[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014162827A1 - Method for manufacturing tube and manufacturing device - Google Patents

Method for manufacturing tube and manufacturing device Download PDF

Info

Publication number
WO2014162827A1
WO2014162827A1 PCT/JP2014/056221 JP2014056221W WO2014162827A1 WO 2014162827 A1 WO2014162827 A1 WO 2014162827A1 JP 2014056221 W JP2014056221 W JP 2014056221W WO 2014162827 A1 WO2014162827 A1 WO 2014162827A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
tube
mandrel
resin
resin layer
Prior art date
Application number
PCT/JP2014/056221
Other languages
French (fr)
Japanese (ja)
Inventor
福岡徹也
江畑勝紀
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2014162827A1 publication Critical patent/WO2014162827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0013Extrusion moulding in several steps, i.e. components merging outside the die
    • B29C48/0015Extrusion moulding in several steps, i.e. components merging outside the die producing hollow articles having components brought in contact outside the extrusion die
    • B29C48/0016Extrusion moulding in several steps, i.e. components merging outside the die producing hollow articles having components brought in contact outside the extrusion die using a plurality of extrusion dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a tube, and more particularly to a method and an apparatus for manufacturing a tube that do not use a core wire.
  • the method using no core wire has high workability because there is no step of removing the core wire, but it is difficult to obtain high dimensional accuracy. Further, in the method using the core wire as in Patent Document 1, high dimensional accuracy can be obtained, but since the core wire needs to be finally pulled out, workability is lowered.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a tube manufacturing method and a manufacturing apparatus capable of manufacturing a tube with high dimensional accuracy while improving workability without using a core wire.
  • a tube manufacturing method for achieving the above object is a tube manufacturing method for forming a resin tube by extrusion molding, and a mold for molding the outer surface of a tubular resin layer while extruding a molten resin, And a mandrel that is disposed inside the mold and is insulated or cooled from the mold to mold the inner surface of the resin layer, and from the flow path formed between the mold and the mandrel
  • the resin is extruded, the inner surface of the resin layer is cooled by the mandrel, and the tube is formed without providing a core wire inside the resin layer.
  • a tube manufacturing apparatus that achieves the above object is a tube manufacturing apparatus for forming a resin tube by extrusion molding, and is a metal for forming the outer surface of a tubular resin layer while extruding molten resin.
  • a manufacturing apparatus that includes a mold and a mandrel that is insulated or cooled from the mold and molds the inner surface of the resin layer, and molds the tube without providing a core wire inside the resin layer.
  • the tube is formed using a cooled or heat-insulated mandrel, the inner surface of the resin layer extruded into a tubular shape is quickly cooled by the mandrel and easily solidifies.
  • the tube can be manufactured with high dimensional accuracy while improving workability without using a core wire.
  • the mandrel has a heat insulating member provided so that at least part of the mandrel protrudes more in the extrusion direction than the mold, the mandrel exposed from the mold is effectively insulated from the mold and maintained at a low temperature. Thus, the resin layer in contact with the mandrel can be cooled.
  • the mandrel has a cooling mechanism that can be cooled, the mandrel can be actively cooled to cool the resin layer more effectively.
  • the cooling effect of the mandrel can be further enhanced if at least a part of the cooling mechanism is provided so as to protrude from the mold toward the extrusion direction.
  • the reinforcing body is braided on the outer surface side of the resin layer molded by the mold and mandrel, when braiding the reinforcing body, at least the inner surface of the resin layer is solidified or cured, Even without a core wire, the shape of the resin layer can be maintained satisfactorily.
  • the second resin layer is extruded on the outer surface side of the resin layer formed by the mold and mandrel, at least the inner surface of the resin layer is solidified when the second resin layer is formed. Or since it is hardened
  • the tube manufacturing apparatus 10 manufactures the tube 1 by extruding resin without using a core wire.
  • the tube 1 manufactured in the present embodiment includes an inner layer 2 (resin layer) constituting the innermost layer, a reinforcing body 3 formed for the purpose of reinforcement outside the inner layer 2, and a reinforcing body. 3 is provided with an outer layer 4 (second resin layer) covering the outer side of 3.
  • the manufactured tube 1 can be applied suitably for medical instruments, such as a catheter, a use is not limited to medical use.
  • the manufacturing apparatus 10 includes a first extruder 20 that forms the inner layer 2 by extruding a heat-melted resin into a tubular shape, and a braiding machine 30 that braces the reinforcing body 3 on the outer surface of the inner layer 2.
  • the second extruder 40 for forming the outer layer 4 by extruding a separate resin into a tubular shape on the outer surface of the reinforcing body 3, the cooling device 50 for cooling the formed tube 1, and the take-up machine 60 for taking up the tube 1.
  • a winder 70 that winds up the tube 1.
  • the first extruder 20, the braiding machine 30, the second extruder 40, the cooling device 50, the take-up machine 60, and the winder 70 are arranged side by side in the tube 1 extrusion direction.
  • the first extruder 20 includes a first mold 21 that extrudes while heating the resin, a first extruder 22 that sends out the resin melted by a screw or the like into the first mold 21, A tubular first mandrel 23 which is disposed inside the first mold 21 and molds the inner surface of the resin.
  • the first mold 21 includes a tubular die 24 for forming the outer surface of the tubular inner layer 2 to be pushed out while accommodating the resin inside and guiding the resin, a heater for heating the resin, and the like. Heating means 25.
  • the die 24 is configured by connecting a plurality of members 24A, 24B, and 24C arranged in the extrusion direction in which resin is extruded, for example, by screwing.
  • the heating means 25 is disposed so as to cover the outer periphery of the die 24.
  • the first mandrel 23 is disposed inside the die 24, forms a first flow path 29 that flows while the resin is accommodated between the first mandrel 23, and shapes the inner surface of the extruded tubular inner layer 2.
  • the first mandrel 23 includes a first base end member 26A, a second base end member 26B, a heat insulating member 27, and a front end member 28 arranged in the extrusion direction.
  • the heat insulating member 27 has a base end screwed into and connected to the second base end member 26B, and is formed of a member having a higher heat insulating effect than the second base end member 26B.
  • the distal end member 28 is connected to the proximal end side by screwing a heat insulating member 27.
  • the first mandrel 23 is formed so as to reduce in diameter toward the extrusion direction as a whole.
  • the first mandrel 23 is arranged such that at least a part of the heat insulating member 27 and the tip member 28 protrude in the extrusion direction from the first mold 21.
  • the heat insulating member 27 plays a role of suppressing heat transfer from the first mold 21 to the tip member 28.
  • the distal end side of the first mandrel 23 is reduced in diameter from the heat insulating member 27, but the portion to be reduced in diameter is not limited to this.
  • the proximal end side of the heat insulating member 27 is reduced in size.
  • the diameter may be reduced, or the diameter may be reduced by the tip member 28 on the extrusion direction side of the heat insulating member 27.
  • the first mandrel 23 may not be reduced in diameter in the extrusion direction.
  • the first base end member 26A, the second base end member 26B, and the front end member 28 for example, stainless steel or the like can be applied.
  • the heat insulating member 27 is made of a material having a heat insulating effect higher than that of the second base end member 26B to which the heat insulating member 27 is connected.
  • a resin material such as a fluorine-based resin, ceramic, a foam thereof, or the like can be applied.
  • the braiding machine 30 continuously applies the strands, which are the reinforcing bodies 3, with a braid having a predetermined interstitial distance on the outer surface of the inner layer 2 extruded in a tubular shape from the first extruder 20. It is a wrapping device.
  • the reinforcing body 3 composed of the strands may be wound around the core wire while changing the winding direction, such as horizontal winding in the same direction, right-hand winding, left-hand winding, etc., and the winding pitch, interstitial distance, circumferential direction
  • the inclination angle with respect to the angle may be changed depending on the position, and the configuration is not particularly limited.
  • the strands used for the reinforcing body 3 can be platinum (Pt) / tungsten (W), stainless steel, Ni—Ti, or other metal wires, resin fibers, carbon fibers, glass fibers, or the like. Two or more may be used together.
  • the second extrusion molding machine 40 extrudes a resin layer to be the outer layer 4 on the outer surface of the reinforcing body 3 in a tubular shape, a second mold 41 that extrudes while heating the resin, and a resin melted by a screw or the like. And a second mandrel 43 which is disposed inside the second mold 41 and forms the inner surface of the outer layer 4. . Inside the second mandrel 43, a tubular body in which the reinforcing body 3 is braided on the inner layer 2 is inserted. The resin is pushed out from the second flow path 44 formed between the second mold 41 and the second mandrel 43, and is coated on the outer surface of the tubular body in which the reinforcing body 3 is braided on the inner layer 2.
  • the cooling device 50 is a device that cools and solidifies the resin extruded from the first extruder 20 and the second extruder 40.
  • the structure of the cooling device 50 is not particularly limited, and water cooling, air cooling, or the like can be applied.
  • the take-up machine 60 includes a roller 61 (or a rotating belt) that is rotated by a driving source such as a motor, and can continuously take up the cooled and solidified tube 1.
  • the winder 70 is rotated by a driving source such as a motor and can continuously wind up and collect the solidified tube 1.
  • the resin that is extruded by the first extruder 20 to form the inner layer 2 is not particularly limited as long as it is an extrudable resin, and preferred examples include polyethylene, polyamide-based polymer, and polyester-based polymer.
  • the resin that is extruded by the second extruder 40 to form the outer layer 4 is not particularly limited as long as it is an extrudable resin.
  • polyolefin for example, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene -Vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, etc.
  • polyvinyl chloride polyamide, polyester elastomer, polyamide elastomer, polyurethane, polyurethane elastomer, polyimide, fluororesin, or other polymer materials or mixtures thereof
  • the thermoplastic resin can be applied.
  • Preferable examples of the resin forming the outer layer 4 include polyethylene, polyamide polymer, and polyester polymer.
  • the heat-melted resin is moved into the first mold 21 by the first extrusion machine 22.
  • the resin that has moved into the first mold 21 is pushed out of the first mold 21 through the first flow path 29 between the die 24 and the second mandrel 43 to form the tubular inner layer 2.
  • at least a part of the heat insulating member 27 and the tip member 28 are arranged so as to protrude in the extrusion direction from the first mold 21, and the heat from the first mold 21 to the tip member 28 is absorbed by the heat insulating member 27. Since the transmission is suppressed, the temperature of the tip member 28 is lower than the case where the first mandrel 23 is not provided with the heat insulating member 27.
  • the resin that has come into contact with the heat insulating member 27 and the tip member 28 is cooled to be solidified, and is in a solidified state or a state in which the temperature is lowered and hardened without being completely solidified.
  • the resin whose temperature is lowered and solidified is further pushed out in the extruding direction and separated from the first mandrel 23 to form the inner layer 2. Since the solidified or cured resin is not easily deformed, the tubular inner layer 2 with high dimensional accuracy can be formed without using a core wire. In particular, when a resin having a low melting point and difficult to solidify unless cooling is applied to the inner layer 2, a great effect is exhibited.
  • strands are braided on the outer surface of the formed inner layer 2 by a braiding machine 30 to form the reinforcing body 3.
  • the reinforcing body 3 is formed on the outer surface of the inner layer 2 or in a state where the strands have digged into the outer surface of the inner layer 2.
  • the deformation of the inner layer 2 by the reinforcing body 3 is suppressed and the shape of the inner layer 2 can be maintained well even without a core wire.
  • the heat-melted resin is moved into the second mold 41 by the second extruder 42, and the second flow between the second mold 41 and the second mandrel 43 is moved. Resin is pushed out from the path 44.
  • the outer layer 4 is formed by extruding and coating the resin on the outer surfaces of the inner layer 2 and the reinforcing body 3.
  • the influence of heat from the outer layer 4 received by the inner layer 2 is reduced as much as possible. The shape of can be maintained well.
  • the cooling device 50 cools the tubular body constituted by the inner layer 2, the reinforcing body 3 and the outer layer 4 to solidify all the resin, and the manufacture of the tube 1 is completed.
  • the tube 1 moves while being continuously taken up by the take-up machine 60, and is collected by the winder 70. Alternatively, it is possible to cut the tube 1 in a straight line without winding.
  • the first mold 21 (mold) that molds the outer surface of the inner layer 2 (resin layer) while extruding the molten resin, and the inner side of the first mold 21 are arranged.
  • a first mandrel 23 (mandrel) that is insulated from the first mold 21 and forms the inner surface of the inner layer 2, and is formed between the first mold 21 and the first mandrel 23. Resin is extruded from the flow path 29, the inner surface of the inner layer 2 is cooled by the first mandrel 23, and the tube 1 is formed without providing a core wire inside the extruded inner layer 2.
  • the tube 1 can be manufactured with high dimensional accuracy while improving workability.
  • the first mandrel 23 has a heat insulating member 27 that is provided so that at least part of the first mandrel 23 protrudes more in the extrusion direction than the first mold 21, the first mandrel 23 exposed from the first mold 21 is the first mold.
  • the inner layer 2 can be cooled while being effectively insulated from the mold 21 and maintained at a low temperature.
  • the shape of the inner layer 2 can be favorably maintained by reducing the influence of heat from the outer layer 4 received by the inner layer 2 as much as possible without using a core wire.
  • the distal end member 28 is completely insulated by the heat insulating member 27 without contacting the second proximal end member 26B disposed in the first mold 21, but is shown in FIG.
  • the heat insulating member 82 may be partially provided between the distal end member 81 and the second base end member 26B to be partially insulated.
  • symbol is attached
  • a cooling mechanism 92 that can actively cool the tip member 91 may be provided instead of the heat insulating member.
  • the cooling mechanism 92 is connected to a refrigerant supply means 93 provided outside the first mold 21 through a supply pipe 94 and a discharge pipe 95.
  • a flow path 96 through which a refrigerant can flow is formed inside the cooling mechanism 92, and after the refrigerant supplied from the supply pipe 94 flows through the flow path 96 and cools the tip member 91 of the first mandrel 90.
  • the refrigerant is discharged from the discharge pipe 95.
  • the refrigerant supply means 93 is provided with a heat exchanger or the like, and can cool the refrigerant collected from the discharge pipe 95 and supply it to the supply pipe 94 again.
  • the refrigerant is not particularly limited, and water, air, silicone oil, Freon, fluorine oil, or the like can be applied.
  • the cooling mechanism 92 it is possible to arbitrarily adjust the temperature at which the extruded resin is cooled, and effective cooling is possible.
  • the cooling temperature can be appropriately set depending on the resin to be applied, and is preferably lower than the melting point of the resin by 100 ° C. or more.
  • the cooling mechanism 92 is provided so that at least part of the cooling mechanism 92 protrudes more in the extrusion direction than the first mold 21, the effect of cooling the first mandrel 90 can be further enhanced.
  • the cooling mechanism 92 exerts a great effect particularly when a resin having a low melting point and difficult to solidify unless cooling is applied to the inner layer 2.
  • the cooling mechanism 92 can be actively cooled from the outside, it can also be provided in the first mold 21.
  • both the heat insulating member 101 and the cooling mechanism 102 may be provided in the first mandrel 100. If the cooling mechanism 102 is provided in the extrusion direction as compared with the heat insulating member 101, the cooling effect by the cooling mechanism 102 becomes more effective.
  • the cooling mechanism 102 can have the same configuration as the cooling mechanism 92 described with reference to FIG.
  • the first mandrel 110 may be electrically cooled by a Peltier element 113 (cooling mechanism) including a heat absorbing plate 111 and a heat radiating plate 112.
  • the Peltier element 113 can absorb the heat by the heat absorption plate 111 and can radiate the heat by the heat radiating plate 112 by passing a current through the electric wire 114.
  • a cooling means 115 In order to efficiently cool the heat radiating plate 112 of the Peltier element 113, it is preferable to provide a cooling means 115.
  • the cross-sectional shape of the tube to be molded does not have to be circular, but can be arbitrarily set, and may be, for example, elliptical, semicircular, polygonal, or the like.
  • only one passage is formed by the first mandrel 23 inside the tube 1, but a plurality of mandrels are provided in the first extruder so that a plurality of passages are provided. May be.
  • a heat insulating member and a cooling mechanism can be provided in each of the plurality of mandrels.
  • the tip member may be constituted by the heat insulating member or the cooling mechanism without providing the tip member on the tip side of the heat insulating member or the cooling mechanism of the first mandrel. Further, at least one of the reinforcing body and the outer layer may not be provided in the manufactured tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention provides a method for manufacturing a tube and a manufacturing device capable of manufacturing a tube with high dimensional accuracy while enhancing working performance without using a center line. A tube-manufacturing method for extrusion-molding a plastic tube (1), wherein, using a first mold (21) for molding the exterior surface of a tube-shaped inner layer (2) while extruding molten resin and a first mandrel (23) for molding the interior surface of the inner layer (2), the first mandrel (23) being disposed inside the first mold (21) and being insulated from the first mold (21) or cooled. Resin is extruded from a first flow channel (29) formed between the first mold (21) and the first mandrel (23) and the interior surface of the inner layer (2) is cooled by the first mandrel (23), whereby a tube (1) is molded without the provision of a center line to the inside of the inner layer (2).

Description

チューブの製造方法および製造装置Tube manufacturing method and manufacturing apparatus
 本発明は、チューブの製造方法および製造装置に関し、特に、芯線を用いないチューブの製造方法および製造装置に関する。 The present invention relates to a method and an apparatus for manufacturing a tube, and more particularly to a method and an apparatus for manufacturing a tube that do not use a core wire.
 近年、様々な分野において、管状のチューブを製造するために押出成形法が広く利用されている。押出成形法によりチューブを製造する際には、金型を貫通して移動する芯線上に、加熱溶融した樹脂を金型から押し出して連続的に被覆させ、樹脂が固化した後に芯線を引き抜くことで、樹脂製のチューブを製造する(例えば、特許文献1を参照)。 In recent years, extrusion methods have been widely used in various fields to produce tubular tubes. When manufacturing a tube by the extrusion molding method, a heated and melted resin is continuously extruded from the mold on the core wire that moves through the mold, and the core wire is pulled out after the resin is solidified. Then, a resin tube is manufactured (see, for example, Patent Document 1).
 また、ゴムホース等の高い寸法精度が要求されないチューブでは、芯線を用いずに、加熱溶融した樹脂を金型から管状に連続的に押し出して押出成形する方法も用いられる(例えば、特許文献2、特許文献3を参照)。 For tubes that do not require high dimensional accuracy, such as rubber hoses, a method is also used in which a resin melted by heating and melting is continuously extruded from a mold into a tubular shape without using a core wire (for example, Patent Document 2, Patent). Reference 3).
特開2008-183226号公報JP 2008-183226 A 特開2010-131754号公報JP 2010-131754 A 特開平6-64062号公報JP-A-6-64062
 上述した特許文献2,3のように芯線を用いない方法では、芯線を抜去する工程がないために作業性が高い反面、高い寸法精度を得ることが困難である。また、特許文献1のように芯線を用いる方法では、高い寸法精度を得られる反面、最後に芯線を引き抜く必要があるため、作業性が低くなる。 As described above in Patent Documents 2 and 3, the method using no core wire has high workability because there is no step of removing the core wire, but it is difficult to obtain high dimensional accuracy. Further, in the method using the core wire as in Patent Document 1, high dimensional accuracy can be obtained, but since the core wire needs to be finally pulled out, workability is lowered.
 本発明は、上述した課題を解決するためになされたものであり、芯線を用いずに作業性を向上させつつ、寸法精度よくチューブを製造できるチューブの製造方法および製造装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a tube manufacturing method and a manufacturing apparatus capable of manufacturing a tube with high dimensional accuracy while improving workability without using a core wire. And
 上記目的を達成するチューブの製造方法は、樹脂製のチューブを押出成形によって成形するためのチューブの製造方法であって、溶融した樹脂を押し出しつつ管状の樹脂層の外表面を成形する金型と、前記金型の内側に配置されるとともに前記金型から断熱または冷却されて前記樹脂層の内表面を成形するマンドレルと、を用い、前記金型およびマンドレルの間に形成される流路から前記樹脂を押し出して前記マンドレルによって前記樹脂層の内表面を冷却し、前記樹脂層の内部に芯線を設けることなしに前記チューブを成形する製造方法である。 A tube manufacturing method for achieving the above object is a tube manufacturing method for forming a resin tube by extrusion molding, and a mold for molding the outer surface of a tubular resin layer while extruding a molten resin, And a mandrel that is disposed inside the mold and is insulated or cooled from the mold to mold the inner surface of the resin layer, and from the flow path formed between the mold and the mandrel In this manufacturing method, the resin is extruded, the inner surface of the resin layer is cooled by the mandrel, and the tube is formed without providing a core wire inside the resin layer.
 また、上記目的を達成するチューブの製造装置は、樹脂製のチューブを押出成形によって成形するためのチューブの製造装置であって、溶融した樹脂を押し出しつつ管状の樹脂層の外表面を成形する金型と、前記金型から断熱または冷却されて前記樹脂層の内表面を成形するマンドレルと、を有し、前記樹脂層の内部に芯線を設けることなしに前記チューブを成形する製造装置である。 Further, a tube manufacturing apparatus that achieves the above object is a tube manufacturing apparatus for forming a resin tube by extrusion molding, and is a metal for forming the outer surface of a tubular resin layer while extruding molten resin. A manufacturing apparatus that includes a mold and a mandrel that is insulated or cooled from the mold and molds the inner surface of the resin layer, and molds the tube without providing a core wire inside the resin layer.
 上記のように構成したチューブの製造方法および製造装置は、冷却または断熱されたマンドレルを用いてチューブを成形するため、管状に押し出された樹脂層の内表面がマンドレルによって迅速に冷却されて固まりやすくなり、芯線を用いずに作業性を向上させつつ、寸法精度よくチューブを製造できる。 In the tube manufacturing method and manufacturing apparatus configured as described above, since the tube is formed using a cooled or heat-insulated mandrel, the inner surface of the resin layer extruded into a tubular shape is quickly cooled by the mandrel and easily solidifies. Thus, the tube can be manufactured with high dimensional accuracy while improving workability without using a core wire.
 前記マンドレルが、少なくとも一部が前記金型よりも押出方向側に突出して設けられる断熱部材を有するようにすれば、金型から露出するマンドレルを金型から効果的に断熱し、低い温度に維持して、マンドレルに接する樹脂層を冷却できる。 If the mandrel has a heat insulating member provided so that at least part of the mandrel protrudes more in the extrusion direction than the mold, the mandrel exposed from the mold is effectively insulated from the mold and maintained at a low temperature. Thus, the resin layer in contact with the mandrel can be cooled.
 前記マンドレルが、冷却可能な冷却機構を有するようにすれば、マンドレルを積極的に冷却して、樹脂層をより効果的に冷却できる。 If the mandrel has a cooling mechanism that can be cooled, the mandrel can be actively cooled to cool the resin layer more effectively.
 前記冷却機構は、少なくとも一部が前記金型よりも押出方向側に突出して設けられるようにすれば、マンドレルによる冷却効果をより高めることができる。 The cooling effect of the mandrel can be further enhanced if at least a part of the cooling mechanism is provided so as to protrude from the mold toward the extrusion direction.
 前記金型およびマンドレルにより成形された前記樹脂層の外表面側に補強体を編組するようにすれば、補強体を編組する際に、樹脂層の少なくとも内表面が固化または硬化されているため、芯線がなくとも、樹脂層の形状を良好に維持することができる。 If the reinforcing body is braided on the outer surface side of the resin layer molded by the mold and mandrel, when braiding the reinforcing body, at least the inner surface of the resin layer is solidified or cured, Even without a core wire, the shape of the resin layer can be maintained satisfactorily.
 前記金型およびマンドレルにより成形された前記樹脂層の外表面側に第2の樹脂層を押出成形するようにすれば、第2の樹脂層を成形する際に、樹脂層の少なくとも内表面が固化または硬化されているため、芯線がなくとも、第2の樹脂層からの熱の影響を極力低減させて、樹脂層の形状を良好に維持することができる。 If the second resin layer is extruded on the outer surface side of the resin layer formed by the mold and mandrel, at least the inner surface of the resin layer is solidified when the second resin layer is formed. Or since it is hardened | cured, even if there is no core wire, the influence of the heat from a 2nd resin layer can be reduced as much as possible, and the shape of a resin layer can be maintained favorable.
本実施形態に係るチューブの製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the tube which concerns on this embodiment. 第1押出成形機を示す概略断面図である。It is a schematic sectional drawing which shows a 1st extrusion molding machine. 製造されるチューブを示す概略断面図である。It is a schematic sectional drawing which shows the tube manufactured. 第1押出成形機の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of a 1st extrusion molding machine. 第1押出成形機の他の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the other modification of a 1st extrusion molding machine. 第1押出成形機のさらに他の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the further another modification of a 1st extrusion molding machine. 第1押出成形機のさらに他の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the further another modification of a 1st extrusion molding machine.
 以下、図面を参照して、本発明の実施の形態を説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 本実施形態に係るチューブの製造装置10は、芯線を用いずに樹脂を押出成形してチューブ1を製造するものである。本実施形態において製造されるチューブ1は、図3に示すように、最内層を構成する内層2(樹脂層)と、内層2の外側に補強の目的で形成される補強体3と、補強体3の外側を覆う外層4(第2の樹脂層)とを備えている。なお、製造されるチューブ1は、カテーテル等の医療用器具に好適に適用できるものであるが、用途は医療用に限定されない。 The tube manufacturing apparatus 10 according to this embodiment manufactures the tube 1 by extruding resin without using a core wire. As shown in FIG. 3, the tube 1 manufactured in the present embodiment includes an inner layer 2 (resin layer) constituting the innermost layer, a reinforcing body 3 formed for the purpose of reinforcement outside the inner layer 2, and a reinforcing body. 3 is provided with an outer layer 4 (second resin layer) covering the outer side of 3. In addition, although the manufactured tube 1 can be applied suitably for medical instruments, such as a catheter, a use is not limited to medical use.
 製造装置10は、図1に示すように、加熱溶融した樹脂を管状に押し出して内層2を形成する第1押出成形機20と、内層2の外表面に補強体3を編組する編組機30と、補強体3の外表面上に別途の樹脂を管状に押し出して外層4を形成する第2押出成形機40と、形成されたチューブ1を冷却させる冷却装置50と、チューブ1を引き取る引取機60と、チューブ1を巻き取る巻取機70と、を有している。第1押出成形機20、編組機30、第2押出成形機40、冷却装置50、引取機60および巻取機70は、チューブ1の押出方向へ連続的に並んで配置される。 As shown in FIG. 1, the manufacturing apparatus 10 includes a first extruder 20 that forms the inner layer 2 by extruding a heat-melted resin into a tubular shape, and a braiding machine 30 that braces the reinforcing body 3 on the outer surface of the inner layer 2. The second extruder 40 for forming the outer layer 4 by extruding a separate resin into a tubular shape on the outer surface of the reinforcing body 3, the cooling device 50 for cooling the formed tube 1, and the take-up machine 60 for taking up the tube 1. And a winder 70 that winds up the tube 1. The first extruder 20, the braiding machine 30, the second extruder 40, the cooling device 50, the take-up machine 60, and the winder 70 are arranged side by side in the tube 1 extrusion direction.
 第1押出成形機20は、図2に示すように、樹脂を加熱させつつ押し出す第1金型21と、スクリュー等によって溶融した樹脂を第1金型21内へ送り出す第1押出機22と、第1金型21の内側に配置されて樹脂の内表面を成形するための管状の第1マンドレル23と、を有している。 As shown in FIG. 2, the first extruder 20 includes a first mold 21 that extrudes while heating the resin, a first extruder 22 that sends out the resin melted by a screw or the like into the first mold 21, A tubular first mandrel 23 which is disposed inside the first mold 21 and molds the inner surface of the resin.
 第1金型21は、樹脂を内側に収容して樹脂を誘導しつつ、押し出される管状の内層2の外表面を成形するための管状のダイス24と、樹脂を加熱するためのヒーター等からなる加熱手段25とを備えている。ダイス24は、樹脂が押し出される押出方向へ並ぶ複数の部材24A,24B,24Cが、例えばねじ込み式で連結されて構成される。加熱手段25は、ダイス24の外周を覆うように配置される。 The first mold 21 includes a tubular die 24 for forming the outer surface of the tubular inner layer 2 to be pushed out while accommodating the resin inside and guiding the resin, a heater for heating the resin, and the like. Heating means 25. The die 24 is configured by connecting a plurality of members 24A, 24B, and 24C arranged in the extrusion direction in which resin is extruded, for example, by screwing. The heating means 25 is disposed so as to cover the outer periphery of the die 24.
 第1マンドレル23は、ダイス24の内側に配置され、ダイス24との間に樹脂が収容されつつ流れる第1流路29を形成し、押し出される管状の内層2の内表面を成形する。第1マンドレル23は、押出方向へ並ぶ第1基端部材26A、第2基端部材26B、断熱部材27、および先端部材28を備えている。 The first mandrel 23 is disposed inside the die 24, forms a first flow path 29 that flows while the resin is accommodated between the first mandrel 23, and shapes the inner surface of the extruded tubular inner layer 2. The first mandrel 23 includes a first base end member 26A, a second base end member 26B, a heat insulating member 27, and a front end member 28 arranged in the extrusion direction.
 第1基端部材26Aおよび第2基端部材26Bは、第1金型21の内部に配置されて、第1基端部材26Aの基端側(押出方向と反対側)が第1金型21に固定されている。断熱部材27は、基端側が第2基端部材26Bにねじ込まれて連結されており、第2基端部材26Bよりも断熱効果が高い部材により形成されている。先端部材28は、基端側に断熱部材27が捩じ込まれて連結されている。 26 A of 1st base end members and the 2nd base end member 26B are arrange | positioned inside the 1st metal mold | die 21, The base end side (opposite direction of extrusion) of the 1st base end member 26A is the 1st metal mold | die 21. It is fixed to. The heat insulating member 27 has a base end screwed into and connected to the second base end member 26B, and is formed of a member having a higher heat insulating effect than the second base end member 26B. The distal end member 28 is connected to the proximal end side by screwing a heat insulating member 27.
 第1マンドレル23は、全体として押出方向へ向かって縮径するように形成されている。第1マンドレル23は、断熱部材27の少なくとも一部および先端部材28が、第1金型21よりも押出方向へ突出して配置される。断熱部材27は、第1金型21から先端部材28への熱の伝達を抑制する役割を果たす。 The first mandrel 23 is formed so as to reduce in diameter toward the extrusion direction as a whole. The first mandrel 23 is arranged such that at least a part of the heat insulating member 27 and the tip member 28 protrude in the extrusion direction from the first mold 21. The heat insulating member 27 plays a role of suppressing heat transfer from the first mold 21 to the tip member 28.
 なお、本実施形態は、第1マンドレル23の断熱部材27から先端側が縮径して形成されているが、縮径される部位はこれに限定されず、例えば断熱部材27よりも基端側が縮径されてもよく、または断熱部材27よりも押出方向側の先端部材28で縮径されてもよい。また、第1マンドレル23は、押出方向へ縮径されなくてもよい。 In the present embodiment, the distal end side of the first mandrel 23 is reduced in diameter from the heat insulating member 27, but the portion to be reduced in diameter is not limited to this. For example, the proximal end side of the heat insulating member 27 is reduced in size. The diameter may be reduced, or the diameter may be reduced by the tip member 28 on the extrusion direction side of the heat insulating member 27. Further, the first mandrel 23 may not be reduced in diameter in the extrusion direction.
 第1金型21、第1基端部材26A、第2基端部材26B、および先端部材28の材料は、例えば、ステンレス等を適用できる。 As the material of the first mold 21, the first base end member 26A, the second base end member 26B, and the front end member 28, for example, stainless steel or the like can be applied.
 断熱部材27は、断熱部材27が連結される第2基端部材26Bよりも断熱効果の高い材料が適用され、例えば、フッ素系樹脂等の樹脂材料、セラミック、これらの発泡体等を適用できる。 The heat insulating member 27 is made of a material having a heat insulating effect higher than that of the second base end member 26B to which the heat insulating member 27 is connected. For example, a resin material such as a fluorine-based resin, ceramic, a foam thereof, or the like can be applied.
 編組機30は、図1に示すように、第1押出成形機20から管状に押し出される内層2の外表面上に、補強体3である素線を所定の格子間距離の編組で連続的に巻きつける装置である。なお、素線により構成される補強体3は、同一方向の横巻きや、右巻き・左巻き等、巻き方向を変えながら芯線を巻きつけてもよく、また、巻きピッチ、格子間距離、周方向に対する傾斜角度等を位置によって変更してもよく、構成は特に限定されない。 As shown in FIG. 1, the braiding machine 30 continuously applies the strands, which are the reinforcing bodies 3, with a braid having a predetermined interstitial distance on the outer surface of the inner layer 2 extruded in a tubular shape from the first extruder 20. It is a wrapping device. In addition, the reinforcing body 3 composed of the strands may be wound around the core wire while changing the winding direction, such as horizontal winding in the same direction, right-hand winding, left-hand winding, etc., and the winding pitch, interstitial distance, circumferential direction The inclination angle with respect to the angle may be changed depending on the position, and the configuration is not particularly limited.
 補強体3に用いられる素線は、白金(Pt)・タングステン(W)、ステンレス、Ni-Ti等の金属線、樹脂繊維、炭素繊維、ガラス繊維等を適用でき、または、これらの素線を複数併用してもよい。 The strands used for the reinforcing body 3 can be platinum (Pt) / tungsten (W), stainless steel, Ni—Ti, or other metal wires, resin fibers, carbon fibers, glass fibers, or the like. Two or more may be used together.
 第2押出成形機40は、補強体3の外表面上に外層4となる樹脂の層を管状に押し出すものであり、樹脂を加熱させつつ押し出す第2金型41と、スクリュー等によって溶融した樹脂を第2金型41内へ送り出す第2押出機42と、第2金型41の内側に配置されて外層4の内表面を成形するための管状の第2マンドレル43と、を有している。第2マンドレル43の内側には、内層2に補強体3が編組された管体が挿通される。樹脂は、第2金型41と第2マンドレル43との間に形成される第2流路44から押し出されて、内層2に補強体3が編組された管体の外表面に被覆される。 The second extrusion molding machine 40 extrudes a resin layer to be the outer layer 4 on the outer surface of the reinforcing body 3 in a tubular shape, a second mold 41 that extrudes while heating the resin, and a resin melted by a screw or the like. And a second mandrel 43 which is disposed inside the second mold 41 and forms the inner surface of the outer layer 4. . Inside the second mandrel 43, a tubular body in which the reinforcing body 3 is braided on the inner layer 2 is inserted. The resin is pushed out from the second flow path 44 formed between the second mold 41 and the second mandrel 43, and is coated on the outer surface of the tubular body in which the reinforcing body 3 is braided on the inner layer 2.
 冷却装置50は、第1押出成形機20および第2押出成形機40から押し出された樹脂を冷却して固化させる装置である。冷却装置50の構造は、特に限定されず、水冷、風冷等を適用できる。 The cooling device 50 is a device that cools and solidifies the resin extruded from the first extruder 20 and the second extruder 40. The structure of the cooling device 50 is not particularly limited, and water cooling, air cooling, or the like can be applied.
 引取機60は、モーター等の駆動源によって回転するローラ61(または回転ベルト)を備えており、冷却されて固化したチューブ1を連続的に引き取ることができる。 The take-up machine 60 includes a roller 61 (or a rotating belt) that is rotated by a driving source such as a motor, and can continuously take up the cooled and solidified tube 1.
 巻取機70は、モーター等の駆動源によって回転し、固化したチューブ1を連続的に巻き取って回収することができる。 The winder 70 is rotated by a driving source such as a motor and can continuously wind up and collect the solidified tube 1.
 第1押出成形機20により押し出されて内層2を形成する樹脂は、押出成形可能な樹脂であれば特に限定されないが、好ましい例として、ポリエチレン、ポリアミド系ポリマー、ポリエステル系ポリマーが挙げられる。 The resin that is extruded by the first extruder 20 to form the inner layer 2 is not particularly limited as long as it is an extrudable resin, and preferred examples include polyethylene, polyamide-based polymer, and polyester-based polymer.
 第2押出成形機40により押し出されて外層4を形成する樹脂は、押出成形可能な樹脂であれば特に限定されないが、例えばポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、或いはこれら二種以上の混合物等)、ポリ塩化ビニル、ポリアミド、ポリエステルエラストマー、ポリアミドエラストマー、ポリウレタン、ポリウレタンエラストマー、ポリイミド、フッ素樹脂等の高分子材料或いはこれらの混合物等の熱可塑性樹脂を適用できる。外層4を形成する樹脂の好ましい例として、ポリエチレン、ポリアミド系ポリマー、ポリエステル系ポリマーが挙げられる。 The resin that is extruded by the second extruder 40 to form the outer layer 4 is not particularly limited as long as it is an extrudable resin. For example, polyolefin (for example, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene -Vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, etc.), polyvinyl chloride, polyamide, polyester elastomer, polyamide elastomer, polyurethane, polyurethane elastomer, polyimide, fluororesin, or other polymer materials or mixtures thereof The thermoplastic resin can be applied. Preferable examples of the resin forming the outer layer 4 include polyethylene, polyamide polymer, and polyester polymer.
 次に、チューブ1の製造方法について説明する。 Next, a method for manufacturing the tube 1 will be described.
 まず、第1押出成形機20において、加熱溶融された樹脂を第1押出機22によって第1金型21内へ移動させる。第1金型21内に移動した樹脂は、ダイス24と第2マンドレル43との間の第1流路29を通って第1金型21から押し出され、管状の内層2が形成される。このとき、断熱部材27の少なくとも一部および先端部材28が第1金型21よりも押出方向へ突出して配置されており、断熱部材27によって、第1金型21から先端部材28への熱の伝達が抑制されているため、先端部材28の温度は、第1マンドレル23に断熱部材27が設けられない場合と比較して低くなっている。このため、断熱部材27および先端部材28と接触した樹脂は、冷却されて固化が促され、固化した状態、または完全に固化せずとも温度が低下して硬化した状態となる。温度が低下して固化が促された樹脂は、さらに押出方向へ押し出されて第1マンドレル23から離脱し、内層2を構成する。固化または硬化した樹脂は変形しにくくなるため、芯線を用いずとも、寸法精度の高い管状の内層2を形成可能となる。特に、融点が低く冷却を促さなければ固化されにくい樹脂を内層2に適用する場合に、大きな効果を発揮する。 First, in the first extrusion molding machine 20, the heat-melted resin is moved into the first mold 21 by the first extrusion machine 22. The resin that has moved into the first mold 21 is pushed out of the first mold 21 through the first flow path 29 between the die 24 and the second mandrel 43 to form the tubular inner layer 2. At this time, at least a part of the heat insulating member 27 and the tip member 28 are arranged so as to protrude in the extrusion direction from the first mold 21, and the heat from the first mold 21 to the tip member 28 is absorbed by the heat insulating member 27. Since the transmission is suppressed, the temperature of the tip member 28 is lower than the case where the first mandrel 23 is not provided with the heat insulating member 27. For this reason, the resin that has come into contact with the heat insulating member 27 and the tip member 28 is cooled to be solidified, and is in a solidified state or a state in which the temperature is lowered and hardened without being completely solidified. The resin whose temperature is lowered and solidified is further pushed out in the extruding direction and separated from the first mandrel 23 to form the inner layer 2. Since the solidified or cured resin is not easily deformed, the tubular inner layer 2 with high dimensional accuracy can be formed without using a core wire. In particular, when a resin having a low melting point and difficult to solidify unless cooling is applied to the inner layer 2, a great effect is exhibited.
 次に、形成された内層2の外表面に、編組機30によって素線を編み組し、補強体3を形成する。補強体3は、内層2の外表面上、または内層2の外表面に素線が食い込んだ状態で形成される。このとき、内層2の少なくとも内表面が固化または硬化されているため、芯線がなくとも、補強体3による内層2の変形が抑制されて、内層2の形状を良好に維持することができる。 Next, strands are braided on the outer surface of the formed inner layer 2 by a braiding machine 30 to form the reinforcing body 3. The reinforcing body 3 is formed on the outer surface of the inner layer 2 or in a state where the strands have digged into the outer surface of the inner layer 2. At this time, since at least the inner surface of the inner layer 2 is solidified or cured, the deformation of the inner layer 2 by the reinforcing body 3 is suppressed and the shape of the inner layer 2 can be maintained well even without a core wire.
 次に、第2押出成形機40において、加熱溶融された樹脂を第2押出機42によって第2金型41内へ移動させ、第2金型41と第2マンドレル43との間の第2流路44から樹脂を押し出す。これにより、内層2および補強体3の外表面に樹脂が押し出されて被覆され、外層4が形成される。このとき、内層2の少なくとも内表面が固化または硬化されているため、外層4となる溶融した樹脂が被覆されても、内層2が受ける外層4からの熱の影響を極力低減して、内層2の形状を良好に維持することができる。 Next, in the second extruder 40, the heat-melted resin is moved into the second mold 41 by the second extruder 42, and the second flow between the second mold 41 and the second mandrel 43 is moved. Resin is pushed out from the path 44. Thereby, the outer layer 4 is formed by extruding and coating the resin on the outer surfaces of the inner layer 2 and the reinforcing body 3. At this time, since at least the inner surface of the inner layer 2 is solidified or hardened, even if the molten resin that becomes the outer layer 4 is coated, the influence of heat from the outer layer 4 received by the inner layer 2 is reduced as much as possible. The shape of can be maintained well.
 この後、冷却装置50によって、内層2、補強体3および外層4により構成される管体を冷却して全ての樹脂を固化し、チューブ1の製造が完了する。チューブ1は、引取機60により連続的に引き取られつつ移動し、巻取機70によって回収される。または、巻き取らずに、チューブ1を直線状のまま切断することも可能である。 Thereafter, the cooling device 50 cools the tubular body constituted by the inner layer 2, the reinforcing body 3 and the outer layer 4 to solidify all the resin, and the manufacture of the tube 1 is completed. The tube 1 moves while being continuously taken up by the take-up machine 60, and is collected by the winder 70. Alternatively, it is possible to cut the tube 1 in a straight line without winding.
 以上のように、本実施形態によれば、溶融した樹脂を押し出しつつ内層2(樹脂層)の外表面を成形する第1金型21(金型)と、第1金型21の内側に配置されるとともに第1金型21から断熱されて内層2の内表面を成形する第1マンドレル23(マンドレル)と、を用い、第1金型21および第1マンドレル23の間に形成される第1流路29から樹脂を押し出して第1マンドレル23によって内層2の内表面を冷却し、押し出される内層2の内部に芯線を設けることなしにチューブ1を成形する。したがって、管状に押し出された内層2の内表面が第1マンドレル23によって迅速に冷却されて固化した状態、または完全に固化せずとも温度が低下して硬化した状態となるため、芯線を用いずに作業性を向上させつつ、寸法精度よくチューブ1を製造できる。 As described above, according to the present embodiment, the first mold 21 (mold) that molds the outer surface of the inner layer 2 (resin layer) while extruding the molten resin, and the inner side of the first mold 21 are arranged. And a first mandrel 23 (mandrel) that is insulated from the first mold 21 and forms the inner surface of the inner layer 2, and is formed between the first mold 21 and the first mandrel 23. Resin is extruded from the flow path 29, the inner surface of the inner layer 2 is cooled by the first mandrel 23, and the tube 1 is formed without providing a core wire inside the extruded inner layer 2. Therefore, since the inner surface of the inner layer 2 extruded into a tubular shape is rapidly cooled and solidified by the first mandrel 23, or is not completely solidified, the temperature is lowered and cured, so that no core wire is used. In addition, the tube 1 can be manufactured with high dimensional accuracy while improving workability.
 また、第1マンドレル23が、少なくとも一部が第1金型21よりも押出方向側に突出して設けられる断熱部材27を有するため、第1金型21から露出する第1マンドレル23を第1金型21から効果的に断熱し、低い温度に維持して内層2を冷却できる。 In addition, since the first mandrel 23 has a heat insulating member 27 that is provided so that at least part of the first mandrel 23 protrudes more in the extrusion direction than the first mold 21, the first mandrel 23 exposed from the first mold 21 is the first mold. The inner layer 2 can be cooled while being effectively insulated from the mold 21 and maintained at a low temperature.
 また、本実施形態では、第1金型21および第1マンドレル23により成形された内層2(樹脂層)の外表面側に補強体3を編組する際に、内層2の少なくとも内表面が固化または硬化しているため、芯線を用いずとも、内層2の形状を良好に維持することができる。 In this embodiment, when braiding the reinforcing body 3 on the outer surface side of the inner layer 2 (resin layer) formed by the first mold 21 and the first mandrel 23, at least the inner surface of the inner layer 2 is solidified or Since it is cured, the shape of the inner layer 2 can be maintained well without using a core wire.
 また、第1金型21および第1マンドレル23により成形された内層2(樹脂層)の外表面側に外層4(第2の樹脂層)を押出成形する際に、内層2の少なくとも内表面が固化または硬化されているため、芯線を用いずとも、内層2が受ける外層4からの熱の影響を極力低減させて、内層2の形状を良好に維持することができる。 Further, when the outer layer 4 (second resin layer) is extruded on the outer surface side of the inner layer 2 (resin layer) formed by the first mold 21 and the first mandrel 23, at least the inner surface of the inner layer 2 is Since it is solidified or hardened, the shape of the inner layer 2 can be favorably maintained by reducing the influence of heat from the outer layer 4 received by the inner layer 2 as much as possible without using a core wire.
 なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。例えば、本実施形態では、先端部材28が第1金型21内に配置される第2基端部材26Bと接触することなしに、断熱部材27によって完全に断熱されているが、図4に示すように、先端部材81と第2基端部材26Bとの間に断熱部材82が部分的に設けられて、部分的に断熱されてもよい。なお、前述の構成と同様の機能を有する部位には、同一の符号を付し、説明を省略する。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention. For example, in the present embodiment, the distal end member 28 is completely insulated by the heat insulating member 27 without contacting the second proximal end member 26B disposed in the first mold 21, but is shown in FIG. As described above, the heat insulating member 82 may be partially provided between the distal end member 81 and the second base end member 26B to be partially insulated. In addition, the same code | symbol is attached | subjected to the site | part which has the function similar to the above-mentioned structure, and description is abbreviate | omitted.
 また、図5に示すように、断熱部材ではなしに、先端部材91に積極的に冷却可能な冷却機構92が設けられてもよい。冷却機構92は、第1金型21の外部に設けられる冷媒供給手段93に対して供給管94および排出管95で接続されている。冷却機構92の内部には、冷媒が流通可能な流路96が形成されており、供給管94から供給された冷媒が流路96を流通して第1マンドレル90の先端部材91を冷却した後、排出管95から冷媒が排出される。冷媒供給手段93は、熱交換器等が設けられて、排出管95から回収した冷媒を冷却して再び供給管94へ供給することができる。冷媒は、特に限定されず、水、空気、シリコーンオイル、フロン、フッ素オイル等を適用できる。冷却機構92を設けることで、押し出される樹脂を冷却させる温度を任意に調節可能となり、効果的な冷却が可能となる。冷却温度は、適用する樹脂によって適宜設定可能であり、樹脂の融点より100℃以上低くすることが好ましい。 Further, as shown in FIG. 5, a cooling mechanism 92 that can actively cool the tip member 91 may be provided instead of the heat insulating member. The cooling mechanism 92 is connected to a refrigerant supply means 93 provided outside the first mold 21 through a supply pipe 94 and a discharge pipe 95. A flow path 96 through which a refrigerant can flow is formed inside the cooling mechanism 92, and after the refrigerant supplied from the supply pipe 94 flows through the flow path 96 and cools the tip member 91 of the first mandrel 90. The refrigerant is discharged from the discharge pipe 95. The refrigerant supply means 93 is provided with a heat exchanger or the like, and can cool the refrigerant collected from the discharge pipe 95 and supply it to the supply pipe 94 again. The refrigerant is not particularly limited, and water, air, silicone oil, Freon, fluorine oil, or the like can be applied. By providing the cooling mechanism 92, it is possible to arbitrarily adjust the temperature at which the extruded resin is cooled, and effective cooling is possible. The cooling temperature can be appropriately set depending on the resin to be applied, and is preferably lower than the melting point of the resin by 100 ° C. or more.
 また、冷却機構92が、少なくとも一部が第1金型21よりも押出方向側に突出して設けられることで、第1マンドレル90を冷却する効果をより高めることができる。冷却機構92は、特に、融点が低く冷却を促さなければ固化されにくい樹脂を内層2に適用する場合に、大きな効果を発揮する。なお、冷却機構92は、外部から積極的に冷却可能であるため、第1金型21内に設けることもできる。 In addition, since the cooling mechanism 92 is provided so that at least part of the cooling mechanism 92 protrudes more in the extrusion direction than the first mold 21, the effect of cooling the first mandrel 90 can be further enhanced. The cooling mechanism 92 exerts a great effect particularly when a resin having a low melting point and difficult to solidify unless cooling is applied to the inner layer 2. In addition, since the cooling mechanism 92 can be actively cooled from the outside, it can also be provided in the first mold 21.
 また、図6に示すように、第1マンドレル100に、断熱部材101および冷却機構102の両方が設けられてもよい。断熱部材101よりも押出方向に冷却機構102が設けられれば、冷却機構102による冷却効果がより効果的となる。冷却機構102には、図5で説明した冷却機構92と同様の構成を適用できる。 Further, as shown in FIG. 6, both the heat insulating member 101 and the cooling mechanism 102 may be provided in the first mandrel 100. If the cooling mechanism 102 is provided in the extrusion direction as compared with the heat insulating member 101, the cooling effect by the cooling mechanism 102 becomes more effective. The cooling mechanism 102 can have the same configuration as the cooling mechanism 92 described with reference to FIG.
 また、図7に示すように、吸熱板111および放熱板112を備えるペルティエ素子113(冷却機構)によって、電気的に第1マンドレル110を冷却してもよい。ペルティエ素子113は、電線114を介して電流を流すことで、吸熱版111で熱を吸熱し、放熱板112で熱を放熱することができる。なお、ペルティエ素子113の放熱板112を効率よく冷却するために、冷却手段115を設けることが好ましい。冷却手段115には、図5で説明した冷却機構92と同様の構成を適用できる。 Further, as shown in FIG. 7, the first mandrel 110 may be electrically cooled by a Peltier element 113 (cooling mechanism) including a heat absorbing plate 111 and a heat radiating plate 112. The Peltier element 113 can absorb the heat by the heat absorption plate 111 and can radiate the heat by the heat radiating plate 112 by passing a current through the electric wire 114. In order to efficiently cool the heat radiating plate 112 of the Peltier element 113, it is preferable to provide a cooling means 115. A configuration similar to the cooling mechanism 92 described with reference to FIG.
 また、成形されるチューブの軸直交断面形状は、円形でなくてもよく、任意に設定でき、例えば楕円形、半円形、多角形等であってもよい。また、本実施形態では、チューブ1の内部に第1マンドレル23によって1つの通路が形成されるのみであるが、複数の通路が設けられるように、第1押出成形機に複数のマンドレルが設けられてもよい。この場合、複数のマンドレルの各々に、断熱部材や冷却機構を設けることができる。 Further, the cross-sectional shape of the tube to be molded does not have to be circular, but can be arbitrarily set, and may be, for example, elliptical, semicircular, polygonal, or the like. In this embodiment, only one passage is formed by the first mandrel 23 inside the tube 1, but a plurality of mandrels are provided in the first extruder so that a plurality of passages are provided. May be. In this case, a heat insulating member and a cooling mechanism can be provided in each of the plurality of mandrels.
 また、第1マンドレルの断熱部材や冷却機構の先端側に、先端部材を設けるのでなしに、断熱部材や冷却機構によって先端部材を構成してもよい。また、製造されるチューブに、補強体および外層の少なくとも一方が設けられなくてもよい。 Further, the tip member may be constituted by the heat insulating member or the cooling mechanism without providing the tip member on the tip side of the heat insulating member or the cooling mechanism of the first mandrel. Further, at least one of the reinforcing body and the outer layer may not be provided in the manufactured tube.
 さらに、本出願は、2013年4月1日に出願された日本特許出願番号2013-075611号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2013-075611 filed on April 1, 2013, the disclosures of which are referenced and incorporated as a whole.
  1  チューブ、
  2  内層(樹脂層)、
  3  補強体、
  4  外層(第2の樹脂層)、
  10  製造装置、
  21  第1金型(金型)、
  23,90,100,110  第1マンドレル(マンドレル)、
  27,82,101  断熱部材、
  29  第1流路(流路)、
  40  第2押出成形機、
  91  先端部材、
  92,102  冷却機構、
  113  ペルティエ素子(冷却機構)。
1 tube,
2 Inner layer (resin layer),
3 Reinforcing body,
4 outer layer (second resin layer),
10 Production equipment,
21 First mold (mold),
23, 90, 100, 110 First mandrel (mandrel),
27, 82, 101 heat insulation member,
29 1st flow path (flow path),
40 Second extrusion molding machine,
91 tip member,
92, 102 cooling mechanism,
113 Peltier element (cooling mechanism).

Claims (12)

  1.  樹脂製のチューブを押出成形によって成形するためのチューブの製造方法であって、
     溶融した樹脂を押し出しつつ管状の樹脂層の外表面を成形する金型と、前記金型の内側に配置されるとともに前記金型から断熱または冷却されて前記樹脂層の内表面を成形するマンドレルと、を用い、前記金型およびマンドレルの間に形成される流路から前記樹脂を押し出して前記マンドレルによって前記樹脂層の内表面を冷却し、前記樹脂層の内部に芯線を設けることなしに前記チューブを成形するチューブの製造方法。
    A method of manufacturing a tube for forming a resin tube by extrusion molding,
    A mold that molds the outer surface of the tubular resin layer while extruding molten resin, and a mandrel that is disposed inside the mold and is insulated or cooled from the mold to mold the inner surface of the resin layer. The tube is formed without extruding the resin from a flow path formed between the mold and the mandrel to cool the inner surface of the resin layer by the mandrel, and without providing a core wire inside the resin layer. A method of manufacturing a tube for forming a tube.
  2.  前記マンドレルは、少なくとも一部が前記金型よりも押出方向側に突出して設けられる断熱部材を有する請求項1に記載のチューブの製造方法。 2. The method of manufacturing a tube according to claim 1, wherein the mandrel has a heat insulating member that is provided so that at least a part of the mandrel protrudes toward the extrusion direction from the mold.
  3.  前記マンドレルは、冷却可能な冷却機構を有する請求項1または2に記載のチューブの製造方法。 The method of manufacturing a tube according to claim 1 or 2, wherein the mandrel has a cooling mechanism capable of being cooled.
  4.  前記冷却機構は、少なくとも一部が前記金型よりも押出方向側に突出して設けられる請求項3に記載のチューブの製造方法。 The method for manufacturing a tube according to claim 3, wherein at least a part of the cooling mechanism is provided so as to protrude from the mold toward the extrusion direction.
  5.  前記金型およびマンドレルにより成形された前記樹脂層の外表面側に補強体を編組する請求項1~4のいずれか1項に記載のチューブの製造方法。 The method for producing a tube according to any one of claims 1 to 4, wherein a reinforcing body is braided on an outer surface side of the resin layer formed by the mold and a mandrel.
  6.  前記金型およびマンドレルにより成形された前記樹脂層の外表面側に第2の樹脂層を押出成形する請求項1~5のいずれか1項に記載のチューブの製造方法。 The method for producing a tube according to any one of claims 1 to 5, wherein a second resin layer is extruded on the outer surface side of the resin layer formed by the mold and mandrel.
  7.  樹脂製のチューブを押出成形によって成形するためのチューブの製造装置であって、
     溶融した樹脂を押し出しつつ管状の樹脂層の外表面を成形する金型と、
     前記金型から断熱または冷却されて前記樹脂層の内表面を成形するマンドレルと、を有し、
     前記樹脂層の内部に芯線を設けることなしに前記チューブを成形するチューブの製造装置。
    A tube manufacturing apparatus for forming a resin tube by extrusion molding,
    A mold for molding the outer surface of the tubular resin layer while extruding molten resin;
    A mandrel that is insulated or cooled from the mold to mold the inner surface of the resin layer,
    A tube manufacturing apparatus for forming the tube without providing a core wire inside the resin layer.
  8.  前記マンドレルは、少なくとも一部が前記金型よりも押出方向側に突出して設けられる断熱部材を有する請求項7に記載のチューブの製造装置。 The tube manufacturing apparatus according to claim 7, wherein the mandrel includes a heat insulating member provided so that at least a part thereof protrudes more toward the extrusion direction than the mold.
  9.  前記マンドレルは、冷却可能な冷却機構を有する請求項7または8に記載のチューブの製造装置。 The tube manufacturing apparatus according to claim 7 or 8, wherein the mandrel has a cooling mechanism capable of being cooled.
  10.  前記冷却機構は、少なくとも一部が前記金型よりも押出方向側に突出して設けられる請求項9に記載のチューブの製造装置。 The tube manufacturing apparatus according to claim 9, wherein at least a part of the cooling mechanism is provided so as to protrude from the mold toward the extrusion direction.
  11.  前記金型およびマンドレルにより成形された前記樹脂層の外表面側に補強体を編組する編組機をさらに有する請求項7~10のいずれか1項に記載のチューブの製造装置。 The tube manufacturing apparatus according to any one of claims 7 to 10, further comprising a braiding machine for braiding a reinforcing body on an outer surface side of the resin layer formed by the mold and a mandrel.
  12.  前記金型およびマンドレルにより成形された前記樹脂層の外表面側に第2の樹脂層を押出成形する第2の押出成形機をさらに有する請求項7~11のいずれか1項に記載のチューブの製造装置。 The tube according to any one of claims 7 to 11, further comprising a second extruder for extruding a second resin layer on an outer surface side of the resin layer formed by the mold and the mandrel. Manufacturing equipment.
PCT/JP2014/056221 2013-04-01 2014-03-10 Method for manufacturing tube and manufacturing device WO2014162827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-075611 2013-04-01
JP2013075611A JP2016106043A (en) 2013-04-01 2013-04-01 Method for producing tube, and production device therefor

Publications (1)

Publication Number Publication Date
WO2014162827A1 true WO2014162827A1 (en) 2014-10-09

Family

ID=51658130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056221 WO2014162827A1 (en) 2013-04-01 2014-03-10 Method for manufacturing tube and manufacturing device

Country Status (2)

Country Link
JP (1) JP2016106043A (en)
WO (1) WO2014162827A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123090A1 (en) * 2016-12-27 2018-07-05 株式会社プラ技研 Foamed resin tube manufacturing device and manufacturing method, and foamed resin tube
KR20180079948A (en) * 2017-01-03 2018-07-11 주식회사 프라코 synthetic resin water pipe prevented from edge transformation, manufacturing device for its extrusion and manufacturing method thereof
KR102266410B1 (en) * 2019-11-05 2021-06-18 주식회사 에이피글로벌 Hole forming guide rod Cooling System of Waste synthetic resin Panel extrusion equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329958A (en) * 1992-06-02 1993-12-14 Hitachi Cable Ltd Manufacture of hose
JPH07125046A (en) * 1993-11-04 1995-05-16 Sekisui Chem Co Ltd Production of synthetic resin pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329958A (en) * 1992-06-02 1993-12-14 Hitachi Cable Ltd Manufacture of hose
JPH07125046A (en) * 1993-11-04 1995-05-16 Sekisui Chem Co Ltd Production of synthetic resin pipe

Also Published As

Publication number Publication date
JP2016106043A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
US7965930B2 (en) Flexible tubing with imbedded helical conductors and method of making
US9982810B2 (en) Helically wound plastic tubing with variable profile thickness and methods of making the same
EP3263310B1 (en) Filament resin molding, three-dimensional object fabrication method, and filament resin molding manufacturing method
US3538209A (en) Method of producing plastic tubing having a corrugated outer wall
CA1089614A (en) Method and apparatus for producing tube
JP6411700B1 (en) Foamed resin tube manufacturing apparatus and foamed resin tube
WO2014162827A1 (en) Method for manufacturing tube and manufacturing device
JPH0470985B2 (en)
JP4832251B2 (en) Manufacturing method of synthetic resin hose
JP2008062533A (en) Manufacturing method of heat-insulating duct hose
KR102159850B1 (en) Thermally insulated corrugated conduit
KR100915130B1 (en) Adjustable sizing apparatus of extrusion molding material
KR101094779B1 (en) A plastic pipe forming machine
KR900007356B1 (en) Apparatus for producing double-walled corrugated pipes
KR100749300B1 (en) Apparatus for manufacturing multiple pipe and the method thereof
JP2016005870A (en) Method and apparatus for producing synthetic resin hose
JP2010125634A (en) Method for producing heat-shrinkable fluororesin tube
JP2009106632A (en) Method for manufacturing endoscope flexible tube
US8491744B2 (en) Method for the production of a cylindrical, strand-shaped part
JP2008281122A (en) Heat insulation hose made of synthetic resin, and its manufacturing method
JP2014200914A (en) Method for coating tube
JPH0735270A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JP6513369B2 (en) CATHETER AND METHOD OF FORMING THE SAME
JP4705799B2 (en) Inner core for cold shrink tube
JPS5813335B2 (en) Method for manufacturing a spiral tubular body provided with reinforcing ribs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP