WO2014155925A1 - Pump - Google Patents
Pump Download PDFInfo
- Publication number
- WO2014155925A1 WO2014155925A1 PCT/JP2014/000544 JP2014000544W WO2014155925A1 WO 2014155925 A1 WO2014155925 A1 WO 2014155925A1 JP 2014000544 W JP2014000544 W JP 2014000544W WO 2014155925 A1 WO2014155925 A1 WO 2014155925A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- casing
- volute
- pump
- suction
- impeller
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0606—Canned motor pumps
- F04D13/0633—Details of the bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/426—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/426—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
- F04D29/4286—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps inside lining, e.g. rubber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/62—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
- F04D29/628—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps
Definitions
- the present invention relates to a pump that discharges a liquid whose pressure has been increased by drawing a liquid and applying a pressure to the drawn liquid.
- pumps used to increase the pressure of a liquid are known.
- Conventional pumps include a casing having a liquid inlet and outlet.
- the conventional casing has on its inner side a volute formed integrally with the part constituting the shell of the pump. That is, the casing and the volute portion are formed as an integral structure formed by integral molding.
- the conventional pump is a component formed independently of volute, and one end is supported by the shaft support fixed to the peripheral edge of the end of the suction port described above, and the shaft support And a rotation center shaft.
- conventional pumps include an impeller mounted on a rotor that rotates about a center of rotation shaft. Such a pump is disclosed, for example, in Patent Document 1.
- each of the shaft support and the casing is formed as an independent and separate part. Therefore, even if the shaft support having the same structure is provided for each of a plurality of types of pumps, a pump having the required performance can be manufactured by varying the diameter of the suction port of the casing.
- the volute has a greater effect on the performance of the pump compared to the shaft support described above. Therefore, it is extremely important to form a volute suitable for each of a plurality of types of pumps depending on the required performance.
- forming different volute parts for each of a plurality of types of pumps is not a practical solution.
- the reason is that in the conventional pump, the volute portion is integrally formed with the portion constituting the outer shell of the pump as a part of the casing by integral molding. More specifically, the reason why the above-mentioned countermeasure is not realistic is that, in the case of forming different volutes depending on the required performance of the pump, the entire casing of each of a plurality of types of pumps has a different structure It is necessary to form in
- the present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide various pumps according to the required performance without forming the entire casings of a plurality of types of pumps into different structures. .
- a pump according to the present invention includes a suction flow passage, a pump chamber communicating with the suction flow passage, and a casing forming an outer shell of a discharge flow passage communicating with the pump chamber; A volute portion formed as a component independent of the casing in the pump chamber so as to form an outer shell of a spiral flow path communicating with each of the flow path and the discharge flow path; And an impeller, which is accommodated in the pump chamber so as to fit, and which discharges the liquid, which has flowed into the spiral flow passage from the suction flow passage, to the discharge flow passage.
- a pump includes: a suction flow passage; a pump chamber communicating with the suction flow passage; and a casing forming an outer shell of a discharge flow passage communicating with the pump chamber;
- the volute portion provided as a component independent of the casing in the pump chamber and the volute flow path so as to form an outer shell of the flow path communicating with each of the discharge flow path
- an impeller which is accommodated in the pump chamber and sends out the liquid flowing from the suction flow path to the spiral flow path to the discharge flow path.
- the pump according to the second embodiment of the present invention is, in particular, the pump according to the first embodiment described above, wherein the rotation center shaft extends along the direction in which the rotation center axis of the impeller extends, and the rotation center shaft And a shaft support portion for supporting the volute portion, and the volute portion and the shaft support portion are formed as an integral structure by integral molding.
- volute portion and the shaft support portion can be formed in one molding process with one mold.
- the downstream end of the suction passage extends along the direction in which the rotation shaft extends.
- the flow passage extending from the upstream portion of the suction flow passage to the downstream end of the suction flow passage has a curved shape.
- the flow of the liquid sucked into the pump chamber can be made smooth.
- the upstream end of the discharge flow passage is the outer end of the spiral flow passage It extends to be continuous with the part.
- the flow of the liquid expelled from the pump chamber can be made smooth.
- the central portion of the spiral flow path An opening communicating with the suction flow passage is formed so as to configure the casing, and a portion on the casing side of the volute has an annular protrusion extending along the outer periphery of the opening.
- volute portion so that the flow passage in the opening of the volute portion communicates with the suction flow passage of the casing by using the protrusion of the volute portion.
- the upper surface of the annular projection forms the part of the suction flow passage, and the upper surface of the annular protrusion It has a flat surface continued to the inner surface which constitutes the suction channel.
- the inner surface of the suction flow passage and the upper surface of the protrusion are continuous. Therefore, there is no stepped portion between the suction flow passage and the upper surface of the protrusion. As a result, the liquid flows smoothly in the path from the suction flow path to the upper surface of the projection. Thus, the pump efficiency can be enhanced.
- the annular protrusion has a curved surface continuous with the upper surface, and the curved surface is formed from the suction flow channel It is curved to direct liquid to the center of the spiral channel in the opening.
- the inner surface constituting the suction passage and the inner peripheral surface of the opening are continuous.
- a part of the upper surface of the annular projection is closed by the casing.
- an acute-angled curved part is not formed between a suction flow path and a pump chamber.
- the liquid flows smoothly in the flow path from the suction flow path to the pump chamber.
- the pump efficiency can be increased.
- the volute portion has an outer periphery protruding from an outer peripheral surface of the annular protrusion. It has a projection, and the casing has an L-shaped groove for receiving the outer peripheral projection at a position corresponding to the outer peripheral projection.
- the casing has a casing recess on the surface facing the pump chamber side.
- the volute portion includes a volute convex portion inserted in the casing concave portion on a surface facing the casing side.
- the casing and the volute portion can be positioned.
- the pump according to the eleventh embodiment of the present invention is, in particular, the pump according to any of the first to tenth embodiments described above, in which the casing faces the volute portion and the casing of the volute portion.
- the faces facing each other have a fitting relationship with each other.
- an elastic material is disposed between the volute portion and the casing.
- the dispersion of the dimensions of the volute portion and the casing in the direction in which the rotation center shaft extends is absorbed by the elastic material. Therefore, the volute portion and the casing can be prevented from colliding due to the vibration of the volute portion, that is, so-called rattling can be prevented.
- the pump according to the thirteenth embodiment of the present invention is, in particular, the pump according to the first embodiment described above, wherein the magnetic follower connected to the impeller and rotated by an electromagnetic force, and one end thereof are closed And a flange portion having an annular convex portion protruding outward from the opening at the other end of the cylindrical portion and protruding along the central axis direction of the cylindrical portion, A separation plate that forms a space for housing the impeller, the rotation center shaft, and the magnetic driven portion together with the casing and the volute portion, and is disposed along the outer periphery of the impeller; An annular spacer is provided between the volute portion and the separation plate so as to reduce a gap between the separation plate and the inner peripheral portion of the flange portion.
- the annular spacer has a spacer protrusion projecting from a surface facing the volute portion, and the volute portion is A volute recess is provided on the annular spacer facing surface and receives the spacer protrusion.
- a pump according to a fifteenth embodiment of the present invention is, in particular, the pump according to the thirteenth or fourteenth embodiment described above, comprising: a cover flange portion covering the flange portion of the separating plate; and the cylindrical shape of the separating plate A cover inner peripheral surface covering the inner peripheral surface of the housing, and the spacer is provided on the annular convex portion in a region inside the annular convex portion of the flange portion of the separator.
- the annular rib extends along and protrudes from a surface of the annular spacer on the side of the separation plate, and the annular rib presses the cover flange toward the flange of the separation plate.
- the position of the separating plate cover is fixed in a state in which the cover flange portion is sandwiched between the separating plate and the spacer. Therefore, the position of the separating plate cover is firmly fixed.
- the direction in which the rotation center shaft of the impeller extends is defined as the front-rear direction.
- the direction from the rotation center shaft to the suction port in the direction in which the rotation center shaft extends is defined as the forward direction.
- the direction opposite to the forward direction is defined as the backward direction.
- the pump of embodiment is demonstrated on such a premise.
- Embodiment 1 First, an outline of a pump according to a first embodiment of the present invention will be described with reference to FIG.
- the pump 1 includes a pump main body 10 forming an outer shell thereof, a rotary body storage chamber 51 formed in the pump main body 10, and a rotary body 20 stored in the rotary body storage chamber 51. And.
- the pump body 10 is provided with a casing 30 and a volute portion 130 which is formed as a component independent of the casing 30 and in which a pump chamber 131 opened toward the rear is formed.
- the surface of the casing 30 facing the volute portion 130 and the surface of the volute portion 130 facing the casing 30 have a fitting relationship with each other. This fitting is preferably a clearance fit.
- the pump body 10 is provided with a drive block 40 in which a storage portion 41a that opens forward is formed.
- the spacer 140 may be provided as a member constituting the pump main body 10 as necessary.
- the drive block 40 is positioned behind the casing 30 and the volute portion 130.
- a later-described storage portion 41 a of the drive block 40 is in communication with the pump chamber 131 of the volute portion 130.
- the housing portion 41 a and the pump chamber 131 constitute a rotary body storage chamber 51 for housing the entire rotary body 20.
- the drive block 40 has a separating plate 41, a magnetic drive unit 42, a control unit 43, and a mold resin 44 forming an outer shell of the drive block 40.
- the separation plate 41 is formed of a synthetic resin, for example, a polyphenylene sulfide (PPS) resin. It is also possible to form the separation plate 41 using a metal that does not affect the magnetic drive.
- PPS polyphenylene sulfide
- the separation plate 41 is formed in the shape of a container that opens forward, that is, in a concave shape.
- the separation plate 41 is configured of a storage portion 41a and a flange portion 41d.
- the storage portion 41a is configured of a cylindrical peripheral wall portion 41c and a bottom surface portion 41b.
- the front end of the peripheral wall 41c is open, and the rear end of the peripheral wall 41c constitutes a bottom 41b of the housing 41a. That is, the storage portion 41 a has a cylindrical shape in which one end is closed.
- the flange portion 41 d protrudes outward in the radial direction from an end portion on the front side of the peripheral wall portion 41 c of the storage portion 41 a. In the present embodiment, the flange portion 41 d is formed over the entire circumferential length of the peripheral wall portion 41 c.
- the housing 50 is configured by the casing 30, the volute portion 130 and the separation plate 41.
- the housing 50 forms a rotating body storage chamber 51 as a space for storing the rotating body 20.
- the spacer 140 may be provided as a member which comprises the housing 50 as needed like the pump main body 10.
- a rear shaft fixing portion (shaft support portion) 41e which protrudes forward from the bottom surface portion is formed in a central region of the bottom surface portion 41b of the storage portion 41a (a central portion on the back side in the storage portion 41a).
- the rear end portion of a rotation center shaft 60 made of ceramics, which rotatably supports the rotating body 20, is fixed to the rear shaft fixing portion 41e.
- the rotation center shaft 60 is fixed to the separation plate 41 and can not rotate with respect to the separation plate 41.
- the outline shape of the tip on the rear side of the rotation center shaft 60 is formed in a D-shape.
- an inner peripheral surface of the rear shaft fixing portion 41 e is formed in a D-shaped concave portion corresponding to the rear end of the rotation center shaft 60.
- the D-shaped rear end of the rotation center shaft 60 is fitted into the D-shaped recess of the rear shaft fixing portion 41e.
- the rotation center shaft 60 is held in a non-rotatable state relative to the separation plate 41.
- the rotation center shaft 60 functions as a rotation center axis of the impeller 70 via the magnetic follower 80 described later.
- the magnetic drive unit 42 is a stator.
- the magnetic drive unit 42 includes a stator core 42 a and a coil 42 b formed of an electromagnetic steel plate. Mold resin 44 is provided between stator core 42a and coil 42b. Therefore, stator core 42a and coil 42b are electrically isolated.
- the magnetic drive unit 42 is provided so as to surround the peripheral wall portion 41 c of the storage portion 41 a.
- the control unit 43 is a control board that controls the magnetic drive unit 42.
- the control unit 43 is positioned behind the separation plate 41 and the magnetic drive unit 42.
- the control unit 43 is electrically connected to the coil 42 b of the magnetic drive unit 42.
- the control unit 43 supplies a current to the coil 42 b of the magnetic drive unit 42, a magnetic field is generated in the magnetic drive unit 42 to rotate a magnetic driven unit 80 described later of the rotating body 20.
- the mold resin 44 is formed of, for example, an unsaturated polyester resin.
- the mold resin 44 is provided on the outer side of the separation plate 41, and is formed by integral molding so as to include the separation plate 41, the magnetic drive unit 42, and the control unit 43.
- the rotating body 20 has an impeller 70 as a pump unit, and a magnetic follower 80 provided on the rear side of the impeller 70.
- the impeller 70 and the magnetic follower 80 are connected.
- the impeller 70 and the magnetic follower unit 80 constitute a rotating body 20 as one assembly part performing a common rotational operation. That is, the impeller 70 is attached to a portion on the front side of the magnetic driven portion 80 (a portion on one end side in the direction of the rotation center shaft 60).
- the magnetically driven portion 80 of the rotating body 20 is housed in the housing portion 41 a, and the impeller 70 is housed in the pump chamber 131.
- the magnetic driven unit 80 is a rotor which is housed in the housing portion 41 a and rotatably provided by the rotation center shaft 60 with the rotation center shaft 60 as a center axis.
- the magnetically driven portion 80 is composed of a rotor portion 81 made of synthetic resin, a magnet portion 82 provided on the outer peripheral side of the rotor portion 81, and a bearing 83 provided at the center of the rotor portion 81.
- the rotor portion 81 is made of polyphenylene ether (PPE) resin.
- the magnet unit 82 is a permanent magnet made of ferrite or SmFe.
- the bearing 83 is made of a carbon-containing resin sliding material or ceramic.
- the rotor portion 81 has a cylindrical bearing fixing portion 81a extending in the front-rear direction, and a magnet fixing portion 81b surrounding the bearing fixing portion 81a.
- the bearing fixing portion 81a includes a front small diameter portion 81c and a rear large diameter portion 81d.
- the small diameter portion 81c is smaller in diameter than the large diameter portion 81d.
- the bearing 83 is inserted into the small diameter portion 81c.
- the bearing 83 is fixed to the inner circumferential surface of the small diameter portion 81c.
- a rotation center shaft 60 is inserted into the bearing 83.
- the rotation center shaft 60 is rotatably slidable with respect to the inner circumferential surface of the bearing 83. Therefore, the entire rotary body 20 is rotatably supported by the rotation center shaft 60 with the front and rear axis as the rotation center axis.
- the magnet fixing portion 81 b is formed in a cylindrical shape.
- the front side portion of the inner peripheral surface of the magnet fixing portion 81b is integrally formed with the small diameter portion 81c of the bearing fixing portion 81a as an integral structure.
- a magnet storage groove 81e is formed on the outer peripheral surface of the magnet fixing portion 81b.
- a magnet portion 82 covered with a stainless steel magnet cover 82a is housed in the magnet housing groove 81e. Note that the outer peripheral surface of the magnet portion 82 may be exposed as the outer peripheral surface of the magnetic driven portion (rotor) 80 without providing the magnet cover 82 a.
- the magnet unit 82 is provided on the outer peripheral portion of the rotor unit 81 and positioned inside the magnetic drive unit 42.
- a circumferential wall portion 41 c of the storage portion 41 a of the separation plate 41 is disposed between the magnet portion 82 and the magnetic drive portion 42.
- a gap d1 for allowing the magnetic follower 80 to rotate is formed between the magnet 82 and the peripheral wall 41c (in the embodiment, the separation plate cover 160).
- the impeller 70 is a pump unit positioned in front of the magnetic follower unit 80.
- the impeller 70 is accommodated in the pump chamber 131 so as to fit in the spiral flow path of the volute portion 130.
- the impeller 70 includes a plurality of vanes 71 provided in the circumferential direction of the impeller 70, a rear shroud 72 covering the rear side of each vane 71, and a front shroud 73 covering the front of each vane 71 There is.
- the blade portion 71 and the front shroud 73 are integrally formed so as to constitute an integral structure.
- a rear surface shroud 72 is joined to the end face on the rear side of the blade portion 71.
- the rear shroud 72 is formed in a disk shape. At a central portion of the rear surface shroud 72, a connection portion 90 formed integrally with the rear surface shroud 72 and formed as an integral structure is continuous. The connecting portion 90 is continuous with the front end of the rotor portion 81.
- the magnet portion 82, the magnet cover 82a, the bearing 83 and the connection portion 90 are inserted into the same mold as the mold for molding the rear shroud 72 and the rotor portion 81.
- the magnet portion 82, the magnet cover 82a, the bearing 83 and the connection portion 90, together with the rear surface shroud 72 and the rotor portion 81, are resin-molded so as to form an integral assembly. That is, the rear shroud 72 and the magnetic follower 80 are insert-molded articles.
- the front shroud 73 includes a conical portion 73a whose diameter gradually decreases toward the front, and a cylindrical portion 73b formed at the front of the conical portion 73a. At the front of the cylindrical portion 73b, a suction port portion 74 penetrating in the front-rear direction is formed.
- the outer peripheral edge of the front shroud 73 (the outer peripheral edge of the conical portion 73a) and the outer peripheral edge of the rear shroud 72 are radial directions of the impeller 70 when viewed along the direction in which the rotation center shaft 60 extends. At the same position. A gap is formed between the outer peripheral edge of the front shroud 73 and the outer peripheral edge of the rear shroud 72.
- the gap communicates with the suction port 74 via a flow path 75 formed between the adjacent vanes 71 between the shrouds 72 and 73.
- the discharge part 76 of the impeller 70 is comprised by this clearance gap.
- Each blade portion 71 is formed at a position from the inner peripheral side of the front surface shroud 73 to the outer peripheral edge of the front surface shroud 73 (that is, the outer peripheral edge of the rear surface shroud 72).
- the front end of each blade 71 and the rear end of the conical portion 73 a of the front shroud 73 are continuous. That is, each blade 71 and the front shroud 73 are integrally formed so as to form an integral structure.
- the rear end surface of each blade portion 71 is attached to the front surface of the rear shroud 72.
- Each blade 71 applies pressure in the radial direction to the liquid introduced into the flow path 75 via the suction port 74 when the impeller 70 rotates.
- the liquid supplied from the suction port 74 to the flow path 75 is sent to the discharger 76 and discharged from the discharger 76 into the space on the outer peripheral side of the impeller 70.
- the reflux hole 91 is formed in the connection portion 90 so that the liquid flowing into the space on the rear side of the impeller 70 is recirculated to the pump chamber 131.
- the plurality of reflux holes 91 are formed along the circumferential direction of the connection portion 90.
- FIG. 2 shows a plan view of a casing of the pump according to Embodiment 1 of the present invention.
- FIG. 3 shows the perspective view when the casing in the pump concerning Embodiment 1 of this invention is seen from the position of an inner side.
- the casing 30 is formed in the shape of a container that opens rearward.
- the casing 30 has a wall 32.
- the casing 30 covers the front portion of the storage portion 41 a.
- the casing 30 constitutes an outer shell of a suction flow passage 35 a, a pump chamber 131 communicating with the suction flow passage 35 a, and a discharge flow passage 36 a communicating with the pump chamber 131.
- the casing 30 is attached to the drive block 40 by attaching the outer periphery of the wall 32 to the outer periphery of the drive block 40 including the flange 41d with a plurality of screws, screws or the like (not shown).
- the sealing material 100 is provided between the casing 30 and the flange portion 41 d. Therefore, the water tightness of the rotating body storage room 51 is secured.
- a suction pipe 35 and a discharge pipe 36 are attached to the wall portion 32 of the casing 30.
- the suction pipe 35 is connected to a pipe or the like (not shown), and is configured to introduce the liquid into the pump chamber 131.
- the discharge pipe 36 is connected to a pipe or the like (not shown), and is configured to discharge the liquid in the pump chamber 131 to the outside (a connected pipe or the like).
- a space inside the suction pipe 35 is a suction flow path 35a, and a space on the upstream side of the suction flow path 35a is in communication with a suction port 35b communicating with a flow path such as a connected pipe.
- the space on the downstream side of the suction flow passage 35 a faces the suction port 74 of the impeller 70 and forms an opening 35 c into which the volute portion 130 is inserted.
- the suction passage 35a has a curved shape.
- a space on the upstream side of the suction passage 35 a extends in a direction intersecting the direction of the rotation center shaft 60.
- the space on the downstream side of the suction passage 35 a extends along the direction in which the rotation center shaft 60 extends. Therefore, the suction port 35b is directed in a direction (vertical direction in the present embodiment) intersecting the direction of the rotation center shaft 60.
- the opening 35 c is directed to a space on the rear side in the direction in which the rotation center shaft 60 extends (a space on the impeller 70 side).
- the space inside the discharge pipe 36 constitutes a discharge flow path 36a.
- a discharge port 36b communicating with the flow passage such as the connected pipe is formed. Further, the discharge port 36b is also directed in a direction (vertical direction in the present embodiment) which intersects the rotation center shaft 60 direction.
- a straight line perpendicular to the plane including the opening of the suction port 35b and a straight line perpendicular to the plane including the opening of the discharge port 36b are perpendicular to the direction in which the rotation center shaft 60 extends. , Passing through a straight line passing through the rotation center shaft 60. That is, the suction port 35 b and the discharge port 36 b are arranged such that a straight line connecting the center of the suction port 35 b and the center of the discharge port 36 b intersects perpendicularly with the straight line passing through the rotation center shaft 60.
- the pump 1 can be attached to a part of the linearly arranged piping.
- screw threads 35d and 36d are formed on the outer peripheral surfaces of the suction pipe 35 and the discharge pipe 36, respectively.
- the screw thread 35d and the screw thread 36d are connected to the pipe using a nut or the like (not shown).
- holding ribs 35 e and holding ribs 36 e protrude from surfaces on the center sides of the screw threads 35 d and 36 d on the outer peripheral surface of the suction pipe 35 and the discharge pipe 36, respectively.
- the holding rib 35 e and the holding rib 36 e are fixed by a tool when the pump 1 is connected to a pipe.
- the holding rib 35e and the holding rib 36e it is possible to make the installer of the pump recognize the necessity of fixing the holding rib 35e and the holding rib 36e by the holding tool. Therefore, it is possible to suppress that the pipe joint is attached to the screw threads 35d and 36d in a state where the installer of the pump holds the drive block 40 with his / her hand.
- the advantage is that it is possible to suppress the load from being applied to a screw, screw or the like that fixes the casing 30 and the drive block 40. Therefore, according to the above mounting method of piping, it is possible to more reliably suppress water leakage due to loosening of screws, screws and the like.
- the shapes of the holding rib 35 e and the holding rib 36 e be polygonal. By so doing, the holding rib 35 e and the holding rib 36 e can be held at multiple angles using the holding tool.
- the shapes of the holding rib 35 e and the holding rib 36 e are hexagonal.
- the centers of the polygonal holding rib 35 e and the holding rib 36 e be on a straight line connecting the centers of the suction port 35 b and the discharge port 36 b.
- the center of the holding tool can be positioned on a straight line connecting the center positions of the suction port 35b and the discharge port 36b of the pump 1 and the center position of the pipe.
- the pipe joint can be easily tightened with a dedicated tool.
- the volute portion 130 is formed as a component independent of the casing 30. That is, the volute portion 130 and the casing 30 can be separated.
- FIG. 4 and FIG. 5 are views showing a volute part in the pump of the embodiment 1 of the present invention.
- FIG. 4 is a perspective view when the volute portion is viewed from the position on the casing side.
- FIG. 5 is a perspective view when the volute is viewed from the position on the pump chamber side.
- the volute portion 130 is a structure forming a spiral flow passage communicating with each of the suction flow passage 35 a and the discharge flow passage 36 a.
- An opening 135 communicating with the suction flow passage 35a is formed at a position on the front side of the volute portion 130 and at a radially inner position.
- the volute portion 130 is formed in a step-like shape by forming an annular protrusion 137 at a position on the front side of the rear portion 136 (a position on the casing 30 side).
- an opening 135 communicating with the suction flow passage 35a is formed at a position on the front side of the projection 137 and at a radially inner position.
- the annular protrusion 137 protrudes so as to surround the opening 135.
- a pump chamber 131 is formed in the volute portion 130.
- the pump chamber 131 is formed on the outer periphery of the impeller accommodation chamber 131a circular in plan view for accommodating the impeller 70 and the impeller accommodation chamber 131a, and has a volute structure of a spiral shape in plan view to give a pressure increase effect to the liquid. And 131b.
- the liquid discharged from the discharge part 76 to the space on the outer peripheral side of the impeller 70 is introduced into the space having the volute structure 131 b.
- Pressure is applied to the liquid in this volute structure 131b.
- the liquid is discharged from the discharge part 76 of the impeller 70 to the space having the volute structure 131 b.
- the liquid is then pressurized in the space with volute structure 131b.
- the liquid is discharged to the space outside the pump 1 through the discharge port 36b of the discharge flow path 36a in a state where pressure is applied.
- a protrusion (convex portion) 136 b formed on a position on the casing 30 side of the volute portion 130 (front surface 136 a of the rear portion 136) is inserted in the direction of the rotation center shaft 60 along the recess 37 provided on the inner surface of the casing 30. . Further, the outer peripheral surface 137 b of the annular protrusion 137 provided around the opening 135 is fitted into the recess 38 of the opposing casing 30. Thus, the volute portion 130 is assembled to the casing 30.
- the upper surface (the surface on the side of the casing 30) 137a of the protrusion 137 is formed in a planar shape.
- a portion on the suction port 35b side (a portion on the right side in FIG. 1) of the planarly formed upper surface 137a is exposed to the suction flow passage 35a.
- the part on the opposite side to the part on the suction port 35 b side (the part on the left side in FIG. 1) is closed by the casing 30.
- the protrusion 137 is formed. Therefore, the portion closed by the casing 30 becomes a positioning portion in the direction in which the rotation center shaft 60 extends when the volute portion 130 is attached to the casing 30. Therefore, the assembling accuracy is improved and the assembling operation is facilitated.
- the exposed portion 137d is formed at the position on the suction port 35b side (the position on the right side in FIG. 1) in a state where the volute portion 130 is assembled to the casing 30. Further, on the upper surface 137a of the projection 137, a closed portion 137c is formed at a position opposite to the position on the suction port 35b side.
- the rear surface 38a of the recessed part 38 is formed so that a width may become wide as it goes to the position on the opposite side with respect to the position by the side of the suction port 35b.
- a portion of the upper surface 137a of the protrusion 137 overlapping the rear surface 38a is a closed portion 137c.
- an arc-shaped portion (R portion) 137f is formed on the peripheral edge on the opening portion 135 side of the upper surface 137a.
- the arc-shaped portion (R portion) 137f is such that the portion on the suction port 35b side (the portion on the right side in FIG. 1) is the largest arc-shaped portion (R portion), that is, the arc-shaped portion positioned outermost. There is.
- the arc-shaped portion (R portion) 137 f becomes an arc-shaped portion (R portion) which gradually becomes smaller toward the opposite side to the portion on the suction port 35 b side, that is, an arc-shaped portion gradually positioned inside.
- the protrusion 137 has an arc-shaped portion (R portion) 137f as a curved surface continuous with the upper surface 137a.
- An arc-shaped portion (R portion) 137f which is the curved surface is bent so as to guide the liquid in the direction of the front shaft fixing portion (shaft supporting portion) 133 side.
- volute portion 130 has a front shaft fixing portion (shaft support portion) 133 located at the central portion of the rotating body storage chamber 51.
- the front end portion of the rotation center shaft 60 on the front side is fixed to the front shaft fixing portion 133.
- the rotation center shaft 60 is held by the separation plate 41 so as not to rotate.
- the casing 30 and the separation plate 41 are fixed.
- the volute portion 130 is fixed to the casing 30. Therefore, the front end portion of the rotation center shaft 60 may not be held so as not to be rotated by the front shaft fixing portion 133 of the volute portion 130. The reason is that the relative rotation of the rotation center shaft 60 with respect to the volute portion 130 is limited by the separation plate 41.
- the front shaft fixing portion 133 is integral with the volute portion 130 via a plurality (three in the present embodiment) of support ribs 134 extending from the position on the inner surface side of the protrusion 137 toward the pump chamber 131. Is formed. That is, in the present embodiment, the volute portion 130 and the front shaft fixing portion 133 are integrally formed as an integral structure. However, in the present invention, the front shaft fixing portion 133 does not have to be formed as an integral structure with the volute portion 130. In the present invention, each of the volute portion and the front shaft fixing portion may be formed as an independent structure by separate molding processes.
- the front shaft fixing portion 133 has a cylindrical (conical) protruding portion 133 a protruding toward the front, and a tubular portion connected to the rear of the protruding portion 133 a to support the front end of the rotation center shaft 60. And a bearing portion 133b.
- Reference numeral 110 in FIG. 1 denotes a bearing plate that receives a load in the thrust direction applied to the bearing 83
- reference numeral 120 denotes a shock absorbing material that absorbs vibration or the like of the rotation center shaft 60.
- an elastic member 150 is disposed between the casing 30 side of the volute portion 130 and the casing 30.
- the elastic member 150 is an O-ring.
- the elastic member 150 is disposed between the casing 30 side of the volute portion 130 and the casing 30.
- the front shaft fixing portion 133 may vibrate (wobble) in the direction in which the rotation center shaft 60 extends due to the variation.
- the elastic material 150 suppresses the generation of the above-mentioned vibration.
- the casing 30 is formed of PPS resin.
- volute portion 130 is formed of PPE resin because it requires less strength than casing 30.
- the volute portion 130 having the front shaft fixing portion 133 is formed as an integrally molded part independent of the casing 30, ie, separately from the casing 30.
- the volute portion 130 and the front shaft fixing portion 133 are not adversely affected by water pressure. Therefore, the materials of the volute portion 130 and the front shaft fixing portion 133 do not require more strength than the material of the casing 30. Therefore, the volute portion 130 and the front shaft fixing portion 133 can be formed of a cheaper material.
- the pump 1 described above is driven by the control unit 43 causing a current to flow through the coil 42 b.
- a current flows in the coil 42b, a magnetic field is generated in the magnetic drive unit 42.
- the magnet unit 82 provided on the rotating body 20 is attracted to the magnetic drive unit 42 or repelled to the magnetic drive unit 42.
- the magnetic follower 80 rotates around the rotation center shaft 60 with the rotation center shaft 60 as a center axis.
- the impeller 70 rotates around the rotation center shaft 60 with the rotation center shaft 60 extending back and forth as a rotation center axis.
- the liquid introduced into the flow path 75 of the impeller 70 via the suction port 74 is discharged from the discharge portion 76 to the space on the outer peripheral side of the impeller 70.
- the liquid discharged into the space on the outer peripheral side of the impeller 70 is basically introduced into the space having the volute structure 131 b.
- pressure is applied to the liquid in the space having the volute structure 131 b.
- the liquid is discharged to the space outside the pump 1 via the discharge port 36b in a state where pressure is applied in the volute structure 131b.
- a portion of the liquid passes through the gap d3 of the flange portion between the outer peripheral edge of the rear surface shroud 72 and the flange portion 41d of the separation plate 41, flows into the space behind the rear surface shroud 72, and flows into the storage portion 41a. I assume.
- the separation plate cover 160 formed of SUS is provided on the inner surface of the separation plate 41. Therefore, it is possible to suppress that the foreign matter (magnetic material such as iron powder or the like) which has entered the storage portion 41a and is attracted to the magnet portion 82 is rotated with the magnetic driven portion 80 to damage the inner surface of the separation plate 41. .
- annular spacer 140 is disposed on the inner circumferential surface of the opening of the separation plate 41.
- FIG. 6 and 7 are views showing a spacer in the pump of the first embodiment of the present invention.
- FIG. 6 is a perspective view of the spacer on the side of the casing.
- FIG. 7 is a perspective view of the spacer on the side of the separating plate.
- the spacer 140 is formed of resin, and as shown in FIGS. 1, 6 and 7, the end surface 140 a on the casing 30 side of the spacer 140 constitutes a part of the volute structure 131 b.
- the outer peripheral portion of the casing 30 side end surface 140 a is pushed by the rear end surface 130 a of the volute portion 130.
- the spacer 140 is fixed by interposing the outer peripheral portion of the casing 30 side end surface 140 a between the rear end surface 130 a and the separation plate 41.
- the protrusion 140b is formed on the casing 30 side end surface 140a.
- the protrusion 140 b is inserted into the recess 130 b in the rear end surface 130 a of the volute portion 130. Thereby, the rotation of the spacer 140 is prevented.
- annular rib 140c is formed at a position on the rear side of the spacer 140 so as to protrude along the inner circumferential surface of the opening of the separation plate 41.
- the annular rib 140 c presses the flange portion 160 a of the separating plate cover 160.
- the position is fixed in a state where the separation plate cover 160 is sandwiched by the separation plate 41 and the spacer 140.
- the flange portion 41 d is provided with an annular convex portion that protrudes along the direction in which the rotation center shaft 60 extends, that is, the direction in which the central axis of the cylindrical portion extends.
- the impeller 70 having a large gap between the outer peripheral portion of the impeller 70 and the inner peripheral portion of the annular convex portion of the flange portion 41 d is used. Therefore, the spacer 140 is disposed along the outer periphery of the impeller 70. Thus, the gap between the outer peripheral portion of the impeller 70 and the inner peripheral portion of the annular convex portion of the flange portion 41 d is reduced.
- the impeller 70 (the impeller 70 having a large outer diameter) in which the gap between the outer peripheral portion of the impeller 70 and the inner peripheral portion of the flange portion 41d is not large in order to enhance the pump efficiency.
- the spacer 140 need not be used.
- the pump 1 includes the suction flow passage 35a, the pump chamber 131 communicating with the suction flow passage 35a, and the casing 30 forming an outer shell of the discharge flow passage 36a communicating with the pump chamber 131.
- the pump 1 also has an impeller 70 housed in the pump chamber 131 and a rotation center shaft 60 functioning as a rotation center axis of the impeller 70.
- the pump 1 includes a volute unit 130.
- the volute portion 130 includes a front shaft fixing portion (shaft support portion) 60 that communicates with the suction flow path 35 a and the discharge flow path 36 a and supports the rotation center shaft 60.
- the volute portion 130 is formed as a component independent of the casing 30 in the pump chamber 131.
- volute portion 130 having the front shaft fixing portion (shaft support portion) 133 supporting the one end of the shaft 60 during rotation is formed separately from the casing 30.
- a plurality of types of volute sections 130 can be formed according to various pump performances.
- only the volute portion 130 can be replaced in a state in which the portion other than the volute portion 130 of the casing 30 is left.
- a casing 30 made of an expensive resin material having high heat resistance, high rigidity, and high hardness can be used as a common component.
- different volute units 130 may be used depending on various pump performances. Therefore, for example, the volute portion 130 can be made of a material cheaper than the casing 30.
- the pump 1 is provided that is compatible with various required pump performances without forming the entire casing 30 as multiple types of parts having different structures. be able to.
- the suction port 35b of the suction flow path 35a and the discharge port 36b of the discharge flow path 36a face in the direction intersecting with the direction in which the rotation center shaft 60 extends.
- the suction flow passage 35a is curved so that the direction in which the liquid flowing in the flow passage on the downstream side travels is substantially parallel to the rotation center shaft 60 direction.
- a portion on the casing 30 side of the volute portion 130 constitutes an annular protrusion 137 which protrudes around the opening 135.
- the upper surface 137a of the protrusion 137 is formed in a planar shape.
- a portion on the suction port 35b side of the planarly formed upper surface 137a is exposed to the suction flow passage 35a. Further, a portion on the opposite side to the portion on the suction port 35 b side of the upper surface 137 a is closed by the casing 30.
- the liquid flows along the direction that intersects the direction in which the rotation center shaft 60 extends in the upstream of the suction flow channel 35a (upstream of the curved flow channel).
- the liquid flows so as to be gradually displaced forward from the above-mentioned intersecting direction as it goes downstream in the suction flow channel 35a.
- the liquid flows rearward along the direction in which the rotation center shaft 60 extends.
- the suction flow passage 35a is bent at an acute angle so that the flow of the liquid is directed to the suction port 74, the flow direction of the liquid flowing in the suction flow passage 35a changes rapidly. In this case, the liquid can not flow smoothly.
- the upper surface 137a of the projection 137 formed in a planar shape in the inner bent portion (right side in FIG. 1) of the suction flow passage 35a is exposed to the suction flow passage 35a. It constitutes a part of the wall surrounding 35a. Therefore, the acute-angled curved part in the suction flow path 35a is not formed. As a result, the liquid in the suction flow path 35a flows smoothly. Thus, the pump efficiency can be increased.
- the R portion 137f is formed on the peripheral edge on the opening 135 side of the upper surface 137a.
- a portion on the suction port 35b side constitutes the circular arc portion (R portion) having the largest radius of curvature.
- the radius of curvature of the circular arc portion (R portion) 137f gradually decreases from the portion on the suction port 35b side toward the portion on the opposite side.
- the curved portion of the suction flow passage 35a can be formed more gently. As a result, the liquid in the suction flow path 35a flows more smoothly. As a result, the pump efficiency can be further enhanced.
- the elastic material 150 is disposed between the volute portion 130 and the casing 30.
- the variation in dimension in the direction in which the rotation center shaft 60 extends is absorbed by the elastic member 150. Therefore, so-called rattling that the front shaft fixing portion (shaft support portion) 133 collides with a surrounding portion due to vibration does not occur. Thereby, the front shaft fixing portion (shaft support portion) 133 of the volute portion 130 can be stably attached to the casing 30.
- FIG. 8 is a perspective view when looking at the inner surface of the casing of the modification of the first embodiment of the present invention.
- FIG. 9 is a perspective view of the volute portion of the modification of the first embodiment of the present invention as viewed from the side of the casing.
- the casing 30A and the volute portion 130A basically have the same configuration as the casing 30 and the volute portion 130 described in the first embodiment.
- a protrusion 137e is provided on the outer peripheral surface 137b of the protrusion 137 of the volute portion 130A, and an L-shaped groove 38b is provided in the recess 38 of the casing 30A corresponding to the protrusion 137e. The point is different from the pump of the first embodiment.
- the protrusion 137e is inserted along the groove 38b and then rotated about the central axis of rotation at the deepest position of the groove 38b.
- the volute portion 130A is fixed to the casing 30.
- the above-described pump of the present modification also provides the same operation and effect as the operation and effect obtained by the pump of the first embodiment.
- the protrusion 137e and the groove 38b are formed as a retaining structure that prevents the volute portion 130A and the casing 30A from being separated from each other. Therefore, in addition to the operation and effects obtained by the pump of the embodiment described above, an effect is also obtained that the volute portion 130A and the casing 30A can be easily assembled.
- the present invention is not limited to the above-mentioned embodiment, and it is possible to add various modification to a pump of the above-mentioned embodiment.
- a canned motor pump is exemplified in which the suction pipe and the suction flow path are curved and can be attached to a part of linearly arranged piping.
- the direction in which each of the suction pipe and the suction flow path extends substantially coincides with the direction in which the rotation center shaft extends, and can be attached to a corner or the like of the L-shaped bent pipe. It may be a canned motor pump.
- the specifications (shape, size, layout, etc.) of the casing, the suction pipe, and other details may be changed as appropriate.
- the volute portion is formed as a separate part from the casing and attached to the casing.
- a pump can be applied to, for example, a pump incorporating a line piping type that forms a suction flow passage in a casing by die cutting.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
A pump (1) is provided with : a casing (30) which forms the outer shell of a suction flow passage (35a), of a pump chamber (131) which connects to the suction flow passage (35a), and of a discharge flow passage (36a) which connects to the pump chamber (131); and a volute section (130) which includes a volute flow passage connecting to both the suction flow passage (35a) and the discharge flow passage (36a) and which is formed in the pump chamber (131) as a part independent of the casing (30).
Description
本発明は、液体を吸い込み、その吸い込まれた液体に圧力を加えることにより、圧力が増加された液体を吐出するポンプに関するものである。
The present invention relates to a pump that discharges a liquid whose pressure has been increased by drawing a liquid and applying a pressure to the drawn liquid.
従来から、液体の圧力を増加するために用いられるポンプが知られている。従来のポンプは、液体の吸込口および吐出口を有するケーシングを備えている。従来のケーシングは、その内側面にポンプの外殻を構成する部分と一体的に形成されたボリュート部を有している。つまり、ケーシングとボリュート部とは、一体成形により形成された一体構造物として形成されている。
BACKGROUND Conventionally, pumps used to increase the pressure of a liquid are known. Conventional pumps include a casing having a liquid inlet and outlet. The conventional casing has on its inner side a volute formed integrally with the part constituting the shell of the pump. That is, the casing and the volute portion are formed as an integral structure formed by integral molding.
また、従来のポンプは、ボリュートから独立して形成された部品であって、前述の吸込口の端部周縁に固定された軸支持部と、その軸支持部によって一方の端部が支持された回転中心シャフトとを備えている。さらに、従来のポンプは、回転中心シャフトまわりに回転するロータに取り付けられた羽根車を備えている。そのようなポンプは、例えば、特許文献1に開示されている。
Also, the conventional pump is a component formed independently of volute, and one end is supported by the shaft support fixed to the peripheral edge of the end of the suction port described above, and the shaft support And a rotation center shaft. In addition, conventional pumps include an impeller mounted on a rotor that rotates about a center of rotation shaft. Such a pump is disclosed, for example, in Patent Document 1.
この特許文献1に開示されたポンプは、軸支持部およびケーシングのそれぞれが独立した別個の部品として形成されている。そのため、同一構造を有する軸支持部が複数種類のポンプのそれぞれに設けられていても、ケーシングの吸込口の口径を異ならせることにより、要求される性能を有するポンプを製造することができる。
In the pump disclosed in Patent Document 1, each of the shaft support and the casing is formed as an independent and separate part. Therefore, even if the shaft support having the same structure is provided for each of a plurality of types of pumps, a pump having the required performance can be manufactured by varying the diameter of the suction port of the casing.
上記の従来のポンプによれば、要求される様々な性能に応じた複数種類のポンプに同一構造を有する軸支持部を用いることができる。
According to the above-mentioned conventional pump, it is possible to use a shaft support having the same structure for a plurality of types of pumps according to various required performances.
ボリュート部は、上述の軸支持部に比較して、ポンプの性能により大きな影響を与える。したがって、要求される性能に応じて複数種類のポンプのそれぞれに適したボリュート部を形成することは極めて重要である。しかしながら、複数種類のポンプのそれぞれに異なるボリュート部を形成することは現実的な対応策ではない。その理由は、従来のポンプにおいては、ボリュート部は、ケーシングの一部として、一体成形により、ポンプの外殻を構成する部分と一体的に形成されているからである。より具体的に言うと、前述の対応策が現実的ではない理由は、要求されるポンプの性能に応じて異なるボリュート部を形成する場合には、複数種類のポンプのそれぞれのケーシング全体を異なる構造に形成する必要があるからである。
The volute has a greater effect on the performance of the pump compared to the shaft support described above. Therefore, it is extremely important to form a volute suitable for each of a plurality of types of pumps depending on the required performance. However, forming different volute parts for each of a plurality of types of pumps is not a practical solution. The reason is that in the conventional pump, the volute portion is integrally formed with the portion constituting the outer shell of the pump as a part of the casing by integral molding. More specifically, the reason why the above-mentioned countermeasure is not realistic is that, in the case of forming different volutes depending on the required performance of the pump, the entire casing of each of a plurality of types of pumps has a different structure It is necessary to form in
一方、近年においては、高い耐熱性および高い耐水圧を有するポンプに対するニーズが高まっている。そのため、ケーシングにエンジニアリングプラスチック等の高価な樹脂材料を用いる必要がある。したがって、要求される性能に応じて、複数種類のポンプのそれぞれのケーシング全体を異なる構造に形成すると、ポンプのコストが高くなってしまう。
On the other hand, in recent years, there is an increasing need for pumps having high heat resistance and high water pressure resistance. Therefore, it is necessary to use an expensive resin material such as engineering plastic for the casing. Therefore, depending on the required performance, if the entire casing of each of the plurality of types of pumps is formed into a different structure, the cost of the pump will increase.
本発明は、前記従来の課題を解決するもので、複数種類のポンプのそれぞれのケーシング全体を異なる構造に形成することなく、要求される性能に応じた様々なポンプを提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide various pumps according to the required performance without forming the entire casings of a plurality of types of pumps into different structures. .
前記従来の課題を解決するために、本発明のポンプは、吸込流路、前記吸込流路に連通するポンプ室、および前記ポンプ室に連通する吐出流路の外郭を構成するケーシングと、前記吸込流路および前記吐出流路のそれぞれに連通する渦巻き状の流路の外郭を構成するように、前記ポンプ室内において前記ケーシングから独立した部品として形成されたボリュート部と、前記渦巻き状の流路に適合するように前記ポンプ室に収容され、前記吸込流路から前記渦巻き状の流路に流れ込んできた液体を前記吐出流路に送り出す羽根車と、を備えている。
In order to solve the above-mentioned conventional problems, a pump according to the present invention includes a suction flow passage, a pump chamber communicating with the suction flow passage, and a casing forming an outer shell of a discharge flow passage communicating with the pump chamber; A volute portion formed as a component independent of the casing in the pump chamber so as to form an outer shell of a spiral flow path communicating with each of the flow path and the discharge flow path; And an impeller, which is accommodated in the pump chamber so as to fit, and which discharges the liquid, which has flowed into the spiral flow passage from the suction flow passage, to the discharge flow passage.
本発明によれば、複数種類のポンプのそれぞれのケーシング全体を異なる構造に形成することなく、要求される性能に応じた様々なポンプを提供することができる。
According to the present invention, it is possible to provide various pumps according to required performance without forming the entire casings of a plurality of types of pumps into different structures.
本発明の第1の実施の形態のポンプは、吸込流路、前記吸込流路に連通するポンプ室、および前記ポンプ室に連通する吐出流路の外郭を構成するケーシングと、前記吸込流路および前記吐出流路のそれぞれに連通する渦巻き状の流路の外郭を構成するように、前記ポンプ室に前記ケーシングから独立した部品として設けられたボリュート部と、前記渦巻き状の流路に適合するように前記ポンプ室に収容され、前記吸込流路から前記渦巻き状流路に流れ込んできた液体を前記吐出流路に送り出す羽根車と、を備えている。
A pump according to a first embodiment of the present invention includes: a suction flow passage; a pump chamber communicating with the suction flow passage; and a casing forming an outer shell of a discharge flow passage communicating with the pump chamber; The volute portion provided as a component independent of the casing in the pump chamber and the volute flow path so as to form an outer shell of the flow path communicating with each of the discharge flow path And an impeller, which is accommodated in the pump chamber and sends out the liquid flowing from the suction flow path to the spiral flow path to the discharge flow path.
これによれば、複数種類のポンプのそれぞれのケーシング全体を異なる構造に形成することなく、要求される性能に応じた様々なポンプを提供することができる。
According to this, it is possible to provide various pumps according to the required performance without forming the respective casings of a plurality of types of pumps in different structures.
本発明の第2の実施の形態のポンプは、特に、前述の第1の実施の形態のポンプにおいて、前記羽根車の回転中心軸が延びる方向に沿って延びる回転中心シャフトと、前記回転中心シャフトを支持する軸支持部と、を備え、前記ボリュート部と前記軸支持部とは、一体成形により、一体構造物として形成されている。
The pump according to the second embodiment of the present invention is, in particular, the pump according to the first embodiment described above, wherein the rotation center shaft extends along the direction in which the rotation center axis of the impeller extends, and the rotation center shaft And a shaft support portion for supporting the volute portion, and the volute portion and the shaft support portion are formed as an integral structure by integral molding.
これによれば、ボリュート部および軸支持部を1つの金型で1回の成形工程で形成することができる。
According to this, the volute portion and the shaft support portion can be formed in one molding process with one mold.
本発明の第3の実施の形態のポンプは、特に、前述の第1の実施の形態のポンプにおいて、前記吸込流路の下流側の端部が、前記回転軸が延びる方向に沿って延びるように、前記吸込流路の前記上流側の部分から前記吸込流路の前記下流側の端部へ至る流路が湾曲した形状を有している。
In the pump of the third embodiment of the present invention, in particular, in the pump of the first embodiment described above, the downstream end of the suction passage extends along the direction in which the rotation shaft extends. The flow passage extending from the upstream portion of the suction flow passage to the downstream end of the suction flow passage has a curved shape.
これによれば、ポンプ室に吸い込まれる液体の流れを円滑にすることができる。
According to this, the flow of the liquid sucked into the pump chamber can be made smooth.
本発明の第4の実施の形態のポンプは、特に、前述の第1の実施の形態のポンプにおいて、前記吐出流路の上流側の端部が、前記渦巻き状の流路の外周側の端部に連続するように延びる。
In the pump according to the fourth embodiment of the present invention, in particular, in the pump according to the first embodiment described above, the upstream end of the discharge flow passage is the outer end of the spiral flow passage It extends to be continuous with the part.
これによれば、ポンプ室から吐き出される液体の流れを円滑にすることができる。
According to this, the flow of the liquid expelled from the pump chamber can be made smooth.
本発明の第5の実施の形態は、特に、前述の第1~第4の実施の形態のいずれかのポンプにおいて、前記ボリュート部の内側の領域には、前記渦巻き状の流路の中心部を構成するように前記吸込流路と連通する開口部が形成されており、前記ボリュート部の前記ケーシング側の部分には、前記開口部の外周に沿って延びる環状の突起部を有している。
According to the fifth embodiment of the present invention, in particular, in the pump according to any one of the first to fourth embodiments described above, in the region inside the volute portion, the central portion of the spiral flow path An opening communicating with the suction flow passage is formed so as to configure the casing, and a portion on the casing side of the volute has an annular protrusion extending along the outer periphery of the opening. .
これによれば、ボリュート部の突起部を利用してボリュート部の開口部内の流路がケーシングの吸込流路に連通するようにボリュート部を形成することができる。
According to this, it is possible to form the volute portion so that the flow passage in the opening of the volute portion communicates with the suction flow passage of the casing by using the protrusion of the volute portion.
本発明の第6の実施の形態は、特に、前述の第5の実施の形態のいずれかのポンプにおいて、 前記環状の突起部の上面が前記吸込流路の一部を形作るように前記ケーシングの前記吸込流路を構成する内面に連続した平面を有している。
According to a sixth embodiment of the present invention, in particular, in the pump according to any of the fifth embodiment described above, the upper surface of the annular projection forms the part of the suction flow passage, and the upper surface of the annular protrusion It has a flat surface continued to the inner surface which constitutes the suction channel.
これによれば、吸込流路の内面と突起部の上面とが連続している。そのため、吸込流路と突起部の上面との間で段差部がない。その結果、吸込流路から突起部の上面へ至る経路において、液体が円滑に流れる。したがって、ポンプ効率を高めることができるようになる。
According to this, the inner surface of the suction flow passage and the upper surface of the protrusion are continuous. Therefore, there is no stepped portion between the suction flow passage and the upper surface of the protrusion. As a result, the liquid flows smoothly in the path from the suction flow path to the upper surface of the projection. Thus, the pump efficiency can be enhanced.
本発明の第7の実施の形態は、特に、前述の第6の実施の形態のポンプにおいて、前記環状の突起部は、前記上面に連続する曲面を有し、前記曲面が前記吸込流路から前記開口部内の前記渦巻き状の流路の前記中心部へ液体を導くように曲がっている。
According to the seventh embodiment of the present invention, in particular, in the pump of the sixth embodiment described above, the annular protrusion has a curved surface continuous with the upper surface, and the curved surface is formed from the suction flow channel It is curved to direct liquid to the center of the spiral channel in the opening.
これによれば、吸込流路とポンプ室との間において鋭角状の曲がり部が形成されない。その結果、吸込流路からポンプ室へ至る流路において液体が円滑に流れる。したがって、ポンプ効率を高めることができる。
According to this, a sharp bend is not formed between the suction flow passage and the pump chamber. As a result, the liquid flows smoothly in the flow path from the suction flow path to the pump chamber. Thus, the pump efficiency can be increased.
本発明の第8の実施の形態は、特に、前述の第5~第7のいずれかの実施の形態のポンプにおいて、前記吸込流路を構成する内面と前記開口部の内周面とが連続するように、前記環状の突起部の上面の一部が、前記ケーシングにより閉塞されている。
According to the eighth embodiment of the present invention, in particular, in the pump according to any one of the fifth to seventh embodiments, the inner surface constituting the suction passage and the inner peripheral surface of the opening are continuous. As a result, a part of the upper surface of the annular projection is closed by the casing.
これによれば、ケーシングの吸込流路を構成する内面から開口部の内周面にかけて、吸込流路とポンプ室との間において鋭角状の曲がり部が形成されない。その結果、吸込流路からポンプ室へ至る流路において液体が円滑に流れる。したがって、ポンプ効率を高めることができる。
According to this, from the inner surface which comprises the suction flow path of a casing to the internal peripheral surface of an opening part, an acute-angled curved part is not formed between a suction flow path and a pump chamber. As a result, the liquid flows smoothly in the flow path from the suction flow path to the pump chamber. Thus, the pump efficiency can be increased.
本発明の第9の実施の形態のポンプは、特に、前述の第5~第8の実施の形態のいずれかのポンプにおいて、前記ボリュート部は、前記環状の突起部の外周面から突出する外周突起を有し、前記ケーシングは、前記外周突起に対応する位置に前記外周突起を受け入れるL字状の溝を有している。
In the pump according to the ninth embodiment of the present invention, in particular, in the pump according to any of the fifth to eighth embodiments described above, the volute portion has an outer periphery protruding from an outer peripheral surface of the annular protrusion. It has a projection, and the casing has an L-shaped groove for receiving the outer peripheral projection at a position corresponding to the outer peripheral projection.
これによれば、ボリュート部とケーシングとが中心シャフトが延びる方向において互いに離れてしまうことが防止される。
This prevents the volute portion and the casing from being separated from each other in the direction in which the central shaft extends.
本発明の第10の実施の形態のポンプは、特に、前述の第1~第9のいずれかの発明の実施の形態のポンプにおいて、前記ケーシングは、前記ポンプ室側に向く面にケーシング凹部を含み、前記ボリュート部は、前記ケーシング側に向く面に前記ケーシング凹部に挿入されたボリュート凸部を含む。
In the pump according to the tenth embodiment of the present invention, in particular, in the pump according to any of the first to ninth inventions described above, the casing has a casing recess on the surface facing the pump chamber side. The volute portion includes a volute convex portion inserted in the casing concave portion on a surface facing the casing side.
これによれば、ケーシングとボリュート部との位置決めをすることができる。
According to this, the casing and the volute portion can be positioned.
本発明の第11の実施の形態のポンプは、特に、前述の第1~第10の実施の形態のいずれかのポンプにおいて、前記ケーシングの前記ボリュート部に対向する面と前記ボリュート部の前記ケーシングに対向する面とは、互いに嵌合の関係を有している。
The pump according to the eleventh embodiment of the present invention is, in particular, the pump according to any of the first to tenth embodiments described above, in which the casing faces the volute portion and the casing of the volute portion. The faces facing each other have a fitting relationship with each other.
これによれば、ケーシングとボリュート部との位置関係の固定が安定する。
According to this, the fixing of the positional relationship between the casing and the volute portion is stabilized.
本発明の第12の実施の形態のポンプは、特に、前述の第1~第11のうちいずれかの実施の形態のポンプにおいて、前記ボリュート部と前記ケーシングとの間に弾性材が配置されている。
In the pump according to the twelfth embodiment of the present invention, in particular, in the pump according to any one of the first to eleventh embodiments described above, an elastic material is disposed between the volute portion and the casing. There is.
これによれば、回転中心シャフトが延びる方向におけるボリュート部およびケーシングの寸法のばらつきが弾性材によって吸収される。そのため、ボリュート部とケーシングとがボリュート部の振動によって衝突すること、すなわち、いわゆる、ガタツキを防止することができる。
According to this, the dispersion of the dimensions of the volute portion and the casing in the direction in which the rotation center shaft extends is absorbed by the elastic material. Therefore, the volute portion and the casing can be prevented from colliding due to the vibration of the volute portion, that is, so-called rattling can be prevented.
本発明の第13の実施の形態のポンプは、特に、前述の第1の実施の形態のポンプにおいて、前記羽根車に接続され、電磁力によって回転する磁気従動部と、一方の端部が閉塞された円筒形状部と、前記円筒形状部の他方端部の開口部から外方へ突出し、前記円筒形状部の中心軸方向に沿って突出する環状の凸部を有するフランジ部とを含み、前記ケーシングおよび前記ボリュート部とともに、前記羽根車、前記回転中心シャフト、および前記磁気従動部を収納する空間を形作る分離板と、前記羽根車の外周に沿って配置され、前記羽根車の外周部と前記分離板の前記フランジ部の内周部との間の隙間を小さくするように、前記ボリュート部と前記分離板との間に設けられた環状のスペーサとを備えている。
The pump according to the thirteenth embodiment of the present invention is, in particular, the pump according to the first embodiment described above, wherein the magnetic follower connected to the impeller and rotated by an electromagnetic force, and one end thereof are closed And a flange portion having an annular convex portion protruding outward from the opening at the other end of the cylindrical portion and protruding along the central axis direction of the cylindrical portion, A separation plate that forms a space for housing the impeller, the rotation center shaft, and the magnetic driven portion together with the casing and the volute portion, and is disposed along the outer periphery of the impeller; An annular spacer is provided between the volute portion and the separation plate so as to reduce a gap between the separation plate and the inner peripheral portion of the flange portion.
これによれば、羽根車の外周部と分離板の前記フランジ部の内周部と間の隙間から磁気従動部が収納されている空間へ流れ込む液体の量を極力低減することができる。
According to this, it is possible to reduce as much as possible the amount of liquid flowing into the space in which the magnetic driven portion is stored from the gap between the outer peripheral portion of the impeller and the inner peripheral portion of the flange portion of the separating plate.
第14の発明の実施の形態のポンプは、特に第13の発明の実施の形態において、前記環状のスペーサは、前記ボリュート部側に向く面から突出するスペーサ突起を有し、前記ボリュート部は、前記環状のスペーサ側に向く面に設けられ、前記スペーサ突起を受け入れるボリュート凹部を有している。
In a pump according to a fourteenth embodiment of the present invention, in particular according to the thirteenth invention, the annular spacer has a spacer protrusion projecting from a surface facing the volute portion, and the volute portion is A volute recess is provided on the annular spacer facing surface and receives the spacer protrusion.
これによれば、環状のスペーサとボリュート部との位置ずれが防止される。
According to this, the positional deviation between the annular spacer and the volute portion is prevented.
第15の発明の実施の形態のポンプは、特に、前述の第13または第14の実施の形態のポンプにおいて、前記分離板の前記フランジ部を覆うカバーフランジ部と、前記分離板の前記円筒形状部の内周面を覆うカバー内周面部と、を含む分離板カバーを備え、前記スペーサは、前記分離板の前記フランジ部の前記環状の凸部の内側の領域において、前記環状の凸部に沿って延び、前記環状のスペーサの前記分離板側の面から突出する環状のリブを含み、前記環状のリブが前記カバーフランジ部を前記分離板の前記フランジ部に向かって押さえ付ける。
A pump according to a fifteenth embodiment of the present invention is, in particular, the pump according to the thirteenth or fourteenth embodiment described above, comprising: a cover flange portion covering the flange portion of the separating plate; and the cylindrical shape of the separating plate A cover inner peripheral surface covering the inner peripheral surface of the housing, and the spacer is provided on the annular convex portion in a region inside the annular convex portion of the flange portion of the separator. The annular rib extends along and protrudes from a surface of the annular spacer on the side of the separation plate, and the annular rib presses the cover flange toward the flange of the separation plate.
これによれば、カバーフランジ部が分離板とスペーサとにより挟まれた状態で分離板カバーの位置が固定される。そのため、分離板カバーの位置が強固に固定される。
According to this, the position of the separating plate cover is fixed in a state in which the cover flange portion is sandwiched between the separating plate and the spacer. Therefore, the position of the separating plate cover is firmly fixed.
以下、本発明の実施の形態のポンプが、図面を参照しながら説明される。なお、この実施の形態によって本発明が限定されるものではない。また、以下においては、羽根車の回転中心シャフトが延びる方向を前後方向と規定される。その回転中心シャフトが延びる方向において回転中心シャフトから吸込口に向かう方向が前方向と規定される。前方向の反対に向かう方向が後方向と規定される。このような前提で、実施の形態のポンプが説明される。
Hereinafter, a pump according to an embodiment of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment. Also, in the following, the direction in which the rotation center shaft of the impeller extends is defined as the front-rear direction. The direction from the rotation center shaft to the suction port in the direction in which the rotation center shaft extends is defined as the forward direction. The direction opposite to the forward direction is defined as the backward direction. The pump of embodiment is demonstrated on such a premise.
(実施の形態1)
まず、図1を用いて、本発明の実施の形態1のポンプの概要が説明される。 Embodiment 1
First, an outline of a pump according to a first embodiment of the present invention will be described with reference to FIG.
まず、図1を用いて、本発明の実施の形態1のポンプの概要が説明される。 Embodiment 1
First, an outline of a pump according to a first embodiment of the present invention will be described with reference to FIG.
図1に示されるように、ポンプ1は、その外郭を構成するポンプ本体10と、ポンプ本体10内に形成された回転体収納室51と、回転体収納室51に収納された回転体20と、を備えている。
As shown in FIG. 1, the pump 1 includes a pump main body 10 forming an outer shell thereof, a rotary body storage chamber 51 formed in the pump main body 10, and a rotary body 20 stored in the rotary body storage chamber 51. And.
ポンプ本体10は、ケーシング30と、後方に向かって開口するポンプ室131が形成され、ケーシング30から独立した部品として形成されたボリュート部130とを備えている。ケーシング30のボリュート部130に対向する面とボリュート部130のケーシング30に対向する面とは、互いに嵌合の関係を有している。この嵌合は、隙間嵌めになっていることが好ましい。
The pump body 10 is provided with a casing 30 and a volute portion 130 which is formed as a component independent of the casing 30 and in which a pump chamber 131 opened toward the rear is formed. The surface of the casing 30 facing the volute portion 130 and the surface of the volute portion 130 facing the casing 30 have a fitting relationship with each other. This fitting is preferably a clearance fit.
ポンプ本体10は、前方に向かって開口する収納部41aが形成された駆動ブロック40を備えている。なお、後述するように、スペーサ140は、必要に応じてポンプ本体10を構成する部材として設けられてもよい。
The pump body 10 is provided with a drive block 40 in which a storage portion 41a that opens forward is formed. As described later, the spacer 140 may be provided as a member constituting the pump main body 10 as necessary.
駆動ブロック40は、ケーシング30およびボリュート部130の後方に位置付けられている。駆動ブロック40の後述する収納部41aはボリュート部130のポンプ室131に連通している。収納部41aとポンプ室131とによって回転体20全体を収納する回転体収納室51が構成されている。
The drive block 40 is positioned behind the casing 30 and the volute portion 130. A later-described storage portion 41 a of the drive block 40 is in communication with the pump chamber 131 of the volute portion 130. The housing portion 41 a and the pump chamber 131 constitute a rotary body storage chamber 51 for housing the entire rotary body 20.
駆動ブロック40は、分離板41、磁気駆動部42、制御部43、および駆動ブロック40の外郭を構成するモールド樹脂44を有している。
The drive block 40 has a separating plate 41, a magnetic drive unit 42, a control unit 43, and a mold resin 44 forming an outer shell of the drive block 40.
分離板41は、合成樹脂、例えば、ポリフェニレンサルファイド(PPS)樹脂によって形成されている。なお、磁気駆動に影響を及ぼさない金属を用いて分離板41を形成することも可能である。
The separation plate 41 is formed of a synthetic resin, for example, a polyphenylene sulfide (PPS) resin. It is also possible to form the separation plate 41 using a metal that does not affect the magnetic drive.
この分離板41は、前方に向かって開口する容器状、すなわち、凹形状に形成されている。分離板41は、収納部41aとフランジ部41dとによって構成されている。収納部41aは、円筒形状の周壁部41cと底面部41bとにより構成されている。周壁部41cの前方側の端部が開口しており、周壁部41cの後方側の端部が収納部41aの底面部41bを構成している。つまり、収納部41aは、一方の端部が閉塞された円筒形状を有している。フランジ部41dは、収納部41aの周壁部41cの前方側の端部から径方向において外側に向かって突出している。本実施形態では、フランジ部41dは周壁部41cの周方向全長に亘って形成されている。
The separation plate 41 is formed in the shape of a container that opens forward, that is, in a concave shape. The separation plate 41 is configured of a storage portion 41a and a flange portion 41d. The storage portion 41a is configured of a cylindrical peripheral wall portion 41c and a bottom surface portion 41b. The front end of the peripheral wall 41c is open, and the rear end of the peripheral wall 41c constitutes a bottom 41b of the housing 41a. That is, the storage portion 41 a has a cylindrical shape in which one end is closed. The flange portion 41 d protrudes outward in the radial direction from an end portion on the front side of the peripheral wall portion 41 c of the storage portion 41 a. In the present embodiment, the flange portion 41 d is formed over the entire circumferential length of the peripheral wall portion 41 c.
このように、本実施形態では、ケーシング30、ボリュート部130および分離板41によって、ハウジング50が構成されている。ハウジング50は、回転体20を収納する空間としての回転体収納室51を形作っている。なお、ポンプ本体10と同様に、スペーサ140も必要に応じてハウジング50を構成する部材として設けられてもよい。
Thus, in the present embodiment, the housing 50 is configured by the casing 30, the volute portion 130 and the separation plate 41. The housing 50 forms a rotating body storage chamber 51 as a space for storing the rotating body 20. In addition, the spacer 140 may be provided as a member which comprises the housing 50 as needed like the pump main body 10. FIG.
収納部41aの底面部41bの中央領域(収納部41a内の奥側の中央部)には、底面部から前方に向かって突出する後軸固定部(軸支持部)41eが形成されている。後軸固定部41eには、回転体20を回転自在に支持するセラミックス製の回転中心シャフト60の後端部が固定されている。
A rear shaft fixing portion (shaft support portion) 41e which protrudes forward from the bottom surface portion is formed in a central region of the bottom surface portion 41b of the storage portion 41a (a central portion on the back side in the storage portion 41a). The rear end portion of a rotation center shaft 60 made of ceramics, which rotatably supports the rotating body 20, is fixed to the rear shaft fixing portion 41e.
なお、回転中心シャフト60は、分離板41に固定されており、分離板41に対して回転することはできない。本実施の形態においては、回転中心シャフト60の後方側の先端部の輪郭形状がD字状に形成されている。また、後軸固定部41eの内周面が回転中心シャフト60の後方側の先端部に対応するD字状の凹部に形成されている。この構成によれば、回転中心シャフト60のD字状の後方側の先端部が後軸固定部41eのD字状の凹部に嵌め込まれる。その結果、回転中心シャフト60は、分離板41に対して相対的に回転できない状態で保持される。その結果、回転中心シャフト60は、後述される磁気従動部80を媒介として、羽根車70の回転中心軸として機能する。
The rotation center shaft 60 is fixed to the separation plate 41 and can not rotate with respect to the separation plate 41. In the present embodiment, the outline shape of the tip on the rear side of the rotation center shaft 60 is formed in a D-shape. In addition, an inner peripheral surface of the rear shaft fixing portion 41 e is formed in a D-shaped concave portion corresponding to the rear end of the rotation center shaft 60. According to this configuration, the D-shaped rear end of the rotation center shaft 60 is fitted into the D-shaped recess of the rear shaft fixing portion 41e. As a result, the rotation center shaft 60 is held in a non-rotatable state relative to the separation plate 41. As a result, the rotation center shaft 60 functions as a rotation center axis of the impeller 70 via the magnetic follower 80 described later.
磁気駆動部42は、ステータである。磁気駆動部42は、電磁鋼板で形成されたステータコア42aとコイル42bとを備えている。ステータコア42aとコイル42bとの間には、モールド樹脂44が設けられている。したがって、ステータコア42aとコイル42bとは、電気的に絶縁されている。磁気駆動部42は、収納部41aの周壁部41cを囲むように設けられている。
The magnetic drive unit 42 is a stator. The magnetic drive unit 42 includes a stator core 42 a and a coil 42 b formed of an electromagnetic steel plate. Mold resin 44 is provided between stator core 42a and coil 42b. Therefore, stator core 42a and coil 42b are electrically isolated. The magnetic drive unit 42 is provided so as to surround the peripheral wall portion 41 c of the storage portion 41 a.
制御部43は、磁気駆動部42を制御する制御基板である。制御部43は、分離板41および磁気駆動部42の後方に位置付けられている。この制御部43は、磁気駆動部42のコイル42bに電気的に接続されている。制御部43が磁気駆動部42のコイル42bに電流を流すと、磁気駆動部42には、回転体20の後述する磁気従動部80を回転させる磁界が発生する。
The control unit 43 is a control board that controls the magnetic drive unit 42. The control unit 43 is positioned behind the separation plate 41 and the magnetic drive unit 42. The control unit 43 is electrically connected to the coil 42 b of the magnetic drive unit 42. When the control unit 43 supplies a current to the coil 42 b of the magnetic drive unit 42, a magnetic field is generated in the magnetic drive unit 42 to rotate a magnetic driven unit 80 described later of the rotating body 20.
モールド樹脂44は、例えば、不飽和ポリエステル樹脂によって形成されている。モールド樹脂44は、分離板41の外側に設けられており、分離板41、磁気駆動部42、および制御部43を内包するように一体成形により形成されている。
The mold resin 44 is formed of, for example, an unsaturated polyester resin. The mold resin 44 is provided on the outer side of the separation plate 41, and is formed by integral molding so as to include the separation plate 41, the magnetic drive unit 42, and the control unit 43.
回転体20は、ポンプ部としての羽根車70と、羽根車70の後方側に設けられた磁気従動部80とを有している。本実施形態では、羽根車70と磁気従動部80とが接続されている。本実施形態では、羽根車70と磁気従動部80とは、共通の回転動作をする1つの組立部品としての回転体20を構成している。すなわち、羽根車70は、磁気従動部80の前方側の部分(回転中心シャフト60方向における一方の端部側の部分)に取り付けられている。
The rotating body 20 has an impeller 70 as a pump unit, and a magnetic follower 80 provided on the rear side of the impeller 70. In the present embodiment, the impeller 70 and the magnetic follower 80 are connected. In the present embodiment, the impeller 70 and the magnetic follower unit 80 constitute a rotating body 20 as one assembly part performing a common rotational operation. That is, the impeller 70 is attached to a portion on the front side of the magnetic driven portion 80 (a portion on one end side in the direction of the rotation center shaft 60).
回転体20の磁気従動部80が収納部41aに収納されており、羽根車70がポンプ室131に収納されている。磁気従動部80は、収納部41aに収納されるとともに、回転中心シャフト60により回転中心シャフト60を中心軸として回転可能に設けられたロータである。
The magnetically driven portion 80 of the rotating body 20 is housed in the housing portion 41 a, and the impeller 70 is housed in the pump chamber 131. The magnetic driven unit 80 is a rotor which is housed in the housing portion 41 a and rotatably provided by the rotation center shaft 60 with the rotation center shaft 60 as a center axis.
この磁気従動部80は、合成樹脂製のロータ部81と、ロータ部81の外周側に設けられたマグネット部82と、ロータ部81の中心部に設けられた軸受け83とで構成されている。本実施形態では、ロータ部81はポリフェニレンエーテル(PPE)樹脂製である。マグネット部82はフェライト製もしくはSmFe製などの永久磁石である。軸受け83はカーボン含有の樹脂製摺動材やセラミックで構成されている。
The magnetically driven portion 80 is composed of a rotor portion 81 made of synthetic resin, a magnet portion 82 provided on the outer peripheral side of the rotor portion 81, and a bearing 83 provided at the center of the rotor portion 81. In the present embodiment, the rotor portion 81 is made of polyphenylene ether (PPE) resin. The magnet unit 82 is a permanent magnet made of ferrite or SmFe. The bearing 83 is made of a carbon-containing resin sliding material or ceramic.
ロータ部81は、前後方向に延びる筒状の軸受固定部81aと、軸受固定部81aを囲むマグネット固定部81bとを有している。
The rotor portion 81 has a cylindrical bearing fixing portion 81a extending in the front-rear direction, and a magnet fixing portion 81b surrounding the bearing fixing portion 81a.
軸受固定部81aは、前方側の小径部81cと、後方側の大径部81dとを備えている。小径部81cは、大径部81dよりも直径が小さい。小径部81c内には、軸受け83が挿入されている。軸受け83は、小径部81cの内周面に固定されている。軸受け83には回転中心シャフト60が挿入されている。回転中心シャフト60は、軸受け83の内周面に対して回転摺動可能である。したがって、回転中心シャフト60により回転体20全体が前後軸を回転中心軸として回転可能に支持されている。
The bearing fixing portion 81a includes a front small diameter portion 81c and a rear large diameter portion 81d. The small diameter portion 81c is smaller in diameter than the large diameter portion 81d. The bearing 83 is inserted into the small diameter portion 81c. The bearing 83 is fixed to the inner circumferential surface of the small diameter portion 81c. A rotation center shaft 60 is inserted into the bearing 83. The rotation center shaft 60 is rotatably slidable with respect to the inner circumferential surface of the bearing 83. Therefore, the entire rotary body 20 is rotatably supported by the rotation center shaft 60 with the front and rear axis as the rotation center axis.
マグネット固定部81bは、円筒状に形成されている。マグネット固定部81bの内周面の前方側の部分は、一体成形により軸受固定部81aの小径部81cと一体構造物として形成されている。また、マグネット固定部81bの外周面にはマグネット収納溝81eが形成されている。
The magnet fixing portion 81 b is formed in a cylindrical shape. The front side portion of the inner peripheral surface of the magnet fixing portion 81b is integrally formed with the small diameter portion 81c of the bearing fixing portion 81a as an integral structure. Further, a magnet storage groove 81e is formed on the outer peripheral surface of the magnet fixing portion 81b.
マグネット収納溝81eには、ステンレス製のマグネットカバー82aにより被覆されたマグネット部82が収納されている。なお、マグネットカバー82aを設けず、磁気従動部(ロータ)80の外周面として、マグネット部82の外周面が露出していてもよい。
A magnet portion 82 covered with a stainless steel magnet cover 82a is housed in the magnet housing groove 81e. Note that the outer peripheral surface of the magnet portion 82 may be exposed as the outer peripheral surface of the magnetic driven portion (rotor) 80 without providing the magnet cover 82 a.
マグネット部82は、ロータ部81の外周部に設けられ、磁気駆動部42の内側に位置付けられている。マグネット部82と磁気駆動部42の間には、分離板41の収納部41aの周壁部41cが配置されている。マグネット部82と周壁部41c(本実施形態では、分離板カバー160)との間には、磁気従動部80の回転を許容するための隙間d1が形成されている。
The magnet unit 82 is provided on the outer peripheral portion of the rotor unit 81 and positioned inside the magnetic drive unit 42. A circumferential wall portion 41 c of the storage portion 41 a of the separation plate 41 is disposed between the magnet portion 82 and the magnetic drive portion 42. A gap d1 for allowing the magnetic follower 80 to rotate is formed between the magnet 82 and the peripheral wall 41c (in the embodiment, the separation plate cover 160).
羽根車70は、磁気従動部80の前方に位置付けられたポンプ部である。羽根車70は、ボリュート部130の渦巻き状の流路に適合するようにポンプ室131に収容されている。羽根車70は、羽根車70の周方向に複数設けられた羽根部71と、各羽根部71の後方側を覆う後面シュラウド72と、各羽根部71の前側を覆う前面シュラウド73とを備えている。
The impeller 70 is a pump unit positioned in front of the magnetic follower unit 80. The impeller 70 is accommodated in the pump chamber 131 so as to fit in the spiral flow path of the volute portion 130. The impeller 70 includes a plurality of vanes 71 provided in the circumferential direction of the impeller 70, a rear shroud 72 covering the rear side of each vane 71, and a front shroud 73 covering the front of each vane 71 There is.
ただし、本実施の形態においては、羽根部71と前面シュラウド73とは、一体構造物を構成するように、一体成形された部分である。羽根部71の後方側の端面には、後面シュラウド72が接合されている。
However, in the present embodiment, the blade portion 71 and the front shroud 73 are integrally formed so as to constitute an integral structure. A rear surface shroud 72 is joined to the end face on the rear side of the blade portion 71.
後面シュラウド72は、円板状に形成されている。後面シュラウド72の中央部には、後面シュラウド72と一体成形により一体構造物として形成された接続部90が連続している。接続部90は、ロータ部81の前方側の端部に連続している。
The rear shroud 72 is formed in a disk shape. At a central portion of the rear surface shroud 72, a connection portion 90 formed integrally with the rear surface shroud 72 and formed as an integral structure is continuous. The connecting portion 90 is continuous with the front end of the rotor portion 81.
ポンプの製造時には、マグネット部82、マグネットカバー82a、軸受け83および接続部90は、後面シュラウド72およびロータ部81を成形する金型と同一の金型に挿入される。それにより、マグネット部82、マグネットカバー82a、軸受け83および接続部90は、後面シュラウド72およびロータ部81とともに、一体組立部品を形成するように、樹脂成形される。つまり、後面シュラウド72および磁気従動部80はインサート成形品である。
At the time of manufacture of the pump, the magnet portion 82, the magnet cover 82a, the bearing 83 and the connection portion 90 are inserted into the same mold as the mold for molding the rear shroud 72 and the rotor portion 81. Thereby, the magnet portion 82, the magnet cover 82a, the bearing 83 and the connection portion 90, together with the rear surface shroud 72 and the rotor portion 81, are resin-molded so as to form an integral assembly. That is, the rear shroud 72 and the magnetic follower 80 are insert-molded articles.
前面シュラウド73は、前部に向かうにつれて直径が徐々に小さくなる円錐部73aと、円錐部73aの前部に形成された円筒部73bとを備えている。円筒部73bの前部には、前後方向に貫通する吸入口部74が形成されている。
The front shroud 73 includes a conical portion 73a whose diameter gradually decreases toward the front, and a cylindrical portion 73b formed at the front of the conical portion 73a. At the front of the cylindrical portion 73b, a suction port portion 74 penetrating in the front-rear direction is formed.
また、前面シュラウド73の外周縁(円錐部73aの外周縁)および後面シュラウド72の外周縁は、回転中心シャフト60が延びる方向に沿って見たときに、羽根車70の径方向(ラジアル方向)において同一位置に重なって配置されている。前面シュラウド73の外周縁部と後面シュラウド72の外周縁部との間には隙間が形成されている。
The outer peripheral edge of the front shroud 73 (the outer peripheral edge of the conical portion 73a) and the outer peripheral edge of the rear shroud 72 are radial directions of the impeller 70 when viewed along the direction in which the rotation center shaft 60 extends. At the same position. A gap is formed between the outer peripheral edge of the front shroud 73 and the outer peripheral edge of the rear shroud 72.
この隙間は両シュラウド72,73間において隣り合う羽根部71同士の間に形成された流路75を経由して吸入口部74に連通している。この隙間により羽根車70の吐出部76が構成されている。
The gap communicates with the suction port 74 via a flow path 75 formed between the adjacent vanes 71 between the shrouds 72 and 73. The discharge part 76 of the impeller 70 is comprised by this clearance gap.
各羽根部71は、前面シュラウド73の内周側から前面シュラウド73の外周縁(すなわち後面シュラウド72の外周縁)に至るまでの位置に形成されている。各羽根部71の前方側の端部と前面シュラウド73の円錐部73aの後方側の端部とは連続している。つまり、各羽根部71と前面シュラウド73とは、一体構造物を形成するように、一体成形されている。一方、各羽根部71の後方側の端面は後面シュラウド72の前面に取り付けられている。
Each blade portion 71 is formed at a position from the inner peripheral side of the front surface shroud 73 to the outer peripheral edge of the front surface shroud 73 (that is, the outer peripheral edge of the rear surface shroud 72). The front end of each blade 71 and the rear end of the conical portion 73 a of the front shroud 73 are continuous. That is, each blade 71 and the front shroud 73 are integrally formed so as to form an integral structure. On the other hand, the rear end surface of each blade portion 71 is attached to the front surface of the rear shroud 72.
各羽根部71は、羽根車70の回転時において、吸入口部74を経由して流路75に導入された液体に対して径方向(ラジアル方向)に圧力を加える。これにより、吸入口部74から流路75に供給された液体は吐出部76へ送られ、吐出部76から羽根車70の外周側の空間に吐出される。
Each blade 71 applies pressure in the radial direction to the liquid introduced into the flow path 75 via the suction port 74 when the impeller 70 rotates. Thus, the liquid supplied from the suction port 74 to the flow path 75 is sent to the discharger 76 and discharged from the discharger 76 into the space on the outer peripheral side of the impeller 70.
また、本実施形態では、羽根車70の後側の空間に流れ込んだ液体がポンプ室131へ還流されように還流穴91が接続部90に形成されている。なお、複数の還流穴91が接続部90の周方向に沿って形成されることが好ましい。
Further, in the present embodiment, the reflux hole 91 is formed in the connection portion 90 so that the liquid flowing into the space on the rear side of the impeller 70 is recirculated to the pump chamber 131. Preferably, the plurality of reflux holes 91 are formed along the circumferential direction of the connection portion 90.
図2は、本発明の実施の形態1のポンプにおけるケーシングの平面図を示す。また、図3は、本発明の実施の形態1にかかるポンプにおけるケーシングを内側の位置から見たときの斜視図を示す。
FIG. 2 shows a plan view of a casing of the pump according to Embodiment 1 of the present invention. Moreover, FIG. 3 shows the perspective view when the casing in the pump concerning Embodiment 1 of this invention is seen from the position of an inner side.
ケーシング30は、図1~図3に示すように、後方に開口する容器状に形成されている。ケーシング30は壁部32を有している。壁部32の外周側後縁がフランジ部41dの前面外周端部に当接することにより、収納部41aの前側の部分がケーシング30によって覆われる。
As shown in FIGS. 1 to 3, the casing 30 is formed in the shape of a container that opens rearward. The casing 30 has a wall 32. When the outer peripheral side rear edge of the wall portion 32 abuts on the front outer peripheral end of the flange portion 41 d, the casing 30 covers the front portion of the storage portion 41 a.
ケーシング30は、吸込流路35a、吸込流路35aに連通するポンプ室131、およびポンプ室131に連通する吐出流路36aの外郭を構成している。このケーシング30は、複数のビスやねじ等(図示せず)により駆動ブロック40のフランジ部41dを含む外周部に壁部32の外周部を取り付けることにより、駆動ブロック40に取り付けられている。このとき、ケーシング30とフランジ部41dとの間にはシール材100が設けられている。そのため、回転体収納室51の水密性が確保されている。
The casing 30 constitutes an outer shell of a suction flow passage 35 a, a pump chamber 131 communicating with the suction flow passage 35 a, and a discharge flow passage 36 a communicating with the pump chamber 131. The casing 30 is attached to the drive block 40 by attaching the outer periphery of the wall 32 to the outer periphery of the drive block 40 including the flange 41d with a plurality of screws, screws or the like (not shown). At this time, the sealing material 100 is provided between the casing 30 and the flange portion 41 d. Therefore, the water tightness of the rotating body storage room 51 is secured.
また、ケーシング30の壁部32には、吸入管35と吐出管36とが取り付けられている。吸入管35は、図示せぬ配管等に接続されており、液体をポンプ室131内に導入するように構成されている。吐出管36は、図示せぬ配管等に接続されており、ポンプ室131内の液体を外部(接続された配管等)に吐出するように構成されている。
Further, a suction pipe 35 and a discharge pipe 36 are attached to the wall portion 32 of the casing 30. The suction pipe 35 is connected to a pipe or the like (not shown), and is configured to introduce the liquid into the pump chamber 131. The discharge pipe 36 is connected to a pipe or the like (not shown), and is configured to discharge the liquid in the pump chamber 131 to the outside (a connected pipe or the like).
吸入管35の内部の空間は吸込流路35aとなっており、吸込流路35aの上流側の空間は、接続された配管等の流路に連通する吸込口35bに連通している。吸込流路35aの下流側の空間は、羽根車70の吸入口部74に対向するとともに、ボリュート部130が挿入される開口35cを形成している。
A space inside the suction pipe 35 is a suction flow path 35a, and a space on the upstream side of the suction flow path 35a is in communication with a suction port 35b communicating with a flow path such as a connected pipe. The space on the downstream side of the suction flow passage 35 a faces the suction port 74 of the impeller 70 and forms an opening 35 c into which the volute portion 130 is inserted.
本実施形態では、吸込流路35aは湾曲した形状を有している。吸込流路35aの上流側の空間は、回転中心シャフト60方向に対して交差する方向に延びている。一方、吸込流路35aの下流側の空間は、回転中心シャフト60が延びる方向に沿って延びている。したがって、吸込口35bは、回転中心シャフト60方向に対して交差する方向(本実施形態では垂直な方向)に向いている。また、開口35cは、回転中心シャフト60が延びる方向の後側の空間(羽根車70側の空間)に向いている。
In the present embodiment, the suction passage 35a has a curved shape. A space on the upstream side of the suction passage 35 a extends in a direction intersecting the direction of the rotation center shaft 60. On the other hand, the space on the downstream side of the suction passage 35 a extends along the direction in which the rotation center shaft 60 extends. Therefore, the suction port 35b is directed in a direction (vertical direction in the present embodiment) intersecting the direction of the rotation center shaft 60. The opening 35 c is directed to a space on the rear side in the direction in which the rotation center shaft 60 extends (a space on the impeller 70 side).
一方、吐出管36の内部の空間は吐出流路36aを構成している。吐出流路36aの下流側の位置には、接続された配管等の流路に連通する吐出口36bが形成されている。また、吐出口36bも回転中心シャフト60方向に対して交差する方向(本実施形態では垂直な方向)に向いている。
On the other hand, the space inside the discharge pipe 36 constitutes a discharge flow path 36a. At a position downstream of the discharge flow passage 36a, a discharge port 36b communicating with the flow passage such as the connected pipe is formed. Further, the discharge port 36b is also directed in a direction (vertical direction in the present embodiment) which intersects the rotation center shaft 60 direction.
さらに、本実施形態では、吸込口35bの開口を含む面に垂直な直線がと吐出口36bの開口を含む面に垂直な直線とが回転中心シャフト60が延びる方向に対して垂直であり、且つ、回転中心シャフト60を通る直線を通過する。すなわち、吸込口35bの中心と吐出口36bの中心とを結ぶ直線が、回転中心シャフト60を通る直線と垂直に交わるように、吸込口35bと吐出口36bとが配置されている。こうすることで、直線状に配置された配管の一部に、ポンプ1を取り付けることができる。
Furthermore, in the present embodiment, a straight line perpendicular to the plane including the opening of the suction port 35b and a straight line perpendicular to the plane including the opening of the discharge port 36b are perpendicular to the direction in which the rotation center shaft 60 extends. , Passing through a straight line passing through the rotation center shaft 60. That is, the suction port 35 b and the discharge port 36 b are arranged such that a straight line connecting the center of the suction port 35 b and the center of the discharge port 36 b intersects perpendicularly with the straight line passing through the rotation center shaft 60. By doing this, the pump 1 can be attached to a part of the linearly arranged piping.
また、吸入管35および吐出管36の外周面には、それぞれ、ねじ山35dおよびねじ山36dが形成されている。ねじ山35dおよびねじ山36dは、図示せぬナット等を用いて配管に接続される。
Further, screw threads 35d and 36d are formed on the outer peripheral surfaces of the suction pipe 35 and the discharge pipe 36, respectively. The screw thread 35d and the screw thread 36d are connected to the pipe using a nut or the like (not shown).
また、吸入管35および吐出管36の外周面上におけるねじ山35dおよびねじ山36dの中心側の表面から、それぞれ、保持リブ35eおよび保持リブ36eが突出している。この保持リブ35eおよび保持リブ36eは、ポンプ1を配管に接続する際に、工具で固定されるものである。
Further, holding ribs 35 e and holding ribs 36 e protrude from surfaces on the center sides of the screw threads 35 d and 36 d on the outer peripheral surface of the suction pipe 35 and the discharge pipe 36, respectively. The holding rib 35 e and the holding rib 36 e are fixed by a tool when the pump 1 is connected to a pipe.
具体的に言うと、保持リブ35eおよび保持リブ36eが保持工具で固定された状態で、ねじ山35dおよびねじ山36dに接続される管用継手が専用工具によって所定の締め付けトルクで締め付けられる。
Specifically, in the state where the holding rib 35e and the holding rib 36e are fixed by the holding tool, the pipe joint connected to the screw thread 35d and the screw thread 36d is tightened by the special tool with a predetermined tightening torque.
また、保持リブ35eおよび保持リブ36eを設けることによって、ポンプの取付施工者に保持リブ35eおよび保持リブ36eの保持工具による固定の必要性を認識させることができる。したがって、ポンプの取付施工者が駆動ブロック40を自らの手で把持した状態で、管用継手がねじ山35dおよび36dに取り付けられてしまうことを抑制することができる。
Further, by providing the holding rib 35e and the holding rib 36e, it is possible to make the installer of the pump recognize the necessity of fixing the holding rib 35e and the holding rib 36e by the holding tool. Therefore, it is possible to suppress that the pipe joint is attached to the screw threads 35d and 36d in a state where the installer of the pump holds the drive block 40 with his / her hand.
このように、保持リブ35eおよび保持リブ36eが工具で固定された状態で、ポンプ1に配管を取り付けるようにすれば、施工者が駆動ブロック40を自らの手で把持した状態で管用継手をポンプ1に取り付けた場合に比べて、次の利点がある。
Thus, if piping is attached to the pump 1 in a state where the holding rib 35e and the holding rib 36e are fixed by a tool, the pipe joint can be pumped while the builder holds the drive block 40 by his own hand. There are the following advantages compared to the case of attaching to 1.
その利点は、ケーシング30と駆動ブロック40とを固定するビスやねじ等に抜け荷重が加わってしまうことを抑制することができることである。そのため、上記の配管の取付方法によれば、ビスやねじ等の緩みによる水漏れをより確実に抑制することができる。
The advantage is that it is possible to suppress the load from being applied to a screw, screw or the like that fixes the casing 30 and the drive block 40. Therefore, according to the above mounting method of piping, it is possible to more reliably suppress water leakage due to loosening of screws, screws and the like.
また、保持リブ35eおよび保持リブ36eの形状を多角形とすることが望ましい。こうすれば、保持工具を用いて保持リブ35eや保持リブ36eを多角度で持つことができる。なお、本実施形態では、保持リブ35eおよび保持リブ36eの形状は六角形である。
Further, it is desirable that the shapes of the holding rib 35 e and the holding rib 36 e be polygonal. By so doing, the holding rib 35 e and the holding rib 36 e can be held at multiple angles using the holding tool. In the present embodiment, the shapes of the holding rib 35 e and the holding rib 36 e are hexagonal.
また、多角形の保持リブ35eおよび保持リブ36eの中心が、吸込口35bと吐出口36bの中心を結ぶ直線上にあるようにすることが望ましい。こうすれば、ポンプ1の吸込口35bおよび吐出口36bのそれぞれの中心位置と配管の中心位置とを結ぶ直線上に保持工具の中心を位置付けることができる。その結果、管用継手を専用工具で容易に締め付けることができる。
Further, it is desirable that the centers of the polygonal holding rib 35 e and the holding rib 36 e be on a straight line connecting the centers of the suction port 35 b and the discharge port 36 b. In this way, the center of the holding tool can be positioned on a straight line connecting the center positions of the suction port 35b and the discharge port 36b of the pump 1 and the center position of the pipe. As a result, the pipe joint can be easily tightened with a dedicated tool.
上記した本実施形態のポンプにおいては、上述したように、ボリュート部130がケーシング30から独立した部品として形成されている。つまり、ボリュート部130とケーシング30とを分離することが可能である。
In the pump of the above-described embodiment, as described above, the volute portion 130 is formed as a component independent of the casing 30. That is, the volute portion 130 and the casing 30 can be separated.
図4および図5は、本発明の実施の形態1のポンプにおけるボリュート部を示す図である。図4は、ボリュート部をケーシング側の位置から見たときの斜視図である。図5は、ボリュートをポンプ室側の位置から見たときの斜視図である。
FIG. 4 and FIG. 5 are views showing a volute part in the pump of the embodiment 1 of the present invention. FIG. 4 is a perspective view when the volute portion is viewed from the position on the casing side. FIG. 5 is a perspective view when the volute is viewed from the position on the pump chamber side.
ボリュート部130は、吸込流路35aおよび吐出流路36aのそれぞれに連通する渦巻き状の流路を構成する構造体である。このボリュート部130の前側の位置であって、且つ径方向内側の位置には、吸込流路35aと連通する開口部135が形成されている。
The volute portion 130 is a structure forming a spiral flow passage communicating with each of the suction flow passage 35 a and the discharge flow passage 36 a. An opening 135 communicating with the suction flow passage 35a is formed at a position on the front side of the volute portion 130 and at a radially inner position.
具体的には、ボリュート部130は、後段部136の前側の位置(ケーシング30側の位置)に環状の突起部137が形成されることにより、段差状に形成されている。ボリュート部130においては、突起部137の前側の位置であって、且つ径方向内側の位置に、吸込流路35aと連通する開口部135が形成されている。
Specifically, the volute portion 130 is formed in a step-like shape by forming an annular protrusion 137 at a position on the front side of the rear portion 136 (a position on the casing 30 side). In the volute portion 130, an opening 135 communicating with the suction flow passage 35a is formed at a position on the front side of the projection 137 and at a radially inner position.
すなわち、ボリュート部130のケーシング30側の部分において、環状の突起部137が開口部135を囲うように突出している。
That is, in the portion on the casing 30 side of the volute portion 130, the annular protrusion 137 protrudes so as to surround the opening 135.
ボリュート部130には、ポンプ室131が形成されている。ポンプ室131は、羽根車70を収容する平面視で円形状の羽根車収容室131aと、羽根車収容室131aの外周に形成されて液体に増圧効果を与える平面視で渦巻形状のボリュート構造131bとを備えている。
A pump chamber 131 is formed in the volute portion 130. The pump chamber 131 is formed on the outer periphery of the impeller accommodation chamber 131a circular in plan view for accommodating the impeller 70 and the impeller accommodation chamber 131a, and has a volute structure of a spiral shape in plan view to give a pressure increase effect to the liquid. And 131b.
したがって、吐出部76から羽根車70の外周側の空間へ吐出された液体は、ボリュート構造131bを有する空間へ導入される。その液体には、このボリュート構造131bにおいて圧力が加えられる。ボリュート部130がケーシング30に組み付けられた状態で、ボリュート構造131bが吐出流路36aの上流側の空間に連通する。
Therefore, the liquid discharged from the discharge part 76 to the space on the outer peripheral side of the impeller 70 is introduced into the space having the volute structure 131 b. Pressure is applied to the liquid in this volute structure 131b. When the volute portion 130 is assembled to the casing 30, the volute structure 131b communicates with the space on the upstream side of the discharge flow path 36a.
上記のような構成によれば、液体は、羽根車70の吐出部76からボリュート構造131bを有する空間へ吐出される。その後、その液体は、ボリュート構造131bを有する空間において圧力が加えられる。それにより、液体は、圧力が加えられた状態で、吐出流路36aの吐出口36bを経由してポンプ1の外部の空間へ吐出される。
According to the above configuration, the liquid is discharged from the discharge part 76 of the impeller 70 to the space having the volute structure 131 b. The liquid is then pressurized in the space with volute structure 131b. As a result, the liquid is discharged to the space outside the pump 1 through the discharge port 36b of the discharge flow path 36a in a state where pressure is applied.
ボリュート部130のケーシング30側の位置(後段部136の前面136a)に形成された突起(凸部)136bが、ケーシング30の内面に設けた凹部37に沿って回転中心シャフト60方向に挿入される。また、開口部135の回りに設けられた環状の突起部137の外周面137bが、対向するケーシング30の凹部38に嵌め込まれる。これによって、ボリュート部130がケーシング30に組み付けられる。
A protrusion (convex portion) 136 b formed on a position on the casing 30 side of the volute portion 130 (front surface 136 a of the rear portion 136) is inserted in the direction of the rotation center shaft 60 along the recess 37 provided on the inner surface of the casing 30. . Further, the outer peripheral surface 137 b of the annular protrusion 137 provided around the opening 135 is fitted into the recess 38 of the opposing casing 30. Thus, the volute portion 130 is assembled to the casing 30.
また、本実施形態では、突起部137の上面(ケーシング30側の面)137aが平面状に形成されている。ボリュート部130がケーシング30に組み付けられた状態で、平面状に形成された上面137aの吸込口35b側の部分(図1の右側の部分)が吸込流路35aに露出する。一方、吸込口35b側の部分と反対側の部分(図1の左側の部分)がケーシング30により閉塞される。このように、突起部137が形成されている。したがって、ケーシング30により閉塞される部分が、ボリュート部130をケーシング30に取付ける際の回転中心シャフト60が延びる方向の位置決め部になる。そのため、組み立て精度が向上するとともに、組み立て作業が容易になる。
Further, in the present embodiment, the upper surface (the surface on the side of the casing 30) 137a of the protrusion 137 is formed in a planar shape. In a state where the volute portion 130 is assembled to the casing 30, a portion on the suction port 35b side (a portion on the right side in FIG. 1) of the planarly formed upper surface 137a is exposed to the suction flow passage 35a. On the other hand, the part on the opposite side to the part on the suction port 35 b side (the part on the left side in FIG. 1) is closed by the casing 30. Thus, the protrusion 137 is formed. Therefore, the portion closed by the casing 30 becomes a positioning portion in the direction in which the rotation center shaft 60 extends when the volute portion 130 is attached to the casing 30. Therefore, the assembling accuracy is improved and the assembling operation is facilitated.
すなわち、突起部137の上面137aにおいては、ボリュート部130がケーシング30に組み付けられた状態で、吸込口35b側の位置(図1の右側の位置)に露出部137dが形成される。また、突起部137の上面137aにおいては、吸込口35b側の位置と反対側の位置に閉塞部137cが形成される。
That is, on the upper surface 137a of the projecting portion 137, the exposed portion 137d is formed at the position on the suction port 35b side (the position on the right side in FIG. 1) in a state where the volute portion 130 is assembled to the casing 30. Further, on the upper surface 137a of the projection 137, a closed portion 137c is formed at a position opposite to the position on the suction port 35b side.
なお、凹部38の後面38aは、図4に示すように、吸込口35b側の位置に対して反対側の位置に向かうにつれて幅が広くなるように形成されている。突起部137の上面137aにおける後面38aと重ね合わさる部位が閉塞部137cとなる。
In addition, as shown in FIG. 4, the rear surface 38a of the recessed part 38 is formed so that a width may become wide as it goes to the position on the opposite side with respect to the position by the side of the suction port 35b. A portion of the upper surface 137a of the protrusion 137 overlapping the rear surface 38a is a closed portion 137c.
さらに、上面137aの開口部135側周縁には円弧状部(R部)137fが形成されている。この円弧状部(R部)137fは、吸込口35b側の部分(図1の右側の部分)が最も大きい円弧状部(R部)、すなわち、最も外側に位置付けられた円弧状部となっている。円弧状部(R部)137fは、吸込口35b側の部分とは反対側に向かうにしたがって徐々に小さい円弧状部(R部)となる、すなわち徐々に内側に位置付けられる円弧状部になる。
Further, an arc-shaped portion (R portion) 137f is formed on the peripheral edge on the opening portion 135 side of the upper surface 137a. The arc-shaped portion (R portion) 137f is such that the portion on the suction port 35b side (the portion on the right side in FIG. 1) is the largest arc-shaped portion (R portion), that is, the arc-shaped portion positioned outermost. There is. The arc-shaped portion (R portion) 137 f becomes an arc-shaped portion (R portion) which gradually becomes smaller toward the opposite side to the portion on the suction port 35 b side, that is, an arc-shaped portion gradually positioned inside.
突起部137は、上面137aに連続する曲面としての円弧状部(R部)137fを有している。その曲面である円弧状部(R部)137fは、前軸固定部(軸支持部)133側の方向へ液体を導くように曲がっている。
The protrusion 137 has an arc-shaped portion (R portion) 137f as a curved surface continuous with the upper surface 137a. An arc-shaped portion (R portion) 137f which is the curved surface is bent so as to guide the liquid in the direction of the front shaft fixing portion (shaft supporting portion) 133 side.
また、ボリュート部130は、回転体収納室51の中央部に位置する前軸固定部(軸支持部)133を有している。前軸固定部133には回転中心シャフト60の前方側の先端部が固定されている。
Further, the volute portion 130 has a front shaft fixing portion (shaft support portion) 133 located at the central portion of the rotating body storage chamber 51. The front end portion of the rotation center shaft 60 on the front side is fixed to the front shaft fixing portion 133.
なお、回転中心シャフト60は、分離板41によって回転できないように保持されている。ケーシング30と分離板41とが固定されている。また、ボリュート部130がケーシング30に固定されている。そのため、回転中心シャフト60の前方側の先端部がボリュート部130の前軸固定部133によって回転することができないように保持されていなくてもよい。それは、ボリュート部130に対する回転中心シャフト60の相対回転は分離板41によって制限されているからである。
The rotation center shaft 60 is held by the separation plate 41 so as not to rotate. The casing 30 and the separation plate 41 are fixed. Also, the volute portion 130 is fixed to the casing 30. Therefore, the front end portion of the rotation center shaft 60 may not be held so as not to be rotated by the front shaft fixing portion 133 of the volute portion 130. The reason is that the relative rotation of the rotation center shaft 60 with respect to the volute portion 130 is limited by the separation plate 41.
本実施形態では、前軸固定部133は、突起部137の内面側の位置からポンプ室131に向って延びる複数(本実施形態では3本)の支持リブ134を媒介としてボリュート部130と一体的に形成されている。つまり、本実施の形態においては、ボリュート部130および前軸固定部133は一体成形により一体構造物として形成されている。しかしながら、本発明においては、前軸固定部133は、ボリュート部130と一体構造物として形成されている必要はない。本発明においては、ボリュート部および前軸固定部のそれぞれが独立した1つの構造物として個別の成形工程により形成されてもよい。
In the present embodiment, the front shaft fixing portion 133 is integral with the volute portion 130 via a plurality (three in the present embodiment) of support ribs 134 extending from the position on the inner surface side of the protrusion 137 toward the pump chamber 131. Is formed. That is, in the present embodiment, the volute portion 130 and the front shaft fixing portion 133 are integrally formed as an integral structure. However, in the present invention, the front shaft fixing portion 133 does not have to be formed as an integral structure with the volute portion 130. In the present invention, each of the volute portion and the front shaft fixing portion may be formed as an independent structure by separate molding processes.
前軸固定部133は、前部に向かって突出する円錐(コーン)状の突出部133aと、突出部133aの後部に接続されて回転中心シャフト60の前方側の先端部を支持する筒状の軸受け部133bとを備えている。
The front shaft fixing portion 133 has a cylindrical (conical) protruding portion 133 a protruding toward the front, and a tubular portion connected to the rear of the protruding portion 133 a to support the front end of the rotation center shaft 60. And a bearing portion 133b.
なお、図1中の参照符号110は、軸受け83にかかるスラスト方向の荷重を受ける軸受板、参照符号120は、回転中心シャフト60の振動等を吸収する緩衝材である。
Reference numeral 110 in FIG. 1 denotes a bearing plate that receives a load in the thrust direction applied to the bearing 83, and reference numeral 120 denotes a shock absorbing material that absorbs vibration or the like of the rotation center shaft 60.
また、ボリュート部130のケーシング30側の面とケーシング30との間には、弾性材150が配置されている。本実施形態では弾性材150はOリングである。
Further, an elastic member 150 is disposed between the casing 30 side of the volute portion 130 and the casing 30. In the present embodiment, the elastic member 150 is an O-ring.
このように、ボリュート部130のケーシング30側の面とケーシング30との間に弾性材150が配置される。一般に、回転中心シャフト60が延びる方向におけるボリュート部130およびケーシング30の寸法にばらつきがある場合がある。この場合には、そのばらつきに起因して、前軸固定部133が、回転中心シャフト60が延びる方向において振動(ガタツキ)することがある。しかしながら、本実施の形態のポンプにおいては、弾性材150により前述の振動の発生が抑制されている。
Thus, the elastic member 150 is disposed between the casing 30 side of the volute portion 130 and the casing 30. Generally, there may be variations in the dimensions of volute portion 130 and casing 30 in the direction in which rotation center shaft 60 extends. In this case, the front shaft fixing portion 133 may vibrate (wobble) in the direction in which the rotation center shaft 60 extends due to the variation. However, in the pump of the present embodiment, the elastic material 150 suppresses the generation of the above-mentioned vibration.
なお、ケーシング30の材料としては、耐熱性が高く、高剛性、かつ高硬度の材料が使われることが望ましい。本実施の形態においてはPPS樹脂によってケーシング30が形成されている。一方、ボリュート部130は、ケーシング30よりも強度を必要としないため、PPE樹脂によって形成されている。
It is desirable that a material having high heat resistance, high rigidity, and high hardness be used as the material of the casing 30. In the present embodiment, the casing 30 is formed of PPS resin. On the other hand, volute portion 130 is formed of PPE resin because it requires less strength than casing 30.
上記のように、本実施形態のポンプにおいては、ケーシング30から独立した一体成形部品として、すなわち、ケーシング30とは別体に、前軸固定部133を有するボリュート部130が形成されている。ボリュート部130および前軸固定部133は、水圧による悪影響を受けない。そのため、ボリュート部130および前軸固定部133の材料は、ケーシング30の材料よりも強度を必要としない。したがって、ボリュート部130および前軸固定部133をより安価な材料で形成することができる。
As described above, in the pump according to the present embodiment, the volute portion 130 having the front shaft fixing portion 133 is formed as an integrally molded part independent of the casing 30, ie, separately from the casing 30. The volute portion 130 and the front shaft fixing portion 133 are not adversely affected by water pressure. Therefore, the materials of the volute portion 130 and the front shaft fixing portion 133 do not require more strength than the material of the casing 30. Therefore, the volute portion 130 and the front shaft fixing portion 133 can be formed of a cheaper material.
上記のポンプ1は、制御部43によってコイル42bに電流が流されることにより駆動される。コイル42bに電流が流れると、磁気駆動部42において磁界が発生する。それにより、回転体20に設けられたマグネット部82が、磁気駆動部42に吸引されたり、磁気駆動部42に対して反発したりする。その結果、磁気従動部80が回転中心シャフト60を中心軸として回転中心シャフト60まわりに回転する。これにより、羽根車70が前後に延在する回転中心シャフト60を回転中心軸として回転中心シャフト60まわりに回転する。
The pump 1 described above is driven by the control unit 43 causing a current to flow through the coil 42 b. When a current flows in the coil 42b, a magnetic field is generated in the magnetic drive unit 42. Thereby, the magnet unit 82 provided on the rotating body 20 is attracted to the magnetic drive unit 42 or repelled to the magnetic drive unit 42. As a result, the magnetic follower 80 rotates around the rotation center shaft 60 with the rotation center shaft 60 as a center axis. Thus, the impeller 70 rotates around the rotation center shaft 60 with the rotation center shaft 60 extending back and forth as a rotation center axis.
羽根車70が回転すると、吸入口部74を経由して羽根車70の流路75へ導入された液体が、吐出部76から羽根車70の外周側の空間へ吐出される。羽根車70の外周側の空間へ吐出された液体は、基本的に、ボリュート構造131bを有する空間へ導入される。このとき、このボリュート構造131bを有する空間において、液体に圧力が加えられる。この後、液体は、ボリュート構造131bにおいて圧力が加えられた状態で、吐出口36bを経由してポンプ1の外部の空間へ吐出される。
When the impeller 70 rotates, the liquid introduced into the flow path 75 of the impeller 70 via the suction port 74 is discharged from the discharge portion 76 to the space on the outer peripheral side of the impeller 70. The liquid discharged into the space on the outer peripheral side of the impeller 70 is basically introduced into the space having the volute structure 131 b. At this time, pressure is applied to the liquid in the space having the volute structure 131 b. Thereafter, the liquid is discharged to the space outside the pump 1 via the discharge port 36b in a state where pressure is applied in the volute structure 131b.
液体の一部は、後面シュラウド72の外周縁と分離板41のフランジ部41dとの間のフランジ部の間隙d3を通り、後面シュラウド72の後方の空間へ流入し、収納部41aへ流れ込もうとする。
A portion of the liquid passes through the gap d3 of the flange portion between the outer peripheral edge of the rear surface shroud 72 and the flange portion 41d of the separation plate 41, flows into the space behind the rear surface shroud 72, and flows into the storage portion 41a. I assume.
このとき、マグネット部82に付着するおそれのある異物(鉄粉等の磁性体)が液体内に混入していると、異物(鉄粉等の磁性体)がマグネット部82に付着する。この場合、回転体20の回転を阻害してしまったり、ロックさせてしまったりするおそれがある。
At this time, if foreign matter (magnetic material such as iron powder) that may adhere to the magnet unit 82 is mixed in the liquid, foreign matter (magnetic material such as iron powder) adheres to the magnet unit 82. In this case, the rotation of the rotating body 20 may be inhibited or locked.
そこで、本実施形態では、分離板41の内面に、SUSで形成された分離板カバー160が設けられている。それにより、収納部41a内に侵入してマグネット部82に引きつけられた異物(鉄粉等の磁性体)が磁気従動部80と共に回転して分離板41の内面を傷つけてしまうことが抑制される。
Therefore, in the present embodiment, the separation plate cover 160 formed of SUS is provided on the inner surface of the separation plate 41. Thereby, it is possible to suppress that the foreign matter (magnetic material such as iron powder or the like) which has entered the storage portion 41a and is attracted to the magnet portion 82 is rotated with the magnetic driven portion 80 to damage the inner surface of the separation plate 41. .
また、本実施形態では、分離板41の開口部内周面に環状のスペーサ140が配置されている。
Further, in the present embodiment, an annular spacer 140 is disposed on the inner circumferential surface of the opening of the separation plate 41.
図6および図7は、本発明の実施の形態1のポンプにおけるスペーサを示す図である。図6は、スペーサをケーシング側の面を見たときの斜視図である。図7は、スペーサを分離板側の面を見たときの斜視図を示すものである。
6 and 7 are views showing a spacer in the pump of the first embodiment of the present invention. FIG. 6 is a perspective view of the spacer on the side of the casing. FIG. 7 is a perspective view of the spacer on the side of the separating plate.
スペーサ140は樹脂で形成されており、図1、図6、および図7に示すように、スペーサ140のケーシング30側端面140aはボリュート構造131bの一部を構成している。ケーシング30側端面140aの外周部がボリュート部130の後端面130aによって押されている。それにより、後端面130aと分離板41との間にケーシング30側端面140aの外周部が介在することによって、スペーサ140が固定されている。
The spacer 140 is formed of resin, and as shown in FIGS. 1, 6 and 7, the end surface 140 a on the casing 30 side of the spacer 140 constitutes a part of the volute structure 131 b. The outer peripheral portion of the casing 30 side end surface 140 a is pushed by the rear end surface 130 a of the volute portion 130. Thus, the spacer 140 is fixed by interposing the outer peripheral portion of the casing 30 side end surface 140 a between the rear end surface 130 a and the separation plate 41.
なお、ケーシング30側端面140a上には突起140bが形成されている。この突起140bがボリュート部130の後端面130aにある凹部130bに挿入されている。それにより、スペーサ140の回り止めがなされている。
In addition, the protrusion 140b is formed on the casing 30 side end surface 140a. The protrusion 140 b is inserted into the recess 130 b in the rear end surface 130 a of the volute portion 130. Thereby, the rotation of the spacer 140 is prevented.
さらに、本実施形態では、スペーサ140の後側の位置に分離板41の開口部内周面に沿うように突出する環状のリブ140cが形成されている。その環状のリブ140cが分離板カバー160のフランジ部160aを押さえている。それにより、分離板カバー160が分離板41とスペーサ140とにより挟まれた状態でその位置が固定されている。
Furthermore, in the present embodiment, an annular rib 140c is formed at a position on the rear side of the spacer 140 so as to protrude along the inner circumferential surface of the opening of the separation plate 41. The annular rib 140 c presses the flange portion 160 a of the separating plate cover 160. Thus, the position is fixed in a state where the separation plate cover 160 is sandwiched by the separation plate 41 and the spacer 140.
本実施形態では、フランジ部41dに回転中心シャフト60が延びる方向、すなわち、円筒形状部の中心軸が延びる方向に沿って突出する環状の凸部が設けられている。羽根車70の外周部とフランジ部41dの環状の凸部の内周部との間の隙間が大きい羽根車70を用いている。そのため、スペーサ140が羽根車70の外周に沿って配置されている。それにより、羽根車70の外周部とフランジ部41dの環状の凸部の内周部と間の隙間が小さくなっている。
In the present embodiment, the flange portion 41 d is provided with an annular convex portion that protrudes along the direction in which the rotation center shaft 60 extends, that is, the direction in which the central axis of the cylindrical portion extends. The impeller 70 having a large gap between the outer peripheral portion of the impeller 70 and the inner peripheral portion of the annular convex portion of the flange portion 41 d is used. Therefore, the spacer 140 is disposed along the outer periphery of the impeller 70. Thus, the gap between the outer peripheral portion of the impeller 70 and the inner peripheral portion of the annular convex portion of the flange portion 41 d is reduced.
しかしながら、ポンプ効率を高めるために、羽根車70の外周部とフランジ部41dの内周部との間の隙間があまり大きくない羽根車70(外径が大きい羽根車70)を用いる場合には、スペーサ140を用ける必要はない。
However, in the case of using the impeller 70 (the impeller 70 having a large outer diameter) in which the gap between the outer peripheral portion of the impeller 70 and the inner peripheral portion of the flange portion 41d is not large in order to enhance the pump efficiency. The spacer 140 need not be used.
以上、説明したように、ポンプ1は、吸込流路35a、吸込流路35aに連通するポンプ室131、およびポンプ室131に連通する吐出流路36aの外郭を構成するケーシング30を備えている。また、ポンプ1は、ポンプ室131に収容された羽根車70と、羽根車70の回転中心軸として機能する回転中心シャフト60と、を有している。
As described above, the pump 1 includes the suction flow passage 35a, the pump chamber 131 communicating with the suction flow passage 35a, and the casing 30 forming an outer shell of the discharge flow passage 36a communicating with the pump chamber 131. The pump 1 also has an impeller 70 housed in the pump chamber 131 and a rotation center shaft 60 functioning as a rotation center axis of the impeller 70.
ポンプ1は、ボリュート部130を備えている。ボリュート部130は、吸込流路35aおよび吐出流路36aに連通し、回転中心シャフト60を支持する前軸固定部(軸支持部)60を含んでいる。ボリュート部130は、前記ポンプ室131内においてケーシング30から独立した部品として形成されている。
The pump 1 includes a volute unit 130. The volute portion 130 includes a front shaft fixing portion (shaft support portion) 60 that communicates with the suction flow path 35 a and the discharge flow path 36 a and supports the rotation center shaft 60. The volute portion 130 is formed as a component independent of the casing 30 in the pump chamber 131.
このように、回転中シャフト60の一方端部を支持する前軸固定部(軸支持部)133を有するボリュート部130が、ケーシング30と別体に形成されている。それにより、様々なポンプ性能に応じた複数種類のボリュート部130を形成することができる。それにより、ケーシング30のボリュート部130以外の部分を残存させた状態で、ボリュート部130のみを交換することができる。
Thus, the volute portion 130 having the front shaft fixing portion (shaft support portion) 133 supporting the one end of the shaft 60 during rotation is formed separately from the casing 30. Thereby, a plurality of types of volute sections 130 can be formed according to various pump performances. Thus, only the volute portion 130 can be replaced in a state in which the portion other than the volute portion 130 of the casing 30 is left.
その結果、複数種類のポンプ1において、たとえば、高耐熱性、高剛性、かつ高硬度の高価な樹脂材料で構成されたケーシング30を共通部品として用いることができる。一方、ボリュート部130に関しては、様々なポンプ性能に応じた異なるものが用いられ得る。したがって、たとえば、ボリュート部130をケーシング30よりも安価な材料で構成することが可能となる。
As a result, in the plurality of types of pumps 1, for example, a casing 30 made of an expensive resin material having high heat resistance, high rigidity, and high hardness can be used as a common component. On the other hand, different volute units 130 may be used depending on various pump performances. Therefore, for example, the volute portion 130 can be made of a material cheaper than the casing 30.
このように、本実施形態のポンプ1によれば、ケーシング30全体を異なる構造を有する複数種類の部品として形成することなく、必要とされる様々なポンプ性能に対応しているポンプ1を提供することができる。
As described above, according to the pump 1 of the present embodiment, the pump 1 is provided that is compatible with various required pump performances without forming the entire casing 30 as multiple types of parts having different structures. be able to.
また、本実施形態では、吸込流路35aの吸込口35bと吐出流路36aの吐出口36bとが回転中心シャフト60が延びる方向に対して交差する方向を向いている。また、吸込流路35aは、その下流側の流路を流れる液体が進む方向が回転中心シャフト60方向に対して略平行となるように、湾曲した形状をしている。ボリュート部130のケーシング30側の部分は、開口部135のまわりにおいて突出する環状の突起部137を構成している。突起部137の上面137aは、平面状に形成されている。
Further, in the present embodiment, the suction port 35b of the suction flow path 35a and the discharge port 36b of the discharge flow path 36a face in the direction intersecting with the direction in which the rotation center shaft 60 extends. In addition, the suction flow passage 35a is curved so that the direction in which the liquid flowing in the flow passage on the downstream side travels is substantially parallel to the rotation center shaft 60 direction. A portion on the casing 30 side of the volute portion 130 constitutes an annular protrusion 137 which protrudes around the opening 135. The upper surface 137a of the protrusion 137 is formed in a planar shape.
さらに、突起部137は、平面状に形成された上面137aの吸込口35b側の部分が吸込流路35aに露出している。また、上面137aの吸込口35b側の部分とは反対側の部分がケーシング30により閉塞されている。
Furthermore, in the protrusion 137, a portion on the suction port 35b side of the planarly formed upper surface 137a is exposed to the suction flow passage 35a. Further, a portion on the opposite side to the portion on the suction port 35 b side of the upper surface 137 a is closed by the casing 30.
それにより、平面状に形成された突起部137の上面137aにおいて、吸込口35b側の部分が吸込流路35aの一部を形作っている。そのため、吸込流路35aにおいて鋭角状の曲がり部が形成されていない。その結果、吸込流路35a内において、液体が円滑に流れる。したがって、ポンプ効率を高めることができる。
Thereby, in the upper surface 137a of the projection 137 formed in a planar shape, a portion on the suction port 35b side forms a part of the suction flow passage 35a. Therefore, no sharp bends are formed in the suction flow passage 35a. As a result, the liquid flows smoothly in the suction passage 35a. Thus, the pump efficiency can be increased.
具体的には、液体は、吸込流路35aの上流(湾曲する流路よりも上流)では、回転中心シャフト60が延びる方向に対して交差する方向に沿って流れる。また、液体は、吸込流路35aにおいて下流側に向かうにつれて徐々に前述の交差する方向から前方側にずれるように流れる。また、液体は、吸込流路35aの下流側(湾曲した後の流路内)では、回転中心シャフト60が延びる方向に沿って後側に向かって流れる。
Specifically, the liquid flows along the direction that intersects the direction in which the rotation center shaft 60 extends in the upstream of the suction flow channel 35a (upstream of the curved flow channel). In addition, the liquid flows so as to be gradually displaced forward from the above-mentioned intersecting direction as it goes downstream in the suction flow channel 35a. In addition, on the downstream side of the suction flow path 35a (in the flow path after being curved), the liquid flows rearward along the direction in which the rotation center shaft 60 extends.
仮に、吸込流路35aは、液体の流れが吸入口部74に向かうように鋭角に屈曲していると、吸込流路35a内を流れる液体の流れ方向が急激に変化する。この場合、液体は、円滑に流れることができない。
If the suction flow passage 35a is bent at an acute angle so that the flow of the liquid is directed to the suction port 74, the flow direction of the liquid flowing in the suction flow passage 35a changes rapidly. In this case, the liquid can not flow smoothly.
しかしながら、本実施の形態ポンプにおいては、吸込流路35aの内側屈曲部(図1の右側)に平面状に形成された突起部137の上面137aが、吸込流路35aに露出し、吸込流路35aを囲む壁面の一部を構成している。そのため、吸込流路35aにおける鋭角状の曲がり部が形成されない。その結果、吸込流路35a内の液体が円滑に流れる。したがって、ポンプ効率を高めることができる。
However, in the pump of the present embodiment, the upper surface 137a of the projection 137 formed in a planar shape in the inner bent portion (right side in FIG. 1) of the suction flow passage 35a is exposed to the suction flow passage 35a. It constitutes a part of the wall surrounding 35a. Therefore, the acute-angled curved part in the suction flow path 35a is not formed. As a result, the liquid in the suction flow path 35a flows smoothly. Thus, the pump efficiency can be increased.
さらに、突起部137のケーシング30により閉塞される部分(閉塞部137c)が、前軸固定部(軸支持部)133を有するボリュート部130をケーシング30に取付ける際に、回転中心シャフト60が延びる方向における位置決め部として機能する。したがって、ポンプ1の組み立て精度が向上する。 また、本実施形態では、上面137aの開口部135側周縁にはR部137fが形成されている。この円弧状部(R部)137fにおいては、吸込口35b側(図1の右側)の部分が最も曲率半径が大きい円弧状部(R部)を構成している。また円弧状部(R部)137fにおいては、吸込口35b側の部分からそれとは反対側の部分に向かうにつれて、円弧状部(R部)137fの曲率半径は、除々に小さくなっている。
Furthermore, when attaching the volute portion 130 having the front shaft fixing portion (shaft support portion) 133 to the casing 30, the direction in which the rotation center shaft 60 extends when the portion (closing portion 137 c) closed by the casing 30 of the projecting portion 137 Functions as a positioning unit in Therefore, the assembling accuracy of the pump 1 is improved. Further, in the present embodiment, the R portion 137f is formed on the peripheral edge on the opening 135 side of the upper surface 137a. In the circular arc portion (R portion) 137f, a portion on the suction port 35b side (right side in FIG. 1) constitutes the circular arc portion (R portion) having the largest radius of curvature. In the circular arc portion (R portion) 137f, the radius of curvature of the circular arc portion (R portion) 137f gradually decreases from the portion on the suction port 35b side toward the portion on the opposite side.
したがって、吸込流路35aの湾曲部分をよりなだらかに形成することができる。その結果、吸込流路35a内の液体が一層円滑に流れる。その結果、ポンプ効率をより高めることができる。
Therefore, the curved portion of the suction flow passage 35a can be formed more gently. As a result, the liquid in the suction flow path 35a flows more smoothly. As a result, the pump efficiency can be further enhanced.
また、本実施形態では、ボリュート部130とケーシング30との間に弾性材150が配置されている。その結果、回転中心シャフト60が延びる方向の寸法のバラツキが弾性材150によって吸収される。そのため、前軸固定部(軸支持部)133が振動によって周囲の部分に衝突する、いわゆるガタツキが生じることがない。これにより、ボリュート部130の前軸固定部(軸支持部)133をケーシング30に対して安定的に取り付けることができる。
Further, in the present embodiment, the elastic material 150 is disposed between the volute portion 130 and the casing 30. As a result, the variation in dimension in the direction in which the rotation center shaft 60 extends is absorbed by the elastic member 150. Therefore, so-called rattling that the front shaft fixing portion (shaft support portion) 133 collides with a surrounding portion due to vibration does not occur. Thereby, the front shaft fixing portion (shaft support portion) 133 of the volute portion 130 can be stably attached to the casing 30.
次に、ケーシングおよびボリュート部の変形例について説明する。
Next, modifications of the casing and the volute portion will be described.
図8は、本発明の実施の形態1の変形例のケーシングの内側の面を見たときの斜視図を示すものである。また、図9は、本発明の実施の形態1の変形例のボリュート部をケーシング側の面を見たときの斜視図を示すものである。
FIG. 8 is a perspective view when looking at the inner surface of the casing of the modification of the first embodiment of the present invention. FIG. 9 is a perspective view of the volute portion of the modification of the first embodiment of the present invention as viewed from the side of the casing.
ケーシング30Aおよびボリュート部130Aは、上記実施の形態1において説明されたケーシング30およびボリュート部130と基本的に同じ構成を有している。
The casing 30A and the volute portion 130A basically have the same configuration as the casing 30 and the volute portion 130 described in the first embodiment.
ここでは、ケーシング30Aおよびボリュート部130Aが上記実施の形態1で示したケーシング30およびボリュート部130と異なる点が主として説明される。この変形例のポンプは、ボリュート部130Aの突起部137の外周面137bに突起137eが設けられており、かつ、突起137eに対応するケーシング30Aの凹部38にL字の溝38bが設けられている点において、実施の形態1のポンプと異なっている。
Here, differences between the casing 30A and the volute portion 130A from the casing 30 and the volute portion 130 described in the first embodiment will be mainly described. In the pump of this modification, a protrusion 137e is provided on the outer peripheral surface 137b of the protrusion 137 of the volute portion 130A, and an L-shaped groove 38b is provided in the recess 38 of the casing 30A corresponding to the protrusion 137e. The point is different from the pump of the first embodiment.
変形例のポンプにおいては、突起137eは、溝38bに沿って挿入された後、溝38bの最も奥側の位置で回転中心軸まわりに回転させられる。それにより、ボリュート部130Aがケーシング30に固定される。
In the pump of the modification, the protrusion 137e is inserted along the groove 38b and then rotated about the central axis of rotation at the deepest position of the groove 38b. Thus, the volute portion 130A is fixed to the casing 30.
以上の本変形例のポンプによっても、上記実施の形態1のポンプによって得られる作用および効果と同様の作用および効果が得られる。
The above-described pump of the present modification also provides the same operation and effect as the operation and effect obtained by the pump of the first embodiment.
また、本変形例のポンプでは、突起137eと溝38bとが、ボリュート部130Aとケーシング30Aとが互いに離れてしまうことを防止する抜け止め構造として形成されている。したがって、上記した実施の形態のポンプによって得られる作用および効果に加えて、ボリュート部130Aとケーシング30Aとが容易に組み立てられるという効果も得られる。
Further, in the pump of the present modification, the protrusion 137e and the groove 38b are formed as a retaining structure that prevents the volute portion 130A and the casing 30A from being separated from each other. Therefore, in addition to the operation and effects obtained by the pump of the embodiment described above, an effect is also obtained that the volute portion 130A and the casing 30A can be easily assembled.
以上、本発明の好適な実施形態が説明されたが、本発明は上記実施形態には限定されず、上記の実施の形態のポンプに種々の変形を加えることが可能である。
As mentioned above, although the suitable embodiment of the present invention was described, the present invention is not limited to the above-mentioned embodiment, and it is possible to add various modification to a pump of the above-mentioned embodiment.
例えば、上記実施の形態では、本発明のポンプの一例として、吸入管および吸込流路が湾曲しており、直線状に配置された配管の一部に取り付けられ得るキャンドモータポンプが例示されている。しかしながら、本発明のポンプは、吸入管および吸込流路のそれぞれが延びる方向が回転中心シャフトが延びる方向に略一致しており、かつ、L字状に屈曲した配管の角部等に取り付けられ得るキャンドモータポンプであってもよい。
For example, in the above embodiment, as an example of the pump of the present invention, a canned motor pump is exemplified in which the suction pipe and the suction flow path are curved and can be attached to a part of linearly arranged piping. . However, in the pump of the present invention, the direction in which each of the suction pipe and the suction flow path extends substantially coincides with the direction in which the rotation center shaft extends, and can be attached to a corner or the like of the L-shaped bent pipe. It may be a canned motor pump.
また、ケーシング、吸入管、およびその他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更され得る。
In addition, the specifications (shape, size, layout, etc.) of the casing, the suction pipe, and other details may be changed as appropriate.
以上のように、本発明のポンプにおいては、ボリュート部が、ケーシングとは別部品として形成され、ケーシングに取り付けられる。このようなポンプは、例えば、型抜きによりケーシングに吸込流路を形成するライン配管組込型のポンプに適用され得る。
As described above, in the pump of the present invention, the volute portion is formed as a separate part from the casing and attached to the casing. Such a pump can be applied to, for example, a pump incorporating a line piping type that forms a suction flow passage in a casing by die cutting.
1 ポンプ、30,30A ケーシング、35a 吸込流路、35b 吸込口、36a 吐出流路、36b 吐出口、60 回転中心シャフト、70 羽根車、130,130A ボリュート部、131 ポンプ室、133 前軸固定部(軸支持部)、135 開口部、137 突起部、137a 上面、 150 弾性材。
Reference Signs List 1 pump, 30, 30A casing, 35a suction flow channel, 35b suction port, 36a discharge flow channel, 36b discharge port, 60 rotation center shaft, 70 impellers, 130, 130A volute section, 131 pump chamber, 133 front shaft fixing section (Shaft support), 135 opening, 137 protrusion, 137a top surface, 150 elastic material.
Claims (15)
- 吸込流路、前記吸込流路に連通するポンプ室、および前記ポンプ室に連通する吐出流路の外郭を構成するケーシングと、
前記吸込流路および前記吐出流路のそれぞれに連通する渦巻き状の流路の外郭を構成するように、前記ポンプ室に前記ケーシングから独立した部品として設けられたボリュート部と、
前記渦巻き状の流路に適合するように前記ポンプ室に収容され、前記吸込流路から前記渦巻き状の流路に流れ込んできた液体を前記吐出流路に送り出す羽根車と、を備えた、ポンプ。 A suction channel, a pump chamber communicating with the suction channel, and a casing forming an outer shell of a discharge channel communicating with the pump chamber;
A volute portion provided as a component independent of the casing in the pump chamber so as to form an outer shell of a spiral flow passage communicating with each of the suction flow passage and the discharge flow passage;
A pump which is accommodated in the pump chamber so as to fit in the spiral flow path, and which discharges the liquid flowing from the suction flow path into the spiral flow path to the discharge flow path . - 前記羽根車の回転中心軸が延びる方向に沿って延びる回転中心シャフトと、
前記回転中心シャフトの一方端部を支持する軸支持部と、を備え、
前記ボリュート部と前記軸支持部とは、一体成形により、一体構造物として形成された、請求項1に記載のポンプ。 A rotation center shaft extending along a direction in which the rotation center axis of the impeller extends;
And a shaft support portion for supporting one end of the rotation center shaft.
The pump according to claim 1, wherein the volute portion and the shaft support portion are integrally formed as an integral structure. - 前記吸込流路の下流側の端部が、前記羽根車の回転中心軸が延びる方向に沿って延びるように、前記吸込流路の上流側の部分から前記吸込流路の前記下流側の端部へ至る流路が湾曲した形状を有している、請求項1または2に記載のポンプ。 The downstream end of the suction flow path from the upstream portion of the suction flow path so that the downstream end of the suction flow path extends along the direction in which the rotation central axis of the impeller extends A pump according to claim 1 or 2, wherein the flow path leading to it has a curved shape.
- 前記吐出流路の上流側の端部が、前記渦巻き状の流路の外周側の端部に連通するように延びる、請求項1~3のいずれかに記載のポンプ。 The pump according to any one of claims 1 to 3, wherein an upstream end of the discharge flow channel extends in communication with an outer peripheral end of the spiral flow channel.
- 前記ボリュート部の内側の領域には、前記渦巻き状の流路の中心部を構成するように前記吸込流路と連通する開口部が形成されており、
前記ボリュート部の前記ケーシング側の部分は、前記開口部の外周に沿って延びる環状の突起部を有している、請求項1~4のいずれかに記載のポンプ。 An opening communicating with the suction flow passage is formed in a region inside the volute portion so as to form a central portion of the spiral flow passage,
The pump according to any one of claims 1 to 4, wherein the casing-side portion of the volute portion has an annular protrusion extending along the outer periphery of the opening. - 前記環状の突起部の上面が前記吸込流路の一部を形作るように前記ケーシングの前記吸込流路を構成する内面に連続した平面を有している、請求項5に記載のポンプ。 The pump according to claim 5, wherein the upper surface of the annular protrusion has a flat surface continuous with the inner surface of the suction channel of the casing so as to form a part of the suction channel.
- 前記環状の突起部は、前記上面に連続する曲面を有し、
前記曲面が、前記吸込流路から前記開口部内の前記渦巻き状の流路の前記中心部へ液体を導くように曲がっている、請求項6に記載のポンプ。 The annular protrusion has a curved surface continuous with the upper surface,
7. The pump of claim 6, wherein the curved surface is curved to direct liquid from the suction channel to the central portion of the spiral channel in the opening. - 前記吸込流路を構成する内面と前記開口部の内周面とが連続するように、前記環状の突起部の上面の一部が前記ケーシングにより閉塞された、請求項5~7のいずれかに記載のポンプ。 The upper surface of the annular projection is partially closed by the casing so that the inner surface of the suction passage and the inner circumferential surface of the opening are continuous with each other. Description pump.
- 前記ボリュート部は、前記環状の突起部の外周面から突出する外周突起を有し、
前記ケーシングは、前記外周突起に対応する位置に前記外周突起を受け入れるL字状の溝を有している、請求項5~8のいずれかに記載のポンプ。 The volute portion has an outer peripheral protrusion that protrudes from an outer peripheral surface of the annular protrusion portion,
The pump according to any one of claims 5 to 8, wherein the casing has an L-shaped groove for receiving the outer peripheral projection at a position corresponding to the outer peripheral projection. - 前記ケーシングは、前記ポンプ室側に向く面にケーシング凹部を含み、
前記ボリュート部は、前記ケーシング側に向く面に前記ケーシング凹部に挿入されたボリュート凸部を含む、請求項1~9のいずれかに記載のポンプ。 The casing includes a casing recess on the surface facing the pump chamber side,
The pump according to any one of claims 1 to 9, wherein the volute portion includes a volute convex portion inserted in the casing concave portion on a surface facing the casing side. - 前記ケーシングの前記ボリュート部に対向する面と前記ボリュート部の前記ケーシングに対向する面とは、互いに嵌合の関係を有している、請求項1~10のいずれかに記載のポンプ。 The pump according to any one of claims 1 to 10, wherein a surface of the casing facing the volute portion and a surface of the volute portion facing the casing have a fitting relationship with each other.
- 前記ボリュート部と前記ケーシングとの間に設けられた弾性材を備えた、請求項1~11のいずれかに記載のポンプ。 The pump according to any one of claims 1 to 11, further comprising an elastic material provided between the volute portion and the casing.
- 前記羽根車に接続され、電磁力によって回転する磁気従動部と、
一方の端部が閉塞された円筒形状部と、前記円筒形状部の他方端部の開口部から外方へ突出し、前記円筒形状部の中心軸方向に突出する環状の凸部を有するフランジ部とを含み、前記ケーシングおよび前記ボリュート部とともに、前記羽根車および前記磁気従動部を収納する空間を形作る分離板と、
前記羽根車の外周に沿って配置され、前記羽根車の外周部と前記分離板の前記フランジ部の前記環状の凸部の内周部との間の隙間を小さくするように、前記ボリュート部と前記分離板との間に設けられた環状のスペーサとを備えた、請求項1~12のいずれかに記載のポンプ。 A magnetic follower connected to the impeller and rotated by an electromagnetic force;
A cylindrical portion having one end closed and a flange portion having an annular convex portion protruding outward from the opening at the other end of the cylindrical portion and protruding in the central axis direction of the cylindrical portion A separation plate that forms a space for housing the impeller and the magnetic follower together with the casing and the volute portion;
The volute portion is disposed along the outer periphery of the impeller so as to reduce a gap between the outer periphery of the impeller and the inner periphery of the annular convex portion of the flange portion of the separation plate The pump according to any one of claims 1 to 12, further comprising an annular spacer provided between the separation plate and the separation plate. - 前記環状のスペーサは、前記ボリュート部側に向く面から突出するスペーサ突起を有し、
前記ボリュート部は、前記環状のスペーサ側に向く面に設けられ、前記スペーサ突起を受け入れるボリュート凹部を有している、請求項13に記載のポンプ。 The annular spacer has a spacer protrusion projecting from the surface facing the volute portion,
The pump according to claim 13, wherein the volute portion has a volute recess provided on a surface facing the annular spacer and receiving the spacer protrusion. - 前記分離板の前記フランジ部を覆うカバーフランジ部と、前記分離板の前記円筒形状部の内周面を覆うカバー内周面部と、を含む分離板カバーを備え、
前記スペーサは、前記分離板の前記フランジ部の前記環状の凸部の内側の領域において、前記環状の凸部に沿って延び、前記スペーサの前記分離板側の面から突出する環状のリブを含み、
前記環状のリブが前記カバーフランジ部を前記分離板の前記フランジ部に向かって押さえ付ける、請求項13または14に記載のポンプ。 The separation plate cover includes a cover flange portion covering the flange portion of the separation plate, and a cover inner circumferential surface portion covering the inner circumferential surface of the cylindrical portion of the separation plate.
The spacer includes an annular rib which extends along the annular convex portion in a region inside the annular convex portion of the flange portion of the separator plate and which protrudes from a surface of the spacer on the separator plate side. ,
The pump according to claim 13, wherein the annular rib presses the cover flange toward the flange of the separating plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14775949.2A EP2980415B1 (en) | 2013-03-29 | 2014-02-03 | Pump |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013071064A JP2014194189A (en) | 2013-03-29 | 2013-03-29 | Pump |
JP2013-071064 | 2013-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014155925A1 true WO2014155925A1 (en) | 2014-10-02 |
Family
ID=51622951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/000544 WO2014155925A1 (en) | 2013-03-29 | 2014-02-03 | Pump |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2980415B1 (en) |
JP (1) | JP2014194189A (en) |
WO (1) | WO2014155925A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021046849A (en) * | 2019-09-20 | 2021-03-25 | パナソニックIpマネジメント株式会社 | Self-priming pump and method for manufacturing rotor of self-priming pump |
JP2022020100A (en) * | 2020-07-20 | 2022-02-01 | 日本電産サンキョー株式会社 | Pump device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102247594B1 (en) * | 2015-04-14 | 2021-05-03 | 한화파워시스템 주식회사 | Volute casing and rotary machine comprising the same |
DE102018211541A1 (en) | 2018-07-11 | 2020-01-16 | Magna Powertrain Bad Homburg GmbH | water pump |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS616700U (en) * | 1984-06-20 | 1986-01-16 | 共同エンジニアリング株式会社 | self-priming pump |
JPS6131694A (en) * | 1984-07-25 | 1986-02-14 | Hitachi Ltd | Pump unit |
JP2005180211A (en) * | 2003-12-16 | 2005-07-07 | Asmo Co Ltd | Fluid supply device |
JP2008008196A (en) * | 2006-06-29 | 2008-01-17 | Nidec Sankyo Corp | Centrifugal pump, method for adjusting characteristics of same and method for manufacturing same |
JP2008050958A (en) * | 2006-08-23 | 2008-03-06 | Iwaki Co Ltd | Self-priming pump |
WO2008069124A1 (en) | 2006-12-07 | 2008-06-12 | Panasonic Electric Works Co., Ltd. | Centrifugal pump |
JP2012072697A (en) * | 2010-09-28 | 2012-04-12 | Honda Motor Co Ltd | Centrifugal pump unit |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2389784B1 (en) * | 1977-05-06 | 1984-02-24 | Siebec Filtres | |
JP2995175B2 (en) * | 1998-05-14 | 1999-12-27 | セイコー化工機株式会社 | Magnet pump |
WO2001012993A1 (en) * | 1999-08-10 | 2001-02-22 | Iwaki Co., Ltd. | Magnet pump |
US7101158B2 (en) * | 2003-12-30 | 2006-09-05 | Wanner Engineering, Inc. | Hydraulic balancing magnetically driven centrifugal pump |
-
2013
- 2013-03-29 JP JP2013071064A patent/JP2014194189A/en active Pending
-
2014
- 2014-02-03 WO PCT/JP2014/000544 patent/WO2014155925A1/en active Application Filing
- 2014-02-03 EP EP14775949.2A patent/EP2980415B1/en not_active Not-in-force
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS616700U (en) * | 1984-06-20 | 1986-01-16 | 共同エンジニアリング株式会社 | self-priming pump |
JPS6131694A (en) * | 1984-07-25 | 1986-02-14 | Hitachi Ltd | Pump unit |
JP2005180211A (en) * | 2003-12-16 | 2005-07-07 | Asmo Co Ltd | Fluid supply device |
JP2008008196A (en) * | 2006-06-29 | 2008-01-17 | Nidec Sankyo Corp | Centrifugal pump, method for adjusting characteristics of same and method for manufacturing same |
JP2008050958A (en) * | 2006-08-23 | 2008-03-06 | Iwaki Co Ltd | Self-priming pump |
WO2008069124A1 (en) | 2006-12-07 | 2008-06-12 | Panasonic Electric Works Co., Ltd. | Centrifugal pump |
JP2012072697A (en) * | 2010-09-28 | 2012-04-12 | Honda Motor Co Ltd | Centrifugal pump unit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021046849A (en) * | 2019-09-20 | 2021-03-25 | パナソニックIpマネジメント株式会社 | Self-priming pump and method for manufacturing rotor of self-priming pump |
JP2022020100A (en) * | 2020-07-20 | 2022-02-01 | 日本電産サンキョー株式会社 | Pump device |
JP7493403B2 (en) | 2020-07-20 | 2024-05-31 | ニデックインスツルメンツ株式会社 | Pumping equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2014194189A (en) | 2014-10-09 |
EP2980415B1 (en) | 2020-09-02 |
EP2980415A4 (en) | 2016-03-09 |
EP2980415A1 (en) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9086075B2 (en) | Impeller assembly and method | |
US11092162B2 (en) | Centrifugal blower | |
WO2014155925A1 (en) | Pump | |
US11286945B2 (en) | Turbofan and method of manufacturing turbofan | |
US10808714B2 (en) | Turbofan | |
CN105909561B (en) | Compressor housing for booster | |
US20100028156A1 (en) | Impeller and pump including the same | |
US20190224690A1 (en) | Turbine and liquid separator having such a turbine | |
EP3150859B1 (en) | Electric pump | |
JP2005113686A (en) | Fuel pump | |
KR20090078843A (en) | Centrifugal pump | |
KR20180004634A (en) | Water pump | |
EP3176439A2 (en) | Centrifugal pump with a volute having a slanted wall | |
KR102128373B1 (en) | Pump device | |
EP2503152A2 (en) | Centrifugal pump | |
JP2014194190A (en) | Canned motor pump | |
JP7510158B2 (en) | Electric pump | |
CN111365248A (en) | Thin pump | |
CN214788179U (en) | Pump device | |
JP7513256B2 (en) | Thrust bearing parts | |
JP2020084815A (en) | Centrifugal pump | |
JP2023124972A (en) | electric pump | |
CN212838558U (en) | Pump device | |
JP7373731B2 (en) | self-priming pump | |
JP2013079615A (en) | Pump unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14775949 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014775949 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |