必要に応じて昇温してもよい。
In [Method 2-1], tricyclodecane dimethanol (X) and polyisocyanate (Y) and, if necessary, a diluting solvent are charged into a reactor, and the temperature is raised as necessary while stirring until uniform. Thereafter, a method of introducing a urethanization catalyst and starting urethanization is preferred. The temperature may be increased as necessary after the urethanization catalyst is added.
ウレタン化触媒を初めから投入すると、ポリイソシアネート(Y)の仕込み段階で、トリシクロデカンジメタノール(X)とポリイソシアネート(Y)とが不均一な状態でウレタン化反応が進行することになり、得られるウレタンイソシアネートプレポリマーの分子量や粘度が変化し、未反応のポリイソシアネート(Y)が系中に残存した状態で反応が終結する場合がある。このような場合には、後で使用するヒドロキシ基含有(メタ)アクリレート(Z)と残存したポリイソシアネート(Y)だけの反応による副生物が生じるため、樹脂フィルムの表面硬度の低下を招くおそれがある。このような副生物の含有量は、目的とするトリシクロデカンジメタノール(X)に由来する骨格を有するウレタン(メタ)アクリレート(A)に対して15重量%未満であることが好ましい。15重量%以上であると、樹脂フィルムの表面硬度が低下するおそれがある。[方法2-1]は、ワンポットでウレタン(メタ)アクリレート(A)が製造できる点が、工業的に優れている。
When the urethanization catalyst is added from the beginning, the urethanization reaction proceeds in a non-uniform state of tricyclodecane dimethanol (X) and polyisocyanate (Y) at the stage of charging the polyisocyanate (Y). The molecular weight and viscosity of the resulting urethane isocyanate prepolymer change, and the reaction may be terminated in a state where unreacted polyisocyanate (Y) remains in the system. In such a case, a by-product is generated due to the reaction of the hydroxy group-containing (meth) acrylate (Z) and the remaining polyisocyanate (Y) to be used later, which may cause a decrease in the surface hardness of the resin film. is there. The content of such a by-product is preferably less than 15% by weight based on the urethane (meth) acrylate (A) having a skeleton derived from the target tricyclodecane dimethanol (X). There exists a possibility that the surface hardness of a resin film may fall that it is 15 weight% or more. [Method 2-1] is industrially superior in that urethane (meth) acrylate (A) can be produced in one pot.
[方法2-3]においては、例えば、反応器に、ポリイソシアネート(Y)、ウレタン化触媒、及び必要により希釈溶媒を仕込み均一になるまで攪拌する。攪拌をしながら、必要に応じて昇温し、トリシクロデカンジメタノール(X)を滴下する。
In [Method 2-3], for example, a polyisocyanate (Y), a urethanization catalyst, and, if necessary, a diluting solvent are charged into a reactor and stirred until uniform. While stirring, the temperature is raised as necessary, and tricyclodecane dimethanol (X) is added dropwise.
[方法2-3]は、[方法2-2]で述べた下記生成物の生成が最も少ない点で好ましい。
Y-[X-Y]n-X-Y (nは1以上の整数) [Method 2-3] is preferable in that the following products described in [Method 2-2] are the least generated.
Y- [XY] n -XY (n is an integer of 1 or more)
Y-[X-Y]n-X-Y (nは1以上の整数) [Method 2-3] is preferable in that the following products described in [Method 2-2] are the least generated.
Y- [XY] n -XY (n is an integer of 1 or more)
なお、いずれの方法でも、トリシクロデカンジメタノール(X)とポリイソシアネート(Y)との反応によりウレタンイソシアネートプレポリマーを合成する際、トリシクロデカンジメタノール(X)とポリイソシアネート(Y)とを、反応液中のイソシアネート基濃度が終点イソシアネート基濃度以下になるまで反応させることが好ましい。なお、反応液中のイソシアネート基濃度を「NCO基濃度」ということもある。
In any method, when the urethane isocyanate prepolymer is synthesized by reaction of tricyclodecane dimethanol (X) and polyisocyanate (Y), tricyclodecane dimethanol (X) and polyisocyanate (Y) are combined. The reaction is preferably carried out until the isocyanate group concentration in the reaction solution is equal to or lower than the end-point isocyanate group concentration. The isocyanate group concentration in the reaction solution may be referred to as “NCO group concentration”.
「終点イソシアネート基濃度」とは、系内に仕込んだ水酸基の全てがウレタン化したと仮定した場合の理論上のイソシアネート基濃度(以下、「理論終点イソシアネート基濃度」と称することがある)と、イソシアネート基濃度がもはや変化しなくなった時のイソシアネート基濃度の、いずれか高いほうのイソシアネート基濃度を意味する。
“End-point isocyanate group concentration” means the theoretical isocyanate group concentration (hereinafter, sometimes referred to as “theoretical end-point isocyanate group concentration”) assuming that all of the hydroxyl groups charged into the system have been urethanized. It means the higher isocyanate group concentration of the isocyanate group concentration when the isocyanate group concentration no longer changes.
生成したウレタンイソシアネートプレポリマーとヒドロキシ基含有(メタ)アクリレート(Z)とを反応させる際、反応に供するイソシアネート基量が水酸基量よりも過剰になると未反応のイソシアネート基が残存しゲル化する可能性がある。また配合後、塗膜の硬化不良の原因ともなる。このため反応に供する水酸基量は、イソシアネート基量よりも大きくなるように、ヒドロキシ基含有(メタ)アクリレート(Z)の添加量を調整するのが好ましい。
When the generated urethane isocyanate prepolymer and the hydroxy group-containing (meth) acrylate (Z) are reacted, if the amount of isocyanate group used for the reaction exceeds the amount of hydroxyl groups, there is a possibility that unreacted isocyanate groups will remain and cause gelation. There is. Moreover, it becomes a cause of the hardening defect of a coating film after mix | blending. For this reason, it is preferable to adjust the addition amount of hydroxy-group containing (meth) acrylate (Z) so that the amount of hydroxyl groups used for reaction may become larger than the amount of isocyanate groups.
この反応は、重合を防止する目的で、ヒドロキノン、ヒドロキノンモノメチルエーテル、フェノチアジン等の重合禁止剤存在下で行うことが好ましい。これらの重合禁止剤の添加量は、生成するウレタン(メタ)アクリレート(A)に対して、1~10000ppm(重量基準)が好ましく、より好ましくは100~1000ppm、さらに好ましくは400~500ppmである。重合禁止剤の添加量がウレタン(メタ)アクリレート(A)に対して1ppm未満であると十分な重合禁止効果が得られないことがあり、10000ppmを超えると生成物の諸物性に悪影響を及ぼす恐れがある。
This reaction is preferably performed in the presence of a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, or phenothiazine for the purpose of preventing polymerization. The addition amount of these polymerization inhibitors is preferably 1 to 10,000 ppm (weight basis), more preferably 100 to 1000 ppm, and still more preferably 400 to 500 ppm with respect to the urethane (meth) acrylate (A) to be produced. If the addition amount of the polymerization inhibitor is less than 1 ppm relative to the urethane (meth) acrylate (A), a sufficient polymerization inhibition effect may not be obtained. If it exceeds 10000 ppm, the physical properties of the product may be adversely affected. There is.
同様の目的で、この反応は分子状酸素含有ガス雰囲気下で行うことが好ましい。酸素濃度は安全面を考慮して適宜選択される。
For the same purpose, this reaction is preferably performed in a molecular oxygen-containing gas atmosphere. The oxygen concentration is appropriately selected in consideration of safety.
ウレタン(メタ)アクリレート(A)の製造において、反応(ウレタン化反応)は、十分な反応速度を得るために、触媒(ウレタン化触媒)を用いて行ってもよい。触媒としては、ジブチルスズジラウレート、オクチル酸スズ、塩化スズ等を用いることができるが、反応速度面からジブチルスズジラウレートが好ましい。これらの触媒の添加量は通常、1~3000ppm(重量基準)、好ましくは50~1000ppmである。触媒添加量が1ppmより少ない場合には十分な反応速度が得られないことがあり、3000ppmより多く加えると樹脂フィルムの表面硬度の低下等、目的物の諸物性に悪影響を及ぼす恐れがある。
In the production of urethane (meth) acrylate (A), the reaction (urethanization reaction) may be performed using a catalyst (urethanization catalyst) in order to obtain a sufficient reaction rate. As the catalyst, dibutyltin dilaurate, tin octylate, tin chloride or the like can be used, but dibutyltin dilaurate is preferable from the viewpoint of reaction rate. The amount of these catalysts added is usually 1 to 3000 ppm (weight basis), preferably 50 to 1000 ppm. When the addition amount of the catalyst is less than 1 ppm, a sufficient reaction rate may not be obtained. When the addition amount is more than 3000 ppm, the physical properties of the target product may be adversely affected, such as a decrease in the surface hardness of the resin film.
また、反応は、公知の揮発性有機溶剤の存在下で行うことができる。前記の揮発性有機溶剤としては、特に限定されないが、例えば、酢酸エチル、酢酸ブチル、酢酸イソブチル等のエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン;エチレングリコールモノメチルエーテル等のエーテル;ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のグリコールモノエーテルアセテート;キシレン、トルエン等の炭化水素;これらの混合物などが挙げられる。これらの中でも、メチルイソブチルケトン等のケトンや、酢酸ブチル等のエステルが好ましい。
The reaction can be performed in the presence of a known volatile organic solvent. Examples of the volatile organic solvent include, but are not limited to, esters such as ethyl acetate, butyl acetate, and isobutyl acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, and cyclohexanone; ethylene glycol monomethyl ether and the like Ethers; glycol monoether acetates such as diethylene glycol monobutyl ether acetate and propylene glycol monomethyl ether acetate; hydrocarbons such as xylene and toluene; and mixtures thereof. Among these, ketones such as methyl isobutyl ketone and esters such as butyl acetate are preferable.
反応は、温度130℃以下で行うことが好ましく、特に40~130℃であることがより好ましい。40℃より低いと実用上十分な反応速度が得られないことがあり、130℃より高いと熱によるラジカル重合によって二重結合部が架橋し、ゲル化物が生じることがある。
The reaction is preferably carried out at a temperature of 130 ° C. or less, more preferably 40 to 130 ° C. When the temperature is lower than 40 ° C., a practically sufficient reaction rate may not be obtained. When the temperature is higher than 130 ° C., the double bond portion may be cross-linked by radical polymerization due to heat, and a gelled product may be generated.
反応は、通常、最終的には、残存イソシアネート基が0.1重量%以下になるまで行う。残存イソシアネート基濃度はガスクロマトグラフィー、滴定法等で分析する。
The reaction is usually carried out until the residual isocyanate group is 0.1% by weight or less. The residual isocyanate group concentration is analyzed by gas chromatography, titration method or the like.
[トリシクロデカンジメタノール(X)]
トリシクロデカンジメタノール(X)としては、特に限定されず、市販品を用いてもよい。市販品として、例えば、商品名「TCD alcohol DM」(オクセア社製)(トリシクロ[5.2.1.02,6]デカンジメタノール)等が挙げられる。 [Tricyclodecane dimethanol (X)]
Tricyclodecane dimethanol (X) is not particularly limited, and a commercially available product may be used. Examples of commercially available products include “TCD alcohol DM” (manufactured by Oxea) (tricyclo [5.2.1.0 2,6 ] decanedimethanol).
トリシクロデカンジメタノール(X)としては、特に限定されず、市販品を用いてもよい。市販品として、例えば、商品名「TCD alcohol DM」(オクセア社製)(トリシクロ[5.2.1.02,6]デカンジメタノール)等が挙げられる。 [Tricyclodecane dimethanol (X)]
Tricyclodecane dimethanol (X) is not particularly limited, and a commercially available product may be used. Examples of commercially available products include “TCD alcohol DM” (manufactured by Oxea) (tricyclo [5.2.1.0 2,6 ] decanedimethanol).
[ポリイソシアネート(Y)]
ポリイソシアネート(Y)としては、特に限定されないが、脂肪族系ポリイソシアネート(脂環式骨格を有するものを含む)が好ましい。このようなポリイソシアネート(Y)としては、例えば、イソホロンジイソシアネート、1,6-ヘキサンジイソシアネート(1,6-ヘキサメチレンジイソシアネート)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、芳香族ジイソシアネートを水添して得られるジイソシアネート化合物(例えば水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等のジイソシアネート化合物)、あるいはこれらジイソシアネートの三量体(ビウレット、ヌレート、又はアダクト化物;3官能のポリイソシアネート)等が挙げられる。前記ジイソシアネート化合物の三量体として、ヌレート型ポリイソシアネートが特に好ましい。ポリイソシアネート(Y)は1種単独で用いてもよく、2以上を組み合わせて用いてもよい。 [Polyisocyanate (Y)]
The polyisocyanate (Y) is not particularly limited, but aliphatic polyisocyanates (including those having an alicyclic skeleton) are preferable. Examples of such polyisocyanate (Y) include isophorone diisocyanate, 1,6-hexane diisocyanate (1,6-hexamethylene diisocyanate), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethyl. Hexamethylene diisocyanate, diisocyanate compounds obtained by hydrogenating aromatic diisocyanates (for example, diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate), or trimers of these diisocyanates (biuret, nurate, or adducts); Trifunctional polyisocyanate) and the like. As the trimer of the diisocyanate compound, nurate polyisocyanate is particularly preferable. Polyisocyanate (Y) may be used individually by 1 type, and may be used in combination of 2 or more.
ポリイソシアネート(Y)としては、特に限定されないが、脂肪族系ポリイソシアネート(脂環式骨格を有するものを含む)が好ましい。このようなポリイソシアネート(Y)としては、例えば、イソホロンジイソシアネート、1,6-ヘキサンジイソシアネート(1,6-ヘキサメチレンジイソシアネート)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、芳香族ジイソシアネートを水添して得られるジイソシアネート化合物(例えば水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等のジイソシアネート化合物)、あるいはこれらジイソシアネートの三量体(ビウレット、ヌレート、又はアダクト化物;3官能のポリイソシアネート)等が挙げられる。前記ジイソシアネート化合物の三量体として、ヌレート型ポリイソシアネートが特に好ましい。ポリイソシアネート(Y)は1種単独で用いてもよく、2以上を組み合わせて用いてもよい。 [Polyisocyanate (Y)]
The polyisocyanate (Y) is not particularly limited, but aliphatic polyisocyanates (including those having an alicyclic skeleton) are preferable. Examples of such polyisocyanate (Y) include isophorone diisocyanate, 1,6-hexane diisocyanate (1,6-hexamethylene diisocyanate), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethyl. Hexamethylene diisocyanate, diisocyanate compounds obtained by hydrogenating aromatic diisocyanates (for example, diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate), or trimers of these diisocyanates (biuret, nurate, or adducts); Trifunctional polyisocyanate) and the like. As the trimer of the diisocyanate compound, nurate polyisocyanate is particularly preferable. Polyisocyanate (Y) may be used individually by 1 type, and may be used in combination of 2 or more.
[ヒドロキシ基含有(メタ)アクリレート(Z)]
ヒドロキシ基含有(メタ)アクリレート(Z)としては、特に限定されないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-メトキシプロピル(メタ)アクリレート、これらのラクトン付加物(カプロラクトン付加物等)などのヒドロキシル基を有する単官能の(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、これらのラクトン付加物(カプロラクトン付加物等)などのヒドロキシル基を有する多官能の(メタ)アクリレート化合物等を使用することができる。ヒドロキシ基含有(メタ)アクリレート(Z)は1種単独で用いてもよく、2以上を組み合わせて用いてもよい。 [Hydroxy group-containing (meth) acrylate (Z)]
The hydroxy group-containing (meth) acrylate (Z) is not particularly limited. For example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy -3-Methoxypropyl (meth) acrylate, monofunctional (meth) acrylate compounds having hydroxyl groups such as lactone adducts (caprolactone adducts, etc.); pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) ) Acrylates, dipentaerythritol tetra (meth) acrylates, dipentaerythritol tri (meth) acrylates, and other lactone adducts such as caprolactone adducts. Relate compounds and the like can be used. Hydroxyl group containing (meth) acrylate (Z) may be used individually by 1 type, and may be used in combination of 2 or more.
ヒドロキシ基含有(メタ)アクリレート(Z)としては、特に限定されないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-メトキシプロピル(メタ)アクリレート、これらのラクトン付加物(カプロラクトン付加物等)などのヒドロキシル基を有する単官能の(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、これらのラクトン付加物(カプロラクトン付加物等)などのヒドロキシル基を有する多官能の(メタ)アクリレート化合物等を使用することができる。ヒドロキシ基含有(メタ)アクリレート(Z)は1種単独で用いてもよく、2以上を組み合わせて用いてもよい。 [Hydroxy group-containing (meth) acrylate (Z)]
The hydroxy group-containing (meth) acrylate (Z) is not particularly limited. For example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy -3-Methoxypropyl (meth) acrylate, monofunctional (meth) acrylate compounds having hydroxyl groups such as lactone adducts (caprolactone adducts, etc.); pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) ) Acrylates, dipentaerythritol tetra (meth) acrylates, dipentaerythritol tri (meth) acrylates, and other lactone adducts such as caprolactone adducts. Relate compounds and the like can be used. Hydroxyl group containing (meth) acrylate (Z) may be used individually by 1 type, and may be used in combination of 2 or more.
[硬化性化合物(B)]
本発明における活性エネルギー線硬化性組成物は、前記ウレタン(メタ)アクリレート(A)とともに、その他の硬化性化合物(B)[以下、単に「硬化性化合物(B)」と称する場合がある]を含んでいてもよい。 [Curable compound (B)]
The active energy ray-curable composition in the present invention includes the urethane (meth) acrylate (A) and other curable compounds (B) [hereinafter sometimes referred to simply as “curable compounds (B)”]. May be included.
本発明における活性エネルギー線硬化性組成物は、前記ウレタン(メタ)アクリレート(A)とともに、その他の硬化性化合物(B)[以下、単に「硬化性化合物(B)」と称する場合がある]を含んでいてもよい。 [Curable compound (B)]
The active energy ray-curable composition in the present invention includes the urethane (meth) acrylate (A) and other curable compounds (B) [hereinafter sometimes referred to simply as “curable compounds (B)”]. May be included.
硬化性化合物(B)としては、活性エネルギー線を照射することにより硬化する化合物(重合性基を有するモノマー又はオリゴマー)であればよく、例えば、分子内に(メタ)アクリロイル基を1個有する単官能(メタ)アクリレート、分子内に(メタ)アクリロイル基を2以上有する多官能(メタ)アクリレートなどを使用できる。
The curable compound (B) may be any compound (a monomer or oligomer having a polymerizable group) that is cured by irradiation with active energy rays. For example, a single compound having one (meth) acryloyl group in the molecule. Functional (meth) acrylates, polyfunctional (meth) acrylates having two or more (meth) acryloyl groups in the molecule can be used.
前記単官能(メタ)アクリレートとして、例えば、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート等の芳香族炭素環を有する(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等の脂環骨格を有する(メタ)アクリレート;ポリカプロラクトン変性ヒドロキシエチル(メタ)アクリレート等のラクトン変性ヒドロキシアルキル(メタ)アクリレート;アクリロイルモルフォリン等の複素環を有する(メタ)アクリレートなどが挙げられる。
Examples of the monofunctional (meth) acrylate include (meth) acrylate having an aromatic carbon ring such as phenoxyethyl (meth) acrylate and benzyl (meth) acrylate; cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and dicyclo (Meth) acrylates having an alicyclic skeleton such as pentenyloxyethyl (meth) acrylate; lactone-modified hydroxyalkyl (meth) acrylates such as polycaprolactone-modified hydroxyethyl (meth) acrylate; heterocycles such as acryloylmorpholine (meta ) Acrylate and the like.
前記多官能(メタ)アクリレートとしては、例えば、1,6-ヘキサンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の多価アルコール(脂肪族多価アルコール、脂環式多価アルコール等)の(メタ)アクリレートなどの多官能モノマー;ウレタン(メタ)アクリレート[前記ウレタン(メタ)アクリレート(A)を除く]、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレートなどの多官能オリゴマーが挙げられる。
Examples of the polyfunctional (meth) acrylate include 1,6-hexanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Of polyhydric alcohols (aliphatic polyhydric alcohols, alicyclic polyhydric alcohols, etc.) such as pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate ) Polyfunctional monomers such as acrylate; Urethane (meth) acrylate [excluding the urethane (meth) acrylate (A)], epoxy (meth) acrylate, polyester (meth) acrylate and other polyfunctional oligomers It is.
硬化性化合物(B)としては、多官能(メタ)アクリレートが好ましく、特に、4官能以上(例えば、4~15官能、好ましくは6~15官能、さらに好ましくは8~12官能)の多官能(メタ)アクリレートが好ましい。
The curable compound (B) is preferably a polyfunctional (meth) acrylate, particularly a polyfunctional (functional 4 or more, preferably 6 to 15, preferably 6 to 12, more preferably 8 to 12 functional). (Meth) acrylate is preferred.
前記多官能(メタ)アクリレートの中でも、多官能ウレタン(メタ)アクリレート(B1)が好ましい。多官能ウレタン(メタ)アクリレートの官能基数は、好ましくは4官能以上(例えば、4~15官能、好ましくは6~15官能、さらに好ましくは8~12官能)である。
Among the polyfunctional (meth) acrylates, polyfunctional urethane (meth) acrylate (B1) is preferable. The number of functional groups of the polyfunctional urethane (meth) acrylate is preferably 4 or more (for example, 4 to 15 functions, preferably 6 to 15 functions, more preferably 8 to 12 functions).
多官能ウレタン(メタ)アクリレート(B1)は、公知の方法により製造できる。例えば、(i)ポリイソシアネート(Y’)とヒドロキシ基含有(メタ)アクリレート(Z’)とを反応させる方法、(ii)ポリオール(X’)とポリイソシアネート(Y’)とヒドロキシ基含有(メタ)アクリレート(Z’)とを反応させる方法等により製造できる。
Polyfunctional urethane (meth) acrylate (B1) can be produced by a known method. For example, (i) a method of reacting a polyisocyanate (Y ′) with a hydroxy group-containing (meth) acrylate (Z ′), (ii) a polyol (X ′), a polyisocyanate (Y ′), and a hydroxy group-containing (meta ) It can be produced by a method of reacting with acrylate (Z ′).
多官能ウレタン(メタ)アクリレート(B1)としては、模式的に記すと、(Z’)m-Y’-(Z’)m (mは1以上の整数であり、好ましくは1又は2である)、(Z’)m-Y’-X’-Y’-(Z’)m (mは1以上の整数であり、好ましくは1又は2である)の構造であることが好ましい。
As the polyfunctional urethane (meth) acrylate (B1), schematically described, (Z ′) m —Y ′ — (Z ′) m (m is an integer of 1 or more, preferably 1 or 2 ), (Z ′) m —Y′—X′—Y ′ — (Z ′) m (m is an integer of 1 or more, preferably 1 or 2).
前記ポリオール(X’)としては、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、トリシクロデカンジメタノール等のジオール;トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の3価以上のポリオールなどを使用できる。ポリオール(X’)は1種単独で用いてもよく、2以上を組み合わせて用いてもよい。
Examples of the polyol (X ′) include ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, and 3-methyl. Diols such as -1,5-pentanediol and tricyclodecane dimethanol; trivalent or higher polyols such as trimethylolpropane, ditrimethylolpropane, pentaerythritol and dipentaerythritol can be used. Polyol (X ') may be used individually by 1 type, and may be used in combination of 2 or more.
前記ポリイソシアネート(Y’)としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシレンジイソシアネート、1,4-キシレンジイソシアネート、キシリレンジイソシアネート、、1,5-ナフタレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族系ジイソシアネート;イソホロンジイソシアネート、1,6-ヘキサンジイソシアネート(1,6-ヘキサメチレンジイソシアネート)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、芳香族系ジイソシアネートを水添して得られるジイソシアネート化合物(例えば水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等のジイソシアネート化合物)などの脂肪族系ポリイソシアネート(脂環式骨格を有するものを含む);あるいはこれらジイソシアネートの三量体(ビウレット、ヌレート、又はアダクト化物;3官能のポリイソシアネート)等が挙げられる。
Examples of the polyisocyanate (Y ′) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylene diisocyanate, 1,4-xylene diisocyanate, xylylene diisocyanate, 1,5 -Aromatic diisocyanates such as naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, diphenylmethane diisocyanate; isophorone diisocyanate, 1,6-hexane diisocyanate (1,6-hexamethylene diisocyanate), 2,2,4-trimethylhexa Diisocyanate compounds obtained by hydrogenating methylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, aromatic diisocyanate (for example, hydrogenated) Aliphatic polyisocyanates (including those having an alicyclic skeleton) such as silylene diisocyanate and hydrogenated diphenylmethane diisocyanate); or trimers of these diisocyanates (biuret, nurate, or adducts); trifunctional Polyisocyanate) and the like.
これらの中でも、脂肪族系ポリイソシアネート(脂環式骨格を有するものを含む)が好ましい。また、前記ヌレート型ポリイソシアネートも好ましい。ポリイソシアネート(Y’)は1種単独で用いてもよく、2以上を組み合わせて用いてもよい。
Among these, aliphatic polyisocyanates (including those having an alicyclic skeleton) are preferable. The nurate type polyisocyanate is also preferable. Polyisocyanate (Y ′) may be used alone or in combination of two or more.
前記ヒドロキシ基含有(メタ)アクリレート(Z’)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-メトキシプロピル(メタ)アクリレート、これらのラクトン付加物(カプロラクトン付加物等)などのヒドロキシル基を有する単官能の(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、これらのラクトン付加物(カプロラクトン付加物等)などのヒドロキシル基を有する多官能の(メタ)アクリレート化合物などが挙げられる。ヒドロキシ基含有(メタ)アクリレート(Z’)は1種単独で用いてもよく、2以上を組み合わせて用いてもよい。
Examples of the hydroxy group-containing (meth) acrylate (Z ′) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxy-3- Monofunctional (meth) acrylate compounds having a hydroxyl group such as methoxypropyl (meth) acrylate and these lactone adducts (caprolactone adduct, etc.); pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, Polyfunctional (meth) acrylate compounds having hydroxyl groups such as dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, and these lactone adducts (caprolactone adducts, etc.) Such as things. The hydroxy group-containing (meth) acrylate (Z ′) may be used alone or in combination of two or more.
本発明において、硬化性化合物(B)を用いる場合、前記4~12官能のウレタン(メタ)アクリレート(A)と前記硬化性化合物(B)[好ましくは4官能以上の多官能(メタ)アクリレート、さらに好ましくは4官能以上の多官能ウレタン(メタ)アクリレート]の割合は、例えば、前者/後者(重量比)=10/90~99/1、好ましくは20/85~95/5、さらに好ましくは30/70~90/10である。
In the present invention, when the curable compound (B) is used, the 4- to 12-functional urethane (meth) acrylate (A) and the curable compound (B) [preferably a polyfunctional (meth) acrylate having 4 or more functions, More preferably, the ratio of the polyfunctional urethane (meth) acrylate having 4 or more functional groups is, for example, the former / the latter (weight ratio) = 10/90 to 99/1, preferably 20/85 to 95/5, more preferably 30/70 to 90/10.
本発明における活性エネルギー線硬化性組成物では、目的物である樹脂フィルムの表面硬度、硬化収縮の抑制等の観点から、前記4~12官能のウレタン(メタ)アクリレート(A)を含む4官能以上の多官能(メタ)アクリレート(特に、4官能以上の多官能ウレタン(メタ)アクリレート)の総量が、活性エネルギー線硬化性組成物中の硬化性化合物全体に対して30重量%以上であるのが好ましく、50重量%以上であるのがより好ましく、60重量%以上であるのがさらに好ましい。
In the active energy ray-curable composition according to the present invention, from the viewpoints of the surface hardness of the target resin film, the suppression of curing shrinkage, and the like, the tetrafunctional or higher functional group containing the 4- to 12-functional urethane (meth) acrylate (A) is used. The total amount of polyfunctional (meth) acrylates (especially polyfunctional urethane (meth) acrylates having 4 or more functionalities) is 30% by weight or more based on the entire curable compound in the active energy ray-curable composition. It is preferably 50% by weight or more, more preferably 60% by weight or more.
本発明における活性エネルギー線硬化性組成物は、硬化性化合物のほか、必要に応じて、溶媒、光重合開始剤、添加剤等を含んでいてもよい。
The active energy ray-curable composition in the present invention may contain a solvent, a photopolymerization initiator, an additive and the like as required in addition to the curable compound.
溶媒としては、硬化性化合物の溶解性等を考慮して適宜選択でき、特に限定されないが、例えば、酢酸エチル、酢酸ブチル、酢酸イソブチル等のエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン;エチレングリコールモノメチルエーテル等のエーテル;ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のグリコールモノエーテルアセテート;キシレン、トルエン等の炭化水素;これらの混合物などが挙げられる。
The solvent can be appropriately selected in consideration of the solubility of the curable compound and is not particularly limited. Examples thereof include esters such as ethyl acetate, butyl acetate, and isobutyl acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, and cyclohexanone. Ketones such as ethylene glycol monomethyl ether; glycol monoether acetates such as diethylene glycol monobutyl ether acetate and propylene glycol monomethyl ether acetate; hydrocarbons such as xylene and toluene; and mixtures thereof.
活性エネルギー線硬化性組成物中の溶媒の含有量は、例えば0~95重量%、好ましくは5~90重量%、さらに好ましくは10~80重量%である。
The content of the solvent in the active energy ray-curable composition is, for example, 0 to 95% by weight, preferably 5 to 90% by weight, and more preferably 10 to 80% by weight.
光重合開始剤としては、公知の光ラジカル重合開始剤を用いることができ、特に限定されないが、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン等が挙げられる。これらの1種単独で、又は2種以上を組み合わせて使用できる。特に、1-ヒドロキシシクロヘキシルフェニルケトン等のα-ヒドロキシアルキルフェノン系重合開始剤と、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン等のα-アミノアルキルフェノン系重合開始剤とを組み合わせて使用すると、活性エネルギー線硬化性組成物からなる薄膜層の表面から内部に至るまで全体に亘って均一に硬化でき、均質な樹脂フィルムを得ることができる。
As the photopolymerization initiator, a known radical photopolymerization initiator can be used, and is not particularly limited. For example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one Diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 4 -(2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, benzoin, benzoin methyl ether, Benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether Le, benzoin phenyl ether, benzyl dimethyl ketal, benzophenone, benzoyl benzoate, methyl benzoyl benzoate, 4-phenyl benzophenone, hydroxybenzophenone, and acrylated benzophenone. These can be used alone or in combination of two or more. In particular, α-hydroxyalkylphenone polymerization initiators such as 1-hydroxycyclohexyl phenyl ketone and α-aminoalkyl such as 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one When used in combination with a phenone-based polymerization initiator, it can be uniformly cured from the surface to the inside of the thin film layer made of the active energy ray-curable composition, and a homogeneous resin film can be obtained.
光重合開始剤の使用量は、活性エネルギー線硬化性組成物中の硬化性化合物100重量部に対して、例えば1~20重量部、好ましくは1.5~10重量部である。1重量部よりも少ないと硬化不良を引き起こす恐れがあり、逆に20重量部よりも多いと硬化後の塗膜から光開始剤由来の臭気が残存することがある。
The amount of the photopolymerization initiator used is, for example, 1 to 20 parts by weight, preferably 1.5 to 10 parts by weight with respect to 100 parts by weight of the curable compound in the active energy ray-curable composition. If it is less than 1 part by weight, there is a risk of causing poor curing. Conversely, if it exceeds 20 parts by weight, an odor derived from the photoinitiator may remain from the cured coating film.
添加剤としては、必要に応じて、例えば、フィラー(微粒子シリカ等)、染顔料、レベリング剤、紫外線吸収剤、光安定剤、消泡剤、分散剤、チクソトロピー性付与剤等を使用できる。これらの添加物の添加量は、活性エネルギー線硬化性組成物中の硬化性化合物100重量部に対して、例えば0~10重量部、好ましくは0.05~5重量部である。なお、本発明では、厚膜化が可能であるため、微粒子シリカを添加しなくても(或いは、微粒子シリカ等のフィラーを添加しなくても)、表面硬度の高い樹脂フィルムを得ることができる。
Examples of additives that can be used include fillers (particulate silica, etc.), dyes and pigments, leveling agents, ultraviolet absorbers, light stabilizers, antifoaming agents, dispersants, thixotropic agents, and the like. The amount of these additives to be added is, for example, 0 to 10 parts by weight, preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the curable compound in the active energy ray-curable composition. In the present invention, since it is possible to increase the film thickness, a resin film having a high surface hardness can be obtained without adding fine particle silica (or without adding filler such as fine particle silica). .
[樹脂フィルムの製造]
本発明の樹脂フィルムは、前記式(1)で表されるトリシクロデカン骨格を含む基を分子中に有する4~12官能のウレタン(メタ)アクリレート(A)を硬化性化合物全体に対して10重量%以上含む活性エネルギー線硬化性組成物からなる薄膜層に、活性エネルギー線を照射して硬化させることにより製造できる。 [Manufacture of resin film]
The resin film of the present invention comprises a tetra- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the above formula (1) in the molecule, in an amount of 10 to the entire curable compound. It can manufacture by irradiating an active energy ray to the thin film layer which consists of an active energy ray curable composition containing weight% or more and making it harden | cure.
本発明の樹脂フィルムは、前記式(1)で表されるトリシクロデカン骨格を含む基を分子中に有する4~12官能のウレタン(メタ)アクリレート(A)を硬化性化合物全体に対して10重量%以上含む活性エネルギー線硬化性組成物からなる薄膜層に、活性エネルギー線を照射して硬化させることにより製造できる。 [Manufacture of resin film]
The resin film of the present invention comprises a tetra- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the above formula (1) in the molecule, in an amount of 10 to the entire curable compound. It can manufacture by irradiating an active energy ray to the thin film layer which consists of an active energy ray curable composition containing weight% or more and making it harden | cure.
より具体的には、例えば、前記活性エネルギー線硬化性組成物を基材上又は成形型内に流延して薄膜化し、必要に応じて乾燥した後(溶媒を除去した後)、活性エネルギー線を照射して硬化させることにより本発明の樹脂フィルムを製造することができる。
More specifically, for example, after the active energy ray-curable composition is cast on a substrate or in a mold to form a thin film and dried as necessary (after removing the solvent), the active energy ray The resin film of the present invention can be produced by curing by irradiation.
前記基材としては、特に限定されず、例えば、ポリエステル系樹脂、ポリオレフィン系樹脂、セルロース系樹脂、ポリスチレン系樹脂、メタクリル系樹脂、ポリカーボネート系樹脂、ポリメチルペンテル、ポリスルフォン、ポリエーテルケトン、ポリエーテルスルフォン、ポリエーテルイミド、ポリイミド、フッ素系樹脂等のプラスチック製基材、ガラス基材、金属基材などが挙げられる。形成された樹脂フィルムの剥離性の点から、基材の表面は剥離剤(離型剤)により剥離処理されているのが好ましい。成形型の材質も前記基材と同様のものを使用でき、その表面は剥離剤(離型剤)により剥離処理(フッ素樹脂コーティング等)されているのが好ましい。
The substrate is not particularly limited, and examples thereof include polyester resins, polyolefin resins, cellulose resins, polystyrene resins, methacrylic resins, polycarbonate resins, polymethylpentels, polysulfones, polyether ketones, and polyethers. Examples thereof include plastic base materials such as sulfone, polyetherimide, polyimide, and fluorine resin, glass base materials, metal base materials, and the like. From the viewpoint of releasability of the formed resin film, the surface of the substrate is preferably subjected to a release treatment with a release agent (release agent). The material of the mold can be the same as that of the substrate, and the surface thereof is preferably subjected to a release treatment (fluorine resin coating or the like) with a release agent (release agent).
活性エネルギー線硬化性組成物を基材上に流延する際には、例えば、エアレススプレー、エアスプレー、ロールコート、バーコート、グラビアコート、ダイコート等を用いることができる。
When casting the active energy ray-curable composition on a substrate, for example, airless spray, air spray, roll coat, bar coat, gravure coat, die coat, etc. can be used.
活性エネルギー線硬化性組成物が溶媒を含む場合には、熱風等による加熱乾燥を行う。そして、薄膜化された活性エネルギー線硬化性組成物の表面に紫外線又は電子線等の活性エネルギー線を照射して、硬化性化合物を硬化させることにより、本発明の樹脂フィルムを得ることができる。紫外線照射を行う時の光源としては、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、キセノン灯、メタルハライド灯等が用いられる。通常、ランプ出力80~300W/cm程度の照射源が用いられる。電子線照射の場合は、50~1000KeVの範囲のエネルギーを持つ電子線を用い、2~5Mradの照射量とすることが好ましい。活性エネルギー線照射後、必要に応じて加熱を行って硬化の促進を図ってもよい。
When the active energy ray-curable composition contains a solvent, heat drying with hot air or the like is performed. And the resin film of this invention can be obtained by irradiating the surface of the thinned active energy ray-curable composition with active energy rays such as ultraviolet rays or electron beams to cure the curable compound. A high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like is used as a light source for ultraviolet irradiation. Usually, an irradiation source with a lamp output of about 80 to 300 W / cm is used. In the case of electron beam irradiation, it is preferable to use an electron beam having an energy in the range of 50 to 1000 KeV and to give an irradiation amount of 2 to 5 Mrad. After the active energy ray irradiation, curing may be promoted by heating as necessary.
本発明の樹脂フィルムの厚みは、高い鉛筆硬度を確保するため、25μmを超えるのが好ましく、より好ましくは100μm以上、さらに好ましくは200μm以上、特に好ましくは500μm以上である。樹脂フィルムの厚みの上限は、特に制限はないが、例えば4mm、好ましくは2mmである。本発明の樹脂フィルムは表面硬度が高く、例えば、膜厚100μm以上で鉛筆硬度4H以上となり、膜厚500μm以上で鉛筆硬度9H以上となる。
The thickness of the resin film of the present invention is preferably more than 25 μm, more preferably 100 μm or more, further preferably 200 μm or more, and particularly preferably 500 μm or more in order to ensure high pencil hardness. The upper limit of the thickness of the resin film is not particularly limited, but is, for example, 4 mm, preferably 2 mm. The resin film of the present invention has a high surface hardness, for example, a pencil hardness of 4H or more when the film thickness is 100 μm or more, and a pencil hardness of 9H or more when the film thickness is 500 μm or more.
こうして得られる本発明の樹脂フィルムは、液晶ディスプレイ、有機ELディスプレイ、タッチパネル、カラーフィルター等のディスプレイ基板などの光学用基板、光学部材等として利用できる。
The resin film of the present invention thus obtained can be used as an optical substrate such as a display substrate such as a liquid crystal display, an organic EL display, a touch panel, and a color filter, and an optical member.
以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[ウレタン(メタ)アクリレートの合成例]
以下に、ウレタン(メタ)アクリレートの合成例について説明する。なお、濃度表記の「ppm」、「重量%」、「重量%分」は、特別な記載がない限り、得られるウレタン(メタ)アクリレート含有物全体に対する濃度である。 [Synthesis example of urethane (meth) acrylate]
Below, the synthesis example of urethane (meth) acrylate is demonstrated. Note that “ppm”, “wt%”, and “wt%” in the concentration notation are concentrations with respect to the entire urethane (meth) acrylate-containing product, unless otherwise specified.
以下に、ウレタン(メタ)アクリレートの合成例について説明する。なお、濃度表記の「ppm」、「重量%」、「重量%分」は、特別な記載がない限り、得られるウレタン(メタ)アクリレート含有物全体に対する濃度である。 [Synthesis example of urethane (meth) acrylate]
Below, the synthesis example of urethane (meth) acrylate is demonstrated. Note that “ppm”, “wt%”, and “wt%” in the concentration notation are concentrations with respect to the entire urethane (meth) acrylate-containing product, unless otherwise specified.
(イソシアネート基濃度の測定)
イソシアネート基濃度は以下のように測定した。なお、測定は100mLのガラスフラスコでスターラーによる攪拌の下で行った。 (Measurement of isocyanate group concentration)
The isocyanate group concentration was measured as follows. In addition, the measurement was performed under stirring with a stirrer in a 100 mL glass flask.
イソシアネート基濃度は以下のように測定した。なお、測定は100mLのガラスフラスコでスターラーによる攪拌の下で行った。 (Measurement of isocyanate group concentration)
The isocyanate group concentration was measured as follows. In addition, the measurement was performed under stirring with a stirrer in a 100 mL glass flask.
以下のように、ブランク値を測定した。まず、15mLのTHF(テトラヒドロフラン)に、ジブチルアミンのTHF溶液(0.1N)15mLを加えた。さらにブロモフェノールブルー(1重量%メタノール希釈液)を3滴加えて加えて青色に着色させた後、規定度が0.1NであるHCl水溶液で滴定した。変色がみられた時点のHCl水溶液の滴定量をVb(mL)とした。
The blank value was measured as follows. First, 15 mL of a THF solution (0.1N) of dibutylamine was added to 15 mL of THF (tetrahydrofuran). Further, after adding 3 drops of bromophenol blue (diluted in 1% by weight of methanol) to give a blue color, titration was performed with an aqueous HCl solution having a normality of 0.1N. The titration amount of the aqueous HCl solution when the color change was observed was defined as V b (mL).
以下のように、実測イソシアネート基濃度を測定した。まず、サンプルをWs(g)秤量し、15mLのTHFに溶解させ、ジブチルアミンのTHF溶液(0.1N)を15mL加えた。溶液化したことを確認した後、ブロモフェノールブルー(1重量%メタノール希釈液)を3滴加えて青色に着色させた後、規定度が0.1NであるHCl水溶液で滴定した。変色がみられた時点のHCl水溶液の滴定量をVs(mL)とした。
The measured isocyanate group concentration was measured as follows. First, a sample of W s (g) was weighed and dissolved in 15 mL of THF, and 15 mL of dibutylamine in THF (0.1 N) was added. After confirming that the solution was formed, 3 drops of bromophenol blue (diluted in 1% by weight of methanol) were added to give a blue color, followed by titration with an aqueous HCl solution having a normality of 0.1N. The titer of the aqueous HCl solution when the color change was observed was defined as V s (mL).
以下の計算式により、サンプル中のイソシアネート基濃度を算出した。
イソシアネート基濃度(重量%)=(Vb-Vs)×1.005×0.42÷Ws The isocyanate group concentration in the sample was calculated by the following calculation formula.
Isocyanate group concentration (% by weight) = (V b −V s ) × 1.005 × 0.42 ÷ W s
イソシアネート基濃度(重量%)=(Vb-Vs)×1.005×0.42÷Ws The isocyanate group concentration in the sample was calculated by the following calculation formula.
Isocyanate group concentration (% by weight) = (V b −V s ) × 1.005 × 0.42 ÷ W s
(合成例で用いたトリシクロデカンジメタノール)
TCDDM:製品名「TCD alcohol DM」(オクセア社製) (Tricyclodecane dimethanol used in the synthesis example)
TCDDM: Product name "TCD alcohol DM" (Oxea)
TCDDM:製品名「TCD alcohol DM」(オクセア社製) (Tricyclodecane dimethanol used in the synthesis example)
TCDDM: Product name "TCD alcohol DM" (Oxea)
(合成例で使用したポリイソシアネート)
HMDIトリマー:製品名「スミジュールN3300」(住友バイエルウレタン社製;1,6-ヘキサメチレンジイソシアネート由来のヌレート化合物)
IPDI:製品名「VESTANAT IPDI」(エボニック社製;イソホロンジイソシアネート) (Polyisocyanate used in the synthesis example)
HMDI trimer: Product name “Sumijour N3300” (manufactured by Sumitomo Bayer Urethane Co., Ltd .; 1,6-hexamethylene diisocyanate-derived nurate compound)
IPDI: Product name “VESTANAT IPDI” (Evonik; isophorone diisocyanate)
HMDIトリマー:製品名「スミジュールN3300」(住友バイエルウレタン社製;1,6-ヘキサメチレンジイソシアネート由来のヌレート化合物)
IPDI:製品名「VESTANAT IPDI」(エボニック社製;イソホロンジイソシアネート) (Polyisocyanate used in the synthesis example)
HMDI trimer: Product name “Sumijour N3300” (manufactured by Sumitomo Bayer Urethane Co., Ltd .; 1,6-hexamethylene diisocyanate-derived nurate compound)
IPDI: Product name “VESTANAT IPDI” (Evonik; isophorone diisocyanate)
(合成例で使用したヒドロキシ基含有(メタ)アクリレート)
HEA:製品名「BHEA」(日本触媒社製;アクリル酸2-ヒドロキシエチル)
PETIA:製品名「PETRA」(サイテック社製;水酸基価120mgKOH/gのペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物)
M-403:製品名「アロニックスM-403」(東亞合成社製;ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物) (Hydroxy group-containing (meth) acrylate used in synthesis example)
HEA: Product name “BHEA” (manufactured by Nippon Shokubai Co., Ltd .; 2-hydroxyethyl acrylate)
PETIA: Product name “PETRA” (manufactured by Cytec; mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate having a hydroxyl value of 120 mg KOH / g)
M-403: Product name “Aronix M-403” (manufactured by Toagosei Co., Ltd .; mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate)
HEA:製品名「BHEA」(日本触媒社製;アクリル酸2-ヒドロキシエチル)
PETIA:製品名「PETRA」(サイテック社製;水酸基価120mgKOH/gのペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物)
M-403:製品名「アロニックスM-403」(東亞合成社製;ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物) (Hydroxy group-containing (meth) acrylate used in synthesis example)
HEA: Product name “BHEA” (manufactured by Nippon Shokubai Co., Ltd .; 2-hydroxyethyl acrylate)
PETIA: Product name “PETRA” (manufactured by Cytec; mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate having a hydroxyl value of 120 mg KOH / g)
M-403: Product name “Aronix M-403” (manufactured by Toagosei Co., Ltd .; mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate)
[合成例1/UA1]
温度計、攪拌装置を備えたセパラブルフラスコに、200gのメチルイソブチルケトン(MIBK)、225.9gのIPDIを充填し、攪拌しながら内温を50℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を50℃に保持しつつ、99.8gのTCDDMを1時間かけて滴下した。滴下終了後、50℃で2時間攪拌を継続し、ウレタンイソシアネートプレポリマーの反応を完結させた。なお、反応が完結したことは、反応液中のイソシアネート基濃度が理論終点イソシアネート基濃度以下となったことで確認した(他の合成例も同様)。
本例では、反応液中のイソシアネート基濃度が理論終点イソシアネート基濃度(8.12重量%)以下であることを確認した後、次の操作へ移行した。
次に、内温を70℃に昇温し、0.08gのジブチルスズラウレートを加え、反応温度を70℃に保持しつつ、474.3gのPETIAを2時間かけて滴下した。滴下終了後70℃で1時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有し、官能基数が6のウレタン(メタ)アクリレート含有物(UA1)を得た。 [Synthesis Example 1 / UA1]
A separable flask equipped with a thermometer and a stirrer was charged with 200 g of methyl isobutyl ketone (MIBK) and 225.9 g of IPDI, and the internal temperature was raised to 50 ° C. while stirring. Next, 0.08 g of dibutyltin dilaurate was added, and 99.8 g of TCDDM was added dropwise over 1 hour while maintaining the internal temperature at 50 ° C. After completion of the dropping, stirring was continued for 2 hours at 50 ° C. to complete the reaction of the urethane isocyanate prepolymer. The completion of the reaction was confirmed by confirming that the isocyanate group concentration in the reaction solution was not more than the theoretical end-point isocyanate group concentration (the same applies to other synthesis examples).
In this example, after confirming that the isocyanate group concentration in the reaction solution was equal to or lower than the theoretical end-point isocyanate group concentration (8.12% by weight), the procedure shifted to the next operation.
Next, the internal temperature was raised to 70 ° C., 0.08 g of dibutyltin laurate was added, and 474.3 g of PETIA was added dropwise over 2 hours while maintaining the reaction temperature at 70 ° C. After completion of the dropping, stirring was continued at 70 ° C. for 1 hour. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the skeleton had an organic group in which two hydrogen atoms of the hydroxyl group were removed from tricyclodecane dimethanol, and the number of functional groups was 6 The urethane (meth) acrylate containing material (UA1) was obtained.
温度計、攪拌装置を備えたセパラブルフラスコに、200gのメチルイソブチルケトン(MIBK)、225.9gのIPDIを充填し、攪拌しながら内温を50℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を50℃に保持しつつ、99.8gのTCDDMを1時間かけて滴下した。滴下終了後、50℃で2時間攪拌を継続し、ウレタンイソシアネートプレポリマーの反応を完結させた。なお、反応が完結したことは、反応液中のイソシアネート基濃度が理論終点イソシアネート基濃度以下となったことで確認した(他の合成例も同様)。
本例では、反応液中のイソシアネート基濃度が理論終点イソシアネート基濃度(8.12重量%)以下であることを確認した後、次の操作へ移行した。
次に、内温を70℃に昇温し、0.08gのジブチルスズラウレートを加え、反応温度を70℃に保持しつつ、474.3gのPETIAを2時間かけて滴下した。滴下終了後70℃で1時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有し、官能基数が6のウレタン(メタ)アクリレート含有物(UA1)を得た。 [Synthesis Example 1 / UA1]
A separable flask equipped with a thermometer and a stirrer was charged with 200 g of methyl isobutyl ketone (MIBK) and 225.9 g of IPDI, and the internal temperature was raised to 50 ° C. while stirring. Next, 0.08 g of dibutyltin dilaurate was added, and 99.8 g of TCDDM was added dropwise over 1 hour while maintaining the internal temperature at 50 ° C. After completion of the dropping, stirring was continued for 2 hours at 50 ° C. to complete the reaction of the urethane isocyanate prepolymer. The completion of the reaction was confirmed by confirming that the isocyanate group concentration in the reaction solution was not more than the theoretical end-point isocyanate group concentration (the same applies to other synthesis examples).
In this example, after confirming that the isocyanate group concentration in the reaction solution was equal to or lower than the theoretical end-point isocyanate group concentration (8.12% by weight), the procedure shifted to the next operation.
Next, the internal temperature was raised to 70 ° C., 0.08 g of dibutyltin laurate was added, and 474.3 g of PETIA was added dropwise over 2 hours while maintaining the reaction temperature at 70 ° C. After completion of the dropping, stirring was continued at 70 ° C. for 1 hour. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the skeleton had an organic group in which two hydrogen atoms of the hydroxyl group were removed from tricyclodecane dimethanol, and the number of functional groups was 6 The urethane (meth) acrylate containing material (UA1) was obtained.
[合成例2/UA2]
温度計、攪拌装置を備えたセパラブルフラスコに、200gのメチルイソブチルケトン(MIBK)、516.9gのHMDIトリマーを充填し、攪拌しながら内温を50℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を50℃に保持しつつ、84.1gのTCDDMを1時間かけて滴下した。滴下終了後、50℃で2時間攪拌を継続し、ウレタンイソシアネートプレポリマーの反応を完結させた。
本例では、反応液中のイソシアネート基濃度が理論終点イソシアネート基濃度(8.99重量%)以下であることを確認した後、次の操作へ移行した。
次に、内温を70℃に昇温し、0.08gのジブチルスズラウレートを加え、反応温度を70℃に保持しつつ、199.0gのHEAを2時間かけて滴下した。滴下終了後70℃で3時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有し、官能基数が4のウレタン(メタ)アクリレート含有物(UA2)を得た。 [Synthesis Example 2 / UA2]
A separable flask equipped with a thermometer and a stirrer was charged with 200 g of methyl isobutyl ketone (MIBK) and 516.9 g of HMDI trimer, and the internal temperature was raised to 50 ° C. while stirring. Next, 0.08 g of dibutyltin dilaurate was added, and 84.1 g of TCDDM was added dropwise over 1 hour while maintaining the internal temperature at 50 ° C. After completion of the dropping, stirring was continued for 2 hours at 50 ° C. to complete the reaction of the urethane isocyanate prepolymer.
In this example, after confirming that the isocyanate group concentration in the reaction solution was equal to or lower than the theoretical end-point isocyanate group concentration (8.99% by weight), the procedure shifted to the next operation.
Next, the internal temperature was raised to 70 ° C., 0.08 g of dibutyltin laurate was added, and 199.0 g of HEA was added dropwise over 2 hours while maintaining the reaction temperature at 70 ° C. After completion of the dropping, stirring was continued at 70 ° C. for 3 hours. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the backbone had an organic group in which two hydrogen atoms of the hydroxyl group were removed from tricyclodecane dimethanol, and the number of functional groups was 4. The urethane (meth) acrylate containing material (UA2) was obtained.
温度計、攪拌装置を備えたセパラブルフラスコに、200gのメチルイソブチルケトン(MIBK)、516.9gのHMDIトリマーを充填し、攪拌しながら内温を50℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を50℃に保持しつつ、84.1gのTCDDMを1時間かけて滴下した。滴下終了後、50℃で2時間攪拌を継続し、ウレタンイソシアネートプレポリマーの反応を完結させた。
本例では、反応液中のイソシアネート基濃度が理論終点イソシアネート基濃度(8.99重量%)以下であることを確認した後、次の操作へ移行した。
次に、内温を70℃に昇温し、0.08gのジブチルスズラウレートを加え、反応温度を70℃に保持しつつ、199.0gのHEAを2時間かけて滴下した。滴下終了後70℃で3時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有し、官能基数が4のウレタン(メタ)アクリレート含有物(UA2)を得た。 [Synthesis Example 2 / UA2]
A separable flask equipped with a thermometer and a stirrer was charged with 200 g of methyl isobutyl ketone (MIBK) and 516.9 g of HMDI trimer, and the internal temperature was raised to 50 ° C. while stirring. Next, 0.08 g of dibutyltin dilaurate was added, and 84.1 g of TCDDM was added dropwise over 1 hour while maintaining the internal temperature at 50 ° C. After completion of the dropping, stirring was continued for 2 hours at 50 ° C. to complete the reaction of the urethane isocyanate prepolymer.
In this example, after confirming that the isocyanate group concentration in the reaction solution was equal to or lower than the theoretical end-point isocyanate group concentration (8.99% by weight), the procedure shifted to the next operation.
Next, the internal temperature was raised to 70 ° C., 0.08 g of dibutyltin laurate was added, and 199.0 g of HEA was added dropwise over 2 hours while maintaining the reaction temperature at 70 ° C. After completion of the dropping, stirring was continued at 70 ° C. for 3 hours. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the backbone had an organic group in which two hydrogen atoms of the hydroxyl group were removed from tricyclodecane dimethanol, and the number of functional groups was 4. The urethane (meth) acrylate containing material (UA2) was obtained.
[合成例3/UA3]
温度計、攪拌装置を備えたセパラブルフラスコに、200gのメチルイソブチルケトン(MIBK)、407.4gのIPDIを充填し、攪拌しながら内温を50℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を50℃に保持しつつ、179.8gのTCDDMを1時間かけて滴下した。滴下終了後、50℃で2時間攪拌を継続し、ウレタンイソシアネートプレポリマーの反応を完結させた。
本例では、反応液中のイソシアネート基濃度が理論終点イソシアネート基濃度(9.78重量%)以下であることを確認した後、次の操作へ移行した。
次に、内温を70℃に昇温し、0.08gのジブチルスズラウレートを加え、反応温度を70℃に保持しつつ、212.8gのHEAを2時間かけて滴下した。滴下終了後70℃で1時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有し、官能基数が2のウレタン(メタ)アクリレート含有物(UA3)を得た。 [Synthesis Example 3 / UA3]
A separable flask equipped with a thermometer and a stirring device was charged with 200 g of methyl isobutyl ketone (MIBK) and 407.4 g of IPDI, and the internal temperature was raised to 50 ° C. while stirring. Next, 0.08 g of dibutyltin dilaurate was added, and 179.8 g of TCDDM was added dropwise over 1 hour while maintaining the internal temperature at 50 ° C. After completion of the dropping, stirring was continued for 2 hours at 50 ° C. to complete the reaction of the urethane isocyanate prepolymer.
In this example, it was confirmed that the isocyanate group concentration in the reaction solution was equal to or lower than the theoretical end-point isocyanate group concentration (9.78% by weight), and then the next operation was performed.
Next, the internal temperature was raised to 70 ° C., 0.08 g of dibutyltin laurate was added, and 212.8 g of HEA was added dropwise over 2 hours while maintaining the reaction temperature at 70 ° C. After completion of the dropping, stirring was continued at 70 ° C. for 1 hour. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the backbone had an organic group obtained by removing two hydrogen atoms of a hydroxyl group from tricyclodecane dimethanol, and the number of functional groups was 2. The urethane (meth) acrylate containing material (UA3) was obtained.
温度計、攪拌装置を備えたセパラブルフラスコに、200gのメチルイソブチルケトン(MIBK)、407.4gのIPDIを充填し、攪拌しながら内温を50℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を50℃に保持しつつ、179.8gのTCDDMを1時間かけて滴下した。滴下終了後、50℃で2時間攪拌を継続し、ウレタンイソシアネートプレポリマーの反応を完結させた。
本例では、反応液中のイソシアネート基濃度が理論終点イソシアネート基濃度(9.78重量%)以下であることを確認した後、次の操作へ移行した。
次に、内温を70℃に昇温し、0.08gのジブチルスズラウレートを加え、反応温度を70℃に保持しつつ、212.8gのHEAを2時間かけて滴下した。滴下終了後70℃で1時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有し、官能基数が2のウレタン(メタ)アクリレート含有物(UA3)を得た。 [Synthesis Example 3 / UA3]
A separable flask equipped with a thermometer and a stirring device was charged with 200 g of methyl isobutyl ketone (MIBK) and 407.4 g of IPDI, and the internal temperature was raised to 50 ° C. while stirring. Next, 0.08 g of dibutyltin dilaurate was added, and 179.8 g of TCDDM was added dropwise over 1 hour while maintaining the internal temperature at 50 ° C. After completion of the dropping, stirring was continued for 2 hours at 50 ° C. to complete the reaction of the urethane isocyanate prepolymer.
In this example, it was confirmed that the isocyanate group concentration in the reaction solution was equal to or lower than the theoretical end-point isocyanate group concentration (9.78% by weight), and then the next operation was performed.
Next, the internal temperature was raised to 70 ° C., 0.08 g of dibutyltin laurate was added, and 212.8 g of HEA was added dropwise over 2 hours while maintaining the reaction temperature at 70 ° C. After completion of the dropping, stirring was continued at 70 ° C. for 1 hour. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the backbone had an organic group obtained by removing two hydrogen atoms of a hydroxyl group from tricyclodecane dimethanol, and the number of functional groups was 2. The urethane (meth) acrylate containing material (UA3) was obtained.
[合成例4/UA4]
温度計、攪拌装置を備えたセパラブルフラスコに、200gのメチルイソブチルケトン(MIBK)、153.9gのIPDI(0.69モル)を充填し、攪拌しながら内温を70℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を70℃に保持しつつ、646.1gのPETIA(ペンタエリスリトールトリアクリレートとして1.38モル)を2時間かけて滴下した。滴下終了後、0.08gのジブチルスズラウレートを加え、さらに70℃で3時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有しない、官能基数が6のウレタン(メタ)アクリレート含有物(UA4)を得た。 [Synthesis Example 4 / UA4]
A separable flask equipped with a thermometer and a stirrer was charged with 200 g of methyl isobutyl ketone (MIBK) and 153.9 g of IPDI (0.69 mol), and the internal temperature was raised to 70 ° C. while stirring. Next, 0.08 g of dibutyltin dilaurate was added, and 646.1 g of PETIA (1.38 mol as pentaerythritol triacrylate) was added dropwise over 2 hours while maintaining the internal temperature at 70 ° C. After completion of dropping, 0.08 g of dibutyltin laurate was added, and stirring was further continued at 70 ° C. for 3 hours. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the organic group obtained by removing two hydrogen atoms of a hydroxyl group from tricyclodecane dimethanol did not have a skeleton, the number of functional groups was 6 The urethane (meth) acrylate containing material (UA4) was obtained.
温度計、攪拌装置を備えたセパラブルフラスコに、200gのメチルイソブチルケトン(MIBK)、153.9gのIPDI(0.69モル)を充填し、攪拌しながら内温を70℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を70℃に保持しつつ、646.1gのPETIA(ペンタエリスリトールトリアクリレートとして1.38モル)を2時間かけて滴下した。滴下終了後、0.08gのジブチルスズラウレートを加え、さらに70℃で3時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有しない、官能基数が6のウレタン(メタ)アクリレート含有物(UA4)を得た。 [Synthesis Example 4 / UA4]
A separable flask equipped with a thermometer and a stirrer was charged with 200 g of methyl isobutyl ketone (MIBK) and 153.9 g of IPDI (0.69 mol), and the internal temperature was raised to 70 ° C. while stirring. Next, 0.08 g of dibutyltin dilaurate was added, and 646.1 g of PETIA (1.38 mol as pentaerythritol triacrylate) was added dropwise over 2 hours while maintaining the internal temperature at 70 ° C. After completion of dropping, 0.08 g of dibutyltin laurate was added, and stirring was further continued at 70 ° C. for 3 hours. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the organic group obtained by removing two hydrogen atoms of a hydroxyl group from tricyclodecane dimethanol did not have a skeleton, the number of functional groups was 6 The urethane (meth) acrylate containing material (UA4) was obtained.
[合成例5/UA5]
温度計、攪拌装置を備えたセパラブルフラスコに、200gのメチルイソブチルケトン(MIBK)、153.9gのIPDI(0.69モル)を充填し、攪拌しながら内温を70℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を70℃に保持しつつ、1340gのM-403(ジペンタエリスリトールペンタアクリレートとして1.38モル)を2時間かけて滴下した。滴下終了後、0.08gのジブチルスズラウレートを加え、さらに70℃で3時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有しない、官能基数が10のウレタン(メタ)アクリレート含有物(UA5)を得た。 [Synthesis Example 5 / UA5]
A separable flask equipped with a thermometer and a stirrer was charged with 200 g of methyl isobutyl ketone (MIBK) and 153.9 g of IPDI (0.69 mol), and the internal temperature was raised to 70 ° C. while stirring. Next, 0.08 g of dibutyltin dilaurate was added, and 1340 g of M-403 (1.38 mol as dipentaerythritol pentaacrylate) was added dropwise over 2 hours while maintaining the internal temperature at 70 ° C. After completion of dropping, 0.08 g of dibutyltin laurate was added, and stirring was further continued at 70 ° C. for 3 hours. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the organic group obtained by removing two hydrogen atoms of the hydroxyl group from tricyclodecane dimethanol did not have a skeleton, the number of functional groups was 10 The urethane (meth) acrylate containing material (UA5) was obtained.
温度計、攪拌装置を備えたセパラブルフラスコに、200gのメチルイソブチルケトン(MIBK)、153.9gのIPDI(0.69モル)を充填し、攪拌しながら内温を70℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を70℃に保持しつつ、1340gのM-403(ジペンタエリスリトールペンタアクリレートとして1.38モル)を2時間かけて滴下した。滴下終了後、0.08gのジブチルスズラウレートを加え、さらに70℃で3時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有しない、官能基数が10のウレタン(メタ)アクリレート含有物(UA5)を得た。 [Synthesis Example 5 / UA5]
A separable flask equipped with a thermometer and a stirrer was charged with 200 g of methyl isobutyl ketone (MIBK) and 153.9 g of IPDI (0.69 mol), and the internal temperature was raised to 70 ° C. while stirring. Next, 0.08 g of dibutyltin dilaurate was added, and 1340 g of M-403 (1.38 mol as dipentaerythritol pentaacrylate) was added dropwise over 2 hours while maintaining the internal temperature at 70 ° C. After completion of dropping, 0.08 g of dibutyltin laurate was added, and stirring was further continued at 70 ° C. for 3 hours. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the organic group obtained by removing two hydrogen atoms of the hydroxyl group from tricyclodecane dimethanol did not have a skeleton, the number of functional groups was 10 The urethane (meth) acrylate containing material (UA5) was obtained.
[合成例6/UA6]
温度計、攪拌装置を備えたセパラブルフラスコに、500gのメチルイソブチルケトン(MIBK)、160.0gのイソホロンジイソシアネート3量体(0.24モル)を充填し、攪拌しながら内温を70℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を70℃に保持しつつ、214.8gのペンタエリスリトールトリアクリレート(0.72モル)を2時間かけて滴下した。滴下終了後、0.08gのジブチルスズラウレートを加え、さらに70℃で3時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有しない、官能基数が9のウレタン(メタ)アクリレート含有物(UA6)を得た。 [Synthesis Example 6 / UA6]
A separable flask equipped with a thermometer and a stirrer was charged with 500 g of methyl isobutyl ketone (MIBK) and 160.0 g of isophorone diisocyanate trimer (0.24 mol), and the internal temperature was raised to 70 ° C. while stirring. The temperature rose. Next, 0.04.8 g of dibutyltin dilaurate was added, and 214.8 g of pentaerythritol triacrylate (0.72 mol) was added dropwise over 2 hours while maintaining the internal temperature at 70 ° C. After completion of dropping, 0.08 g of dibutyltin laurate was added, and stirring was further continued at 70 ° C. for 3 hours. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the organic group obtained by removing two hydrogen atoms of a hydroxyl group from tricyclodecane dimethanol did not have a skeleton, the number of functional groups was 9 The urethane (meth) acrylate containing material (UA6) was obtained.
温度計、攪拌装置を備えたセパラブルフラスコに、500gのメチルイソブチルケトン(MIBK)、160.0gのイソホロンジイソシアネート3量体(0.24モル)を充填し、攪拌しながら内温を70℃に昇温した。次に0.08gのジブチルスズジラウレートを加え、内温を70℃に保持しつつ、214.8gのペンタエリスリトールトリアクリレート(0.72モル)を2時間かけて滴下した。滴下終了後、0.08gのジブチルスズラウレートを加え、さらに70℃で3時間攪拌を継続した。イソシアネート基濃度が0.1重量%以下になったことを確認して反応を終了させ、トリシクロデカンジメタノールから水酸基の二つの水素原子を除いた有機基を骨格に有しない、官能基数が9のウレタン(メタ)アクリレート含有物(UA6)を得た。 [Synthesis Example 6 / UA6]
A separable flask equipped with a thermometer and a stirrer was charged with 500 g of methyl isobutyl ketone (MIBK) and 160.0 g of isophorone diisocyanate trimer (0.24 mol), and the internal temperature was raised to 70 ° C. while stirring. The temperature rose. Next, 0.04.8 g of dibutyltin dilaurate was added, and 214.8 g of pentaerythritol triacrylate (0.72 mol) was added dropwise over 2 hours while maintaining the internal temperature at 70 ° C. After completion of dropping, 0.08 g of dibutyltin laurate was added, and stirring was further continued at 70 ° C. for 3 hours. After confirming that the isocyanate group concentration was 0.1% by weight or less, the reaction was terminated, and the organic group obtained by removing two hydrogen atoms of a hydroxyl group from tricyclodecane dimethanol did not have a skeleton, the number of functional groups was 9 The urethane (meth) acrylate containing material (UA6) was obtained.
[実施例及び比較例]
合成例で調製したウレタン(メタ)アクリレート含有物、光重合開始剤、メチルイソブチルケトン(MIBK)を、表1に示す組成(数字は重量部)となるように遮光瓶に入れて混合し、活性エネルギー線硬化性組成物を調製した。なお、表中の光重合開始剤1は、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製、製品名「IRGACURE184」)、光重合開始剤2は、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン(BASF社製、製品名「IRGACURE907」)である。また、ウレタン(メタ)アクリレートの欄の「UA1」等の下の括弧内の数字は1分子中の(メタ)アクリロイル基の官能基数を示す。 [Examples and Comparative Examples]
The urethane (meth) acrylate-containing material prepared in the synthesis example, the photopolymerization initiator, and methyl isobutyl ketone (MIBK) are mixed in a light-shielding bottle so as to have the composition shown in Table 1 (numbers are parts by weight) An energy ray curable composition was prepared. In the table, photopolymerization initiator 1 is 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF, product name “IRGACURE184”), and photopolymerization initiator 2 is 2-methyl-1- [4- ( Methylthio) phenyl] -2-morpholinopropan-1-one (product name “IRGACURE907” manufactured by BASF). The number in parentheses below “UA1” in the urethane (meth) acrylate column indicates the number of functional groups of the (meth) acryloyl group in one molecule.
合成例で調製したウレタン(メタ)アクリレート含有物、光重合開始剤、メチルイソブチルケトン(MIBK)を、表1に示す組成(数字は重量部)となるように遮光瓶に入れて混合し、活性エネルギー線硬化性組成物を調製した。なお、表中の光重合開始剤1は、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製、製品名「IRGACURE184」)、光重合開始剤2は、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン(BASF社製、製品名「IRGACURE907」)である。また、ウレタン(メタ)アクリレートの欄の「UA1」等の下の括弧内の数字は1分子中の(メタ)アクリロイル基の官能基数を示す。 [Examples and Comparative Examples]
The urethane (meth) acrylate-containing material prepared in the synthesis example, the photopolymerization initiator, and methyl isobutyl ketone (MIBK) are mixed in a light-shielding bottle so as to have the composition shown in Table 1 (numbers are parts by weight) An energy ray curable composition was prepared. In the table, photopolymerization initiator 1 is 1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF, product name “IRGACURE184”), and photopolymerization initiator 2 is 2-methyl-1- [4- ( Methylthio) phenyl] -2-morpholinopropan-1-one (product name “IRGACURE907” manufactured by BASF). The number in parentheses below “UA1” in the urethane (meth) acrylate column indicates the number of functional groups of the (meth) acryloyl group in one molecule.
上記で調製したエネルギー線硬化性組成物を用い、下記のフィルム作製法1又は2により樹脂フィルムを製造した。
フィルム作製法1:活性エネルギー線硬化性組成物を、ワイヤーバー♯38を用いて、ポリエチレンテレフタレート(PET)フィルム(基材;厚さ125μm、商品名「O321E」、三菱樹脂社製)上に流延させた後、80℃の乾燥機にて溶剤を乾燥除去した。窒素雰囲気下にて、高圧水銀灯からの紫外線を照射した後、基材から剥離することにより、所定の厚み(20μm、100μm)の樹脂フィルムを得た。
フィルム作製法2:活性エネルギー線硬化性組成物を、テフロン(登録商標)シャーレ上に流延させた後、80℃の乾燥機にて溶剤を乾燥除去した。窒素雰囲気下にて、高圧水銀灯からの紫外線を照射した後、テフローンシャーレから剥離することにより、所定の厚み(200μm、1000μm)の樹脂フィルムを得た。 Using the energy ray-curable composition prepared above, a resin film was produced by the following film production method 1 or 2.
Film production method 1: An active energy ray-curable composition is flowed on a polyethylene terephthalate (PET) film (base material: thickness 125 μm, trade name “O321E”, manufactured by Mitsubishi Plastics) using a wire bar # 38. After extending, the solvent was removed by drying with a dryer at 80 ° C. After irradiating ultraviolet rays from a high pressure mercury lamp in a nitrogen atmosphere, the resin film having a predetermined thickness (20 μm, 100 μm) was obtained by peeling from the base material.
Film production method 2: The active energy ray-curable composition was cast on a Teflon (registered trademark) petri dish, and then the solvent was removed by drying with a dryer at 80 ° C. After irradiating ultraviolet rays from a high pressure mercury lamp in a nitrogen atmosphere, the resin film having a predetermined thickness (200 μm, 1000 μm) was obtained by peeling from the teflon petri dish.
フィルム作製法1:活性エネルギー線硬化性組成物を、ワイヤーバー♯38を用いて、ポリエチレンテレフタレート(PET)フィルム(基材;厚さ125μm、商品名「O321E」、三菱樹脂社製)上に流延させた後、80℃の乾燥機にて溶剤を乾燥除去した。窒素雰囲気下にて、高圧水銀灯からの紫外線を照射した後、基材から剥離することにより、所定の厚み(20μm、100μm)の樹脂フィルムを得た。
フィルム作製法2:活性エネルギー線硬化性組成物を、テフロン(登録商標)シャーレ上に流延させた後、80℃の乾燥機にて溶剤を乾燥除去した。窒素雰囲気下にて、高圧水銀灯からの紫外線を照射した後、テフローンシャーレから剥離することにより、所定の厚み(200μm、1000μm)の樹脂フィルムを得た。 Using the energy ray-curable composition prepared above, a resin film was produced by the following film production method 1 or 2.
Film production method 1: An active energy ray-curable composition is flowed on a polyethylene terephthalate (PET) film (base material: thickness 125 μm, trade name “O321E”, manufactured by Mitsubishi Plastics) using a wire bar # 38. After extending, the solvent was removed by drying with a dryer at 80 ° C. After irradiating ultraviolet rays from a high pressure mercury lamp in a nitrogen atmosphere, the resin film having a predetermined thickness (20 μm, 100 μm) was obtained by peeling from the base material.
Film production method 2: The active energy ray-curable composition was cast on a Teflon (registered trademark) petri dish, and then the solvent was removed by drying with a dryer at 80 ° C. After irradiating ultraviolet rays from a high pressure mercury lamp in a nitrogen atmosphere, the resin film having a predetermined thickness (200 μm, 1000 μm) was obtained by peeling from the teflon petri dish.
[樹脂フィルムの評価]
各実施例及び比較例で得られた樹脂フィルムの特性を下記の方法で評価した。結果を表1に示す。 [Evaluation of resin film]
The characteristics of the resin films obtained in each example and comparative example were evaluated by the following methods. The results are shown in Table 1.
各実施例及び比較例で得られた樹脂フィルムの特性を下記の方法で評価した。結果を表1に示す。 [Evaluation of resin film]
The characteristics of the resin films obtained in each example and comparative example were evaluated by the following methods. The results are shown in Table 1.
(鉛筆硬度)
JIS K-5600に準じて測定した。 (Pencil hardness)
The measurement was performed according to JIS K-5600.
JIS K-5600に準じて測定した。 (Pencil hardness)
The measurement was performed according to JIS K-5600.
(カール、クラック)
各実施例及び比較例で得られた樹脂フィルムを目視観察し、カール及びクラックの有無及び程度を下記の基準で評価した。なお、カールが「△」であっても、用途によっては支障なく使用できる場合がある。
<カール>
○:なし
△:僅かにカールが観察された
×:カールがはっきりと観察された
<クラック>
○:なし
△:僅かにクラックが観察された
×:多数のクラックが観察された (Curl, crack)
The resin films obtained in each Example and Comparative Example were visually observed, and the presence and degree of curling and cracking were evaluated according to the following criteria. Even if the curl is “Δ”, it may be used without any problem depending on the application.
<Curl>
○: None △: Slight curling was observed ×: Curl was clearly observed <Crack>
○: None △: Slight cracks were observed ×: Many cracks were observed
各実施例及び比較例で得られた樹脂フィルムを目視観察し、カール及びクラックの有無及び程度を下記の基準で評価した。なお、カールが「△」であっても、用途によっては支障なく使用できる場合がある。
<カール>
○:なし
△:僅かにカールが観察された
×:カールがはっきりと観察された
<クラック>
○:なし
△:僅かにクラックが観察された
×:多数のクラックが観察された (Curl, crack)
The resin films obtained in each Example and Comparative Example were visually observed, and the presence and degree of curling and cracking were evaluated according to the following criteria. Even if the curl is “Δ”, it may be used without any problem depending on the application.
<Curl>
○: None △: Slight curling was observed ×: Curl was clearly observed <Crack>
○: None △: Slight cracks were observed ×: Many cracks were observed
表1に示されるように、前記式(1)で表されるトリシクロデカン骨格を含む基を分子中に有する4又は6官能のウレタン(メタ)アクリレートを用いた実施例1~3の樹脂フィルムは、厚みが20μmでも鉛筆硬度は「3H」となるのに対し、式(1)で表されるトリシクロデカン骨格を含む基を分子中に有する2官能のウレタン(メタ)アクリレートを用いた比較例1の樹脂フィルムは、厚みが20μmで鉛筆硬度は「H」である。また、式(1)で表されるトリシクロデカン骨格を含む基を分子中に有する4又は6官能のウレタン(メタ)アクリレートを用いた実施例5~11の樹脂フィルムは、厚みが200μm又は1000μmで鉛筆硬度は「9H」となるのに対し、式(1)で表されるトリシクロデカン骨格を含む基を分子中に有する2官能のウレタン(メタ)アクリレートを用いた比較例2~4の樹脂フィルムは、厚みが200μm又は1000μmで鉛筆硬度「5H」~「7H」である。なお、式(1)で表されるトリシクロデカン骨格を含む基を分子中に有するウレタン(メタ)アクリレートを全く用いない比較例5では、1000μmの厚みの樹脂フィルムを作製しようとしても自壊して、使用に耐える樹脂フィルムは得られなかった。
As shown in Table 1, the resin films of Examples 1 to 3 using a tetra- or hexafunctional urethane (meth) acrylate having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule Compared with a bifunctional urethane (meth) acrylate having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule, while the pencil hardness is “3H” even when the thickness is 20 μm. The resin film of Example 1 has a thickness of 20 μm and a pencil hardness of “H”. In addition, the resin films of Examples 5 to 11 using a tetra- or hexafunctional urethane (meth) acrylate having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule have a thickness of 200 μm or 1000 μm. In Comparative Examples 2 to 4 using a bifunctional urethane (meth) acrylate having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule. The resin film has a thickness of 200 μm or 1000 μm and a pencil hardness of “5H” to “7H”. In Comparative Example 5 in which no urethane (meth) acrylate having a group containing a tricyclodecane skeleton represented by the formula (1) is used in the molecule, even if an attempt was made to produce a resin film having a thickness of 1000 μm, the film was self-destructed. A resin film that can withstand use was not obtained.
本発明の樹脂フィルムによれば、硬化収縮によるクラックやカールの発生が顕著に抑制され、厚膜化が可能であり、表面硬度が非常に高いものとすることができる。また、微粒子シリカ等のフィラーを添加しなくても高い表面硬度が得られる。さらに、本発明の樹脂フィルムは、透明性等の光学特性、熱特性、機械特性にも優れている。そのため、液晶ディスプレイ、有機ELディスプレイ、タッチパネル、カラーフィルター等のディスプレイ基板などの光学用基板、光学部材等として有用である。
According to the resin film of the present invention, generation of cracks and curls due to curing shrinkage is remarkably suppressed, the film thickness can be increased, and the surface hardness can be very high. Further, high surface hardness can be obtained without adding a filler such as fine particle silica. Furthermore, the resin film of the present invention is excellent in optical properties such as transparency, thermal properties, and mechanical properties. Therefore, it is useful as an optical substrate such as a liquid crystal display, an organic EL display, a touch panel, a display substrate such as a color filter, an optical member, or the like.
Claims (7)
- 活性エネルギー線硬化性組成物を硬化して得られる樹脂フィルムであって、前記活性エネルギー線硬化性組成物が、下記式(1)
- 厚みが25μmを超える請求項1記載の樹脂フィルム。 The resin film according to claim 1, wherein the thickness exceeds 25 μm.
- 厚みが500μm以上である請求項1又は2記載の樹脂フィルム。 The resin film according to claim 1, wherein the thickness is 500 μm or more.
- 前記活性エネルギー線硬化性組成物が、前記式(1)で表されるトリシクロデカン骨格を含む基を分子内に有する4~12官能のウレタン(メタ)アクリレート(A)に加え、他の硬化性化合物(B)として多官能(メタ)アクリレートを含む請求項1~3の何れか1項に記載の樹脂フィルム。 In addition to the tetra- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule, the active energy ray-curable composition is used for other curing. The resin film according to any one of claims 1 to 3, comprising a polyfunctional (meth) acrylate as the functional compound (B).
- 前記活性エネルギー線硬化性組成物が、前記式(1)で表されるトリシクロデカン骨格を含む基を分子内に有する4~12官能のウレタン(メタ)アクリレート(A)に加え、他の硬化性化合物(B)として4官能以上の多官能(メタ)アクリレートを含む請求項1~4の何れか1項に記載の樹脂フィルム。 In addition to the tetra- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule, the active energy ray-curable composition is used for other curing. The resin film according to any one of claims 1 to 4, comprising a polyfunctional (meth) acrylate having 4 or more functional groups as the functional compound (B).
- 前記式(1)で表されるトリシクロデカン骨格を含む基を分子内に有する4~12官能のウレタン(メタ)アクリレート(A)を含む4官能以上の多官能(メタ)アクリレートの総量が、活性エネルギー線硬化性組成物中の硬化性化合物全体に対して30重量%以上である請求項1~5の何れか1項に記載の樹脂フィルム。 The total amount of polyfunctional (meth) acrylates having 4 or more functional groups including 4- to 12-functional urethane (meth) acrylate (A) having a group containing a tricyclodecane skeleton represented by the formula (1) in the molecule, The resin film according to any one of claims 1 to 5, which is 30% by weight or more based on the entire curable compound in the active energy ray-curable composition.
- 請求項1~6の何れか1項に記載の樹脂フィルムの製造方法であって、下記式(1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013079128A JP6006155B2 (en) | 2013-04-05 | 2013-04-05 | Resin film and method for producing the same |
JP2013-079128 | 2013-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014162942A1 true WO2014162942A1 (en) | 2014-10-09 |
Family
ID=51658240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058475 WO2014162942A1 (en) | 2013-04-05 | 2014-03-26 | Resin film and method for producing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6006155B2 (en) |
TW (1) | TW201446844A (en) |
WO (1) | WO2014162942A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016104859A (en) * | 2014-11-25 | 2016-06-09 | 日本合成化学工業株式会社 | Active energy ray-curable resin composition and coating agent |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016190952A (en) * | 2015-03-31 | 2016-11-10 | 日油株式会社 | Active energy ray-curable resin composition |
CN107132940A (en) | 2016-02-26 | 2017-09-05 | 宸盛光电有限公司 | Touch base plate made using 3 D-printing and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005255979A (en) * | 2004-02-10 | 2005-09-22 | Daicel Ucb Co Ltd | Cured article of active energy ray-curable resin composition |
JP2007204736A (en) * | 2006-01-05 | 2007-08-16 | Nippon Synthetic Chem Ind Co Ltd:The | Resin molded product, method for producing resin molded product and use thereof |
WO2013114750A1 (en) * | 2012-01-31 | 2013-08-08 | ダイセル・サイテック株式会社 | Active energy ray curable resin composition |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102003575B1 (en) * | 2011-08-10 | 2019-07-24 | 히타치가세이가부시끼가이샤 | Photosensitive resin composition, photosensitive film, permanent resist and method for producing permanent resist |
-
2013
- 2013-04-05 JP JP2013079128A patent/JP6006155B2/en active Active
-
2014
- 2014-03-26 WO PCT/JP2014/058475 patent/WO2014162942A1/en active Application Filing
- 2014-04-03 TW TW103112427A patent/TW201446844A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005255979A (en) * | 2004-02-10 | 2005-09-22 | Daicel Ucb Co Ltd | Cured article of active energy ray-curable resin composition |
JP2007204736A (en) * | 2006-01-05 | 2007-08-16 | Nippon Synthetic Chem Ind Co Ltd:The | Resin molded product, method for producing resin molded product and use thereof |
WO2013114750A1 (en) * | 2012-01-31 | 2013-08-08 | ダイセル・サイテック株式会社 | Active energy ray curable resin composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016104859A (en) * | 2014-11-25 | 2016-06-09 | 日本合成化学工業株式会社 | Active energy ray-curable resin composition and coating agent |
Also Published As
Publication number | Publication date |
---|---|
TW201446844A (en) | 2014-12-16 |
JP6006155B2 (en) | 2016-10-12 |
JP2014201663A (en) | 2014-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4320846B2 (en) | Photocurable composition | |
EP1529793B1 (en) | Acrylate-functional blocked polyisocyanate resin for dual cure coatings | |
KR20110021916A (en) | Curable composition containing a reactive (meth)acrylate polymer and a cured product thereof | |
JP2003510432A (en) | Aqueous polyurethane dispersion curable by UV radiation and thermally curable and use of the dispersion | |
JP5564949B2 (en) | Curable composition | |
JP5996560B2 (en) | Active energy ray-curable resin composition | |
JP5089889B2 (en) | Hard coating agent composition and molded article | |
JP2011042770A (en) | Active energy ray-curable oligomer, active energy ray-curable resin composition, cured coating film, and plastic film | |
JP6006155B2 (en) | Resin film and method for producing the same | |
JP2012072327A (en) | Radical polymerizable group-containing urethane prepolymer, urethane (meth)acrylate, photocurable resin composition, hard coat film, and molded product | |
JPH08301952A (en) | Active-energy-ray-curable resin composition, its production, and cured molded article of active-energy-ray-curable resin | |
JP4750473B2 (en) | Active energy ray curable resin composition and coating agent using the same | |
JP6425986B2 (en) | Urethane (meth) acrylate, active energy ray-curable urethane (meth) acrylate composition and cured product thereof | |
JP5534606B2 (en) | Active energy ray-curable resin composition | |
JP4140952B2 (en) | Active energy ray-curable resin composition | |
JP2011052227A (en) | Cured product of active energy ray-curable resin composition | |
JP4662126B2 (en) | Cured product of active energy ray-curable resin composition | |
JP2017048301A (en) | Urethane (meth)acrylate, active energy ray-curable composition and cured product thereof | |
JP2013023631A (en) | Active energy ray-curable hard coat agent composition, cured coating film and molded article | |
JP2017132991A (en) | Polyurethane (meth)acrylate, composition, cured article | |
JPWO2014208212A1 (en) | Energy ray curable resin composition and vibration damping sheet | |
JP6564607B2 (en) | Active energy ray-curable coating agent composition and cured product thereof | |
JPH101529A (en) | Production of active-energy-ray-curable resin and active-energy-ray-curable resin composition | |
JP7461239B2 (en) | Urethane (meth)acrylate composition, active energy ray-curable composition, and cured product thereof | |
JP4587196B2 (en) | Urethane (meth) acrylate, method for producing the same, active energy ray-curable resin composition, and cured product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14779485 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14779485 Country of ref document: EP Kind code of ref document: A1 |