[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014161114A1 - 紫外线结合臭氧和四氯化碳制备ptfe超细粉的方法 - Google Patents

紫外线结合臭氧和四氯化碳制备ptfe超细粉的方法 Download PDF

Info

Publication number
WO2014161114A1
WO2014161114A1 PCT/CN2013/000799 CN2013000799W WO2014161114A1 WO 2014161114 A1 WO2014161114 A1 WO 2014161114A1 CN 2013000799 W CN2013000799 W CN 2013000799W WO 2014161114 A1 WO2014161114 A1 WO 2014161114A1
Authority
WO
WIPO (PCT)
Prior art keywords
polytetrafluoroethylene
tray
raw material
ozone
box
Prior art date
Application number
PCT/CN2013/000799
Other languages
English (en)
French (fr)
Inventor
顾建忠
吴明红
蔡建球
Original Assignee
太仓金凯特种线缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太仓金凯特种线缆有限公司 filed Critical 太仓金凯特种线缆有限公司
Publication of WO2014161114A1 publication Critical patent/WO2014161114A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a method for preparing a polytetrafluoroethylene ultrafine powder, and more particularly to ultraviolet irradiation of polytetrafluoroethylene in combination with ozone and tetrachlorination A method for preparing a polytetrafluoroethylene ultrafine powder from carbon.
  • Polytetrafluoroethylene ultrafine powder requires an average particle size of less than 5 ⁇ m, a specific surface of more than 10 m 2 /g, a friction coefficient of 0.06 to 0.07, good lubricity, and good dispersion in many materials. It can be used as anti-sticking, anti-friction and flame retardant additives for plastics, rubber, inks, coatings and lubricating greases. It can also be used as a dry lubricant for aerosols.
  • the PTFE ultrafine powder product has a purity of 100%, a molecular weight of less than 10,000, and a particle size of 0.5-15 ⁇ m.
  • PTFE ultrafine powder series not only maintains all the excellent properties of PTFE, but also has many unique properties: such as no self-cohesiveness, no static effect, good compatibility, low molecular weight, good dispersion, self-lubricating High sex, reduced friction coefficient and so on.
  • Polytetrafluoroethylene ultrafine ultrafine powder can be used as a solid lubricant alone or as an additive for plastics, rubber, paints, inks, lubricants, greases, etc. When mixing with plastic or rubber, various typical powder processing methods, such as blending, can be added in an amount of 5 to 20%. Adding polytetrafluoroethylene ultrafine powder to oil and grease can reduce the friction coefficient.
  • the organic solvent dispersion can also be used as a release agent.
  • PTFE has poor radiation resistance (1000Gy) and is degraded by high-energy radiation. Therefore, it is generally irradiated with electron beam and CO-60 Y-rays, and then irradiated by a jet mill.
  • the PTFE raw material is pulverized into a fine particle polytetrafluoroethylene ultrafine powder.
  • the production cost of irradiation with electron beam and CO-60 Y-ray radiation equipment is high, and the high standard of safety protection needs further increase the production cost.
  • Carbon tetrachloride (chemical formula: CC1 4 ), also known as tetrachloromethane or chloranil, is a colorless, volatile, Non-flammable liquid, boiling point 76.8 ° C, vapor pressure 15.26 kPa (25 ° C), vapor density 5.3 g / L. Due to its stable chemical properties, it degrades under ultraviolet irradiation to produce negative oxygen ions, which are unstable and generate ozone.
  • Ozone is an allotrope of oxygen. At normal temperature, it is a blue gas with a special odor and is insoluble in carbon tetrachloride. Ozone is highly oxidizing and easily decomposed, and the hydroxyl radical (.OH) produced during decomposition has a strong oxidizing power.
  • An object of the present invention is to provide a method for preparing PTFE ultrafine powder by combining ultraviolet light with ozone and carbon tetrachloride, and the method of the invention can significantly improve the degradation rate of polytetrafluoroethylene at the same irradiation dose. It not only improves the production efficiency of the ultra-fine polytetrafluoroethylene powder, but also significantly reduces the production cost.
  • the method for preparing PTFE ultrafine powder by combining ultraviolet rays with ozone and carbon tetrachloride mainly comprises the following steps:
  • the quenched polytetrafluoroethylene raw material is pulverized by a pulverizer, and the pulverized particle size is 100-1000 ⁇ ;
  • the ultraviolet irradiation chamber is provided with an ultraviolet generating device, and the bottom of the ultraviolet irradiation chamber is a platform, and the ultraviolet irradiation box is provided with a box door on the side thereof, and is in the cabinet At least one venting mechanism, at least one shower device, and at least one nozzle are disposed, and the control mechanism of the shower device is located outside the box.
  • the ultraviolet generating device includes four or five electrodeless lamps, the electrodeless lamp being 400 W and having a wavelength of 184.9 nm or 253.7 nm.
  • the exhaust mechanism is in a sealed state during the irradiation, and is in an open state after the irradiation is completed.
  • the shower device is an automatic spray system, and the automatic spray system is configured to automatically spray a set weight ratio of CC1 4 according to the weight of the Teflon material in the tray.
  • the weight ratio of the sprayed CC1 4 to the polytetrafluoroethylene raw material in the tray is 5%, and the weight ratio of the injected ozone to the polytetrafluoroethylene raw material in the tray is 5%.
  • the airflow pulverizing system comprises a jet pulverizer comprising a gas flow nozzle and a pulverizing chamber, and the compressed air is injected into the pulverizing chamber at a high speed through the nozzle, and is irradiated at a meeting point of the plurality of high-pressure air streams.
  • the PTFE raw material is crushed by repeated collision, abrasion, shearing.
  • the airflow pulverizing system further comprises:
  • the jet mill further comprises a grading zone, and the PTFE pulverized in the pulverizing chamber is moved to the grading zone under the action of the induced draft fan, and the PTFE particles are separated according to the granularity under the action of the grading wheel, and meet the particle size requirement.
  • the fine particles are collected by a grading wheel into a cyclone or a dust collector.
  • the cyclone collects coarser particles in the fine particles, and a small part of the ultrafine particles are collected by the dust collector.
  • the coarse particles that do not meet the particle size requirements are lowered to the pulverizing chamber to continue. Smash.
  • the airflow nozzle of the jet mill is a Laval nozzle.
  • the jet mill has a dry filter device, which is located in front of the nozzle.
  • the invention utilizes the volatile characteristics of carbon tetrachloride to spray carbon tetrachloride onto the surface of the polytetrafluoroethylene, and the gaseous carbon tetrachloride formed after volatilization will form an inert gas around the polytetrafluoroethylene due to the high density.
  • Layer which separates PTFE from air, prevents ozone generated by ultraviolet light, and active oxygen ionization
  • the reaction between the sub- and the polytetrafluoroethylene improves the quality of the ultrafine tetrafluoroethylene powder.
  • the invention can not only efficiently produce the polytetrafluoroethylene ultrafine powder, but also can effectively reduce the cost of the production technology, and at the same time, the use of carbon tetrachloride volatilization to isolate the PTFE raw material from the air, saving the spokes
  • the step of sealing the raw material of the polytetrafluoroethylene before the injection further reduces the production cost and improves the quality of the ultrafine tetrafluoroethylene powder.
  • the method for preparing PTFE ultrafine powder by combining ultraviolet light with ozone and carbon tetrachloride comprises the following steps:
  • Quenching treatment The dry polytetrafluoroethylene raw material is packaged in a low temperature resistant container, placed in liquid nitrogen, and taken out after being quenched;
  • the low-temperature treated polytetrafluoroethylene raw material is pulverized by a pulverizer (the raw material needs to be removed from the low-temperature resistant container before pulverization), and the pulverized particle size is 100-1000 ⁇ ⁇ ;
  • Jet pulverization Open the ultraviolet irradiation box, take out the above tray, and put the irradiated PTFE into the airflow pulverizing system, and after fully pulverizing, obtain the poly 4 with the particle diameter of 0.2-5 ⁇ m. Ultrafine powder of vinyl fluoride.
  • the ultraviolet irradiation box is preferably a box having an outer dimension of about 2000 X 10000 X 1000 mm
  • the ultraviolet generating device is installed at the top of the box body
  • the bottom of the box body is a platform
  • the side of the ultraviolet irradiation box is provided with a door (can be opened)
  • the material is placed and taken out, and has at least one venting mechanism at the top of the tank, at least one sprinkler device and at least one nozzle, and the control mechanism of the sprinkler device is located outside the box.
  • the ultraviolet generating device preferably comprises 4-5 400W, an electrodeless lamp whose wavelength is set to 184.9 nm or 253.7 nm, and the exhaust mechanism is preferably further sealed and can be sealed during irradiation.
  • the spraying device is preferably an automatic spraying system, and the automatic spraying system is configured to automatically spray the set weight ratio CC1 4 according to the weight of the polytetrafluoroethylene raw material in the tray, and further optimize
  • the weight ratio of the sprayed CC1 4 to the polytetrafluoroethylene raw material in the tray was 5%, and the weight ratio of the injected ozone to the polytetrafluoroethylene raw material in the tray was 0.3%.
  • the airflow pulverizing system comprises a jet pulverizer, wherein the jet pulverizer comprises a gas flow nozzle and a pulverizing chamber, and the compressed air is injected into the pulverizing chamber at a high speed through the nozzle, and at the intersection of the plurality of high-pressure airflows, the irradiated portion
  • the PTFE raw material is repeatedly crushed, rubbed, sheared and pulverized.
  • the jet pulverizing system may further include a cyclone, a precipitator, and an induced draft fan.
  • the air flow pulverizer preferably has a gas flow nozzle, a pulverization chamber (pulverization zone), and a classification zone.
  • the compressed air is jetted into the pulverizing chamber at a high speed through a nozzle to form a plurality of intersecting high-pressure air streams.
  • the irradiated PTFE raw material is repeatedly crushed, rubbed, sheared, pulverized, and pulverized. After the PTFE is driven by the induced draft fan, it moves to the classification zone with the ascending airflow.
  • the PTFE particles are separated according to the thickness (particle size). Fine particles meeting the particle size requirements (less than 5 ⁇ ⁇ ) are collected by a grading wheel into a cyclone or a dust collector. The cyclone collects coarser particles in the fine particles. A small part of the ultrafine particles are collected by the dust collector, and the coarse particles are lowered to The comminution chamber continues to smash.
  • the air flow nozzle of the jet mill is preferably a Laval nozzle.
  • a filter drying device can be placed in front of the nozzle (to further reduce the humidity of the particles to be pulverized).
  • a method for preparing PTFE ultrafine powder by combining ultraviolet light with ozone and carbon tetrachloride comprising the following steps:
  • Quenching treatment The dry polytetrafluoroethylene raw material is packaged in a low temperature resistant container and placed in liquid nitrogen, and then taken out after being quenched to make the polytetrafluoroethylene raw material easier to be pulverized;
  • the low temperature treated polytetrafluoroethylene raw material is pulverized by a pulverizer, powder The particle size is 100-1000 ⁇ ⁇ ;
  • UV irradiation Open 5 UV excimer lamps on the top of the box (preferably 400W, and the wavelength of the ultraviolet excimer lamp is 184.9nm or 253.7nm), continuous irradiation for 8 hours;
  • Jet pulverization Open the ultraviolet irradiation box, take out the above tray, and put the irradiated PTFE into the airflow pulverizing system, and after fully pulverizing, obtain the poly 4 with the particle diameter of 0.2-5 ⁇ m. Ultrafine powder of vinyl fluoride.
  • a method for preparing PTFE ultrafine powder by combining ultraviolet light with ozone and carbon tetrachloride comprising the following steps:
  • Quenching treatment The dry polytetrafluoroethylene raw material is packaged in a low temperature resistant container and placed in liquid nitrogen, and then taken out after being quenched to make the polytetrafluoroethylene raw material easier to be pulverized;
  • the low temperature treated polytetrafluoroethylene raw material is pulverized by a pulverizer, and the pulverized particle size is 100-1000 ⁇ m;
  • Ultraviolet irradiation Open 4 low-pressure mercury lamps (preferably 400W, and the wavelength is 253.7nm) disposed on the four walls of the box, and continuously irradiate for 10 hours; 7) Exhaust: After the irradiation is completed, open the exhaust mechanism of the above ultraviolet irradiation box to discharge the exhaust gas generated during the irradiation;
  • Jet pulverization Open the ultraviolet irradiation box, take out the above tray, and put the irradiated PTFE into the airflow pulverizing system, and after fully pulverizing, obtain the poly 4 with the particle diameter of 0.2-5 ⁇ m. Ultrafine powder of vinyl fluoride.
  • the above pulverization process includes airflow pulverization and product collection, and the airflow pulverization is realized by a jet mill and a bow fan, and specifically, the airflow pulverizing system includes a jet mill, a cyclone, a dust collector and an induced draft fan.
  • the jet mill has a gas flow nozzle, a pulverizing chamber, and a grading zone, and the compressed air is sprayed to the pulverizing chamber at a high speed through the nozzle, and the PTFE material irradiated at the intersection of the plurality of high-pressure air streams is repeatedly collided, Friction, shearing and pulverization, the pulverized PTFE moves with the ascending airflow to the classification zone under the action of the induced draft fan, and the coarse and fine polytetrafluoroethylene particles are separated by the strong centrifugal force generated by the high-speed rotating classification turbine. Fine particles meeting the particle size requirements are collected into a cyclone or a dust collector. The cyclone collects coarser particles in the fine particles. A small portion of the ultrafine particles are collected by the dust collector, and the coarse particles are lowered to the crushing zone to continue to be crushed.
  • a method for preparing PTFE ultrafine powder by combining ultraviolet light with ozone and carbon tetrachloride comprising the following steps:
  • Quenching treatment The dry polytetrafluoroethylene raw material is packaged in a low temperature resistant container and placed in liquid nitrogen, and then taken out after being quenched to make the polytetrafluoroethylene raw material easier to be pulverized;
  • the low temperature treated polytetrafluoroethylene raw material is pulverized by a pulverizer, and the pulverized particle size is 100-1000 ⁇ m;
  • UV radiation Close the UV irradiation box and open 4 300W strong UV high pressure mercury lamps respectively on the top and the wall of the box for continuous irradiation for 12 hours; 7) Exhaust: After the irradiation is completed, open the exhaust mechanism of the above ultraviolet irradiation box to discharge the exhaust gas generated during the irradiation;
  • Jet pulverization Open the ultraviolet irradiation box, take out the above tray, and put the irradiated PTFE into the airflow pulverizing system, and after fully pulverizing, obtain the poly 4 with the particle diameter of 0.2-5 ⁇ m. Ultrafine powder of vinyl fluoride.
  • the above airflow pulverizing system comprises a jet mill, a cyclone, a dust collector and an induced draft fan.
  • the jet mill has a gas flow nozzle, a pulverizing chamber, and a grading zone, and the compressed air is sprayed to the pulverizing chamber at a high speed through the nozzle, and the PTFE material irradiated at the intersection of the plurality of high-pressure air streams is repeatedly collided, Friction, shearing and pulverization, the pulverized PTFE moves with the ascending airflow to the classification zone under the action of the induced draft fan, and the coarse and fine polytetrafluoroethylene particles are separated by the strong centrifugal force generated by the high-speed rotating classification turbine. Fine particles meeting the particle size requirements are collected into a cyclone or a dust collector. The cyclone collects coarser particles in the fine particles. A small portion of the ultrafine particles are collected by the dust collector, and the coarse particles are lowered to the crushing zone to continue to be crushed.
  • a method for preparing PTFE ultrafine powder by combining ultraviolet light with ozone and carbon tetrachloride comprising the following steps:
  • Quenching treatment The dry polytetrafluoroethylene raw material is packaged in a low temperature resistant container and placed in liquid nitrogen, and then taken out after being quenched to make the polytetrafluoroethylene raw material easier to be pulverized;
  • the low temperature treated polytetrafluoroethylene raw material is pulverized by a pulverizer, and the pulverized particle size is 100-1000 ⁇ m;
  • UV irradiation Close the UV irradiation box, and open the 400W wavelength of the top of the 5 boxes with an electrodeless lamp set to 184.9nm for 12 hours of continuous irradiation;
  • Jet pulverization Open the ultraviolet irradiation box, take out the above tray, and put the irradiated PTFE into the airflow pulverizing system, and after fully pulverizing, obtain the poly 4 with the particle diameter of 0.2-5 ⁇ m. Ultrafine powder of vinyl fluoride.
  • the above airflow pulverizing system comprises a jet mill, a cyclone, a dust collector and an induced draft fan.
  • the jet mill has a Laval nozzle, a pulverizing chamber, and a grading zone, and the compressed air is injected into the pulverizing chamber at a high speed through the nozzle, and the PTFE raw material irradiated at the intersection of the plurality of high-pressure air streams is repeatedly collided.
  • rubbing, shearing and pulverizing the pulverized PTFE moves with the ascending airflow to the classification zone under the action of the induced draft fan, and the coarse and fine polytetrafluoroethylene particles are made under the strong centrifugal force generated by the high-speed rotating classification turbine.
  • fine particles meeting the particle size requirements are collected into a cyclone or a dust collector.
  • the cyclone collects coarser particles in the fine particles. A small portion of the ultrafine particles are collected by the dust collector, and the coarse particles are lowered to the crushing zone to continue to be crushed.
  • the electrodeless lamp is used because the electrodeless start is fast, and the voltage drop loss at the startup can be avoided, and the service life is long, and the service life of 5-6 years is obtained, so that the cost of the method is lower.
  • a method for preparing PTFE ultrafine powder by combining ultraviolet light with ozone and carbon tetrachloride comprising the following steps:
  • Quenching treatment The dry polytetrafluoroethylene raw material is packaged in a low temperature resistant container and placed in liquid nitrogen, and then taken out after being quenched to make the polytetrafluoroethylene raw material easier to be pulverized;
  • the low temperature treated polytetrafluoroethylene raw material is pulverized by a pulverizer, and the pulverized particle size is 100-1000 ⁇ m;
  • UV irradiation box is sealed, and four 400W wavelength-infinite lamps with a wavelength of 253.7 nm are opened at the top of the box for continuous irradiation for 10 hours; 7) Exhaust: After the irradiation is completed, open the exhaust mechanism of the above ultraviolet irradiation box to discharge the exhaust gas generated during the irradiation;
  • Jet pulverization Open the ultraviolet irradiation box, take out the above tray, and put the irradiated PTFE into the airflow pulverizing system, and after fully pulverizing, obtain the poly 4 with the particle diameter of 0.2-5 ⁇ m. Ultrafine powder of vinyl fluoride.
  • the above airflow pulverizing system comprises a jet mill, a cyclone, a dust collector and an induced draft fan.
  • the jet mill has a gas flow nozzle, a pulverizing chamber, a grading zone, and the compressed air enters the nozzle through a filter drying device in front of the nozzle, and then is injected into the pulverizing chamber at a high speed, and the irradiated at the intersection of the plurality of high pressure gas streams
  • the PTFE raw material is repeatedly crushed, rubbed, sheared and pulverized.
  • the pulverized polytetrafluoroethylene moves with the ascending airflow to the classification zone under the action of the induced draft fan, and is under the strong centrifugal force generated by the high-speed rotating classification turbine.
  • the fine particles meeting the particle size requirements are collected into the cyclone or the dust collector, the cyclone collects the coarse particles in the fine particles, and a small part of the ultrafine particles are collected by the dust collector, and the coarse particles are reduced. Continue to smash into the crushing area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Disintegrating Or Milling (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种紫外线结合臭氧和四氯化碳制备聚四氟乙烯超细粉的方法,其包括以下步骤:将干燥的聚四氟乙烯原料于液氮中急冷后用粉碎机粉碎成粒径为100-1000μm;然后放到紫外线辐照箱的平台上的托盘中,密闭紫外线辐照箱,并向其中喷入臭氧,所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为0.1%-0.5%;开启喷淋装置的控制机构向所述托盘中的聚四氟乙烯原料喷淋CCl4,喷淋的CCl4与所述托盘中聚四氟乙烯原料的重量比为3%-8%;用紫外线连续辐照8-12小时;辐照完毕,排出废气;取出并放入气流粉碎系统,充分粉碎即可得到粒径在0.2-5μm的聚四氟乙烯超细粉。

Description

紫外线结合臭氧和四氯化碳制备 PTFE超细粉的方法 技术领域 本发明涉及聚四氟乙烯超细粉的制备方法, 具体而言, 涉及紫外线辐照聚 四氟乙烯并结合臭氧和四氯化碳制备聚四氟乙烯超细粉的方法。
背景技术 聚四氟乙烯超细粉要求平均粒径小于书 5 μ ιη, 比表面大于 10m2/g, 摩擦系数 0.06〜0.07, 润滑性好, 能很好地分散在许多材料中。可用作塑料、橡胶、 油墨、 涂料、 润滑油脂的防黏、 减摩、 阻燃添加剂, 也可作干性润滑剂制成气溶胶等。
PTFE超细粉产品纯度 100%, 分子量低于 1万以下, 粒径在 0.5-15 μ m的
PTFE超细粉系列, 不仅保持着聚四氟乙烯原有的所有优良性能, 还具有许多独 特的性能: 如无自凝聚性、 无静电效应、 相溶性好、 分子量低、 分散性好、 自 润滑性高、 摩擦系数降低明显等等。 聚四氟乙超细超细粉可以单独作固体润滑剂使用, 也可以作为塑料、 橡胶、 涂料、 油墨、 润滑油、 润滑脂等的添加剂。 与塑料或橡胶混合时可用各种典型 的粉末加工方法, 如共混等, 加入量为 5〜20%, 在油和油脂中添加聚四氟乙烯 超细粉, 可降低摩擦系数, 只要加百分之几, 就可提高润滑油的寿命。 其有机 溶剂分散液还可作脱模剂。 聚四氟乙烯的耐辐射性能较差(1000Gy), 受高能辐射后引起降解, 所以一 般利用电子束、 CO-60 Y射线辐照聚四氟乙烯原料, 然后再通过气流粉碎器将辐 照过的聚四氟乙烯原料粉碎成粒径较小的聚四氟乙烯超细粉。 但是, 利用电子束、 CO-60 Y射线辐射设备辐照的生产成本很高, 而高标准 的安全防护需要, 进一歩增加了生产成本。 因此, 市场迫切的需要一种既能高 效的生产聚四氟乙烯超细粉, 又能够有效降低成本的生产技术。 四氯化碳 (化学式: CC14), 也称四氯甲垸或氯垸, 是一种无色、 易挥发、 不易燃的液体, 沸点 76.8°C, 蒸气压 15.26kPa(25°C), 蒸气密度 5.3g/L。 由于其 化学性质稳定, 在紫外辐照下降解产生负氧离子, 负氧离子不稳定, 进一歩产 生臭氧。
臭氧是氧的同素异形体, 在常温下, 它是一种有特殊臭味的蓝色气体, 不 溶于四氯化碳。 臭氧具有很强的氧化性, 易分解, 在分解过程中产生的羟基自 由基 (.OH) 具有极强的氧化能力。 发明内容 本发明的目的在于,提供了一种紫外线结合臭氧和四氯化碳制备 PTFE超细 粉的方法, 本发明的方法在同等辐照剂量下, 能够显著提高聚四氟乙烯的降解 率, 不仅提高了聚四氟乙烯超细粉的生产效率, 还明显降低生产成本。
本发明所提供的紫外线结合臭氧和四氯化碳制备 PTFE超细粉的方法,主要 包括以下歩骤:
1 )将干燥地聚四氟乙烯原料用耐低温容器包装后置于液氮中,急冷后取出;
2)将所述急冷处理后的聚四氟乙烯原料用粉碎机进行粉碎, 粉碎后粒径为 100-1000 μ ηΐ;
3 ) 将所述粉碎后的聚四氟乙烯原料放到紫外线辐照箱的平台上的托盘中, 所述托盘中聚四氟乙烯原料的厚度为 200mm-300mm;
4) 密闭所述紫外线辐照箱, 开启臭氧发生装置, 并通过喷嘴向所述辐照箱 中喷入臭氧, 所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为 0.1%-0.5%;
5 )开启喷淋装置的控制机构向所述托盘中的聚四氟乙烯原料喷淋 CC14, 所 述喷淋的 CC14与所述托盘中聚四氟乙烯原料的重量比为 3%-8%;
6) 开启紫外线发生装置, 连续辐照 8-12小时;
7) 辐照完毕后, 打开上述紫外线辐照箱的排气机构, 将辐照过程中产生的 废气排出;
8) 打开所述紫外线辐照箱, 取出上述托盘, 并将辐照后的聚四氟乙烯放入 气流粉碎系统, 经过充分粉碎, 得到粒径在 0.2-5 μ ιη的聚四氟乙烯超细粉。 进一歩地, 所述紫外线辐照箱的箱体内设有紫外线发生装置, 且紫外线辐 照箱的箱体内底部为一平台, 所述紫外线辐照箱一侧设有箱门, 且在箱体上设 置有至少 1个排气机构, 至少 1个喷淋装置以及至少 1个喷嘴, 所述喷淋装置 的控制机构位于箱子外侧。
进一歩地, 所述紫外线发生装置包括 4 个或 5 个无极灯, 所述无极灯为 400 W, 波长为 184.9nm或 253.7nm。 进一歩地, 所述排气机构在辐照过程中为密闭状态, 在辐照结束后为开启 状态。
进一歩地, 所述喷淋装置为自动喷雾系统, 所述自动喷雾系统设置为根据 托盘中聚四氟乙烯原料的重量自动喷淋设定的重量比的 CC14
进一歩地, 所述喷淋的 CC14与所述托盘中聚四氟乙烯原料的重量比为 5%, 所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为 5%。
进一歩地, 所述气流粉碎系统包含气流粉碎机, 所述气流粉碎机包含气流 喷嘴、 粉碎腔, 压缩空气通过喷嘴高速喷射入粉碎腔, 在多股高压气流的交汇 点处, 经辐照过的所述聚四氟乙烯原料被反复碰撞、 磨擦、 剪切而粉碎。
进一歩地, 所述气流粉碎系统还包含:
旋风分离器、 除尘器和引风机;
所述气流粉碎机还包含分级区, 在粉碎腔粉碎后的聚四氟乙烯在引风机作 用下运动至分级区, 在分级轮作用下, 使聚四氟乙烯颗粒按粒度大小分离, 符 合粒度要求的细颗粒通过分级轮进入旋风分离器或除尘器进行收集, 旋风分离 器收集细颗粒中的较粗颗粒, 少部分超细颗粒由除尘器收集, 不符合粒度要求 的粗颗粒下降至粉碎腔继续粉碎。
进一歩地, 所述气流粉碎机的气流喷嘴为拉瓦尔喷嘴。
进一歩地, 所述气流粉碎机具有干燥过滤装置, 所述干燥过滤装置位于喷 嘴前。
本发明利用四氯化碳易挥发的特点, 将四氯化碳喷淋到聚四氟乙烯的表面, 其挥发后形成的气态四氯化碳由于密度较大会在聚四氟乙烯周围形成惰性气体 层, 使聚四氟乙烯与空气隔离, 防止了在紫外光照射下产生的臭氧、 活性氧离 子等与聚四氟乙烯的反应, 进一歩提高了聚四氟乙烯超细粉的质量。 采用上述技术方案, 本发明既能高效的生产聚四氟乙烯超细粉, 又能够有 效降低成本的生产技术, 同时由于利用四氯化碳挥发将聚四氟乙烯原料与空气 隔离, 节省了辐照前密封聚四氟乙烯原料的歩骤, 进一歩降低了生产成本, 提 高了聚四氟乙烯超细粉的质量。 具体实施方式 为了使本发明目的、 技术方案及优点更加清楚明白, 下面结合实施例, 对 本发明进行进一歩详细说明。 应当理解, 此处所描述的具体实施例仅用以解释 本发明, 并非用于限定本发明。
本发明提供的紫外线结合臭氧和四氯化碳制备 PTFE超细粉的方法,其歩骤 包含:
1 ) 急冷处理: 将干燥地聚四氟乙烯原料用耐低温容器包装后置于液氮中, 急冷后取出;
2) 初歩粉碎: 将所述低温处理后的聚四氟乙烯原料用粉碎机进行粉碎 (粉 碎前需将原料移出耐低温容器), 粉碎后粒径为 100-1000 μ ηι;
3 ) 将所述粉碎后的聚四氟乙烯原料放到紫外线辐照箱的平台上的托盘中;
4) 密闭所述紫外线辐照箱, 开启臭氧发生装置, 并通过喷嘴向所述辐照箱 中喷入臭氧, 所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为 0.1%-0.5%;
5 )开启喷淋装置的控制机构向所述托盘中的聚四氟乙烯原料喷淋 CC14, 所 述喷淋的 CC14与所述托盘中聚四氟乙烯原料的重量比为 3%-8%;
6) 辐照: 开启紫外线发生装置, 连续辐照 8-12小时;
7) 排气: 在辐照完毕后, 打开上述紫外线辐照箱的排气机构, 将辐照过程 中产生的废气排出;
8) 气流粉碎: 打开所述紫外线辐照箱, 取出上述托盘, 并将辐照后的聚四 氟乙烯放入气流粉碎系统, 经过充分粉碎即可得到粒径在 0.2-5 μ m的聚四氟乙 烯超细粉。 其中,所述紫外线辐照箱优选为外形尺寸约为 2000 X 10000 X 1000 mm的箱 子, 紫外线发生装置安装在箱体内顶部, 箱体内底部为一平台, 紫外线辐照箱 侧面设置有门 (可打开放置和取出物料), 在箱体顶部具有至少 1个排气机构, 至少 1个喷淋装置以及至少 1个喷嘴, 所述喷淋装置的控制机构位于箱子外侧。 其中, 所述紫外线发生装置优选包括 4-5 个 400W, 波长设定为 184.9nm或 253.7nm的无极灯,所述排气机构进一歩优选为,可以在辐照过程中是密闭状态, 在辐照结束后为开启状态, 所述喷淋装置优选为自动喷雾系统, 所述自动喷雾 系统设置为根据托盘中聚四氟乙烯原料的重量自动喷淋设定的重量比的 CC14, 进一歩优选为所述喷淋的 CC14与所述托盘中聚四氟乙烯原料的重量比为 5%, 所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为 0.3%。
其中, 所述气流粉碎系统包含气流粉碎机, 所述气流粉碎机包含气流喷嘴、 粉碎腔, 压缩空气通过喷嘴高速喷射入粉碎腔, 在多股高压气流的交汇点处, 经辐照过的所述聚四氟乙烯原料被反复碰撞、 磨擦、 剪切而粉碎。
所述气流粉碎系统还可以包括旋风分离器、 除尘器和引风机。 所述气流粉 碎机优选为具有气流喷嘴、 粉碎腔 (粉碎区)、 分级区。 压缩空气通过喷嘴高速 喷射入粉碎腔, 形成多股交叉的高压气流, 在多股高压气流的交汇点处, 经辐 照过的聚四氟乙烯原料被反复碰撞、 磨擦、 剪切而粉碎, 粉碎后的聚四氟乙烯 在引风机抽力作用下随上升气流运动至分级区, 在高速旋转的分级涡轮产生的 强大离心力作用下, 根据粗细度 (粒径大小) 使聚四氟乙烯颗粒分离, 符合粒 度要求(小于 5 μ ηι) 的细颗粒通过分级轮进入旋风分离器或除尘器收集, 旋风 分离器收集细颗粒中的较粗颗粒, 少部分超细颗粒由除尘器收集, 粗颗粒下降 至粉碎腔继续粉碎。 所述气流粉碎机的气流喷嘴优选为拉瓦尔喷嘴, 为保证粉 碎效果更好, 还可以在喷嘴前安置过滤干燥装置 (进一歩减小待粉碎颗粒的湿 度)。
实施例一
一种紫外线结合臭氧和四氯化碳制备 PTFE超细粉的方法, 包括下列歩骤:
1 ) 急冷处理: 将干燥地聚四氟乙烯原料用耐低温容器包装后置于液氮中, 急冷后取出, 使聚四氟乙烯原料更易于粉碎;
2) 初歩粉碎: 将所述低温处理后的聚四氟乙烯原料用粉碎机进行粉碎, 粉 碎粒径为 100-1000 μ ιη;
3 ) 将所述粉碎后的聚四氟乙烯原料放到紫外线辐照箱的平台上的托盘中, 所述托盘中聚四氟乙烯原料的厚度为 200mm-300mm;
4) 密闭所述紫外线辐照箱, 开启臭氧发生装置, 并通过喷嘴向所述辐照箱 中喷入臭氧, 所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为 0.3%;
5 )开启喷淋装置的控制机构向所述托盘中的聚四氟乙烯原料喷淋 CC14, 所 述喷淋的 CC14与所述托盘中聚四氟乙烯原料的重量比为 3%;
6) 紫外线辐照: 开启箱子顶部的 5个紫外线准分子灯 (优选 400W, 且紫 外线准分子灯的波长为 184.9nm或 253.7nm), 连续辐照 8小时;
7) 排气: 在辐照完毕后, 打开上述紫外线辐照箱的排气机构, 将辐照过程 中产生的废气排出;
8) 气流粉碎: 打开所述紫外线辐照箱, 取出上述托盘, 并将辐照后的聚四 氟乙烯放入气流粉碎系统, 经过充分粉碎即可得到粒径在 0.2-5 μ m的聚四氟乙 烯超细粉。
实施例二
一种紫外线结合臭氧和四氯化碳制备 PTFE超细粉的方法, 包括下列歩骤:
1 ) 急冷处理: 将干燥地聚四氟乙烯原料用耐低温容器包装后置于液氮中, 急冷后取出, 使聚四氟乙烯原料更易于粉碎;
2) 初歩粉碎: 将所述低温处理后的聚四氟乙烯原料用粉碎机进行粉碎, 粉 碎粒径为 100-1000 μ ιη;
3 ) 将所述粉碎后的聚四氟乙烯原料放到紫外线辐照箱的平台上的托盘中;
4) 密闭所述紫外线辐照箱, 开启臭氧发生装置, 并通过喷嘴向所述辐照箱 中喷入臭氧, 所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为 0.1%;
5 )开启喷淋装置的控制机构向所述托盘中的聚四氟乙烯原料喷淋 CC14, 所 述喷淋的 CC14与所述托盘中聚四氟乙烯原料的重量比为 8%;
6) 紫外线辐照: 开启设置在箱子四壁的 4个低压汞灯 (优选 400W, 且波 长均为 253.7nm), 连续辐照 10小时; 7) 排气: 在辐照完毕后, 打开上述紫外线辐照箱的排气机构, 将辐照过程 中产生的废气排出;
8) 气流粉碎: 打开所述紫外线辐照箱, 取出上述托盘, 并将辐照后的聚四 氟乙烯放入气流粉碎系统, 经过充分粉碎即可得到粒径在 0.2-5 μ m的聚四氟乙 烯超细粉。
上述粉碎过程包括气流粉碎和成品收集, 气流粉碎由气流粉碎机和弓 I风机 等实现, 具体为气流粉碎系统包含气流粉碎机、 旋风分离器、 除尘器和引风机。
所述气流粉碎机具有气流喷嘴、 粉碎腔、 分级区, 压缩空气通过喷嘴高速 喷射到粉碎腔, 在多股高压气流的交汇点处经辐照过的所述聚四氟乙烯原料被 反复碰撞、 磨擦、 剪切而粉碎, 粉碎后的聚四氟乙烯在引风机抽力作用下随上 升气流运动至分级区, 在高速旋转的分级涡轮产生的强大离心力作用下, 使粗 细聚四氟乙烯颗粒分离, 符合粒度要求的细颗粒进入旋风分离器或除尘器收集, 旋风分离器收集细颗粒中的较粗颗粒, 少部分超细颗粒由除尘器收集, 粗颗粒 下降至粉碎区继续粉碎。
实施例三
一种紫外线结合臭氧和四氯化碳制备 PTFE超细粉的方法, 包括下列歩骤:
1 ) 急冷处理: 将干燥地聚四氟乙烯原料用耐低温容器包装后置于液氮中, 急冷后取出, 使聚四氟乙烯原料更易于粉碎;
2) 初歩粉碎: 将所述低温处理后的聚四氟乙烯原料用粉碎机进行粉碎, 粉 碎粒径为 100-1000 μ ιη;
3 ) 将所述粉碎后的聚四氟乙烯原料放到紫外线辐照箱的平台上的托盘中;
4) 密闭所述紫外线辐照箱, 开启臭氧发生装置, 并通过喷嘴向所述辐照箱 中喷入臭氧, 所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为 0.5%;
5 )开启喷淋装置的控制机构向所述托盘中的聚四氟乙烯原料喷淋 CC14, 所 述喷淋的 CC14与所述托盘中聚四氟乙烯原料的重量比为 5%;
6) 紫外线辐照: 密闭所述紫外线辐照箱, 并开启 4个分别位于箱子顶部和 四壁的 300W的强紫外线高压水银灯, 连续辐照 12小时; 7) 排气: 在辐照完毕后, 打开上述紫外线辐照箱的排气机构, 将辐照过程 中产生的废气排出;
8) 气流粉碎: 打开所述紫外线辐照箱, 取出上述托盘, 并将辐照后的聚四 氟乙烯放入气流粉碎系统, 经过充分粉碎即可得到粒径在 0.2-5 μ m的聚四氟乙 烯超细粉。
上述气流粉碎系统包含气流粉碎机、 旋风分离器、 除尘器和引风机。
所述气流粉碎机具有气流喷嘴、 粉碎腔、 分级区, 压缩空气通过喷嘴高速 喷射到粉碎腔, 在多股高压气流的交汇点处经辐照过的所述聚四氟乙烯原料被 反复碰撞、 磨擦、 剪切而粉碎, 粉碎后的聚四氟乙烯在引风机抽力作用下随上 升气流运动至分级区, 在高速旋转的分级涡轮产生的强大离心力作用下, 使粗 细聚四氟乙烯颗粒分离, 符合粒度要求的细颗粒进入旋风分离器或除尘器收集, 旋风分离器收集细颗粒中的较粗颗粒, 少部分超细颗粒由除尘器收集, 粗颗粒 下降至粉碎区继续粉碎。
实施例四
一种紫外线结合臭氧和四氯化碳制备 PTFE超细粉的方法, 包括下列歩骤:
1 ) 急冷处理: 将干燥地聚四氟乙烯原料用耐低温容器包装后置于液氮中, 急冷后取出, 使聚四氟乙烯原料更易于粉碎;
2) 初歩粉碎: 将所述低温处理后的聚四氟乙烯原料用粉碎机进行粉碎, 粉 碎粒径为 100-1000 μ ιη;
3 ) 将所述粉碎后的聚四氟乙烯原料放到紫外线辐照箱的平台上的托盘中;
4) 密闭所述紫外线辐照箱, 开启臭氧发生装置, 并通过喷嘴向所述辐照箱 中喷入臭氧, 所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为 0.3%;
5 )开启喷淋装置的控制机构向所述托盘中的聚四氟乙烯原料喷淋 CC14, 所 述喷淋的 CC14与所述托盘中聚四氟乙烯原料的重量比为 5%;
6) 紫外线辐照: 密闭所述紫外线辐照箱, 并开启 5个箱子顶部的 400W波 长设定为 184.9nm的无极灯, 连续辐照 12小时;
7) 排气: 在辐照完毕后, 打开上述紫外线辐照箱的排气机构, 将辐照过程 中产生的废气排出;
8) 气流粉碎: 打开所述紫外线辐照箱, 取出上述托盘, 并将辐照后的聚四 氟乙烯放入气流粉碎系统, 经过充分粉碎即可得到粒径在 0.2-5 μ m的聚四氟乙 烯超细粉。
上述气流粉碎系统包含气流粉碎机、 旋风分离器、 除尘器和引风机。
所述气流粉碎机具有拉瓦尔喷嘴、 粉碎腔、 分级区, 压缩空气通过喷嘴高 速喷射入粉碎腔, 在多股高压气流的交汇点处经辐照过的所述聚四氟乙烯原料 被反复碰撞、 磨擦、 剪切而粉碎, 粉碎后的聚四氟乙烯在引风机抽力作用下随 上升气流运动至分级区, 在高速旋转的分级涡轮产生的强大离心力作用下, 使 粗细聚四氟乙烯颗粒分离, 符合粒度要求的细颗粒进入旋风分离器或除尘器收 集, 旋风分离器收集细颗粒中的较粗颗粒, 少部分超细颗粒由除尘器收集, 粗 颗粒下降至粉碎区继续粉碎。
本实施例中采用无极灯由于无电极启动快, 且可以避免启动时的压降损耗, 使用寿命较长, 可达 5-6年的使用寿命, 使本方法的成本更低。
实施例五
一种紫外线结合臭氧和四氯化碳制备 PTFE超细粉的方法, 包括下列歩骤:
1 ) 急冷处理: 将干燥地聚四氟乙烯原料用耐低温容器包装后置于液氮中, 急冷后取出, 使聚四氟乙烯原料更易于粉碎;
2) 初歩粉碎: 将所述低温处理后的聚四氟乙烯原料用粉碎机进行粉碎, 粉 碎粒径为 100-1000 μ ιη;
3 ) 将所述粉碎后的聚四氟乙烯原料放到紫外线辐照箱的平台上的托盘中;
4) 密闭所述紫外线辐照箱, 开启臭氧发生装置, 并通过喷嘴向所述辐照箱 中喷入臭氧, 所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为 0.5%;
5 )开启喷淋装置的控制机构向所述托盘中的聚四氟乙烯原料喷淋 CC14, 所 述喷淋的 CC14与所述托盘中聚四氟乙烯原料的重量比为 3%;
6) 紫外线辐照: 密闭所述紫外线辐照箱, 并开启箱子顶部的 4个 400W波 长设定为 253.7nm的无极灯, 连续辐照 10小时; 7) 排气: 在辐照完毕后, 打开上述紫外线辐照箱的排气机构, 将辐照过程 中产生的废气排出;
8) 气流粉碎: 打开所述紫外线辐照箱, 取出上述托盘, 并将辐照后的聚四 氟乙烯放入气流粉碎系统, 经过充分粉碎即可得到粒径在 0.2-5 μ m的聚四氟乙 烯超细粉。
上述气流粉碎系统包含气流粉碎机、 旋风分离器、 除尘器和引风机。
所述气流粉碎机具有气流喷嘴、 粉碎腔、 分级区, 压缩空气通过喷嘴前的 过滤干燥装置进入喷嘴, 然后高速喷射入粉碎腔, 在多股高压气流的交汇点处 经辐照过的所述聚四氟乙烯原料被反复碰撞、 磨擦、 剪切而粉碎, 粉碎后的聚 四氟乙烯在引风机抽力作用下随上升气流运动至分级区, 在高速旋转的分级涡 轮产生的强大离心力作用下, 使粗细聚四氟乙烯颗粒分离, 符合粒度要求的细 颗粒进入旋风分离器或除尘器收集, 旋风分离器收集细颗粒中的较粗颗粒, 少 部分超细颗粒由除尘器收集, 粗颗粒下降至粉碎区继续粉碎。
以上所述仅为本发明的较佳实施例, 并非用来限定本发明的实施范围; 如 果不脱离本发明的精神和范围, 对本发明进行修改或者等同替换, 均应涵盖在 本发明权利要求的保护范围当中。

Claims

权 利 要 求 书
1. 一种紫外线结合臭氧和四氯化碳制备 PTFE超细粉的方法, 其特征在于, 包含以下歩骤:
1 )将干燥地聚四氟乙烯原料用耐低温容器包装后置于液氮中,急冷后取出;
2)将所述急冷处理后的聚四氟乙烯原料用粉碎机进行粉碎, 粉碎后粒径为 100-1000 μ m;
3 ) 将所述粉碎后的聚四氟乙烯原料放到紫外线辐照箱的平台上的托盘中, 所述托盘中聚四氟乙烯原料的厚度为 200mm-300mm;
4) 密闭所述紫外线辐照箱, 开启臭氧发生装置, 并通过喷嘴向所述辐照箱 中喷入臭氧, 所述喷入的臭氧与所述托盘中聚四氟乙烯原料的重量比为 0.1%-0.5%;
5 )开启喷淋装置的控制机构向所述托盘中的聚四氟乙烯原料喷淋 CC14, 所 述喷淋的 CC14与所述托盘中聚四氟乙烯原料的重量比为 3%-8%;
6) 开启紫外线发生装置, 连续辐照 8-12小时;
7 ) 辐照完毕后, 打开上述紫外线辐照箱的排气机构, 将辐照过程中产生的 废气排出;
8 ) 打开所述紫外线辐照箱, 取出上述托盘, 并将辐照后的聚四氟乙烯放入 气流粉碎系统, 经过充分粉碎, 得到粒径在 0.2-5 μ ιη的聚四氟乙烯超细粉。
2. 如权利要求 1所述的方法, 其特征在于, 所述紫外线辐照箱的箱体内设 有紫外线发生装置, 且紫外线辐照箱的箱体内底部为一平台, 所述紫外线辐照 箱一侧设有箱门, 且在箱体上设置有至少 1个排气机构, 至少 1个喷淋装置以 及至少一个喷嘴, 所述喷淋装置的控制机构位于箱子外侧。
3. 如权利要求 2所述的方法, 其特征在于, 所述紫外线发生装置包括 4个 或 5个无极灯, 所述无极灯为 400W, 波长为 184.9nm或 253.7nm。
4. 如权利要求 2所述的方法, 其特征在于, 所述排气机构在辐照过程中为 密闭状态, 在辐照结束后为开启状态。
5. 如权利要求 1所述的方法, 其特征在于, 所述喷淋装置为自动喷雾系统, 所述自动喷雾系统设置为根据托盘中聚四氟乙烯原料的重量自动喷淋设定的重 量比的 CC14
6. 如权利要求 5所述的方法, 其特征在于, 所述喷淋的 CC14与所述托盘中 聚四氟乙烯原料的重量比为 5%。
7. 如权利要求 1所述的方法, 其特征在于, 所述气流粉碎系统包含气流粉 碎机, 所述气流粉碎机包含气流喷嘴、 粉碎腔, 压縮空气通过喷嘴高速喷射入 粉碎腔, 在多股高压气流的交汇点处, 经辐照过的所述聚四氟乙烯原料被反复 碰撞、 磨擦、 剪切而粉碎。
8. 如权利要求 7所述的方法, 其特征在于, 所述气流粉碎系统还包含: 旋风分离器、 除尘器和引风机;
所述气流粉碎机还包含分级区, 在粉碎腔粉碎后的聚四氟乙烯在引风机作 用下运动至分级区, 在分级轮作用下, 使聚四氟乙烯颗粒按粒度大小分离, 符 合粒度要求的细颗粒通过分级轮进入旋风分离器或除尘器进行收集, 不符合粒 度要求的粗颗粒下降至粉碎腔继续粉碎。
9. 如权利要求 8所述的方法, 其特征在于, 所述气流粉碎机的气流喷嘴为 拉瓦尔喷嘴。
10. 如权利要求 1-9中任一权利要求所述的方法, 其特征在于, 所述气流粉 碎机具有干燥过滤装置, 所述干燥过滤装置位于喷嘴前。
PCT/CN2013/000799 2013-04-03 2013-06-28 紫外线结合臭氧和四氯化碳制备ptfe超细粉的方法 WO2014161114A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310116512.XA CN103193997B (zh) 2013-04-03 2013-04-03 紫外线结合臭氧和四氯化碳制备ptfe超细粉的方法
CN201310116512.X 2013-04-03

Publications (1)

Publication Number Publication Date
WO2014161114A1 true WO2014161114A1 (zh) 2014-10-09

Family

ID=48716823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000799 WO2014161114A1 (zh) 2013-04-03 2013-06-28 紫外线结合臭氧和四氯化碳制备ptfe超细粉的方法

Country Status (2)

Country Link
CN (1) CN103193997B (zh)
WO (1) WO2014161114A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878252A (zh) * 1972-01-20 1973-10-20 Japan Atomic Energy Res Inst
JPS4922449A (zh) * 1972-06-22 1974-02-27
US5859086A (en) * 1996-08-07 1999-01-12 Competitive Technologies Of Pa, Inc. Light directed modification fluoropolymers
CN1646610A (zh) * 2002-04-23 2005-07-27 劳雷尔产品有限公司 处理含氟聚合物颗粒的方法和其产品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327797A (ja) * 1995-05-29 1996-12-13 Sumitomo Heavy Ind Ltd 放射光によるテフロン微細加工装置
CN100523687C (zh) * 2008-01-15 2009-08-05 天津市工业微生物研究所 采用微波对高粘度多聚物进行干燥的方法
CN101824158A (zh) * 2009-03-03 2010-09-08 中国科学院上海应用物理研究所 一种用电子束辐照制备交联聚四氟乙烯的方法
CN102672968A (zh) * 2012-05-07 2012-09-19 四川久远科技股份有限公司 一种聚四氟乙烯辐照裂解制造超细粉的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878252A (zh) * 1972-01-20 1973-10-20 Japan Atomic Energy Res Inst
JPS4922449A (zh) * 1972-06-22 1974-02-27
US5859086A (en) * 1996-08-07 1999-01-12 Competitive Technologies Of Pa, Inc. Light directed modification fluoropolymers
CN1646610A (zh) * 2002-04-23 2005-07-27 劳雷尔产品有限公司 处理含氟聚合物颗粒的方法和其产品

Also Published As

Publication number Publication date
CN103193997A (zh) 2013-07-10
CN103193997B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
Wang et al. Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU)
CN102672968A (zh) 一种聚四氟乙烯辐照裂解制造超细粉的方法
US20110180750A1 (en) Method for preparing a suspension of nanoparticulate metal borides
CN104043320A (zh) 一种光催化等离子体结合超声波处理室内空气污染的方法
CN104258707B (zh) 一种含有voc气体的处理系统及方法
WO2014161113A1 (zh) 紫外线结合臭氧和双氧水制备ptfe超细粉的方法
WO2014161114A1 (zh) 紫外线结合臭氧和四氯化碳制备ptfe超细粉的方法
CN107722149A (zh) 一种聚四氟乙烯微粉及其制备方法
CN103170401B (zh) 紫外线结合双氧水和四氯化碳制备ptfe超细粉的方法
CN103252277B (zh) 电子束结合双氧水和四氯化碳制备ptfe超细粉的方法
CN103170399B (zh) 紫外线结合四氯化碳制备ptfe超细粉的方法
KR20200090887A (ko) 플라즈마 처리 장치를 세정하기 위한 방법 및 장치
CN103252279B (zh) 电子束结合臭氧和双氧水制备ptfe超细粉的方法
CN103252278B (zh) 一种利用电子束制备ptfe超细粉的方法
CN103191819B (zh) 电子束结合臭氧制备ptfe超细粉的方法
CN103191820A (zh) 紫外线结合臭氧制备ptfe超细粉的方法
CN103183834B (zh) γ射线结合双氧水和四氯化碳制备PTFE超细粉的方法
CN103223369B (zh) 紫外线制备ptfe超细粉的方法
CN103224636B (zh) 电子束结合臭氧和四氯化碳制备ptfe超细粉的方法
CN110341070A (zh) 一种紫外线强氧化氛围制备ptfe超细粉的方法
CN103182342B (zh) γ射线结合臭氧制备PTFE超细粉的方法
CN103193996A (zh) 紫外线结合双氧水制备ptfe超细粉的方法
WO2014161112A1 (zh) γ射线结合臭氧和四氯化碳制备PTFE超细粉的方法
CN103191817A (zh) γ射线结合四氯化碳制备PTFE超细粉的方法
CN103205003A (zh) γ射线结合双氧水制备PTFE超细粉的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880931

Country of ref document: EP

Kind code of ref document: A1