WO2014162380A1 - External sensor - Google Patents
External sensor Download PDFInfo
- Publication number
- WO2014162380A1 WO2014162380A1 PCT/JP2013/059815 JP2013059815W WO2014162380A1 WO 2014162380 A1 WO2014162380 A1 WO 2014162380A1 JP 2013059815 W JP2013059815 W JP 2013059815W WO 2014162380 A1 WO2014162380 A1 WO 2014162380A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- external sensor
- protective device
- detection
- detection device
- sensor according
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4811—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
- G01S7/4813—Housing arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
- G01S2007/4975—Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen
- G01S2007/4977—Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen including means to prevent or remove the obstruction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
Definitions
- the present invention relates to an external sensor, and particularly relates to a protective device that covers the external sensor and a cleaning unit that cleans the protective device.
- Patent Document 1 There is Patent Document 1 as background art.
- a guard is provided on the front side of the optical sensor to prevent contamination from adhering to the optical sensor, a guard cleaner that is in close contact with the surface of the guard is disposed, and the guard rotates to rotate the guard.
- An optical sensor antifouling device is described in which the cleaner wipes off the fouling adhered to the surface of the guard.
- the device described in Patent Document 1 can remove contamination of an optical sensor that measures a distance in a specific direction.
- a laser scanner that irradiates a laser in a plurality of directions or an image of all directions can be captured.
- an external sensor that observes a wide area, such as an omnidirectional camera
- the guard cleaner attached to the front side of the external sensor is always included in the detection area of the external sensor, so that objects existing in the blind spot of the guard cleaner can be detected. It will disappear.
- an object of the present invention is to provide an external sensor capable of removing contamination in the detection region without obstructing the detection region of the external sensor.
- an external sensor includes a detection device capable of detecting its own circumferential direction, a protection device that covers the detection device and is rotatable while covering the detection device.
- an external sensor capable of removing contamination in the detection area without obstructing the detection area of the external sensor.
- FIG. 1 It is an example of the system block diagram of the external sensor in Example 1 and 2. It is a mechanism block diagram of the external sensor 1 of Example 1.
- FIG. It is a figure which compares a detection area
- FIG. It is a figure explaining the detection area
- FIG. It is a system configuration
- FIG. It is a process flowchart of the external field sensor 3 of Example 3.
- an example of an external sensor that uses information (for example, distance and radio wave intensity) in all directions on the same plane centering on the detection device as a detection area will be described.
- Example 1 will be described with reference to FIGS.
- the system block diagram of the external sensor 1 of Example 1 is shown.
- the external sensor 1 acquires, from an input unit 1000, a device power source such as electric power and a trigger signal for starting device operation.
- the control unit 1010 controls driving of the protection device driving unit 1020 and the detection device driving unit 1030.
- the detection device driving unit 1030 operates the detection device 1040.
- the detection device 1040 obtains, for example, luminous intensity obtained from a radial area centered on a predetermined axis (rotation axis A in FIGS. 2 and 3), and its circumferential direction with respect to the predetermined axis as a detection area. To do.
- the detection device 1040 is surrounded by a rotatable protective device 1050 in order to prevent dirt such as mud and dust from adhering to the detection device, and the protective device 1050 can rotate with the detection device 1040 covered. is there.
- the protective device 1050 is equipped with a cleaning unit 1060. After the external sensor 1 is activated, the protective device driving unit 1020 continues to rotate the protective device 1050, for example, at a constant speed, so that the protective device 1050 is moved to the cleaning unit 1060.
- the cleaning unit 1060 removes the contaminants attached on the protective device 1050. That is, it will be cleaned.
- Information acquired by the detection device 1040 is sent to the calculation unit 1070, converted into distance information, for example, by the calculation unit 1070, and transmitted to the output unit 1080.
- the output unit 1080 outputs the calculation result to the outside using, for example, a metal terminal or a wireless signal.
- FIG. 2 shows a mechanism configuration diagram of the external sensor 1 of the present embodiment.
- the external sensor 1 has a housing 1090, a protection device driving unit 1020, a detection device driving unit 1030, a computer 1130 that also functions as a control unit 1010 and a calculation unit 1070, and functions as an input unit 1000 and an output unit 1080.
- the terminal 1120 is provided, and each part in the housing 1090 is electrically connected.
- the housing 1090 further includes a holding member 1100 that holds the protective device 1050, and a holding member 1110 that holds the protective device 1050 and the cleaning unit 1060.
- a detection device 1040 that rotates around the rotation axis A is provided inside the holding member 1110. It has.
- a portion of the holding member 1110 in the protective device 1050 is indicated by a dotted line in FIG.
- the holding member 1110 is disposed on the housing 1090, and is disposed between the detection device 1040 having the laser irradiation unit 1041 described below and the protection device 1050 in the circumferential direction of the detection device 1040.
- the detection device 1040 includes a laser irradiation unit 1041 and a reflected light detection unit 1042, and the reflected light detection unit 1410 detects the reflected light of the laser emitted from the laser irradiation unit 1041.
- the computer 1130 calculates the distance from the detection device 1040 to the laser reflection point based on the time difference from when the laser is irradiated until the reflected light is detected, and the distance information is output from the output unit 1120. Further, the detection device 1040 is provided with a rotational driving force by the detection device driving unit 1030, and always rotates at a constant speed with respect to a predetermined rotation axis, for example, after starting, and is omnidirectional on the same plane around the rotation axis. The distance to the laser reflection point can be measured.
- the surface of the detection device 1040 that is irradiated with the laser and the reflected light of the laser is made of a transparent material that transmits the laser light and the reflected light of the laser. This makes it possible to reduce laser attenuation.
- the surface of the protective device 1050 through which the laser and reflected light are irradiated is made of a transparent material that also transmits the laser light and the reflected light of the laser. This again makes it possible to reduce the attenuation of the laser.
- the protective device 1050 is held so as to rotate around the rotation axis B by a holding member 1100 that supports the protective device 1050 at the upper portion of the protective device 1050 and a holding member 1110 at the lower portion of the protective device 1050.
- a rail surface that prevents the holding member 1110 from shifting when the protective device 1050 rotates is formed below the protective device 1050, and the width of the rail surface is equal to or greater than that of the holding member 1110. Accordingly, the protection device 1050 can rotate around the rotation axis B when the protection device driving unit 1020 is driven.
- the cleaning unit 1060 is attached to the holding member 1110 to clean the upper half or more of the protective device 1050 and to the housing 1090 to clean the lower half or more.
- the detection device 1040 is arranged on both sides of a region in the circumferential direction of the detection device 1040 that becomes a detection region.
- the entire surface of the protective device 1050 can be cleaned without blocking the laser and reflected light emitted from the laser irradiation unit 1041.
- the protective device 1050 in the present embodiment is a conical shape in which the rotation axis B is in the height direction, and the laser is scattered in the protective device 1050 by maintaining an incident angle greater than a predetermined angle with respect to the laser. Is preventing.
- each component is shown in a simplified manner so that it can be easily seen.
- the detection area is represented by a fan shape for easy understanding of the blind spot described later, but in actuality, for example, the maximum distance at which the reflected point of the laser can be measured by the reflected light detection unit 1042 is the detection area. .
- the drive device axis can be shared by aligning the rotation axis A of the detection device 1040 and the rotation axis B of the protection device 1050 as shown in FIG. Easier to manufacture and assemble.
- the cleaning unit 1060 in order to clean the entire outer surface of the protective device, for example, as shown in FIG. 3A, it is necessary to attach the cleaning unit 1060 so as to cross the detection area of the detection device 1040.
- a detection area 1060 in the depth direction is a blind spot D1.
- the soiled material extends on the protective device 1050 along the rotational direction of the protective device 1050, or the rotational direction on the protective device. There are cases where scratches along the surface occur.
- the protection device 1050 and the detection device 1040 have the same rotation axis and the same rotation direction. That is, the damage along the rotation direction of the protection device 1050 generated on the protection device 1050 coincides with the rotation direction of the detection device 1040. For example, when the polluted material is elongated as shown in FIG. 3A, a blind spot D2 generated by the polluted material is generated, and the blind spot is increased rather than before the pollutant is elongated (by the cleaning unit 1060).
- the rotation axis A of the detection device 1040 and the rotation axis B of the protection device 1050 do not coincide with each other, and the angle is shifted.
- the cleaning device 1060 is installed at two positions farthest from the detection region in the positive and negative z-axis directions by shifting the angle between the rotation axis A of the detection device and the rotation shaft B of the protection device. If each cleaning device 1060 cleans the upper half and the lower half with respect to the horizontal cross section of the protection device 1050, the cleaning device 1060 does not block the laser beam and does not make a blind spot in the detection area. The entire outer surface can be cleaned.
- the blind spot generated by the contaminated material becomes D2 of FIG. 3 (b), but this time it is detected as the protective device 1050.
- the rotation axis is shifted in the device 1040, and the rotation direction is also shifted. That is, the scratch along the rotation direction of the protection device 1050 generated on the protection device 1050 does not coincide with the rotation direction of the detection device 1040, and the generated blind spot area is smaller than D2.
- the rotation axis A of the detection device 1040 and the rotation shaft of the protection device 1050 are made to coincide, it is possible to reduce the blind spot when the pollutant is extended.
- the effect of reducing the blind spot when the above-mentioned fouling material is extended is exerted regardless of how the cleaning unit is attached.
- the detection device 1040 that can detect its circumferential direction by rotating, the protection device 1050 that covers the detection device 1040 and that can rotate while covering the detection device 1040, and protection A cleaning unit 1060 that cleans the device 1050, and the rotation axis B of the protection device 1050 is inclined with respect to the rotation axis A of the detection device 1040, so that the detection region of the detection device 1040 is not obstructed. It is possible to provide an external sensor capable of removing the contamination of the outside.
- Example 2 will be described with reference to FIGS.
- an external sensor that has a detection region with a constant viewing angle in a direction parallel to the central axis and can measure three-dimensional information (distance, radio wave intensity) in all directions.
- three-dimensional information distance, radio wave intensity
- FIG. 4 shows a mechanism configuration diagram of the external sensor according to the present embodiment.
- the detection device 2040 includes a plurality of laser irradiation units 2042 and a reflected light detection unit 2041, and a direction approximately perpendicular to the rotation axis A by the same calculation method as in the first embodiment (with a constant viewing angle). Not only can the distance to the laser reflection points in a plurality of directions within a parallel plane be measured.
- the detection device 2040 can rotate at a constant speed around the rotation axis A, for example after activation, and can measure a three-dimensional distance in all directions.
- the protective device 2050 is a protective device in the circumferential direction of the detection device (including a region irradiated with a laser or a region through which reflected light passes if it has a viewing angle).
- the surface is curved and has a shape that makes the holding part narrow.
- the holding member 2110 in this embodiment penetrates the detection device 2040 and holds the upper part of the protection device 2050.
- the holding member 2110 and the housing 1090 are provided with a cleaning unit 1060.
- the cleaning unit 1060 is attached at a position that does not obstruct the laser and reflected light, and the protective device 2050 always rotates around the rotation axis B at a constant speed after activation. Then, the entire outer surface of the protective device 2050 is cleaned.
- each component is shown in a simplified form so that it can be easily seen.
- the detection area is represented by a fan shape for easy understanding of the blind spot, but in practice, for example, the maximum distance of the range where the reflection point of the laser has an intensity that can be measured by the reflected light detection unit is the detection area. .
- the detection device 2040 is surrounded by a protection device 2050 whose cross section substantially perpendicular to the rotation axis B is, for example, substantially oval.
- the surface shape of the protective device 2050 is curved, and the holding portion is smoothed so as to be gradually narrowed, so that the change in the incident angle of the laser with respect to the protective device 2050 due to the rotation of the detection device 2040 is reduced. Therefore, there is an effect of reducing refraction when the laser passes through the protective device. Furthermore, it is possible to save space compared to the case where the protective device 2050 is cylindrical.
- the holding member 2110 penetrates the detection device 2040, is arranged inside the protection device 2050 and inside the detection device 2040, and holds the upper part of the protection device 2050. Therefore, in this example, since the laser passes only through the protective device 2050, the laser has an effect of suppressing the attenuation of the laser as compared with the case where the laser passes through the holding member 1110 and the protective device 1050 as in the first embodiment.
- a detection area with a constant viewing angle is also provided in the direction perpendicular to the central axis, and three-dimensional information (distance, radio wave intensity) in all directions can be measured and detected.
- An external sensor that can remove the contamination in the detection region without obstructing the region is also realized.
- the cleaning unit is disposed on both sides of the circumferential region of the detection device serving as the detection region, the entire surface of the protection device can be cleaned without obstructing the detection region of the detection device. .
- Example 3 will be described with reference to FIGS.
- the case has been described in which the protective device always rotates after activation of the external sensor, but in this embodiment, the case in which the protective device 3050 is rotated only when necessary will be described. By rotating only when necessary, wear and power consumption of the protective device 3050 and the cleaning unit 1060 are reduced. A description overlapping with the above embodiments is omitted here.
- FIG. 6 shows a system configuration diagram of the external sensor in the present embodiment.
- a stain determination unit 3000 is provided. Based on the reflected light data obtained from the calculation unit, the contamination determination unit 3000 determines whether the contamination is attached to the protective device 3050 by, for example, a method described later. If the contamination is attached, the control unit For example, a trigger signal for starting rotation of the protective device 3050 is transmitted to 1010.
- FIG. 7 shows an example of a processing flowchart of the external sensor according to the present embodiment.
- the detection device 1040 starts to rotate at a constant speed in S1.
- the distance from the detection device 1040 to the laser reflection point is acquired.
- S3 in order to check whether the reflection point is reflected by dirt or the like on the protective device, the difference between the reflection point distance and the distance from the laser irradiation unit to the protective device in the laser light irradiation direction is calculated. Calculated in part 1070.
- the contamination determination unit 3000 compares the distance difference with a predetermined contamination determination value based on the reflected light data obtained from the calculation unit.
- the process proceeds to S4 to rotate the protective device.
- the process skips S4 and proceeds to S5. If they are equal, they should be put in either. In S5, it is checked whether an end signal is received from the input unit. If the end signal is received, all devices are stopped. If not received, the process returns to S2 to continue the operation.
- This mechanism can be configured, for example, by providing a contamination determination unit in the computer 1130 of the first or second embodiment.
- the protective device is rotated when it is determined that the fouling substance is attached. That is, it is only necessary to rotate it when necessary, and it is possible to provide an external sensor that reduces the wear and power consumption of the protective device and the cleaning unit.
- this invention is not limited to the above-mentioned Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- the distance sensor is used for all the detection devices described above, it can be applied to other optical sensors such as a rotary camera and an omnidirectional camera.
- the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown.
- the rotational speed of the protective device or the detection device is not limited to be constant.
- Control unit 1010 Control unit 1020 Protection device drive unit 1030 Detection device drive unit 1040 Detection device 1050 1 Protection device 1060 Cleaning unit 1070 Calculation unit 1080 Output unit 20402 Detection device 2050 2 Protective device 3000 Fouling determination unit 3050 3 Protective device
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
The purpose of the present invention is to provide an external sensor capable of removing contaminants within a detection area without blocking the detection area. The external sensor is provided with a detection device capable of detection in the circumferential direction of the detection device, a protection device that is for covering the detection device and can rotate while covering the detection device, and a cleaning unit for cleaning the protection device. The protection device is cleaned through the rotation of the protection device in relation to the cleaning unit. The cleaning unit is disposed in a position removed from the area of the circumferential direction of the detection device in which detection by the detection device is possible.
Description
本発明は,外界センサに関するものであり、特に外界センサを覆う防護装置と該防護装置を清掃する清掃部を備えるものに関する。
The present invention relates to an external sensor, and particularly relates to a protective device that covers the external sensor and a cleaning unit that cleans the protective device.
背景技術として,特許文献1がある。特許文献1には,光学式センサの前面側に,汚損物の光学式センサへの付着を防止するガードを設け、ガードの表面に密着したガードクリーナを配置し、ガードが回動することでガードクリーナがガードの表面に付着した汚損を拭き取る光学式センサ汚損防止装置が記載されている。
There is Patent Document 1 as background art. In Patent Document 1, a guard is provided on the front side of the optical sensor to prevent contamination from adhering to the optical sensor, a guard cleaner that is in close contact with the surface of the guard is disposed, and the guard rotates to rotate the guard. An optical sensor antifouling device is described in which the cleaner wipes off the fouling adhered to the surface of the guard.
前記特許文献1に記載の装置は,特定方向の距離を測る光学式センサの汚損を除去することは可能だが,例えば,複数方向へレーザを照射するレーザスキャナや,全方位の映像を撮像可能な全方位カメラなど,広範囲を観測する外界センサへ応用すると,外界センサ前面側に取り付けられたガードクリーナが常に外界センサの検出領域に含まれることになり,ガードクリーナの死角に存在する物体を検出できなくなってしまう。
The device described in Patent Document 1 can remove contamination of an optical sensor that measures a distance in a specific direction. For example, a laser scanner that irradiates a laser in a plurality of directions or an image of all directions can be captured. When applied to an external sensor that observes a wide area, such as an omnidirectional camera, the guard cleaner attached to the front side of the external sensor is always included in the detection area of the external sensor, so that objects existing in the blind spot of the guard cleaner can be detected. It will disappear.
そこで本発明は,外界センサの検出領域を阻害することなく,検出領域内の汚損を除去可能な外界センサを提供することを目的とする。
Therefore, an object of the present invention is to provide an external sensor capable of removing contamination in the detection region without obstructing the detection region of the external sensor.
上記の課題を解決するために,本発明に係る外界センサは,自身の周方向を検出可能な検出装置と、該検出装置を覆うと共に、該検出装置を覆った状態で回転可能な防護装置と、前記防護装置を清掃する清掃部とを備え、前記防護装置が前記清掃部に対して回転することで前記防護装置が清掃され、前記清掃部は、前記検出装置が検出可能な該検出装置の周方向の領域から外れた位置に配置されることを特徴とする。
In order to solve the above-described problems, an external sensor according to the present invention includes a detection device capable of detecting its own circumferential direction, a protection device that covers the detection device and is rotatable while covering the detection device. A cleaning unit that cleans the protection device, and the protection device rotates with respect to the cleaning unit, whereby the protection device is cleaned, and the cleaning unit is configured to detect the detection device. It arrange | positions in the position which remove | deviated from the area | region of the circumferential direction, It is characterized by the above-mentioned.
本発明によれば、外界センサの検出領域を阻害することなく,検出領域内の汚損を除去可能な外界センサを提供することが可能になる。
According to the present invention, it is possible to provide an external sensor capable of removing contamination in the detection area without obstructing the detection area of the external sensor.
以下、本発明を実施する上で好適となる実施例について、適宜図面を参照しながら詳細に説明する。ただし本発明が適用可能な機構は以下の具体的実施例に記載するものに限られるものはなく,各機能構成要素の機能を実現可能な機構であれば好適に変更や付加が可能である。なお、各図面において、同様の構成要素については、同一の符号を付して説明を省略する。
Hereinafter, embodiments suitable for carrying out the present invention will be described in detail with reference to the drawings as appropriate. However, the mechanisms to which the present invention can be applied are not limited to those described in the following specific embodiments, and any mechanism that can realize the function of each functional component can be suitably changed or added. In addition, in each drawing, about the same component, the same code | symbol is attached | subjected and description is abbreviate | omitted.
実施例1では,検出装置を中心とした同一平面上の全方向の情報(例えば,距離,電波強度)を検出領域とする外界センサの例を説明する。
In the first embodiment, an example of an external sensor that uses information (for example, distance and radio wave intensity) in all directions on the same plane centering on the detection device as a detection area will be described.
実施例1について図1ないし図3を用いて説明する。図1には,実施例1の外界センサ1のシステム構成図を示す。該図に示す様に、外界センサ1は,入力部1000から,例えば電力などの装置動力源と,装置作動開始のトリガー信号を取得する。入力部1000から送られる信号に応じて、制御部1010は防護装置駆動部1020及び検出装置駆動部1030の駆動を制御する。検出装置駆動部1030は検出装置1040を作動させる。検出装置1040は所定軸(図2,3における回転軸A)を中心として放射状の領域から得た,例えば光度等を取得するものであり、上記所定軸に対して自身の周方向を検出領域とする。検出装置1040は,泥や粉塵などの汚損が前記検出装置へ付着することを防ぐために、回転可能な防護装置1050で囲われており,防護装置1050は検出装置1040を覆った状態で回転可能である。防護装置1050には,清掃部1060を装着しており,外界センサ1を起動後,防護装置駆動部1020が防護装置1050を例えば一定速度で回転させ続けることで,防護装置1050が清掃部1060に対して回転し、清掃部1060が防護装置1050上に付着した汚損物を除去する。即ち、清掃されることになる。検出装置1040で取得した情報は計算部1070に送られ,計算部1070で例えば距離情報などに変換し,出力部1080へ伝達する。出力部1080は,例えば金属端子や,無線信号などによって計算結果を外部へ出力する。
Example 1 will be described with reference to FIGS. In FIG. 1, the system block diagram of the external sensor 1 of Example 1 is shown. As shown in the figure, the external sensor 1 acquires, from an input unit 1000, a device power source such as electric power and a trigger signal for starting device operation. In response to a signal sent from the input unit 1000, the control unit 1010 controls driving of the protection device driving unit 1020 and the detection device driving unit 1030. The detection device driving unit 1030 operates the detection device 1040. The detection device 1040 obtains, for example, luminous intensity obtained from a radial area centered on a predetermined axis (rotation axis A in FIGS. 2 and 3), and its circumferential direction with respect to the predetermined axis as a detection area. To do. The detection device 1040 is surrounded by a rotatable protective device 1050 in order to prevent dirt such as mud and dust from adhering to the detection device, and the protective device 1050 can rotate with the detection device 1040 covered. is there. The protective device 1050 is equipped with a cleaning unit 1060. After the external sensor 1 is activated, the protective device driving unit 1020 continues to rotate the protective device 1050, for example, at a constant speed, so that the protective device 1050 is moved to the cleaning unit 1060. The cleaning unit 1060 removes the contaminants attached on the protective device 1050. That is, it will be cleaned. Information acquired by the detection device 1040 is sent to the calculation unit 1070, converted into distance information, for example, by the calculation unit 1070, and transmitted to the output unit 1080. The output unit 1080 outputs the calculation result to the outside using, for example, a metal terminal or a wireless signal.
図2に,本実施例の外界センサ1の機構構成図を示す。外界センサ1は,筐体1090に,防護装置駆動部1020と,検出装置駆動部1030と,制御部1010及び計算部1070の機能を兼ねるコンピュータ1130と,入力部1000及び出力部1080の機能を兼ねる端子1120とをそれぞれ備えており、筺体1090内の各部はそれぞれ電気的に接続されている。
FIG. 2 shows a mechanism configuration diagram of the external sensor 1 of the present embodiment. The external sensor 1 has a housing 1090, a protection device driving unit 1020, a detection device driving unit 1030, a computer 1130 that also functions as a control unit 1010 and a calculation unit 1070, and functions as an input unit 1000 and an output unit 1080. The terminal 1120 is provided, and each part in the housing 1090 is electrically connected.
筐体1090は更に防護装置1050を保持する保持部材1100と,防護装置1050及び清掃部1060を保持する保持部材1110を備え,保持部材1110の内部に回転軸Aを中心に回転する検出装置1040を具備する。保持部材1110のうち防護装置1050内の部分は図2中、点線で表示されている。保持部材1110は筺体1090上に配置されており、また検出装置1040の周方向においては、下述するレーザ照射部1041を有する検出装置1040と防護装置1050の間に配置される。
The housing 1090 further includes a holding member 1100 that holds the protective device 1050, and a holding member 1110 that holds the protective device 1050 and the cleaning unit 1060. A detection device 1040 that rotates around the rotation axis A is provided inside the holding member 1110. It has. A portion of the holding member 1110 in the protective device 1050 is indicated by a dotted line in FIG. The holding member 1110 is disposed on the housing 1090, and is disposed between the detection device 1040 having the laser irradiation unit 1041 described below and the protection device 1050 in the circumferential direction of the detection device 1040.
検出装置1040は,レーザ照射部1041と,反射光検出部1042とを備え,レーザ照射部1041から照射したレーザの反射光を反射光検出部1410によって検出する。そしてレーザを照射してから反射光を検出するまでの時間差に基づいて検出装置1040からレーザ反射点までの距離をコンピュータ1130が計算し,出力部1120から距離情報を出力する。また,検出装置1040は,検出装置駆動部1030によって回転駆動力が付与され、所定の回転軸を基準に例えば起動後常に一定速度で回転し,前記回転軸を中心とした同一平面上の全方向のレーザ反射点までの距離を測定可能である。
The detection device 1040 includes a laser irradiation unit 1041 and a reflected light detection unit 1042, and the reflected light detection unit 1410 detects the reflected light of the laser emitted from the laser irradiation unit 1041. The computer 1130 calculates the distance from the detection device 1040 to the laser reflection point based on the time difference from when the laser is irradiated until the reflected light is detected, and the distance information is output from the output unit 1120. Further, the detection device 1040 is provided with a rotational driving force by the detection device driving unit 1030, and always rotates at a constant speed with respect to a predetermined rotation axis, for example, after starting, and is omnidirectional on the same plane around the rotation axis. The distance to the laser reflection point can be measured.
保持部材1110のうち,検出装置1040のレーザおよびレーザの反射光が照射されて通過することになる面は、レーザ光及びレーザの反射光を透過する透過性の素材でできている。これによってレーザの減衰を減らすことが可能になる。また防護装置1050のうち,レーザおよび反射光が照射されて通過することになる面は、やはりレーザ光及びレーザの反射光を透過する透過性の素材でできている。これによってやはりレーザの減衰を減らすことが可能になる。防護装置1050は,防護装置1050の上部にて防護装置1050を支持する保持部材1100と、防護装置1050の下部にて保持部材1110により回転軸B周りに回転するよう保持されている。防護装置1050の下部には、防護装置1050の回転時に保持部材1110がずれない様にするレール面が形成されており、該レール面の幅は保持部材1110と同等またはそれ以上となっている。これにより、防護装置駆動部1020の駆動時に防護装置1050は回転軸B周りを回転出来る。
Of the holding member 1110, the surface of the detection device 1040 that is irradiated with the laser and the reflected light of the laser is made of a transparent material that transmits the laser light and the reflected light of the laser. This makes it possible to reduce laser attenuation. Further, the surface of the protective device 1050 through which the laser and reflected light are irradiated is made of a transparent material that also transmits the laser light and the reflected light of the laser. This again makes it possible to reduce the attenuation of the laser. The protective device 1050 is held so as to rotate around the rotation axis B by a holding member 1100 that supports the protective device 1050 at the upper portion of the protective device 1050 and a holding member 1110 at the lower portion of the protective device 1050. A rail surface that prevents the holding member 1110 from shifting when the protective device 1050 rotates is formed below the protective device 1050, and the width of the rail surface is equal to or greater than that of the holding member 1110. Accordingly, the protection device 1050 can rotate around the rotation axis B when the protection device driving unit 1020 is driven.
清掃部1060は,防護装置1050の上方半分以上を清掃するべく保持部材1110に,下方半分以上を清掃するべく筐体1090にそれぞれ取り付けられる。即ち、検出装置1040の検出領域となる検出装置1040の周方向の領域を挟んで両側に配置されている。これにより、レーザ照射部1041から照射されるレーザ及び反射光をいずれも遮ることなく防護装置1050の全面を清掃することができる。また,本実施例における防護装置1050は回転軸Bが高さ方向になる円錐型であり,レーザに対して所定角度以上の入射角を維持することで,防護装置1050内でレーザが散乱することを防いでいる。
The cleaning unit 1060 is attached to the holding member 1110 to clean the upper half or more of the protective device 1050 and to the housing 1090 to clean the lower half or more. In other words, the detection device 1040 is arranged on both sides of a region in the circumferential direction of the detection device 1040 that becomes a detection region. As a result, the entire surface of the protective device 1050 can be cleaned without blocking the laser and reflected light emitted from the laser irradiation unit 1041. Further, the protective device 1050 in the present embodiment is a conical shape in which the rotation axis B is in the height direction, and the laser is scattered in the protective device 1050 by maintaining an incident angle greater than a predetermined angle with respect to the laser. Is preventing.
続いて図3を用いて,本実施形態の効果を説明する。なお,該図においては各構成要素を見やすい様に簡略化して記載している。また,検出領域は後述する死角を分かりやすく説明するために扇形で表現しているが,実際は,例えばレーザの反射点が反射光検出部1042で測定可能な強度をもつ最大距離が検出領域となる。
Subsequently, the effect of this embodiment will be described with reference to FIG. In the figure, each component is shown in a simplified manner so that it can be easily seen. In addition, the detection area is represented by a fan shape for easy understanding of the blind spot described later, but in actuality, for example, the maximum distance at which the reflected point of the laser can be measured by the reflected light detection unit 1042 is the detection area. .
検出装置1040を防護装置1050で囲う場合,図3(a)のように検出装置1040の回転軸Aと防護装置1050の回転軸Bを一致させれば,駆動装置軸を共有可能であり,設計や製造,組み立てが容易となる。しかし,防護装置の外側全面を清掃するには,例えば図3(a)のように清掃部1060を検出装置1040の検出領域を横切るように取り付ける必要があり,レーザ照射部1041から見て清掃部1060の奥行き方向の検出領域が死角D1となる。
When the detection device 1040 is enclosed by the protection device 1050, the drive device axis can be shared by aligning the rotation axis A of the detection device 1040 and the rotation axis B of the protection device 1050 as shown in FIG. Easier to manufacture and assemble. However, in order to clean the entire outer surface of the protective device, for example, as shown in FIG. 3A, it is necessary to attach the cleaning unit 1060 so as to cross the detection area of the detection device 1040. A detection area 1060 in the depth direction is a blind spot D1.
また,防護装置1050上に汚損物が付着し,清掃部1060で汚損物をこすった結果,汚損物が防護装置1050の回転方向に沿って防護装置1050上に伸びたり,防護装置上に回転方向に沿った傷が発生したりする場合がある。この時、防護装置1050と検出装置1040は互いに回転軸が一致しており、回転方向も一致する。即ち、防護装置1050上に発生した防護装置1050の回転方向に沿った傷は、検出装置1040の回転方向に一致する。例えば図3(a)のように汚損物が伸びた場合,汚損物によって発生する死角D2が生じ,(清掃部1060によって)汚損物が伸びる前よりもかえって死角が増えてしまう。
In addition, as a result of soiled material adhering to the protective device 1050 and rubbing the soiled material by the cleaning unit 1060, the soiled material extends on the protective device 1050 along the rotational direction of the protective device 1050, or the rotational direction on the protective device. There are cases where scratches along the surface occur. At this time, the protection device 1050 and the detection device 1040 have the same rotation axis and the same rotation direction. That is, the damage along the rotation direction of the protection device 1050 generated on the protection device 1050 coincides with the rotation direction of the detection device 1040. For example, when the polluted material is elongated as shown in FIG. 3A, a blind spot D2 generated by the polluted material is generated, and the blind spot is increased rather than before the pollutant is elongated (by the cleaning unit 1060).
一方、本実施例に記載の構造では,検出装置1040の回転軸Aと防護装置1050の回転軸Bが一致しておらず、角度がずれている。図3(b)のように,検出装置の回転軸Aと防護装置の回転軸Bの角度をずらすことによって,例えば清掃装置1060を,検出領域からz軸正負方向に最も離れた2箇所に設置し,それぞれの清掃装置1060が防護装置1050の水平断面を基準として上方半分と下方半分を清掃すれば,清掃装置1060がレーザ光を遮らなくなり、検出領域に死角を作ることなく防護装置1050上の外側全面を清掃可能となる。
On the other hand, in the structure described in this embodiment, the rotation axis A of the detection device 1040 and the rotation axis B of the protection device 1050 do not coincide with each other, and the angle is shifted. As shown in FIG. 3B, for example, the cleaning device 1060 is installed at two positions farthest from the detection region in the positive and negative z-axis directions by shifting the angle between the rotation axis A of the detection device and the rotation shaft B of the protection device. If each cleaning device 1060 cleans the upper half and the lower half with respect to the horizontal cross section of the protection device 1050, the cleaning device 1060 does not block the laser beam and does not make a blind spot in the detection area. The entire outer surface can be cleaned.
また,図3(a)と同様に防護装置の回転方向に沿って汚損物が伸びた場合,汚損物によって発生する死角は図3(b)のD2となるが,今度は防護装置1050と検出装置1040で回転軸がずれており、回転方向もずれている。即ち、防護装置1050上に発生した防護装置1050の回転方向に沿った傷は、検出装置1040の回転方向には一致せず、発生する死角の領域はD2よりも少なくなる。即ち、検出装置1040の回転軸Aと防護装置1050の回転軸を一致させた場合に比べて,汚損物が伸びた際の死角を少なくすることが可能である。なお,前述した汚損物が伸びた際の死角を少なくする効果は,清掃部の取り付け方に関係なく発揮されることは明らかである。
Similarly to FIG. 3 (a), when the contaminated material extends along the rotation direction of the protective device, the blind spot generated by the contaminated material becomes D2 of FIG. 3 (b), but this time it is detected as the protective device 1050. The rotation axis is shifted in the device 1040, and the rotation direction is also shifted. That is, the scratch along the rotation direction of the protection device 1050 generated on the protection device 1050 does not coincide with the rotation direction of the detection device 1040, and the generated blind spot area is smaller than D2. In other words, compared to the case where the rotation axis A of the detection device 1040 and the rotation shaft of the protection device 1050 are made to coincide, it is possible to reduce the blind spot when the pollutant is extended. In addition, it is clear that the effect of reducing the blind spot when the above-mentioned fouling material is extended is exerted regardless of how the cleaning unit is attached.
即ち、本実施例によれば、回転することで自身の周方向を検出可能な検出装置1040と、検出装置1040を覆うと共に、検出装置1040を覆った状態で回転可能な防護装置1050と、防護装置1050を清掃する清掃部1060とを備え、検出装置1040の回転軸Aに対して防護装置1050の回転軸Bが傾いているので、検出装置1040の検出領域を阻害することなく,検出領域内の汚損を除去可能な外界センサを提供することが可能になる。
That is, according to the present embodiment, the detection device 1040 that can detect its circumferential direction by rotating, the protection device 1050 that covers the detection device 1040 and that can rotate while covering the detection device 1040, and protection A cleaning unit 1060 that cleans the device 1050, and the rotation axis B of the protection device 1050 is inclined with respect to the rotation axis A of the detection device 1040, so that the detection region of the detection device 1040 is not obstructed. It is possible to provide an external sensor capable of removing the contamination of the outside.
実施例2について図4及び図5を用いて説明する。実施例2では,検出装置を中心軸とした全方向において,中心軸と平行方向にも一定視野角の検出領域を備え,全方向の3次元情報(距離,電波強度)を測定可能な外界センサの例を説明する。実施例1と重複する点についてはここでの説明を省略する。
Example 2 will be described with reference to FIGS. In the second embodiment, in all directions with the detection device as the central axis, an external sensor that has a detection region with a constant viewing angle in a direction parallel to the central axis and can measure three-dimensional information (distance, radio wave intensity) in all directions. An example will be described. The description overlapping with the first embodiment is omitted here.
図4に本実施例の外界センサの機構構成図を示す。実施例2では,検出装置2040が複数のレーザ照射部2042及び反射光検出部2041を備え,(一定の視野角により)実施例1と同様の計算方法で回転軸Aに対しておよそ垂直な方向のみならず平行な平面内の複数方向のレーザ反射点までの距離も測定可能である。検出装置2040は回転軸Aを中心に例えば起動後常に一定速度で回転し,全方向の3次元的な距離を測定することが可能である。防護装置2050は,例えば長円形の垂直断面形状とするなど,検出装置の周方向(視野角を有する場合においてはレーザ等が照射される領域または反射光が通過する領域も含む)における防護装置の表面は湾曲しており、保持部が狭くなるような形状をしている。
FIG. 4 shows a mechanism configuration diagram of the external sensor according to the present embodiment. In the second embodiment, the detection device 2040 includes a plurality of laser irradiation units 2042 and a reflected light detection unit 2041, and a direction approximately perpendicular to the rotation axis A by the same calculation method as in the first embodiment (with a constant viewing angle). Not only can the distance to the laser reflection points in a plurality of directions within a parallel plane be measured. The detection device 2040 can rotate at a constant speed around the rotation axis A, for example after activation, and can measure a three-dimensional distance in all directions. The protective device 2050 is a protective device in the circumferential direction of the detection device (including a region irradiated with a laser or a region through which reflected light passes if it has a viewing angle). The surface is curved and has a shape that makes the holding part narrow.
本実施例における保持部材2110は,検出装置2040を貫通し,防護装置2050の上部を保持している。保持部材2110と筐体1090には清掃部1060を備え,清掃部1060はレーザ及び反射光を阻害しない位置に付いており,防護装置2050が起動後常に一定速度で回転軸B周りに回転することで,防護装置2050の全外面を清掃する。
The holding member 2110 in this embodiment penetrates the detection device 2040 and holds the upper part of the protection device 2050. The holding member 2110 and the housing 1090 are provided with a cleaning unit 1060. The cleaning unit 1060 is attached at a position that does not obstruct the laser and reflected light, and the protective device 2050 always rotates around the rotation axis B at a constant speed after activation. Then, the entire outer surface of the protective device 2050 is cleaned.
図5を用いて,本実施例の効果を説明する。なお,各構成要素を見やすいよう簡略化して記載している。また,検出領域は死角を分かりやすく説明するために扇形で表現しているが,実際は,例えばレーザの反射点が反射光検出部で測定可能な強度をもつ範囲の最大距離などが検出領域となる。
The effect of the present embodiment will be described with reference to FIG. Note that each component is shown in a simplified form so that it can be easily seen. In addition, the detection area is represented by a fan shape for easy understanding of the blind spot, but in practice, for example, the maximum distance of the range where the reflection point of the laser has an intensity that can be measured by the reflected light detection unit is the detection area. .
本実施例では,回転軸Bに略垂直な断面が例えば略長円形となる防護装置2050で検出装置2040を囲う。このように防護装置2050の表面形状を湾曲にし、保持部が徐々に狭くなるように滑らかにすることで,検出装置2040の回転による防護装置2050に対するレーザの入射角の変化を少なくしている。よって,レーザの防護装置通過時の屈折を少なくする効果を奏する。さらに,防護装置2050を円筒形とする場合に比べ省スペース化することが可能である。
In this embodiment, the detection device 2040 is surrounded by a protection device 2050 whose cross section substantially perpendicular to the rotation axis B is, for example, substantially oval. In this way, the surface shape of the protective device 2050 is curved, and the holding portion is smoothed so as to be gradually narrowed, so that the change in the incident angle of the laser with respect to the protective device 2050 due to the rotation of the detection device 2040 is reduced. Therefore, there is an effect of reducing refraction when the laser passes through the protective device. Furthermore, it is possible to save space compared to the case where the protective device 2050 is cylindrical.
また,保持部材2110は,検出装置2040を貫通し,防護装置2050の内側かつ検出装置2040よりも内側に配置され、防護装置2050の上部を保持している。よって、本実施例ではレーザは防護装置2050のみを透過するため,実施形態1の様にレーザが保持部材1110と防護装置1050を透過するよりも,レーザの減衰を抑える効果を持つ。
Further, the holding member 2110 penetrates the detection device 2040, is arranged inside the protection device 2050 and inside the detection device 2040, and holds the upper part of the protection device 2050. Therefore, in this example, since the laser passes only through the protective device 2050, the laser has an effect of suppressing the attenuation of the laser as compared with the case where the laser passes through the holding member 1110 and the protective device 1050 as in the first embodiment.
以上によって,検出装置を中心軸とした全方向において,中心軸と垂直方向にも一定視野角の検出領域を備え,全方向の3次元情報(距離,電波強度)を測定可能であり,なおかつ検出領域を阻害することなく検出領域内の汚損を除去可能な外界センサも実現される。
As described above, in all directions with the detection device as the central axis, a detection area with a constant viewing angle is also provided in the direction perpendicular to the central axis, and three-dimensional information (distance, radio wave intensity) in all directions can be measured and detected. An external sensor that can remove the contamination in the detection region without obstructing the region is also realized.
尚、上記各実施例では、回転することで自身の周方向を検出可能な検出装置を備え、検出装置の回転軸Aに対して防護装置の回転軸Bが傾いている場合について説明した。しかし、回転するか否かによらず、検出装置が自身の周方向を検出可能であり、かつ清掃部が検出装置の周方向の領域から外れた位置(即ち、検出可能な領域から外れた位置)に配置されるものであれば、検出装置の検出領域を阻害することなく,検出領域内の汚損を除去可能な外界センサを提供することが可能になる。
In each of the above embodiments, a case has been described in which a detection device capable of detecting its circumferential direction by rotating is provided, and the rotation shaft B of the protective device is inclined with respect to the rotation shaft A of the detection device. However, regardless of whether or not it rotates, the detection device can detect the circumferential direction of the detection device, and the cleaning unit is out of the circumferential region of the detection device (that is, out of the detectable region). If it is arranged in (), it is possible to provide an external sensor capable of removing contamination in the detection region without obstructing the detection region of the detection device.
また、清掃部が検出領域となる検出装置の周方向の領域を挟んで両側に配置されることで、検出装置の検出領域を阻害することなく防護装置の表面全体を清掃することが可能になる。
In addition, since the cleaning unit is disposed on both sides of the circumferential region of the detection device serving as the detection region, the entire surface of the protection device can be cleaned without obstructing the detection region of the detection device. .
実施例3について図6及び図7を用いて説明する。上記各実施例では防護装置を外界センサの起動後常に防護装置が回転する場合を例に説明したが、本実施例では,防護装置3050を必要な時だけ回転させる場合について説明する。必要な時だけ回転させることで,防護装置3050や清掃部1060の摩耗,消費電力を低減する。上記各実施例と重複する点についてはここでの説明を省略する。
Example 3 will be described with reference to FIGS. In each of the above embodiments, the case has been described in which the protective device always rotates after activation of the external sensor, but in this embodiment, the case in which the protective device 3050 is rotated only when necessary will be described. By rotating only when necessary, wear and power consumption of the protective device 3050 and the cleaning unit 1060 are reduced. A description overlapping with the above embodiments is omitted here.
図6に本実施例における外界センサのシステム構成図を示す。本実施例と前述までの実施例との違いは,汚損判定部3000を備えている点である。汚損判定部3000は,計算部から得る反射光のデータを基に,例えば後述する方法で防護装置3050に汚損物が付着しているかを判定し,汚損物が付着していた場合は,制御部1010へ,例えば,防護装置3050を回転開始するトリガー信号などを送信する。
FIG. 6 shows a system configuration diagram of the external sensor in the present embodiment. The difference between the present embodiment and the above-described embodiments is that a stain determination unit 3000 is provided. Based on the reflected light data obtained from the calculation unit, the contamination determination unit 3000 determines whether the contamination is attached to the protective device 3050 by, for example, a method described later. If the contamination is attached, the control unit For example, a trigger signal for starting rotation of the protective device 3050 is transmitted to 1010.
図7に本実施形態の外界センサの処理フローチャートの例を示す。外界センサ装置起動後,S1で,検出装置1040を一定速度で回転させ始める。S2では,検出装置1040よりレーザ反射点までの距離を取得する。S3では,前記反射点が、防護装置上の汚れ等に反射していないかを調べるために、前記反射点の距離と,レーザ光照射方向におけるレーザ照射部から防護装置までの距離の差を計算部1070で求める。汚損判定部3000は,計算部から得る反射光のデータを基に,前記距離の差と,予め設定した汚損判定値との比較を行う。前記距離の差が,予め設定した汚損判定値よりも小さい場合は,防護装置に汚損物が付着していると判断し,S4へ進み防護装置を回転する。一方、前記距離の差が,予め設定した汚損判定値よりも大きい場合は,防護装置に汚損物が付着していないものと判断し,S4をスキップしてS5へ進む。尚、等しい場合はどちらかに入れておけばよい。S5では入力部から終了信号を受信しているかを調べ,前記終了信号を受信した場合は全装置を停止し,受信していなければS2へ戻って動作を継続する。
FIG. 7 shows an example of a processing flowchart of the external sensor according to the present embodiment. After the external sensor device is activated, the detection device 1040 starts to rotate at a constant speed in S1. In S2, the distance from the detection device 1040 to the laser reflection point is acquired. In S3, in order to check whether the reflection point is reflected by dirt or the like on the protective device, the difference between the reflection point distance and the distance from the laser irradiation unit to the protective device in the laser light irradiation direction is calculated. Calculated in part 1070. The contamination determination unit 3000 compares the distance difference with a predetermined contamination determination value based on the reflected light data obtained from the calculation unit. If the difference in distance is smaller than a preset contamination determination value, it is determined that a contaminant is attached to the protective device, and the process proceeds to S4 to rotate the protective device. On the other hand, when the difference in the distance is larger than a preset contamination determination value, it is determined that no contamination is attached to the protective device, and the process skips S4 and proceeds to S5. If they are equal, they should be put in either. In S5, it is checked whether an end signal is received from the input unit. If the end signal is received, all devices are stopped. If not received, the process returns to S2 to continue the operation.
本機構は,例えば実施形態1や実施形態2のコンピュータ1130に汚損判定部を設けて構成することが可能である。
This mechanism can be configured, for example, by providing a contamination determination unit in the computer 1130 of the first or second embodiment.
以上の様に,本実施例によれば、防護装置に汚損物が付着しているかを判定し、汚損物が付着していると判定された場合に防護装置を回転させる様にしている。即ち、必要な時に限って回転させれば良く,防護装置や清掃部の摩耗,消費電力を低減する外界センサを提供することが可能になる。
As described above, according to the present embodiment, it is determined whether a fouling substance is attached to the protective device, and the protective device is rotated when it is determined that the fouling substance is attached. That is, it is only necessary to rotate it when necessary, and it is possible to provide an external sensor that reduces the wear and power consumption of the protective device and the cleaning unit.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。例えば,上記の検出装置には全て距離センサを用いたが,他の光学センサ,例えば回転式のカメラや,全方位カメラなどにも適応可能である。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。また、防護装置や検出装置の回転速度が一定であることにも限られるものでない。
In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. For example, although the distance sensor is used for all the detection devices described above, it can be applied to other optical sensors such as a rotary camera and an omnidirectional camera. Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Further, the rotational speed of the protective device or the detection device is not limited to be constant.
1、2、3 外界センサ
1000 入力部
1010 制御部
1020 防護装置駆動部
1030 検出装置駆動部
1040 1の検出装置
1050 1の防護装置
1060 清掃部
1070 計算部
1080 出力部
2040 2の検出装置
2050 2の防護装置
3000 汚損判定部
3050 3の防護装置 1, 2, 3External sensor 1000 Input unit 1010 Control unit 1020 Protection device drive unit 1030 Detection device drive unit 1040 Detection device 1050 1 Protection device 1060 Cleaning unit 1070 Calculation unit 1080 Output unit 20402 Detection device 2050 2 Protective device 3000 Fouling determination unit 3050 3 Protective device
1000 入力部
1010 制御部
1020 防護装置駆動部
1030 検出装置駆動部
1040 1の検出装置
1050 1の防護装置
1060 清掃部
1070 計算部
1080 出力部
2040 2の検出装置
2050 2の防護装置
3000 汚損判定部
3050 3の防護装置 1, 2, 3
Claims (12)
- 自身の周方向を検出可能な検出装置と、
該検出装置を覆うと共に、該検出装置を覆った状態で回転可能な防護装置と、
前記防護装置を清掃する清掃部とを備え、
前記防護装置が前記清掃部に対して回転することで前記防護装置が清掃され、
前記清掃部は、前記検出装置が検出可能な該検出装置の周方向の領域から外れた位置に配置されることを特徴とする外界センサ。 A detection device capable of detecting its circumferential direction;
A protective device that covers the detection device and is rotatable in a state of covering the detection device;
A cleaning unit for cleaning the protective device,
The protective device is cleaned by rotating the protective device relative to the cleaning unit,
The external sensor according to claim 1, wherein the cleaning unit is disposed at a position outside a region in a circumferential direction of the detection device that can be detected by the detection device. - 請求項1に記載の外界センサであって、
前記検出装置は回転することで自身の周方向を検出可能であり、
前記検出装置の回転軸に対して前記防護装置の回転軸は傾いていることを特徴とする外界センサ。 The external sensor according to claim 1,
The detection device can detect its circumferential direction by rotating;
An external sensor, characterized in that a rotation shaft of the protection device is inclined with respect to a rotation shaft of the detection device. - 請求項1または2に記載の外界センサであって、
前記清掃部は前記周方向の領域を挟んで両側に配置されることを特徴とする外界センサ。 The external sensor according to claim 1 or 2,
The external sensor according to claim 1, wherein the cleaning unit is disposed on both sides of the circumferential region. - 請求項1ないし3のいずれか一つに記載の外界センサであって、
前記検出装置は前記防護装置の内側に配置されており、
前記防護装置の内側には光源が配置され、
前記防護装置のうち、前記光源から放出された光が照射される部位は、前記光源から放出された光を透過する部材で形成されることを特徴とする外界センサ。 The external sensor according to any one of claims 1 to 3,
The detection device is arranged inside the protection device;
A light source is arranged inside the protective device,
A part of the protective device to which the light emitted from the light source is irradiated is formed by a member that transmits the light emitted from the light source. - 請求項4に記載の外界センサであって、
前記光源と前記防護装置の間に配置され、かつ前記防護装置を保持する保持部材を備え、
該保持部材のうち、前記光源から放出された光が照射される部位は、前記光源から放出された光を透過する部材で形成されることを特徴とする外界センサ。 The external sensor according to claim 4,
A holding member disposed between the light source and the protection device and holding the protection device;
A part of the holding member that is irradiated with light emitted from the light source is formed of a member that transmits light emitted from the light source. - 請求項4に記載の外界センサであって、
前記光源よりも内側に配置されると共に前記防護装置を保持する保持部材が、前記防護装置の内側に備えられることを特徴とする外界センサ。 The external sensor according to claim 4,
An outside sensor, characterized in that a holding member that is arranged inside the light source and holds the protection device is provided inside the protection device. - 請求項4ないし6のいずれか一つに記載の外界センサであって、
前記検出装置の周方向における前記防護装置の表面は湾曲していることを特徴とする外界センサ。 The external sensor according to any one of claims 4 to 6,
An external sensor, wherein a surface of the protection device in a circumferential direction of the detection device is curved. - 請求項7に記載の外界センサであって、
前記防護装置は、該防護装置の回転軸に略垂直な断面の形状が略長円形であることを特徴とする外界センサ。 The external sensor according to claim 7,
The external device according to claim 1, wherein the protective device has a substantially oval cross-sectional shape substantially perpendicular to the rotation axis of the protective device. - 請求項7または8に記載の外界センサであって、
前記検出装置の検出領域は前記検出装置の回転軸と垂直な方向以外にも検出領域を備えていることを特徴とする外界センサ。 The external sensor according to claim 7 or 8,
The external sensor according to claim 1, wherein the detection region of the detection device includes a detection region in addition to a direction perpendicular to a rotation axis of the detection device. - 請求項1ないし9のいずれか一つに記載の外界センサであって、
前記防護装置に汚損物が付着しているかを判定し、汚損物が付着していると判定された場合に該防護装置を回転させることを特徴とする外界センサ。 The external sensor according to any one of claims 1 to 9,
An outside sensor characterized by determining whether a fouling substance is attached to the protective device and rotating the protective device when it is determined that a fouling substance is attached. - 請求項10に記載の外界センサであって、
前記光源から放出されたレーザ光の反射点とレーザ光を放出した方向における前記防護装置との距離の差を求め、該距離の差が所定の汚損判定値より小さい場合に、前記防護装置に汚損物が付着していると判定することを特徴とする外界センサ。 The external sensor according to claim 10,
A difference in distance between the reflection point of the laser beam emitted from the light source and the protection device in the direction in which the laser beam is emitted is obtained, and if the difference in distance is smaller than a predetermined contamination judgment value, the protection device is contaminated. An external sensor characterized by determining that an object is attached. - 請求項11に記載の外界センサであって、
前記防護装置に回転駆動力を与える防護装置駆動部と、
該防護装置駆動部の駆動を制御する制御部と、
前記光源から放出されたレーザ光の反射点とレーザ光を放出した方向における前記防護装置との距離の差を求める計算部と、
該距離の差が所定の汚損判定値より小さい場合に、前記防護装置に汚損物が付着していると判定する汚損判定部を備え、
該汚損判定部が前記防護装置に汚損物が付着していると判定した場合に、前記制御部が前記防護装置駆動部を駆動させることを特徴とする外界センサ。 The external sensor according to claim 11,
A protective device driving unit for applying a rotational driving force to the protective device;
A control unit for controlling the driving of the protective device driving unit;
A calculation unit for obtaining a difference in distance between a reflection point of the laser beam emitted from the light source and the protective device in a direction in which the laser beam is emitted;
When the difference in distance is smaller than a predetermined contamination determination value, a contamination determination unit that determines that contamination is attached to the protective device,
An external sensor, wherein the control unit drives the protection device driving unit when the contamination determination unit determines that a contamination is attached to the protection device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/059815 WO2014162380A1 (en) | 2013-04-01 | 2013-04-01 | External sensor |
JP2015509618A JPWO2014162380A1 (en) | 2013-04-01 | 2013-04-01 | External sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/059815 WO2014162380A1 (en) | 2013-04-01 | 2013-04-01 | External sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014162380A1 true WO2014162380A1 (en) | 2014-10-09 |
Family
ID=51657714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/059815 WO2014162380A1 (en) | 2013-04-01 | 2013-04-01 | External sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014162380A1 (en) |
WO (1) | WO2014162380A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021117101A (en) * | 2020-01-27 | 2021-08-10 | 三菱電機エンジニアリング株式会社 | Laser ranging device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005331377A (en) * | 2004-05-20 | 2005-12-02 | Nippon Steel Corp | Antenna device and object detecting apparatus |
JP2011128112A (en) * | 2009-12-21 | 2011-06-30 | Denso Wave Inc | Laser radar system |
JP2013011613A (en) * | 2012-09-06 | 2013-01-17 | Denso Wave Inc | Laser radar device |
-
2013
- 2013-04-01 WO PCT/JP2013/059815 patent/WO2014162380A1/en active Application Filing
- 2013-04-01 JP JP2015509618A patent/JPWO2014162380A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005331377A (en) * | 2004-05-20 | 2005-12-02 | Nippon Steel Corp | Antenna device and object detecting apparatus |
JP2011128112A (en) * | 2009-12-21 | 2011-06-30 | Denso Wave Inc | Laser radar system |
JP2013011613A (en) * | 2012-09-06 | 2013-01-17 | Denso Wave Inc | Laser radar device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021117101A (en) * | 2020-01-27 | 2021-08-10 | 三菱電機エンジニアリング株式会社 | Laser ranging device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014162380A1 (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9255894B2 (en) | System and method for detecting cracks in a wafer | |
KR20190130923A (en) | Apparatus for cleaning lidar sensor | |
US7724377B2 (en) | Apparatus and method for detecting tire shape | |
JP2008227393A (en) | Double-side polishing apparatus for wafer | |
JP5251858B2 (en) | Laser radar equipment | |
JP2007147583A5 (en) | ||
EP3059546B1 (en) | Method for detecting the eccentricity of a tire for vehicle wheels within processes of maintenance of said wheels and apparatus for the maintenance of wheels of vehicles | |
JPH0690149B2 (en) | Transparency inspection device | |
JP2018034298A (en) | Method for measuring thickness of flat workpiece | |
KR20190130921A (en) | Lidar sensor and control method thereof | |
WO2014162380A1 (en) | External sensor | |
KR20140073854A (en) | Obstacle detect system using psd scanner in vaccum robot | |
WO2016051861A1 (en) | Obstacle determination device and obstacle determination method | |
JP2007263612A (en) | Visual inspection device of wafer | |
JP2017090380A (en) | Laser radar device, window member for laser radar device, and control program for laser radar device | |
KR20190130919A (en) | Apparatus for detecting object and operating method thereof | |
JP6803204B2 (en) | Dirt detection method and equipment for optical elements | |
JP2015065386A (en) | Protective film detector | |
JP2022525155A (en) | Measuring equipment and methods | |
JP2011141119A (en) | Surface inspection system | |
JP2017003412A (en) | Lens inspection apparatus and lens inspection method | |
JP2011209092A (en) | Round rod inspection apparatus and method of inspecting round rod | |
TWI691780B (en) | Image pickup device and automatic cleaning assembly thereof | |
JP2014056018A5 (en) | ||
JP2002502965A (en) | Method and apparatus for detecting the presence of water on a surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13881420 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015509618 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13881420 Country of ref document: EP Kind code of ref document: A1 |