WO2014156530A1 - Laminated body manufacturing method - Google Patents
Laminated body manufacturing method Download PDFInfo
- Publication number
- WO2014156530A1 WO2014156530A1 PCT/JP2014/055725 JP2014055725W WO2014156530A1 WO 2014156530 A1 WO2014156530 A1 WO 2014156530A1 JP 2014055725 W JP2014055725 W JP 2014055725W WO 2014156530 A1 WO2014156530 A1 WO 2014156530A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- liquid crystal
- tension
- fpr
- sheet
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3016—Polarising elements involving passive liquid crystal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/22—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
- G02B30/25—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
Definitions
- the present invention relates to a method for producing a laminate including a patterned retardation film and a display panel.
- a patterned retardation film (Film Pattern Retarder, hereinafter referred to as FPR) is used as an optical filter of a stereoscopic image display device that uses polarized glasses with different circularly polarized directions on the left and right sides.
- the FPR has a stripe pattern in which first and second phase difference regions having a line width of 250 to 700 ⁇ m are alternately arranged horizontally.
- a liquid crystal layer aligned so that the optical axes are orthogonal to each other is formed in the first retardation region and the second retardation region.
- the lines of the first phase difference region and the second phase difference region are made to coincide with the pixel pitch constituting the horizontal line of the display screen of the stereoscopic image display device with high accuracy.
- a stereoscopic image is observed by observing the display light whose polarization direction is modulated for each horizontal pixel line through the corresponding first and second phase difference regions and polarizing glasses.
- a pretreatment sheet is formed by a mixture containing a polymer compound and a photoisomerization substance, and the pretreatment sheet is uniaxially stretched. Thereafter, the pretreatment sheet is irradiated with light having an irradiation intensity distribution to form a first region and a second region having different slow axis directions or fast axis directions.
- the method of International Publication No. 2010/090429 A2 uses two types of mask plates in which slits and light-shielding portions are exchanged and arranged in the width direction of the support of the FPR when manufacturing FPR. Are arranged in the film transport direction. Further, in the method of International Publication No. 2010/090429 A2, ultraviolet rays having different polarization directions are sequentially irradiated to the support through each mask plate while the film is conveyed.
- FPR is required to have extremely high accuracy with respect to the stripe pattern of the first phase difference region and the second phase difference region. This is because the accuracy of the stripe pattern affects the display accuracy of the display device. Therefore, when manufacturing FPR by the method of Japanese Patent Laid-Open No. 10-153707, a high irradiation technique is required to form regions having different irradiation intensities in the light irradiation step. In addition, when FPR is manufactured by the method of International Publication No. 2010/090429 A2, the positional relationship between the two types of mask plates and the support, the positional relationship between the two types of mask plates, and the like are set by trial and error. The
- an object of the present invention is to propose a method for manufacturing a laminate that improves display accuracy in a display device.
- the manufacturing method of the laminated body of this invention is equipped with a 1st cutting step (A step), a 1st tension
- step A a long patterned retardation film is cut into a desired size to obtain a patterned retardation sheet.
- first and second retardation regions having different retardation characteristics are alternately formed in the width direction.
- the first and second retardation regions are formed by forming a liquid crystal layer on the reaction film after irradiating a specific light onto a support that is continuously transported with the reaction film formed on the surface.
- the specific light is irradiated in an irradiation pattern in which linear irradiation regions and non-irradiation regions are alternately arranged in the width direction orthogonal to the conveyance direction of the support.
- the reaction film is given different alignment characteristics with respect to the liquid crystal depending on the presence or absence of specific light irradiation.
- step B the patterned phase difference sheet is pulled in a direction corresponding to the conveyance direction with a tension within a range of 20% to 180% of the tension in the conveyance direction of the support while being irradiated with specific light.
- the patterned retardation sheet is bonded to the display panel in a state of being pulled by the B step to form a laminate.
- the method for producing a laminate of the present invention includes a second cutting step (D step), a second tension step (E step), and a second bonding step (F step).
- D step a multilayer film in which a long patterned retardation film and a long transparent polymer film overlap is cut into a target size to form a multilayer sheet.
- the patterned retardation film first and second retardation regions having different retardation characteristics are alternately formed in the width direction. The first and second retardation regions are formed by forming a liquid crystal layer on the reaction film after irradiating a specific light onto a support that is continuously transported with the reaction film formed on the surface.
- the specific light is irradiated in an irradiation pattern in which linear irradiation regions and non-irradiation regions are alternately arranged in the width direction orthogonal to the conveyance direction of the support.
- the reaction film is given different alignment characteristics with respect to the liquid crystal depending on the presence or absence of specific light irradiation.
- the polymer film is manufactured while being continuously conveyed.
- the multilayer sheet is pulled in a direction corresponding to the conveyance direction of the support.
- the patterned retardation sheet is bonded to the display panel in a state of being pulled by the E step to form a laminate.
- the E step pulls the multilayer sheet with a tension based on the tension in the transport direction of the support while the specific light is irradiated.
- the present invention is particularly effective when the support is formed by applying a tension in the width direction.
- the present invention is particularly effective when the polymer film is formed by applying a tension in the width direction.
- the manufacturing method of a laminated body is further provided with a multilayering step (G step).
- G step the patterned retardation film and the polymer film are bonded together to form a multilayer film.
- the manufacturing method of a laminated body is further provided with the alignment step (H step).
- the display panel and the stretched patterned retardation sheet are aligned before bonding.
- the display panel has a plurality of pixels arranged in the horizontal and vertical directions.
- the patterned retardation sheet and the display panel are positioned in a state where the boundary between the specific first retardation area and the second retardation area of the patterned retardation sheet overlaps the edges of a plurality of pixels arranged in the horizontal or vertical direction. To be combined.
- the laminate manufacturing method further includes an irradiation step (I step) and a liquid crystal layer forming step (J step).
- I step the reaction film is irradiated with specific light emitted from the light source unit through the mask in the aforementioned irradiation pattern.
- the mask slits extending in the transport direction of the support are formed at a constant pitch in the width direction of the support.
- J step a liquid crystal layer is formed on the reaction film that has undergone the I step.
- the display accuracy in the display device is improved.
- Examples of the laminate manufactured according to the present invention include a display device (display), and examples of the display device include a liquid crystal display device and a plasma display device.
- a liquid crystal display device is manufactured by attaching an FPR (Film Patterned Retarder) to a display panel.
- FPR Fin Patterned Retarder
- the liquid crystal display device 10 as an example is configured by bonding a sheet-like FPR 12 to a liquid crystal panel 11 as a display panel.
- the liquid crystal panel 11 instead of the liquid crystal panel 11, other known liquid crystal panels may be used.
- the liquid crystal panel 11 includes a liquid crystal cell 15 that changes the polarization state of transmitted light, and two polarizing plates 16 and 17.
- the liquid crystal cell 15 includes a glass substrate 20 on the surface on the light source side and a glass substrate 21 on the surface on the viewing side.
- a plurality of transparent X electrodes 22 are formed on the inner surface of the glass substrate 20, and an alignment film 23 is laminated so as to cover them.
- a color filter layer 26 and a protective film 27 are formed on the inner surface of the glass substrate 21.
- a transparent Y electrode 28 is formed on the surface of the protective film 27, and an alignment film 31 is laminated so as to cover the Y electrode.
- the liquid crystal is sealed between the pair of alignment films 23 and 31 to form a liquid crystal layer 32.
- the liquid crystal panel 11 controls the transmission of light from the light source for each pixel arranged in a matrix by arranging a plurality in the horizontal and vertical directions.
- the liquid crystal panel 11 is driven by a known simple matrix method. That is, a plurality of X electrodes 22 and Y electrodes 28 are provided in a state of being orthogonal to each other. By applying a voltage between any X electrode 22 and Y electrode 28, these X electrode 22 and Y electrode 28 The alignment state of the liquid crystal of the pixel at the position where the line 28 intersects is changed.
- each filter 33 is a filter of any one color of an R filter that transmits red light, a G filter that transmits green light, and a B filter that transmits blue light.
- the filter 33 is provided for each pixel. Therefore, each pixel is either a red pixel provided with an R filter, a green pixel provided with a G filter, or a blue pixel provided with a B filter.
- the polarizing plate 16 is disposed on the outer surface of the glass substrate 20, and the polarizing plate 17 is disposed on the outer surface of the glass substrate 21.
- the polarizing plates 16 and 17 are both of the linear polarization type, and have a crossed Nicols arrangement. Thereby, the light from the light source is incident on the liquid crystal cell 15 through the polarizing plate 16, and the polarization state is changed according to the alignment state of the liquid crystal cell 15, whereby the amount of light transmitted through the polarizing plate 17 is changed for each pixel. Control.
- the FPR 12 has first and second phase difference regions R1 and R2 whose details will be described later.
- each of the first phase difference region R1 and the second phase difference region R2 has a width of three pixels (the length in the vertical direction in FIG. 1) and extends in a line shape in the horizontal direction. Are lined up alternately.
- the first phase difference region R1 and the second phase difference region R2 extend in the horizontal direction with widths of other pixels such as 2 pixels and 4 pixels, for example, instead of the width of 3 pixels. May be.
- the FPR 12 is bonded to the polarizing plate 17 in a state where the boundaries between the first and second retardation regions R1 and R2 coincide with the pixel boundaries of the liquid crystal panel 11.
- the optical axes for example, (in-plane) slow axes are orthogonal to each other as indicated by arrows A1 and A2.
- the direction in which the first phase difference region R1 and the second phase difference region R2 are alternately arranged coincides with the width direction of the support 40 that is orthogonal to the transport direction of the support 40 when the FPR 12 is manufactured.
- the support 40 include films composed of cellulose acylate such as cellulose triacetate (TAC), norbornene polymer, cycloolefin polymer, and acrylic polymer such as polymethyl methacrylate.
- the FPR 12 has a structure in which an alignment film 41, a liquid crystal layer 42, and an adhesive layer 45 are laminated on one surface of the support 40.
- the adhesive layer 45 is provided to adhere the FPR 12 and the liquid crystal panel 11. Note that the adhesive layer 45 may be disposed on the surface of the support 40 opposite to the surface on which the alignment film 41 is formed, instead of on the liquid crystal layer 42.
- the first and second retardation regions R1 and R2 have their slow axes orthogonal to each other by changing the alignment direction of the liquid crystal in the liquid crystal layer.
- Reference numeral 38 denotes a boundary between the first retardation region R1 and the second retardation region R2 which are non-oriented regions.
- the FPR 12 is manufactured by, for example, the FPR manufacturing facility 50 shown in FIG.
- the FPR manufacturing equipment 50 includes a transport mechanism 51, a reaction film forming unit 52, an exposure device 53, a tension adjusting unit 54, a rubbing processing unit 55, a liquid crystal layer forming unit 56, an adhesive layer forming unit 57, a cutting unit 58, and the like. Is done.
- the FPR manufacturing equipment 50 manufactures the sheet-like FPR 12 by performing various processes on the supplied long support 40.
- the sheet-like FPR 12 manufactured by the FPR manufacturing facility 50 is guided to a bonding device 59 described later and bonded to the liquid crystal panel 11 (see FIG. 1).
- a winding unit may be provided between the reaction film forming unit 52 and the exposure device 53 and between the liquid crystal layer forming unit 56 and the adhesive layer forming unit 57.
- the FPR manufacturing facility 50 includes a cutting unit 58, but the cutting unit 58 may be provided outside the FPR manufacturing facility 50.
- the FPR manufacturing facility 50 is for manufacturing a long FPR 12 and includes a winding unit (not shown) that winds the long FPR 12 downstream of the adhesive layer forming unit 57.
- the support 40 is transparent and flexible.
- the support 40 is drawn from a support roll (not shown) wound in a roll shape and supplied to the FPR manufacturing facility 50.
- the support 40 is continuously transported at a constant speed by the transport mechanism 51.
- the reaction film forming unit 52 is for forming a reaction film on one surface of the support 40.
- the reaction film contains a photoacid generator that reacts with light irradiated in a subsequent process.
- a coating solution containing a photoacid generator is applied to the surface of the support 40, and further a drying process is performed to form a reaction film having a certain thickness on the support 40.
- the reaction film forming unit 52 may saponify the support surface to be applied before applying the coating solution.
- the photoacid generator decomposes by irradiation with ultraviolet rays to generate an acid.
- a pyridinium salt, an iodonium salt, a sulfonium salt, or the like can be used.
- the photoacid generator may react with light having a specific wavelength other than ultraviolet rays.
- a technique such as spraying other than coating may be used.
- the support 40 on which the alignment film is formed is sent from the reaction film forming unit 52 to the exposure device 53.
- the exposure device 53 includes a light source 61, a mask 62, a backup roller 63, and the like.
- the light source unit 61 outputs ultraviolet light that decomposes the photoacid generator contained in the reaction film to generate an acid.
- a light source unit that outputs the reacting light is used. Ultraviolet rays from the light source unit 61 are applied through the mask 62 to the reaction film of the support 40 that is being continuously conveyed and is wound around the peripheral surface 63a of the backup roller 63 and supported on the back surface side.
- stripe pattern irradiation is performed in which the portion that becomes the first retardation region R1 is a linear irradiation region and the other portion is a linear non-irradiation region. Details of pattern irradiation will be described later with reference to another drawing.
- the backup roller 63 is rotatable and may be rotated following the conveyance of the support 40, or may be rotated by a motor or the like in synchronization with the conveyance of the support 40.
- the tension adjusting unit 54 is composed of, for example, a dancer roller 66 and a spring 67. The position of the dancer roller 66 in the lateral direction in FIG. Thereby, the tension adjusting unit 54 holds the tension in the transport direction of the support 40 being transported, in particular, the tension in the transport direction of the support 40 while the exposure device 53 is radiating ultraviolet rays at a preset value. To do.
- various known tension adjustment units that can adjust the tension in the conveyance direction of the support 40 that is continuously conveyed may be used.
- the rubbing processing unit 55 includes a rubbing roller (not shown) and its driving mechanism (not shown), and performs a rubbing process on the reaction film irradiated with ultraviolet rays by the exposure device 53 to give the reaction film an orientation.
- the alignment film 41 (see FIG. 2) is used.
- the rubbing processing unit 55 performs a rubbing process on the reaction film on the support 40 in a rubbing direction of 45 ° with respect to the transport direction of the support 40 by a rubbing roller.
- the support 40 that has undergone the rubbing treatment is sent to the liquid crystal layer forming section 56.
- the rubbing processing unit 55 is provided downstream of the exposure apparatus 53, but instead of this aspect, it may be provided between the reaction film forming unit 52 and the exposure apparatus 53. In this case, the reaction film is subjected to a rubbing process by the rubbing processing unit 55, and becomes an alignment film 41 (FIG. 2) by irradiation of ultraviolet light from the exposure device 53.
- the liquid crystal layer forming unit 56 forms a liquid crystal layer 42 (see FIG. 2) that exhibits retardation characteristics on the alignment film 41 according to the first and second retardation regions R1 and R2.
- a coating liquid containing a vertical alignment agent, a discotic liquid crystal, etc. is applied to the surface of the alignment film 41, further subjected to treatment such as heat aging and cooling, and further curing the coating film by irradiation with ultraviolet rays.
- the liquid crystal layer 42 is obtained.
- the adhesive layer forming portion 57 is for forming the adhesive layer 45 on the liquid crystal layer 42 of the support 40 sent from the liquid crystal layer forming portion 56.
- the long pressure-sensitive adhesive film 68 forming the pressure-sensitive adhesive layer 45 is rolled.
- the adhesive layer forming unit 57 includes a delivery device (not shown) that pulls out and sends out the adhesive film 68 from the adhesive film roll, a roller pair 69, and the like.
- the roller pair 69 nips the adhesive film 68 and the support 40 supplied from the delivery machine and continuously bonds them together to form a long FPR 12.
- the cutting unit 58 cuts the long FPR 12 into a target size, for example, a rectangular sheet.
- the alignment state of the liquid crystal of the liquid crystal layer 42 in the FPR 12 is governed by the interaction of the material of the alignment film 41, the liquid crystal, and an alignment controller added as desired.
- the photoacid generator contained in the reaction film 72 on the support 40 remains undecomposed in the unirradiated region of ultraviolet rays, and decomposes to generate an acidic compound in the irradiated region.
- the above interaction is no longer dominant, the rubbing direction of the alignment film 41 dominates the alignment state, and the liquid crystal is aligned with the slow axis in the rubbing direction, that is, parallel alignment.
- the alignment control agent there is a vertical alignment agent as the alignment control agent, and a discotic liquid crystal as the liquid crystal.
- the vertical alignment agent has an action of raising the discotic liquid crystal vertically with respect to the surface of the alignment film 41 and an action of aligning the discotic liquid crystal in a direction orthogonal to the rubbing direction.
- the mask 62 of the exposure apparatus 53 has a mask pattern in which a plurality of slits 62a whose longitudinal direction is aligned with the transport direction of the support 40 are arranged at a constant pitch in the width direction orthogonal to the transport direction. Have.
- the light from the light source unit 61 is irradiated to the reaction film 72 through the mask 62.
- the surface of the support 40 during continuous conveyance is irradiated with specific light in an irradiation pattern in which irradiation and non-irradiation are alternately arranged in the width direction, and irradiation regions RE and non-irradiation extending in a stripe shape in the conveyance direction.
- the regions RN are formed so as to be alternately arranged in the width direction.
- the irradiation region RE in which the acidic compound is generated has the function of vertically raising the discotic liquid crystal, but the function of aligning in the direction perpendicular to the rubbing direction is lost. For this reason, in the liquid crystal layer 42 disposed on the irradiation region RE, the discotic liquid crystal stands up and is oriented in the rubbing direction.
- the action by the vertical alignment agent is still preserved in the non-irradiated region RN.
- the discotic liquid crystal stands vertically and has an orientation posture orthogonal to the rubbing direction.
- the FPR 12 (see FIG. 3) obtained through this irradiation pattern has a fixed-width line of discotic liquid crystal in a posture that is erected and oriented in the rubbing direction, and a discotic that is erected and orthogonal to the rubbing direction.
- a line having a certain width of liquid crystal is alternately arranged, and has a stripe pattern of a first retardation region R1 and a second retardation region R2 whose slow axes are orthogonal to each other.
- the long FPR 12 is cut into a sheet shape as shown in FIG.
- the broken line in (A) of FIG. 5 is a cutting line which shows a cutting position.
- two rectangular sheets are taken in the width direction from the long FPR 12, but the number of sheets cut out in the width direction depends on the width of the long FPR 12 and the size of the target sheet. Different.
- each sheet has the length of the first edge E1 of the sheet corresponding to the cutting line C1 in the center in the width direction, and the width direction.
- the lengths of the second edges E2 corresponding to the outer cutting lines C2 are different from each other.
- the second edge E2 is slightly longer than the first edge E1.
- two sheets are taken with a cutting line forming a rectangle of 400 mm ⁇ 700 mm having a short side matching the width direction as shown in FIG.
- the length of the first edge E1 of each sheet is approximately 700.0 mm, and the length of the second edge E2 is approximately 700.3 mm.
- the first phase difference region R1 and the second phase difference region R2 that extend linearly in the conveyance direction in the long FPR 12 are the second edge side in the sheet as shown in FIG. It becomes a very slightly convex curve.
- FIG. 5A the illustration of the first phase difference region R1 and the second phase difference region R2 is omitted to avoid complication of the illustration.
- FIG. 5B the degree of deformation of the sheet is greatly exaggerated.
- the sheet-like FPR 12 is pulled in a direction corresponding to the conveying direction when the sheet is long.
- the first retardation region R1 and the second retardation region R2 that are deformed slightly in the sheet are linearized as shown in FIG. 5C.
- the sheet-like FPR 12 is liquid crystal by the laminating device 59 (see FIG. 3) in a state where the first retardation region R1 and the second retardation region R2 are held in a straight line, that is, in a state where tension is applied. It is bonded to the panel 11 (see FIG. 1).
- the bonding device 59 is in a state where the boundary 38 between the first phase difference region R1 and the second phase difference region R2 of the FPR 12 is overlapped with the edges (edges) of a plurality of pixels arranged in a certain direction of the liquid crystal panel 11, and the FPR 12 This is for attaching the liquid crystal panel 11 together.
- the bonding device 59 includes a tension part 81, a bonding part 82, and the like, and bonds the liquid crystal panel 11 to the sheet-like FPR 12 held at a predetermined tension.
- the tension portion 81 includes first and second clips 83 and 84, a tension measuring device 87, a tension mechanism 88, a camera 91, a moving mechanism 92, an elevating mechanism 93, a controller 96, and the like.
- the first clip 83 and the second clip 84 are for gripping the supplied FPR 12, and control the clamping members 83a and 84a that sandwich the FPR 12, and the clamping and release of the clamping members 83a and 84a.
- the first and second clips 83 and 84 have a direction in which the distance between them is changed (referred to as A direction), a vertical direction (B direction) in FIG.
- first and second clips 83 and 84 are displaced while maintaining their mutual posture and relative position in the AC plane determined by the A direction and the C direction.
- the first clip 83 sandwiches one end of the sheet-like FPR 12 in the direction corresponding to the above-described transport direction, and the second clip 84 sandwiches the other end. Therefore, when the FPR 12 is sandwiched, the first clip 83 and the second clip 84 make the A direction coincide with the transport direction described above.
- the coincidence does not necessarily have to be a strict coincidence, and there may be a deviation as long as it is a slight deviation within 0.0001 °. Since the first and second clips 83 and 84 are for holding the FPR 12, other holding means, for example, a suction plate (not shown) for holding the FPR 12 by suction on the film surface of the FPR 12, You may replace with the pin (not shown) etc. which penetrate and hold
- the clip body 83 b of the first clip 83 is connected to the tension measuring device 87, and the tension measuring device 87 is connected to the controller 96.
- the tension measuring device 87 detects the tension applied to the FPR 12 by the first and second clips 83 and 84 and outputs the detection signal to the controller 96.
- Examples of the tension measuring device 87 include a load cell and a spring measurement.
- the clip main body 84 b of the second clip 84 is connected to the pulling mechanism 88.
- the pulling mechanism 88 includes, for example, a ball screw and a motor that displace the clip main body 84b of the second clip 84, and displaces the clip main body 84b in the A direction with the FPR 12 being held.
- the controller 96 is also connected to the pulling mechanism 88, and when the detection signal from the tension measuring device 87 is input, the position of the clip body 84b in the A direction is controlled via the pulling mechanism 88. Thereby, the target tension in the A direction is applied to the FPR 12 held between the holding members 83a and 84a.
- the pulling mechanism 88 may be composed of an air cylinder or the like.
- the target tension is in the range of 20% or more and 180% or less of the tension in the transport direction of the support 40 while the exposure device 53 is irradiated with ultraviolet rays.
- the tension in this specification is a tension per 1 m width. That is, when the tension per 1 m width in the conveying direction of the support body 40 during irradiation with ultraviolet rays is T1 (N / m), the A direction is applied in the A direction by the first clip 83 and the second clip 84.
- the tension per 1 m in the direction perpendicular to is in the range of T1 ⁇ 0.20 or more and T1 ⁇ 1.80 or less.
- This tension is applied to change the first phase difference region R1, the second phase difference region R2, and the boundary 38 from a curved line to a straight line having a constant width, which is less than 20% and exceeds 180%.
- the tension is not a straight line with a sufficient width.
- the more preferable tension (N / m) applied in the A direction is in the range of 90% to 110% of the tension in the conveying direction of the support 40 while being irradiated with ultraviolet rays, and the difference from T1 is Smaller is better.
- Each clip body 83b, 84b is connected to a moving mechanism 92, and the moving mechanism 92 displaces each clip body 83b, 84b in the B direction and the C direction. Thereby, the FPR 12 clamped by the clamping members 83a and 84a is displaced in the B direction and the C direction.
- the moving mechanism 92 changes the position of the clip main bodies 83b and 84b in the AC plane while maintaining the posture and the positional relationship between the first clip 83 and the second clip 84. As described above, when the clip bodies 83b and 84b are integrally displaced in the AC plane, the FPR 12 rotates in the AC plane.
- the pasting unit 82 includes a mounting table 97, a pressing member 98, a shaft 99, and the like.
- the bonding part 82 is provided with a mounting table 97 on its upper surface 82a.
- the liquid crystal panel 11 is placed on the placement surface 97 a of the placement table 97.
- the liquid crystal panel 11 is placed with the light source side of the liquid crystal display device 10 (see FIG. 1) facing the mounting surface 97a. That is, in this example, the polarizing plate 16 (see FIG. 1) is directed downward to face the mounting surface 97a, and the polarizing plate 17 (see FIG. 1) is directed upward.
- the mounting surface 97a is made of transparent glass 102, for example, and the mounted liquid crystal panel 11 is illuminated from one panel surface by a lamp 103 disposed inside the mounting table 97.
- the pressing member 98 is for pressing the FPR 12 supplied and stacked on the liquid crystal panel 11 and sticking it to the liquid crystal panel 11.
- the pressing member 98 is a plate-like member whose one end is fixed to a rotating shaft 99 provided on the upper surface 82 a of the bonding portion 82.
- the pressing member 98 moves integrally with the shaft 99 between a pressing position for pressing the FPR 12 and a retracted position retracted from the pressing position, and is in an upright posture as shown in FIG.
- the camera 91 is for detecting the boundary 38 (see FIG. 2) between the first phase difference region R1 and the second phase difference region R2 in the FPR 12 and the relative position of the FPR 12 with respect to the liquid crystal panel 11.
- the camera 91 is provided with the mounting surface 97a of the mounting table 97 and the lens 91a facing each other.
- a polarizing plate 104 is provided between the supplied FPR 12 and the lens 91a in a crossed Nicol arrangement with the polarizing plate 17 disposed on the viewing side in the liquid crystal display device 10, and the camera 91 displaces the polarizing plate 104.
- the polarizing plate 104 is displaced in the B direction by an elevating mechanism 93 constituted by a motor or the like.
- the light from the lamp 103 transmitted through the boundary 38 between the phase difference regions R1 and R2 that are non-oriented regions maintains the linearly polarized light emitted from the liquid crystal panel 11, and the vibration direction of the polarizing plate 104 Orthogonal to the transmission axis. For this reason, since the light from the boundary 38 does not pass through the polarizing plate 104, it is photographed as a black line by the camera 91.
- the transport mechanism 51 causes the reaction film forming unit 52, the exposure device 53, the tension adjusting unit 54, the rubbing processing unit 55, the liquid crystal layer forming unit 56, Guided sequentially to the cutting section 58.
- the reaction film forming unit 52 continuously applies a coating solution containing a photoacid generator on one surface of the support 40. Thereafter, the reaction film forming unit 52 dries the coating film formed by coating, whereby a reaction film 72 having a certain thickness is formed on the support 40.
- the support 40 on which the reaction film 72 is formed is guided to the exposure device 53, and in a state of being wound around a backup roller, a stripe pattern irradiation in which an ultraviolet irradiation region and a non-irradiation region alternate in the width direction. Is performed continuously.
- the support 40 during pattern irradiation is held at a preset value of the tension in the transport direction.
- the support 40 is guided to the rubbing treatment part 55 and the reaction film 72 is subjected to rubbing treatment, and the reaction film 72 is changed to the alignment film 41 by this rubbing treatment. Thereafter, the support 40 is guided to the liquid crystal layer forming unit 56, and the liquid crystal layer 42 is formed on the alignment film 41.
- the adhesive layer 45 is formed on the liquid crystal layer 42 by the adhesive layer forming unit 57, and a long FPR 12 is obtained.
- the FPR 12 is cut into a sheet having a target size by the cutting unit 58.
- the sheet-like FPR 12 is guided from the FPR manufacturing facility 50 to the bonding device 59 and bonded to the liquid crystal panel 11 as follows. First, the first clip 83 and the second clip 84 are arranged in a state in which the clamping members 83a and 84a face each other in the A direction that is coincident with the transport direction of the support body 40 while the exposure device 53 is irradiated with ultraviolet rays. Is done.
- the FPR 12 is sandwiched between the one end and the other end in the A direction by the sandwiching members 83a and 84a. Note that, after the FPR 12 is sandwiched, the A direction and the transport direction at the time of manufacturing the FPR 12 may be matched.
- the tension measuring device 87 measures the tension in the A direction of the FPR 12 held between the first and second clips 83 and 84, and outputs the detection result to the controller 96.
- the controller 96 displaces the second clip 84 in the A direction via the pulling mechanism 88, and changes the position of the second clip 84 until the detection result by the tension measuring device 87 reaches the target tension described above.
- the above-described target tension is applied to the FPR 12 in the A direction.
- the first phase difference region R1 and the second phase difference region R2 in the FPR 12 are linear with a constant width, and the boundary. 38 is also linear. Note that it is not necessary to perform photographing with the camera 91 during the displacement of the second clip 84.
- the liquid crystal panel 11 is supplied in advance to the mounting table 97, and the FPR 12 is placed on the liquid crystal panel 11 by the moving mechanism 92 in a state where a predetermined tension is applied in the A direction by the first and second clips 83 and 84. As shown in FIG. 7, the liquid crystal panel 11 is slightly separated. Above the FPR 12, a polarizing plate 104 is disposed in a state slightly separated from the FPR 12.
- the FPR 12 being irradiated with light by the lamp 103 is photographed by the camera 91
- the FPR 12 and the liquid crystal panel 11 in a state where a target tension is applied are aligned.
- the boundary 38 is shifted in any arrangement direction of the plurality of pixels 106 arranged in the horizontal direction and the vertical direction in the color filter layer 26 of the liquid crystal panel 11. Therefore, in the camera 91, as shown in FIG. 8, the boundary 38 photographed as a black line intersects with the edges of the plurality of pixels 106 arranged in the horizontal direction and also intersects with the edges of the plurality of pixels 106 arranged in the vertical direction.
- the moving mechanism 92 integrates the first and second clips 83 and 84 while maintaining the posture and positional relationship.
- the FPR 12 is rotated in the AC plane by being displaced in the AC plane.
- the edges of a plurality of pixels arranged in one direction intersecting the boundary 38 are adjusted to be in a parallel state.
- the moving mechanism 92 integrally displaces the FPR 12 in at least one of the A direction and the C direction while maintaining the posture and the positional relationship of the first and second clips 83 and 84, and thereby the FPR 12 is connected to the AC. Move in the plane.
- the boundary 38 is overlapped on the edges of a plurality of pixels arranged in one direction.
- the “edge” refers to a plurality of pixels arranged in one direction (referred to as a first pixel group), a plurality of pixels arranged in the same direction as the first pixel group, and adjacent to the first pixel group (second pixel group). If there is a boundary region having a constant width between the two, this boundary region is also included.
- the boundary 38 may be placed in the boundary region between the first pixel group and the second pixel group.
- the FPR 12 is rotated and then moved in the AC plane.
- the FPR 12 may be moved in the AC plane and then rotated in the AC plane. Through the above steps, the FPR 12 is aligned with the liquid crystal panel 11.
- the FPR 12 is aligned with the liquid crystal panel 11 in a state where a target tension is applied, but the present invention is not limited to this mode.
- a target tension is applied to the FPR 12, and then the boundary You may perform the 2nd position alignment which overlaps with the edge of the some pixel in which 38 aligns in one direction.
- the FPR 12 aligned with the liquid crystal panel 11 is lowered to a state in which the FPR 12 is in contact with the liquid crystal panel 11 by the moving mechanism 92 while the target tension is applied.
- the pressing member 98 moves from the retracted position to the pressing position, the FPR 12 is pressed from the sheet surface opposite to the film surface facing the liquid crystal panel 11.
- the FPR 12 is bonded to the liquid crystal panel 11 with the boundary 38 overlapping the edges of the plurality of pixels 106 (see FIGS. 8 to 10) arranged horizontally or vertically on the liquid crystal panel 11.
- the liquid crystal display device 10 whose display accuracy is improved as compared with the conventional product is obtained.
- the FPR 12 when the FPR 12 and the liquid crystal panel 11 are aligned, the FPR 12 is moved by moving the FPR 12 with respect to the liquid crystal panel 11 placed on the mounting table 97, but this is not a limitation.
- the mounting table 97 with a displacement mechanism in the A direction and the C direction and a rotation mechanism in the AC plane, in addition to or instead of the movement and rotation of the FPR 12, the movement and rotation of the liquid crystal panel 11 can be performed. You may align by performing.
- the above method has a particularly remarkable effect when the support body 40 that has been subjected to the step of applying tension in the width direction is provided to the FPR manufacturing facility 50.
- the support 40 obtained by applying tension in the width direction in the manufacturing process has a larger residual stress in the end portion in the width direction than in the center portion in the width direction, and is cut into a sheet shape by the cut portion 58.
- the degree of contraction is different between the part corresponding to the end part and the part corresponding to the center part. Therefore, the irradiation region RE, the non-irradiation region RN, and the boundary 38 formed in a line shape with a constant width by the exposure device 53 are curved as described above by cutting into a sheet shape.
- the first phase difference region R1 and the first phase difference region R1 are attached to the first retardation region R1 by attaching the FPR 12 in a state where a tension close to the tension T1 is applied with reference to the tension T1 in the transport direction while the exposure device 53 is irradiated with ultraviolet rays.
- the two phase difference regions R1 and the boundaries 38 thereof are linear, and the resulting liquid crystal display device 10 exhibits good display performance.
- the stretching device 120 in FIG. 11 is for applying tension in the width direction in the process of manufacturing the support 40.
- the stretching device 120 may be connected to, for example, a film forming unit provided on the upstream side, or may be connected to a sending machine.
- a film forming part a melt film forming part that melts the raw material polymer and extrudes it into a film shape, or a raw material polymer dissolved in a solvent and cast on a casting support to form a casting film, this casting film There is a solution film forming part that peels off after developing self-supporting property.
- As a sending machine there is a machine in which a film roll manufactured in these film forming sections and wound in a roll shape is set, and the film 122 is unwound from the film roll and sent to the stretching apparatus 120.
- a plurality of clips 121 are attached to a pair of chains (not shown) arranged on a pair of rails (not shown) extending in the transport direction.
- the pair of rails are provided to be separated from each other in the width direction of the film 122, and the clip 121 sandwiches the side end portion of the long film 122 that is continuously supplied.
- Each chain moves on the rails, whereby the individual clips 121 move, whereby the film 122 is conveyed.
- the width of the film 122 is expanded (widened), narrowed (reduced), or kept constant.
- the stretching apparatus 120 in FIG. 11 includes a preheating unit 120a that raises the temperature of the film 122 while keeping the width constant, a widening unit 120b that widens the width provided downstream of the preheating unit, and a relaxation unit that is provided downstream of the widening unit. 120c.
- the widened portion 120b widens the width of the film 122 by setting the temperature of the film 122 to a high temperature such as near the glass transition point.
- the preheating unit 120a prevents the film 122 from being deformed or broken in the widened portion 120b by raising the temperature of the film 122 toward the widened portion 120b.
- the relaxation part 120c performs stress relaxation of the film generated in the widened part 120b.
- the support 40 is obtained through the treatment by the preheating part 120a, the widening part 120b, and the relaxation part 120c, residual stress remains in the obtained support 40 even after the stress relaxation in the relaxation part 120c. In many cases, the deformation of the FPR 12 accompanying the sheet formation as described above occurs.
- the support body 40 is manufactured with a stretching pattern of holding a constant width, widening, and holding a constant width after widening, but the stretching pattern is not limited thereto.
- a liquid crystal display device is manufactured by attaching a multilayer film to a display panel.
- the liquid crystal display device 130 of this example is configured by laminating a sheet-like multilayer film 14 to a liquid crystal panel 11 as a display panel.
- the multilayer film 14 is attached to the liquid crystal panel 11 instead of the FPR 12.
- symbol is attached
- the multilayer film 14 includes an FPR 12 and a protective film 13.
- the protective film 13 is for protecting the surface of the FPR 12.
- other known liquid crystal panels may be used.
- various optical function films may be used in place of the protective film 13.
- the optical function film may be, for example, a polarizing film that transmits only specific polarized light, or a viewing angle expansion film that expands the viewing angle in the display device.
- the protective film 13 is provided on the surface of the FPR 12 on the viewing side.
- the protective film 13 has elasticity and is transparent in the present embodiment.
- cellulose acylate such as cellulose triacetate (TAC), polyethylene terephthalate (PET), polypropylene (PP), norbornene-based polymer, cycloolefin-based
- TAC cellulose triacetate
- PET polyethylene terephthalate
- PP polypropylene
- norbornene-based polymer norbornene-based polymer
- cycloolefin-based cycloolefin-based
- the film is formed of a polymer and a film composed of a polymer such as an acrylic polymer such as polymethyl methacrylate.
- the adhesive layer 45 is provided to adhere the FPR 12 of the multilayer film 14 and the liquid crystal panel 11 as described above.
- the protective film 13 is disposed on the surface of the support 40 opposite to the surface on which the alignment film 41 is provided.
- the adhesive layer 45 is provided on the liquid crystal layer 42 as in the first embodiment. However, it may be arranged on the surface of the protective film 13 instead of this embodiment.
- the sheet-like multilayer film 14 is manufactured by, for example, a multilayer sheet manufacturing facility 132 shown in FIG.
- the multilayer sheet manufacturing facility 132 includes a transport mechanism 51, a reaction film forming unit 52, an exposure device 53, a tension adjusting unit 54, a rubbing processing unit 55, a liquid crystal layer forming unit 56, a multilayered unit 133, a cutting unit 58, and the like. Consists of. That is, the multilayer sheet manufacturing facility 132 is configured to include a multilayered portion 133 instead of the adhesive layer forming portion 57 of the FPR manufacturing facility.
- the multilayer sheet manufacturing facility 132 performs various processes on the supplied long support 40 to manufacture the sheet-shaped multilayer film 14.
- the sheet-like multilayer film 14 manufactured by the multilayer sheet manufacturing facility 132 is guided to a laminating device 59 described later and bonded to the liquid crystal panel 11 (see FIG. 12).
- a winding unit may be provided between the liquid crystal layer forming unit 56 and the multi-layered unit 133.
- the multilayer sheet manufacturing facility 132 includes the cutting unit 58, but the cutting unit 58 may be provided outside the multilayer sheet manufacturing facility 132.
- the multilayer sheet manufacturing facility 132 is for manufacturing a long multilayer film 14 in which the FPR 12 and the protective film 13 overlap, and a long multilayer film is formed downstream of the multilayering section 133.
- a winding unit (not shown) for winding the film 14 is provided.
- the support 40 is drawn out from a support roll (not shown) wound in a roll shape and supplied to the multilayer sheet manufacturing facility 132, for example.
- the multilayered portion 133 is for forming the adhesive layer 45 and the protective film 13.
- the multi-layered portion 133 forms an adhesive layer 45 on the liquid crystal layer 42 and is opposite to the surface on which the alignment film 41 and the liquid crystal layer 42 of the support 40 sent from the liquid crystal layer forming portion 56 are layered.
- a protective film 13 is applied to the surface.
- the long adhesive film 68 that forms the adhesive layer 45 and the long protective film 134 that becomes the protective film 13 are each formed into a roll.
- the multi-layer unit 133 includes a feeding machine (not shown) that pulls out and sends out the adhesive film 68 from the adhesive film roll, a feeding machine (not shown) that pulls out and sends the protective film 134 from the protective film roll, and a roller pair 69 and the like Prepare.
- the roller pair 69 sandwiches the support 40 sent from the liquid crystal layer forming unit 56 between the adhesive film 68 and the protective film 134 supplied from each delivery machine, and nips them.
- the cutting part 58 cuts the long multilayer film 14 into a desired size, for example, a rectangular sheet.
- the long multilayer film 14 is cut into a sheet shape as shown in FIG. Note that a broken line in FIG. 15A is a cutting line indicating a cutting position. In this example, two rectangular sheets are taken in the width direction from the long multilayer film 14, but the number of sheets cut out in the width direction is the width and purpose of the long multilayer film 14. Depending on the size of the sheet.
- each sheet is the sheet corresponding to the cutting line C1 in the center in the width direction, as in the first embodiment.
- the length of the first edge E1 and the length of the second edge E2 corresponding to the cutting line C2 on the outer side in the width direction are different from each other.
- the second edge E2 is slightly longer than the first edge E1.
- a sheet is cut with a cutting line that forms a 400 mm ⁇ 700 mm rectangle having a short side that coincides with the width direction as shown in FIG.
- the length of the first edge E1 of each sheet is approximately 700.0 mm, and the length of the second edge E2 is approximately 700.3 mm.
- the first retardation region R1 and the second retardation region R2 that respectively extend linearly in the transport direction in the FPR 12 of the long multilayer film 14 are different from each other in the sheet-shaped multilayer film 14 shown in FIG.
- a slightly convex curve is formed on the second edge E2 side.
- illustration of the first phase difference region R1 and the second phase difference region R2 is omitted in order to avoid complication of the illustration.
- the degree of deformation of the sheet is greatly exaggerated.
- the sheet-like multilayer film 14 is pulled in a direction corresponding to the conveying direction when it is long. Since the transport direction of the multilayer film 14 coincides with the transport direction of the support 40 in the manufacturing process of the FPR 12, the pulling direction coincides with the direction corresponding to the transport direction of the FPR 12.
- the first retardation region R1 and the second retardation region R2 that are deformed slightly in the sheet are linearized as shown in FIG.
- the sheet-like multilayer film 14 is in a state where the first retardation region R1 and the second retardation region R2 are held in a straight line, that is, in a state where tension is applied, and a bonding device 59 (see FIG. 16). ) And the liquid crystal panel 11 (see FIG. 12).
- the laminating of the sheet-like multilayer film 14 and the liquid crystal panel 11 is performed by the laminating apparatus 59 described above.
- the boundary 38 between the first retardation region R1 and the second retardation region R2 of the FPR 12 in the multilayer film 14 is overlapped with the edges of the plurality of pixels arranged in a certain direction of the liquid crystal panel 11.
- the bonding apparatus 59 bonds the liquid crystal panel 11 and the sheet-like multilayer film 14 held at a predetermined tension. That is, this 2nd Embodiment is an aspect which affixes the multilayer film 14 on the liquid crystal panel 11 instead of FPR12 in 1st Embodiment.
- the first clip 83 sandwiches one end portion of the sheet-like multilayer film 14 in the direction corresponding to the aforementioned transport direction with the sandwiching member 83a, and the second clip 84 sandwiches the other end portion with the sandwiching member 84a. Therefore, when the multilayer film 14 is sandwiched, the first clip 83 and the second clip 84 make the A direction coincide with the transport direction described above. Similar to the first embodiment, the coincidence may not necessarily be a strict coincidence, and there may be a deviation as long as the deviation is within 0.0001 °.
- the tension measuring device 87 detects the tension applied to the multilayer film 14 by the first and second clips 83 and 84, and outputs the detection signal to the controller 96.
- the pulling mechanism 88 displaces the clip main body 84b in the A direction while sandwiching the multilayer film 14.
- the controller 96 controls the position of the clip body 84 b via the pulling mechanism 88.
- tensile_strength TD is provided in the A direction to the multilayer film 14 currently clamped by the clamping members 83a and 84a.
- the application of tension in the A direction by the first clip 83 and the second clip 84 is for changing the first phase difference region R1, the second phase difference region R2, and the boundary 38 from a curved line to a straight line having a certain width. It is.
- the target tension TD is set based on the tension Ts in the transport direction of the support 40 to which the reaction film 72 (see FIG. 4) is applied while the exposure apparatus 53 is irradiated with ultraviolet rays. For example, the target tension TD is set larger as the tension Ts is larger.
- the tension in the present specification is a tension per 1 m width (unit: N / m).
- the multilayer film 14 is displaced in the B direction and the C direction by the displacement of the clip bodies 83b and 84b in the B direction and the C direction by the moving mechanism 92.
- the moving mechanism 92 changes the position of the clip main bodies 83b and 84b in the AC plane while maintaining the posture and the positional relationship between the first clip 83 and the second clip 84.
- the multilayer film 14 rotates in the AC plane.
- the liquid crystal panel 11 is mounted on the mounting surface 97a of the mounting table 97 provided in the bonding unit 82 with the light source side of the liquid crystal display device 130 facing the mounting surface 97a.
- the lamp 103 illuminates the placed liquid crystal panel 11 from one panel surface.
- the pressing member 98 is for pressing the multi-layer film 14 supplied and stacked on the liquid crystal panel 11 and sticking it to the liquid crystal panel 11.
- the pressing member 98 moves integrally with the shaft 99 between a pressing position for pressing the multilayer film 14 and a retracted position retracted from the pressed position, and is in an upright posture as shown in FIG.
- the camera 91 detects the boundary 38 (see FIG. 13) between the first retardation region R1 and the second retardation region R2 of the FPR 12 in the multilayer film 14 and the relative position of the multilayer film 14 with respect to the liquid crystal panel 11. Is for.
- a polarizing plate 104 is provided between the supplied multilayer film 14 and the lens 91a.
- the polarizing plate 104 is arranged in a crossed Nicols arrangement with the polarizing plate 17 of the liquid crystal display device 130, and the camera 91 takes an image through the polarizing plate 104.
- the light from the lamp 103 that has passed through the boundary 38 that is a non-oriented region maintains the linearly polarized light emitted from the liquid crystal panel 11, and its vibration direction is orthogonal to the transmission axis of the polarizing plate 104. To do. For this reason, since the light from the boundary 38 does not pass through the polarizing plate 104, it is photographed as a black line by the camera 91.
- a reaction film forming unit 52 When the long support 40 is supplied to the multilayer sheet manufacturing apparatus 50, a reaction film forming unit 52, an exposure device 53, a tension adjusting unit 54, a rubbing processing unit 55, and a liquid crystal layer forming unit are provided by a transport mechanism unit 51. 56, the multi-layered unit 133, and the cutting unit 58 are sequentially guided. After a reaction film 72 having a certain thickness is formed on one surface of the support 40 by the reaction film forming unit 52, the exposure device 53 stripes the irradiation regions and non-irradiation regions alternately in the width direction. The pattern irradiation is continuously performed. The support 40 during pattern irradiation is held at a preset value of the tension in the transport direction.
- the liquid crystal layer forming part 56 forms the liquid crystal layer 42 on the alignment film 41.
- the support 40 on which the liquid crystal layer 42 is formed is a surface opposite to the surface on which the adhesive layer 45 is formed on the liquid crystal layer 42 by the multi-layered portion 133 and the alignment film 41 and the liquid crystal layer 42 are layered. Is provided with a protective film 13, whereby a long multilayer film 14 is obtained.
- the multilayer film 14 is cut into a sheet having a desired size by the cutting portion 58.
- the sheet-like multilayer film 14 is guided from the multilayer sheet manufacturing facility 132 to the laminating apparatus 59 and bonded to the liquid crystal panel 11 as follows. First, the first clip 83 and the second clip 84 are arranged in a state in which the clamping members 83a and 84a face each other in the A direction that is coincident with the transport direction of the support body 40 while the exposure device 53 is irradiated with ultraviolet rays. Is done. The multilayer film 14 is sandwiched between one end portion and the other end portion in the A direction by the sandwiching members 83a and 84a in a state where the adhesive layer 45 is directed downward in FIG. 16, that is, toward the liquid crystal panel 11 side. In addition, after the multilayer film 14 is clamped, the A direction and the transport direction during the production of the multilayer film 14 may be matched.
- the tension measuring device 87 measures the tension in the A direction of the multilayer film 14 and outputs the detection result to the controller 96.
- the controller 96 displaces the second clip 84 in the A direction via the pulling mechanism 88, and changes the position of the second clip 84 until the detection result by the tension measuring device 87 reaches the target tension described above.
- the above-described target tension is applied to the multilayer film 14 in the A direction, and as a result, the first retardation region R1 and the second retardation region R2 in the FPR 12 are each linear with a constant width. At the same time, the boundary 38 is also linear.
- the liquid crystal panel 11 is supplied in advance to the mounting table 97, and the multilayer film 14 is liquid crystal by the moving mechanism 92 in a state where a predetermined tension is applied in the A direction by the first and second clips 83 and 84. It moves onto the panel 11 and is slightly separated from the liquid crystal panel 11 as shown in FIG.
- a polarizing plate 104 is disposed above the multilayer film 14 in a state of being slightly separated from the multilayer film 14.
- the multilayer film 14 irradiated with light by the lamp 103 is photographed by the camera 91, the multilayer film 14 and the liquid crystal panel 11 in a state where a target tension is applied are aligned.
- the boundary 38 is deviated in any arrangement direction of the plurality of pixels 106 arranged in the horizontal direction and the vertical direction in the color filter layer 26 of the liquid crystal panel 11. Accordingly, in the camera 91, as shown in FIG. 18, the boundary 38 photographed as a black line intersects with the edges of the plurality of pixels 106 arranged in the horizontal direction and also intersects with the edges of the plurality of pixels 106 arranged in the vertical direction.
- the boundary 38 intersects the edges of the plurality of pixels 106 arranged in one direction in this way, the first and second clips 83 and 84 are displaced by the moving mechanism 92 so that the multilayer film 14 is placed in the AC plane. Rotate with. As a result, as shown in FIG. 19, the edges of a plurality of pixels arranged in one direction intersecting the boundary 38 are adjusted to be in a parallel state.
- the moving mechanism 92 integrally displaces the first and second clips 83 and 84 while maintaining the posture and positional relationship thereof, and moves the multilayer film 14 in the AC plane.
- the boundary 38 is overlapped on the edges of a plurality of pixels arranged in one direction.
- the multilayer film 14 is aligned with the liquid crystal panel 11.
- Second alignment may be performed in which the boundary 38 overlaps the edges of a plurality of pixels arranged in one direction.
- the multilayer film 14 aligned with the liquid crystal panel 11 is lowered to a state in which it is in contact with the liquid crystal panel 11 by the moving mechanism 92 with a target tension applied, and the pressing member 98 causes the multilayer film 14 to be liquid crystal.
- the film is pressed from the film surface opposite to the film surface facing the panel 11.
- the multilayer film 14 is bonded to the liquid crystal panel 11 with the boundary 38 overlapping the edges of the plurality of pixels 106 (see FIGS. 18 to 20) aligned horizontally or vertically on the liquid crystal panel 11.
- the liquid crystal display device 130 with improved display accuracy over the conventional product can be obtained.
- the movement of the liquid crystal panel 11 is provided by providing the mounting table 97 with a displacement mechanism in the A direction and the C direction and a rotation mechanism in the AC plane. And may be aligned by performing rotation.
- the display accuracy in the liquid crystal display device 130 is particularly remarkably improved.
- the tension applying process in the width direction in the manufacturing process of the support 40 is performed by, for example, the stretching device 120 as described above. Even after stress relaxation at the relaxation portion 120c (see FIG. 11), residual stress often remains on the support 40, and the multilayer film 14 is deformed due to sheeting as described above. Therefore, in the present embodiment, the target tension TD is set as described above based on the tension T40 in the transport direction while the exposure apparatus 53 is irradiated with ultraviolet rays, and the set tension is applied to the multilayer film 14. In this state, the multilayer film 14 is pasted. As a result, the first retardation region R1 and the second retardation region R2 and the boundary 38 thereof are linear, and the obtained liquid crystal display device 130 exhibits good display performance.
- the above method has a particularly remarkable effect when the protective film 134 that has undergone the step of applying tension in the width direction is provided to the multilayer sheet manufacturing facility 132.
- the protective film 134 obtained by applying tension in the width direction in the manufacturing process has a larger residual stress in the end portion in the width direction than in the center portion in the width direction.
- the degree of contraction is different between the portion corresponding to the end portion and the portion corresponding to the center portion. Therefore, the irradiation region RE, the non-irradiation region RN, and the boundary 38 formed in a line shape with a constant width by the exposure device 53 are curved as described above by cutting into a sheet shape.
- the target tension TD as described above based on the thickness h70 and Young's modulus ⁇ 70 of the protective film 134 in addition to the tension T40.
- the protective film 134 is also manufactured from a long film for forming the protective film 134 using the stretching device 120. In this case as well, as in the case of manufacturing the support body 40, residual stress often remains in the protective film 134 obtained even after stress relaxation at the relaxation portion, and the above-described sheeting due to sheet formation is often accompanied. Deformation of the layer film 14 occurs.
- the third embodiment also forms a liquid crystal display device by attaching a multilayer film to a display panel.
- a multilayer film 140 shown in FIG. 21 is attached to the liquid crystal panel 11 instead of the multilayer film 14 in the second embodiment.
- 2nd Embodiment The same code
- the multilayer film 140 includes an FPR 142, protective films 13 and 144, and an adhesive layer 45.
- the FPR 142 includes a support body 40, an alignment film 41, and a liquid crystal layer 42, and has first and second retardation regions R1 and R2 similarly to the FPR12.
- the protective film 13 is disposed on the liquid crystal layer 42, and the protective film 144 is disposed on the support 40.
- the adhesive layer 45 is formed on the protective film 144, and the multilayer film 140 is bonded to the liquid crystal panel 11 by the adhesive layer 45.
- the protective film 144 is for protecting the surface of the FPR 142 similarly to the protective film 13, and more specifically, protects the surface of the FPR 142 before being bonded to the liquid crystal panel 11.
- the multilayer film 140 may include the above-described optical function film instead of the protective films 13 and 144.
- the multilayer film 140 is manufactured by a multilayer sheet manufacturing facility (not shown) in which the multilayer section 133 of the multilayer sheet manufacturing facility 132 is replaced with the multilayer section 157 of FIG. Similarly to the multilayer unit 133, the multilayer unit 157 is provided between the liquid crystal layer forming unit 56 and the cutting unit 58, and applies a protective film 134 and a protective film 158 to be a protective film to the FPR 142.
- the adhesive layer 45 is formed.
- the protective film 158 is rolled in the same manner as the protective film 134.
- the multi-layered portion 157 includes a feeder (not shown) that pulls out and sends out the protective film 134 from the protective film roll, a feeder (not shown) that pulls out and sends the protective film 158 from the protective film roll, and an adhesive film roll.
- a feeding machine (not shown) that pulls out and feeds the adhesive film 68, a roller pair 69, and the like are provided.
- the roller pair 69 sandwiches the FPR 142 sent from the liquid crystal layer forming unit 56 between the protective film 134 and the protective film 158 supplied from each feeder, and nips them together with the adhesive film 68.
- the cutting unit 58 cuts the long multilayer film 140 into a target size, for example, a rectangular sheet.
- the sheet-like multilayer film 140 is sent to the laminating device 59 in the same manner as the multilayer film 14, and is thereby bonded to the liquid crystal panel 11. Similar to the tension TD in the case of the multilayer film 14, the tension TD when the multilayer film 140 is bonded to the liquid crystal panel 11 is a reaction film 72 while being irradiated with ultraviolet rays by the exposure device 53 (see FIG. 4). Is set based on the tension T40 in the transport direction of the support 40 to which is provided.
- the target tension TD is more effective in the range of 20% or more and 180% or less of the tension Tt from the viewpoint of display accuracy in the liquid crystal display device, and in the range of 90% or more and 110% or less of the tension Tt. If there is, it is more effective.
- the tension Tt includes the tension Ts (N / m), the thickness hf (unit is m) of the FPR 142, the Young's modulus ⁇ f (unit is GPa) of the FPR 142, the thickness T1 (unit is m) of the protective film 134, and the protection.
- Tt Ts ⁇ ⁇ (hf ⁇ ⁇ f) + (h1 ⁇ ⁇ 1) + (h2 ⁇ ⁇ 2) ⁇ / (hf ⁇ ⁇ f) (2)
- This embodiment is a case where two layers excluding the adhesive layer 45, that is, the protective film 13 and the protective film 144 are applied to the FPR 142, but the number of layers applied to the FPR is not limited to two.
- the target tension TD when the number of layers is 2 or more may be obtained as follows.
- the number of layers does not include the number of adhesive layers.
- each layer may be disposed on any surface side of the FPR 142.
- each multilayer film is bonded to the liquid crystal panel 11 in a state where the TD thus determined is applied to each multilayer film.
- the multilayer films 14 and 140 are bonded to the liquid crystal panel 11, but the present invention is not limited to these embodiments.
- one of the multilayer film 14 and the multilayer film 140 and the polarizing plate 17 may be bonded in advance to form a multilayer member (not shown).
- the number of layers in the formula (I) may be set to n, including the number of layers constituting the polarizing plate 17.
- the polarizing plate 17 includes a polarizing film and a pair of protective films sandwiching the polarizing film
- the number of layers of the polarizing plate 17 is 3, and the number of layers is set to the number n of the layers described above. Count.
- the liquid crystal display device 10 was manufactured using the FPR manufacturing equipment 50 and the bonding device 59.
- the thickness of the support 40 used is 100 ⁇ m.
- the tension T1 of the support 40 on which the reaction film 72 is formed while the exposure apparatus 53 is irradiated with ultraviolet rays is changed to “T1” (unit: N / m) in Table 1 by the tension adjusting unit 54. Adjusted to the value shown.
- the tension shown in “T2” (unit: N / m) in Table 1 was applied to the sheet-like FPR 12 in the A direction by the tension portion 81.
- T1 and T2 in Table 1 are tension per 1 m width
- T1 is a tension in the transport direction
- T2 is a tension in the A direction that is matched with the transport direction.
- Each of the supports 40 of each example is obtained through a widening step in the width direction by the stretching device 120.
- region R2 of FPR12 and the edge of the several pixel 106 located in a line with the horizontal direction of the liquid crystal panel 11 The degree of the height was evaluated using the lamp 103, the polarizing plate 104, and the camera 91. In each evaluation, first, a plurality of sites as evaluation candidates are arbitrarily extracted at nine locations, and preliminary evaluation is performed to evaluate the degree of deviation between the boundary 38 and the edge of the pixel 106 for each extracted location. did.
- the degree of deviation at the place where the magnitude of the deviation between the boundary 38 and the edge of the pixel 106 is the largest is taken as the evaluation result in the liquid crystal display device 10.
- This evaluation result is described in the “deviation” column of Table 1.
- the evaluation criteria are as follows. Small and medium are acceptable levels, and large are unacceptable levels. Small: Less than 10 ⁇ m Medium: 10 ⁇ m or more and less than 100 ⁇ m Large: 100 ⁇ m or more
- the image display accuracy was evaluated according to the following criteria.
- the evaluation result is described in the “display accuracy” column of Table 1.
- a and B are acceptable levels, and C is an unacceptable level.
- “there is light leakage” means that light from a line corresponding to the other adjacent one is observed through one of the first and second phase difference regions R1 and R2, for example. Means.
- B There was light leakage, but it could be observed as a stereoscopic image
- C There was light leakage, and it could not be observed as a stereoscopic image
- the liquid crystal display devices obtained in Comparative Examples 1 to 5 were evaluated in the same manner as in Examples 1 to 7. That is, the degree of deviation between the boundary between the first phase difference region R1 and the second phase difference region R2 of the FPR, and the edges of a plurality of pixels arranged in the horizontal direction of the liquid crystal panel, and the display accuracy of the image. Each was evaluated.
- Example 8 which manufactures the liquid crystal display device 130 was implemented using the multilayer sheet manufacturing equipment 132 and the bonding apparatus 59.
- FIG. In addition, in place of the multi-layer unit 133 of the multi-layer sheet manufacturing facility 132 in place of the multi-layer unit 157 shown in FIG. Carried out.
- the used support 40 has a thickness of 100 ⁇ m and a Young's modulus of 4.0 GPa.
- the support body 40 and the protective films 134 and 158 are all obtained through a widening step in the width direction by the stretching device 120.
- Table 2 shows the thickness T1 and Young's modulus G1 of the protective film 134 and the thickness T2 and Young's modulus G2 of the protective film 158 in each example.
- Example 8 Since the protective film 158 is not used in Example 8, “N2” is described in “T2” of Table 1, and “ ⁇ ” is described in the “G2” column.
- the tension Tt was obtained from the equation (1), the tension TD was set based on this Tt, and the tension was adjusted by the tension adjusting unit 54 in order to apply this tension TD to the multilayer film 14.
- the tension Tt is obtained from the equation (2), the tension TD is set based on this Tt, and the tension is adjusted to apply the tension TD to the multilayer film 140 in the A direction. The tension was adjusted by the portion 54.
- the measuring method of the Young's modulus of the support body 40 and the protective films 134 and 158 is based on ASTM D882.
- region R2 of FPR12, and the edge of the several pixel 106 located in a line with the horizontal direction of the liquid crystal panel 11 is large.
- the degree of thickness was evaluated by the same method and evaluation criteria as in Examples 1-7. Further, for each of the obtained liquid crystal display devices 130 and the like, the image display accuracy was evaluated based on the same criteria as in Examples 1 to 7.
- Comparative Example 6 As a comparative example for the present invention, Comparative Example 6 in which a liquid crystal display device was manufactured using the multilayer sheet manufacturing facility 132 and the bonding apparatus 59 was performed. Further, the multilayer unit 133 of the multilayer sheet manufacturing facility 132 is replaced with the multilayer unit 157 shown in FIG. 22 to produce a multilayer film, and a liquid crystal display device (not shown) including the multilayer film is manufactured. Comparative examples 7 to 9 were carried out. In Comparative Examples 6 to 9, this multilayer film was bonded to the liquid crystal panel 11 in a state where the tension TD in the A direction with respect to the multilayer film was 0 N / m.
- the liquid crystal display devices obtained in Comparative Examples 6 to 9 were evaluated in the same manner as in Examples 1 to 7. That is, the degree of deviation between the boundary between the first phase difference region R1 and the second phase difference region R2 of the FPR, and the edges of a plurality of pixels arranged in the horizontal direction of the liquid crystal panel, and the display accuracy of the image. Each was evaluated.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
Provided is a method for manufacturing a laminated body that improves display accuracy of a display apparatus. A film patterned retarder (FPR) is obtained by continuously radiating ultraviolet by means of an exposure apparatus to a reactive film of a supporting body being transferred. The FPR is cut into a sheet, and is bonded to a liquid crystal panel. The FPR is pulled in the A direction corresponding to the transfer direction of the supporting body with tension within a range of 20-180 % of tension applied in the supporting body transfer direction during a time when the ultraviolet is radiated by means of the exposure apparatus. In the pulled state brought by means of the tension step, the FPR is bonded to the liquid crystal panel.
Description
本発明は、パターン化位相差フィルムと表示パネルとを備える積層体の製造方法に関するものである。
The present invention relates to a method for producing a laminate including a patterned retardation film and a display panel.
パターン化位相差フィルム(Film Patternd Retarder、以下、FPRという)は、左右で円偏光の向きが異なる偏光メガネを併用する立体画像表示装置の光学フィルタとして用いられる。FPRは、ライン幅が250~700μmの第1,第2位相差領域を交互に横長に配列したストライプパターンをもつ。第1位相差領域と第2位相差領域には、互いに光学軸が直交するように配向した液晶層が形成される。第1位相差領域と第2位相差領域とのラインは、立体画像表示装置の表示画面の水平ラインを構成する画素ピッチに高い精度で一致させている。そして、水平画素ラインごとに偏光方向が変調された表示光を、それぞれ対応する第1,第2位相差領域及び偏光メガネを通して観察することにより立体画像が観察される。
A patterned retardation film (Film Pattern Retarder, hereinafter referred to as FPR) is used as an optical filter of a stereoscopic image display device that uses polarized glasses with different circularly polarized directions on the left and right sides. The FPR has a stripe pattern in which first and second phase difference regions having a line width of 250 to 700 μm are alternately arranged horizontally. In the first retardation region and the second retardation region, a liquid crystal layer aligned so that the optical axes are orthogonal to each other is formed. The lines of the first phase difference region and the second phase difference region are made to coincide with the pixel pitch constituting the horizontal line of the display screen of the stereoscopic image display device with high accuracy. A stereoscopic image is observed by observing the display light whose polarization direction is modulated for each horizontal pixel line through the corresponding first and second phase difference regions and polarizing glasses.
FPRの製造方法としては、例えば特開平10-153707号公報に開示されている方法がある。この方法は、高分子化合物と光異性化物質とを含む混合物によって前処理シートを形成し、前処理シートを一軸延伸する。その後に、前処理シートに、照射強度分布をもつ光を照射することにより遅相軸または進相軸方向がそれぞれ異なる第1領域と第2領域とを形成する。
As a method for producing FPR, for example, there is a method disclosed in JP-A-10-153707. In this method, a pretreatment sheet is formed by a mixture containing a polymer compound and a photoisomerization substance, and the pretreatment sheet is uniaxially stretched. Thereafter, the pretreatment sheet is irradiated with light having an irradiation intensity distribution to form a first region and a second region having different slow axis directions or fast axis directions.
また、国際公開第2010/090429号A2の方法は、FPRを製造するにあたり、スリットと遮光部とをFPRの支持体の幅方向に関して入れ替えて配列した2種類のマスクプレートを用い、これらのマスクプレートをフィルムの搬送方向に並べている。さらに、この国際公開第2010/090429号A2の方法では、フィルムを搬送しながら、各々のマスクプレートを通して互いに偏光方向が異なる紫外線を支持体に対して順次に照射する。
Further, the method of International Publication No. 2010/090429 A2 uses two types of mask plates in which slits and light-shielding portions are exchanged and arranged in the width direction of the support of the FPR when manufacturing FPR. Are arranged in the film transport direction. Further, in the method of International Publication No. 2010/090429 A2, ultraviolet rays having different polarization directions are sequentially irradiated to the support through each mask plate while the film is conveyed.
FPRには、第1位相差領域と第2位相差領域とのストライプパターンに関して極めて高い精度が求められる。このストライプパターンの精度が、表示装置の表示精度を左右するからである。そのため、特開平10-153707号公報の方法でFPRを製造するにあたっては、光の照射工程で、照射強度が異なる領域を形成するためには高度な照射技術が必要になる。また、国際公開第2010/090429号A2の方法でFPRを製造する場合にも、2種類のマスクプレートと支持体との位置関係や、2種類のマスクプレートの位置関係等は試行錯誤で設定される。
FPR is required to have extremely high accuracy with respect to the stripe pattern of the first phase difference region and the second phase difference region. This is because the accuracy of the stripe pattern affects the display accuracy of the display device. Therefore, when manufacturing FPR by the method of Japanese Patent Laid-Open No. 10-153707, a high irradiation technique is required to form regions having different irradiation intensities in the light irradiation step. In addition, when FPR is manufactured by the method of International Publication No. 2010/090429 A2, the positional relationship between the two types of mask plates and the support, the positional relationship between the two types of mask plates, and the like are set by trial and error. The
しかし、特開平10-153707号公報や国際公開第2010/090429号A2の方法で、高精度のストライプパターンをもつFPRを製造しても、これを表示パネルに貼り付けた表示装置の表示精度は必ずしも高いものにはならない。
However, even if an FPR having a high-precision stripe pattern is manufactured by the methods of Japanese Patent Application Laid-Open No. 10-153707 and International Publication No. 2010/090429 A2, the display accuracy of the display device in which this is affixed to the display panel is It is not necessarily expensive.
そこで、本発明は、表示装置における表示精度を向上させる積層体の製造方法を提案することを目的とする。
Therefore, an object of the present invention is to propose a method for manufacturing a laminate that improves display accuracy in a display device.
本発明の積層体の製造方法は、第1切断ステップ(Aステップ)と、第1引張ステップ(Bステップ)と、第1貼合ステップ(Cステップ)とを備える。Aステップは、長尺のパターン化位相差フィルムを目的とするサイズに切断することによりパターン化位相差シートにする。パターン化位相差フィルムには互いに位相差特性の異なる第1,第2位相差領域が幅方向に交互に形成されている。第1,第2位相差領域は、反応膜が表面に形成された連続搬送中の支持体に特定の光を照射した後に、反応膜の上に液晶層を形成することによって形成される。特定の光は、支持体の搬送方向と直交する幅方向にライン状の照射領域と非照射領域とが交互に並んだ照射パターンで照射される。反応膜は、特定の光の照射の有無によって液晶に対して異なる配向特性が与えられる。Bステップは、パターン化位相差シートを搬送方向に対応する方向に、特定の光が照射されている間の支持体の搬送方向における張力の20%以上180%以下の範囲内の張力で引っ張る。Cステップは、Bステップにより引っ張った状態で、パターン化位相差シートを表示パネルと貼り合わせて積層体にする。
The manufacturing method of the laminated body of this invention is equipped with a 1st cutting step (A step), a 1st tension | pulling step (B step), and a 1st bonding step (C step). In step A, a long patterned retardation film is cut into a desired size to obtain a patterned retardation sheet. In the patterned retardation film, first and second retardation regions having different retardation characteristics are alternately formed in the width direction. The first and second retardation regions are formed by forming a liquid crystal layer on the reaction film after irradiating a specific light onto a support that is continuously transported with the reaction film formed on the surface. The specific light is irradiated in an irradiation pattern in which linear irradiation regions and non-irradiation regions are alternately arranged in the width direction orthogonal to the conveyance direction of the support. The reaction film is given different alignment characteristics with respect to the liquid crystal depending on the presence or absence of specific light irradiation. In step B, the patterned phase difference sheet is pulled in a direction corresponding to the conveyance direction with a tension within a range of 20% to 180% of the tension in the conveyance direction of the support while being irradiated with specific light. In the C step, the patterned retardation sheet is bonded to the display panel in a state of being pulled by the B step to form a laminate.
本発明の積層体の製造方法は、第2切断ステップ(Dステップ)と、第2引張ステップ(Eステップ)と第2貼合ステップ(Fステップ)とを備える。Dステップは、長尺のパターン化位相差フィルムと長尺な透明なポリマーフィルムとが重なる複層フィルムを、目的とするサイズに切断することにより複層シートにする。パターン化位相差フィルムには、互いに位相差特性の異なる第1,第2位相差領域が幅方向に交互に形成されている。第1,第2位相差領域は、反応膜が表面に形成された連続搬送中の支持体に特定の光を照射した後に、反応膜の上に液晶層を形成することによって形成される。特定の光は、支持体の搬送方向と直交する幅方向にライン状の照射領域と非照射領域とが交互に並んだ照射パターンで照射される。反応膜は、特定の光の照射の有無によって液晶に対して異なる配向特性が与えられる。ポリマーフィルムは、連続搬送されながら製造される。Eステップは、支持体の搬送方向に対応する方向に複層シートを引っ張る。Fステップは、Eステップにより引っ張った状態で、パターン化位相差シートを表示パネルと貼り合わせて積層体にする。
The method for producing a laminate of the present invention includes a second cutting step (D step), a second tension step (E step), and a second bonding step (F step). In the D step, a multilayer film in which a long patterned retardation film and a long transparent polymer film overlap is cut into a target size to form a multilayer sheet. In the patterned retardation film, first and second retardation regions having different retardation characteristics are alternately formed in the width direction. The first and second retardation regions are formed by forming a liquid crystal layer on the reaction film after irradiating a specific light onto a support that is continuously transported with the reaction film formed on the surface. The specific light is irradiated in an irradiation pattern in which linear irradiation regions and non-irradiation regions are alternately arranged in the width direction orthogonal to the conveyance direction of the support. The reaction film is given different alignment characteristics with respect to the liquid crystal depending on the presence or absence of specific light irradiation. The polymer film is manufactured while being continuously conveyed. In the E step, the multilayer sheet is pulled in a direction corresponding to the conveyance direction of the support. In the F step, the patterned retardation sheet is bonded to the display panel in a state of being pulled by the E step to form a laminate.
Eステップは、特定の光が照射されている間の支持体の搬送方向における張力に基づいた張力で、複層シートを引っ張ることが好ましい。
It is preferable that the E step pulls the multilayer sheet with a tension based on the tension in the transport direction of the support while the specific light is irradiated.
支持体が幅方向における張力を付与されて形成されたものである場合に、本発明は特に有効である。また、ポリマーフィルムが幅方向における張力を付与されて形成されたものである場合に、本発明は特に有効である。
The present invention is particularly effective when the support is formed by applying a tension in the width direction. In addition, the present invention is particularly effective when the polymer film is formed by applying a tension in the width direction.
積層体の製造方法は、さらに複層化ステップ(Gステップ)を備えることが好ましい。Gステップは、パターン化位相差フィルムとポリマーフィルムとを搬送しながら貼り合わせて複層フィルムにする。
It is preferable that the manufacturing method of a laminated body is further provided with a multilayering step (G step). In the G step, the patterned retardation film and the polymer film are bonded together to form a multilayer film.
積層体の製造方法は、さらに位置合わせステップ(Hステップ)を備えることが好ましい。Hステップは、表示パネルと引っ張った状態のパターン化位相差シートとを、貼り合わせ前に位置合わせする。表示パネルは、水平及び垂直方向のそれぞれに配列された複数の画素を有する。パターン化位相差シートと表示パネルとは、パターン化位相差シートの特定の第1位相差領域と第2位相差領域との境界が水平または垂直方向に並ぶ複数の画素の縁に重なる状態に位置合わせされる。
It is preferable that the manufacturing method of a laminated body is further provided with the alignment step (H step). In the H step, the display panel and the stretched patterned retardation sheet are aligned before bonding. The display panel has a plurality of pixels arranged in the horizontal and vertical directions. The patterned retardation sheet and the display panel are positioned in a state where the boundary between the specific first retardation area and the second retardation area of the patterned retardation sheet overlaps the edges of a plurality of pixels arranged in the horizontal or vertical direction. To be combined.
積層体の製造方法は、さらに照射ステップ(Iステップ)と液晶層形成ステップ(Jステップ)とを備えることが好ましい。Iステップは、光源部から射出された特定の光をマスクを通して前述の照射パターンで反応膜に照射する。マスクには、支持体の搬送方向に延びたスリットが支持体の幅方向に一定ピッチで形成されている。Jステップは、Iステップを経た反応膜の上に液晶層を形成する。
It is preferable that the laminate manufacturing method further includes an irradiation step (I step) and a liquid crystal layer forming step (J step). In the I step, the reaction film is irradiated with specific light emitted from the light source unit through the mask in the aforementioned irradiation pattern. In the mask, slits extending in the transport direction of the support are formed at a constant pitch in the width direction of the support. In the J step, a liquid crystal layer is formed on the reaction film that has undergone the I step.
本発明によると、表示装置における表示精度が向上する。
According to the present invention, the display accuracy in the display device is improved.
<第1実施形態>
本発明により製造される積層体としては例えば表示装置(ディスプレイ)があり、表示装置としては、例えば液晶表示装置、プラズマ表示装置等がある。第1実施形態は、FPR(Film Patterned Retarder:パターン化位相差フィルム)を表示パネルに貼り付けて液晶表示装置をつくるものである。一例としての液晶表示装置10は、図1に示すように、表示パネルとしての液晶パネル11に、シート状にされたFPR12を貼り合わせて構成される。なお、液晶パネル11に代えて、他の公知の液晶パネルとしてもよい。 <First Embodiment>
Examples of the laminate manufactured according to the present invention include a display device (display), and examples of the display device include a liquid crystal display device and a plasma display device. In the first embodiment, a liquid crystal display device is manufactured by attaching an FPR (Film Patterned Retarder) to a display panel. As shown in FIG. 1, the liquidcrystal display device 10 as an example is configured by bonding a sheet-like FPR 12 to a liquid crystal panel 11 as a display panel. Instead of the liquid crystal panel 11, other known liquid crystal panels may be used.
本発明により製造される積層体としては例えば表示装置(ディスプレイ)があり、表示装置としては、例えば液晶表示装置、プラズマ表示装置等がある。第1実施形態は、FPR(Film Patterned Retarder:パターン化位相差フィルム)を表示パネルに貼り付けて液晶表示装置をつくるものである。一例としての液晶表示装置10は、図1に示すように、表示パネルとしての液晶パネル11に、シート状にされたFPR12を貼り合わせて構成される。なお、液晶パネル11に代えて、他の公知の液晶パネルとしてもよい。 <First Embodiment>
Examples of the laminate manufactured according to the present invention include a display device (display), and examples of the display device include a liquid crystal display device and a plasma display device. In the first embodiment, a liquid crystal display device is manufactured by attaching an FPR (Film Patterned Retarder) to a display panel. As shown in FIG. 1, the liquid
液晶パネル11は、透過する光の偏光状態を変化させる液晶セル15と、2枚の偏光板16,17とから構成される。液晶セル15は、光源側の表面にガラス基板20、視認側の表面にガラス基板21を備える。ガラス基板20の内面には、透明なX電極22が複数形成され、それらを覆った状態に配向膜23が積層されている。また、ガラス基板21の内面には、カラーフィルタ層26、保護膜27が形成されている。この保護膜27の表面には、透明なY電極28が形成され、Y電極を覆った状態に配向膜31が積層されている。液晶は一対の配向膜23,31の間に封入され、液晶層32を形成している。
The liquid crystal panel 11 includes a liquid crystal cell 15 that changes the polarization state of transmitted light, and two polarizing plates 16 and 17. The liquid crystal cell 15 includes a glass substrate 20 on the surface on the light source side and a glass substrate 21 on the surface on the viewing side. A plurality of transparent X electrodes 22 are formed on the inner surface of the glass substrate 20, and an alignment film 23 is laminated so as to cover them. A color filter layer 26 and a protective film 27 are formed on the inner surface of the glass substrate 21. A transparent Y electrode 28 is formed on the surface of the protective film 27, and an alignment film 31 is laminated so as to cover the Y electrode. The liquid crystal is sealed between the pair of alignment films 23 and 31 to form a liquid crystal layer 32.
この液晶パネル11は、水平方向及び垂直方向に複数並べてマトリクス状に配列した画素ごとに、光源からの光の透過を制御するものである。液晶パネル11は、周知の単純マトリクス方式で駆動される。すなわち、互いに直交した状態でX電極22とY電極28とがそれぞれ複数設けられており、任意のX電極22とY電極28との間に電圧を印加することによって、それらX電極22とY電極28とが交差する位置の画素の液晶の配向状態を変化させる。
The liquid crystal panel 11 controls the transmission of light from the light source for each pixel arranged in a matrix by arranging a plurality in the horizontal and vertical directions. The liquid crystal panel 11 is driven by a known simple matrix method. That is, a plurality of X electrodes 22 and Y electrodes 28 are provided in a state of being orthogonal to each other. By applying a voltage between any X electrode 22 and Y electrode 28, these X electrode 22 and Y electrode 28 The alignment state of the liquid crystal of the pixel at the position where the line 28 intersects is changed.
カラーフィルタ層26には、複数のフィルタ33が垂直方向(図1における縦方向)及び水平方向(紙面に垂直な方向)に繰り返し配列されている。本実施形態では、3色のフィルタ33が、図1の紙面に垂直な方向(紙面の奥行き方向)に繰り返し配列されている。各フィルタ33は、赤色光を透過するRフィルタ、緑色光を透過するGフィルタ、青色光を透過するBフィルタのいずれか1色のフィルタである。フィルタ33は、画素ごとに設けられている。したがって、各画素は、Rフィルタを設けた赤色画素、Gフィルタを設けた緑色画素、Bフィルタを設けた青色画素のいずれかである。
In the color filter layer 26, a plurality of filters 33 are repeatedly arranged in the vertical direction (the vertical direction in FIG. 1) and the horizontal direction (the direction perpendicular to the paper surface). In the present embodiment, the three color filters 33 are repeatedly arranged in the direction perpendicular to the paper surface of FIG. 1 (the depth direction of the paper surface). Each filter 33 is a filter of any one color of an R filter that transmits red light, a G filter that transmits green light, and a B filter that transmits blue light. The filter 33 is provided for each pixel. Therefore, each pixel is either a red pixel provided with an R filter, a green pixel provided with a G filter, or a blue pixel provided with a B filter.
偏光板16はガラス基板20の外面、偏光板17はガラス基板21の外面に配されている。偏光板16,17は、いずれも直線偏光タイプのものであり、互いにクロスニコル配置としてある。これにより、光源からの光を偏光板16を通して液晶セル15に入射させ、その液晶セル15の配向状態に応じて偏光状態を変化させることによって、偏光板17を透過する光の光量を画素ごとに制御する。
The polarizing plate 16 is disposed on the outer surface of the glass substrate 20, and the polarizing plate 17 is disposed on the outer surface of the glass substrate 21. The polarizing plates 16 and 17 are both of the linear polarization type, and have a crossed Nicols arrangement. Thereby, the light from the light source is incident on the liquid crystal cell 15 through the polarizing plate 16, and the polarization state is changed according to the alignment state of the liquid crystal cell 15, whereby the amount of light transmitted through the polarizing plate 17 is changed for each pixel. Control.
FPR12は、詳細を後述する第1及び第2位相差領域R1,R2を有している。第1位相差領域R1と第2位相差領域R2とは、本実施形態では、それぞれ3画素分の幅(図1における縦方向の長さ)で水平方向にライン状に延びており、垂直方向に交互に並んでいる。なお、第1位相差領域R1と第2位相差領域R2とは、それぞれ、3画素分の幅に代えて、例えば2画素分,4画素分といった他の画素分の幅で水平方向に延びていてもよい。FPR12は、第1及び第2位相差領域R1,R2の各境界が、液晶パネル11の画素の境界と一致した状態で偏光板17に貼り合わせられる。
The FPR 12 has first and second phase difference regions R1 and R2 whose details will be described later. In the present embodiment, each of the first phase difference region R1 and the second phase difference region R2 has a width of three pixels (the length in the vertical direction in FIG. 1) and extends in a line shape in the horizontal direction. Are lined up alternately. The first phase difference region R1 and the second phase difference region R2 extend in the horizontal direction with widths of other pixels such as 2 pixels and 4 pixels, for example, instead of the width of 3 pixels. May be. The FPR 12 is bonded to the polarizing plate 17 in a state where the boundaries between the first and second retardation regions R1 and R2 coincide with the pixel boundaries of the liquid crystal panel 11.
図2において、FPR12の第1,第2位相差領域R1,R2は、図中に矢印A1,A2で示すように、光学軸、例えば(面内)遅相軸が互いに直交している。これにより、回転(旋回)方向が互いに異なる円偏光を得ている。第1位相差領域R1と第2位相差領域R2とがそれぞれ延びる方向は、FPR12を製造する際に支持体40が搬送される方向に一致する。第1位相差領域R1と第2位相差領域R2とが交互配列された方向は、FPR12を製造する際の支持体40の搬送方向に直交する支持体40の幅方向に一致する。支持体40としては、例えばセルローストリアセテート(TAC)等のセルロースアシレート、ノルボルネン系ポリマー、シクロオレフィン系ポリマー並びにポリメチルメタクリレート等のアクリル系ポリマー等からそれぞれ構成されるフィルムがある。
2, in the first and second phase difference regions R1 and R2 of the FPR 12, the optical axes, for example, (in-plane) slow axes are orthogonal to each other as indicated by arrows A1 and A2. Thereby, circularly polarized light having different rotation (turning) directions is obtained. The direction in which the first retardation region R1 and the second retardation region R2 extend respectively coincides with the direction in which the support 40 is conveyed when the FPR 12 is manufactured. The direction in which the first phase difference region R1 and the second phase difference region R2 are alternately arranged coincides with the width direction of the support 40 that is orthogonal to the transport direction of the support 40 when the FPR 12 is manufactured. Examples of the support 40 include films composed of cellulose acylate such as cellulose triacetate (TAC), norbornene polymer, cycloolefin polymer, and acrylic polymer such as polymethyl methacrylate.
FPR12は、支持体40の一方の面に配向膜41、液晶層42、粘着層45を積層した構造である。粘着層45は、FPR12と液晶パネル11とを接着するために設けられる。なお、粘着層45は、液晶層42上に代えて、支持体40の配向膜41が形成された面とは反対側の面上に配されてもよい。第1,第2位相差領域R1,R2は、液晶層42の液晶の配向方向を変えることにより、遅相軸を互いに直交させている。符号38は、無配向領域となっている第1位相差領域R1と第2位相差領域R2との境界である。
The FPR 12 has a structure in which an alignment film 41, a liquid crystal layer 42, and an adhesive layer 45 are laminated on one surface of the support 40. The adhesive layer 45 is provided to adhere the FPR 12 and the liquid crystal panel 11. Note that the adhesive layer 45 may be disposed on the surface of the support 40 opposite to the surface on which the alignment film 41 is formed, instead of on the liquid crystal layer 42. The first and second retardation regions R1 and R2 have their slow axes orthogonal to each other by changing the alignment direction of the liquid crystal in the liquid crystal layer. Reference numeral 38 denotes a boundary between the first retardation region R1 and the second retardation region R2 which are non-oriented regions.
FPR12は、例えば図3に示すFPR製造設備50により製造される。FPR製造設備50は、搬送機構部51,反応膜形成部52,露光装置53,張力調整部54,ラビング処理部55,及び液晶層形成部56,粘着層形成部57,切断部58などで構成される。FPR製造設備50は、供給されてくる長尺の支持体40に各種処理を行ってシート状のFPR12を製造する。このFPR製造設備50で製造されたシート状のFPR12は、後述の貼合装置59へ案内されて、液晶パネル11(図1参照)と貼り合わされる。
The FPR 12 is manufactured by, for example, the FPR manufacturing facility 50 shown in FIG. The FPR manufacturing equipment 50 includes a transport mechanism 51, a reaction film forming unit 52, an exposure device 53, a tension adjusting unit 54, a rubbing processing unit 55, a liquid crystal layer forming unit 56, an adhesive layer forming unit 57, a cutting unit 58, and the like. Is done. The FPR manufacturing equipment 50 manufactures the sheet-like FPR 12 by performing various processes on the supplied long support 40. The sheet-like FPR 12 manufactured by the FPR manufacturing facility 50 is guided to a bonding device 59 described later and bonded to the liquid crystal panel 11 (see FIG. 1).
なお、反応膜形成部52と露光装置53との間、液晶層形成部56と粘着層形成部57との間には、巻取部が備えられてもよい。また、このFPR製造設備50は切断部58を備えるが、切断部58がFPR製造設備50外に設けられていてもよい。この場合には、FPR製造設備50は、長尺のFPR12を製造するためのものであり、粘着層形成部57の下流に長尺のFPR12を巻き取る巻取部(図示無し)を備える。
Note that a winding unit may be provided between the reaction film forming unit 52 and the exposure device 53 and between the liquid crystal layer forming unit 56 and the adhesive layer forming unit 57. The FPR manufacturing facility 50 includes a cutting unit 58, but the cutting unit 58 may be provided outside the FPR manufacturing facility 50. In this case, the FPR manufacturing facility 50 is for manufacturing a long FPR 12 and includes a winding unit (not shown) that winds the long FPR 12 downstream of the adhesive layer forming unit 57.
支持体40は透明で可撓性を有し、例えばロール状に巻かれた支持体ロール(図示省略)から引き出されてFPR製造設備50に供給される。支持体40は、搬送機構部51によって一定の速度で連続搬送される。
The support 40 is transparent and flexible. For example, the support 40 is drawn from a support roll (not shown) wound in a roll shape and supplied to the FPR manufacturing facility 50. The support 40 is continuously transported at a constant speed by the transport mechanism 51.
反応膜形成部52は、反応膜を、支持体40の一方の表面に形成するためのものである。反応膜は、後工程で照射される光に反応する光酸発生剤を含む。反応膜形成部52では、支持体40の表面に光酸発生剤を含む塗布液を塗布し、さらに乾燥処理を行って一定厚みの反応膜を支持体40上に形成する。支持体40がセルロースアセテート等のセルロースアシレートから形成されたものである場合には、反応膜形成部52では、塗布液を塗布する前に、塗布する対象の支持体面を鹸化することがある。光酸発生剤は、本実施形態では紫外線の照射により分解して酸を発生するものであり、例えば、ピリジニウム塩、ヨードニウム塩、およびスルホニウム塩等を用いることができる。ただし、光酸発生剤は、紫外線以外の特定波長の光に反応するものであってもよい。また、反応膜の形成に関しても、塗布以外の、例えば吹付けなどの手法を用いてもよい。配向膜が形成された支持体40は、反応膜形成部52から露光装置53に送られる。
The reaction film forming unit 52 is for forming a reaction film on one surface of the support 40. The reaction film contains a photoacid generator that reacts with light irradiated in a subsequent process. In the reaction film forming unit 52, a coating solution containing a photoacid generator is applied to the surface of the support 40, and further a drying process is performed to form a reaction film having a certain thickness on the support 40. When the support 40 is formed from cellulose acylate such as cellulose acetate, the reaction film forming unit 52 may saponify the support surface to be applied before applying the coating solution. In this embodiment, the photoacid generator decomposes by irradiation with ultraviolet rays to generate an acid. For example, a pyridinium salt, an iodonium salt, a sulfonium salt, or the like can be used. However, the photoacid generator may react with light having a specific wavelength other than ultraviolet rays. In addition, regarding the formation of the reaction film, for example, a technique such as spraying other than coating may be used. The support 40 on which the alignment film is formed is sent from the reaction film forming unit 52 to the exposure device 53.
露光装置53は、光源部61、マスク62、バックアップローラ63などで構成される。光源部61は、反応膜に含まれる光酸発生剤を分解して酸を発生させる紫外線を出力する。光酸発生剤が紫外線以外の光に反応するものである場合には、反応する光を出力する光源部を用いる。光源部61からの紫外線は、マスク62を通して、バックアップローラ63の周面63aに巻き掛けられて裏面側が支持された連続搬送中の支持体40の反応膜に照射される。これにより、例えば第1位相差領域R1となる部分が直線状の照射域、それ以外の部分が直線状の非照射領域となるストライプ状のパターン照射が行われる。パターン照射の詳細については、別の図面を用いて後述する。なお、バックアップローラ63は回動自在で支持体40の搬送に従動して回転してもよいし、支持体40の搬送に同期してモータ等で回転させてもよい。
The exposure device 53 includes a light source 61, a mask 62, a backup roller 63, and the like. The light source unit 61 outputs ultraviolet light that decomposes the photoacid generator contained in the reaction film to generate an acid. When the photoacid generator reacts with light other than ultraviolet rays, a light source unit that outputs the reacting light is used. Ultraviolet rays from the light source unit 61 are applied through the mask 62 to the reaction film of the support 40 that is being continuously conveyed and is wound around the peripheral surface 63a of the backup roller 63 and supported on the back surface side. As a result, for example, stripe pattern irradiation is performed in which the portion that becomes the first retardation region R1 is a linear irradiation region and the other portion is a linear non-irradiation region. Details of pattern irradiation will be described later with reference to another drawing. The backup roller 63 is rotatable and may be rotated following the conveyance of the support 40, or may be rotated by a motor or the like in synchronization with the conveyance of the support 40.
張力調整部54は、例えばダンサーローラ66やバネ67などで構成されている。バネ67によりダンサーローラ66は図3における横方向での位置を制御される。これにより、張力調整部54は、搬送中の支持体40の搬送方向における張力、特に露光装置53によって紫外線が照射されている間の支持体40の搬送方向における張力を、予め設定した値に保持する。ただし、張力調整部54に代えて、連続搬送される支持体40の搬送方向における張力を調整できる公知の種々の張力調整部を用いてよい。
The tension adjusting unit 54 is composed of, for example, a dancer roller 66 and a spring 67. The position of the dancer roller 66 in the lateral direction in FIG. Thereby, the tension adjusting unit 54 holds the tension in the transport direction of the support 40 being transported, in particular, the tension in the transport direction of the support 40 while the exposure device 53 is radiating ultraviolet rays at a preset value. To do. However, instead of the tension adjustment unit 54, various known tension adjustment units that can adjust the tension in the conveyance direction of the support 40 that is continuously conveyed may be used.
ラビング処理部55は、ラビングローラ(図示無し)やその駆動機構(図示無し)などを備え、露光装置53で紫外線が照射された反応膜にラビング処理を施して、反応膜を、配向性を付与した配向膜41(図2参照)にする。ラビング処理部55は、ラビングローラにより支持体40の搬送方向に対して45°のラビング方向で支持体40上の反応膜にラビング処理を行う。ラビング処理を経た支持体40は液晶層形成部56に送られる。なお、本実施形態ではラビング処理部55を露光装置53の下流に設けているが、この態様に代えて、反応膜形成部52と露光装置53との間に設けてもよい。この場合には反応膜はラビング処理部55によりラビング処理を施され、露光装置53の紫外線の照射により配向膜41(図2)になる。
The rubbing processing unit 55 includes a rubbing roller (not shown) and its driving mechanism (not shown), and performs a rubbing process on the reaction film irradiated with ultraviolet rays by the exposure device 53 to give the reaction film an orientation. The alignment film 41 (see FIG. 2) is used. The rubbing processing unit 55 performs a rubbing process on the reaction film on the support 40 in a rubbing direction of 45 ° with respect to the transport direction of the support 40 by a rubbing roller. The support 40 that has undergone the rubbing treatment is sent to the liquid crystal layer forming section 56. In the present embodiment, the rubbing processing unit 55 is provided downstream of the exposure apparatus 53, but instead of this aspect, it may be provided between the reaction film forming unit 52 and the exposure apparatus 53. In this case, the reaction film is subjected to a rubbing process by the rubbing processing unit 55, and becomes an alignment film 41 (FIG. 2) by irradiation of ultraviolet light from the exposure device 53.
液晶層形成部56は、配向膜41上に第1,第2位相差領域R1,R2に応じた位相差特性を発現する液晶層42(図2参照)を形成する。この液晶層形成部56では、配向膜41の表面に垂直配向剤、ディスコティック液晶などを含む塗布液を塗布し、さらに加熱熟成、冷却などの処理を行い、さらに紫外線の照射により塗膜を硬化させて液晶層42にする。
The liquid crystal layer forming unit 56 forms a liquid crystal layer 42 (see FIG. 2) that exhibits retardation characteristics on the alignment film 41 according to the first and second retardation regions R1 and R2. In this liquid crystal layer forming part 56, a coating liquid containing a vertical alignment agent, a discotic liquid crystal, etc. is applied to the surface of the alignment film 41, further subjected to treatment such as heat aging and cooling, and further curing the coating film by irradiation with ultraviolet rays. Thus, the liquid crystal layer 42 is obtained.
粘着層形成部57は、液晶層形成部56から送られてくる支持体40の液晶層42上に粘着層45を形成するためのものである。粘着層45を形成する長尺の粘着フィルム68は、ロール状にされている。粘着層形成部57は、この粘着フィルムロールから粘着フィルム68を引き出して送り出す送出機(図示無し)と、ローラ対69等を備える。ローラ対69は、送出機から供給される粘着フィルム68と支持体40とをニップして両者を連続的に貼り合わせて、長尺のFPR12とする。切断部58は、長尺のFPR12を目的とするサイズに切断し、例えば矩形のシート状にする。
The adhesive layer forming portion 57 is for forming the adhesive layer 45 on the liquid crystal layer 42 of the support 40 sent from the liquid crystal layer forming portion 56. The long pressure-sensitive adhesive film 68 forming the pressure-sensitive adhesive layer 45 is rolled. The adhesive layer forming unit 57 includes a delivery device (not shown) that pulls out and sends out the adhesive film 68 from the adhesive film roll, a roller pair 69, and the like. The roller pair 69 nips the adhesive film 68 and the support 40 supplied from the delivery machine and continuously bonds them together to form a long FPR 12. The cutting unit 58 cuts the long FPR 12 into a target size, for example, a rectangular sheet.
FPR12における液晶層42の液晶の配向状態は、配向膜41の材料、液晶、及び所望によって添加される配向制御剤等の相互作用に支配される。支持体40上の反応膜72に含まれている光酸発生剤は、紫外線の未照射領域では未分解のままであり、照射領域では分解して酸性化合物を発生する。酸性化合物が発生すると、上記の相互作用はもはや支配的ではなくなり、配向膜41のラビング方向が配向状態を支配し、液晶は、その遅相軸をラビング方向に配向、すなわち平行配向する。
The alignment state of the liquid crystal of the liquid crystal layer 42 in the FPR 12 is governed by the interaction of the material of the alignment film 41, the liquid crystal, and an alignment controller added as desired. The photoacid generator contained in the reaction film 72 on the support 40 remains undecomposed in the unirradiated region of ultraviolet rays, and decomposes to generate an acidic compound in the irradiated region. When an acidic compound is generated, the above interaction is no longer dominant, the rubbing direction of the alignment film 41 dominates the alignment state, and the liquid crystal is aligned with the slow axis in the rubbing direction, that is, parallel alignment.
例えば、配向制御剤としては垂直配向剤があり、液晶としてはディスコティック液晶がある。垂直配向剤は、配向膜41の表面に対してディスコティック液晶を垂直に起立させる作用と、ディスコティック液晶をラビング方向に対して直交する方向に配向させる作用とを有している。図4に示すように、露光装置53のマスク62には、支持体40の搬送方向に長手方向を一致させた複数のスリット62aが搬送方向と直交する幅方向に一定ピッチで並んだマスクパターンを有している。このマスク62を通して、光源部61からの光を反応膜72に照射する。これにより、連続搬送中の支持体40表面に、幅方向に照射と非照射とが交互に並んだ照射パターンで特定の光が照射され、搬送方向にストライプ状に伸びた照射領域REと非照射領域RNとが幅方向に交互に並んだ状態に形成される。
For example, there is a vertical alignment agent as the alignment control agent, and a discotic liquid crystal as the liquid crystal. The vertical alignment agent has an action of raising the discotic liquid crystal vertically with respect to the surface of the alignment film 41 and an action of aligning the discotic liquid crystal in a direction orthogonal to the rubbing direction. As shown in FIG. 4, the mask 62 of the exposure apparatus 53 has a mask pattern in which a plurality of slits 62a whose longitudinal direction is aligned with the transport direction of the support 40 are arranged at a constant pitch in the width direction orthogonal to the transport direction. Have. The light from the light source unit 61 is irradiated to the reaction film 72 through the mask 62. As a result, the surface of the support 40 during continuous conveyance is irradiated with specific light in an irradiation pattern in which irradiation and non-irradiation are alternately arranged in the width direction, and irradiation regions RE and non-irradiation extending in a stripe shape in the conveyance direction. The regions RN are formed so as to be alternately arranged in the width direction.
酸性化合物が発生している照射領域REは、ディスコティック液晶を垂直に起立させる作用は備えているが、ラビング方向に対して直交させる向きに配向させる作用は失われている。このため、照射領域RE上に配される液晶層42では、ディスコティック液晶は起立してラビング方向に配向する姿勢となる。
The irradiation region RE in which the acidic compound is generated has the function of vertically raising the discotic liquid crystal, but the function of aligning in the direction perpendicular to the rubbing direction is lost. For this reason, in the liquid crystal layer 42 disposed on the irradiation region RE, the discotic liquid crystal stands up and is oriented in the rubbing direction.
また、非照射領域RNでは依然として垂直配向剤による作用が保存されている。このため、非照射領域RN上の液晶層42では、ディスコティック液晶が垂直に起立し、かつラビング方向に直交する配向姿勢となる。この結果、この照射パターンを経て得られるFPR12(図3参照)は、起立してラビング方向に配向した姿勢のディスクティック液晶による一定幅のラインと、起立してラビング方向と直交した姿勢のディスクティック液晶による一定幅のラインとが交互に並び、遅相軸が互いに直交した第1位相差領域R1と第2位相差領域R2とのストライプ状パターンをもつ。
In addition, the action by the vertical alignment agent is still preserved in the non-irradiated region RN. For this reason, in the liquid crystal layer 42 on the non-irradiation region RN, the discotic liquid crystal stands vertically and has an orientation posture orthogonal to the rubbing direction. As a result, the FPR 12 (see FIG. 3) obtained through this irradiation pattern has a fixed-width line of discotic liquid crystal in a posture that is erected and oriented in the rubbing direction, and a discotic that is erected and orthogonal to the rubbing direction. A line having a certain width of liquid crystal is alternately arranged, and has a stripe pattern of a first retardation region R1 and a second retardation region R2 whose slow axes are orthogonal to each other.
長尺のFPR12は、切断部58により、図5に示すようにシート状に切断される。なお、図5の(A)における破線は切断位置を示す切断線である。この例では、長尺のFPR12から、矩形のシートを幅方向で2枚取りしているが、幅方向におけるシートの切り出し枚数は、長尺のFPR12の幅と目的とするシートのサイズとに応じて異なる。
The long FPR 12 is cut into a sheet shape as shown in FIG. In addition, the broken line in (A) of FIG. 5 is a cutting line which shows a cutting position. In this example, two rectangular sheets are taken in the width direction from the long FPR 12, but the number of sheets cut out in the width direction depends on the width of the long FPR 12 and the size of the target sheet. Different.
この例のように、幅方向の中央に関して対称に2枚のシートを切り出した場合には、各シートは、幅方向中央の切断線C1に対応するシートの第1縁E1の長さと、幅方向外側の切断線C2に対応する第2縁E2の長さとが互いに異なるものとなる。具体的には、図5の(B)に示すように、第1縁E1よりも第2縁E2はわずかに長いものとなる。例えば、幅方向の長さが1500mmの長尺のFPR12から、図5の(B)のように幅方向に一致する短辺をもつ400mm×700mmの長方形を成す切断線で、シートを2枚取りする場合では、各シートの第1縁E1の長さは概ね700.0mm、第2縁E2の長さは概ね700.3mmとなる。このため、長尺のFPR12において搬送方向にそれぞれ直線状に延びていた第1位相差領域R1と第2位相差領域R2とは、シートにおいては図5の(B)に示すように第2縁側にごくわずかに凸の曲線をなすようになる。なお、図5の(A)においては、図示の煩雑化を避けるため、第1位相差領域R1と第2位相差領域R2の図示は略す。また、図5の(B)においては、シートの変形の度合いを大きく誇張して描いてある。
When two sheets are cut out symmetrically with respect to the center in the width direction as in this example, each sheet has the length of the first edge E1 of the sheet corresponding to the cutting line C1 in the center in the width direction, and the width direction. The lengths of the second edges E2 corresponding to the outer cutting lines C2 are different from each other. Specifically, as shown in FIG. 5B, the second edge E2 is slightly longer than the first edge E1. For example, from a long FPR 12 having a length in the width direction of 1500 mm, two sheets are taken with a cutting line forming a rectangle of 400 mm × 700 mm having a short side matching the width direction as shown in FIG. In this case, the length of the first edge E1 of each sheet is approximately 700.0 mm, and the length of the second edge E2 is approximately 700.3 mm. For this reason, the first phase difference region R1 and the second phase difference region R2 that extend linearly in the conveyance direction in the long FPR 12 are the second edge side in the sheet as shown in FIG. It becomes a very slightly convex curve. In FIG. 5A, the illustration of the first phase difference region R1 and the second phase difference region R2 is omitted to avoid complication of the illustration. In FIG. 5B, the degree of deformation of the sheet is greatly exaggerated.
そこで、図5の(B)に示すように、シート状のFPR12を、長尺時の搬送方向に対応する方向へ引っ張る。これにより、ごくわずかにではあるがシートにおいて変形している第1位相差領域R1と第2位相差領域R2とを、図5の(C)に示すようにそれぞれ直線状にする。シート状のFPR12は、第1位相差領域R1と第2位相差領域R2とを直線状に保持された状態、すなわち、張力を付与された状態で、貼合装置59(図3参照)により液晶パネル11(図1参照)と張り合わされる。
Therefore, as shown in FIG. 5B, the sheet-like FPR 12 is pulled in a direction corresponding to the conveying direction when the sheet is long. As a result, the first retardation region R1 and the second retardation region R2 that are deformed slightly in the sheet are linearized as shown in FIG. 5C. The sheet-like FPR 12 is liquid crystal by the laminating device 59 (see FIG. 3) in a state where the first retardation region R1 and the second retardation region R2 are held in a straight line, that is, in a state where tension is applied. It is bonded to the panel 11 (see FIG. 1).
貼合装置59は、液晶パネル11の一定方向に並ぶ複数の画素の縁(エッジ)にFPR12の第1位相差領域R1と第2位相差領域R2との境界38を重ねた状態で、FPR12と液晶パネル11とを貼り合わせるためのものである。貼合装置59は、図6及び図7に示すように、引張部81、貼合部82等を備え、所定の張力に保持した状態のシート状のFPR12と、液晶パネル11とを貼り合わせる。
The bonding device 59 is in a state where the boundary 38 between the first phase difference region R1 and the second phase difference region R2 of the FPR 12 is overlapped with the edges (edges) of a plurality of pixels arranged in a certain direction of the liquid crystal panel 11, and the FPR 12 This is for attaching the liquid crystal panel 11 together. As shown in FIGS. 6 and 7, the bonding device 59 includes a tension part 81, a bonding part 82, and the like, and bonds the liquid crystal panel 11 to the sheet-like FPR 12 held at a predetermined tension.
引張部81は、第1,第2クリップ83,84、張力測定器87、引っ張り機構88、カメラ91、移動機構92、昇降機構93、コントローラ96などを備える。第1クリップ83と第2クリップ84とは、供給されたFPR12を把持するためのものであり、FPR12を挟持する挟持部材83a,84aと、これら挟持部材83a,84aによる挟持及びその解除を制御するクリップ本体83b,84bとを備える。第1,第2クリップ83,84は、互いの距離を変える方向(A方向と称する)と、A方向に直交する図6における上下方向(B方向)と、A,B両方向に直交するC方向とに変位する。また、第1,第2クリップ83,84は、A方向とC方向とにより決定されるAC平面内において、互いの姿勢及び相対位置を保った状態で変位する。
The tension portion 81 includes first and second clips 83 and 84, a tension measuring device 87, a tension mechanism 88, a camera 91, a moving mechanism 92, an elevating mechanism 93, a controller 96, and the like. The first clip 83 and the second clip 84 are for gripping the supplied FPR 12, and control the clamping members 83a and 84a that sandwich the FPR 12, and the clamping and release of the clamping members 83a and 84a. Clip bodies 83b and 84b. The first and second clips 83 and 84 have a direction in which the distance between them is changed (referred to as A direction), a vertical direction (B direction) in FIG. 6 orthogonal to the A direction, and a C direction orthogonal to both the A and B directions. It will be displaced. In addition, the first and second clips 83 and 84 are displaced while maintaining their mutual posture and relative position in the AC plane determined by the A direction and the C direction.
第1クリップ83は、前述の搬送方向に対応する方向におけるシート状のFPR12の一端部を挟持し、第2クリップ84は他端部を挟持する。そこで、FPR12を挟持する際には、第1クリップ83と第2クリップ84とは、A方向を前述の搬送方向に一致させる。一致とは、必ずしも厳格な一致でなくてもよく、0.0001°以内の多少のずれであればずれがあってもよい。第1,第2クリップ83,84は、FPR12を保持するためのものであるので、他の保持手段、例えば、FPR12のフィルム面に吸着してFPR12を保持する吸着プレート(図示無し)、FPR12を厚み方向で貫通して保持するピン(図示無し)等に代えてもよい。
The first clip 83 sandwiches one end of the sheet-like FPR 12 in the direction corresponding to the above-described transport direction, and the second clip 84 sandwiches the other end. Therefore, when the FPR 12 is sandwiched, the first clip 83 and the second clip 84 make the A direction coincide with the transport direction described above. The coincidence does not necessarily have to be a strict coincidence, and there may be a deviation as long as it is a slight deviation within 0.0001 °. Since the first and second clips 83 and 84 are for holding the FPR 12, other holding means, for example, a suction plate (not shown) for holding the FPR 12 by suction on the film surface of the FPR 12, You may replace with the pin (not shown) etc. which penetrate and hold | maintain in the thickness direction.
第1クリップ83のクリップ本体83bは張力測定器87に接続し、張力測定器87はコントローラ96に接続する。張力測定器87は第1,第2クリップ83,84によりFPR12に付与されている張力を検出して、その検出信号をコントローラ96へ出力する。張力測定器87としては、例えばロードセルやばね測り等がある。
The clip body 83 b of the first clip 83 is connected to the tension measuring device 87, and the tension measuring device 87 is connected to the controller 96. The tension measuring device 87 detects the tension applied to the FPR 12 by the first and second clips 83 and 84 and outputs the detection signal to the controller 96. Examples of the tension measuring device 87 include a load cell and a spring measurement.
第2クリップ84のクリップ本体84bは、引っ張り機構88に接続する。引っ張り機構88は、第2クリップ84のクリップ本体84bを変位させる例えばボールねじとモータ等で構成されており、FPR12を挟持した状態でA方向にクリップ本体84bを変位させる。コントローラ96は引っ張り機構88にも接続しており、張力測定器87からの検出信号が入力されると、引っ張り機構88を介してクリップ本体84bのA方向における位置を制御する。これにより、挟持部材83a,84aに挟持されているFPR12にはA方向において目的とする張力が付与される。引っ張り機構88としては、エアシリンダ等で構成されるものでもよい。
The clip main body 84 b of the second clip 84 is connected to the pulling mechanism 88. The pulling mechanism 88 includes, for example, a ball screw and a motor that displace the clip main body 84b of the second clip 84, and displaces the clip main body 84b in the A direction with the FPR 12 being held. The controller 96 is also connected to the pulling mechanism 88, and when the detection signal from the tension measuring device 87 is input, the position of the clip body 84b in the A direction is controlled via the pulling mechanism 88. Thereby, the target tension in the A direction is applied to the FPR 12 held between the holding members 83a and 84a. The pulling mechanism 88 may be composed of an air cylinder or the like.
目的とする張力は、露光装置53により紫外線の照射されている間の支持体40の搬送方向における張力の20%以上180%以下の範囲内である。なお、本明細書における張力とは、幅1mあたりの張力である。すなわち、紫外線の照射されている間の支持体40の搬送方向における幅1mあたりの張力をT1(N/m)とするとき、第1クリップ83,第2クリップ84によりA方向で付与するA方向に直交する方向での1mあたりの張力は、T1×0.20以上T1×1.80以下の範囲内である。この張力付与は、第1位相差領域R1,第2位相差領域R2,境界38をそれぞれ曲線状から一定の幅の直線状にするためのものであり、20%より小さな張力及び180%を超える張力では、十分には一定幅の直線状にはならない。A方向に付与されるより好ましい張力(N/m)は、紫外線の照射されている間の支持体40の搬送方向における張力の90%以上110%以下の範囲内であり、T1との差が小さいほどよい。
The target tension is in the range of 20% or more and 180% or less of the tension in the transport direction of the support 40 while the exposure device 53 is irradiated with ultraviolet rays. In addition, the tension in this specification is a tension per 1 m width. That is, when the tension per 1 m width in the conveying direction of the support body 40 during irradiation with ultraviolet rays is T1 (N / m), the A direction is applied in the A direction by the first clip 83 and the second clip 84. The tension per 1 m in the direction perpendicular to is in the range of T1 × 0.20 or more and T1 × 1.80 or less. This tension is applied to change the first phase difference region R1, the second phase difference region R2, and the boundary 38 from a curved line to a straight line having a constant width, which is less than 20% and exceeds 180%. The tension is not a straight line with a sufficient width. The more preferable tension (N / m) applied in the A direction is in the range of 90% to 110% of the tension in the conveying direction of the support 40 while being irradiated with ultraviolet rays, and the difference from T1 is Smaller is better.
各クリップ本体83b,84bは、それぞれ移動機構92に接続しており、移動機構92は各クリップ本体83b,84bを、B方向と、C方向とに変位させる。これにより、挟持部材83a,84aにより挟持されているFPR12は、B方向とC方向とに変位する。また、移動機構92は、第1クリップ83と第2クリップ84との姿勢及び位置関係を保持した状態でクリップ本体83b,84bのAC平面内における位置を変える。このように、クリップ本体83b,84bがAC平面において一体に変位することにより、FPR12はAC平面内で回転する。
Each clip body 83b, 84b is connected to a moving mechanism 92, and the moving mechanism 92 displaces each clip body 83b, 84b in the B direction and the C direction. Thereby, the FPR 12 clamped by the clamping members 83a and 84a is displaced in the B direction and the C direction. The moving mechanism 92 changes the position of the clip main bodies 83b and 84b in the AC plane while maintaining the posture and the positional relationship between the first clip 83 and the second clip 84. As described above, when the clip bodies 83b and 84b are integrally displaced in the AC plane, the FPR 12 rotates in the AC plane.
貼合部82は、載置台97、押圧部材98、軸99などから構成されている。貼合部82はその上面82aに載置台97が設けられている。この載置台97の載置面97aには、液晶パネル11が載置される。液晶パネル11は、液晶表示装置10(図1参照)での光源側を載置面97aに対向させて置かれる。つまり、この例では、偏光板16(図1参照)を下方に向けて載置面97aに対向させ、偏光板17(図1参照)を上方に向ける。載置面97aは図7に示すように透明な例えばガラス102で構成され、載置台97の内部に配されたランプ103により、載置された液晶パネル11を一方のパネル面から照明する。
The pasting unit 82 includes a mounting table 97, a pressing member 98, a shaft 99, and the like. The bonding part 82 is provided with a mounting table 97 on its upper surface 82a. The liquid crystal panel 11 is placed on the placement surface 97 a of the placement table 97. The liquid crystal panel 11 is placed with the light source side of the liquid crystal display device 10 (see FIG. 1) facing the mounting surface 97a. That is, in this example, the polarizing plate 16 (see FIG. 1) is directed downward to face the mounting surface 97a, and the polarizing plate 17 (see FIG. 1) is directed upward. As shown in FIG. 7, the mounting surface 97a is made of transparent glass 102, for example, and the mounted liquid crystal panel 11 is illuminated from one panel surface by a lamp 103 disposed inside the mounting table 97.
押圧部材98は、液晶パネル11上に供給されて重ねられたFPR12を押圧して液晶パネル11と貼り付けるためのものである。押圧部材98は、貼合部82の上面82a上に設けられた回動する軸99に一側端が固定された板状の部材である。押圧部材98は、FPR12を押圧する押圧位置とこの押圧位置から退避した退避位置との間で軸99と一体に動き、退避位置では図6に示すように起立した姿勢とされる。
The pressing member 98 is for pressing the FPR 12 supplied and stacked on the liquid crystal panel 11 and sticking it to the liquid crystal panel 11. The pressing member 98 is a plate-like member whose one end is fixed to a rotating shaft 99 provided on the upper surface 82 a of the bonding portion 82. The pressing member 98 moves integrally with the shaft 99 between a pressing position for pressing the FPR 12 and a retracted position retracted from the pressing position, and is in an upright posture as shown in FIG.
カメラ91は、FPR12における第1位相差領域R1と第2位相差領域R2との境界38(図2参照)と、液晶パネル11に対するFPR12の相対位置とを検出するためのものである。カメラ91は、載置台97の載置面97aとレンズ91aが対向した状態で設けられる。検出時には、供給されたFPR12とレンズ91aとの間に、偏光板104が液晶表示装置10において視認側に配される偏光板17と互いにクロスニコル配置で設けられ、カメラ91はこの偏光板104を介して撮影する。偏光板104は、モータなどで構成された昇降機構93によりB方向で変位する。
The camera 91 is for detecting the boundary 38 (see FIG. 2) between the first phase difference region R1 and the second phase difference region R2 in the FPR 12 and the relative position of the FPR 12 with respect to the liquid crystal panel 11. The camera 91 is provided with the mounting surface 97a of the mounting table 97 and the lens 91a facing each other. At the time of detection, a polarizing plate 104 is provided between the supplied FPR 12 and the lens 91a in a crossed Nicol arrangement with the polarizing plate 17 disposed on the viewing side in the liquid crystal display device 10, and the camera 91 displaces the polarizing plate 104. Shoot through. The polarizing plate 104 is displaced in the B direction by an elevating mechanism 93 constituted by a motor or the like.
無配向領域となっている各位相差領域R1とR2との境界38を透過したランプ103からの光は、液晶パネル11から射出された直線偏光を維持しており、その振動方向が偏光板104の透過軸と直交する。このため、境界38からの光は、偏光板104を透過しないので、カメラ91で黒い線として撮影される。
The light from the lamp 103 transmitted through the boundary 38 between the phase difference regions R1 and R2 that are non-oriented regions maintains the linearly polarized light emitted from the liquid crystal panel 11, and the vibration direction of the polarizing plate 104 Orthogonal to the transmission axis. For this reason, since the light from the boundary 38 does not pass through the polarizing plate 104, it is photographed as a black line by the camera 91.
上記構成の作用について説明する。長尺の支持体40は、FPR製造装置50に供給されると、搬送機構部51により、反応膜形成部52、露光装置53、張力調整部54、ラビング処理部55、液晶層形成部56、切断部58に順次案内される。反応膜形成部52により、支持体40の一方の表面には光酸発生剤を含む塗布液が連続的に塗布される。反応膜形成部52では、その後、塗布により形成された塗膜が乾燥され、これにより一定厚みの反応膜72が支持体40上に形成される。
The operation of the above configuration will be described. When the long support 40 is supplied to the FPR manufacturing apparatus 50, the transport mechanism 51 causes the reaction film forming unit 52, the exposure device 53, the tension adjusting unit 54, the rubbing processing unit 55, the liquid crystal layer forming unit 56, Guided sequentially to the cutting section 58. The reaction film forming unit 52 continuously applies a coating solution containing a photoacid generator on one surface of the support 40. Thereafter, the reaction film forming unit 52 dries the coating film formed by coating, whereby a reaction film 72 having a certain thickness is formed on the support 40.
反応膜72が形成された支持体40は、露光装置53へ案内され、バックアップローラに巻き掛けられた状態で、紫外線の照射域と非照射領域とが幅方向に交互になるストライプ状のパターン照射が連続的に行われる。このパターン照射中の支持体40は、搬送方向における張力を予め設定した値に保持されている。
The support 40 on which the reaction film 72 is formed is guided to the exposure device 53, and in a state of being wound around a backup roller, a stripe pattern irradiation in which an ultraviolet irradiation region and a non-irradiation region alternate in the width direction. Is performed continuously. The support 40 during pattern irradiation is held at a preset value of the tension in the transport direction.
支持体40はラビング処理部55に案内されて反応膜72にはラビング処理が施され、このラビング処理により反応膜72は配向膜41にされる。その後、支持体40は液晶層形成部56へ案内されて、配向膜41上に液晶層42が形成される。液晶層42が形成された支持体40は、粘着層形成部57により、液晶層42上に粘着層45を形成されて長尺のFPR12が得られる。このFPR12は、切断部58で目的とするサイズのシート状に切断される。
The support 40 is guided to the rubbing treatment part 55 and the reaction film 72 is subjected to rubbing treatment, and the reaction film 72 is changed to the alignment film 41 by this rubbing treatment. Thereafter, the support 40 is guided to the liquid crystal layer forming unit 56, and the liquid crystal layer 42 is formed on the alignment film 41. In the support 40 on which the liquid crystal layer 42 is formed, the adhesive layer 45 is formed on the liquid crystal layer 42 by the adhesive layer forming unit 57, and a long FPR 12 is obtained. The FPR 12 is cut into a sheet having a target size by the cutting unit 58.
シート状のFPR12は、FPR製造設備50から貼合装置59へ案内されて、以下の通り液晶パネル11と貼り合わせられる。まず、第1クリップ83と第2クリップ84とは、露光装置53において紫外線が照射される間における支持体40の搬送方向に一致させたA方向で挟持部材83a,84aが互いに対向する状態で配される。FPR12は、これらの挟持部材83a,84aによりA方向での一端部と他端部とを挟持される。なお、FPR12が挟持された後に、A方向とFPR12の製造時における搬送方向とを一致させてもよい。
The sheet-like FPR 12 is guided from the FPR manufacturing facility 50 to the bonding device 59 and bonded to the liquid crystal panel 11 as follows. First, the first clip 83 and the second clip 84 are arranged in a state in which the clamping members 83a and 84a face each other in the A direction that is coincident with the transport direction of the support body 40 while the exposure device 53 is irradiated with ultraviolet rays. Is done. The FPR 12 is sandwiched between the one end and the other end in the A direction by the sandwiching members 83a and 84a. Note that, after the FPR 12 is sandwiched, the A direction and the transport direction at the time of manufacturing the FPR 12 may be matched.
張力測定器87は、第1,第2クリップ83,84に挟持されたFPR12のA方向における張力を測定し、その検出結果をコントローラ96へ出力する。コントローラ96は、引っ張り機構88を介して第2クリップ84をA方向に変位させ、張力測定器87による検出結果が前述の目的とする張力になるまで第2クリップ84の位置を変化させる。これにより、FPR12には前述の目的とする張力がA方向に付与され、この結果、FPR12における第1位相差領域R1と第2位相差領域R2とはそれぞれ一定幅の直線状になるとともに、境界38も直線状になる。なお、第2クリップ84の変位の間は、カメラ91による撮影は行わなくてもよい。
The tension measuring device 87 measures the tension in the A direction of the FPR 12 held between the first and second clips 83 and 84, and outputs the detection result to the controller 96. The controller 96 displaces the second clip 84 in the A direction via the pulling mechanism 88, and changes the position of the second clip 84 until the detection result by the tension measuring device 87 reaches the target tension described above. As a result, the above-described target tension is applied to the FPR 12 in the A direction. As a result, the first phase difference region R1 and the second phase difference region R2 in the FPR 12 are linear with a constant width, and the boundary. 38 is also linear. Note that it is not necessary to perform photographing with the camera 91 during the displacement of the second clip 84.
載置台97には、液晶パネル11が予め供給されており、FPR12は、第1,第2クリップ83,84により所定の張力をA方向に付与された状態で、移動機構92により液晶パネル11上に移動し、図7に示すように液晶パネル11からわずかに離間した状態とされる。このFPR12の上方には、FPR12とわずかに離間した状態で、偏光板104が配される。
The liquid crystal panel 11 is supplied in advance to the mounting table 97, and the FPR 12 is placed on the liquid crystal panel 11 by the moving mechanism 92 in a state where a predetermined tension is applied in the A direction by the first and second clips 83 and 84. As shown in FIG. 7, the liquid crystal panel 11 is slightly separated. Above the FPR 12, a polarizing plate 104 is disposed in a state slightly separated from the FPR 12.
ランプ103により光を照射されているFPR12をカメラ91により撮影しながら、目的とする張力を付与された状態のFPR12と液晶パネル11とは位置合わせされる。位置合わせ前のFPR12は、例えば、液晶パネル11のカラーフィルタ層26において水平方向と垂直方向とに並ぶ複数の画素106のいずれの並び方向とも境界38がずれている。したがってカメラ91では、図8に示すように、黒い線として撮影される境界38が、水平に並ぶ複数の画素106の縁と交差するとともに、垂直方向に並ぶ複数の画素106の縁とも交差する。
While the FPR 12 being irradiated with light by the lamp 103 is photographed by the camera 91, the FPR 12 and the liquid crystal panel 11 in a state where a target tension is applied are aligned. In the FPR 12 before the alignment, for example, the boundary 38 is shifted in any arrangement direction of the plurality of pixels 106 arranged in the horizontal direction and the vertical direction in the color filter layer 26 of the liquid crystal panel 11. Therefore, in the camera 91, as shown in FIG. 8, the boundary 38 photographed as a black line intersects with the edges of the plurality of pixels 106 arranged in the horizontal direction and also intersects with the edges of the plurality of pixels 106 arranged in the vertical direction.
このように境界38が一方向に並ぶ複数の画素106の縁と交差する場合には、移動機構92は第1,第2クリップ83,84の姿勢及び位置関係を保持した状態でこれらを一体にAC平面において変位させて、FPR12をAC平面内で回転させる。これにより、図9に示すように、境界38と交差していた一方向に並ぶ複数の画素の縁とを平行な状態に調整する。
In this way, when the boundary 38 intersects the edges of the plurality of pixels 106 arranged in one direction, the moving mechanism 92 integrates the first and second clips 83 and 84 while maintaining the posture and positional relationship. The FPR 12 is rotated in the AC plane by being displaced in the AC plane. As a result, as shown in FIG. 9, the edges of a plurality of pixels arranged in one direction intersecting the boundary 38 are adjusted to be in a parallel state.
次に、移動機構92は、第1,第2クリップ83,84の姿勢及び位置関係を保持した状態でこれらを一体にA方向とC方向との少なくともいずれか一方へ変位させて、FPR12をAC平面内で移動させる。これにより、図10に示すように、一方向に並ぶ複数の画素の縁に境界38を重ねる。この「縁」とは、一方向に並ぶ複数の画素(第1画素群と称する)と、第1画素群と同じ方向に並び第1画素群と隣り合う複数の画素(第2画素群)との間に一定幅の境界領域がある場合には、この境界領域も含む。したがって、第1画素群と第2画素群との間が離間している場合には、第1画素群と第2画素群との境界領域内に境界38が入るようにすればよい。本実施形態では、FPR12を回転させた後にAC平面内で移動させているが、この態様に代えて、AC平面内で移動させた後にAC平面内で回転させてもよい。以上の工程により、FPR12は、液晶パネル11と位置合わせされる。
Next, the moving mechanism 92 integrally displaces the FPR 12 in at least one of the A direction and the C direction while maintaining the posture and the positional relationship of the first and second clips 83 and 84, and thereby the FPR 12 is connected to the AC. Move in the plane. Thereby, as shown in FIG. 10, the boundary 38 is overlapped on the edges of a plurality of pixels arranged in one direction. The “edge” refers to a plurality of pixels arranged in one direction (referred to as a first pixel group), a plurality of pixels arranged in the same direction as the first pixel group, and adjacent to the first pixel group (second pixel group). If there is a boundary region having a constant width between the two, this boundary region is also included. Therefore, when the first pixel group and the second pixel group are separated from each other, the boundary 38 may be placed in the boundary region between the first pixel group and the second pixel group. In the present embodiment, the FPR 12 is rotated and then moved in the AC plane. However, instead of this aspect, the FPR 12 may be moved in the AC plane and then rotated in the AC plane. Through the above steps, the FPR 12 is aligned with the liquid crystal panel 11.
なお、本実施形態では、目的とする張力を付与した状態でFPR12を液晶パネル11と位置合わせしているが、この態様に限られない。例えば、FPR12の境界38の一部と液晶パネル11の一方向に並ぶ特定の画素の縁とを重ねる第1の位置合わせを行ってから、FPR12に目的とする張力を付与し、この後、境界38が一方向に並ぶ複数の画素の縁と重ねる第2の位置合わせを行ってもよい。
In this embodiment, the FPR 12 is aligned with the liquid crystal panel 11 in a state where a target tension is applied, but the present invention is not limited to this mode. For example, after performing the first alignment in which a part of the boundary 38 of the FPR 12 and the edge of a specific pixel arranged in one direction of the liquid crystal panel 11 are overlapped, a target tension is applied to the FPR 12, and then the boundary You may perform the 2nd position alignment which overlaps with the edge of the some pixel in which 38 aligns in one direction.
液晶パネル11と位置合わせされたFPR12は、目的とする張力を付与されたまま移動機構92により液晶パネル11上に接触する状態にまで降下する。押圧部材98が退避位置から押圧位置に移動することによりFPR12を液晶パネル11に対向するフィルム面とは反対側のシート面から押圧する。これにより、FPR12は、境界38が液晶パネル11の水平または垂直に並ぶ複数の画素106(図8~図10参照)の縁と重なる状態で、液晶パネル11に貼り合わせられる。この結果、表示精度が従来品よりも向上した液晶表示装置10が得られる。
The FPR 12 aligned with the liquid crystal panel 11 is lowered to a state in which the FPR 12 is in contact with the liquid crystal panel 11 by the moving mechanism 92 while the target tension is applied. When the pressing member 98 moves from the retracted position to the pressing position, the FPR 12 is pressed from the sheet surface opposite to the film surface facing the liquid crystal panel 11. As a result, the FPR 12 is bonded to the liquid crystal panel 11 with the boundary 38 overlapping the edges of the plurality of pixels 106 (see FIGS. 8 to 10) arranged horizontally or vertically on the liquid crystal panel 11. As a result, the liquid crystal display device 10 whose display accuracy is improved as compared with the conventional product is obtained.
本実施形態では、FPR12と液晶パネル11との位置合わせに際し、載置台97上に静置した液晶パネル11に対してFPR12を動かすことにより位置合わせしているが、この態様に限られない。例えば、載置台97にA方向、C方向とにおける変位機構と、AC平面内における回転機構とを設けることにより、FPR12の移動及び回転に加えて、または代えて、液晶パネル11の移動と回転とを行うことにより位置合わせしてもよい。
In this embodiment, when the FPR 12 and the liquid crystal panel 11 are aligned, the FPR 12 is moved by moving the FPR 12 with respect to the liquid crystal panel 11 placed on the mounting table 97, but this is not a limitation. For example, by providing the mounting table 97 with a displacement mechanism in the A direction and the C direction and a rotation mechanism in the AC plane, in addition to or instead of the movement and rotation of the FPR 12, the movement and rotation of the liquid crystal panel 11 can be performed. You may align by performing.
上記の方法は、幅方向に張力を付与される工程を経た支持体40をFPR製造設備50に供する場合に、特に顕著な効果がある。製造過程で幅方向に張力を付与されて得られる支持体40は、幅方向の測端部が幅方向中央部に比べて残留応力が大きく、切断部58でシート状に切断することより、測端部に対応する箇所と中央部に対応する箇所との間で収縮の度合いが異なる。したがって、露光装置53で一定幅のライン状に形成した照射領域REと非照射領域RN、及び境界38は、シート状への切断により、前述のように曲線状になってしまう。そこで、露光装置53で紫外線に照射されている間の搬送方向における張力T1を基準にして、その張力T1に近い張力を付与した状態でFPR12を貼り付けることにより、第1位相差領域R1と第2位相差領域R1、及びこれらの境界38が直線状になり、得られる液晶表示装置10は良好な表示性能を発現する。
The above method has a particularly remarkable effect when the support body 40 that has been subjected to the step of applying tension in the width direction is provided to the FPR manufacturing facility 50. The support 40 obtained by applying tension in the width direction in the manufacturing process has a larger residual stress in the end portion in the width direction than in the center portion in the width direction, and is cut into a sheet shape by the cut portion 58. The degree of contraction is different between the part corresponding to the end part and the part corresponding to the center part. Therefore, the irradiation region RE, the non-irradiation region RN, and the boundary 38 formed in a line shape with a constant width by the exposure device 53 are curved as described above by cutting into a sheet shape. Accordingly, the first phase difference region R1 and the first phase difference region R1 are attached to the first retardation region R1 by attaching the FPR 12 in a state where a tension close to the tension T1 is applied with reference to the tension T1 in the transport direction while the exposure device 53 is irradiated with ultraviolet rays. The two phase difference regions R1 and the boundaries 38 thereof are linear, and the resulting liquid crystal display device 10 exhibits good display performance.
図11の延伸装置120は、支持体40を製造する過程で幅方向に張力を付与するためのものである。この延伸装置120は、例えば上流側に設けられた製膜部に接続することもあるし、送出機に接続することもある。製膜部としては、原料ポリマーを溶融して膜状に押し出す溶融製膜部や、原料ポリマーを溶媒に溶解して流延支持体に流延して流延膜を形成し、この流延膜が自己支持性を発現してから剥がす溶液製膜部等がある。送出機としては、これらの製膜部で製造されてロール状に巻かれたフィルムロールがセットされ、このフィルムロールからフィルム122を巻き出して延伸装置120へ送り出すもの等がある。
The stretching device 120 in FIG. 11 is for applying tension in the width direction in the process of manufacturing the support 40. The stretching device 120 may be connected to, for example, a film forming unit provided on the upstream side, or may be connected to a sending machine. As the film forming part, a melt film forming part that melts the raw material polymer and extrudes it into a film shape, or a raw material polymer dissolved in a solvent and cast on a casting support to form a casting film, this casting film There is a solution film forming part that peels off after developing self-supporting property. As a sending machine, there is a machine in which a film roll manufactured in these film forming sections and wound in a roll shape is set, and the film 122 is unwound from the film roll and sent to the stretching apparatus 120.
延伸装置120は、例えば、搬送方向に延びた1対のレール(図示無し)上に配された1対のチェーン(図示無し)に、複数のクリップ121が搬送方向に複数並んで取り付けられている。1対のレールは、フィルム122の幅方向で互いに離間して設けられ、クリップ121は、連続供給されてくる長尺のフィルム122の側端部を挟持する。各チェーンはレール上を移動し、これにより個々のクリップ121が移動することにより、フィルム122は搬送される。レール間の距離を搬送方向において変化させることにより、フィルム122の幅を拡げたり(拡幅)、狭めたり(縮幅)、一定に保持したりする。
In the stretching device 120, for example, a plurality of clips 121 are attached to a pair of chains (not shown) arranged on a pair of rails (not shown) extending in the transport direction. . The pair of rails are provided to be separated from each other in the width direction of the film 122, and the clip 121 sandwiches the side end portion of the long film 122 that is continuously supplied. Each chain moves on the rails, whereby the individual clips 121 move, whereby the film 122 is conveyed. By changing the distance between the rails in the transport direction, the width of the film 122 is expanded (widened), narrowed (reduced), or kept constant.
図11の延伸装置120は、幅を一定に保持しながらフィルム122を昇温する予熱部120aと、予熱部の下流に設けられる幅を拡げる拡幅部120bと、拡幅部の下流に設けられる緩和部120cとを有する。拡幅部120bは、フィルム122の温度を例えばガラス転移点近傍等の高温にして、フィルム122の幅を拡げる。予熱部120aは、拡幅部120bに向かうフィルム122を昇温させることにより拡幅部120bにおけるフィルム122の変形や破断等を防ぐ。緩和部120cは、拡幅部120bにおいて生じたフィルムの応力緩和を行う。このような予熱部120aと拡幅部120bと緩和部120cとによる処理を経て支持体40は得られるが、緩和部120cでの応力緩和を経ても、得られる支持体40には残留応力が残ることが多く、上記のようなシート化に伴うFPR12の変形が発生する。なお、この例では一定幅の保持と拡幅と拡幅後の一定幅の保持という延伸パターンで支持体40を製造しているが、延伸パターンはこれに限られない。
The stretching apparatus 120 in FIG. 11 includes a preheating unit 120a that raises the temperature of the film 122 while keeping the width constant, a widening unit 120b that widens the width provided downstream of the preheating unit, and a relaxation unit that is provided downstream of the widening unit. 120c. The widened portion 120b widens the width of the film 122 by setting the temperature of the film 122 to a high temperature such as near the glass transition point. The preheating unit 120a prevents the film 122 from being deformed or broken in the widened portion 120b by raising the temperature of the film 122 toward the widened portion 120b. The relaxation part 120c performs stress relaxation of the film generated in the widened part 120b. Although the support 40 is obtained through the treatment by the preheating part 120a, the widening part 120b, and the relaxation part 120c, residual stress remains in the obtained support 40 even after the stress relaxation in the relaxation part 120c. In many cases, the deformation of the FPR 12 accompanying the sheet formation as described above occurs. In addition, in this example, the support body 40 is manufactured with a stretching pattern of holding a constant width, widening, and holding a constant width after widening, but the stretching pattern is not limited thereto.
<第2実施形態>
第2実施形態は、複層フィルムを表示パネルに貼り付けて液晶表示装置をつくるものである。この例の液晶表示装置130は、図12に示すように、表示パネルとしての液晶パネル11に、シート状にされた複層フィルム14を貼り合わせて構成される。このように、この実施形態は、FPR12に代えて複層フィルム14を液晶パネル11に貼り付けるものである。なお、以下に説明する他は第1実施形態と同じであり、同一の部材には同じ符号を付してその詳細な説明は略す。 Second Embodiment
In the second embodiment, a liquid crystal display device is manufactured by attaching a multilayer film to a display panel. As shown in FIG. 12, the liquidcrystal display device 130 of this example is configured by laminating a sheet-like multilayer film 14 to a liquid crystal panel 11 as a display panel. Thus, in this embodiment, the multilayer film 14 is attached to the liquid crystal panel 11 instead of the FPR 12. In addition, except being demonstrated below, it is the same as 1st Embodiment, The same code | symbol is attached | subjected to the same member, and the detailed description is abbreviate | omitted.
第2実施形態は、複層フィルムを表示パネルに貼り付けて液晶表示装置をつくるものである。この例の液晶表示装置130は、図12に示すように、表示パネルとしての液晶パネル11に、シート状にされた複層フィルム14を貼り合わせて構成される。このように、この実施形態は、FPR12に代えて複層フィルム14を液晶パネル11に貼り付けるものである。なお、以下に説明する他は第1実施形態と同じであり、同一の部材には同じ符号を付してその詳細な説明は略す。 Second Embodiment
In the second embodiment, a liquid crystal display device is manufactured by attaching a multilayer film to a display panel. As shown in FIG. 12, the liquid
複層フィルム14は、FPR12と保護膜13とを備える。保護膜13は、FPR12の表面を保護するためのものである。なお、液晶パネル11に代えて、他の公知の液晶パネルとしてもよい。また、保護膜13に代えて、各種の光学機能膜にしてもよい。光学機能膜としては、例えば、特定の偏波した光だけを透過する偏光膜や、表示装置における視野角を拡大させる視野角拡大膜にしてもよい。
The multilayer film 14 includes an FPR 12 and a protective film 13. The protective film 13 is for protecting the surface of the FPR 12. Instead of the liquid crystal panel 11, other known liquid crystal panels may be used. Further, various optical function films may be used in place of the protective film 13. The optical function film may be, for example, a polarizing film that transmits only specific polarized light, or a viewing angle expansion film that expands the viewing angle in the display device.
本実施形態では、保護膜13は、FPR12の視認側の表面に設けられている。保護膜13は、伸縮性をもち、本実施形態においては透明であり、例えばセルローストリアセテート(TAC)等のセルロースアシレートや、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ノルボルネン系ポリマー、シクロオレフィン系ポリマー並びにポリメチルメタクリレート等のアクリル系ポリマー等のポリマーでそれぞれ構成されるフィルムから形成される。
In the present embodiment, the protective film 13 is provided on the surface of the FPR 12 on the viewing side. The protective film 13 has elasticity and is transparent in the present embodiment. For example, cellulose acylate such as cellulose triacetate (TAC), polyethylene terephthalate (PET), polypropylene (PP), norbornene-based polymer, cycloolefin-based The film is formed of a polymer and a film composed of a polymer such as an acrylic polymer such as polymethyl methacrylate.
図13に示すFPR12において、粘着層45は、前述のとおり、複層フィルム14のFPR12と液晶パネル11とを接着するために設けられる。保護膜13は、支持体40の配向膜41が付与されている面とは反対側の面上に配される。本実施形態においては、粘着層45は、第1実施形態と同じく、液晶層42上に設けられる。しかし、この態様に代えて、保護膜13の表面上に配されてもよい。
In the FPR 12 shown in FIG. 13, the adhesive layer 45 is provided to adhere the FPR 12 of the multilayer film 14 and the liquid crystal panel 11 as described above. The protective film 13 is disposed on the surface of the support 40 opposite to the surface on which the alignment film 41 is provided. In the present embodiment, the adhesive layer 45 is provided on the liquid crystal layer 42 as in the first embodiment. However, it may be arranged on the surface of the protective film 13 instead of this embodiment.
シート状の複層フィルム14は、例えば図14に示す複層シート製造設備132により製造される。複層シート製造設備132は、搬送機構部51,反応膜形成部52,露光装置53,張力調整部54,ラビング処理部55,及び液晶層形成部56,複層化部133,切断部58などで構成される。すなわち、複層シート製造設備132は、FPR製造設備の粘着層形成部57に代えて、複層化部133を備える構成となっている。複層シート製造設備132は、供給されてくる長尺の支持体40に各種処理を行ってシート状の複層フィルム14を製造する。この複層シート製造設備132で製造されたシート状の複層フィルム14は、後述の貼合装置59へ案内されて、液晶パネル11(図12参照)と貼り合わされる。
The sheet-like multilayer film 14 is manufactured by, for example, a multilayer sheet manufacturing facility 132 shown in FIG. The multilayer sheet manufacturing facility 132 includes a transport mechanism 51, a reaction film forming unit 52, an exposure device 53, a tension adjusting unit 54, a rubbing processing unit 55, a liquid crystal layer forming unit 56, a multilayered unit 133, a cutting unit 58, and the like. Consists of. That is, the multilayer sheet manufacturing facility 132 is configured to include a multilayered portion 133 instead of the adhesive layer forming portion 57 of the FPR manufacturing facility. The multilayer sheet manufacturing facility 132 performs various processes on the supplied long support 40 to manufacture the sheet-shaped multilayer film 14. The sheet-like multilayer film 14 manufactured by the multilayer sheet manufacturing facility 132 is guided to a laminating device 59 described later and bonded to the liquid crystal panel 11 (see FIG. 12).
なお、液晶層形成部56と複層化部133との間には、巻取部が備えられてもよい。また、この複層シート製造設備132は切断部58を備えるが、切断部58が複層シート製造設備132外に設けられていてもよい。この場合には、複層シート製造設備132は、FPR12と保護膜13とが重なる長尺の複層フィルム14を製造するためのものであり、複層化部133の下流に長尺の複層フィルム14を巻き取る巻取部(図示無し)を備える。
Note that a winding unit may be provided between the liquid crystal layer forming unit 56 and the multi-layered unit 133. The multilayer sheet manufacturing facility 132 includes the cutting unit 58, but the cutting unit 58 may be provided outside the multilayer sheet manufacturing facility 132. In this case, the multilayer sheet manufacturing facility 132 is for manufacturing a long multilayer film 14 in which the FPR 12 and the protective film 13 overlap, and a long multilayer film is formed downstream of the multilayering section 133. A winding unit (not shown) for winding the film 14 is provided.
支持体40は、例えばロール状に巻かれた支持体ロール(図示省略)から引き出されて複層シート製造設備132に供給される。
The support 40 is drawn out from a support roll (not shown) wound in a roll shape and supplied to the multilayer sheet manufacturing facility 132, for example.
複層化部133は、粘着層45と保護膜13とを形成するためのものである。複層化部133は、液晶層42上に粘着層45を形成し、液晶層形成部56から送られてくる支持体40の配向膜41及び液晶層42が層設された面とは反対側の面に保護膜13を付与する。
The multilayered portion 133 is for forming the adhesive layer 45 and the protective film 13. The multi-layered portion 133 forms an adhesive layer 45 on the liquid crystal layer 42 and is opposite to the surface on which the alignment film 41 and the liquid crystal layer 42 of the support 40 sent from the liquid crystal layer forming portion 56 are layered. A protective film 13 is applied to the surface.
粘着層45を形成する長尺の粘着フィルム68と、保護膜13となる長尺の保護フィルム134とは、それぞれロール状にされている。複層化部133は、粘着フィルムロールから粘着フィルム68を引き出して送り出す送出機(図示無し)と、保護フィルムロールから保護フィルム134を引き出して送り出す送出機(図示無し)と、ローラ対69等を備える。ローラ対69は、各送出機から供給される粘着フィルム68と保護フィルム134とに、液晶層形成部56から送られてくる支持体40を挟み込んで、これらをニップする。これにより、粘着フィルム68と液晶層42、保護フィルム134と支持体40をそれぞれ連続的に貼り合わせて、長尺の複層フィルム14とする。切断部58は、長尺の複層フィルム14を目的とするサイズに切断し、例えば矩形のシート状にする。
The long adhesive film 68 that forms the adhesive layer 45 and the long protective film 134 that becomes the protective film 13 are each formed into a roll. The multi-layer unit 133 includes a feeding machine (not shown) that pulls out and sends out the adhesive film 68 from the adhesive film roll, a feeding machine (not shown) that pulls out and sends the protective film 134 from the protective film roll, and a roller pair 69 and the like Prepare. The roller pair 69 sandwiches the support 40 sent from the liquid crystal layer forming unit 56 between the adhesive film 68 and the protective film 134 supplied from each delivery machine, and nips them. As a result, the adhesive film 68 and the liquid crystal layer 42, the protective film 134 and the support 40 are continuously bonded to form a long multilayer film 14. The cutting part 58 cuts the long multilayer film 14 into a desired size, for example, a rectangular sheet.
長尺の複層フィルム14は、切断部58により、図15に示すようにシート状に切断される。なお、図15の(A)における破線は切断位置を示す切断線である。この例では、長尺の複層フィルム14から、矩形のシートを幅方向で2枚取りしているが、幅方向におけるシートの切り出し枚数は、長尺の複層フィルム14の幅と目的とするシートのサイズとに応じて異なる。
The long multilayer film 14 is cut into a sheet shape as shown in FIG. Note that a broken line in FIG. 15A is a cutting line indicating a cutting position. In this example, two rectangular sheets are taken in the width direction from the long multilayer film 14, but the number of sheets cut out in the width direction is the width and purpose of the long multilayer film 14. Depending on the size of the sheet.
この例のように、幅方向の中央に関して対称に2枚のシートを切り出した場合には、各シートは、第1実施形態におけるものと同様に、幅方向中央の切断線C1に対応するシートの第1縁E1の長さと、幅方向外側の切断線C2に対応する第2縁E2の長さとが互いに異なるものとなる。具体的には、図15の(B)に示すように、第1縁E1よりも第2縁E2はわずかに長いものとなる。例えば、幅方向の長さが1500mmの長尺の複層フィルム14から、図5の(B)のように幅方向に一致する短辺をもつ400mm×700mmの長方形を成す切断線で、シートを2枚取りする場合では、各シートの第1縁E1の長さは概ね700.0mm、第2縁E2の長さは概ね700.3mmとなる。このため、長尺の複層フィルム14のFPR12において搬送方向にそれぞれ直線状に延びていた第1位相差領域R1と第2位相差領域R2とは、シート状の複層フィルム14においては図15の(B)に示すように第2縁E2側にごくわずかに凸の曲線をなすようになる。なお、図15の(A)においては、図示の煩雑化を避けるため、第1位相差領域R1と第2位相差領域R2の図示は略す。また、図15の(B)においては、シートの変形の度合いを大きく誇張して描いてある。
When two sheets are cut out symmetrically with respect to the center in the width direction as in this example, each sheet is the sheet corresponding to the cutting line C1 in the center in the width direction, as in the first embodiment. The length of the first edge E1 and the length of the second edge E2 corresponding to the cutting line C2 on the outer side in the width direction are different from each other. Specifically, as shown in FIG. 15B, the second edge E2 is slightly longer than the first edge E1. For example, from a long multilayer film 14 having a length in the width direction of 1500 mm, a sheet is cut with a cutting line that forms a 400 mm × 700 mm rectangle having a short side that coincides with the width direction as shown in FIG. When two sheets are taken, the length of the first edge E1 of each sheet is approximately 700.0 mm, and the length of the second edge E2 is approximately 700.3 mm. For this reason, the first retardation region R1 and the second retardation region R2 that respectively extend linearly in the transport direction in the FPR 12 of the long multilayer film 14 are different from each other in the sheet-shaped multilayer film 14 shown in FIG. As shown in (B), a slightly convex curve is formed on the second edge E2 side. In FIG. 15A, illustration of the first phase difference region R1 and the second phase difference region R2 is omitted in order to avoid complication of the illustration. In FIG. 15B, the degree of deformation of the sheet is greatly exaggerated.
そこで、図15の(B)に示すように、シート状の複層フィルム14を、長尺時の搬送方向に対応する方向へ引っ張る。複層フィルム14の搬送方向は、FPR12の製造過程における支持体40の搬送方向に一致するので、この引っ張りの方向は、FPR12の搬送方向に対応する方向に一致する。この引っ張りにより、ごくわずかにではあるがシートにおいて変形している第1位相差領域R1と第2位相差領域R2とを、図15の(C)に示すようにそれぞれ直線状にする。シート状の複層フィルム14は、第1位相差領域R1と第2位相差領域R2とを直線状に保持された状態、すなわち、張力を付与された状態で、貼合装置59(図16参照)により液晶パネル11(図12参照)と張り合わされる。
Therefore, as shown in FIG. 15B, the sheet-like multilayer film 14 is pulled in a direction corresponding to the conveying direction when it is long. Since the transport direction of the multilayer film 14 coincides with the transport direction of the support 40 in the manufacturing process of the FPR 12, the pulling direction coincides with the direction corresponding to the transport direction of the FPR 12. By this pulling, the first retardation region R1 and the second retardation region R2 that are deformed slightly in the sheet are linearized as shown in FIG. The sheet-like multilayer film 14 is in a state where the first retardation region R1 and the second retardation region R2 are held in a straight line, that is, in a state where tension is applied, and a bonding device 59 (see FIG. 16). ) And the liquid crystal panel 11 (see FIG. 12).
シート状の複層フィルム14と液晶パネル11との貼り合わせは、前述の貼合装置59により行う。そして、この例では、液晶パネル11の一定方向に並ぶ複数の画素の縁(エッジ)に複層フィルム14中のFPR12の第1位相差領域R1と第2位相差領域R2との境界38を重ねた状態で、複層フィルム14と液晶パネル11とを貼り合わせる。貼合装置59は、所定の張力に保持した状態のシート状の複層フィルム14と、液晶パネル11とを貼り合わせる。つまり、この第2実施形態は、第1実施形態におけるFPR12に代えて複層フィルム14を液晶パネル11に貼り付ける態様である。
The laminating of the sheet-like multilayer film 14 and the liquid crystal panel 11 is performed by the laminating apparatus 59 described above. In this example, the boundary 38 between the first retardation region R1 and the second retardation region R2 of the FPR 12 in the multilayer film 14 is overlapped with the edges of the plurality of pixels arranged in a certain direction of the liquid crystal panel 11. In this state, the multilayer film 14 and the liquid crystal panel 11 are bonded together. The bonding apparatus 59 bonds the liquid crystal panel 11 and the sheet-like multilayer film 14 held at a predetermined tension. That is, this 2nd Embodiment is an aspect which affixes the multilayer film 14 on the liquid crystal panel 11 instead of FPR12 in 1st Embodiment.
第1クリップ83は、前述の搬送方向に対応する方向におけるシート状の複層フィルム14の一端部を挟持部材83aで挟持し、第2クリップ84は他端部を挟持部材84aで挟持する。そこで、複層フィルム14を挟持する際には、第1クリップ83と第2クリップ84とは、A方向を前述の搬送方向に一致させる。一致とは、第1実施形態と同じく、必ずしも厳格な一致でなくてもよく、0.0001°以内の多少のずれであればずれがあってもよい。
The first clip 83 sandwiches one end portion of the sheet-like multilayer film 14 in the direction corresponding to the aforementioned transport direction with the sandwiching member 83a, and the second clip 84 sandwiches the other end portion with the sandwiching member 84a. Therefore, when the multilayer film 14 is sandwiched, the first clip 83 and the second clip 84 make the A direction coincide with the transport direction described above. Similar to the first embodiment, the coincidence may not necessarily be a strict coincidence, and there may be a deviation as long as the deviation is within 0.0001 °.
張力測定器87は第1,第2クリップ83,84により複層フィルム14に付与されている張力を検出して、その検出信号をコントローラ96へ出力する。引っ張り機構88は、複層フィルム14を挟持した状態でA方向にクリップ本体84bを変位させる。コントローラ96は、張力測定器87からの検出信号が入力されると、引っ張り機構88を介してクリップ本体84bの位置を制御する。これにより、挟持部材83a,84aに挟持されている複層フィルム14にはA方向において目的とする張力TDが付与される。
The tension measuring device 87 detects the tension applied to the multilayer film 14 by the first and second clips 83 and 84, and outputs the detection signal to the controller 96. The pulling mechanism 88 displaces the clip main body 84b in the A direction while sandwiching the multilayer film 14. When the detection signal from the tension measuring device 87 is input, the controller 96 controls the position of the clip body 84 b via the pulling mechanism 88. Thereby, the target tension | tensile_strength TD is provided in the A direction to the multilayer film 14 currently clamped by the clamping members 83a and 84a.
第1クリップ83,第2クリップ84によりA方向での張力付与は、第1位相差領域R1,第2位相差領域R2,境界38をそれぞれ曲線状から一定の幅の直線状にするためのものである。目的とする張力TDは、露光装置53により紫外線の照射されている間の、反応膜72(図4参照)が付与された支持体40の搬送方向における張力Tsに基づいて、設定する。例えば、目的とする張力TDは、張力Tsが大きい場合ほど大きく設定する。なお、本明細書における張力とは、幅1mあたりの張力(単位はN/m)である。
The application of tension in the A direction by the first clip 83 and the second clip 84 is for changing the first phase difference region R1, the second phase difference region R2, and the boundary 38 from a curved line to a straight line having a certain width. It is. The target tension TD is set based on the tension Ts in the transport direction of the support 40 to which the reaction film 72 (see FIG. 4) is applied while the exposure apparatus 53 is irradiated with ultraviolet rays. For example, the target tension TD is set larger as the tension Ts is larger. The tension in the present specification is a tension per 1 m width (unit: N / m).
目的とする張力TDは、張力Ttの20%以上180%以下の範囲内であると、後述のように液晶表示装置における表示精度を向上させる観点でより効果があり、張力Ttの90%以上110%以下の範囲内であるとさらに効果がある。張力Ttは、張力Ts(N/m)と、FPR12の厚みhf(単位はm)と、FPR12のヤング率εf(単位はGPa)と、保護フィルム134の厚みT1(単位はm)と、保護フィルム134のヤング率ε1(単位はGPa)とに基づき設定する。具体的には、張力Ttは、下記の式(1)で求める。
Tt=Ts×{(hf・εf)+(h1・ε1)}/(hf・εf)・・・(1) If the target tension TD is within the range of 20% or more and 180% or less of the tension Tt, it is more effective from the viewpoint of improving display accuracy in the liquid crystal display device as will be described later. If it is within the range of% or less, it is more effective. The tension Tt is the tension Ts (N / m), the thickness hf (unit is m) of theFPR 12, the Young's modulus εf (unit is GPa) of the FPR 12, the thickness T1 (unit is m) of the protective film 134, and the protection. It is set based on the Young's modulus ε1 (unit is GPa) of the film 134. Specifically, the tension Tt is obtained by the following equation (1).
Tt = Ts × {(hf · εf) + (h1 · ε1)} / (hf · εf) (1)
Tt=Ts×{(hf・εf)+(h1・ε1)}/(hf・εf)・・・(1) If the target tension TD is within the range of 20% or more and 180% or less of the tension Tt, it is more effective from the viewpoint of improving display accuracy in the liquid crystal display device as will be described later. If it is within the range of% or less, it is more effective. The tension Tt is the tension Ts (N / m), the thickness hf (unit is m) of the
Tt = Ts × {(hf · εf) + (h1 · ε1)} / (hf · εf) (1)
移動機構92による各クリップ本体83b,84bのB方向とC方向とにおける変位により、複層フィルム14は、B方向とC方向とに変位する。また、移動機構92は、第1クリップ83と第2クリップ84との姿勢及び位置関係を保持した状態でクリップ本体83b,84bのAC平面内における位置を変える。このように、クリップ本体83b,84bがAC平面において一体に変位することにより、複層フィルム14はAC平面内で回転する。
The multilayer film 14 is displaced in the B direction and the C direction by the displacement of the clip bodies 83b and 84b in the B direction and the C direction by the moving mechanism 92. The moving mechanism 92 changes the position of the clip main bodies 83b and 84b in the AC plane while maintaining the posture and the positional relationship between the first clip 83 and the second clip 84. Thus, when the clip bodies 83b and 84b are integrally displaced in the AC plane, the multilayer film 14 rotates in the AC plane.
貼合部82に備えられる載置台97の載置面97aには、液晶パネル11が液晶表示装置130での光源側を載置面97aに対向させて載置される。ランプ103は、載置された液晶パネル11を一方のパネル面から照明する。
The liquid crystal panel 11 is mounted on the mounting surface 97a of the mounting table 97 provided in the bonding unit 82 with the light source side of the liquid crystal display device 130 facing the mounting surface 97a. The lamp 103 illuminates the placed liquid crystal panel 11 from one panel surface.
押圧部材98は、本実施形態では、液晶パネル11上に供給されて重ねられた複層フィルム14を押圧して液晶パネル11と貼り付けるためのものである。押圧部材98は、複層フィルム14を押圧する押圧位置とこの押圧位置から退避した退避位置との間で軸99と一体に動き、退避位置では図16に示すように起立した姿勢とされる。
In this embodiment, the pressing member 98 is for pressing the multi-layer film 14 supplied and stacked on the liquid crystal panel 11 and sticking it to the liquid crystal panel 11. The pressing member 98 moves integrally with the shaft 99 between a pressing position for pressing the multilayer film 14 and a retracted position retracted from the pressed position, and is in an upright posture as shown in FIG.
カメラ91は、複層フィルム14におけるFPR12の第1位相差領域R1と第2位相差領域R2との境界38(図13参照)と、液晶パネル11に対する複層フィルム14の相対位置とを検出するためのものである。検出の際には、供給された複層フィルム14とレンズ91aとの間に、偏光板104が設けられる。偏光板104は、液晶表示装置130の偏光板17と互いにクロスニコル配置の状態で配され、カメラ91はこの偏光板104を介して撮影する。
The camera 91 detects the boundary 38 (see FIG. 13) between the first retardation region R1 and the second retardation region R2 of the FPR 12 in the multilayer film 14 and the relative position of the multilayer film 14 with respect to the liquid crystal panel 11. Is for. At the time of detection, a polarizing plate 104 is provided between the supplied multilayer film 14 and the lens 91a. The polarizing plate 104 is arranged in a crossed Nicols arrangement with the polarizing plate 17 of the liquid crystal display device 130, and the camera 91 takes an image through the polarizing plate 104.
この例でも、無配向領域となっている境界38を透過したランプ103からの光は、液晶パネル11から射出された直線偏光を維持しており、その振動方向が偏光板104の透過軸と直交する。このため、境界38からの光は、偏光板104を透過しないので、カメラ91で黒い線として撮影される。
Also in this example, the light from the lamp 103 that has passed through the boundary 38 that is a non-oriented region maintains the linearly polarized light emitted from the liquid crystal panel 11, and its vibration direction is orthogonal to the transmission axis of the polarizing plate 104. To do. For this reason, since the light from the boundary 38 does not pass through the polarizing plate 104, it is photographed as a black line by the camera 91.
上記構成の作用について説明する。長尺の支持体40は、複層シート製造装置50に供給されると、搬送機構部51により、反応膜形成部52、露光装置53、張力調整部54、ラビング処理部55、液晶層形成部56、複層化部133、切断部58に順次案内される。反応膜形成部52により、支持体40の一方の表面に一定厚みの反応膜72が形成された後に、露光装置53により、紫外線の照射域と非照射領域とが幅方向に交互になるストライプ状のパターン照射が連続的に行われる。このパターン照射中の支持体40は、搬送方向における張力を予め設定した値に保持されている。
The operation of the above configuration will be described. When the long support 40 is supplied to the multilayer sheet manufacturing apparatus 50, a reaction film forming unit 52, an exposure device 53, a tension adjusting unit 54, a rubbing processing unit 55, and a liquid crystal layer forming unit are provided by a transport mechanism unit 51. 56, the multi-layered unit 133, and the cutting unit 58 are sequentially guided. After a reaction film 72 having a certain thickness is formed on one surface of the support 40 by the reaction film forming unit 52, the exposure device 53 stripes the irradiation regions and non-irradiation regions alternately in the width direction. The pattern irradiation is continuously performed. The support 40 during pattern irradiation is held at a preset value of the tension in the transport direction.
支持体40はラビング処理部55により、反応膜72は配向膜41にされた後、液晶層形成部56により、配向膜41上に液晶層42が形成される。液晶層42が形成された支持体40は、複層化部133により、液晶層42上に粘着層45を形成され、配向膜41及び液晶層42が層設された面とは反対側の面に保護膜13が設けられ、これにより長尺の複層フィルム14が得られる。この複層フィルム14は、切断部58で目的とするサイズのシート状に切断される。
After the support 40 is made the rubbing treatment part 55 and the reaction film 72 is made the alignment film 41, the liquid crystal layer forming part 56 forms the liquid crystal layer 42 on the alignment film 41. The support 40 on which the liquid crystal layer 42 is formed is a surface opposite to the surface on which the adhesive layer 45 is formed on the liquid crystal layer 42 by the multi-layered portion 133 and the alignment film 41 and the liquid crystal layer 42 are layered. Is provided with a protective film 13, whereby a long multilayer film 14 is obtained. The multilayer film 14 is cut into a sheet having a desired size by the cutting portion 58.
シート状の複層フィルム14は、複層シート製造設備132から貼合装置59へ案内されて、以下のようにして液晶パネル11と貼り合わせられる。まず、第1クリップ83と第2クリップ84とは、露光装置53において紫外線が照射される間における支持体40の搬送方向に一致させたA方向で挟持部材83a,84aが互いに対向する状態で配される。複層フィルム14は、粘着層45を図16における下方、すなわち液晶パネル11側に向けた状態で、挟持部材83a,84aによりA方向での一端部と他端部とを挟持される。なお、複層フィルム14が挟持された後に、A方向と複層フィルム14の製造時における搬送方向とを一致させてもよい。
The sheet-like multilayer film 14 is guided from the multilayer sheet manufacturing facility 132 to the laminating apparatus 59 and bonded to the liquid crystal panel 11 as follows. First, the first clip 83 and the second clip 84 are arranged in a state in which the clamping members 83a and 84a face each other in the A direction that is coincident with the transport direction of the support body 40 while the exposure device 53 is irradiated with ultraviolet rays. Is done. The multilayer film 14 is sandwiched between one end portion and the other end portion in the A direction by the sandwiching members 83a and 84a in a state where the adhesive layer 45 is directed downward in FIG. 16, that is, toward the liquid crystal panel 11 side. In addition, after the multilayer film 14 is clamped, the A direction and the transport direction during the production of the multilayer film 14 may be matched.
張力測定器87は、複層フィルム14のA方向における張力を測定し、その検出結果をコントローラ96へ出力する。コントローラ96は、引っ張り機構88を介して第2クリップ84をA方向に変位させ、張力測定器87による検出結果が前述の目的とする張力になるまで第2クリップ84の位置を変化させる。これにより、複層フィルム14には前述の目的とする張力がA方向に付与され、この結果、FPR12における第1位相差領域R1と第2位相差領域R2とはそれぞれ一定幅の直線状になるとともに、境界38も直線状になる。
The tension measuring device 87 measures the tension in the A direction of the multilayer film 14 and outputs the detection result to the controller 96. The controller 96 displaces the second clip 84 in the A direction via the pulling mechanism 88, and changes the position of the second clip 84 until the detection result by the tension measuring device 87 reaches the target tension described above. As a result, the above-described target tension is applied to the multilayer film 14 in the A direction, and as a result, the first retardation region R1 and the second retardation region R2 in the FPR 12 are each linear with a constant width. At the same time, the boundary 38 is also linear.
載置台97には、液晶パネル11が予め供給されており、複層フィルム14は、第1,第2クリップ83,84により所定の張力をA方向に付与された状態で、移動機構92により液晶パネル11上に移動し、図17に示すように液晶パネル11からわずかに離間した状態とされる。この複層フィルム14の上方には、複層フィルム14とわずかに離間した状態で、偏光板104が配される。
The liquid crystal panel 11 is supplied in advance to the mounting table 97, and the multilayer film 14 is liquid crystal by the moving mechanism 92 in a state where a predetermined tension is applied in the A direction by the first and second clips 83 and 84. It moves onto the panel 11 and is slightly separated from the liquid crystal panel 11 as shown in FIG. A polarizing plate 104 is disposed above the multilayer film 14 in a state of being slightly separated from the multilayer film 14.
ランプ103により光を照射されている複層フィルム14をカメラ91により撮影しながら、目的とする張力を付与された状態の複層フィルム14と液晶パネル11とは位置合わせされる。位置合わせ前の複層フィルム14におけるFPR12は、例えば、液晶パネル11のカラーフィルタ層26において水平方向と垂直方向とに並ぶ複数の画素106のいずれの並び方向とも境界38がずれている。したがってカメラ91では、図18に示すように、黒い線として撮影される境界38が、水平に並ぶ複数の画素106の縁と交差するとともに、垂直方向に並ぶ複数の画素106の縁とも交差する。
While the multilayer film 14 irradiated with light by the lamp 103 is photographed by the camera 91, the multilayer film 14 and the liquid crystal panel 11 in a state where a target tension is applied are aligned. In the FPR 12 in the multilayer film 14 before alignment, for example, the boundary 38 is deviated in any arrangement direction of the plurality of pixels 106 arranged in the horizontal direction and the vertical direction in the color filter layer 26 of the liquid crystal panel 11. Accordingly, in the camera 91, as shown in FIG. 18, the boundary 38 photographed as a black line intersects with the edges of the plurality of pixels 106 arranged in the horizontal direction and also intersects with the edges of the plurality of pixels 106 arranged in the vertical direction.
このように境界38が一方向に並ぶ複数の画素106の縁と交差する場合には、移動機構92により、第1,第2クリップ83,84を変位させて、複層フィルム14をAC平面内で回転させる。これにより、図19に示すように、境界38と交差していた一方向に並ぶ複数の画素の縁とを平行な状態に調整する。
When the boundary 38 intersects the edges of the plurality of pixels 106 arranged in one direction in this way, the first and second clips 83 and 84 are displaced by the moving mechanism 92 so that the multilayer film 14 is placed in the AC plane. Rotate with. As a result, as shown in FIG. 19, the edges of a plurality of pixels arranged in one direction intersecting the boundary 38 are adjusted to be in a parallel state.
次に、移動機構92は、第1,第2クリップ83,84の姿勢及び位置関係を保持した状態でこれらを一体に変位させて、複層フィルム14をAC平面内で移動させる。これにより、図20に示すように、一方向に並ぶ複数の画素の縁に境界38を重ねる。以上の工程により、複層フィルム14は、液晶パネル11と位置合わせされる。
Next, the moving mechanism 92 integrally displaces the first and second clips 83 and 84 while maintaining the posture and positional relationship thereof, and moves the multilayer film 14 in the AC plane. Thereby, as shown in FIG. 20, the boundary 38 is overlapped on the edges of a plurality of pixels arranged in one direction. Through the above steps, the multilayer film 14 is aligned with the liquid crystal panel 11.
なお、AC平面内での移動後にAC平面内で回転させてもよい。また、FPR12の境界38の一部と液晶パネル11の一方向に並ぶ特定の画素の縁とを重ねる第1の位置合わせを行ってから、複層フィルム14に目的とする張力を付与した後、境界38が一方向に並ぶ複数の画素の縁と重ねる第2の位置合わせを行ってもよい。
In addition, you may rotate in an AC plane after the movement in an AC plane. In addition, after performing the first alignment in which a part of the boundary 38 of the FPR 12 and the edge of a specific pixel arranged in one direction of the liquid crystal panel 11 are overlapped, a desired tension is applied to the multilayer film 14, Second alignment may be performed in which the boundary 38 overlaps the edges of a plurality of pixels arranged in one direction.
液晶パネル11と位置合わせされた複層フィルム14は、目的とする張力を付与されたまま移動機構92により液晶パネル11上に接触する状態にまで降下され、押圧部材98が複層フィルム14を液晶パネル11に対向するフィルム面とは反対側のフィルム面から押圧する。これにより、複層フィルム14は、境界38が液晶パネル11の水平または垂直に並ぶ複数の画素106(図18~図20参照)の縁と重なる状態で、液晶パネル11に貼り合わせられる。この結果、表示精度が従来品よりも向上した液晶表示装置130が得られる。
The multilayer film 14 aligned with the liquid crystal panel 11 is lowered to a state in which it is in contact with the liquid crystal panel 11 by the moving mechanism 92 with a target tension applied, and the pressing member 98 causes the multilayer film 14 to be liquid crystal. The film is pressed from the film surface opposite to the film surface facing the panel 11. As a result, the multilayer film 14 is bonded to the liquid crystal panel 11 with the boundary 38 overlapping the edges of the plurality of pixels 106 (see FIGS. 18 to 20) aligned horizontally or vertically on the liquid crystal panel 11. As a result, the liquid crystal display device 130 with improved display accuracy over the conventional product can be obtained.
なお、載置台97にA方向、C方向とにおける変位機構と、AC平面内における回転機構とを設けることにより、複層フィルム14の移動及び回転に加えて、または代えて、液晶パネル11の移動と回転とを行うことにより位置合わせしてもよい。
In addition to or instead of the movement and rotation of the multilayer film 14, the movement of the liquid crystal panel 11 is provided by providing the mounting table 97 with a displacement mechanism in the A direction and the C direction and a rotation mechanism in the AC plane. And may be aligned by performing rotation.
幅方向に張力を付与される工程を経た支持体40を複層シート製造設備132に供する場合に、液晶表示装置130における表示精度は特に顕著に向上する。支持体40の製造過程における幅方向での張力付与処理は、前述の通り、例えば延伸装置120により行われる。緩和部120c(図11参照)での応力緩和を経ても、支持体40には残留応力が残ることが多く、上記のようなシート化に伴う複層フィルム14の変形が発生する。そこで、本実施形態では、露光装置53で紫外線に照射されている間の搬送方向における張力T40に基づいて目的とする張力TDを前述のように設定し、設定した張力を複層フィルム14に付与した状態で複層フィルム14を貼り付ける。これにより、第1位相差領域R1と第2位相差領域R2、及びこれらの境界38が直線状になり、得られる液晶表示装置130は良好な表示性能を発現する。
When the support 40 that has undergone the step of applying tension in the width direction is provided to the multilayer sheet manufacturing facility 132, the display accuracy in the liquid crystal display device 130 is particularly remarkably improved. The tension applying process in the width direction in the manufacturing process of the support 40 is performed by, for example, the stretching device 120 as described above. Even after stress relaxation at the relaxation portion 120c (see FIG. 11), residual stress often remains on the support 40, and the multilayer film 14 is deformed due to sheeting as described above. Therefore, in the present embodiment, the target tension TD is set as described above based on the tension T40 in the transport direction while the exposure apparatus 53 is irradiated with ultraviolet rays, and the set tension is applied to the multilayer film 14. In this state, the multilayer film 14 is pasted. As a result, the first retardation region R1 and the second retardation region R2 and the boundary 38 thereof are linear, and the obtained liquid crystal display device 130 exhibits good display performance.
また、上記の方法は、幅方向に張力を付与される工程を経た保護フィルム134を複層シート製造設備132に供する場合に、特に顕著な効果がある。製造過程で幅方向に張力を付与されて得られる保護フィルム134は、支持体40の場合と同様に、幅方向の測端部が幅方向中央部に比べて残留応力が大きく、切断部58でシート状に切断することより、測端部に対応する箇所と中央部に対応する箇所との間で収縮の度合いが異なる。したがって、露光装置53で一定幅のライン状に形成した照射領域REと非照射領域RN、及び境界38は、シート状への切断により、前述のように曲線状になってしまう。そこで、張力T40に加えて保護フィルム134の厚みh70やヤング率ε70に基づき、目的とする張力TDを前述のように設定することがより好ましい。このように設定した張力を複層フィルム14に付与した状態で複層フィルム14を貼り付けることにより、第1位相差領域R1と第2位相差領域R2、及びこれらの境界38がより確実に直線状になり、得られる液晶表示装置130は良好な表示性能をより確実に発現する。
Further, the above method has a particularly remarkable effect when the protective film 134 that has undergone the step of applying tension in the width direction is provided to the multilayer sheet manufacturing facility 132. As in the case of the support 40, the protective film 134 obtained by applying tension in the width direction in the manufacturing process has a larger residual stress in the end portion in the width direction than in the center portion in the width direction. By cutting into a sheet shape, the degree of contraction is different between the portion corresponding to the end portion and the portion corresponding to the center portion. Therefore, the irradiation region RE, the non-irradiation region RN, and the boundary 38 formed in a line shape with a constant width by the exposure device 53 are curved as described above by cutting into a sheet shape. Therefore, it is more preferable to set the target tension TD as described above based on the thickness h70 and Young's modulus ε70 of the protective film 134 in addition to the tension T40. By sticking the multilayer film 14 with the tension set in this manner applied to the multilayer film 14, the first retardation region R1, the second retardation region R2, and the boundary 38 thereof are more surely linear. Thus, the obtained liquid crystal display device 130 exhibits a good display performance more reliably.
保護フィルム134も延伸装置120を用いて保護フィルム134を形成するための長尺のフィルムから製造される。この場合にも、支持体40を製造する場合と同様に、緩和部での応力緩和を経ても、得られる保護フィルム134には残留応力が残ることが多く、上記のようなシート化に伴う複層フィルム14の変形が発生する。
The protective film 134 is also manufactured from a long film for forming the protective film 134 using the stretching device 120. In this case as well, as in the case of manufacturing the support body 40, residual stress often remains in the protective film 134 obtained even after stress relaxation at the relaxation portion, and the above-described sheeting due to sheet formation is often accompanied. Deformation of the layer film 14 occurs.
<第3実施形態>
第3実施形態も、第2実施形態と同様に、複層フィルムを表示パネルに貼り付けて液晶表示装置をつくるものである。本実施形態は、第2実施形態における複層フィルム14に代えて図21に示す複層フィルム140を液晶パネル11に貼り付けるものである。なお、以下に説明する他は第2実施形態と同じであり、同一の部材には同じ符号を付してその詳細な説明は略す。 <Third Embodiment>
Similarly to the second embodiment, the third embodiment also forms a liquid crystal display device by attaching a multilayer film to a display panel. In this embodiment, amultilayer film 140 shown in FIG. 21 is attached to the liquid crystal panel 11 instead of the multilayer film 14 in the second embodiment. In addition, except being demonstrated below, it is the same as 2nd Embodiment, The same code | symbol is attached | subjected to the same member and the detailed description is abbreviate | omitted.
第3実施形態も、第2実施形態と同様に、複層フィルムを表示パネルに貼り付けて液晶表示装置をつくるものである。本実施形態は、第2実施形態における複層フィルム14に代えて図21に示す複層フィルム140を液晶パネル11に貼り付けるものである。なお、以下に説明する他は第2実施形態と同じであり、同一の部材には同じ符号を付してその詳細な説明は略す。 <Third Embodiment>
Similarly to the second embodiment, the third embodiment also forms a liquid crystal display device by attaching a multilayer film to a display panel. In this embodiment, a
複層フィルム140は、FPR142と、保護膜13,144と、粘着層45とを備える。FPR142は、支持体40と、配向膜41と、液晶層42とを有し、FPR12と同様に、第1,第2位相差領域R1,R2をもつ。保護膜13は液晶層42上に配され、保護膜144は支持体40上に配される。粘着層45は、保護膜144上に形成されており、この粘着層45により複層フィルム140は液晶パネル11と貼り合わせられる。保護膜144は、保護膜13と同様にFPR142の表面を保護するためのものであり、より具体的には液晶パネル11と貼り合わせる前のFPR142の表面を保護する。なお、複層フィルム140は、保護膜13,144に代えて前述の光学機能膜を備えてもよい。
The multilayer film 140 includes an FPR 142, protective films 13 and 144, and an adhesive layer 45. The FPR 142 includes a support body 40, an alignment film 41, and a liquid crystal layer 42, and has first and second retardation regions R1 and R2 similarly to the FPR12. The protective film 13 is disposed on the liquid crystal layer 42, and the protective film 144 is disposed on the support 40. The adhesive layer 45 is formed on the protective film 144, and the multilayer film 140 is bonded to the liquid crystal panel 11 by the adhesive layer 45. The protective film 144 is for protecting the surface of the FPR 142 similarly to the protective film 13, and more specifically, protects the surface of the FPR 142 before being bonded to the liquid crystal panel 11. The multilayer film 140 may include the above-described optical function film instead of the protective films 13 and 144.
複層フィルム140は、複層シート製造設備132の複層化部133を図22の複層化部157に代えた複層シート製造設備(図示無し)により製造される。複層化部157は、複層化部133と同様に、液晶層形成部56と切断部58との間に設けられ、保護フィルム134と保護膜になる保護フィルム158とをFPR142に付与するとともに、粘着層45を形成する。
The multilayer film 140 is manufactured by a multilayer sheet manufacturing facility (not shown) in which the multilayer section 133 of the multilayer sheet manufacturing facility 132 is replaced with the multilayer section 157 of FIG. Similarly to the multilayer unit 133, the multilayer unit 157 is provided between the liquid crystal layer forming unit 56 and the cutting unit 58, and applies a protective film 134 and a protective film 158 to be a protective film to the FPR 142. The adhesive layer 45 is formed.
保護フィルム158は、保護フィルム134と同様にロール状にされている。複層化部157は、保護フィルムロールから保護フィルム134を引き出して送り出す送出機(図示無し)と、保護フィルムロールから保護フィルム158を引き出して送り出す送出機(図示無し)と、この粘着フィルムロールから粘着フィルム68を引き出して送り出す送出機(図示無し)と、ローラ対69等を備える。ローラ対69は、各送出機から供給される保護フィルム134と、保護フィルム158との間に、液晶層形成部56から送られてくるFPR142を挟み込んで、粘着フィルム68とともにこれらをニップする。これにより、保護フィルム134とFPR142と保護フィルム158と粘着フィルム68とを連続的に貼り合わせて、長尺の複層フィルム140にする。切断部58は、長尺の複層フィルム140を目的とするサイズに切断し、例えば矩形のシート状にする。
The protective film 158 is rolled in the same manner as the protective film 134. The multi-layered portion 157 includes a feeder (not shown) that pulls out and sends out the protective film 134 from the protective film roll, a feeder (not shown) that pulls out and sends the protective film 158 from the protective film roll, and an adhesive film roll. A feeding machine (not shown) that pulls out and feeds the adhesive film 68, a roller pair 69, and the like are provided. The roller pair 69 sandwiches the FPR 142 sent from the liquid crystal layer forming unit 56 between the protective film 134 and the protective film 158 supplied from each feeder, and nips them together with the adhesive film 68. As a result, the protective film 134, the FPR 142, the protective film 158, and the adhesive film 68 are continuously bonded to form a long multilayer film 140. The cutting unit 58 cuts the long multilayer film 140 into a target size, for example, a rectangular sheet.
シート状の複層フィルム140は、複層フィルム14と同様に、貼合装置59へ送られ、これにより液晶パネル11と貼り合わせられる。複層フィルム140を液晶パネル11と貼り合わせる際の張力TDは、複層フィルム14の場合の張力TDと同様に、露光装置53により紫外線の照射されている間の反応膜72(図4参照)が付与された支持体40の搬送方向における張力T40に基づいて設定する。
The sheet-like multilayer film 140 is sent to the laminating device 59 in the same manner as the multilayer film 14, and is thereby bonded to the liquid crystal panel 11. Similar to the tension TD in the case of the multilayer film 14, the tension TD when the multilayer film 140 is bonded to the liquid crystal panel 11 is a reaction film 72 while being irradiated with ultraviolet rays by the exposure device 53 (see FIG. 4). Is set based on the tension T40 in the transport direction of the support 40 to which is provided.
目的とする張力TDは、張力Ttの20%以上180%以下の範囲内であると、液晶表示装置における表示精度の観点でより効果があり、張力Ttの90%以上110%以下の範囲内であるとさらに効果がある。張力Ttは、張力Ts(N/m)と、FPR142の厚みhf(単位はm)と、FPR142のヤング率εf(単位はGPa)と、保護フィルム134の厚みT1(単位はm)と、保護フィルム134のヤング率ε1(単位はGPa)と、保護フィルム158の厚みT2(単位はm)と、保護フィルム158のヤング率ε2(単位はGPa)とに基づき設定する。具体的には、張力Ttは、下記の式(2)で求める。
Tt=Ts×{(hf・εf)+(h1・ε1)+(h2・ε2)}/(hf・εf)・・・(2) The target tension TD is more effective in the range of 20% or more and 180% or less of the tension Tt from the viewpoint of display accuracy in the liquid crystal display device, and in the range of 90% or more and 110% or less of the tension Tt. If there is, it is more effective. The tension Tt includes the tension Ts (N / m), the thickness hf (unit is m) of theFPR 142, the Young's modulus εf (unit is GPa) of the FPR 142, the thickness T1 (unit is m) of the protective film 134, and the protection. It is set based on the Young's modulus ε1 (unit is GPa) of the film 134, the thickness T2 (unit is m) of the protective film 158, and the Young's modulus ε2 (unit is GPa) of the protective film 158. Specifically, the tension Tt is obtained by the following equation (2).
Tt = Ts × {(hf · εf) + (h1 · ε1) + (h2 · ε2)} / (hf · εf) (2)
Tt=Ts×{(hf・εf)+(h1・ε1)+(h2・ε2)}/(hf・εf)・・・(2) The target tension TD is more effective in the range of 20% or more and 180% or less of the tension Tt from the viewpoint of display accuracy in the liquid crystal display device, and in the range of 90% or more and 110% or less of the tension Tt. If there is, it is more effective. The tension Tt includes the tension Ts (N / m), the thickness hf (unit is m) of the
Tt = Ts × {(hf · εf) + (h1 · ε1) + (h2 · ε2)} / (hf · εf) (2)
この実施形態はFPR142に粘着層45を除く2つの層、すなわち保護膜13と保護膜144とを付与する場合であるが、FPRに付与する層数は2層に限られない。層数が2以上である場合の目的とする張力TDは、以下のように求めるとよい。なお、ここでの層数には粘着層の数を含まない。また、各層は、FPR142のいずれの面側に配されてもよい。まず、FPR142に付与される層の数をn(n=1,2,3,・・・,i、iは2以上の自然数)とする。このとき、各層を形成する各フィルムの厚みをhn(n=1,2,3,・・・,i、iは2以上の自然数)とし、ヤング率をεn(n=1,2,3,・・・,i、iは2以上の自然数)とする。そして、目的とする張力TDは以下の式(I)で求める。このように求めたTDを各複層フィルムに付与した状態で、各複層フィルムを液晶パネル11へ貼り合わせる。
This embodiment is a case where two layers excluding the adhesive layer 45, that is, the protective film 13 and the protective film 144 are applied to the FPR 142, but the number of layers applied to the FPR is not limited to two. The target tension TD when the number of layers is 2 or more may be obtained as follows. Here, the number of layers does not include the number of adhesive layers. Further, each layer may be disposed on any surface side of the FPR 142. First, the number of layers applied to the FPR 142 is n (n = 1, 2, 3,..., I, i is a natural number of 2 or more). At this time, the thickness of each film forming each layer is hn (n = 1, 2, 3,..., I, i is a natural number of 2 or more), and Young's modulus is εn (n = 1, 2, 3, ..., i and i are natural numbers of 2 or more). And the target tension TD is calculated | required by the following formula | equation (I). Each multilayer film is bonded to the liquid crystal panel 11 in a state where the TD thus determined is applied to each multilayer film.
第2及び第3実施形態は、いずれも複層フィルム14,140を液晶パネル11へ貼り合わせるものであるが、本発明はこれらの態様に限定されない。例えば、複層フィルム14と複層フィルム140とのいずれか一方と偏光板17とを予め貼り合わせて複層部材(図示無し)をつくっておくことがあり、この複層部材を、偏光板17が無い液晶パネルのガラス基板21へ貼り合わせる態様がある。このような複層部材を、ガラス基板21に貼り付ける場合には、偏光板17を構成する層の数を含めて式(I)における層の数nとするとよい。例えば、偏光板17が偏光膜とこの偏光膜を挟む1対の保護膜とから構成されている場合には、偏光板17の層数を3とし、この層数を前述の層の数nにカウントする。
In both the second and third embodiments, the multilayer films 14 and 140 are bonded to the liquid crystal panel 11, but the present invention is not limited to these embodiments. For example, one of the multilayer film 14 and the multilayer film 140 and the polarizing plate 17 may be bonded in advance to form a multilayer member (not shown). There is a mode of bonding to the glass substrate 21 of the liquid crystal panel without any. When such a multilayer member is attached to the glass substrate 21, the number of layers in the formula (I) may be set to n, including the number of layers constituting the polarizing plate 17. For example, when the polarizing plate 17 includes a polarizing film and a pair of protective films sandwiching the polarizing film, the number of layers of the polarizing plate 17 is 3, and the number of layers is set to the number n of the layers described above. Count.
[実施例1]~[実施例7]
実施例1~7は、FPR製造設備50及び貼合装置59を用いて、液晶表示装置10を製造したものである。用いた支持体40の厚みは100μmである。各実施例では、露光装置53で紫外線が照射される間の反応膜72が形成された支持体40の張力T1を、張力調整部54により表1の「T1」(単位はN/m)に示す値に調整した。また、各実施例では、引張部81により表1の「T2」(単位はN/m)に示す張力をシート状のFPR12に対してA方向に付与した。なお、表1のT1,T2の各値は、幅1mあたりの張力であり、T1は搬送方向における張力、T2はこの搬送方向に一致させたA方向における張力である。各実施例の支持体40は、いずれも延伸装置120により幅方向の拡幅工程を経て得られたものである。 [Example 1] to [Example 7]
In Examples 1 to 7, the liquidcrystal display device 10 was manufactured using the FPR manufacturing equipment 50 and the bonding device 59. The thickness of the support 40 used is 100 μm. In each embodiment, the tension T1 of the support 40 on which the reaction film 72 is formed while the exposure apparatus 53 is irradiated with ultraviolet rays is changed to “T1” (unit: N / m) in Table 1 by the tension adjusting unit 54. Adjusted to the value shown. In each example, the tension shown in “T2” (unit: N / m) in Table 1 was applied to the sheet-like FPR 12 in the A direction by the tension portion 81. Each value of T1 and T2 in Table 1 is a tension per 1 m width, T1 is a tension in the transport direction, and T2 is a tension in the A direction that is matched with the transport direction. Each of the supports 40 of each example is obtained through a widening step in the width direction by the stretching device 120.
実施例1~7は、FPR製造設備50及び貼合装置59を用いて、液晶表示装置10を製造したものである。用いた支持体40の厚みは100μmである。各実施例では、露光装置53で紫外線が照射される間の反応膜72が形成された支持体40の張力T1を、張力調整部54により表1の「T1」(単位はN/m)に示す値に調整した。また、各実施例では、引張部81により表1の「T2」(単位はN/m)に示す張力をシート状のFPR12に対してA方向に付与した。なお、表1のT1,T2の各値は、幅1mあたりの張力であり、T1は搬送方向における張力、T2はこの搬送方向に一致させたA方向における張力である。各実施例の支持体40は、いずれも延伸装置120により幅方向の拡幅工程を経て得られたものである。 [Example 1] to [Example 7]
In Examples 1 to 7, the liquid
得られた各液晶表示装置10について、FPR12の第1位相差領域R1と第2位相差領域R2との境界38と、液晶パネル11の水平方向に並ぶ複数の画素106の縁とのずれの大きさの程度をランプ103と偏光板104とカメラ91とを用いて評価した。各評価にあたっては、まず、評価候補としての複数の部位を任意に9箇所抽出し、抽出された箇所毎に境界38と画素106の縁とのずれの大きさの程度を評価する予備評価を実施した。予備評価の結果、境界38と画素106の縁とのずれの大きさの程度が最も大きい箇所におけるずれの程度を、その液晶表示装置10における評価結果とした。この評価結果は表1の「ずれ」欄に記載する。評価基準は以下の通りであり、小と中とは合格レベル、大は不合格レベルである。
小:10μm未満
中:10μm以上100μm未満
大:100μm以上 About each obtained liquidcrystal display device 10, the magnitude | size of the shift | offset | difference with the boundary 38 of 1st phase difference area | region R1 and 2nd phase difference area | region R2 of FPR12 and the edge of the several pixel 106 located in a line with the horizontal direction of the liquid crystal panel 11 The degree of the height was evaluated using the lamp 103, the polarizing plate 104, and the camera 91. In each evaluation, first, a plurality of sites as evaluation candidates are arbitrarily extracted at nine locations, and preliminary evaluation is performed to evaluate the degree of deviation between the boundary 38 and the edge of the pixel 106 for each extracted location. did. As a result of the preliminary evaluation, the degree of deviation at the place where the magnitude of the deviation between the boundary 38 and the edge of the pixel 106 is the largest is taken as the evaluation result in the liquid crystal display device 10. This evaluation result is described in the “deviation” column of Table 1. The evaluation criteria are as follows. Small and medium are acceptable levels, and large are unacceptable levels.
Small: Less than 10 μm Medium: 10 μm or more and less than 100 μm Large: 100 μm or more
小:10μm未満
中:10μm以上100μm未満
大:100μm以上 About each obtained liquid
Small: Less than 10 μm Medium: 10 μm or more and less than 100 μm Large: 100 μm or more
また、得られた各液晶表示装置10について、画像の表示精度を以下の基準で評価した。評価結果は、表1の「表示精度」欄に記載する。AとBとは合格レベル、Cは不合格レベルである。なお、下記の基準において「光漏れがある」とは、例えば第1,第2位相差領域R1,R2のいずれか一方を介して、隣接する他方に対応するラインからの光が観察されたことを意味する。
A:光漏れがなく、立体画像として観察することができた
B:光漏れはあるが、立体画像として観察することはできた
C:光漏れがあり、立体画像として観察することができなかった Further, for each of the obtained liquidcrystal display devices 10, the image display accuracy was evaluated according to the following criteria. The evaluation result is described in the “display accuracy” column of Table 1. A and B are acceptable levels, and C is an unacceptable level. In the following criteria, “there is light leakage” means that light from a line corresponding to the other adjacent one is observed through one of the first and second phase difference regions R1 and R2, for example. Means.
A: There was no light leakage, and it could be observed as a stereoscopic image B: There was light leakage, but it could be observed as a stereoscopic image C: There was light leakage, and it could not be observed as a stereoscopic image
A:光漏れがなく、立体画像として観察することができた
B:光漏れはあるが、立体画像として観察することはできた
C:光漏れがあり、立体画像として観察することができなかった Further, for each of the obtained liquid
A: There was no light leakage, and it could be observed as a stereoscopic image B: There was light leakage, but it could be observed as a stereoscopic image C: There was light leakage, and it could not be observed as a stereoscopic image
[比較例1]~[比較例5]
本発明に対する比較例1~5は、FPR製造設備50及び貼合装置59を用いて液晶表示装置を製造したものである。各比較例では、露光装置53で紫外線が照射される間の張力T1を、張力調整部54により表1の「T1」(単位はN/m)に示す値に調整した。また、引張部81により表1の「T2」(単位はN/m)に示す張力をシート状のFPRに対してA方向に付与した。 [Comparative Example 1] to [Comparative Example 5]
In Comparative Examples 1 to 5 for the present invention, a liquid crystal display device is manufactured using theFPR manufacturing equipment 50 and the bonding device 59. In each comparative example, the tension T1 during which the exposure apparatus 53 was irradiated with ultraviolet rays was adjusted to a value indicated by “T1” (unit: N / m) in Table 1 by the tension adjusting unit 54. Further, the tension shown in “T2” (unit: N / m) in Table 1 was applied to the sheet-like FPR in the A direction by the tension portion 81.
本発明に対する比較例1~5は、FPR製造設備50及び貼合装置59を用いて液晶表示装置を製造したものである。各比較例では、露光装置53で紫外線が照射される間の張力T1を、張力調整部54により表1の「T1」(単位はN/m)に示す値に調整した。また、引張部81により表1の「T2」(単位はN/m)に示す張力をシート状のFPRに対してA方向に付与した。 [Comparative Example 1] to [Comparative Example 5]
In Comparative Examples 1 to 5 for the present invention, a liquid crystal display device is manufactured using the
比較例1~5で得られた液晶表示装置について、実施例1~7と同じ評価を行った。すなわち、FPRの第1位相差領域R1と第2位相差領域R2との境界と、液晶パネルの水平方向に並ぶ複数の画素の縁とのずれの大きさの程度と、画像の表示精度とをそれぞれ評価した。
The liquid crystal display devices obtained in Comparative Examples 1 to 5 were evaluated in the same manner as in Examples 1 to 7. That is, the degree of deviation between the boundary between the first phase difference region R1 and the second phase difference region R2 of the FPR, and the edges of a plurality of pixels arranged in the horizontal direction of the liquid crystal panel, and the display accuracy of the image. Each was evaluated.
[実施例8]~[実施例12]
複層シート製造設備132及び貼合装置59を用いて、液晶表示装置130を製造する実施例8を実施した。また、複層シート製造設備132の複層化部133を図22に示す複層化部157に代えて、複層フィルム140を備える液晶表示装置(図示無し)を製造する実施例9~12を実施した。用いた支持体40の厚みは100μmであり、ヤング率は4.0GPaである。支持体40及び保護フィルム134,158は、いずれも延伸装置120により幅方向の拡幅工程を経て得られたものである。各実施例における、保護フィルム134の厚みT1とヤング率G1、保護フィルム158の厚みT2とヤング率G2とは、表2に示す。なお、実施例8においては保護フィルム158を使用していないので、表1の「T2」には「無し」と記載し、「G2」欄には「-」と記載する。実施例8においては、式(1)により張力Ttを求め、このTtに基づき張力TDを設定し、この張力TDを複層フィルム14に付与するために張力調整部54により張力を調整した。また、実施例9~12においては、式(2)により張力Ttを求め、このTtに基づき張力TDを設定し、この張力TDを複層フィルム140に対してA方向に付与するために張力調整部54により張力を調整した。なお、支持体40,保護フィルム134,158のヤング率の測定方法はASTM D882に準ずる。 [Example 8] to [Example 12]
Example 8 which manufactures the liquidcrystal display device 130 was implemented using the multilayer sheet manufacturing equipment 132 and the bonding apparatus 59. FIG. In addition, in place of the multi-layer unit 133 of the multi-layer sheet manufacturing facility 132 in place of the multi-layer unit 157 shown in FIG. Carried out. The used support 40 has a thickness of 100 μm and a Young's modulus of 4.0 GPa. The support body 40 and the protective films 134 and 158 are all obtained through a widening step in the width direction by the stretching device 120. Table 2 shows the thickness T1 and Young's modulus G1 of the protective film 134 and the thickness T2 and Young's modulus G2 of the protective film 158 in each example. Since the protective film 158 is not used in Example 8, “N2” is described in “T2” of Table 1, and “−” is described in the “G2” column. In Example 8, the tension Tt was obtained from the equation (1), the tension TD was set based on this Tt, and the tension was adjusted by the tension adjusting unit 54 in order to apply this tension TD to the multilayer film 14. In Examples 9 to 12, the tension Tt is obtained from the equation (2), the tension TD is set based on this Tt, and the tension is adjusted to apply the tension TD to the multilayer film 140 in the A direction. The tension was adjusted by the portion 54. In addition, the measuring method of the Young's modulus of the support body 40 and the protective films 134 and 158 is based on ASTM D882.
複層シート製造設備132及び貼合装置59を用いて、液晶表示装置130を製造する実施例8を実施した。また、複層シート製造設備132の複層化部133を図22に示す複層化部157に代えて、複層フィルム140を備える液晶表示装置(図示無し)を製造する実施例9~12を実施した。用いた支持体40の厚みは100μmであり、ヤング率は4.0GPaである。支持体40及び保護フィルム134,158は、いずれも延伸装置120により幅方向の拡幅工程を経て得られたものである。各実施例における、保護フィルム134の厚みT1とヤング率G1、保護フィルム158の厚みT2とヤング率G2とは、表2に示す。なお、実施例8においては保護フィルム158を使用していないので、表1の「T2」には「無し」と記載し、「G2」欄には「-」と記載する。実施例8においては、式(1)により張力Ttを求め、このTtに基づき張力TDを設定し、この張力TDを複層フィルム14に付与するために張力調整部54により張力を調整した。また、実施例9~12においては、式(2)により張力Ttを求め、このTtに基づき張力TDを設定し、この張力TDを複層フィルム140に対してA方向に付与するために張力調整部54により張力を調整した。なお、支持体40,保護フィルム134,158のヤング率の測定方法はASTM D882に準ずる。 [Example 8] to [Example 12]
Example 8 which manufactures the liquid
得られた各液晶表示装置130について、FPR12の第1位相差領域R1と第2位相差領域R2との境界38と、液晶パネル11の水平方向に並ぶ複数の画素106の縁とのずれの大きさの程度を、実施例1~7と同様の方法及び評価基準で評価した。また、得られた各液晶表示装置130等について、画像の表示精度を実施例1~7と同様の基準で評価した。
About each obtained liquid crystal display device 130, the magnitude | size of the shift | offset | difference with the boundary 38 of 1st phase difference area | region R1 and 2nd phase difference area | region R2 of FPR12, and the edge of the several pixel 106 located in a line with the horizontal direction of the liquid crystal panel 11 is large. The degree of thickness was evaluated by the same method and evaluation criteria as in Examples 1-7. Further, for each of the obtained liquid crystal display devices 130 and the like, the image display accuracy was evaluated based on the same criteria as in Examples 1 to 7.
[比較例6]~[比較例9]
本発明に対する比較例として、複層シート製造設備132及び貼合装置59を用いて液晶表示装置を製造する比較例6を実施した。また、複層シート製造設備132の複層化部133を図22に示す複層化部157に代えて、複層フィルムをつくり、この複層フィルムを備える液晶表示装置(図示無し)を製造する比較例7~9を実施した。比較例6~9においては、複層フィルムに対するA方向での張力TDを0N/mにした状態で、この複層フィルムを液晶パネル11と貼り合わせた。 [Comparative Example 6] to [Comparative Example 9]
As a comparative example for the present invention, Comparative Example 6 in which a liquid crystal display device was manufactured using the multilayersheet manufacturing facility 132 and the bonding apparatus 59 was performed. Further, the multilayer unit 133 of the multilayer sheet manufacturing facility 132 is replaced with the multilayer unit 157 shown in FIG. 22 to produce a multilayer film, and a liquid crystal display device (not shown) including the multilayer film is manufactured. Comparative examples 7 to 9 were carried out. In Comparative Examples 6 to 9, this multilayer film was bonded to the liquid crystal panel 11 in a state where the tension TD in the A direction with respect to the multilayer film was 0 N / m.
本発明に対する比較例として、複層シート製造設備132及び貼合装置59を用いて液晶表示装置を製造する比較例6を実施した。また、複層シート製造設備132の複層化部133を図22に示す複層化部157に代えて、複層フィルムをつくり、この複層フィルムを備える液晶表示装置(図示無し)を製造する比較例7~9を実施した。比較例6~9においては、複層フィルムに対するA方向での張力TDを0N/mにした状態で、この複層フィルムを液晶パネル11と貼り合わせた。 [Comparative Example 6] to [Comparative Example 9]
As a comparative example for the present invention, Comparative Example 6 in which a liquid crystal display device was manufactured using the multilayer
比較例6~9で得られた液晶表示装置について、実施例1~7と同じ評価を行った。すなわち、FPRの第1位相差領域R1と第2位相差領域R2との境界と、液晶パネルの水平方向に並ぶ複数の画素の縁とのずれの大きさの程度と、画像の表示精度とをそれぞれ評価した。
The liquid crystal display devices obtained in Comparative Examples 6 to 9 were evaluated in the same manner as in Examples 1 to 7. That is, the degree of deviation between the boundary between the first phase difference region R1 and the second phase difference region R2 of the FPR, and the edges of a plurality of pixels arranged in the horizontal direction of the liquid crystal panel, and the display accuracy of the image. Each was evaluated.
Claims (10)
- 積層体の製造方法は、以下のステップを備える:
(A)長尺のパターン化位相差フィルムを目的とするサイズに切断することによりパターン化位相差シートにすることであり、前記パターン化位相差フィルムには互いに位相差特性の異なる第1,第2位相差領域が幅方向に交互に形成されている、前記第1,第2位相差領域は反応膜が表面に形成された連続搬送中の支持体に特定の光を照射した後に前記反応膜の上に液晶層を形成することによって形成される、前記特定の光は前記支持体の搬送方向と直交する幅方向にライン状の照射領域と非照射領域とが交互に並んだ照射パターンで照射される、前記反応膜は前記特定の光の照射の有無によって液晶に対して異なる配向特性が与えられる;
(B)前記パターン化位相差シートを前記搬送方向に対応する方向に、前記特定の光が照射されている間の前記支持体の搬送方向における張力の20%以上180%以下の範囲内の張力で引っ張ること;及び、
(C)前記Bステップにより引っ張った状態で、前記パターン化位相差シートを前記表示パネルと貼り合わせて前記積層体にすること。 The method for manufacturing a laminate includes the following steps:
(A) A long patterned retardation film is cut into a desired size to obtain a patterned retardation sheet. The patterned retardation film has first and first retardation characteristics different from each other. Two phase difference regions are alternately formed in the width direction, and the first and second phase difference regions are formed on the surface of the reaction film after the reaction film is irradiated with specific light after being irradiated with specific light. The specific light, which is formed by forming a liquid crystal layer on the substrate, is irradiated with an irradiation pattern in which linear irradiation regions and non-irradiation regions are alternately arranged in the width direction orthogonal to the transport direction of the support. The reaction film is provided with different alignment characteristics with respect to the liquid crystal depending on whether or not the specific light is irradiated;
(B) Tension within a range of 20% to 180% of the tension in the transport direction of the support while the specific light is irradiated in the direction corresponding to the transport direction of the patterned retardation sheet Pulling with; and
(C) In the state pulled by the B step, the patterned retardation sheet is bonded to the display panel to form the laminate. - 積層体の製造方法は、以下のステップを備える:
(D)長尺のパターン化位相差フィルムと長尺な透明なポリマーフィルムとが重なる複層フィルムを目的とするサイズに切断することにより複層シートにすることであり、前記パターン化位相差フィルムには互いに位相差特性の異なる第1,第2位相差領域が幅方向に交互に形成されている、前記第1,第2位相差領域は反応膜が表面に形成された連続搬送中の支持体に特定の光を照射した後に前記反応膜の上に液晶層を形成することによって形成される、前記特定の光は前記支持体の搬送方向と直交する幅方向にライン状の照射領域と非照射領域とが交互に並んだ照射パターンで照射される、前記反応膜は前記特定の光の照射の有無によって液晶に対して異なる配向特性が与えられる、前記ポリマーフィルムは連続搬送されながら製造される;
(E)前記支持体の搬送方向に対応する方向に前記複層シートを引っ張ること;及び、
(F)前記Eステップにより引っ張った状態で、前記パターン化位相差シートを前記表示パネルと貼り合わせて前記積層体にすること。 The method for manufacturing a laminate includes the following steps:
(D) The patterned retardation film is obtained by cutting a multilayer film in which a long patterned retardation film and a long transparent polymer film overlap into a target size, and forming the multilayered sheet. The first and second phase difference regions having different phase difference characteristics are alternately formed in the width direction. The first and second phase difference regions have a reaction film formed on the surface. The specific light is formed by forming a liquid crystal layer on the reaction film after irradiating the body with specific light, and the specific light has a non-linear irradiation area in the width direction perpendicular to the transport direction of the support. Irradiated in an irradiation pattern in which irradiation regions are arranged alternately, the reaction film is provided with different alignment characteristics with respect to the liquid crystal depending on whether or not the specific light is irradiated, the polymer film is manufactured while being continuously conveyed ;
(E) pulling the multilayer sheet in a direction corresponding to the conveying direction of the support; and
(F) In the state pulled by the E step, the patterned retardation sheet is bonded to the display panel to form the laminate. - 請求項2に記載の積層体の製造方法において、
前記Eステップは、前記特定の光が照射されている間の前記支持体の搬送方向における張力に基づいた張力で、前記複層シートを引っ張る。 In the manufacturing method of the laminated body of Claim 2,
In the step E, the multilayer sheet is pulled with a tension based on a tension in the transport direction of the support while the specific light is irradiated. - 請求項1ないし3いずれか1項に記載の積層体の製造方法において、
前記支持体は幅方向における張力を付与されて形成されたものである。 In the manufacturing method of the laminated body of any one of Claim 1 thru | or 3,
The support is formed by applying a tension in the width direction. - 請求項2または3いずれか1項に記載の積層体の製造方法において、
前記ポリマーフィルムは、幅方向における張力を付与されて形成されたことを特徴とする。 In the manufacturing method of the laminated body of any one of Claim 2 or 3,
The polymer film is formed by applying a tension in a width direction. - 請求項4に記載の積層体の製造方法において、
前記ポリマーフィルムは、幅方向における張力を付与されて形成されたことを特徴とする。 In the manufacturing method of the laminated body of Claim 4,
The polymer film is formed by applying a tension in a width direction. - 請求項2または3いずれか1項に記載の積層体の製造方法は、さらに以下のステップを備える:
(G)前記パターン化位相差フィルムと前記ポリマーフィルムとを搬送しながら貼り合わせて前記複層フィルムにすること。 The manufacturing method of the laminated body of any one of Claim 2 or 3 further comprises the following steps:
(G) The patterned retardation film and the polymer film are bonded together while being conveyed to form the multilayer film. - 請求項4に記載の積層体の製造方法は、さらに以下のステップを備える:
(G)前記パターン化位相差フィルムと前記ポリマーフィルムとを搬送しながら貼り合わせて前記複層フィルムにすること。 The manufacturing method of the laminated body of Claim 4 is further provided with the following steps:
(G) The patterned retardation film and the polymer film are bonded together while being conveyed to form the multilayer film. - 請求項1ないし3いずれか1項に記載の積層体の製造方法は、さらに以下のステップを備える:
(H)前記表示パネルと引っ張った状態の前記パターン化位相差シートとを貼り合わせ前に位置合わせすることであり、前記表示パネルは水平及び垂直方向のそれぞれに配列された複数の画素を有する、前記パターン化位相差シートと前記表示パネルとは前記パターン化位相差シートの特定の第1位相差領域と第2位相差領域との境界が前記水平または垂直方向に並ぶ複数の画素の縁に重なる状態に位置合わせされる。 The manufacturing method of the laminated body of any one of Claim 1 thru | or 3 is further provided with the following steps:
(H) aligning the patterned phase difference sheet in a stretched state with the display panel, and the display panel has a plurality of pixels arranged in horizontal and vertical directions, The patterned phase difference sheet and the display panel overlap with edges of a plurality of pixels arranged in the horizontal or vertical direction at a boundary between a specific first phase difference region and a second phase difference region of the patterned phase difference sheet. Aligned to the state. - 請求項1ないし3いずれか1項に記載の積層体の製造方法は、さらに以下のステップを備える:
(I)光源部から射出された前記特定の光をマスクを通して前記照射パターンで前記反応膜に照射することであり、前記マスクには前記支持体の搬送方向に延びたスリットが前記支持体の幅方向に一定ピッチで形成されている;
(J)前記Iステップを経た前記反応膜の上に前記液晶層を形成すること。 The manufacturing method of the laminated body of any one of Claim 1 thru | or 3 is further provided with the following steps:
(I) The specific light emitted from the light source unit is irradiated to the reaction film with the irradiation pattern through a mask, and a slit extending in the transport direction of the support has a width of the support in the mask. Formed at a constant pitch in the direction;
(J) forming the liquid crystal layer on the reaction film having undergone the I step;
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013064667A JP2014191075A (en) | 2013-03-26 | 2013-03-26 | Manufacturing method of laminate |
JP2013-064667 | 2013-03-26 | ||
JP2013-073587 | 2013-03-29 | ||
JP2013073587A JP2014197156A (en) | 2013-03-29 | 2013-03-29 | Laminate manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014156530A1 true WO2014156530A1 (en) | 2014-10-02 |
Family
ID=51623519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/055725 WO2014156530A1 (en) | 2013-03-26 | 2014-03-06 | Laminated body manufacturing method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014156530A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012111464A1 (en) * | 2011-02-16 | 2012-08-23 | 日本ゼオン株式会社 | Process for manufacture of liquid crystal display device |
JP2013029827A (en) * | 2011-06-22 | 2013-02-07 | Nippon Zeon Co Ltd | Pattern retardation plate, manufacturing method for the same and liquid crystal display |
JP2013033083A (en) * | 2011-08-01 | 2013-02-14 | Fujifilm Corp | Optical anisotropic element, polarizing plate, image display device, and three-dimensional image display system |
WO2013031467A1 (en) * | 2011-08-31 | 2013-03-07 | 大日本印刷株式会社 | Method for producing pattern phase difference film |
-
2014
- 2014-03-06 WO PCT/JP2014/055725 patent/WO2014156530A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012111464A1 (en) * | 2011-02-16 | 2012-08-23 | 日本ゼオン株式会社 | Process for manufacture of liquid crystal display device |
JP2013029827A (en) * | 2011-06-22 | 2013-02-07 | Nippon Zeon Co Ltd | Pattern retardation plate, manufacturing method for the same and liquid crystal display |
JP2013033083A (en) * | 2011-08-01 | 2013-02-14 | Fujifilm Corp | Optical anisotropic element, polarizing plate, image display device, and three-dimensional image display system |
WO2013031467A1 (en) * | 2011-08-31 | 2013-03-07 | 大日本印刷株式会社 | Method for producing pattern phase difference film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4377965B1 (en) | Continuous roll of cut-lined optical film laminate in the form of a continuous web, its manufacturing method and manufacturing apparatus | |
US9091881B2 (en) | Roll of continuous web of optical film laminate with predefined slit lines, and method and system for manufacturing the same | |
JP4503691B1 (en) | Method and apparatus for continuous production of liquid layer display element | |
KR101011451B1 (en) | Information storage reading system used in continuous manufacturing device of liquid crystal display element, method for manufacturing said information storage reading system and device using the method | |
US20120055622A1 (en) | Method and apparatus for sequentially laminating optical film including polarizing film, to rectangular-shaped panel | |
US9201306B2 (en) | Method for producing optical orientation film, method for producing retardation film, system for producing optical orientation film, optical orientation film and retardation film | |
CN104204918B (en) | The production system of optical display means | |
CN104136968B (en) | The production system of optical display means and the production method of optical display means | |
TWI551913B (en) | A manufacturing method of a liquid crystal display element, and a manufacturing system of a liquid crystal display device | |
WO2013129060A1 (en) | Manufacturing device and manufacturing method for three-dimensional liquid crystal display device | |
WO2013165013A1 (en) | System for producing and method for manufacturing optical display device | |
TWI442108B (en) | The manufacturing method of phase difference plate | |
WO2014156530A1 (en) | Laminated body manufacturing method | |
JP6008758B2 (en) | Intermediate product of optical film, optical film, image display device, and method of manufacturing optical film | |
JP2013254113A (en) | Exposure device and exposure method | |
JP2014197156A (en) | Laminate manufacturing method | |
JP2014191075A (en) | Manufacturing method of laminate | |
JP6107236B2 (en) | Optical film manufacturing method, optical film, optical film substrate and image display device | |
JP6154750B2 (en) | Manufacturing method of optical film | |
TW201915577A (en) | Method for producing laminate of optical display capable of effectively improving the productivity of the production method | |
WO2015030113A1 (en) | Film bonding device, optical-display-device production system, and optical-display-device production method | |
JP2006334965A (en) | Method for producing laminate | |
TW201915570A (en) | Method for producing laminate of optical display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14774080 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14774080 Country of ref document: EP Kind code of ref document: A1 |