WO2014156676A1 - 排気ガス処理用触媒構造体 - Google Patents
排気ガス処理用触媒構造体 Download PDFInfo
- Publication number
- WO2014156676A1 WO2014156676A1 PCT/JP2014/056637 JP2014056637W WO2014156676A1 WO 2014156676 A1 WO2014156676 A1 WO 2014156676A1 JP 2014056637 W JP2014056637 W JP 2014056637W WO 2014156676 A1 WO2014156676 A1 WO 2014156676A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst layer
- catalyst
- peak
- layer
- inorganic porous
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 241
- 239000011148 porous material Substances 0.000 claims abstract description 74
- 238000009826 distribution Methods 0.000 claims abstract description 30
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 23
- 239000011800 void material Substances 0.000 claims description 59
- 229910052586 apatite Inorganic materials 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 46
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims description 45
- 239000000203 mixture Substances 0.000 claims description 22
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 49
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 41
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 35
- 239000002131 composite material Substances 0.000 description 34
- 229930195733 hydrocarbon Natural products 0.000 description 30
- 150000002430 hydrocarbons Chemical class 0.000 description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 25
- 238000000746 purification Methods 0.000 description 22
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 19
- 239000000758 substrate Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 230000003197 catalytic effect Effects 0.000 description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 13
- 229910002091 carbon monoxide Inorganic materials 0.000 description 13
- 150000001768 cations Chemical class 0.000 description 13
- 238000005259 measurement Methods 0.000 description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 13
- 238000001179 sorption measurement Methods 0.000 description 12
- 239000002585 base Substances 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 11
- 229910000510 noble metal Inorganic materials 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910001868 water Inorganic materials 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229910052763 palladium Inorganic materials 0.000 description 9
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 229910052712 strontium Inorganic materials 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 6
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000002950 deficient Effects 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 229910052788 barium Inorganic materials 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052878 cordierite Inorganic materials 0.000 description 5
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 229910052703 rhodium Inorganic materials 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- -1 titania compound Chemical class 0.000 description 5
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 231100000572 poisoning Toxicity 0.000 description 4
- 230000000607 poisoning effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 4
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- 235000012501 ammonium carbonate Nutrition 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 2
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910016066 BaSi Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052776 Thorium Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 150000001785 cerium compounds Chemical class 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011214 refractory ceramic Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- 229910004709 CaSi Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910002673 PdOx Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910004122 SrSi Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HEHRHMRHPUNLIR-UHFFFAOYSA-N aluminum;hydroxy-[hydroxy(oxo)silyl]oxy-oxosilane;lithium Chemical compound [Li].[Al].O[Si](=O)O[Si](O)=O.O[Si](=O)O[Si](O)=O HEHRHMRHPUNLIR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052670 petalite Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052851 sillimanite Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
- B01J35/69—Pore distribution bimodal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9022—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/908—O2-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
- B01D2255/9202—Linear dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0234—Impregnation and coating simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a catalyst structure that can be used to purify exhaust gas discharged from an internal combustion engine such as an automobile, that is, a catalyst structure for exhaust gas treatment.
- the exhaust gas of internal combustion engines such as automobiles that use gasoline as fuel contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). It is necessary to simultaneously purify and exhaust the components using a redox reaction. For example, hydrocarbons (HC) are oxidized and converted to water and carbon dioxide, carbon monoxide (CO) is oxidized and converted to carbon dioxide, and nitrogen oxides (NOx) are reduced and converted to nitrogen for purification. There is a need to.
- exhaust gas purification catalyst As a catalyst for treating exhaust gas from such an internal combustion engine (hereinafter referred to as “exhaust gas purification catalyst”), a three-way catalyst (Threee Way Catalysts: TWC) capable of oxidizing and reducing CO, HC and NOx. Is used.
- TWC Three-way catalyst
- a noble metal is supported on a refractory oxide porous body such as an alumina porous body having a high surface area, which is made of a base material such as a refractory ceramic or a metal honeycomb structure. It is known that it is supported on a monolith type substrate or supported on refractory particles.
- a noble metal is supported on a support having a high specific surface area.
- a porous body made of a refractory inorganic oxide such as silica, alumina, titania compound or the like is conventionally known.
- apatite-type composite oxides have attracted attention as carriers that are excellent in heat resistance and can prevent sintering of the supported metal catalyst particles.
- Patent Document 1 Japanese Patent Laid-Open No. 7-24323
- a general formula M 10 ⁇ (ZO 4 ) 6 ⁇ X 2 (a part or all of M is a periodic table)
- a carrier comprising an apatite compound represented by the formula (1) containing 0.5 to 10 wt% of a transition metal, Z represents a trivalent to 7 valent cation, and X represents a 1 to 3 valent anion).
- Patent Document 2 Japanese Patent Application Laid-Open No. 2007-144212 discloses (La a-x) as a catalyst that achieves a purification effect of exhaust gas even at a relatively low temperature state and achieves a purification performance as a three-way catalyst even in a high temperature range.
- M x Si 6-y N y ) O 27-z and a noble metal component that is solid solution or supported on the composite oxide and has high low-temperature activity and heat resistance
- An exhaust gas purifying catalyst that is excellent in performance and can obtain stable exhaust gas purifying performance is disclosed.
- Patent Document 3 JP 2011-16124, the general formula (A a-w-x M w M 'x) (Si 6-y N y) O 27-z (wherein, A is La and Cation of at least one element of Pr, M is a cation of at least one element of Ba, Ca and Sr, M ′ is at least one of Nd, Y, Al, Pr, Ce, Sr, Li and Ca N is a cation of at least one element of Fe, Cu and Al, 6 ⁇ a ⁇ 10, 0 ⁇ w ⁇ 5, 0 ⁇ x ⁇ 5, 0 ⁇ w + x ⁇ 5, 0 ⁇ y ⁇ 3, 0 ⁇ z ⁇ 3, A ⁇ M ′, and when A is a La cation, x ⁇ 0) and a solid solution or supported by the composite oxide
- An exhaust gas purifying catalyst comprising a precious metal component that has been used is disclosed.
- Each catalyst layer is used for the purpose of, for example, having a different function, or dividing into components each component whose activity decreases when mixed in the same layer.
- a honeycomb carrier has two upper and lower catalyst layers, the lower layer is an HC adsorption layer mainly composed of zeolite, and the upper layer carries a catalyst metal.
- a low-temperature HC trap catalyst configured as a purification catalyst layer is disclosed. According to this, the exhaust gas flowing into the carrier cell passage passes through the upper purification catalyst layer from the cell passage side surface to the lower HC adsorption layer side surface and diffuses to the HC adsorption layer. As a result, HC in the exhaust gas is adsorbed by the zeolite constituting the HC adsorption layer at a low temperature.
- the temperature of the HC adsorption layer rises to a certain high temperature, for example, 120 ° C. to 200 ° C. as the exhaust gas temperature rises, the adsorbed HC begins to desorb, and the lower layer
- the HC adsorption layer passes through the upper purification catalyst layer to the cell passage side and flows out of the carrier cell passage. At that time, HC is oxidized and purified into water (H 2 O) and carbon dioxide (CO 2 ) by the catalytic action of the catalytic metal when passing through the purification catalyst layer.
- Patent Document 5 Japanese Patent Application Laid-Open No. 2004-29881 discloses a carrier made of ceramics or a metal material, a first catalyst layer formed on the carrier, and a first catalyst layer formed on the first catalyst layer.
- the first catalyst layer is a composite ceramic containing a platinum-supported alumina in which a platinum component is supported on porous alumina, and an oxygen-storing ceria-zirconia composite oxide.
- the second catalyst layer comprises at least one of a low-heat-degradable ceria-zirconia composite oxide or a rhodium-supported ceria-zirconia composite oxide in which a rhodium component is supported on porous alumina, and a rhodium-supported alumina.
- a low-heat-degradable ceria-zirconia composite oxide or a rhodium-supported ceria-zirconia composite oxide in which a rhodium component is supported on porous alumina, and a rhodium-supported alumina Made of composite ceramics containing at least one of porous alumina and low heat-degradable ceria-zirconia composite oxide The catalyst is disclosed.
- Patent Document 6 Japanese Patent Application Laid-Open No. 2006-110485 discloses a carrier and a plurality of exhaust gas catalysts formed on the carrier as an exhaust gas catalyst that improves the gas diffusibility of the exhaust gas in the catalyst layer and improves the catalyst efficiency.
- An exhaust gas catalyst comprising at least a layer, wherein at least one layer of the plurality of layers includes a catalyst component, and at least one layer of the plurality of layers includes a catalyst component, and
- An exhaust gas purification catalyst is disclosed which has voids in the layer, and the average diameter of the voids is 0.2 ⁇ m or more and 500 ⁇ m or less.
- Patent Document 7 Japanese Patent Application Laid-Open No. 2010-201362 discloses a sponge-like solid made of silicon carbide-based ceramics as a catalyst carrier that can ensure sufficient gas diffusibility and suppress grain growth of catalyst metal.
- a silicon carbide based porous structure having a continuous pore portion formed between a skeleton portion and a three-dimensional skeleton portion, a metal silicon layer formed on the surface of the three-dimensional skeleton portion, and at least a part of the metal silicon layer is oxidized
- a catalyst carrier composed of the SiO 2 layer thus formed has been proposed.
- Patent Document 8 Japanese Patent Laid-Open No. 2009-165929 discloses an exhaust gas purification catalyst having an HC adsorption layer provided on a honeycomb carrier and a purification catalyst layer laminated on the HC adsorption layer. The ratio of exhaust gas that passes through the purification catalyst layer and diffuses to the lower HC adsorption layer is increased, the amount of HC adsorbed on the lower HC adsorption layer is increased, and the HC purification rate in the cold state is increased. In order to improve, the purification catalyst layer is purified so that a passage through which HC in the exhaust gas flowing through the carrier cell passage can pass from the cell passage side surface of the purification catalyst layer to the HC adsorption layer side surface is generated. An exhaust gas purifying catalyst is disclosed in which a plurality of fine paths having an average diameter larger than the average diameter of the particles constituting the catalyst layer are dispersedly formed.
- the present invention provides a new exhaust gas treatment catalyst structure including an upper catalyst layer and a lower catalyst layer, which is capable of maintaining gas diffusibility and sufficiently exhibiting the function as a three-way catalyst. It is an object of the present invention to provide a catalyst structure for exhaust gas treatment.
- the present invention is a catalyst structure comprising a substrate, an upper catalyst layer, and a lower catalyst layer, and in a logarithmic differential void volume distribution measured by a mercury intrusion porosimeter, a void volume diameter of 10 nm to 50 nm and 50 nm to 100 nm.
- a catalyst structure characterized by having a first peak or a second peak in each of the above is proposed.
- the catalyst structure is prepared so as to have the first peak or the second peak at the pore volume diameters of 10 nm to 50 nm and 50 nm to 100 nm, respectively, and thereby to the deep part of the catalyst layer.
- the gas diffusibility can be improved, and the function as a three-way catalyst can be sufficiently exhibited.
- Example 7 is a pore distribution chart of the catalyst structure obtained in Example 7.
- a catalyst structure as an example of an embodiment of the present invention includes a base material, an upper catalyst layer, and a lower catalyst layer, and the void distribution is measured by a mercury intrusion porosimeter.
- the obtained logarithmic differential void volume distribution has a void volume diameter in the range of 5 nm to 200 nm
- the void volume diameter of 10 nm to 50 nm and 50 nm to 100 nm has a first peak or a second peak, respectively.
- the first peak exists in the void volume diameter of 10 nm to 50 nm and the second peak exists in the void volume diameter of 50 nm to 100 nm.
- the gas diffusibility of the catalyst layer is maintained by preparing the catalyst structure so as to have the void distribution having the first peak or the second peak in the void volume diameters of 10 nm to 50 nm and 50 nm to 100 nm, respectively.
- the catalytic reactivity is also maintained and the function as a three-way catalyst can be sufficiently exhibited.
- this catalyst structure only needs to include a base material, an upper catalyst layer, and a lower catalyst layer
- the lower catalyst layer may be formed on the surface of the base material.
- a lower catalyst layer may be formed on the surface via another layer.
- another layer may exist between the upper catalyst layer and the lower catalyst layer or on the upper layer side of the upper catalyst layer.
- the upper catalyst layer and the lower catalyst layer both contain an inorganic porous material, and the inorganic porous material contained in the upper catalyst layer has a composition different from that of the inorganic porous material contained in the lower catalyst layer. Or it is preferable to have a different void distribution.
- the “first peak” refers to the peak with the highest peak height in the logarithmic differential void volume distribution measured by a mercury intrusion porosimeter
- the “second peak” refers to the second peak height. Refers to a high peak.
- “having the first peak or the second peak in each of the void volume diameters of 10 nm to 50 nm and 50 nm to 100 nm” means that the first peak or the second peak has the void volume diameters of 10 nm to 50 nm and 50 nm to 100 nm, respectively. Means to exist.
- the first peak is present in the void volume diameter of 10 nm to 50 nm and the second peak is present in the void volume diameter of 50 nm to 100 nm, or the first peak is present in the void volume diameter of 50 nm to 100 nm, and The second peak is present in the void volume diameter of 10 nm to 50 nm.
- the line assuming that the peak does not exist that is, the peak whose vertical height from the background is less than 0.002 ml / g is considered to be noise of a measuring device or the like, and thus is defined by the present invention. It does not fall under “peak”.
- the lower catalyst layer has a first peak or a second peak at a pore volume diameter of 10 nm to 50 nm
- the upper catalyst layer has a second peak or a first peak at a pore volume diameter of 50 nm to 100 nm.
- the catalyst structure which has can be mentioned. If the upper catalyst layer has the second peak or the first peak in the void volume diameter of 50 nm to 100 nm, the gas diffusibility of the upper catalyst layer can be improved, and the exhaust gas can be circulated suitably through the lower catalyst layer.
- the surface area can be secured, and the degree of dispersion can be secured. Therefore, for example, sintering of the supported noble metal can be suppressed.
- the exhaust gas can be circulated through the entire lower catalyst layer, and the exhaust gas is preferably received and efficiently A good catalytic reaction can be achieved.
- the difference between the void volume diameter of the first peak and the void volume diameter of the second peak is preferably 20 nm to 60 nm, and more preferably 40 nm or more or 50 nm or less. If the volume diameters of all the voids are increased uniformly, the gas diffusion becomes good, but on the other hand, there may be a tendency that the surface area decreases and the dispersibility of the noble metal decreases.
- the lower catalyst layer has a first peak or a second peak at a void volume diameter of 10 nm to 50 nm
- the upper catalyst layer has a second peak or a first peak at a void volume diameter of 50 nm to 100 nm
- the difference between the pore volume diameter of the first peak and the pore volume diameter of the second peak is 20 nm to 60 nm
- the upper layer can ensure gas diffusibility
- the lower layer reliably ensures the surface area and noble metal dispersibility. can do.
- the first peak and the second peak preferably have a differential pore volume of 0.01 ml / g or more, more preferably 0.05 ml / g or more or 5 ml / g or less, and particularly preferably 0.10 ml / g. It is preferable that it is g or more or 2 ml / g or less.
- the peak pore volume diameter and the differential pore volume in the logarithmic differential pore volume distribution are the pore volume diameter and differential pore volume of the apatite or OSC material, the amount of the apatite or OSC material, and the firing conditions.
- the thickness can be adjusted by changing the thickness of each layer.
- the amount of apatite or OSC material and the thickness of each layer have a large influence on the differential pore volume, and the firing conditions have a large influence on the void volume diameter. That is, if the firing temperature is increased, the void volume diameter increases, and if the firing temperature is lowered, the void volume diameter tends to decrease.
- the peaks of the void volume diameter of 10 nm to 50 nm and 50 nm to 100 nm are both peaks derived from the voids of the upper and lower catalyst layers.
- the peak due to the voids of the substrate does not appear in such a numerical range of the void volume diameter.
- the mercury intrusion porosimeter makes use of the high surface tension of mercury and applies pressure to the measurement object to cause mercury to enter, and the pore volume diameter and logarithmic differential void volume distribution are calculated from the pressure at that time and the amount of mercury injected. It is a device to measure. Therefore, the target void is only an open pore (a void communicating with the outside), and a closed pore (an independent void) is not included in the target. Further, the “void volume diameter” means the diameter of the bottom surface when the gap is approximated to a cylinder, and is calculated by the following equation.
- the inorganic porous body of the upper catalyst layer examples include oxides whose crystal structure belongs to the apatite type (also referred to as “apatite type complex oxide” or “apatite”), and a group consisting of silica, alumina, and titania compounds.
- apatite type complex oxide also referred to as “apatite type complex oxide” or “apatite”
- An inorganic porous body of a selected compound, an OSC material (the OSC material will be described later), and the like can be used, and one or more of these may be included.
- the upper catalyst layer is preferably a porous layer containing these inorganic porous bodies.
- the apatite-type composite oxide is preferable because it easily forms voids of a predetermined size and is used as an inorganic porous material of the upper catalyst layer, since it can further enhance gas diffusibility to the lower catalyst layer.
- the apatite-type composite oxide not only functions as a support for supporting a noble metal, but also has a catalytic activity for oxidizing hydrocarbons (HC) and carbon monoxide (CO), and a catalyst for reducing nitrogen oxides (NOx). Since it also has activity, the use of an apatite-type composite oxide as a carrier has an advantage that the content of noble metal can be reduced.
- the apatite-type composite oxide occupies 50% by mass or more of the inorganic porous material contained in the upper catalyst layer, and particularly 70% by mass or more. Of these, it is particularly preferable to occupy 80% by mass or more, of which 90% by mass (including 100% by mass).
- the upper catalyst layer may contain, for example, alumina, an OSC material, or other inorganic porous material as the porous material other than the apatite complex oxide (details will be described later).
- the apatite contained in the upper catalyst layer may be an oxide whose crystal structure belongs to the apatite type.
- the general formula (La ax M x ) (Si 6-y N y ) O 27-z (where M is 1 represents a trivalent cation, N represents a trivalent to 7 valent cation, 8 ⁇ a ⁇ 10, 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 3, 0 ⁇ z ⁇ 2)).
- a 10 in the case of having a stoichiometric composition and a ⁇ 10 in the case of having a non-stoichiometric composition.
- the range of a of the complex oxide that can be easily obtained in reality is 8 ⁇ a ⁇ 10.
- M is a cation that replaces a part of the La site.
- M represents at least one element selected from the group consisting of Ca, Al, Ce, Ba, Sr, Li, Nd, and Pr. Mention may be made of cations.
- N is a cation that replaces a part of the Si site.
- N is a cation of at least one element selected from the group consisting of Fe, Cu, and Al. it can.
- La-based apatite examples include La 9.33 Si 6 O 26 , La 8.33 BaSi 6 O 26 , La 8.33 CaSi 6 O 26 , La 8.33 SrSi 6 O 26 , La 8.33 BaSi 4.5 Fe 1.5 O 26 , La 6.83 Pr 3 Si 4.5 Fe 1.5 O 27, La 7.33 BaYSi 6 O 25.50, and the like.
- La-based apatite (also referred to as “A-site deficient apatite”) having a larger deficiency than that when the molar ratio of La sites is 9.33 is preferable.
- Lattice oxygen of the apatite crystal structure can be increased by making the La site deficiency larger than that of the La-based apatite complex oxide having a La site molar ratio of 9.33 (referred to as “9.33 composition”). It was found that it can be activated, can promote the catalytic reaction, and can cause the catalytic reaction at a lower temperature than the La-type apatite complex oxide having the 9.33 composition.
- apatite represented by the composition formula (1) ⁇ (LaA) 9.33- ⁇ B 6 O 27.00- ⁇ (where 0.3 ⁇ ⁇ ⁇ 3.0, 0.0 ⁇ ⁇ 6.0) may be mentioned. it can.
- “A” in the composition formula (1) is a cation that replaces a part of the La site, and is an element including one or more selected from Ba, Pr, Y, Sr, Mg, and Ce. It is. In addition, “A” may include Ca, Al, Li, Nd, and the like.
- “B” in the composition formula (1) is an element including one or more selected from Si, P and Fe. When Si is contained, it can also be said to be a cation that replaces a part of the Si site. In addition, “B” may include Cu, Al, or the like.
- the molar ratio of the elements contained in the La site is defined as “9.33- ⁇ ”. That is, in the La-based apatite-type composite oxide, the present composite oxide is more generally “ ⁇ ” than a composition having a molar ratio of La sites of 9.33 (referred to as “9.33 composition”) generally used as a reference composition. "Indicates that the deficit is large.
- the “ ⁇ ” is preferably 0.3 to 3.0, more preferably 0.3 to 2.3, and more preferably 0.8 or more and 1.3 or less. Is more preferable.
- the molar ratio of La is preferably 2.50 to 6.00, and more preferably 3.00 or more or 5.00 or less.
- the Pr molar ratio is preferably 0.5 to 3.0, more preferably 1.0 or more and 2.0 or less.
- A-site deficient apatite include La 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaBa) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaBaY) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaBaSr 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaBaMg) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaBaCe) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaPr) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaPrBa) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaPrY) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaPrSr) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaPrMg) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaPrCe) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaPrBaY) 9.33- ⁇ Si 6 O 27.00- ⁇ , (LaPrMg)
- the present catalyst carrier contains apatite represented by the above composition formula by confirming that it contains an apatite by the diffraction peak of X-ray diffraction (XRD) and measuring the element mass by ICP. it can.
- XRD X-ray diffraction
- the void distribution of the inorganic porous material as the raw material affects the void distribution of the upper catalyst layer and the present catalyst structure.
- the pore distribution of the inorganic porous body has a first peak in the range of the pore volume diameter of 40 nm to 110 nm, preferably 50 nm or more or 80 nm or less in the logarithmic differential void volume distribution measured by a mercury intrusion porosimeter.
- the differential pore volume is 0.05 ml / g to 10 ml / g, preferably 0.1 ml / g or more or 5 ml / g or less, more preferably 0.1 ml / g or more or 2 ml / g or less. Is preferred.
- the apatite as the raw material is, for example, lanthanum nitrate, barium nitrate, Pr, when producing a composite oxide containing La , Pr, Ba, Si, O. Colloidal silica and other raw material components as necessary are added to pure water and stirred to obtain a transparent solution.
- This transparent solution is dropped into a mixed solution of aqueous ammonia and ammonium carbonate, and precipitated by hydrolysis. After the precipitate is aged at a predetermined temperature, it is washed with water, filtered and dried to obtain a precursor, and this precursor is obtained by calcining at 800 to 1000 ° C. in an air atmosphere. be able to.
- the specific surface area of the apatite is preferably in the range of 5 to 100 m 2 / g.
- the porous body of the upper catalyst layer in addition to the apatite-type composite oxide, for example, a porous body of a compound selected from the group consisting of silica, alumina and titania compounds, more specifically, for example, porous bodies made of a compound selected from alumina, silica, silica-alumina, alumino-silicates, alumina-zirconia, alumina-chromia and alumina-ceria, OSC materials (OSC materials will be described later), etc.
- the upper catalyst layer can be formed using an OSC material or an inorganic porous material such as silica, alumina and titania compound as a main porous material.
- alumina having a specific surface area larger than 50 m 2 / g for example, ⁇ , ⁇ , ⁇ , ⁇ alumina can be used. Among them, it is preferable to use ⁇ alumina. In addition, about alumina, in order to raise heat resistance, trace amount La can also be included.
- the OSC material contained in the upper catalyst layer may be an inorganic porous material having oxygen storage capacity (OSC).
- OSC oxygen storage capacity
- an inorganic porous body made of a cerium compound, a zirconium compound, a ceria / zirconia composite oxide, or the like can be given.
- the upper catalyst layer may contain, for example, palladium, platinum, rhodium, gold, silver, ruthenium, iridium, nickel, cerium, cobalt, copper, osmium, strontium, or the like as a catalytically active component, that is, a metal having catalytic activity. it can. Among them, it is preferable to contain platinum, palladium, rhodium or iridium. By containing palladium (Pd) as the catalytic active component, the upper catalyst layer can particularly increase the conversion rate of hydrocarbon (THC).
- THC hydrocarbon
- the content of the catalytically active component contained in the upper catalyst layer is preferably 0.01 to 1.5 parts by mass with respect to 100 parts by mass of the inorganic porous material contained in the catalyst structure.
- the content of the catalytically active component contained in the upper catalyst layer is 0.05 parts by mass or more or 1.5 parts by mass or less with respect to 100 parts by mass of the inorganic porous material contained in the catalyst structure. It is even more preferable, and it is further more preferable that it is 0.1 mass part or more or 1.0 mass part or less.
- the catalytically active component may be present as a solid solution on a catalyst carrier such as alumina, or may be present supported on a catalyst carrier such as alumina.
- the upper catalyst layer can include stabilizers and other components.
- Examples of the stabilizer for the upper catalyst layer include alkaline earth metals and alkali metals. Of these, one or more metals selected from the group consisting of magnesium, barium, boron, thorium, hafnium, silicon, calcium, and strontium can be selected. Among these, barium is preferable from the viewpoint that the temperature at which PdOx is reduced is highest, that is, it is difficult to reduce.
- the upper catalyst layer may contain a known additive component such as a binder component.
- a binder component an inorganic binder, for example, an aqueous solution such as alumina sol can be used.
- the inorganic porous body of the lower catalyst layer is selected from the group consisting of an inorganic porous body having an oxygen storage / release function (OSC function), an apatite-type composite oxide, and silica, alumina, and a titania compound.
- the porous body of the compound which can be mentioned, The 1 type or 2 types or more of these may be included.
- the lower catalyst layer is preferably a porous layer containing these inorganic porous materials.
- the inorganic porous material contained in the lower catalyst layer may be the same composition as or different from the inorganic porous material contained in the upper catalyst layer. Even if it has the same void distribution as the inorganic porous body contained, it may have a different void distribution. However, it is preferable that the inorganic porous material contained in the lower catalyst layer has a composition different from that of the inorganic porous material contained in the upper catalyst layer or a different void distribution.
- the lower catalyst layer preferably contains a porous OSC material having an oxygen storage / release function (OSC function).
- OSC function oxygen storage / release function
- the lower catalyst layer contains the porous OSC material, for example, the apatite-type composite oxide of the upper catalyst layer and the OSC material of the lower catalyst layer can sufficiently exhibit the respective characteristics, The function as a three-way catalyst can be sufficiently exhibited while maintaining gas diffusibility.
- the OSC material preferably occupies 50% by mass or more of the inorganic porous material contained in the lower catalyst layer, particularly 70% by mass or more, of which 80% by mass or more, of which 90% by mass or more ( (Including 100% by mass) is particularly preferable.
- the lower catalyst layer is not limited to the OSC material, but may be other inorganic materials such as apatite-type composite oxides and porous bodies of compounds selected from the group consisting of silica, alumina, and titania compounds. A porous body may be included (details will be described later).
- the lower catalyst layer can be formed using a porous material such as apatite-type composite oxide or silica, alumina and titania compound as a main inorganic porous material.
- OSC material examples of the OSC material contained in the lower catalyst layer include a cerium compound, a zirconium compound, and a ceria / zirconia composite oxide.
- Examples of the inorganic porous body contained in the lower catalyst layer include, in addition to the OSC material and the apatite-type composite oxide, for example, an inorganic porous body of a compound selected from the group consisting of silica, alumina, and titania compounds,
- Examples of the inorganic porous material include alumina, silica, silica-alumina, alumino-silicates, alumina-zirconia, alumina-chromia, and alumina-ceria.
- alumina having a specific surface area larger than 50 m 2 / g for example, ⁇ , ⁇ , ⁇ , ⁇ alumina can be used. Among these, it is preferable to use ⁇ alumina. In addition, about alumina, in order to raise heat resistance, trace amount La can also be included.
- the lower catalyst layer preferably contains, for example, a metal such as palladium (Pd), platinum, rhodium, gold, silver, ruthenium, iridium, nickel, cerium, cobalt, copper, osmium, strontium as a catalytic active component.
- a metal such as palladium (Pd), platinum, rhodium, gold, silver, ruthenium, iridium, nickel, cerium, cobalt, copper, osmium, strontium
- platinum (Pt) and palladium (Pd) are preferably included, and among them, palladium (Pd) is preferably included.
- the lower catalyst layer can particularly increase the conversion rate of hydrocarbon (THC).
- the content of the catalytically active component contained in the lower catalyst layer is preferably 0.1 to 10.0 parts by mass with respect to 100 parts by mass of the entire lower layer, and more than 1.0 parts by mass or 7.0 parts by mass. It is even more preferable that the ratio is 3.0 parts by mass or more and 5.0 parts by mass or less.
- the catalytically active component may be present as a solid solution on a catalyst carrier such as alumina, or may be present supported on a catalyst carrier such as alumina.
- the lower catalyst layer preferably contains a stabilizer as necessary.
- the stabilizer for the lower catalyst layer include alkaline earth metals and alkali metals.
- one or more metals selected from the group consisting of magnesium, barium, boron, thorium, hafnium, silicon, calcium, and strontium can be selected.
- barium is particularly preferable from the viewpoint of improving the heat resistance of the OSC material and the inorganic porous body.
- the lower catalyst layer preferably contains a binder as necessary.
- a binder component an inorganic binder, for example, an aqueous solution such as alumina sol can be used.
- the lower catalyst layer can contain other components as required.
- Base material examples include refractory materials such as ceramics and metal materials.
- Materials for the ceramic substrate include refractory ceramic materials such as cordierite, cordierite-alpha alumina, silicon nitride, zircon mullite, spojumen, alumina-silica magnesia, zircon silicate, sillimanite, magnesium silicate, Examples thereof include zircon, petalite, alpha alumina, and aluminosilicates.
- the material of the metal substrate can include refractory metals such as other suitable corrosion resistant alloys based on stainless steel or iron.
- the shape of the substrate can include a honeycomb shape, a pellet shape, and a spherical shape.
- a honeycomb-shaped base material for example, a monolith type base material having a large number of parallel and fine gas flow passages, that is, channels, can be used so that fluid flows inside the base material.
- the catalyst layer can be formed by coating the inner wall surface of each channel of the monolith substrate with the catalyst composition by wash coating or the like.
- ⁇ Preferred configuration example of catalyst structure> when the substrate surface, for example, when the substrate is in a honeycomb shape, the lower catalyst layer and the upper catalyst layer are formed in this order from the channel inner wall surface inside the substrate. An example can be given.
- the lower catalyst layer is composed of catalytic active components such as Pd, Pt, and Rh, an inorganic porous material such as alumina, an OSC material such as ceria / zirconia composite oxide, a binder, and a hydroxide Ba if necessary.
- the upper catalyst layer includes a stabilizing material such as apatite, catalytic active components such as Pd and Pt, a binder, and, if necessary, a hydroxide Ba.
- the upper catalyst layer preferably contains an inorganic porous material such as alumina and an OSC material such as ceria / zirconia composite oxide as necessary.
- a catalyst active component for example, a catalyst active component, an inorganic porous body, an OSC material, a stabilizing material, a binder and water are mixed and stirred to form a slurry, and the resulting slurry is, for example, a ceramic honeycomb body
- the substrate may be wash coated and fired to form a lower catalyst layer on the substrate surface, and then the upper catalyst layer may be formed in the same manner as described above.
- firing is preferably performed at 800 to 1200 ° C.
- any known method can be adopted as a method for producing the present catalyst structure, and it is not limited to the above example.
- the precursor was calcined at 900 ° C. for 6 hours in an air atmosphere to obtain a composite oxide.
- the composition of the obtained complex oxide is subjected to X-ray diffraction (XRD), and its diffraction peak is confirmed to be a single phase of apatite, and the obtained complex oxide is analyzed by element mass spectrometry using ICP to obtain an A-deficient apatite. (La 3.53 Pr 1.80 Ba 2.00 Y 1.00 Si 6.00 O 24.10 ) was confirmed.
- 0.02 g of the composite oxide obtained above is set in a quartz reaction tube, and a temperature range of 50 to 800 ° C. is raised at 10 ° C./min while flowing 3% hydrogen-N 2 Balance gas at 20 mL / min.
- the mass number 18 of H 2 O produced by the reaction of oxygen and hydrogen in the lattice was measured with a mass spectrometer, and the reaction temperature of lattice oxygen was measured from the desorption peak of water. From this result, it was found that lattice oxygen was activated.
- apatite (A2) to (A6) ⁇ Preparation of apatite (A2) to (A6)>
- the apatite A2 to A6 shown in Table 1 were produced by changing the pore distribution by changing the firing temperature. All of the apatites A2 to A6 were confirmed to be A-deficient apatite (La 3.53 Pr 1.80 Ba 2.00 Y 1.00 Si 6.00 O 24.10 ).
- ⁇ Production of apatite (B)> First, lanthanum nitrate, barium nitrate, yttrium nitrate and colloidal silica weighed to a predetermined ratio of La 7.33 BaYSi 6 O 25.50 were added to pure water and stirred to obtain a transparent solution. This transparent solution was dropped into a mixed solution of aqueous ammonia and ammonium carbonate to obtain a precipitate. The obtained precipitate was aged at 40 ° C. for 24 hours, then washed with water, filtered, and dried at 100 ° C. to obtain a precursor. This precursor was calcined at 1000 ° C. for 6 hours to obtain La 7.33 BaYSi 6 O 25.50 as apatite.
- ⁇ Other inorganic porous bodies ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , CeO 2 , and ceria-zirconia composite oxide (shown as “CZ composite oxide” in the table) adjust the void distribution by heat treating a commercial product. did.
- the “first peak void volume diameter” means the void volume diameter of the first peak having the highest peak height in the logarithmic differential void volume distribution measured by a mercury intrusion porosimeter. is there.
- the measurement of the logarithmic differential void volume distribution is a method of measuring the pore (void) distribution by changing the pressure applied to mercury and measuring the amount of mercury that has entered the pores at that time.
- the contact angle and the surface tension are constants, the pressure P and the pore diameter D through which mercury can enter at that time are inversely proportional. Therefore, the pressure P and the amount of liquid V entering at that time are measured while changing the pressure, and the horizontal axis P of the obtained PV curve is directly replaced with the pore diameter from this equation to obtain the void distribution. be able to.
- an automatic porosimeter “Autopore IV9520” manufactured by Shimadzu Corporation was used for measurement under the following conditions and procedures.
- Measurement condition Measurement environment: 25 ° C Measurement cell: sample chamber volume 3 cm 3 , press fit volume 0.39 cm 3 Measurement range: 0.0048 MPa to 255.106 MPa Measurement point: 131 points (dots are engraved at equal intervals when the pore diameter is taken logarithmically) Press-fit volume: adjusted to be 25% or more and 80% or less.
- ⁇ Catalyst performance evaluation method> The catalyst structure (sample) obtained above is coring to 15 cc, and the exhaust gas purifying catalysts are individually filled in an evaluation device (MOTOR EXHAUST GAS ANALYZER MEXA9100 manufactured by HORIBA, Ltd.), and exhaust having the composition shown below. While circulating the model gas at a space velocity of 100,000 / h, the temperature was increased to 500 ° C. at a temperature increase rate of 20 ° C./min, and the light-off performance was determined. From the result of the obtained light-off performance evaluation, the temperature (T50) at which 50% purification rate of CO / HC / NO was reached was determined. The results are shown in Table 1.
- the sample which was cored and measured for purification performance was further set in an electric furnace maintained at 700 ° C., and was completely composed of C 3 H 6 : 5,000 ppmC, O 2 : 0.75% and the remaining amount of N 2.
- Simulated exhaust gas (50s) and air (50s) assuming combustion are circulated while being cycled for 25 hours, and then reach a 50% purification rate of CO / HC / NO in the same manner as described above.
- the temperature (T50) was determined.
- an apatite-type composite oxidation was performed by laminating an upper catalyst layer containing an inorganic porous material made of apatite and a lower catalyst layer containing an OSC material. It has been found that the characteristics of the object and the OSC material can be sufficiently exhibited.
- the gas distribution in the deep part of the catalyst layer can be achieved by making the void distribution of the catalyst structure have the first peak or the second peak in the void volume diameters of 10 nm to 50 nm and 50 nm to 100 nm, respectively. It was found that the T50 of NOx, CO, and CH was lowered, and the function as a three-way catalyst could be sufficiently exhibited. It has also been found that when apatite, especially A-site deficient apatite is used as the inorganic porous material contained in the upper catalyst layer, the NOx adsorption characteristics are further improved and the NOx purification performance is further enhanced.
- ⁇ Phosphorus poisoning evaluation method Prepare two catalyst structures (samples) obtained in Examples and Comparative Examples, and check if one of them maintains catalytic activity even after running under certain conditions, especially due to phosphorus poisoning In order to confirm the influence, an accelerated deterioration test (endurance test) was performed using an actual automobile engine.
- thermocouple was inserted into the center of the honeycomb.
- This exhaust pipe was set in the engine, and the engine speed / torque and the like were adjusted so that the temperature of the thermocouple was 750 ° C. ⁇ 20 ° C.
- a / F was a cycle test in which 14 and 15 were repeated at regular intervals, and in order to promote phosphorus poisoning, engine oil was added 6 mL / hour upstream of the catalyst, and the durability test time was 150 hours.
- the catalyst structure subjected to the above durability test and another catalyst structure obtained in Examples and Comparative Examples were each cored to 15 cc, and the catalysts Each structure was separately filled in the evaluation apparatus, and the temperature was raised to 500 ° C. at a temperature increase rate of 20 ° C./min while flowing an exhaust model gas having the composition shown in Table 2 below at a space velocity of 100,000 / h.
- the model gas purification rate ( ⁇ 400) (%) at 400 ° C. is measured, and its deterioration rate (100 ⁇ (purification rate after endurance test) / (purification rate before endurance test) ⁇ 100) is calculated.
- the results are shown in Table 2.
- apatite As the inorganic porous material contained in the upper catalyst layer, the use of apatite has a higher evaluation of phosphorus poisoning resistance than the ceria / zirconia composite oxide. Among them, the use of A-site deficient apatite further increases the resistance to phosphorus. It was found that the evaluation of toxicity was high.
- the inorganic porous material contained in the upper catalyst layer is an inorganic porous material other than apatite, for example, an OSC material such as ceria / zirconia composite oxide, alumina, and the like. Even if it is an inorganic porous material such as, by adjusting the void volume distribution in each layer, it is possible to improve the gas diffusibility to the deeper layer portion, and to fully exhibit the function as a three-way catalyst Was confirmed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Nanotechnology (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
本発明の実施形態の一例としての触媒構造体(以下「本触媒構造体」と称する)は、基材と、上側触媒層と、下側触媒層とを備え、水銀圧入ポロシメータにより空隙分布を測定した際、得られた対数微分空隙容積分布の空隙容積径5nm~200nmの範囲において、空隙容積径10nm~50nm及び50nm~100nmのそれぞれに、第1ピーク若しくは第2ピークを有することを特徴とする。中でも、第1ピークが空隙容積径10nm~50nmに存在し、且つ、第2ピークが空隙容積径50nm~100nmに存在するのが好ましい。
このように、空隙容積径10nm~50nm及び50nm~100nmのそれぞれに、第1ピーク若しくは第2ピークを有する空隙分布を備えるように触媒構造体を作製することにより、触媒層のガス拡散性を維持しつつ、触媒反応性も維持して3元触媒としての機能を十分に発揮させることができる。
また、「空隙容積径10nm~50nm及び50nm~100nmのそれぞれに、第1ピーク若しくは第2ピークを有する」とは、第1ピーク若しくは第2ピークが空隙容積径10nm~50nm及び50nm~100nmのそれぞれに存在することを意味する。すなわち、第1ピークが空隙容積径10nm~50nmに存在し、且つ、第2ピークが空隙容積径50nm~100nmに存在するか、又は、第1ピークが空隙容積径50nm~100nmに存在し、且つ、第2ピークが空隙容積径10nm~50nmに存在する場合である。
なお、そのピークが存在しないと仮定した場合のライン、すなわちバックグラウンドからの垂直高さが0.002ml/g未満のピークは、測定装置などのノイズであると考えられるため、本発明が規定する「ピーク」に該当するものではない。
上側触媒層が空隙容積径50nm~100nmに第2ピーク若しくは第1ピークを有すれば、上側触媒層のガス拡散性を良好にして下側触媒層に排気ガスを好適に流通させることができると共に、表面積を確保することでき分散度を確保することができる。よって、例えば担持する貴金属のシンタリングを抑制することができる。
また、下側触媒層が空隙容積径10nm~50nmに第1ピーク若しくは第2ピークを有すれば、下側触媒層全体に排気ガスを流通させることができると共に、排気ガスを好適に受けとめて効率良く触媒反応をなすことができる。
全ての空隙の容積径を均等に大きくすると、ガス拡散が良好になる反面、表面積が低下したり、貴金属の分散性が低下したりするなどの傾向が出現する可能性がある。そこで、例えば、下側触媒層が空隙容積径10nm~50nmに第1ピーク若しくは第2ピークを有し、上側触媒層が空隙容積径50nm~100nmに第2ピーク若しくは第1ピークを有する場合において、第1ピークの空隙容積径と第2ピークの空隙容積径との差を、20nm~60nmとすれば、上層はガス拡散性を確保することができ、下層は表面積や貴金属分散性を確実に確保することができる。
なお、空隙容積径10nm~50nm及び50nm~100nmのピークはいずれも上側及び下側触媒層の空隙に由来するピークである。基材の空隙によるピークは、このような空隙容積径の数値範囲に現れることはない。
また、上記「空隙容積径」は、空隙を円柱近似した際の底面の直径を意味し、次の式により算出される。
dr=-4σcosθ/p(σ:表面張力、θ:接触角、p:圧力)
この式において、水銀の表面張力は既知であり、接触角は装置毎で固有の値を示すため、圧入した水銀の圧力から空隙容積径を算出することができる。
上側触媒層の無機多孔質体としては、例えば、結晶構造がアパタイト型に属する酸化物(「アパタイト型複合酸化物」或いは「アパタイト」とも称する)のほか、シリカ、アルミナおよびチタニア化合物から成る群から選択される化合物の無機多孔質体や、OSC材(OSC材については後述する)などを挙げることができ、これらのうちの一種又は二種類以上を含んでいればよい。上側触媒層は、これらの無機多孔質体を含有する多孔質な層であるのが好ましい。
よって、下側触媒層へのガス拡散性を高める観点から、上側触媒層が含有する無機多孔質体のうちの50質量%以上をアパタイト型複合酸化物が占めるのが好ましく、中でも70質量%以上、その中でも80質量%以上、その中でも90質量%以上(100質量%を含む)占めるのが特に好ましい。
但し、上側触媒層は、アパタイト型複合酸化物のほかの多孔質体として、例えばアルミナやOSC材、その他の無機多孔質体を含んでいてもよい(詳しくは後述する)。
上側触媒層が含有するアパタイトは、結晶構造がアパタイト型に属する酸化物であればよく、例えば一般式(Laa-xMx)(Si6-yNy)O27-z(式中、Mは1~3価の陽イオンを表し、Nは3~7価の陽イオンを表し、8≦a≦10であり、0≦x≦5であり、0≦y≦3であり、0≦z≦2である)で示されるLa系アパタイトを挙げることができる。
この際、化学量論組成を持つ場合にはa=10であり、非化学量論組成を持つ場合にはa<10である。非化学量論組成を持つ上記一般式の複合酸化物については現実的に容易に入手できる複合酸化物のaの範囲は8≦a<10である。
また、上記一般式において、Nは、Siサイトの一部を置換する陽イオンであり、例えばNがFe、Cu及びAlからなる群から選択される少なくとも1種の元素の陽イオンを挙げることができる。
この種のLa系アパタイトの具体例としては、La9.33Si6O26、La8.33BaSi6O26、La8.33CaSi6O26、La8.33SrSi6O26、La8.33BaSi4.5Fe1.5O26、La6.83Pr3Si4.5Fe1.5O27、La7.33BaYSi6O25.50などを挙げることができる。
Laサイトのモル比が9.33の組成(「9.33組成」と称する)のLa系アパタイト型複合酸化物よりも、Laサイトの欠損をさらに大きくすることにより、アパタイト結晶構造の格子酸素を活性化させることができ、9.33組成のLa系アパタイト型複合酸化物よりも、触媒反応を促進させることができ、より低温で触媒反応を生じさせることができることが分かった。
他方、上記組成式(1)中の「B」は、Si、P及びFeの中から選ばれる一種又は二種以上を含む元素である。Siを含む場合には、Siサイトの一部を置換する陽イオンということもできる。その他、「B」として、Cu、Alなどを含むか可能性もある。
そして、該「δ」は、0.3~3.0であるのが好ましく、中でも0.3~2.3であるのがさらに好ましく、その中でも0.8以上或いは1.3以下であるのがより好ましい。
また、Laのモル比は、2.50~6.00であるのが好ましく、中でも3.00以上或いは5.00以下であるのが好ましい。
さらにまた、Prを含有する場合、Prのモル比は、0.5~3.0であるのが好ましく、中でも1.0以上或いは2.0以下であるのがさらに好ましい。
「27.00-γ」=(x1×a1+x2×a2+・・・+xn×an)/2
アパタイトの比表面積は5~100m2/gの範囲であるのが好ましい。
上側触媒層の多孔質体としては、上述したように、上記アパタイト型複合酸化物のほかに、例えばシリカ、アルミナおよびチタニア化合物から成る群から選択される化合物の多孔質体、より具体的には、例えばアルミナ、シリカ、シリカ-アルミナ、アルミノ-シリケート類、アルミナ-ジルコニア、アルミナ-クロミアおよびアルミナ-セリアから選択される化合物からなる多孔質体や、OSC材(OSC材については後述する)などを挙げることができる。
例えば、OSC材や、シリカ、アルミナおよびチタニア化合物などの無機多孔質体を、主な多孔質体として上側触媒層を形成することも可能である。
上側触媒層が含有するOSC材としては、酸素ストレージ能(OSC:Oxygen Storage Capacity)を有する無機多孔質体であればよい。例えばセリウム化合物、ジルコニウム化合物、セリア・ジルコニア複合酸化物などからなる無機多孔質体を挙げることができる。
上側触媒層は、触媒活性成分すなわち触媒活性を有する金属として、例えばパラジウム、白金、ロジウム、金、銀、ルテニウム、イリジウム、ニッケル、セリウム、コバルト、銅、オスミウム、ストロンチウム等の金属を含有することができる。中でも、白金、パラジウム、ロジウム又はイリジウムを含むのが好ましい。
上側触媒層は、触媒活性成分としてパラジウム(Pd)を含有することにより、特に炭化水素(THC)の転化率を高めることができる。
かかる観点から、上側触媒層に含まれる触媒活性成分の含有量は、触媒構造体に含まれる無機多孔質体の含有量100質量部に対して0.05質量部以上或いは1.5質量部以下であるのがより一層好ましく、中でも0.1質量部以上或いは1.0質量部以下であるのがさらに好ましい。
上側触媒層は、安定剤及びその他の成分を含むことができる。
バインダ成分としては、無機系バインダ、例えばアルミナゾル等の水溶性溶液を使用することができる。
下側触媒層の無機多孔質体としては、酸素吸蔵放出機能(OSC機能)を有する無機多孔質体のほか、アパタイト型複合酸化物、さらには、シリカ、アルミナおよびチタニア化合物から成る群から選択される化合物の多孔質体などを挙げることができ、これらのうちの一種又は二種類以上を含んでいてもよい。下側触媒層は、これらの無機多孔質体を含有する多孔質な層であるのが好ましい。なお、下側触媒層に含有される無機多孔質体は、上側触媒層に含有される無機多孔質体と同じ組成であっても、異なる組成であってもよいし、また、上側触媒層に含有される無機多孔質体と同一の空隙分布を有していても、異なる空隙分布を有していてもよい。但し、下側触媒層に含有される無機多孔質体が、上側触媒層に含有される無機多孔質体とは異なる組成又は異なる空隙分布を有するものであるのが好ましい。
但し、下側触媒層は、上述したように、OSC材のほかに、例えばアパタイト型複合酸化物や、シリカ、アルミナおよびチタニア化合物から成る群から選択される化合物の多孔質体などの他の無機多孔質体を含んでいてもよい(詳しくは後述する)。
例えば、アパタイト型複合酸化物や、シリカ、アルミナおよびチタニア化合物などの多孔質体を、主な無機多孔質体として下側触媒層を形成することも可能である。
下側触媒層が含有するOSC材としては、例えばセリウム化合物、ジルコニウム化合物、セリア・ジルコニア複合酸化物などを挙げることができる。
下側触媒層が含有する無機多孔質体としては、OSC材やアパタイト型複合酸化物以外にも、例えばシリカ、アルミナおよびチタニア化合物から成る群から選択される化合物の無機多孔質体、より具体的には、例えばアルミナ、シリカ、シリカ-アルミナ、アルミノ-シリケート類、アルミナ-ジルコニア、アルミナ-クロミアおよびアルミナ-セリアから選択される化合物からなる無機多孔質体などを挙げることができる。
下側触媒層は、触媒活性成分として、例えばパラジウム(Pd)、白金、ロジウム、金、銀、ルテニウム、イリジウム、ニッケル、セリウム、コバルト、銅、オスミウム、ストロンチウム等の金属を含むのが好ましい。
中でも、白金(Pt)、パラジウム(Pd)を含むのが好ましく、その中でも、パラジウム(Pd)を含有するのが好ましい。下側触媒層は、触媒活性成分としてパラジウム(Pd)を含有することにより、特に炭化水素(THC)の転化率を高めることができる。
下側触媒層は、必要に応じて、安定剤を含むのが好ましい。
下側触媒層の安定剤としては、例えばアルカリ土類金属やアルカリ金属を挙げることができる。中でも、マグネシウム、バリウム、ホウ素、トリウム、ハフニウム、ケイ素、カルシウムおよびストロンチウムから成る群から選択される金属のうちの一種又は二種以上を選択可能である。その中でも、OSC材及び無機多孔質体の耐熱性向上の観点から、バリウムが特に好ましい。
バインダ成分としては、無機系バインダ、例えばアルミナゾル等の水溶性溶液を使用することができる。
本触媒構造体に用いる基材の材質としては、セラミックス等の耐火性材料や金属材料を挙げることができる。
金属製基材の材質としては、耐火性金属、例えばステンレス鋼または鉄を基とする他の適切な耐食性合金などを挙げることができる。
上側触媒層と下側触媒層の層厚さの割合は、上側触媒層:下側触媒層=40:200~120:60であるのが好ましく、中でも50:190~110:100、その中でも60:180~100:120であるのが特に好ましい。
本触媒構造体の好ましい構成例として、基材表面、例えば基材がハニカム形状である場合には、基材内部のチャンネル内壁表面から、下側触媒層及び上側触媒層の順に形成してなる構成例を挙げることができる。
また、上側触媒層は、アルミナなどの無機多孔質体、並びに、セリア・ジルコニア複合酸化物などのOSC材を必要に応じて含有するのが好ましい。
本触媒構造体を製造するための一例として、例えば触媒活性成分、無機多孔質体、OSC材、安定化材、バインダ及び水を混合・撹拌してスラリーとし、得られたスラリーを例えばセラミックハニカム体などの基材にウォッシュコートし、これを焼成して、基材表面に下側触媒層を形成した後、上記同様に上側触媒層を形成すればよい。
本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
La:Pr:Ba:Y:Si:O=3.53:1.80:2.00:1.00:6.00:24.10のモル比となるように、硝酸ランタン、硝酸バリウム、硝酸Pr、硝酸イットリウム及びコロイダルシリカを秤量して、これらを純水に加え、攪拌して透明溶液を得た。
この透明溶液を、アンモニア水と炭酸アンモニウムとの混合溶液中に滴下して沈殿物を得た。得られた沈殿物を40℃で24時間熟成させた後、水洗し、ろ過し、100℃で乾燥させて前駆体を得た。そして、この前駆体を、大気雰囲気下、900℃で6時間焼成して複合酸化物を得た。
得られた複合酸化物の組成をX線回折(XRD)し、その回折ピークによってアパタイトの単相であることを確認すると共に、ICPによる元素質量分析により、得られた複合酸化物がA欠損アパタイト(La3.53Pr1.80Ba2.00Y1.00Si6.00O24.10)であることを確認した。
上記アパタイトA1の作製において、焼成温度を変化させることにより、空隙分布を変化させて、表1に示すアパタイトA2~A6を作製した。なお、アパタイトA2~A6はいずれも、A欠損アパタイト(La3.53Pr1.80Ba2.00Y1.00Si6.00O24.10)であることを確認した。
最初に、La7.33BaYSi6O25.50の所定比となるように秤量した硝酸ランタン、硝酸バリウム、硝酸イットリウム及びコロイダルシリカを純水に加え、攪拌して透明溶液を得た。この透明溶液をアンモニア水と炭酸アンモニウムとの混合溶液中に滴下して沈殿物を得た。得られた沈殿物を40℃で24時間熟成させた後、水洗し、ろ過し、100℃で乾燥させて前駆体を得た。この前駆体を1000℃で6時間焼成してアパタイトとしてLa7.33BaYSi6O25.50を得た。
なお、α-Al2O3、γ-Al2O3、CeO2、セリア-ジルコニア複合酸化物(表では「CZ複合酸化物」と示す)は、市販品を熱処理することにより空隙分布を調整した。
なお、表1及び表2において「第1ピークの空隙容積径」とは、水銀圧入ポロシメータにより測定される対数微分空隙容積分布において、最もピーク高さの高い第1ピークの空隙容積径の意味である。
実施例1~8及び比較例1~4については、次のようにして触媒構造体(サンプル)を作製した。
表1に記載の無機多孔質体91質量部を、Pdメタル換算で1質量部に相当する硝酸Pd溶液に添加し、湿式粉砕処理を施した後、無機系バインダとしてのアルミナゾルを8質量部添加し、Pd含有スラリーを得た。
得られたPd含有スラリーを、Φ105.7mm×L114.3mm-400セルのコージェライト製ハニカム基材に塗布し、次いで乾燥及び500℃で1時間焼成処理を施して下側触媒層を形成した。
なお、Pd塗布量は20g/cft、ウォッシュコート量は100g/Lであった。
次に、表1に記載の無機多孔質体91質量部を、Pdメタル換算で1質量部に相当する硝酸Pd溶液に添加し、湿式粉砕処理を施した後、無機系バインダとしてのアルミナゾルを8質量部添加し、スラリーを得た。
得られたスラリーを、上記の如く下側触媒層を塗布形成したコージェライト製ハニカム基材に塗布し、次いで乾燥及び500℃で1時間焼成処理を施して上側触媒層を形成して触媒構造体(サンプル)を作製した。
なお、上側触媒層におけるウォッシュコート量は70g/Lであった。
厚さは、上側触媒層:下側触媒層=70:160であった。
対数微分空隙容積分布の測定は、水銀に加える圧力を変化させ、その際の細孔中に進入した水銀の量を測定することにより、細孔(空隙)分布を測定する方法である。
細孔内に水銀が侵入し得る条件は、圧力P、細孔直径D、水銀の接触角と表面張力をそれぞれθとσとすると、力の釣り合いからPD=-4σCOSθで表すことができる。この際、接触角と表面張力を定数とすれば、圧力Pとそのとき水銀が侵入し得る細孔直径Dは反比例することになる。このため、圧力Pとそのときに侵入する液量Vを、圧力を変えて測定し、得られたP-V曲線の横軸Pを、そのままこの式から細孔直径に置き換え、空隙分布を求めることができる。
測定環境:25℃
測定セル:試料室体積 3cm3、圧入体積 0.39cm3
測定範囲:0.0048MPa から 255.106MPa まで
測定点:131点(細孔径を対数で取ったときに等間隔になるように点を刻んだ)
圧入体積:25%以上80%以下になるように調節した。
排気圧力:50μmHg
排気時間:5.0min
水銀注入圧力:0.0034MPa
平衡時間:10secs
(高圧パラメーター)
平衡時間:10secs
(水銀パラメーター)
前進接触角:130.0degrees
後退接触角:130.0degrees
表面張力:485.0mN/m(485.0dynes/cm)
水銀密度:13.5335g/mL
(1)実施例・比較例で得た触媒構造体(サンプル)の中央部から5mm×5mm×10mmをコアリングし、測定を行った。
(2)低圧部で0.0048MPaから0.2068MPa以下の範囲で46点測定。
(3)高圧部で0.2241MPaから255.1060MPa以下の範囲で85点測定。
(4)水銀注入圧力及び水銀注入量から、細孔径分布を算出する。
なお、上記(2)、(3)、(4)は、装置付属のソフトウエアにて、自動で行った。その他の条件はJIS R 1655:2003に準じた。
また、後述の実施例でも同様に測定を行った。
上記で得た触媒構成体(サンプル)を15ccにコアリングし、それらの排ガス浄化用触媒をそれぞれ別個に評価装置(堀場製作所製 MOTOR EXHAUST GAS ANALYZER MEXA9100)に充填し、以下に示した組成の排気モデルガスを空間速度100000/hで流通させながら、20℃/分の昇温速度で500℃まで昇温し、ライトオフ性能を求めた。得られたライトオフ性能評価の結果より、CO/HC/NOそれぞれの50%浄化率に到達する温度(T50)を求めた。その結果を表1に示した。
しかも、触媒構造体が備える空隙分布を、空隙容積径10nm~50nm及び50nm~100nmのそれぞれに、第1ピーク若しくは第2ピークを有するようにすることにより、触媒層の深層部へのガス拡散性を高めることができ、NOx、CO及びCHのいずれのT50も低下し、3元触媒としての機能を十分に発揮することができることが分かった。
また、上側触媒層に含まれる無機多孔質体としてアパタイト、中でもAサイト欠損アパタイトを用いると、NOxの吸着特性がさらに良くなり、NOxの浄化性能がさらに高まることも分かった。
実施例9~13及び比較例5については、次のようにして触媒構造体(サンプル)を作製した。
表2に記載の無機多孔質体91質量部を、Pdメタル換算で1質量部に相当する硝酸Pd溶液に添加し、湿式粉砕処理を施した後、無機系バインダとしてアルミナゾルを8質量部添加し、Pd含有スラリーを得た。
得られたPd含有スラリーを、Φ105.7mm×L114.3mm-400セルのコージェライト製ハニカム基材に塗布し、次いで乾燥及び500℃で1時間焼成処理を施して下側触媒層を形成した。
なお、Pd塗布量は20g/cft、ウォッシュコート量は100g/Lであった。
次に、表2に記載の無機多孔質体91質量部を、Pdメタル換算で1質量部に相当する硝酸Pd溶液に添加し、湿式粉砕処理を施した後、無機系バインダとしてのアルミナゾルを8質量部添加し、スラリーを得た。
得られたスラリーを、上記の如く下側触媒層を塗布形成したコージェライト製ハニカム基材に塗布し、次いで乾燥及び500℃で1時間焼成処理を施して上側触媒層を形成して触媒構造体(サンプル)を作製した。
なお、上側触媒層におけるウォッシュコート量は70g/Lであった。
実施例・比較例で得た触媒構造体(サンプル)をそれぞれ2個用意し、そのうちの1個について、一定の条件で走行した後にも触媒活性を維持しているか否か、特にリン被毒による影響を確認するために、実際の自動車エンジンを用いて加速劣化試験(耐久試験)を行った。
上側触媒層に含まれる無機多孔質体としては、セリア・ジルコニア複合酸化物よりも、アパタイトを用いた方が耐リン被毒性の評価が高く、その中でもAサイト欠損アパタイトを用いると、さらに耐リン被毒性の評価が高くなることが分かった。
Claims (8)
- 基材と上側触媒層と下側触媒層とを備えた触媒構造体であって、水銀圧入ポロシメータにより測定される対数微分空隙容積分布において、空隙容積径10nm~50nm及び50nm~100nmのそれぞれに、第1ピーク若しくは第2ピークを有することを特徴とする触媒構造体。
- 第1ピークの空隙容積径と第2ピークの空隙容積径との差が20nm~60nmであることを特徴とする請求項1に記載の触媒構造体。
- 上側触媒層及び下側触媒層はいずれも無機多孔質体を含有し、上側触媒層に含有される無機多孔質体は、下側触媒層に含有される無機多孔質体とは異なる組成又は異なる空隙分布を有するものであることを特徴とする請求項1又は2に記載の触媒構造体。
- 上側触媒層は、結晶構造がアパタイト型に属する酸化物からなる無機多孔質体を含有する多孔質な層であることを特徴とする請求項1~3の何れかに記載の触媒構造体。
- 下側触媒層は、酸素吸蔵放出機能(OSC機能)を有する無機多孔質体を含有する多孔質な層であることを特徴とする請求項1~4の何れかに記載の触媒構造体。
- 上側触媒層は、結晶構造がアパタイト型に属する酸化物からなる無機多孔質体を含有する多孔質な層であり、且つ、下側触媒層は、酸素吸蔵放出機能(OSC機能)を有する無機多孔質体を含有する多孔質な層であることを特徴とする請求項1に記載の触媒構造体。
- 上側触媒層は、酸素吸蔵放出機能(OSC機能)を有する無機多孔質体を含有する多孔質な層であり、且つ、下側触媒層は、結晶構造がアパタイト型に属する酸化物からなる無機多孔質体を含有する多孔質な層であることを特徴とする請求項1に記載の触媒構造体。
- 下側触媒層が、空隙容積径10nm~50nmに前記第1ピーク若しくは第2ピークを有し、上側触媒層が空隙容積径50nm~100nmに前記第2ピーク若しくは前記第1ピークを有することを特徴とする請求項1~7の何れかに記載の触媒構造体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14773648.2A EP2979755B1 (en) | 2013-03-29 | 2014-03-13 | Catalyst structure for exhaust gas treatment |
CN201480017188.9A CN105050712B (zh) | 2013-03-29 | 2014-03-13 | 废气处理用催化结构体 |
US14/779,704 US10576458B2 (en) | 2013-03-29 | 2014-03-13 | Catalyst structure for exhaust gas treatment |
JP2014512978A JP5901751B2 (ja) | 2013-03-29 | 2014-03-13 | 排気ガス処理用触媒構造体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-072486 | 2013-03-29 | ||
JP2013072486 | 2013-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014156676A1 true WO2014156676A1 (ja) | 2014-10-02 |
Family
ID=51623659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056637 WO2014156676A1 (ja) | 2013-03-29 | 2014-03-13 | 排気ガス処理用触媒構造体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10576458B2 (ja) |
EP (1) | EP2979755B1 (ja) |
JP (1) | JP5901751B2 (ja) |
CN (1) | CN105050712B (ja) |
WO (1) | WO2014156676A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016002344A1 (ja) * | 2014-07-02 | 2016-01-07 | 三井金属鉱業株式会社 | 触媒担体及び排ガス浄化用触媒 |
JP2016175053A (ja) * | 2015-03-23 | 2016-10-06 | トヨタ自動車株式会社 | 触媒コンバーター |
JP2017185465A (ja) * | 2016-04-07 | 2017-10-12 | トヨタ自動車株式会社 | 排ガス浄化触媒 |
US10022705B2 (en) | 2014-12-12 | 2018-07-17 | Honda Motor Co., Ltd. | Exhaust gas purifying catalyst |
JP2018171615A (ja) * | 2017-03-31 | 2018-11-08 | 株式会社キャタラー | 排ガス浄化用触媒 |
JP6694122B1 (ja) * | 2018-11-12 | 2020-05-13 | ユミコア日本触媒株式会社 | ガソリンエンジンの排気ガス浄化用触媒、その製造方法およびそれを用いた排気ガス浄化方法 |
WO2020100831A1 (ja) * | 2018-11-12 | 2020-05-22 | ユミコア日本触媒株式会社 | ガソリンエンジンの排気ガス浄化用触媒、その製造方法およびそれを用いた排気ガス浄化方法 |
JPWO2020039903A1 (ja) * | 2018-08-22 | 2020-10-22 | 三井金属鉱業株式会社 | 排ガス浄化触媒用多孔質構造体及びそれを用いた排ガス浄化触媒並びに排ガス浄化方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59171744U (ja) * | 1983-04-26 | 1984-11-16 | トヨタ自動車株式会社 | 排気ガス浄化用触媒 |
JPS61164647A (ja) * | 1985-01-17 | 1986-07-25 | Toyota Motor Corp | 排気ガス浄化用触媒 |
JPH0256247A (ja) | 1988-05-17 | 1990-02-26 | Toyota Motor Corp | 排気浄化用触媒 |
JPH0724323A (ja) | 1993-06-25 | 1995-01-27 | Tosoh Corp | 排気ガス浄化用触媒 |
JP2004298813A (ja) | 2003-03-31 | 2004-10-28 | Mitsui Mining & Smelting Co Ltd | 層状触媒 |
JP2006110485A (ja) | 2004-10-15 | 2006-04-27 | Johnson Matthey Japan Inc | 排気ガス触媒およびそれを用いた排気ガス処理装置 |
JP2007144412A (ja) | 2005-10-26 | 2007-06-14 | Mitsui Mining & Smelting Co Ltd | 排ガス浄化用触媒 |
JP2008178766A (ja) * | 2007-01-23 | 2008-08-07 | Mazda Motor Corp | パティキュレートフィルタ |
JP2009165929A (ja) | 2008-01-15 | 2009-07-30 | Mazda Motor Corp | 排気ガス浄化用触媒 |
JP2010201362A (ja) | 2009-03-04 | 2010-09-16 | National Institute Of Advanced Industrial Science & Technology | 触媒担体とその製造方法及び触媒 |
JP2011016124A (ja) | 2009-06-08 | 2011-01-27 | Mitsui Mining & Smelting Co Ltd | 排ガス浄化用触媒 |
JP2011161421A (ja) * | 2010-02-15 | 2011-08-25 | Mazda Motor Corp | 排気ガス浄化用触媒 |
FR2959735A1 (fr) * | 2010-05-06 | 2011-11-11 | Rhodia Operations | Composition a base d'oxydes de zirconium, de cerium d'au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse. |
JP2013158729A (ja) * | 2012-02-07 | 2013-08-19 | Honda Motor Co Ltd | 排気ガス処理用触媒構造体 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59171744A (ja) | 1983-03-15 | 1984-09-28 | Mitsubishi Electric Corp | 自動停車保持制御装置 |
JPS6114647A (ja) * | 1984-06-29 | 1986-01-22 | Mita Ind Co Ltd | 複写枚数セツト方法 |
JPH0724323Y2 (ja) | 1990-07-31 | 1995-06-05 | 三機工業株式会社 | アキュームレートローラコンベヤ |
EP0885657B1 (en) * | 1993-06-25 | 2008-01-02 | BASF Catalysts LLC | Catalyst composite |
DE19635893A1 (de) | 1996-09-04 | 1998-03-05 | Basf Ag | Katalysatorzusammensetzung und Verfahren zu selektiven Reduktion von NO¶x¶ bei gleichzeitiger weitgehender Vermeidung der Oxidation von SO¶x¶ in sauerstoffhaltigen Verbrennungsabgasen |
US7169213B2 (en) * | 2004-10-29 | 2007-01-30 | Corning Incorporated | Multi-channel cross-flow porous device |
JP4325648B2 (ja) * | 2005-10-24 | 2009-09-02 | トヨタ自動車株式会社 | 触媒担体及び排ガス浄化用触媒 |
-
2014
- 2014-03-13 US US14/779,704 patent/US10576458B2/en active Active
- 2014-03-13 CN CN201480017188.9A patent/CN105050712B/zh active Active
- 2014-03-13 EP EP14773648.2A patent/EP2979755B1/en active Active
- 2014-03-13 JP JP2014512978A patent/JP5901751B2/ja active Active
- 2014-03-13 WO PCT/JP2014/056637 patent/WO2014156676A1/ja active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59171744U (ja) * | 1983-04-26 | 1984-11-16 | トヨタ自動車株式会社 | 排気ガス浄化用触媒 |
JPS61164647A (ja) * | 1985-01-17 | 1986-07-25 | Toyota Motor Corp | 排気ガス浄化用触媒 |
JPH0256247A (ja) | 1988-05-17 | 1990-02-26 | Toyota Motor Corp | 排気浄化用触媒 |
JPH0724323A (ja) | 1993-06-25 | 1995-01-27 | Tosoh Corp | 排気ガス浄化用触媒 |
JP2004298813A (ja) | 2003-03-31 | 2004-10-28 | Mitsui Mining & Smelting Co Ltd | 層状触媒 |
JP2006110485A (ja) | 2004-10-15 | 2006-04-27 | Johnson Matthey Japan Inc | 排気ガス触媒およびそれを用いた排気ガス処理装置 |
JP2007144412A (ja) | 2005-10-26 | 2007-06-14 | Mitsui Mining & Smelting Co Ltd | 排ガス浄化用触媒 |
JP2008178766A (ja) * | 2007-01-23 | 2008-08-07 | Mazda Motor Corp | パティキュレートフィルタ |
JP2009165929A (ja) | 2008-01-15 | 2009-07-30 | Mazda Motor Corp | 排気ガス浄化用触媒 |
JP2010201362A (ja) | 2009-03-04 | 2010-09-16 | National Institute Of Advanced Industrial Science & Technology | 触媒担体とその製造方法及び触媒 |
JP2011016124A (ja) | 2009-06-08 | 2011-01-27 | Mitsui Mining & Smelting Co Ltd | 排ガス浄化用触媒 |
JP2011161421A (ja) * | 2010-02-15 | 2011-08-25 | Mazda Motor Corp | 排気ガス浄化用触媒 |
FR2959735A1 (fr) * | 2010-05-06 | 2011-11-11 | Rhodia Operations | Composition a base d'oxydes de zirconium, de cerium d'au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse. |
JP2013158729A (ja) * | 2012-02-07 | 2013-08-19 | Honda Motor Co Ltd | 排気ガス処理用触媒構造体 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016002344A1 (ja) * | 2014-07-02 | 2016-01-07 | 三井金属鉱業株式会社 | 触媒担体及び排ガス浄化用触媒 |
JPWO2016002344A1 (ja) * | 2014-07-02 | 2017-04-27 | 三井金属鉱業株式会社 | 触媒担体及び排ガス浄化用触媒 |
US10022705B2 (en) | 2014-12-12 | 2018-07-17 | Honda Motor Co., Ltd. | Exhaust gas purifying catalyst |
JP2016175053A (ja) * | 2015-03-23 | 2016-10-06 | トヨタ自動車株式会社 | 触媒コンバーター |
JP2017185465A (ja) * | 2016-04-07 | 2017-10-12 | トヨタ自動車株式会社 | 排ガス浄化触媒 |
JP2018171615A (ja) * | 2017-03-31 | 2018-11-08 | 株式会社キャタラー | 排ガス浄化用触媒 |
JP7023770B2 (ja) | 2017-03-31 | 2022-02-22 | 株式会社キャタラー | 排ガス浄化用触媒 |
JPWO2020039903A1 (ja) * | 2018-08-22 | 2020-10-22 | 三井金属鉱業株式会社 | 排ガス浄化触媒用多孔質構造体及びそれを用いた排ガス浄化触媒並びに排ガス浄化方法 |
US11141721B2 (en) | 2018-08-22 | 2021-10-12 | Mitsui Mining & Smelting Co., Ltd. | Porous structure for exhaust gas purification catalyst, exhaust gas purification catalyst using porous structure, and exhaust gas purification method |
JP6694122B1 (ja) * | 2018-11-12 | 2020-05-13 | ユミコア日本触媒株式会社 | ガソリンエンジンの排気ガス浄化用触媒、その製造方法およびそれを用いた排気ガス浄化方法 |
WO2020100831A1 (ja) * | 2018-11-12 | 2020-05-22 | ユミコア日本触媒株式会社 | ガソリンエンジンの排気ガス浄化用触媒、その製造方法およびそれを用いた排気ガス浄化方法 |
US11813590B2 (en) | 2018-11-12 | 2023-11-14 | Umicore Shokubai Japan Co., Ltd. | Gasoline engine exhaust gas purification catalyst, production method therefor, and exhaust gas purification method using the same |
Also Published As
Publication number | Publication date |
---|---|
EP2979755A1 (en) | 2016-02-03 |
EP2979755B1 (en) | 2021-02-17 |
CN105050712A (zh) | 2015-11-11 |
US10576458B2 (en) | 2020-03-03 |
CN105050712B (zh) | 2017-12-19 |
JPWO2014156676A1 (ja) | 2017-02-16 |
EP2979755A4 (en) | 2016-11-30 |
JP5901751B2 (ja) | 2016-04-13 |
US20160045896A1 (en) | 2016-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5901751B2 (ja) | 排気ガス処理用触媒構造体 | |
EP2921226B1 (en) | Catalyst carrier for exhaust gas and exhaust gas-cleaning catalyst | |
JP2013536756A (ja) | 改善されたno酸化活性度を有するリーン燃焼ガソリンエンジン用の触媒 | |
WO2014041984A1 (ja) | 排気ガス浄化用触媒担体 | |
JP5873731B2 (ja) | 排気ガス処理用触媒構造体 | |
JP6482986B2 (ja) | 排気ガス浄化用触媒の製造方法 | |
JP5992192B2 (ja) | パラジウム触媒 | |
US9731274B2 (en) | Catalyst carrier and exhaust gas purifying catalyst | |
JP6438384B2 (ja) | 排ガス浄化触媒用担体及び排ガス浄化触媒 | |
JP6715351B2 (ja) | 排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒 | |
WO2018123862A1 (ja) | 排気ガス浄化触媒 | |
JP6807447B2 (ja) | 排ガス浄化触媒用担体及び排ガス浄化触媒 | |
JP5502953B2 (ja) | 触媒担体及び排ガス浄化用触媒 | |
WO2016002344A1 (ja) | 触媒担体及び排ガス浄化用触媒 | |
WO2016117240A1 (ja) | 排ガス浄化触媒用担体及び排ガス浄化触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480017188.9 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2014512978 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14773648 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014773648 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14779704 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |