[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014156734A1 - 積層体、積層体の製造方法及び多層基板 - Google Patents

積層体、積層体の製造方法及び多層基板 Download PDF

Info

Publication number
WO2014156734A1
WO2014156734A1 PCT/JP2014/056958 JP2014056958W WO2014156734A1 WO 2014156734 A1 WO2014156734 A1 WO 2014156734A1 JP 2014056958 W JP2014056958 W JP 2014056958W WO 2014156734 A1 WO2014156734 A1 WO 2014156734A1
Authority
WO
WIPO (PCT)
Prior art keywords
cured product
metal layer
epoxy resin
laminate
embedded
Prior art date
Application number
PCT/JP2014/056958
Other languages
English (en)
French (fr)
Inventor
照久 田中
達史 林
智輝 國川
友章 片桐
玲夫奈 横田
俊章 田中
大輔 鳥取
伸浩 森
白波瀬 和孝
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201480002442.8A priority Critical patent/CN104640698B/zh
Priority to JP2015508306A priority patent/JP5838009B2/ja
Priority to KR1020157007290A priority patent/KR102021641B1/ko
Publication of WO2014156734A1 publication Critical patent/WO2014156734A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a laminate comprising a cured product and a metal layer laminated on the surface of the cured product, and a method for producing the laminate.
  • the present invention also relates to a multilayer substrate using the above laminate.
  • a resin composition is used in order to form an insulating layer for insulating inner layers or to form an insulating layer located in a surface layer portion.
  • metal wiring is often formed on the surface of the insulating layer.
  • Patent Document 1 discloses a resin composition containing a cyanate ester resin and a naphthylene ether type epoxy resin.
  • This resin composition may contain an inorganic filler.
  • the roughness of the surface of the insulating layer can be reduced, a plated conductor layer having sufficient peel strength can be formed on the insulating layer, and the dielectric of the insulating layer can be formed. It is described that the resin composition which can make a characteristic and a coefficient of thermal expansion favorable can be provided.
  • the adhesive strength between the insulating layer and the metal wiring is high.
  • the adhesive strength is preferably 4 N / cm or more.
  • the insulating layer it is desired that a dimension does not change a lot with heat. That is, it is desirable that the insulating layer has a low coefficient of linear expansion.
  • Patent Document 1 if only a conventional resin composition as described in Patent Document 1 is used, it is difficult to sufficiently increase the adhesive strength between the cured product obtained by curing the resin composition and the metal wiring. Furthermore, the dimensional change due to heat of the cured product may not be sufficiently reduced, and the linear expansion coefficient of the insulating layer may be relatively high.
  • An object of the present invention is to provide a laminate capable of increasing the adhesive strength between a cured product and a metal layer, a method for producing the laminate, and a multilayer substrate using the laminate.
  • a limited object of the present invention is to provide a laminate and a method for producing the laminate that can reduce the dimensional change due to heat of the cured product, and to provide a multilayer substrate using the laminate. .
  • a cured product obtained by curing an epoxy resin material containing an epoxy resin, a curing agent, and an inorganic filler, and a metal layer laminated on the surface of the cured product, Some are embedded in the cured product at a plurality of locations, the maximum depth of the plurality of metal layer portions embedded in the cured product is 0.5 ⁇ m or more, and the curing There is provided a laminate in which the maximum distance between the plurality of metal layer portions embedded in the object is 0.5 ⁇ m or more.
  • an average of two depths of two adjacent metal layer portions among the plurality of metal layer portions embedded in the cured product is D ⁇ m
  • the interval between the two metal layer portions is S ⁇ m
  • the minimum of S / D is 0.15 or more in the whole of the plurality of metal layer portions embedded in the cured product
  • S / D The maximum is 5.0 or less.
  • a plurality of the metal layer portions embedded in the cured product are separated into the cured product by removing the inorganic filler by a roughening treatment.
  • a gap is formed, and a part of the metal layer is embedded in the plurality of gaps.
  • the said roughening process is a wet roughening process.
  • the content of the inorganic filler is 60% by weight or more and 80% by weight or less in the solid content of 100% by weight in the epoxy resin material.
  • the average particle diameter of the inorganic filler contained in the epoxy resin material is 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the inorganic filler is desorbed by a roughening treatment, whereby the cured product is obtained.
  • a step of forming a plurality of voids, and a step of forming a metal layer so as to be laminated on the surface of the cured product and partially embedding in the plurality of voids to obtain a laminate As the laminate, a part of the metal layer is embedded in the cured product at a plurality of locations, and the maximum depth of the plurality of metal layer portions embedded in the cured product is 0.
  • a method for producing a laminate which is 5 ⁇ m or more and obtains a laminate having a maximum interval of 0.5 ⁇ m or more in the whole of the plurality of metal layer portions embedded in the cured product.
  • the roughening treatment is a wet roughening treatment.
  • a multilayer board comprising a circuit board and the above-described laminated body, wherein the laminated body is disposed on the surface of the circuit board from the cured product side.
  • the laminate according to the present invention includes a cured product obtained by curing an epoxy resin material containing an epoxy resin, a curing agent, and an inorganic filler, and a metal layer laminated on the surface of the cured product, and the metal layer Are embedded in the cured product at a plurality of locations, and the maximum depth of the plurality of metal layer portions embedded in the cured product is 0.5 ⁇ m or more, and Since the maximum distance between the plurality of metal layer portions embedded in the cured product is 0.5 ⁇ m or more, the adhesive strength between the cured product and the metal layer can be increased.
  • FIG. 1 is a cross-sectional view schematically showing a laminate according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a multilayer substrate using the laminate according to one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining the depth and interval of the metal layer portion in the laminated body according to one embodiment of the present invention.
  • the laminated body which concerns on this invention is equipped with the hardened
  • a part of the metal layer is embedded in the cured product at a plurality of locations, and 1) the depth of the entire plurality of the metal layer portions embedded in the cured product. 2), and 2) the maximum interval between the plurality of metal layer portions embedded in the cured product is 0.5 ⁇ m or more.
  • the manufacturing method of the laminated body which concerns on this invention uses the hardened
  • a part of the metal layer is embedded in the cured product at a plurality of locations, and the plurality of metal layers are embedded in the cured product.
  • a laminate having a maximum depth of 0.5 ⁇ m or more in the entire portion and a maximum distance of 0.5 ⁇ m or more in the entirety of the plurality of metal layer portions embedded in the cured product is obtained. .
  • the adhesive strength between the cured product and the metal layer can be increased. Furthermore, in the laminate according to the present invention, the dimensional change due to heat of the cured product can be made sufficiently small, and the linear expansion coefficient of the cured product can be made sufficiently low.
  • the metal layer portion embedded in one of the cured products The depth from the interface between the cured product and the metal layer (excluding the portion where the metal layer is embedded in the cured product) to the deepest embedded portion is defined as the depth.
  • the metal layer portions embedded in the two adjacent cured products with respect to the intervals of the plurality of metal layer portions embedded in the cured product.
  • the distance from one embedding center portion to the embedding center portion adjacent to the embedding center portion is defined as the interval between the plurality of metal layer portions embedded in the cured product.
  • the said center part is a center part of the said metal layer part in the interface of the said hardened
  • a method for optimizing the type and content of the inorganic filler examples thereof include a method for optimizing the production conditions (crimping and curing conditions) of the laminate.
  • the depth and interval of the embedded metal layer can be controlled within the above range by setting the average particle size to 0.5 to 1.0 ⁇ m and the content to 60 to 80%. Further, by adjusting the pressure bonding conditions, it is possible to prevent the inorganic filler from flowing out, to control the amount of the inorganic filler on the surface layer, and to set the depth and interval of the embedded metal layer within the above range.
  • the curing conditions if the curing is excessive, the roughening cannot be performed. If the curing is not progressing, the depth and interval of the metal layer cannot be controlled within the above range due to the damage due to the roughening treatment.
  • the depth and interval of the buried metal layer can be controlled within the above range.
  • These methods include: 2) a method for controlling the maximum of the interval between the plurality of metal layer portions embedded in the cured product within the above-mentioned range; and 3) the minimum and maximum of S / D. Is also considered as a method of controlling the value within the above-mentioned range.
  • Methods for optimizing the type and content of the inorganic filler, as well as lamination, as a method for controlling the maximum interval between the plurality of metal layer portions embedded in the cured product within the above-mentioned range For example, a method for optimizing the production conditions (crimping and curing conditions) of the body may be used.
  • the maximum depth of the plurality of metal layer portions embedded in the cured product is preferably 0.8 ⁇ m or more. is there. 1)
  • the maximum upper limit of the depth in the whole of the plurality of metal layer portions embedded in the cured product is not particularly limited. The maximum depth is preferably 5.0 ⁇ m or less. When the maximum depth is not more than the above upper limit, the flash etching property is further improved.
  • the maximum interval between the plurality of metal layer portions embedded in the cured product is preferably 0.7 ⁇ m or more. . 2)
  • the maximum distance is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5.0 ⁇ m or less.
  • an average of two depths of two adjacent metal layer portions is D ⁇ m, and an interval between the two metal layer portions is S ⁇ m.
  • the minimum S / D is preferably 0.15 or more, and the maximum S / D is preferably 5.0 or less. It is.
  • the minimum and maximum S / D of the plurality of metal layer portions embedded in the cured product is the metal embedded in the cured layer in cross-sectional observation in the thickness direction of the cured product. It can be determined by evaluating the layer portion.
  • each adjacent two metal layer portions are spaced from each other by two adjacent ones.
  • the distance from a certain embedding center portion to the embedding center portion adjacent to the embedding center portion is the distance between the metal layer portions embedded in the cured product.
  • the minimum S / D is preferably 0.2 or more. From the viewpoint of further increasing the adhesive strength between the cured product and the metal layer, 3) the maximum S / D is preferably 2.0 or less.
  • FIG. 1 is a cross-sectional view schematically showing a laminate according to an embodiment of the present invention.
  • FIG. 1 shows a cross section in the stacking direction of the stacked body 1.
  • the laminate 1 includes a cured product 2 and a metal layer 3 laminated on the surface of the cured product 2.
  • FIG. 1 the cross section by the thickness direction of hardened
  • a part of the metal layer 3 is embedded in the cured product 2 at a plurality of locations A to D.
  • the cured product 2 has a resin portion 2A and an inorganic filler portion 2B.
  • the metal layer 3 has metal layer portions 3a to 3d embedded in the cured product 2 at a plurality of locations A to D.
  • the depth D1 at the location A, the depth D2 at the location B, the depth D3 at the location C, and the depth D4 at the location D are shown in FIG. Further, the distance S1 of the metal layer portion between the locations A and B, the spacing S2 of the metal layer portion between the locations B and C, and the spacing S3 of the metal layer portion between the locations C and D are given. It was shown in FIG.
  • the depths D1 to D4 are the interfaces between the cured product 2 and the metal layer 3 in the metal layer portions 3a to 3d embedded in the cured product 2 (however, the metal layer 3 is embedded in the cured product 2). This is the depth from the thick line portion L1) in FIG.
  • the intervals S1 to S3 indicate that in the metal layer portions 3a to 3d embedded in the two adjacent cured products 2 from the embedded central portion (thick line portion L2 in FIG. 3) to the embedded central portion adjacent to the embedded central portion. It is the distance to.
  • the intervals between the plurality of metal layer portions 3a to 3d (3a and 3b, 3b and 3c, 3c and 3d) are equal to the two adjacent metal layer portions 3a to 3d embedded in the cured product 2. This is the distance between the metal layer portions 3a to 3d (3a and 3b, 3b and 3c, 3c and 3d).
  • the central portion is the central portion of the metal layer portions 3a to 3d at the interface between the cured product 2 and the metal layer 3.
  • the lower portion of the internal metal layer portion 3a that does not appear at the interface between the cured product 2 and the metal layer 3 is not considered (X in FIG. 3).
  • the minimum and maximum S / D can also be obtained from the above-described depths D1 to D4 and the above-described intervals S1 to S3.
  • the conventional epoxy resin material contains a large amount of inorganic filler, particularly when the conventional epoxy resin material contains 60 wt% or more of the inorganic filler as a solid content, the dimensional change due to heat of the cured product is reduced. Thus, there is a problem that the adhesive strength between the cured product and the metal layer is lowered.
  • the maximum depth of the whole of the plurality of metal layer portions embedded in the cured product In contrast, 1) the maximum depth of the whole of the plurality of metal layer portions embedded in the cured product, and 2) the whole of the plurality of metal layer portions embedded in the cured product.
  • the solid content of the inorganic filler is 60% by weight or more. Even if it is contained, the adhesive strength between the cured product and the metal layer can be increased. Further, by controlling the 3) S / D minimum and maximum as described above, the adhesive strength between the cured product and the metal layer can be more effectively increased.
  • solid content A the content of the inorganic filler in 100% by weight of solid content contained in the epoxy resin material is 60% by weight or more, the heat of the cured product The dimensional change due to is considerably reduced.
  • SAP semi-active method
  • a circuit pattern (such as Cu plating) is formed in a convex shape on the surface of an insulating layer.
  • another insulating layer is laminated on the insulating layer and the circuit pattern.
  • SAP when the content of the inorganic filler in the conventional epoxy resin material is increased, the content of the resin component is relatively decreased, the contact area between the resin component and the circuit is decreased, and the cured product and the circuit There exists a tendency for the adhesive strength of to become low.
  • the average linear expansion coefficient of the cured product is preferably 30 ppm / ° C. or less, more preferably 20 ppm / ° C. or less.
  • the average linear expansion coefficient is equal to or lower than the upper limit, so that the warpage of the circuit board itself is suppressed and the adhesive strength between the cured product and the metal layer is further improved.
  • the glass transition temperature of the cured product is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, preferably 250 ° C. or lower, more preferably 200 ° C. or lower.
  • the glass transition temperature is not less than the above lower limit and not more than the above upper limit, the impact resistance is further improved.
  • the minimum melt viscosity at 50 to 150 ° C. of the epoxy resin material is preferably 5 Pa ⁇ s or more, more preferably 10 Pa ⁇ s or more, preferably 300 Pa ⁇ s or less, more preferably 250 Pa ⁇ s or less, and further preferably 100 Pa. -S or less.
  • the minimum melt viscosity is not less than the above lower limit and not more than the above upper limit, the handleability of the B stage film is further improved.
  • the minimum melt viscosity is not less than the above lower limit and not more than the above upper limit, for example, when swelling treatment is performed under the swelling treatment conditions described later, or roughening treatment is performed under the roughening treatment conditions described later, 1) 2) It becomes even easier to obtain a cured product in which the maximum depth and the maximum distance of the plurality of metal layer portions embedded in the cured product are each 0.5 ⁇ m or more, and 3) It becomes even easier to obtain a cured product having a minimum S / D of 0.15 or more and a maximum of 5.0 or less, and the presence state of the inorganic filler portion near the interface between the resin portion and the metal layer is further increased. As a result, it is easy to make the adhesive strength between the cured product and the metal layer 4 N / cm or more.
  • the melt viscosity is measured in a temperature range of 50 to 150 ° C. of the epoxy resin material using a Rheometer device.
  • the Rheometer device include “AR-2000” manufactured by TA Instruments.
  • the epoxy resin material may be in the form of a paste or a film.
  • the epoxy resin material may be a resin composition or a B-stage film in which the resin composition is formed into a film.
  • Epoxy resin The epoxy resin contained in the epoxy resin material is not particularly limited. A conventionally well-known epoxy resin can be used as this epoxy resin.
  • the epoxy resin refers to an organic compound having at least one epoxy group. As for an epoxy resin, only 1 type may be used and 2 or more types may be used together.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl novolac type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy resin.
  • examples thereof include an epoxy resin having a skeleton.
  • the epoxy resin preferably has a biphenyl skeleton, and is preferably a biphenyl type epoxy resin.
  • cured material and a metal layer becomes still higher.
  • the epoxy equivalent of the epoxy resin is preferably 90 or more, more preferably 100 or more, preferably 1000 or less, more preferably 800 or less.
  • the molecular weight of the epoxy resin is preferably 1000 or less. In this case, even if the content of the inorganic filler in the epoxy resin material is 60% by weight or more, an epoxy resin material that is a resin composition having high fluidity can be obtained. For this reason, when a B stage film is laminated on a board
  • the molecular weight of the epoxy resin and the molecular weight of the curing agent described below can be calculated from the structural formula when the epoxy resin or the curing agent is not a polymer and when the structural formula of the epoxy resin or the curing agent can be specified. Means. Moreover, when the said epoxy resin or a hardening
  • GPC gel permeation chromatography
  • the curing agent contained in the epoxy resin material is not particularly limited.
  • a conventionally known curing agent can be used as the curing agent.
  • curing agent only 1 type may be used and 2 or more types may be used together.
  • cyanate ester compound cyanate ester curing agent
  • phenol compound phenol curing agent
  • amine compound amine curing agent
  • thiol compound thiol curing agent
  • imidazole compound phosphine compound, acid anhydride
  • examples include active ester compounds and dicyandiamide.
  • curing agent is a cyanate ester compound or a phenol compound.
  • the curing agent is preferably a cyanate ester compound, and is preferably a phenol compound.
  • the curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy resin.
  • the agent is preferably a cyanate ester compound, a phenol compound or an active ester compound.
  • the use of the cyanate ester compound further increases the glass transition temperature of the cured product of the B stage film having a large content of inorganic filler.
  • the cyanate ester compound is not particularly limited. A conventionally known cyanate ester compound can be used as the cyanate ester compound. As for the said cyanate ester compound, only 1 type may be used and 2 or more types may be used together.
  • cyanate ester compounds include novolak type cyanate ester resins, bisphenol type cyanate ester resins, and prepolymers in which these are partly trimerized.
  • novolak-type cyanate ester resin a phenol novolak-type cyanate ester resin, an alkylphenol-type cyanate ester resin, etc. are mentioned.
  • the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethylbisphenol F type cyanate ester resin.
  • cyanate ester compounds Commercially available products of the above-mentioned cyanate ester compounds include phenol novolac type cyanate ester resins (Lonza Japan “PT-30” and “PT-60”), and prepolymers (Lonza Japan) in which bisphenol type cyanate ester resins are trimmed. "BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S”) manufactured by the company.
  • the use of the above phenol compound further increases the adhesive strength between the cured product and the metal layer. Further, by using the phenol compound, for example, when the surface of copper provided on the surface of the cured product of the resin composition is blackened or Cz-treated, the adhesive strength between the cured product and copper is further increased. Become.
  • the phenol compound is not particularly limited.
  • a conventionally well-known phenol compound can be used as this phenol compound.
  • As for the said phenol compound only 1 type may be used and 2 or more types may be used together.
  • phenol compound examples include novolak type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol, and dicyclopentadiene type phenol.
  • phenol compounds examples include novolak-type phenols (“TD-2091” manufactured by DIC), biphenyl novolac-type phenols (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), and aralkyl-type phenol compounds (“MEH manufactured by Meiwa Kasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton (" LA1356 “and” LA3018-50P "manufactured by DIC).
  • the compound is preferably a biphenyl novolac type phenol compound or an aralkyl type phenol compound.
  • the use of the active ester compound reduces the dielectric loss tangent of a cured product having a relatively large inorganic filler content, thereby improving the transmission loss of the circuit board.
  • the active ester compound is not particularly limited.
  • a conventionally known active ester compound can be used as the active ester compound.
  • As for the said active ester compound only 1 type may be used and 2 or more types may be used together.
  • Examples of commercially available active ester compounds include “HPC-8000” manufactured by DIC.
  • the curing agent preferably contains a curing agent having an equivalent weight of 250 or less.
  • the equivalent of the curing agent is, for example, a cyanate ester group equivalent when the curing agent is a cyanate ester compound, a phenolic hydroxyl group equivalent when the curing agent is a phenol compound, and the curing agent is an active ester compound. Is the active ester group equivalent.
  • the molecular weight of the curing agent is preferably 1000 or less. In this case, even if the content of the inorganic filler in the epoxy resin material is 60% by weight or more, an epoxy resin material that is a resin composition having high fluidity can be obtained. For this reason, when a B stage film is laminated on a board
  • the total content of the epoxy resin and the curing agent is preferably 100% by weight of solid content excluding the inorganic filler contained in the epoxy resin material (hereinafter sometimes referred to as solid content B). Is 75% by weight or more, more preferably 80% by weight or more, preferably 99% by weight or less, more preferably 97% by weight or less.
  • the melt viscosity does not become too low, and the epoxy resin material tends not to wet excessively in unintended areas during the curing process. There is.
  • Solid content B refers to the sum of the epoxy resin, the curing agent, and other solid components blended as necessary.
  • the solid content B does not contain an inorganic filler.
  • Solid content refers to a non-volatile component that does not volatilize during molding or heating.
  • the compounding ratio of the epoxy resin and the curing agent is not particularly limited.
  • the compounding ratio of the epoxy resin and the curing agent is appropriately determined depending on the types of the epoxy resin and the curing agent.
  • the inorganic filler contained in the epoxy resin material is not particularly limited. Conventional inorganic fillers can be used as the inorganic filler. As for the said inorganic filler, only 1 type may be used and 2 or more types may be used together.
  • the inorganic filler examples include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride.
  • the surface roughness of the roughened cured product is reduced, the adhesive strength between the cured product and the metal layer is further increased, finer wiring is formed on the surface of the cured product, and better insulation is achieved by the cured product.
  • the inorganic filler is preferably silica or alumina, more preferably silica, and still more preferably fused silica.
  • silica By using silica, the linear expansion coefficient of the cured product is further reduced, the surface roughness of the surface of the roughened cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the shape of silica is preferably substantially spherical.
  • the average particle diameter of the inorganic filler is preferably 0.1 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the average particle size of the inorganic filler is particularly preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the average particle diameter is not less than the above lower limit, the embedding property of the epoxy resin material can be improved.
  • the average particle size is not more than the above upper limit, the surface smoothness of the epoxy resin material which is a B stage film can be improved.
  • the average particle size is not less than the above lower limit and not more than the above upper limit, for example, when swelling treatment is performed under the swelling treatment conditions described later, or roughening treatment is performed under the roughening treatment conditions described later, 1) 2) It becomes even easier to obtain a cured product in which the maximum depth and the maximum distance of the plurality of metal layer portions embedded in the cured product are each 0.5 ⁇ m or more, and 3) It becomes even easier to obtain a cured product having a minimum S / D of 0.15 or more and a maximum of 5.0 or less. As a result, the adhesive strength between the cured product and the metal layer is 4 N / cm or more. Is easy.
  • the inorganic filler may have an average particle size of 0.5 ⁇ m or more.
  • the median diameter (d50) value of 50% is adopted as the average particle diameter of the inorganic filler.
  • the average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the inorganic filler is preferably surface-treated, and more preferably surface-treated with a coupling agent. Thereby, the surface roughness of the surface of the roughened cured product is further reduced, the adhesive strength between the cured product and the metal layer is further increased, and finer wiring is formed on the surface of the cured product, and more Better inter-wiring insulation reliability and interlayer insulation reliability can be imparted to the cured product.
  • Examples of the coupling agent include silane coupling agents, titanate coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include amino silane, imidazole silane, vinyl silane, and epoxy silane.
  • the content of the inorganic filler is preferably 50% by weight or more, more preferably 60% by weight or more, preferably 85% by weight or less, more preferably 80% by weight. % Or less.
  • the content of the inorganic filler is equal to or more than the lower limit, the dimensional change due to heat of the cured product is considerably reduced.
  • the content of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the roughened cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
  • Solid content A refers to the sum of the epoxy resin, the curing agent, the inorganic filler, and the solid content blended as necessary.
  • Solid content refers to a non-volatile component that does not volatilize during molding or heating.
  • the said epoxy resin material may contain the hardening accelerator as needed.
  • a curing accelerator By using a curing accelerator, the curing rate of the epoxy resin material is further increased. By rapidly curing the epoxy resin material, the crosslinked structure of the cured product becomes uniform, the number of unreacted functional groups decreases, and as a result, the crosslinking density increases.
  • the curing accelerator is not particularly limited, and a conventionally known curing accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
  • curing accelerator examples include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-
  • Examples of the phosphorus compound include triphenylphosphine.
  • Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
  • organometallic compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • the curing accelerator is particularly preferably an imidazole compound.
  • the content of the curing accelerator is not particularly limited. From the viewpoint of efficiently curing the epoxy resin material, the content of the curing accelerator in the solid content B of 100% by weight is preferably 0.01% by weight or more, more preferably 0.5% by weight or more, preferably It is 3% by weight or less, more preferably 2% by weight or less.
  • epoxy resin materials include coupling agents, colorants, antioxidants, UV degradation inhibitors, antifoaming agents, and thickeners.
  • a thixotropic agent and other resins other than those mentioned above may be added.
  • Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.
  • Examples of the other resins include phenoxy resin, polyvinyl acetal resin, polyphenylene ether resin, divinyl benzyl ether resin, polyarylate resin, diallyl phthalate resin, polyimide resin, amideimide resin, benzoxazine resin, benzoxazole resin, bismaleimide resin, and acrylate. Examples thereof include resins.
  • Epoxy resin material that is a B-stage film As a method for forming the resin composition into a film, for example, an extrusion molding method is used in which the resin composition is melt-kneaded using an extruder, extruded, and then formed into a film using a T-die or a circular die. And a casting molding method in which a resin composition containing a solvent is cast to form a film, and other conventionally known film molding methods. Especially, since it can respond to thickness reduction, the extrusion molding method or the casting molding method is preferable.
  • the film includes a sheet.
  • a B-stage film can be obtained by forming the resin composition into a film and drying it by heating at 90 to 200 ° C. for 1 to 180 minutes, for example, to such an extent that curing by heat does not proceed excessively.
  • the film-like resin composition that can be obtained by the drying process as described above is referred to as a B-stage film.
  • the B-stage film is a semi-cured product in a semi-cured state.
  • the semi-cured product is not completely cured and curing can proceed further.
  • the B-stage film is preferably not a prepreg.
  • the B stage film is not a prepreg, migration does not occur along a glass cloth or the like.
  • the surface does not have irregularities due to the glass cloth.
  • the epoxy resin material as a B-stage film that does not contain a prepreg, the dimensional change due to heat of the cured product is reduced, the shape retention is increased, and the semi-additive process suitability is increased.
  • the above resin composition can be suitably used for forming a laminated film including a base material and a B stage film laminated on one surface of the base material.
  • a B-stage film of a laminated film is formed from the resin composition.
  • Examples of the base material of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, polyimide resin film, metal foil such as copper foil and aluminum foil, and the like. Can be mentioned.
  • the surface of the base material may be subjected to a release treatment as necessary.
  • the thickness of the layer formed of the epoxy resin material is preferably equal to or greater than the thickness of the conductor layer that forms the circuit.
  • the thickness of the layer formed of the epoxy resin material is preferably 5 ⁇ m or more, and preferably 200 ⁇ m or less.
  • the said epoxy resin material is used suitably in order to form an insulating layer in a printed wiring board.
  • the printed wiring board can be obtained, for example, by heat-pressing the B stage film using a B stage film formed of the resin composition.
  • a metal foil can be laminated on one side or both sides of the B-stage film.
  • the method for laminating the B-stage film and the metal foil is not particularly limited, and a known method can be used.
  • the B-stage film can be laminated on the metal foil using an apparatus such as a parallel plate press or a roll laminator while applying pressure while heating or without heating.
  • the said epoxy resin material is used suitably in order to obtain a copper clad laminated board.
  • An example of the copper-clad laminate is a copper-clad laminate comprising a copper foil and a B stage film laminated on one surface of the copper foil.
  • the B-stage film of this copper-clad laminate is formed from the above epoxy resin material.
  • the thickness of the copper foil of the copper-clad laminate is not particularly limited.
  • the thickness of the copper foil is preferably in the range of 1 to 50 ⁇ m.
  • the said copper foil has a fine unevenness
  • the method for forming the unevenness is not particularly limited. Examples of the method for forming the unevenness include a formation method by treatment using a known chemical solution.
  • the epoxy resin material is preferably used for obtaining a multilayer substrate.
  • a multilayer substrate including a circuit board and a laminated body laminated on the surface of the circuit board can be given.
  • the laminate in the multilayer substrate includes a cured product and a metal layer laminated on the surface of the cured product.
  • the laminate is disposed on the surface of the circuit board from the cured product side.
  • the cured product is formed by curing the epoxy resin material. It is preferable that the said hardened
  • the cured product can be obtained by heating at 100 to 200 ° C.
  • the surface of the cured product opposite to the surface on which the circuit substrate is laminated is roughened.
  • FIG. 2 schematically shows a multilayer substrate using a laminate according to an embodiment of the present invention in a partially cutaway front sectional view.
  • multiple layers of cured products 13 to 16 are laminated on the upper surface 12a of the circuit board 12.
  • the cured products 13 to 16 are insulating layers.
  • a metal layer 17 is formed in a partial region of the upper surface 12 a of the circuit board 12.
  • a metal layer 17 is formed in a partial region of the upper surface.
  • the metal layer 17 is a circuit.
  • Metal layers 17 are respectively arranged between the circuit board 12 and the cured product 13 and between the laminated cured products 13 to 16.
  • the lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of via hole connection and through hole connection (not shown).
  • the cured products 13 to 16 are formed by curing the epoxy resin material.
  • the surfaces of the cured products 13 to 16 are roughened, fine holes (not shown) are formed on the surfaces of the cured products 13 to 16.
  • the metal layer 17 reaches the inside of the fine hole.
  • the width direction dimension (L) of the metal layer 17 and the width direction dimension (S) of the part in which the metal layer 17 is not formed can be made small.
  • good insulation reliability is imparted between an upper metal layer and a lower metal layer that are not connected by via-hole connection and through-hole connection (not shown).
  • the epoxy resin material is preferably used for obtaining a cured product to be roughened.
  • the cured product includes a precured product that can be further cured.
  • the precured material is preferably roughened.
  • the precured product Prior to the roughening treatment, the precured product is preferably subjected to a swelling treatment.
  • the cured product is preferably subjected to a swelling treatment after preliminary curing and before the roughening treatment, and is further cured after the roughening treatment.
  • the pre-cured product may not necessarily be subjected to the swelling treatment.
  • the roughening treatment is preferably a wet roughening treatment.
  • the swelling treatment method for example, a precured product is treated with an aqueous solution or an organic solvent dispersion of a compound mainly composed of ethylene glycol or the like.
  • the swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like.
  • the swelling liquid preferably contains sodium hydroxide.
  • the swelling treatment is carried out by treating the precured material with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 to 85 ° C. for 1 to 30 minutes.
  • the swelling treatment temperature is preferably in the range of 50 to 85 ° C. When the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesive strength between the cured product and the metal layer tends to be low.
  • a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like.
  • the roughening solution preferably contains sodium hydroxide.
  • Examples of the manganese compound include potassium permanganate and sodium permanganate.
  • Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate.
  • Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.
  • the method for the roughening treatment is not particularly limited.
  • As the roughening treatment method for example, 30 to 90 g / L permanganic acid or permanganate solution and 30 to 90 g / L sodium hydroxide solution are used, and the treatment temperature is 30 to 85 ° C. and 1 to 30 minutes.
  • a method of treating a precured material under conditions is preferable.
  • the roughening treatment is preferably performed once or twice.
  • the temperature of the roughening treatment is preferably in the range of 50 to 85 ° C.
  • the resin surface is easily scraped in the range of 0.3 ⁇ m or more and 1.5 ⁇ m or less in the direction perpendicular to the surface. If the roughening treatment is performed in the above range, 1) and 2) a cured product in which the maximum depth and the maximum interval of the plurality of metal layer portions embedded in the cured product are each 0.5 ⁇ m or more is obtained. 3) and it becomes much easier to obtain a cured product having a minimum S / D of 0.2 or more and a maximum of 5.0 or less. As a result, the cured product and metal It is easy to make the adhesive strength with the layer 4 N / cm or more.
  • the arithmetic average roughness Ra of the surface of the roughened cured product is preferably 20 nm or more and 350 nm or less.
  • the adhesive strength between the cured product and the metal layer or wiring is increased, and further finer wiring can be formed on the surface of the cured product.
  • the adhesive strength between the cured product and the metal layer is preferably 4 N / cm or more.
  • a metal layer such as a metal wiring can be favorably held on the surface of the cured product.
  • a through-hole may be formed in the precured material or hardened
  • a via or a through hole is formed as a through hole.
  • the via can be formed by irradiation with a laser such as a CO 2 laser.
  • the diameter of the via is not particularly limited, but is about 60 to 80 ⁇ m. Due to the formation of the through hole, a smear, which is a resin residue derived from the resin component contained in the cured product, is often formed at the bottom of the via.
  • the surface of the cured product is preferably desmeared.
  • the desmear process may also serve as a roughening process.
  • a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfate compound is used in the same manner as the roughening treatment.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the desmear treatment liquid used for the desmear treatment generally contains an alkali.
  • the desmear treatment liquid preferably contains sodium hydroxide.
  • the above desmear treatment method is not particularly limited.
  • As the desmear treatment method for example, using a 30 to 90 g / L permanganate or permanganate solution and a 30 to 90 g / L sodium hydroxide solution, a treatment temperature of 30 to 85 ° C. and a condition of 1 to 30 minutes A method of treating a precured product or a cured product once or twice is preferable.
  • the temperature of the desmear treatment is preferably in the range of 50 to 85 ° C.
  • the use of the epoxy resin material sufficiently reduces the surface roughness of the desmeared cured product.
  • Epoxy resin Bisphenol A type epoxy resin (“RE-410S” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 178) Biphenyl type epoxy resin (Nippon Kayaku Co., Ltd. “NC-3000H”, epoxy equivalent 288) Dicyclopentadiene type epoxy resin (“XD-1000” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 254)
  • Silica-containing slurry 1 (“Advertex” SC2050, containing fused silica with an average particle size of 0.5 ⁇ m, solid content 70 wt% and cyclohexanone 30 wt%)
  • Silica-containing slurry 2 (“Advertex Corporation SC4050”, containing fused silica with an average particle size of 1.0 ⁇ m, solid content 70 wt% and cyclohexanone 30 wt%)
  • Silica-containing slurry 3 (“SC1050” manufactured by Admatechs, including fused silica with an average particle size of 0.1 ⁇ m, containing 70 wt% solids and 30 wt% cyclohexanone)
  • Imidazole compound (“2P4MZ”, 2-phenyl-4-methylimidazole manufactured by Shikoku Chemicals)
  • Phenoxy resin-containing liquid (“YX6954-BH30” manufactured by Mitsubishi Chemical Corporation, including weight average molecular weight 39000 in terms of polystyrene, solid content 30% by weight, methyl ethyl ketone 35% by weight and cyclohexanone 35% by weight)
  • Amidoimide skeleton resin (“SOXR-C” manufactured by Nippon Kogyo Paper Industries Co., Ltd.)
  • Example 1 [Preparation of epoxy resin material] 62.47 parts by weight (solid content 43.73 parts by weight) of the above silica-containing slurry 2 (manufactured by Admatechs, Inc., “SC4050”), and 16.27 parts by weight of an active ester compound-containing liquid (“HPC8000-65T”, manufactured by DIC) (10.58 parts by weight in solids), 2.68 parts by weight (1.34 parts by weight in solids) of phenol compound-containing liquid (“LA3018-50P” manufactured by DIC), and bisphenol A type epoxy resin (Japan) 6.65 parts by weight of “RE-410S” manufactured by Kayaku Co., Ltd., 8.42 parts by weight of biphenyl type epoxy resin (“NC-3000H” manufactured by Nippon Kayaku Co., Ltd.), and an imidazole compound (“2P4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.) ] 0.50 part by weight and 3.01 part by weight (0.90 part by weight in solid content
  • a release-treated transparent polyethylene terephthalate (PET) film (“PET5011 550” manufactured by Lintec Corporation, thickness 50 ⁇ m) was prepared.
  • the obtained resin composition varnish was applied onto the PET film using an applicator so that the thickness after drying was 40 ⁇ m. Next, it was dried in a gear oven at 100 ° C. for 2 minutes to produce a laminated film of an uncured resin sheet (B stage film) having a thickness of 40 ⁇ m and an area of 200 mm ⁇ 200 mm and a polyethylene terephthalate film.
  • the polyethylene terephthalate film was peeled off from the laminated film, and the uncured product of the resin sheet was heated in a gear oven at 180 ° C. for 80 minutes to prepare a precured product A (epoxy resin material) of the resin sheet.
  • Precured material A of the obtained resin sheet was heated at 190 ° C. for 90 minutes and further cured to obtain cured product A.
  • precured product B The resulting uncured sheet-shaped resin composition was vacuum laminated on a glass epoxy substrate (FR-4, “CS-3665” manufactured by Risho Kogyo Co., Ltd.) and reacted at 150 ° C. for 60 minutes. In this way, a reaction product was formed on the glass epoxy substrate, and a laminated sample of the glass epoxy substrate and the reaction product was obtained. Then, after the following swelling treatment, the following roughening treatment (permanganate treatment) was performed.
  • Swelling treatment The laminated sample was put in a swelling liquid at 80 ° C. (“Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.) and rocked for 10 minutes at a swelling temperature of 80 ° C. Thereafter, it was washed with pure water.
  • a swelling liquid at 80 ° C. (“Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.)
  • Roughening treatment permanganate treatment: The above laminated sample subjected to the swelling treatment was placed in a roughening aqueous solution of potassium permanganate (“Concentrate Compact CP” manufactured by Atotech Japan Co., Ltd.) at 80 ° C. and rocked for 30 minutes at a roughening temperature of 80 ° C. Then, after washing
  • potassium permanganate (“Concentrate Compact CP” manufactured by Atotech Japan Co., Ltd.) at 80 ° C. and rocked for 30 minutes at a roughening temperature of 80 ° C. Then, after washing
  • Copper plating treatment The precured material B formed on the glass epoxy substrate was subjected to electroless copper plating and electrolytic copper plating in the following procedure.
  • the surface of the roughened preliminary-cured material B was treated with a 60 ° C. alkali cleaner (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes, and degreased and washed. After washing, the precured product B was treated with a 25 ° C. predip solution (“Predip Neogant B” manufactured by Atotech Japan) for 2 minutes. Thereafter, the precured product B was treated with an activator solution (“Activator Neo Gantt 834” manufactured by Atotech Japan) at 40 ° C. for 5 minutes, and a palladium catalyst was attached. Next, the preliminary-cured product B was treated for 5 minutes with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan).
  • the precured product B is placed in a chemical copper solution (“Basic Print Gantt MSK-DK” manufactured by Atotech Japan, “Kappa Print Gantt MSK” manufactured by Atotech Japan, “Stabilizer Print Gantt MSK” manufactured by Atotech Japan). Electroless plating was performed until the plating thickness reached about 0.5 ⁇ m. After the electroless plating, annealing was performed at a temperature of 120 ° C. for 30 minutes in order to remove the remaining hydrogen gas. All the processes up to the electroless plating process were performed while the preliminarily cured product B was swung with a processing solution of 1 L on a beaker scale.
  • Example 2 to 8 and Comparative Examples 1 to 3 The epoxy resin material (preliminarily cured product A), cured product A, and preliminary were prepared in the same manner as in Example 1 except that the types and blending amounts of the components used and the roughening time were set as shown in Table 1 below. A cured product B and a laminate A were produced.
  • the laminate A a 40 ⁇ m length portion of the interface between the cured product and the metal layer in the obtained reflected electron image was evaluated by measurement on an image with five fields of view.
  • the maximum depth of the plurality of metal layer portions embedded in the cured product and the maximum distance of the plurality of metal layer portions embedded in the laminate were obtained.
  • Plating adhesive strength A 10 mm wide cutout was made on the surface of the copper plating layer of the obtained laminate A. Thereafter, using a tensile tester (“Autograph” manufactured by Shimadzu Corporation), the adhesive strength between the cured product and the copper plating layer was measured under the condition of a crosshead speed of 5 mm / min. The obtained measured value was defined as plating adhesive strength.
  • Flash etching evaluation Flash etching treatment was performed on the precured material B on which electroless copper plating was applied.
  • etchant “SAC” manufactured by Ebara Eugene Corporation was used. Processing temperature 30 ° C., SAC formulation (35 wt% -H 2 O: 5 vol%, 98 wt% —H 2 SO 4 : 5 vol%, Cu: 20 g / L), processing at intervals of 1 minute up to 1 to 3 minutes. went.
  • the electroless copper plating removability was evaluated by cross-sectional observation of the precured material B with FE-SEM (“JSM-6700F” manufactured by JEOL, M ⁇ 3000), and the flash etching property was determined according to the following criteria. .
  • Electroless copper plating is removed within 1 minute.
  • Electroless copper plating is removed within 3 minutes to 3 minutes.
  • Electroless copper plating is not removed even after 3 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 硬化物と金属層との接着強度を高めることができる積層体を提供する。 本発明に係る積層体1は、エポキシ樹脂、硬化剤及び無機フィラーを含むエポキシ樹脂材料を硬化させた硬化物2と、硬化物2の表面上に積層された金属層3とを備え、金属層3の一部が複数箇所で硬化物2内に埋め込まれており、硬化物2内に埋め込まれている複数の金属層部分3a~3dの全体における深さの最大が0.5μm以上であり、かつ、硬化物2内に埋め込まれている複数の金属層部分3a~3dの全体における間隔の最大が0.5μm以上である。

Description

積層体、積層体の製造方法及び多層基板
 本発明は、硬化物と、該硬化物の表面上に積層された金属層とを備える積層体、並びに該積層体の製造方法に関する。また、本発明は、上記積層体を用いた多層基板に関する。
 従来、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂組成物が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂組成物が用いられている。上記多層プリント配線板では、上記絶縁層の表面に金属配線が形成されることが多い。
 上記樹脂組成物の一例として、下記の特許文献1には、シアネートエステル樹脂と、ナフチレンエーテル型エポキシ樹脂とを含む樹脂組成物が開示されている。この樹脂組成物は、無機充填材を含んでいてもよい。特許文献1では、湿式粗化工程において、絶縁層の表面の粗度を小さくすることができ、絶縁層上に十分なピール強度を有するめっき導体層を形成することができ、更に絶縁層の誘電特性及び熱膨張率を良好にすることができる樹脂組成物を提供できることが記載されている。
特開2011-144361号公報
 多層プリント配線板では、絶縁層と該絶縁層に積層される金属配線との剥離が生じ難いことが強く求められる。このため、上記絶縁層と上記金属配線との接着強度が高いことが望まれる。金属配線を十分に保持するために、上記接着強度は4N/cm以上であることが好ましい。また、上記絶縁層では、熱により寸法が大きく変化しないことが望まれる。すなわち、上記絶縁層の線膨張率が低いことが望ましい。
 しかしながら、特許文献1に記載のような従来の樹脂組成物を用いただけでは、該樹脂組成物を硬化させた硬化物と金属配線との接着強度を十分に高めることは困難である。さらに、硬化物の熱による寸法変化を十分に小さくすることができないことがあり、上記絶縁層の線膨張率が比較的高くなることがある。
 本発明の目的は、硬化物と金属層との接着強度を高めることができる積層体及び積層体の製造方法を提供すること、並びに該積層体を用いた多層基板を提供することである。
 本発明の限定的な目的は、硬化物の熱による寸法変化を小さくすることができる積層体及び積層体の製造方法を提供すること、並びに該積層体を用いた多層基板を提供することである。

 本発明の広い局面によれば、エポキシ樹脂、硬化剤及び無機フィラーを含むエポキシ樹脂材料を硬化させた硬化物と、前記硬化物の表面上に積層された金属層とを備え、前記金属層の一部が複数箇所で前記硬化物内に埋め込まれており、前記硬化物内に埋め込まれている複数の前記金属層部分の全体における深さの最大が0.5μm以上であり、かつ、前記硬化物内に埋め込まれている複数の前記金属層部分の全体における間隔の最大が0.5μm以上である、積層体が提供される。

 本発明に係る積層体のある特定の局面では、前記硬化物内に埋め込まれている複数の前記金属層部分のうち、隣り合う2つの金属層部分の2つの深さの平均をDμmとし、その2つの金属層部分の間隔をSμmとしたときに、前記硬化物内に埋め込まれている複数の前記金属層部分の全体において、S/Dの最小が0.15以上であり、かつS/Dの最大が5.0以下である。 

 本発明に係る積層体のある特定の局面では、前記硬化物内に埋め込まれている複数の前記金属層部分は、粗化処理により前記無機フィラーを脱離させることで、前記硬化物に複数の空隙を形成し、複数の前記空隙に前記金属層の一部を埋め込むことで形成されている。 

 本発明に係る積層体のある特定の局面では、前記粗化処理は、湿式粗化処理である。 
 本発明に係る積層体のある特定の局面では、前記エポキシ樹脂材料における固形分100重量%中、前記無機フィラーの含有量が60重量%以上、80重量%以下である。
 本発明に係る積層体のある特定の局面では、前記エポキシ樹脂材料に含まれている前記無機フィラーの平均粒子径が0.1μm以上、5μm以下である。
 本発明の広い局面によれば、エポキシ樹脂、硬化剤及び無機フィラーを含むエポキシ樹脂材料を硬化させた硬化物を用いて、粗化処理により前記無機フィラーを脱離させることで、前記硬化物に複数の空隙を形成する工程と、前記硬化物の表面上に積層されるように、かつ複数の前記空隙に一部を埋め込むように金属層を形成して、積層体を得る工程とを備え、前記積層体として、前記金属層の一部が複数箇所で前記硬化物内に埋め込まれており、前記硬化物内に埋め込まれている複数の前記金属層部分の全体における深さの最大が0.5μm以上であり、かつ、前記硬化物内に埋め込まれている複数の前記金属層部分の全体における間隔の最大が0.5μm以上である積層体を得る、積層体の製造方法が提供される。
 本発明に係る積層体の製造方法のある特定の局面では、前記粗化処理が湿式粗化処理である。
 本発明の広い局面によれば、回路基板と、上述した積層体とを備え、前記積層体が前記硬化物側から前記回路基板の表面上に配置されている、多層基板が提供される。
 本発明に係る積層体は、エポキシ樹脂、硬化剤及び無機フィラーを含むエポキシ樹脂材料を硬化させた硬化物と、上記硬化物の表面上に積層された金属層とを備えており、上記金属層の一部が複数箇所で上記硬化物内に埋め込まれており、上記硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大が0.5μm以上であり、かつ、上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大が0.5μm以上であるので、硬化物と金属層との接着強度を高めることができる。
図1は、本発明の一実施形態に係る積層体を模式的に示す断面図である。 図2は、本発明の一実施形態に係る積層体を用いた多層基板を模式的に示す断面図である。 図3は、本発明の一実施形態に係る積層体における金属層部分の深さ及び間隔を説明するための模式的な断面図である。
 以下、本発明の詳細を説明する。
 (積層体)
 本発明に係る積層体は、エポキシ樹脂、硬化剤及び無機フィラーを含むエポキシ樹脂材料を硬化させた硬化物と、上記硬化物の表面上に積層された金属層とを備える。本発明に係る積層体では、上記金属層の一部が複数箇所で上記硬化物内に埋め込まれており、1)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大が0.5μm以上であり、かつ、2)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大が0.5μm以上である。
 本発明に係る積層体の製造方法は、エポキシ樹脂、硬化剤及び無機フィラーを含むエポキシ樹脂材料を硬化させた硬化物を用いて、粗化処理により上記無機フィラーを脱離させることで、上記硬化物に複数の空隙を形成する工程と、上記硬化物の表面上に積層されるように、かつ複数の上記空隙に一部を埋め込むように金属層を形成して、積層体を得る工程とを備える。本発明に係る積層体の製造方法では、上記積層体として、上記金属層の一部が複数箇所で上記硬化物内に埋め込まれており、上記硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大が0.5μm以上であり、かつ、上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大が0.5μm以上である積層体を得る。
 本発明に係る積層体及び本発明に係る積層体の製造方法における上述した構成の採用により、硬化物と金属層との接着強度を高めることができる。さらに、本発明に係る積層体では、硬化物の熱による寸法変化を十分に小さくすることが可能であり、上記硬化物の線膨張率を十分に低くすることが可能である。
 1)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大と、2)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大とは、硬化物の厚み方向(図1参照)による断面観察において、硬化層内に埋め込まれている上記金属層部分を評価することにより求めることができる。
 上記1)の深さの最大を得るための、上記硬化物内に埋め込まれている複数の上記金属層部分の各深さに関しては、1つの上記硬化物内に埋め込まれている上記金属層部分において、硬化物と金属層との界面(但し、上記金属層が上記硬化物内に埋め込まれている部分を除く)から埋め込み最深部までを深さとする。
 上記2)の間隔の最大を得るための、上記硬化物内に埋め込まれている複数の上記金属層部分の各間隔に関しては、隣り合う2つの上記硬化物内に埋め込まれている上記金属層部分において、ある埋め込み中心部分からその埋め込み中心部分の隣の埋め込み中心部分までの距離を、上記硬化物内に埋め込まれている複数の上記金属層部分の間隔とする。なお、上記中心部分は、上記硬化物と上記金属層との界面における上記金属層部分の中心部分である。上記中心部分を決めるとき、上記硬化物と上記金属層との界面に現れていない内部の金属層部分は考慮されない。複数の上記金属層部分の各間隔は、上記硬化物内に埋め込まれている複数の上記金属層部分のうち、隣り合う2つの金属層部分のそれぞれの間隔である。
 1)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大を上述した範囲内に制御する方法としては、無機フィラーの種類及び含有量を最適化する方法、並びに積層体の作製条件(圧着、硬化条件)を適正化する方法等が挙げられる。
 無機フィラーに関しては、平均粒径を0.5~1.0μmにし、含有量を60~80%にすることにより、埋め込み金属層の深さと間隔とを上記範囲に制御可能である。また、圧着条件を調節することで無機フィラーが流れ出すのを防ぎ、表層の無機フィラー量を制御し、埋め込み金属層の深さと間隔とを上記範囲にすることが可能である。硬化条件については、硬化しすぎると粗化ができなくなり、硬化が進んでいないと、粗化処理によるダメージで、金属層の深さと間隔とを上記範囲に制御することができない。硬化度を調節することで、埋め込み金属層の深さと間隔とを上記範囲に制御することが可能である。これらの方法は、2)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大を上述した範囲内に制御する方法、並びに、上記3)S/Dの最小及び最大を上述した範囲内に制御する方法としても考慮される。
 2)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大を上述した範囲内に制御する方法としては、無機フィラーの種類及び含有量を最適化する方法、並びに積層体の作製条件(圧着、硬化条件)を適正化する方法等が挙げられる。
 硬化物と金属層との接着強度をより一層高める観点からは、1)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大は、好ましくは0.8μm以上である。1)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大の上限は特に限定されない。上記深さの最大は好ましくは5.0μm以下である。上記深さの最大が上記上限以下であると、フラッシュエッチング性がより一層良好になる。
 硬化物と金属層との接着強度をより一層高める観点からは、2)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大は、好ましくは0.7μm以上である。2)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大は特に限定されない。上記間隔の最大は好ましくは20μm以下、より好ましくは10μm以下、更に好ましくは5.0μm以下である。上記間隔の最大が上記上限以下であると、配線の微細化に対応できる。
 上記硬化物内に埋め込まれている複数の上記金属層部分のうち、隣り合う2つの金属層部分の2つの深さの平均をDμmとし、その2つの金属層部分の間隔をSμmとする。3)上記硬化物内に埋め込まれている複数の上記金属層部分の全体において、S/Dの最小は、好ましくは0.15以上であり、かつS/Dの最大は好ましくは5.0以下である。
 上記3)上記硬化物内に埋め込まれている複数の上記金属層部分の全体におけるS/Dの最小及び最大は、硬化物の厚み方向による断面観察において、硬化層内に埋め込まれている上記金属層部分を評価することにより求めることができる。
 上記3)S/Dの最小及び最大を得るための、上記硬化物内に埋め込まれている複数の上記金属層部分のうち、隣り合う2つの金属層部分の2つの深さの平均における2つの各深さに関しては、1つの上記硬化物内に埋め込まれている上記金属層部分において、硬化物と金属層との界面(但し、上記金属層が上記硬化物内に埋め込まれている部分を除く)から埋め込み最深部までを深さとする。
 上記3)S/Dの最小及び最大を得るための、上記硬化物内に埋め込まれている複数の上記金属層部分のうち、隣り合う2つの金属層部分の各間隔に関しては、隣り合う2つの上記硬化物内に埋め込まれている上記金属層部分において、ある埋め込み中心部分からその埋め込み中心部分の隣の埋め込み中心部分までの距離を、上記硬化物内に埋め込まれている上記金属層部分の間隔とする。
 上記3)S/Dの最小及び最大を上述した範囲内に制御する方法としては、無機フィラーの種類及び含有量を最適化する方法、並びに積層体の作製条件(圧着、硬化条件)を適正化する方法等が挙げられる。
 硬化物と金属層との接着強度をより一層高める観点からは、3)S/Dの最小は、好ましくは0.2以上である。硬化物と金属層との接着強度をより一層高める観点からは、3)S/Dの最大は、好ましくは2.0以下である。
 次に、1)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大と、2)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大と、3)S/Dの最小及び最大とを、図面を参照しつつ説明する。
 図1は、本発明の一実施形態に係る積層体を模式的に示す断面図である。
 図1では、積層体1の積層方向の断面が示されている。積層体1は、硬化物2と、硬化物2の表面上に積層された金属層3とを備える。図1では、硬化物の厚み方向による断面が示されている。金属層3の一部は、複数の箇所A~Dで、硬化物2内に埋め込まれている。硬化物2は、樹脂部分2Aと、無機フィラー部分2Bとを有する。金属層3は、複数の箇所A~Dにおいて、硬化物内2に埋め込まれている金属層部分3a~3dを有する。
 箇所Aでの深さD1と、箇所Bでの深さD2と、箇所Cでの深さD3と、箇所Dでの深さD4とを図1に示した。また、箇所A-箇所B間での金属層部分の間隔S1と、箇所B-箇所C間での金属層部分の間隔S2と、箇所C-箇所D間での金属層部分の間隔S3とを図1に示した。深さD1~D4は、硬化物2内に埋め込まれている各金属層部分3a~3dにおいて、硬化物2と金属層3との界面(但し、金属層3が硬化物2内に埋め込まれている部分を除く、図3の太線部L1)から埋め込み最深部までを深さである。間隔S1~S3は、隣り合う2つの硬化物内2に埋め込まれている金属層部分3a~3dにおいて、ある埋め込み中心部分(図3の太線部L2)からその埋め込み中心部分の隣の埋め込み中心部分までの距離である。複数の金属層部分3a~3d(3aと3b、3bと3c、3cと3d)の各間隔は、硬化物2内に埋め込まれている複数の金属層部分3a~3dのうち、隣り合う2つの金属層部分3a~3d(3aと3b、3bと3c、3cと3d)それぞれの間隔である。なお、上記中心部分は、硬化物2と金属層3との界面における金属層部分3a~3dの中心部分である。上記中心部分を決めるとき、硬化物2と金属層3との界面に現れていない内部の金属層部分3aの下部は考慮されない(図3のX)。
 上記3)S/Dの最小及び最大についても、上述した深さD1~D4及び上述した間隔S1~S3から得ることができる。
 従来のエポキシ樹脂材料が、無機フィラーを多く含む場合には、特に従来のエポキシ樹脂材料が、固形分として無機フィラーを60重量%以上含む場合には、硬化物の熱による寸法変化が小さくなる一方で、硬化物と金属層との接着強度が低くなるという問題がある。
 これに対して、1)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大と、2)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大とを上述したように制御することで、硬化物の熱による寸法変化を小さくするために、無機フィラーの含有量を多くしても、固形分として無機フィラーが60重量%以上で含まれていても、硬化物と金属層との接着強度を高めることができる。また、上記3)S/Dの最小及び最大を上述したように制御することで、硬化物と金属層との接着強度をより一層効果的に高めることができる。
 上記エポキシ樹脂材料に含まれている固形分(以下、固形分Aと記載することがある)100重量%中の上記無機フィラーの含有量が60重量%以上である場合には、硬化物の熱による寸法変化がかなり小さくなる。
 また、セミアティティブ工法(SAP)などに代表されるパターン形成方法が知られている。SAPでは、絶縁層の表面上に、凸状に回路(Cuめっきなど)パターンを形成する。次に、絶縁層上及び回路パターン上に、他の絶縁層を積層する。SAPにおいて、従来のエポキシ樹脂材料中の無機フィラーの含有量を多くすると、樹脂成分の含有量が相対的に少なくなって、樹脂成分と回路との接触面積が低下して、硬化物と回路との接着強度が低くなる傾向がある。
 これに対して、1)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大と、2)上記硬化物内に埋め込まれている複数の上記金属層部分の全体における間隔の最大とを上述したように制御することで、SAPによって絶縁層及び回路パターン(金属層)を形成した場合であっても、またSAPに用いるエポキシ樹脂材料に含まれる無機フィラーの含有量を多くしても、硬化物と金属層との接着強度を高めることができる。また、上記3)S/Dの最小及び最大を上述したように制御することで、硬化物と金属層との接着強度をより一層効果的に高めることができる。
 上記硬化物の平均線膨張率は、好ましくは30ppm/℃以下、より好ましくは20ppm/℃以下である。上記平均線膨張率が上記上限以下であると、回路基板の平均熱線膨張率の低減により、回路基板自体の反りが抑制され、上記硬化物と金属層との接着強度がより一層良好になる。
 上記硬化物のガラス転移温度は、好ましくは150℃以上、より好ましくは180℃以上であり、好ましくは250℃以下、より好ましくは200℃以下である。上記ガラス転移温度が上記下限以上及び上記上限以下であると、耐衝撃性がより一層良好になる。
 上記エポキシ樹脂材料の50~150℃での最低溶融粘度は、好ましくは5Pa・s以上、より好ましくは10Pa・s以上、好ましくは300Pa・s以下、より好ましくは250Pa・s以下、更に好ましくは100Pa・s以下である。上記最低溶融粘度が上記下限以上及び上記上限以下であると、Bステージフィルムのハンドリング性がより一層良好になる。また、上記最低溶融粘度が上記下限以上及び上記上限以下であると、例えば後述する膨潤処理条件で膨潤処理を行ったり、後述する粗化処理条件で粗化処理を行ったりした場合に、1),2)硬化物に埋め込まれている複数の金属層部分の全体における深さの最大及び間隔の最大がそれぞれ0.5μm以上になる硬化物を得ることがより一層容易になり、また上記3)S/Dの最小が0.15以上及び最大が5.0以下になる硬化物を得ることがより一層容易になり、樹脂部分と金属層との界面付近の無機フィラー部分の存在状態がより一層良好になり、結果として、硬化物と金属層との接着強度を4N/cm以上にすることが容易である。
 上記溶融粘度はRheometer装置を用いて、上記エポキシ樹脂材料の50~150℃の温度領域で測定される。上記Rheometer装置としては、TAインスツルメント社製「AR-2000」等が挙げられる。
 上記エポキシ樹脂材料は、ペースト状であってもよく、フィルム状であってもよい。上記エポキシ樹脂材料は、樹脂組成物であってもよく、該樹脂組成物がフィルム状に成形されたBステージフィルムであってもよい。
 以下、上記エポキシ樹脂材料に含まれているエポキシ樹脂、硬化剤及び無機フィラーなどの各成分の詳細を説明する。
 [エポキシ樹脂]
 上記エポキシ樹脂材料に含まれているエポキシ樹脂は特に限定されない。該エポキシ樹脂として、従来公知のエポキシ樹脂を使用可能である。該エポキシ樹脂は、少なくとも1個のエポキシ基を有する有機化合物をいう。エポキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。
 上記エポキシ樹脂は、ビフェニル骨格を有することが好ましく、ビフェニル型エポキシ樹脂であることが好ましい。上記エポキシ樹脂がビフェニル骨格を有することで、硬化物と金属層との接着強度がより一層高くなる。
 粗化硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くする観点からは、上記エポキシ樹脂のエポキシ当量は、好ましくは90以上、より好ましくは100以上、好ましくは1000以下、より好ましくは800以下である。
 上記エポキシ樹脂の分子量は1000以下であることが好ましい。この場合には、エポキシ樹脂材料における無機フィラーの含有量が60重量%以上であっても、流動性が高い樹脂組成物であるエポキシ樹脂材料が得られる。このため、Bステージフィルムを基板上にラミネートした場合に、無機フィラーを均一に存在させることができる。
 上記エポキシ樹脂の分子量及び後述する硬化剤の分子量は、上記エポキシ樹脂又は硬化剤が重合体ではない場合、及び上記エポキシ樹脂又は硬化剤の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記エポキシ樹脂又は硬化剤が重合体である場合は、重量平均分子量を意味する。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定により求められるポリスチレン換算での重量平均分子量を示す。
 [硬化剤]
 上記エポキシ樹脂材料に含まれている硬化剤は特に限定されない。該硬化剤として、従来公知の硬化剤を使用可能である。上記硬化剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記硬化剤としては、シアネートエステル化合物(シアネートエステル硬化剤)、フェノール化合物(フェノール硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、イミダゾール化合物、ホスフィン化合物、酸無水物、活性エステル化合物及びジシアンジアミド等が挙げられる。なかでも、熱による寸法変化がより一層小さい硬化物を得る観点からは、上記硬化剤は、シアネートエステル化合物又はフェノール化合物であることが好ましい。上記硬化剤は、シアネートエステル化合物であることが好ましく、フェノール化合物であることも好ましい。上記硬化剤は、上記エポキシ樹脂のエポキシ基と反応可能な官能基を有することが好ましい。
 粗化硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成する観点からは、上記硬化剤は、シアネートエステル化合物、フェノール化合物又は活性エステル化合物であることが好ましい。
 上記シアネートエステル化合物の使用により、無機フィラーの含有量が多いBステージフィルムの硬化物のガラス転移温度がより一層高くなる。上記シアネートエステル化合物は特に限定されない。該シアネートエステル化合物として、従来公知のシアネートエステル化合物を使用可能である。上記シアネートエステル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。
 上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、及びビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。
 上記フェノール化合物の使用により、硬化物と金属層との接着強度がより一層高くなる。また、上記フェノール化合物の使用により、例えば、樹脂組成物の硬化物の表面上に設けられた銅の表面を黒化処理又はCz処理したときに、硬化物と銅との接着強度がより一層高くなる。
 上記フェノール化合物は特に限定されない。該フェノール化合物として、従来公知のフェノール化合物を使用可能である。上記フェノール化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。
 上記フェノール化合物の市販品としては、ノボラック型フェノール(DIC社製「TD-2091」)、ビフェニルノボラック型フェノール(明和化成社製「MEH-7851」)、アラルキル型フェノール化合物(明和化成社製「MEH-7800」)、並びにアミノトリアジン骨格を有するフェノール(DIC社製「LA1356」及び「LA3018-50P」)等が挙げられる。
 粗化硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成する観点からは、上記フェノール化合物は、ビフェニルノボラック型フェノール化合物、又はアラルキル型フェノール化合物であることが好ましい。
 上記活性エステル化合物の使用により、無機フィラーの含有量が比較的多い硬化物の誘電正接が低下することで、回路基板の伝送損失が改善される。上記活性エステル化合物は特に限定されない。該活性エステル化合物として、従来公知の活性エステル化合物を使用可能である。上記活性エステル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記活性エステル化合物の市販品としては、DIC社製「HPC-8000」等が挙げられる。
 粗化硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化剤によって良好な絶縁信頼性を付与する観点からは、上記硬化剤は、当量が250以下である硬化剤を含むことが好ましい。上記硬化剤の当量は、例えば、硬化剤がシアネートエステル化合物である場合にはシアネートエステル基当量を示し、硬化剤がフェノール化合物である場合にはフェノール性水酸基当量を示し、硬化剤が活性エステル化合物である場合には活性エステル基当量を示す。
 上記硬化剤の分子量は1000以下であることが好ましい。この場合には、エポキシ樹脂材料における無機フィラーの含有量が60重量%以上であっても、流動性が高い樹脂組成物であるエポキシ樹脂材料が得られる。このため、Bステージフィルムを基板上にラミネートした場合に、無機フィラーを均一に存在させることができる。
 上記エポキシ樹脂材料に含まれている上記無機フィラーを除く固形分(以下、固形分Bと記載することがある)100重量%中、上記エポキシ樹脂と上記硬化剤との合計の含有量は、好ましくは75重量%以上、より好ましくは80重量%以上、好ましくは99重量%以下、より好ましくは97重量%以下である。
 上記エポキシ樹脂と上記硬化剤との合計の含有量が上記下限以上及び上記上限以下であると、より一層良好な硬化物が得られ、溶融粘度を調整することができるために無機フィラーの分散性が良好になり、かつ硬化過程で、意図しない領域にBステージフィルムが濡れ拡がることを防止できる。さらに、硬化物の熱による寸法変化をより一層抑制できる。また、上記エポキシ樹脂と上記硬化剤との合計の含有量が上記下限以上であると、溶融粘度が低くなりすぎず、硬化過程で、意図しない領域にエポキシ樹脂材料が過度に濡れ拡がりにくくなる傾向がある。また、上記エポキシ樹脂と上記硬化剤との合計の含有量が上記上限以下であると、回路基板の穴又は凹凸に対する埋め込みが容易になり、さらに無機フィラーが不均一に存在しにくくなる傾向がある。「固形分B」とは、エポキシ樹脂と硬化剤と必要に応じて配合される他の固形分との総和をいう。上記固形分Bには、無機フィラーは含まれない。「固形分」とは、不揮発成分であり、成形又は加熱時に揮発しない成分をいう。
 エポキシ樹脂と硬化剤との配合比は特に限定されない。エポキシ樹脂と硬化剤との配合比は、エポキシ樹脂と硬化剤との種類により適宜決定される。
 [無機フィラー]
 上記エポキシ樹脂材料に含まれている無機フィラーは特に限定されない。該無機フィラーとして、従来公知の無機フィラーを使用可能である。上記無機フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記無機フィラーとしては、シリカ、タルク、クレイ、マイカ、ハイドロタルサイト、アルミナ、酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム及び窒化ホウ素等が挙げられる。粗化硬化物の表面の表面粗さを小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与する観点からは、上記無機フィラーは、シリカ又はアルミナであることが好ましく、シリカであることがより好ましく、溶融シリカであることが更に好ましい。シリカの使用により、硬化物の線膨張率がより一層低くなり、かつ粗化硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。シリカの形状は略球状であることが好ましい。
 上記無機フィラーの平均粒子径は、好ましくは0.1μm以上、好ましくは10μm以下、より好ましくは5μm以下である。上記無機フィラーの平均粒子径は0.1μm以上、5μm以下であることが特に好ましい。平均粒子径が上記下限以上であると、エポキシ樹脂材料の埋め込み性を高めることができる。平均粒子径が上記上限以下であると、Bステージフィルムであるエポキシ樹脂材料の表面の平滑性を高めることができる。また、上記平均粒子径が上記下限以上及び上記上限以下であると、例えば後述する膨潤処理条件で膨潤処理を行ったり、後述する粗化処理条件で粗化処理を行ったりした場合に、1),2)硬化物に埋め込まれている複数の金属層部分の全体における深さの最大及び間隔の最大がそれぞれ0.5μm以上になる硬化物を得ることがより一層容易になり、また上記3)S/Dの最小が0.15以上及び最大が5.0以下になる硬化物を得ることがより一層容易になり、結果として、硬化物と金属層との接着強度を4N/cm以上にすることが容易である。上記無機フィラーの平均粒子径は、0.5μm以上であってもよい。
 上記無機フィラーの平均粒子径として、50%となるメディアン径(d50)の値が採用される。上記平均粒子径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定できる。
 上記無機フィラーは、表面処理されていることが好ましく、カップリング剤により表面処理されていることがより好ましい。これにより、粗化硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成され、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。
 上記カップリング剤としては、シランカップリング剤、チタネートカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、アミノシラン、イミダゾールシラン、ビニルシラン及びエポキシシラン等が挙げられる。
 上記エポキシ樹脂材料に含まれている固形分A100重量%中、上記無機フィラーの含有量は好ましくは50重量%以上、より好ましくは60重量%以上、好ましくは85重量%以下、より好ましくは80重量%以下である。上記無機フィラーの含有量が上記下限以上であると、硬化物の熱による寸法変化がかなり小さくなる。また、上記無機フィラーの含有量が上記下限以上及び上記上限以下であると、粗化硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線を形成することができると同時に、この無機フィラー量であれば金属銅並に硬化物の線膨張率を低くすることも可能である。「固形分A」とは、エポキシ樹脂と硬化剤と無機フィラーと必要に応じて配合される固形分との総和をいう。「固形分」とは、不揮発成分であり、成形又は加熱時に揮発しない成分をいう。
 [他の成分及びエポキシ樹脂材料の詳細]
 上記エポキシ樹脂材料は、必要に応じて硬化促進剤を含んでいてもよい。硬化促進剤の使用により、エポキシ樹脂材料の硬化速度がより一層速くなる。エポキシ樹脂材料を速やかに硬化させることで、硬化物の架橋構造が均一になると共に、未反応の官能基数が減り、結果的に架橋密度が高くなる。該硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記硬化促進剤としては、例えば、イミダゾール化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。
 上記リン化合物としては、トリフェニルホスフィン等が挙げられる。
 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。
 硬化物の絶縁信頼性を高める観点からは、上記硬化促進剤は、イミダゾール化合物であることが特に好ましい。
 上記硬化促進剤の含有量は特に限定されない。エポキシ樹脂材料を効率的に硬化させる観点からは、上記固形分B100重量%中、上記硬化促進剤の含有量は好ましくは0.01重量%以上、より好ましくは0.5重量%以上、好ましくは3重量%以下、より好ましくは2重量%以下である。
 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、エポキシ樹脂材料には、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、揺変性付与剤及び上述した樹脂以外の他の樹脂等を添加してもよい。
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。
 上記他の樹脂としては、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、アミドイミド樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、ビスマレイミド樹脂及びアクリレート樹脂等が挙げられる。
 (Bステージフィルムであるエポキシ樹脂材料)
 上記樹脂組成物をフィルム状に成形する方法としては、例えば、押出機を用いて、樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法、溶剤を含む樹脂組成物をキャスティングしてフィルム状に成形するキャスティング成形法、並びに従来公知のその他のフィルム成形法等が挙げられる。なかでも、薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。
 上記樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば90~200℃で1~180分間加熱乾燥させることにより、Bステージフィルムを得ることができる。
 上述のような乾燥工程により得ることができるフィルム状の樹脂組成物をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にある半硬化物である。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。
 上記Bステージフィルムは、プリプレグではないことが好ましい。上記Bステージフィルムがプリプレグではない場合には、ガラスクロスなどに沿ってマイグレーションが生じることがなくなる。また、Bステージフィルムをラミネート又はプレキュアする際に、表面にガラスクロスに起因する凹凸が生じることがなくなる。また、上記エポキシ樹脂材料をプリプレグを含まないBステージフィルムとすることで、硬化物の熱による寸法変化が小さくなり、形状保持性が高くなり、セミアディティブプロセス適性が高くなる。
 上記樹脂組成物は、基材と、該基材の一方の表面に積層されたBステージフィルムとを備える積層フィルムを形成するために好適に用いることができる。積層フィルムのBステージフィルムが、上記樹脂組成物により形成される。
 上記積層フィルムの上記基材としては、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルムなどのポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルムなどのオレフィン樹脂フィルム、ポリイミド樹脂フィルム、銅箔及びアルミニウム箔などの金属箔等が挙げられる。上記基材の表面は、必要に応じて、離型処理されていてもよい。
 上記エポキシ樹脂材料を回路の絶縁層として用いる場合、エポキシ樹脂材料により形成された層の厚さは、回路を形成する導体層の厚さ以上であることが好ましい。上記エポキシ樹脂材料により形成された層の厚さは、好ましくは5μm以上、好ましくは200μm以下である。
 (プリント配線板)
 上記エポキシ樹脂材料は、プリント配線板において絶縁層を形成するために好適に用いられる。
 上記プリント配線板は、例えば、上記樹脂組成物により形成されたBステージフィルムを用いて、該Bステージフィルムを加熱加圧成形することにより得られる。
 上記Bステージフィルムに対して、片面又は両面に金属箔を積層できる。上記Bステージフィルムと金属箔とを積層する方法は特に限定されず、公知の方法を用いることができる。例えば、平行平板プレス機又はロールラミネーター等の装置を用いて、加熱しながら又は加熱せずに加圧しながら、上記Bステージフィルムを金属箔に積層できる。
 (銅張り積層板及び多層基板)
 上記エポキシ樹脂材料は、銅張り積層板を得るために好適に用いられる。上記銅張り積層板の一例として、銅箔と、該銅箔の一方の表面に積層されたBステージフィルムとを備える銅張り積層板が挙げられる。この銅張り積層板のBステージフィルムが、上記エポキシ樹脂材料により形成される。
 上記銅張り積層板の上記銅箔の厚さは特に限定されない。上記銅箔の厚さは、1~50μmの範囲内であることが好ましい。また、エポキシ樹脂材料を硬化させた硬化物と銅箔との接着強度を高めるために、上記銅箔は微細な凹凸を表面に有することが好ましい。凹凸の形成方法は特に限定されない。上記凹凸の形成方法としては、公知の薬液を用いた処理による形成方法等が挙げられる。
 また、上記エポキシ樹脂材料は、多層基板を得るために好適に用いられる。上記多層基板の一例として、回路基板と、該回路基板の表面上に積層された積層体とを備える多層基板が挙げられる。この多層基板における積層体は、硬化物と、該硬化物の表面上に積層された金属層とを備える。積層体は、上記硬化物側から上記回路基板の表面上に配置されている。上記硬化物は、上記エポキシ樹脂材料を硬化させることにより形成される。上記硬化物は、回路基板の回路が設けられた表面上に積層されていることが好ましい。上記硬化物の一部は、上記回路間に埋め込まれていることが好ましい。上記硬化物は、熱による硬化が進行し過ぎない程度に、例えば100~200℃で1~180分間加熱、より好ましくは100~200℃で30~100分間加熱させることにより得られる。上記の好ましい加熱条件で硬化させると、例えば後述する膨潤処理条件で膨潤処理を行ったり、後述する粗化処理条件で粗化処理を行ったりした場合に、1),2)硬化物に埋め込まれている複数の金属層部分の全体における深さの最大及び間隔の最大がそれぞれ0.5μm以上になる硬化物を得ることがより一層容易になり、また上記3)S/Dの最小が0.2以上及び最大が5.0以下になる硬化物を得ることがより一層容易になり、樹脂部分と金属層との界面付近の無機フィラー部分の存在状態がより一層良好になり、結果として、硬化物と金属層との接着強度を4N/cm以上にすることが容易である。
 上記多層基板では、上記硬化物の上記回路基板が積層された表面とは反対側の表面が粗化処理されていることが好ましい。
 図2に、本発明の一実施形態に係る積層体を用いた多層基板を模式的に部分切欠正面断面図で示す。
 図2に示す多層基板11では、回路基板12の上面12aに、複数層の硬化物13~16が積層されている。硬化物13~16は、絶縁層である。回路基板12の上面12aの一部の領域には、金属層17が形成されている。複数層の硬化物13~16のうち、回路基板12側とは反対の外側の表面に位置する硬化物16以外の硬化物13~15には、上面の一部の領域に金属層17が形成されている。金属層17は回路である。回路基板12と硬化物13の間、及び積層された硬化物13~16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。
 多層基板11では、硬化物13~16が、上記エポキシ樹脂材料を硬化させることにより形成されている。本実施形態では、硬化物13~16の表面が粗化処理されているので、硬化物13~16の表面に図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。また、多層基板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。また、多層基板11では、図示しないビアホール接続及びスルーホール接続で接続されていない上方の金属層と下方の金属層との間に、良好な絶縁信頼性が付与されている。
 (粗化処理及び膨潤処理)
 上記エポキシ樹脂材料は、粗化処理される硬化物を得るために用いられることが好ましい。上記硬化物には、更に硬化が可能な予備硬化物も含まれる。
 上記エポキシ樹脂材料を予備硬化させることにより得られた予備硬化物の表面に微細な凹凸を形成するために、予備硬化物は粗化処理されることが好ましい。粗化処理の前に、予備硬化物は膨潤処理されることが好ましい。硬化物は、予備硬化の後、かつ粗化処理される前に、膨潤処理されており、さらに粗化処理の後に硬化されていることが好ましい。ただし、予備硬化物は、必ずしも膨潤処理されなくてもよい。
 硬化物と金属層との接着強度をより一層効果的に高める観点からは、上記粗化処理は湿式粗化処理であることが好ましい。
 上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、予備硬化物を処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30~85℃で1~30分間、予備硬化物を処理することにより行なわれる。上記膨潤処理の温度は50~85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に硬化物と金属層との接着強度が低くなる傾向がある。
 上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。
 上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。
 上記粗化処理の方法は特に限定されない。上記粗化処理の方法として、例えば、30~90g/L過マンガン酸又は過マンガン酸塩溶液及び30~90g/L水酸化ナトリウム溶液を用いて、処理温度30~85℃及び1~30分間の条件で、予備硬化物を処理する方法が好適である。上記粗化処理は、1回又は2回行われることが好ましい。上記粗化処理の温度は50~85℃の範囲内であることが好ましい。
 上記の条件で粗化処理を行うことによって、樹脂表面が表面と垂直方向に0.3μm以上、1.5μm以下の範囲で削れやすくなる。上記範囲で粗化処理を行えば、1),2)硬化物に埋め込まれている複数の金属層部分の全体における深さの最大及び間隔の最大がそれぞれ0.5μm以上になる硬化物を得ることがより一層容易になり、また上記3)S/Dの最小が0.2以上及び最大が5.0以下になる硬化物を得ることがより一層容易になり、結果として、硬化物と金属層との接着強度を4N/cm以上にすることが容易である。
 膨潤液を用いて膨潤処理し、次に粗化液を用いて粗化処理したときに、粗化硬化物の表面の算術平均粗さRaが、20nm以上、350nm以下であることが好ましい。この場合には、硬化物と金属層又は配線との接着強度が高くなり、更に硬化物の表面により一層微細な配線を形成することができる。
 硬化物と金属層との接着強度は好ましくは4N/cm以上である。接着強度が4N/cm以上であると、金属配線などの金属層を硬化物の表面に良好に保持することができる。
 (デスミア処理)
 また、上記エポキシ樹脂材料を予備硬化させることにより得られた予備硬化物又は硬化物に、貫通孔が形成されることがある。上記多層基板などでは、貫通孔として、ビア又はスルーホール等が形成される。例えば、ビアは、COレーザー等のレーザーの照射により形成できる。ビアの直径は特に限定されないが、60~80μm程度である。上記貫通孔の形成により、ビア内の底部には、硬化物に含まれている樹脂成分に由来する樹脂の残渣であるスミアが形成されることが多い。
 上記スミアを除去するために、硬化物の表面は、デスミア処理されることが好ましい。デスミア処理が粗化処理を兼ねることもある。
 上記デスミア処理には、上記粗化処理と同様に、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。デスミア処理に用いられるデスミア処理液は、一般にアルカリを含む。デスミア処理液は、水酸化ナトリウムを含むことが好ましい。
 上記デスミア処理の方法は特に限定されない。上記デスミア処理の方法として、例えば、30~90g/L過マンガン酸又は過マンガン酸塩溶液及び30~90g/L水酸化ナトリウム溶液を用いて、処理温度30~85℃及び1~30分間の条件で、1回又は2回、予備硬化物又は硬化物を処理する方法が好適である。上記デスミア処理の温度は50~85℃の範囲内であることが好ましい。
 上記エポキシ樹脂材料の使用により、デスミア処理された硬化物の表面の表面粗さが十分に小さくなる。
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。
 実施例及び比較例では、以下の成分を用いた。
 (エポキシ樹脂)
 ビスフェノールA型エポキシ樹脂(日本化薬社製「RE-410S」、エポキシ当量178)
 ビフェニル型エポキシ樹脂(日本化薬社製「NC-3000H」、エポキシ当量288)
 ジシクロペンタジエン型エポキシ樹脂(日本化薬社製「XD-1000」、エポキシ当量254)
 (硬化剤)
 活性エステル化合物含有液(DIC社製「HPC8000-65T」、固形分65重量%とトルエン35重量%とを含む)
 フェノール化合物含有液(アミノトリアジン骨格を有するフェノール硬化剤、DIC社製「LA3018-50P」、水酸基当量151、重量平均分子量1000以下、固形分50重量%とプロピレングリコールモノメチルエーテル50重量%とを含む)
 シアネートエステル樹脂含有液(シアネートエステル硬化剤、ビスフェノールAジシアネートがトリアジン化され、三量体とされたプレポリマー、ロンザジャパン社製「BA230S-75」、シアネート基当量230、重量平均分子量1000以下、固形分75重量%とメチルエチルケトン25重量%とを含む)
 (無機フィラー)
 シリカ含有スラリー1(アドマテックス社製「SC2050」、平均粒子径0.5μmの溶融シリカを含む、固形分70重量%とシクロヘキサノン30重量%とを含む)
 シリカ含有スラリー2(アドマテックス社製「SC4050」、平均粒子径1.0μmの溶融シリカを含む、固形分70重量%とシクロヘキサノン30重量%とを含む)
 シリカ含有スラリー3(アドマテックス社製「SC1050」、平均粒子径0.1μmの溶融シリカを含む、固形分70重量%とシクロヘキサノン30重量%とを含む)
 (硬化促進剤)
 イミダゾール化合物(四国化成工業社製「2P4MZ」、2-フェニル-4-メチルイミダゾール)

 (他の成分)

 フェノキシ樹脂含有液(三菱化学社製「YX6954-BH30」、ポリスチレン換算での重量平均分子量39000、固形分30重量%とメチルエチルケトン35重量%とシクロヘキサノン35重量%とを含む)

 アミドイミド骨格樹脂(ニッポン高度紙工業社製、「SOXR-C」)

 (実施例1)

 〔エポキシ樹脂材料の調製〕

 上記シリカ含有スラリー2(アドマテックス社製「SC4050」)62.47重量部(固形分43.73重量部)と、活性エステル化合物含有液(DIC社製「HPC8000-65T」)16.27重量部(固形分で10.58重量部)と、フェノール化合物含有液(DIC社製「LA3018-50P」)2.68重量部(固形分で1.34重量部)と、ビスフェノールA型エポキシ樹脂(日本化薬社製「RE-410S」)6.65重量部と、ビフェニル型エポキシ樹脂(日本化薬社製「NC-3000H」)8.42重量部と、イミダゾール化合物(四国化成工業社製「2P4MZ」)0.50重量部と、フェノキシ樹脂含有液(三菱化学社製「YX6954-BH30」)3.01重量部(固形分で0.90重量部)とを混合し、均一な液となるまで常温で攪拌し、樹脂組成物ワニスを得た。

 〔樹脂シートの未硬化物(Bステージフィルム)及び予備硬化物Aの作製〕

 離型処理された透明なポリエチレンテレフタレート(PET)フィルム(リンテック社製「PET5011 550」、厚み50μm)を用意した。このPETフィルム上にアプリケーターを用いて、乾燥後の厚みが40μmとなるように、得られた樹脂組成物ワニスを塗工した。次に、100℃のギアオーブン内で2分間乾燥して、200mm×200mmの面積を有する厚み40μmの樹脂シートの未硬化物(Bステージフィルム)とポリエチレンテレフタレートフィルムとの積層フィルムを作製した。

 次に、積層フィルムからポリエチレンテレフタレートフィルムを剥がし、樹脂シートの未硬化物を180℃のギアオーブン内で80分間加熱して、樹脂シートの予備硬化物A(エポキシ樹脂材料)を作製した。

 〔硬化物Aの作製〕

 得られた樹脂シートの予備硬化物Aを、190℃で90分加熱し、更に硬化させ、硬化物Aを得た。

 (予備硬化物Bの作製)

 得られたシート状の樹脂組成物の未硬化物を、ガラスエポキシ基板(FR-4、利昌工業社製「CS-3665」)に真空ラミネートし、150℃で60分反応させた。このようにして、ガラスエポキシ基板上に反応物を形成し、ガラスエポキシ基板と反応物との積層サンプルを得た。その後、下記の膨潤処理をした後、下記の粗化処理(過マンガン酸塩処理)をした。

 膨潤処理:

 80℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」)に、上記積層サンプルを入れて、膨潤温度80℃で10分間揺動させた。その後、純水で洗浄した。

 粗化処理(過マンガン酸塩処理):

 80℃の過マンガン酸カリウム(アトテックジャパン社製「コンセントレートコンパクトCP」)粗化水溶液に、膨潤処理された上記積層サンプルを入れて、粗化温度80℃で30分間揺動させた。その後、25℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」)により2分間洗浄した後、純水でさらに洗浄した。このようにして、ガラスエポキシ基板上に、粗化処理された予備硬化物Bを形成した。

 〔積層体Aの作製〕

 上記粗化処理の後に、下記の銅めっき処理をした。

 銅めっき処理:

 ガラスエポキシ基板上に形成された予備硬化物Bに、以下の手順で無電解銅めっき及び電解銅めっき処理を施した。

 粗化処理された予備硬化物Bの表面を、60℃のアルカリクリーナ(アトテックジャパン社製「クリーナーセキュリガント902」)により5分間処理し、脱脂洗浄した。洗浄後、上記予備硬化物Bを25℃のプリディップ液(アトテックジャパン社製「プリディップネオガントB」)により2分間処理した。その後、上記予備硬化物Bを40℃のアクチベーター液(アトテックジャパン社製「アクチベーターネオガント834」)により5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(アトテックジャパン社製「リデューサーネオガントWA」)により、上記予備硬化物Bを5分間処理した。

 次に、上記予備硬化物Bを化学銅液(アトテックジャパン社製「ベーシックプリントガントMSK-DK」、アトテックジャパン社製「カッパープリントガントMSK」、アトテックジャパン社製「スタビライザープリントガントMSK」)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニールをかけた。無電解めっきの工程までのすべての工程は、ビーカースケールで処理液を1Lとし、予備硬化物Bを揺動させながら実施した。

 次に、無電解めっき処理された予備硬化物Bに、電解めっきをめっき厚さが25μmとなるまで実施した。電気銅めっきとして硫酸銅(リデューサーCu)を用いて、0.6A/cmの電流を流した。銅めっき処理後、予備硬化物Bを180℃で1時間加熱し、予備硬化物Bをさらに硬化させた。このようにして、硬化物上に銅めっき層が形成された積層体Aを得た。

 (実施例2~8及び比較例1~3)

 使用した配合成分の種類及び配合量、粗化時間を下記の表1に示すように設定したこと以外は実施例1と同様にして、エポキシ樹脂材料(予備硬化物A)、硬化物A、予備硬化物B及び積層体Aを作製した。

 (評価)

 (1)積層体Aにおいて、硬化物内に埋め込まれている複数の金属層部分の全体における深さの最大、及び積層体Aにおいて、硬化物内に埋め込まれている複数の金属層部分の全体における間隔の最大 積層体Aの断面を(JEOL社製「JSM-6700F」、M×3000)で観察することにより、40μm×30μmの大きさの反射電子像を得た。この観察は、積層体Aの表面5mm×5mmの領域において中心付近で1視野、及び4端付近で各1視野の計5視野で行った。また、得られた反射電子像は、図1に示す方向での電子像である。5視野の画像上での計測により、上記積層体Aにおいて、得られた反射電子像における硬化物と金属層との界面の長さ40μmの部分を評価した。結果として硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大と、上記積層体内に埋め込まれている複数の上記金属層部分の全体におけるの間隔の最大とを得た。なお、得られた積層体Aにおける硬化物内に埋め込まれている複数の上記金属層部分の全体における深さの最大と、上記積層体内に埋め込まれている複数の上記金属層部分の全体におけるの間隔の最大とは、得られた5視野の反射電子像内に存在していた。 

 (2)積層体Aにおいて、硬化物内に埋め込まれている複数の金属層部分の全体におけるS/Dの最小及び最大(S/Dの評価) 上記(1)の評価で得られた5つの電子像について、2つの深さの平均Dμmと、間隔Sμmとを評価して、S/Dを得た。得られたS/Dを下記の基準で判定した。なお、得られた積層体Aにおける硬化物内に埋め込まれている複数の上記金属層部分の全体において、S/Dの最小及び最大は、得られた5視野の反射電子像内に存在していた。 

 [S/Dの最小及び最大の判定基準] A:0.15≦S/D≦5.0の関係を満たす B:0.15≦S/D≦5.0の関係を満たさない
 (3)硬化物の平均線膨張率
 得られた硬化物Aを、3mm×25mmの大きさに裁断した。線膨張率計(セイコーインスツルメンツ社製「TMA/SS120C」)を用いて、引張り荷重3.3×10-2N、昇温速度5℃/分の条件で、裁断された硬化物Aの0~50℃における平均線膨張率を測定した。
 (4)硬化物の破断強度及び破断点伸度
 得られた上記硬化物Aを10mm×80mmの大きさに裁断した。裁断された硬化物Aを二つ積層し、厚み80μmの試験サンプルを得た。引張試験機(オリエンティック社製「テンシロン」)を用いて、チャック間距離60mm及びクロスヘッド速度5mm/分の条件で引張試験を行い、試験サンプルの破断強度(MPa)及び破断点伸度(%)を測定した。
 (5)硬化物のガラス転移温度
 得られた上記硬化物Aを10mm×80mmの大きさに裁断した。DMA(ダイナミックメカニカルアナリシス)装置(SIIナノテクノロジー社製)「EXSTAR6000」を用いて、昇温速度5℃/分及び周波数10Hzの条件で、得られた硬化物Aのガラス転移温度を測定した。
 (6)エポキシ樹脂材料の最低溶融粘度
 Rheometer装置(TAインスツルメント社製「AR-2000」)を用いて、歪み21.6%及び周波数1Hzの条件で、得られた樹脂シートの未硬化物(Bステージフィルム)の50~150℃の温度領域での粘度を測定し、粘度が最も低くなる値を最低溶融粘度とした。
 (7)表面粗さ(算術平均粗さRa及び十点平均粗さRz)
 得られた予備硬化物Bの表面を、非接触3次元表面形状測定装置(品番「WYKO NT1100」、Veeco社製)を用いて、94μm×123μmの測定領域で算術平均粗さRa及び十点平均粗さRzを測定した。
 (8)めっき接着強度
 得られた積層体Aの銅めっき層の表面に、10mm幅に切り欠きを入れた。その後、引張試験機(島津製作所社製「オートグラフ」)を用いて、クロスヘッド速度5mm/分の条件で、硬化物と銅めっき層との接着強度を測定した。得られた測定値をめっき接着強度とした。
 (9)フラッシュエッチング評価
 無電解銅メッキが施された予備硬化物Bに対し、フラッシュエッチング処理を行った。エッチング液には、荏原ユージライト社製「SAC」を用いた。処理温度30℃、SAC処方(35wt%-HO:5vol%、98wt%-HSO:5vol%,Cu:20g/L)、処理時間1~3分までの1分間隔で処理を行った。
 その後、FE-SEM(JEOL社製「JSM-6700F」、M×3000)による予備硬化物Bの断面観察により、無電解銅めっき除去性を評価して、フラッシュエッチング性を下記の基準で判定した。
 [フラッシュエッチング性の判定基準]
 ○:1分以内に無電解銅メッキが除去される
 △:1分超~3分以内に無電解銅メッキが除去される
 ×:3分超でも無電解銅メッキが除去されない
 組成及び結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001

 1…積層体

 2…硬化物

 2A…樹脂部分

 2B…無機フィラー部分

 3…金属層

 3a~3d…金属層部分

 11…多層基板

 12…回路基板

 12a…上面

 13~16…硬化物

 17…金属層(配線)

Claims (9)


  1.  エポキシ樹脂、硬化剤及び無機フィラーを含むエポキシ樹脂材料を硬化させた硬化物と、

     前記硬化物の表面上に積層された金属層とを備え、

     前記金属層の一部が複数箇所で前記硬化物内に埋め込まれており、

     前記硬化物内に埋め込まれている複数の前記金属層部分の全体における深さの最大が0.5μm以上であり、かつ、前記硬化物内に埋め込まれている複数の前記金属層部分の全体における間隔の最大が0.5μm以上である、積層体。

  2.  前記硬化物内に埋め込まれている複数の前記金属層部分のうち、隣り合う2つの金属層部分の2つの深さの平均をDμmとし、その2つの金属層部分の間隔をSμmとしたときに、

     前記硬化物内に埋め込まれている複数の前記金属層部分の全体において、S/Dの最小が0.15以上であり、かつS/Dの最大が5.0以下である、請求項1に記載の積層体。

  3.  前記硬化物内に埋め込まれている複数の前記金属層部分は、粗化処理により前記無機フィラーを脱離させることで、前記硬化物に複数の空隙を形成し、複数の前記空隙に前記金属層の一部を埋め込むことで形成されている、請求項1又は2に記載の積層体。

  4.  前記粗化処理は、湿式粗化処理である、請求項3に記載の積層体。
  5.  前記エポキシ樹脂材料における固形分100重量%中、前記無機フィラーの含有量が60重量%以上、80重量%以下である、請求項1~4のいずれか1項に記載の積層体。
  6.  前記エポキシ樹脂材料に含まれている前記無機フィラーの平均粒子径が0.1μm以上、5μm以下である、請求項1~5のいずれか1項に記載の積層体。
  7.  エポキシ樹脂、硬化剤及び無機フィラーを含むエポキシ樹脂材料を硬化させた硬化物を用いて、粗化処理により前記無機フィラーを脱離させることで、前記硬化物に複数の空隙を形成する工程と、
     前記硬化物の表面上に積層されるように、かつ複数の前記空隙に一部を埋め込むように金属層を形成して、積層体を得る工程とを備え、
     前記積層体として、前記金属層の一部が複数箇所で前記硬化物内に埋め込まれており、前記硬化物内に埋め込まれている複数の前記金属層部分の全体における深さの最大が0.5μm以上であり、かつ、前記硬化物内に埋め込まれている複数の前記金属層部分の全体における間隔の最大が0.5μm以上である積層体を得る、積層体の製造方法。
  8.  前記粗化処理が湿式粗化処理である、請求項7に記載の積層体の製造方法。

  9.  回路基板と、

     請求項1~6のいずれか1項に記載の積層体とを備え、

     前記積層体が前記硬化物側から前記回路基板の表面上に配置されている、多層基板。
PCT/JP2014/056958 2013-03-25 2014-03-14 積層体、積層体の製造方法及び多層基板 WO2014156734A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480002442.8A CN104640698B (zh) 2013-03-25 2014-03-14 层叠体、层叠体的制造方法以及多层基板
JP2015508306A JP5838009B2 (ja) 2013-03-25 2014-03-14 積層体、積層体の製造方法及び多層基板
KR1020157007290A KR102021641B1 (ko) 2013-03-25 2014-03-14 적층체, 적층체의 제조 방법 및 다층 기판

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-062323 2013-03-25
JP2013062323 2013-03-25
JP2013189482 2013-09-12
JP2013-189482 2013-09-12

Publications (1)

Publication Number Publication Date
WO2014156734A1 true WO2014156734A1 (ja) 2014-10-02

Family

ID=51623715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056958 WO2014156734A1 (ja) 2013-03-25 2014-03-14 積層体、積層体の製造方法及び多層基板

Country Status (5)

Country Link
JP (1) JP5838009B2 (ja)
KR (1) KR102021641B1 (ja)
CN (1) CN104640698B (ja)
TW (1) TWI596005B (ja)
WO (1) WO2014156734A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250674A (ja) * 2003-01-31 2004-09-09 Sumitomo Chem Co Ltd 樹脂フィルムおよびそれを用いた多層プリント配線板
JP2010229227A (ja) * 2009-03-26 2010-10-14 Sekisui Chem Co Ltd エポキシ樹脂組成物、シート状成形体、プリプレグ、硬化体及び積層板
JP2012035631A (ja) * 2008-09-01 2012-02-23 Sekisui Chem Co Ltd 積層体及び積層体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590566A (en) * 1978-12-29 1980-07-09 Kansai Paint Co Ltd Cationic electrodeposition coating resin composition
JP3323873B2 (ja) * 1993-09-10 2002-09-09 東芝ケミカル株式会社 コンポジット銅張積層板
JP4576794B2 (ja) * 2003-02-18 2010-11-10 日立化成工業株式会社 絶縁樹脂組成物及びその使用
KR101184842B1 (ko) * 2005-09-15 2012-09-20 세키스이가가쿠 고교가부시키가이샤 수지 조성물, 시트형 성형체, 프리프레그, 경화체, 적층판및 다층 적층판
CN103882430B (zh) * 2007-03-12 2017-04-19 大成普拉斯株式会社 铝合金复合体及其接合方法
KR101383434B1 (ko) * 2008-07-31 2014-04-08 세키스이가가쿠 고교가부시키가이샤 에폭시 수지 조성물, 프리프레그, 경화체, 시트상 성형체, 적층판 및 다층 적층판
JP5513840B2 (ja) * 2009-10-22 2014-06-04 電気化学工業株式会社 絶縁シート、回路基板及び絶縁シートの製造方法
TWI540170B (zh) 2009-12-14 2016-07-01 Ajinomoto Kk Resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250674A (ja) * 2003-01-31 2004-09-09 Sumitomo Chem Co Ltd 樹脂フィルムおよびそれを用いた多層プリント配線板
JP2012035631A (ja) * 2008-09-01 2012-02-23 Sekisui Chem Co Ltd 積層体及び積層体の製造方法
JP2010229227A (ja) * 2009-03-26 2010-10-14 Sekisui Chem Co Ltd エポキシ樹脂組成物、シート状成形体、プリプレグ、硬化体及び積層板

Also Published As

Publication number Publication date
JP5838009B2 (ja) 2015-12-24
KR20150134308A (ko) 2015-12-01
TWI596005B (zh) 2017-08-21
TW201442858A (zh) 2014-11-16
JPWO2014156734A1 (ja) 2017-02-16
CN104640698B (zh) 2017-03-29
KR102021641B1 (ko) 2019-09-16
CN104640698A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
JP4938910B1 (ja) 予備硬化物、粗化予備硬化物及び積層体
JP5629407B2 (ja) 絶縁樹脂材料及び多層基板
JP6408847B2 (ja) 樹脂組成物
JP6389782B2 (ja) 多層絶縁フィルム、多層基板の製造方法及び多層基板
JP2018115334A (ja) エポキシ樹脂材料及び多層基板
JP2013040298A (ja) エポキシ樹脂材料及び多層基板
JP2017179351A (ja) 樹脂組成物の硬化物、樹脂組成物及び多層基板
JP2012211269A (ja) 予備硬化物、粗化予備硬化物及び積層体
JP5799174B2 (ja) 絶縁樹脂フィルム、予備硬化物、積層体及び多層基板
JP5752071B2 (ja) Bステージフィルム及び多層基板
JP5216164B2 (ja) 粗化硬化物及び積層体
WO2019240083A1 (ja) 樹脂材料及び多層プリント配線板
JP6867131B2 (ja) 積層体及び積層体の製造方法
JP2013082873A (ja) Bステージフィルム及び多層基板
JP6159627B2 (ja) 樹脂組成物、樹脂フィルム及び多層基板
JP2014062150A (ja) 絶縁樹脂フィルム、絶縁樹脂フィルムの製造方法、予備硬化物、積層体及び多層基板
JP5838009B2 (ja) 積層体、積層体の製造方法及び多層基板
JP5727403B2 (ja) 積層体及び多層基板
JP6302164B2 (ja) 積層構造体の製造方法
TWI401271B (zh) Pre-hardened, coarsened pre-hardened and laminated
JP2012140570A (ja) エポキシ樹脂材料及び多層基板
JP5351910B2 (ja) Bステージフィルム及び多層基板
JP6084854B2 (ja) 多層プリント配線板用エポキシ樹脂材料及び多層プリント配線板
JP2013023667A (ja) エポキシ樹脂材料及び多層基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508306

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157007290

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774601

Country of ref document: EP

Kind code of ref document: A1