[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014142780A1 - Methods of treating, reducing the incidence of, and/or preventing ischemic events - Google Patents

Methods of treating, reducing the incidence of, and/or preventing ischemic events Download PDF

Info

Publication number
WO2014142780A1
WO2014142780A1 PCT/US2013/030081 US2013030081W WO2014142780A1 WO 2014142780 A1 WO2014142780 A1 WO 2014142780A1 US 2013030081 W US2013030081 W US 2013030081W WO 2014142780 A1 WO2014142780 A1 WO 2014142780A1
Authority
WO
WIPO (PCT)
Prior art keywords
pci
cangrelor
pharmaceutical composition
patients
incidence
Prior art date
Application number
PCT/US2013/030081
Other languages
French (fr)
Inventor
Clive Arthur ARCULUS-MEANWELL
Simona Skerjanec
Jayne Prats
Original Assignee
The Medicines Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Medicines Company filed Critical The Medicines Company
Priority to PCT/US2013/030081 priority Critical patent/WO2014142780A1/en
Publication of WO2014142780A1 publication Critical patent/WO2014142780A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system having sulfur as a ring hetero atom, e.g. ticlopidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to methods of treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing percutaneous coronary intervention (PCI), comprising administering to the patient a pharmaceutical composition comprising cangrelor.
  • the methods may further comprise administering an additional therapeutic agent to the patient, the additional therapeutic agent comprising a P2Yi 2 inhibitor.
  • the present invention also relates to pharmaceutical compositions useful for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI.
  • the pharmaceutical compositions comprise cangrelor.
  • the present invention further relates to methods of preparing a pharmaceutical composition for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising admixing cangrelor with one or more pharmaceutically acceptable excipients.
  • An ischemic event may include stent thrombosis, myocardial infarction, ischemia-driven revascularization (IDR), and mortality.
  • PCI is a procedure that opens narrowed arteries that supply heart muscle with blood.
  • PCI with stent implantation is widely used to reduce the risk of mortality or myocardial infarction in patients with acute coronary syndromes and to reduce the burden of angina and improve the quality of life in patients with stable angina. 1
  • thrombotic complications during PCI are a major concern, particularly if the procedure involves implantation of a stent,
  • the present invention demonstrates how cangrelor may be utilized in treating, reducing the incidence of, and/or preventing an ischemic event.
  • An ischemic event may include stent thrombosis, myocardial infarction, IDR, and mortality.
  • An ischemic event can occur before, during, or after PCI.
  • An aspect of the present invention is directed to a method of treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI.
  • the method comprises administering to the patient a pharmaceutical composition comprising cangrelor.
  • the pharmaceutical composition may be administered before, during, and/or after PCI, and through various routes of administration.
  • the pharmaceutical composition may be administered intravenously, including as a bolus and/or infusion.
  • the pharmaceutical composition may be administered to a patient undergoing PCI involving stent implantation.
  • the method of the present invention may treat, reduce the incidence of, and/or prevent an ischemic event during or after PCI. In some instances, the method is not accompanied by a significant increase in severe bleeding or the need for transfusions.
  • the method may further comprise
  • the additional therapeutic agent may be administered separately from the pharmaceutical composition comprising cangrelor, either sequentially or concurrently. Alternatively, the additional therapeutic agent may be administered in the same pharmaceutical composition as cangrelor.
  • the additional therapeutic agent comprises a P2Yi 2 inhibitor, such as clopidogrel, prasugrel, or ticagrelor. In alternative embodiments, the additional therapeutic agent comprises bivalirudin.
  • Another aspect of the present invention is directed to a pharmaceutical composition useful for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI.
  • the pharmaceutical composition comprises cangrelor and may further
  • the pharmaceutical composition may be a solid, liquid, or suspension.
  • the pharmaceutical composition of the present invention may be useful for treating, reducing the incidence of, and/or preventing an ischemic event that occurs during or after PCI. In some instances, the pharmaceutical composition does not lead to a significant increase in severe bleeding or the need for transfusions when administered to a patient undergoing PCI.
  • a further aspect of the present invention is directed to a method of preparing a pharmaceutical composition for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising admixing cangrelor with a
  • the pharmaceutically acceptable excipient may comprise NaCl, dextrose, mannitol, or a combination thereof.
  • FIG. 1 Figure 1 - diagram showing trial design for the study described in Example 1.
  • FIG. 1 Figure 2 - diagram showing the primary modified intent-to-treat analysis population in the study described in Example 1.
  • Figures 3 A, 3B and 3C landmark analysis of Kaplan-Meier curves for the primary efficacy endpoint (Figure 3A), stent thrombosis (Figure 3B), and mortality at 48 hours and 30 days (Figure 3C) in the study described in Example 1.
  • FIG. 4 diagram showing transfusion rates for all patients (including coronary artery bypass graft) in subgroups at high risk of bleeding in the study described in Example 1.
  • Figures 6 A and 6B - display the primary endpoint odds ratio (OR) data for key subgroups in the study described in Example 2.
  • FIG. 8 diagram showing the modified intention-to-treat population in the study described in Example 3.
  • Figure 9 A and 9B landmark analysis of Kaplan Meier curves for the primary endpoint (Figure 9A) and the key secondary end point of stent thrombosis (Figure 9B) in the study described in Example 3.
  • Figure 10 diagram showing the subgroup analysis of the primary efficacy end point in the study described in Example 3.
  • FIG. 11 diagram showing the subgroup analysis of Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO) severe or moderate bleeding in the study described in Example 3.
  • GUSTO Global Use of Strategies to Open Occluded Coronary Arteries
  • the present invention is based on the discovery that cangrelor, a reversible, fast acting, adenosine triphosphate analogue inhibitor of the P2Yi 2 ADP receptor, is effective in treating, reducing the incidence of, and/or preventing an ischemic event.
  • the present invention is directed to a method of treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising administering to the patient a pharmaceutical composition comprising cangrelor.
  • the present invention is also directed to a pharmaceutical composition useful for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, wherein the pharmaceutical composition comprises cangrelor and may further comprise one or more pharmaceutically acceptable excipients. Further, the present invention is directed to a method of preparing a pharmaceutical composition for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising admixing cangrelor with one or more pharmaceutically acceptable excipients.
  • Cangrelor is a non-thienopyridine adenosine triphosphate analogue which reversibly binds to and inhibits the P2Yi 2 ADP receptor.
  • Cangrelor is direct-acting, reversible, and selective, and it has a short half-life. It is metabolized through dephosphorylation pathways and has a plasma half-life of 3-5 minutes; platelet function returns to normal within 30-60 minutes of drug termination. 13 When given as a bolus plus infusion, it quickly and consistently inhibits platelets to a high degree with normalization of platelet function shortly after discontinuation.
  • a phase 2 trial in patients undergoing PCI demonstrated dose-dependent platelet inhibition similar to that achieved with abciximab, less bleeding time prolongation, and more rapid return to platelet function. 14
  • the chemical structure of cangrelor is shown in Formula I.
  • the term “cangrelor” encompasses the compound of Formula I, as well as tautomeric, enantiomeric and diastereomeric forms thereof, and racemic mixtures thereof, and pharmaceutically acceptable salts of these
  • the present invention demonstrates how cangrelor may be utilized in treating, reducing the incidence of, and/or preventing an ischemic event.
  • An ischemic event may include stent thrombosis, myocardial infarction, IDR, and mortality.
  • An ischemic event can occur before, during, or after PCI.
  • the present invention relates to treating, reducing the incidence of, and/or preventing stent thrombosis in a patient undergoing PCI.
  • Stent thrombosis may result from any means related to the implantation, presence, or maintenance of the stent in the vasculature of the patient.
  • stent thrombosis may be induced by implantation of a stent into the patient or may develop over time due to the presence of a stent, such as a bare- metal stent, a drug-eluting stent, or other type of stent.
  • stent thrombosis is defined in accordance with or derived from the Academic Research Consortium definition of stent thrombosis.
  • stent thrombosis may be intraprocedural stent thrombosis, acute stent thrombosis ( ⁇ 24 hours post implantation), sub-acute stent thrombosis (>24 hours and ⁇ 30 days post implantation), late stent thrombosis (>30 days and ⁇ 12 months post implantation) or very late stent thrombosis (>12 months post implantation).
  • the present invention relates to treating, reducing the incidence of, and/or preventing myocardial infarction in a patient undergoing PCI.
  • Myocardial infarction may be any form of myocardial infarction, including acute myocardial infarction (first few hours to 7 days), healing myocardial infarction (7 to 28 days), healed myocardial infarction (29 days and beyond), acute non-ST-elevated myocardial infarction (NSTEMI), and acute ST-elevated myocardial infarction (STEMI).
  • myocardial infarction is defined in accordance with or derived from the universal definition of myocardial infarction. 16
  • Myocardial infarction may arise during PCI, or may be induced by any mechanism, including implantation of a stent into the patient. Myocardial infarction may also be caused by stent thrombosis or occlusion of a coronary artery.
  • IDR Ischemia-Driven Revascularization
  • the present invention relates to treating, reducing the incidence of, and/or preventing IDR in a patient undergoing PCI.
  • IDR refers to any type of intervention following PCI in which blood flow through a vessel must be increased or re-established.
  • IDR examples include, but are not limited to, an additional PCI or surgery.
  • the present invention relates to reducing the incidence of and/or preventing mortality in a patient undergoing PCI.
  • mortality may be associated with other ischemic events.
  • mortality may be caused by stent thrombosis, occlusion of a coronary artery, and/or myocardial infarction.
  • An aspect of the present invention is methods of treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising administering to the patient a pharmaceutical composition comprising cangrelor.
  • PCI may comprise balloon angioplasty without implantation of a stent, or may also comprise the implantation of a stent.
  • the stent may be a bare-metal stent, or a drug-eluting stent, as known in the art.
  • a method of the present invention comprises administering the pharmaceutical composition before, during, and/or after PCI.
  • the administration may continue for a short period of time, such as less than about an hour, or may be one or more hours. In some embodiments, the administration may continue for at least the duration of the PCI. In other embodiments, the administration may continue after the PCI has concluded. In certain embodiments, the administration may continue for at least about 2 hours or the duration of the PCI procedure, whichever is longer. In an additional embodiment, the administration may continue for about 4 hours or longer.
  • a method may comprise administering the pharmaceutical composition multiple times before, during, and/or after PCI.
  • administration of the pharmaceutical composition may be for a short period of time before the PCI, and then again once PCI has begun.
  • the method may comprise administering the pharmaceutical composition periodically after the PCI has concluded.
  • the pharmaceutical composition may be administered once, twice, thrice or more times a day, once every two days, once every three days, etc., and for weeks, months, or even years, after the PCI, particularly if the PCI involved stent implantation.
  • the method may comprise administering the pharmaceutical composition once the ischemic event is recognized or diagnosed, or at the onset of symptoms of the ischemic event.
  • the pharmaceutical composition may be administered if symptoms of a myocardial infarction are observed.
  • the pharmaceutical composition may be administered within a short period of time from the onset of symptoms of the ischemic event. The short period of time may range from about one or two minutes to about one or two hours.
  • the method may comprise administering the pharmaceutical composition as a prophylaxis against an ischemic event, such as myocardial infarction.
  • Patients appropriate for such prevention include any patient suspected of having early symptoms of the ischemic event or other disease, or a condition that could lead to the ischemic event against which the pharmaceutical compositions of the invention would be effective.
  • the pharmaceutical composition may be administered to the patient within a short period of time of when early or initial symptoms of the ischemic event are detected.
  • Methods of the present invention may comprise administering the pharmaceutical composition concurrently or sequentially with at least one additional therapeutic agent.
  • the additional therapeutic agent may be a P2Yi 2 receptor inhibitor, such as clopidogrel, ticagrelor, or prasugrel, or the additional therapeutic agent may be a glycoprotein Ilb/IIIa inhibitor.
  • the additional therapeutic agent may be aspirin.
  • the additional therapeutic agent may be administered after the administration of cangrelor, either immediately after or following a short period of time.
  • the additional therapeutic agent such as clopidogrel, may be administered after the infusion of cangrelor is complete.
  • the routes of administration of the methods of the present invention include, for example, oral, sublingual, intranasal, intraocular, rectal, transdermal, mucosal, topical or parenteral administration.
  • Parenteral modes of administration include without limitation, intradermal, subcutaneous (s.c, s.q., sub-Q, Hypo), intramuscular (i.m.), intravenous (i.v.), intraperitoneal (i.p.), intra-arterial, intramedulary, intracardiac, intra-articular (joint),
  • intrasynovial joint fluid area
  • intracranial intracranial
  • intraspinal intrathecal
  • Any known device useful for parenteral injection or infusion of drug formulations can be used in the methods of the present invention.
  • administration is via parenteral administration, preferably intravenous administration, or oral administration.
  • the pharmaceutical composition comprising cangrelor may be administered as a bolus, as a continuous infusion, or as a bolus followed by a continuous infusion.
  • the pharmaceutical composition may be administered prior to PCI as a bolus, and may be administered during PCI as a continuous infusion.
  • Doses of cangrelor in the pharmaceutical compositions administered in the methods of the present invention may vary depending upon the stated goals of the methods (treating, reducing the incidence of, and/or preventing), the physical characteristics of the patient, the significance of the ischemic event, existence of related or unrelated medical conditions, the composition of the formulation and the means used to administer the drug to the patient.
  • the dose for a given patient will generally be set by the judgment of the attending physician.
  • cangrelor When administered as a continuous infusion, cangrelor may be administered at about 0.1 to about 30 ⁇ g/kg/min, for example, between about 1 and about 10 ⁇ g/kg/min, or about 4 ⁇ g/kg/min.
  • the dose may differ in the periods before PCI, during PCI and after PCI.
  • the method of the present invention comprises administering a bolus of about 30 ⁇ g/kg cangrelor, followed by administering an infusion of about 4 ⁇ g/kg/min cangrelor.
  • a dose of between about 0.5 to about 100 mg/kg cangrelor or about 5 to about 30 mg/kg cangrelor is administered per day.
  • Oral administration may occur once a day or multiple times per day.
  • an additional therapeutic agent is administered in addition to the pharmaceutical composition comprising cangrelor.
  • the additional therapeutic agent comprises clopidogrel
  • it may be administered orally with a dose of clopidogrel from about 75 mg to about 600 mg.
  • a "patient" upon which the methods of the present invention may be practiced refers to an animal, such as a mammalian or an avian species, including a human, a non-human primate, a horse, a cow, a sheep, a goat, a dog, and a cat.
  • Such patients may have an ischemic event, such as stent thrombosis, myocardial infarction, IDR, or mortality.
  • the patient may have a condition selected from the group consisting of STEMI, NSTEMI, stable angina, unstable angina, and acute coronary syndrome.
  • the patient may be of any age, gender, or weight.
  • the patient may have received different therapeutic agents, such as a periprocedural glycoprotein Ilb/IIIa inhibitor, periprocedural unfractionated heparin (UFH), periprocedural low-molecular-weight heparin (LMWH), periprocedural bivalirudin, or periprocedural clopidogrel.
  • the patient may have suffered a stroke, or may have diabetes mellitus, hypertension, hyperlipidemia, a myocardial infarction, or may have a family history of coronary artery disease (CAD).
  • the patient may have undergone percutaneous transluminal coronary angioplasty (PTCA), PCI, or coronary artery bypass graft (CABG).
  • PTCA percutaneous transluminal coronary angioplasty
  • PCI PCI
  • CABG coronary artery bypass graft
  • the patient may have congestive heart failure, peripheral arterial disease (PAD), or stent thrombosis in more than one artery or vein.
  • the patient may be on periprocedural medications such as clopidogrel, bivalirudin, unfractionated heparain, low-molecular-weight heparin, fondaparinux, or aspirin.
  • Each of the methods recited in the present invention may include the additional step of measuring the effectiveness of the administration of the pharmaceutical composition comprising cangrelor, including the timing, duration, and route of administration of the pharmaceutical composition.
  • the measurement may include the effectiveness of the administration of any additional therapeutic agent.
  • this additional step may be performed about 0.5 to about 24 hours after administration is complete.
  • Characteristics that are representative of effectiveness include, for example, an increase in luminal diameter within a stent, a decrease in the size of the stent thrombus, and a decreased incidence of myocardial infarction.
  • compositions Useful for Treating, Reducing the Incidence of, and/or Preventing Ischemic Events
  • An aspect of the present invention is directed to a pharmaceutical composition useful for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI.
  • the pharmaceutical composition comprises cangrelor, and may further comprise one or more pharmaceutically acceptable excipients.
  • the pharmaceutical composition may be administered according to any of the methods of the present invention described above.
  • compositions may comprise one or more pharmaceutically acceptable excipients including, but not limited to, carriers, diluents, stabilizing agents, solubilizing agents, surfactants, buffers, antioxidants, preservatives, tonicity agents, bulking agents, lubricating agents, emulsifiers, suspending or viscosity agents, fillers, disintegrating agents, binding agents, wetting agents, lubricating agents, antibacterials, chelating agents, sweeteners, perfuming agents, flavouring agents, coloring agents, administration aids, and combinations thereof.
  • pharmaceutically acceptable excipients including, but not limited to, carriers, diluents, stabilizing agents, solubilizing agents, surfactants, buffers, antioxidants, preservatives, tonicity agents, bulking agents, lubricating agents, emulsifiers, suspending or viscosity agents, fillers, disintegrating agents, binding agents, wetting agents, lubricating agents, antibacterials, chelating agents, sweeteners,
  • excipients include, but are not limited to, cornstarch or gelatin, lactose, sucrose, dextrose, microcrystalline cellulose, kaolin, mannitol, sorbitol, dicalcium phosphate, sodium chloride, alginic acid, croscarmellose sodium, sodium starch glycolate, glycerol, ethanol, propylene glycol, polysorbate 80 (Tween-80TM), poly(ethylene)glycol 300 and 400 (PEG 300 and 400), PEGylated castor oil (e.g.
  • Cremophor EL poloxamer 407 and 188
  • cyclodextrin or cyclodextrin derivatives including HPCD ((2-hydroxypropyl)-cyclodextrin) and (2-hydroxyethyl)-cyclodextrin
  • hydrophilic and hydrophobic carriers include, for example, fat emulsions, lipids, PEGylated phospholipids, polymer matrices, biocompatible polymers, lipospheres, vesicles, particles, and liposomes.
  • the pharmaceutical compositions may comprise polyols, such as sorbitol, lactose, sucrose, inositol or trehalose.
  • compositions of the present invention may be formulated for the route by which they are administered to the patients, which include solids, liquids, and suspensions.
  • routes by which they are administered to the patients which include solids, liquids, and suspensions.
  • the pharmaceutical composition is formulated for IV
  • the pharmaceutical composition may comprise an intravenous fluid, which includes, but is not limited to, water- for-injection (WFI), physiological saline, 0.9% NaCl, phosphate buffered saline, 5% dextrose in water, and 0.002% polysorbate 80 in water or
  • WFI water- for-injection
  • physiological saline 0.9% NaCl
  • phosphate buffered saline 0.9% dextrose in water
  • polysorbate 80 in water or
  • the pharmaceutical composition may comprise an intravenous fluid, which includes, but is not limited to, WFI, physiological saline, 0.9%> NaCl, phosphate buffered saline, and 5% dextrose in water.
  • the pharmaceutical composition is formulated for oral administration, the
  • compositions may comprise excipients that include, but are not limited to diluents (e.g., sodium and calcium carbonate, sodium and calcium phosphate, and lactose), binding agents (e.g., acacia gum, starch, gelatin, sucrose, polyvinylpyrrolidone (Povidone), sorbitol, tragacanth, methylcellulose, sodium carboxymethylcellulose, hydroxypropyl methylcellulose, and ethylcellulose), fillers (e.g., calcium phosphate, glycine, lactose, maize-starch, sorbitol, or sucrose), wetting agents, lubricating agents (e.g., metallic stearates, stearic acid, polyethylene glycol, waxes, oils, silica and colloidal silica, silicon fluid or talc), disintegrating agents (e.g., potato starch, corn starch and alginic acid), flavouring agents (e.g. peppermint,
  • the pharmaceutical composition may be made in the form of a tablet, capsule, suspension or liquid syrup or elixir, wafers and the like.
  • compositions of the present invention may be prepared by admixing cangrelor with the one or more pharmaceutically acceptable excipients.
  • Methods of admixing and devices useful for admixing are known in the art.
  • cangrelor and the one or more pharmaceutically acceptable excipients are dissolved and then admixed.
  • the resulting mixture may be dried, such as through lyophilization, to form a solid pharmaceutical composition, or the resulting mixture may remain in solution form as a liquid pharmaceutical composition.
  • the solid pharmaceutical composition may be solubilized in an intravenous fluid before administration, for example, as a bolus or infusion.
  • the pharmaceutical composition is prepared by dissolving and admixing cangrelor, mannitol, sorbitol, and optionally sodium hydroxide, and then lyophilizing the mixture. Prior to administration, the lyophilized mixture is dissolved in an intravenous fluid such as WFI or physiological saline.
  • Example 1 Intravenous Platelet Blockade with Cangrelor Versus Placebo During
  • Patients were enrolled at 218 sites in 18 countries from October 2006 to May 2009. Patients were randomized in a double-blind, placebo-controlled, double-dummy design to receive either (i) placebo bolus and infusion or (ii) cangrelor 30 ⁇ g/kg bolus and 4 ⁇ g/kg/min infusion for the duration of PCI, with a minimum infusion duration of 2 hours and a maximum of 4 hours. Patients in the placebo arm of the trial received 600 mg of clopidogrel at the end of the procedure, while patients in the cangrelor arm received 600 mg of clopidogrel after the end of the cangrelor infusion (Fig. 1).
  • non-ST-segment elevation myocardial infarction was initially allowed at the beginning of the trial prior to a protocol amendment.
  • the diagnosis of non-ST-segment elevation myocardial infarction required troponin I or T greater than the upper limit of normal within 24 hours of randomization (or if troponin results were unavailable at that time, creatine kinase-myocardial band isoenzyme [CK- MB] greater than the upper limit of normal).
  • the diagnosis of unstable angina required ischemic chest discomfort occurring at rest and lasting >10 minutes within the 24 hours prior to
  • the exclusion criteria included the following: prior thienopyridine use in the past 7 days, planned staged PCI procedure where the second stage would occur ⁇ 30 days after the first PCI, admission planned for ⁇ 12 hours following PCI, ST-segment elevation myocardial infarction within 48 hours of randomization, known or suspected pregnancy, lactating females, increased bleeding risk (ischemic stroke within the last year or any previous hemorrhagic stroke), intracranial tumor, cerebral arteriovenous malformation, intracranial aneurysm, recent ( ⁇ 1 month) trauma or major surgery (including coronary artery bypass grafting), current warfarin use, active bleeding, known International Normalized Ratio >1.5, past or present bleeding disorder, platelet count ⁇ 100,000/ ⁇ , severe hypertension (systolic blood pressure >180 mm Hg or diastolic blood pressure >110 mm Hg), fibrinolytic therapy or glycoprotein Ilb/IIIa inhibitor use in the 12 hours preceding randomization.
  • the primary efficacy endpoint was the composite of mortality, myocardial infarction, or ischemia-driven revascularization at 48 hours.
  • the primary analysis was performed on a modified intent-to-treat population. Confirmatory analyses were performed on an intent-to-treat population. Secondary endpoints included the individual rates of mortality, myocardial infarction, new Q-wave myocardial infarction, ischemia-driven revascularization, abrupt vessel closure, or stroke at 48 hours. Mortality at 30 days and 1 year was also recorded.
  • stent thromboses The clinical events committee adjudicated myocardial infarction, Q-wave myocardial infarction, ischemia- driven revascularization, stent thromboses, and stroke (ischemic or hemorrhagic).
  • the definition of stent thrombosis was similar to the Academic Research Consortium definition of definite stent thrombosis. After review of the prespecified analyses, two exploratory endpoints less reliant on periprocedural biomarker ascertainment were examined.
  • the exploratory endpoints which were composed of prespecified and adjudicated endpoints, were the composite of mortality, Q-wave myocardial infarction, or ischemia-driven revascularization and the composite of mortality, Q- wave myocardial infarction, or stent thrombosis. Bleeding and adverse events through 48 hours were compared.
  • CABG denotes coronary artery bypass grafting
  • CAD coronary artery disease
  • GP glycoprotein
  • HF heart failure
  • ITT intent to treat
  • IV intravenous
  • LMWH low molecular weight heparin
  • MI myocardial infarction
  • MITT modified intent to treat
  • NSTEMI non-ST-segment elevation myocardial infarction
  • PAD peripheral artery disease
  • PCI percutaneous coronary intervention
  • PTCA percutaneous transluminal coronary angioplasty
  • TIA transient ischemic attack
  • UFH unfractionated heparin.
  • CI denotes confidence interval
  • IDR ischemia-driven revascularization
  • ITT intent to treat
  • MI myocardial infarction
  • MITT modified intent to treat
  • OR odds ratio
  • CI denotes confidence interval
  • IDR ischemia-driven revascularization
  • ITT intent to treat
  • MI myocardial infarction
  • MITT modified intent to treat
  • OR odds ratio
  • Variables are presented as no. (%) unless otherwise indicated.
  • the bleeding options under each criterion are not mutually exclusive. For example, a patient may have a clinically significant bleed and a minor bleed based on the ACUITY criteria, if more than 1 bleed is present. Each patient was counted only once for each criteria level, regardless of the number of bleeds identified under each criterion. Bleeding listed here included CABG-related bleeding.
  • Example 2 Platelet Inhibition with Cangrelor in Patients with Acute Coronary Syndromes Undergoing Percutaneous Coronary Intervention
  • the primary efficacy endpoint was the 48-hour composite of all-cause mortality, MI, or ischemia-driven revascularization.
  • Prespecified secondary efficacy endpoints included the composite of mortality or MI at 48 hours and 30 days; the composite of mortality, MI, or ischemia-driven revascularization at 30 days; the components of the composite endpoints at 48 hours and 30 days; stroke at 48 hours; abrupt closure, threatened abrupt closure, need for urgent coronary artery bypass grafting, or unsuccessful procedure during the index PCI; acute (24 hours) and subacute (48 hours) stent thrombosis; and all-cause mortality at 6 months and 1 year.
  • Ischemia-driven revascularization was defined as symptoms of myocardial ischemia leading to urgent (within 24 hours of the last episode of ischemia) revascularization, which must have occurred after the index procedure concluded (ie, guidewire removal). New electrocardiographic changes, acute pulmonary edema, ventricular arrhythmias, or hemodynamic instability could also constitute evidence of ischemia.
  • MI was defined by a new Q wave (duration >0.03 seconds) in two contiguous electrocardiographic leads or elevations in creatine kinase (CK) and CK-MB, including a rise of CK-MB >3 times the local upper limit or normal and, when biomarkers were elevated prior to PCI, an additional 50% above baseline (Thygesen K. et al, Circulation 116:2634-53 (2007)).
  • One baseline troponin measurement was required for patients undergoing urgent PCI.
  • periprocedural MI can be challenging when most patients have elevated biomarkers and a single baseline sample. After the initial analyses were completed and reviewed, additional post-hoc composites were performed to better understand the potential effect of the drug on periprocedural outcomes less reliant on biomarkers (e.g., mortality, stent thrombosis, and Q-wave MI).
  • biomarkers e.g., mortality, stent thrombosis, and Q-wave MI
  • the sample size was based on the estimated composite incidence of all-cause mortality, MI, and ischemia-driven revascularization at 48 hours. Since there was no prior information about the use of cangrelor in the setting of STEMI and primary PCI and given the challenge of measuring re-infarction in the early hours of STEMI, the primary efficacy endpoint excluded these patients from the analysis, though they were included in analyses of safety.
  • the composite event rate was estimated at 7% in the control clopidogrel arm.
  • the trial was designed as a superiority trial to demonstrate a benefit of cangrelor over 600 mg clopidogrel. Assuming a 22% risk reduction, a sample size of 8000 patients would provide approximately 82% power with an alpha level of 0.05.
  • the plan was to include up to 1000 patients with STEMI, raising the sample size to 9000 patients.
  • the primary efficacy analysis was to be determined in the modified intent-to-treat (mITT) population, defined as all randomized patients (excluding STEMI cohort) who received at least one dose of study drug and underwent the index PCI.
  • the safety population consisted of all randomized patients who received any study drug. Patients in the safety analyses were assigned to a treatment arm based on treatment received, not as randomized. The ITT analysis with and without the STEMI cohort is reported.
  • Baseline demographics on the ITT population are shown in Table 5.
  • Baseline demographics for the MITT and safety populations are shown in Tables 6 and 7.
  • CABG coronary artery bypass grafting
  • CAD coronary artery disease
  • GP glycoprotein
  • HF heart failure
  • ITT intent to treat
  • IV intravenous
  • LMWH low molecular weight heparin
  • MI myocardial infarction
  • NSTEMI non-ST-segment elevation myocardial infarction
  • PAD peripheral artery disease
  • PCI percutaneous coronary intervention
  • PTCA percutaneous transluminal coronary angioplasty
  • STEMI ST-segment elevation myocardial infarction
  • TLA transient ischemic attack
  • UFH unfractionated heparin.
  • CABG denotes coronary artery bypass grafting
  • CAD coronary artery disease
  • GP glycoprotein
  • HF heart failure
  • IV intravenous
  • LMWH low molecular weight heparin
  • MI myocardial infarction
  • MITT modified intent to treat
  • NSTEMI non-ST-segment elevation myocardial infarction
  • PAD peripheral artery disease
  • PCI percutaneous coronary intervention
  • PTCA percutaneous transluminal coronary angioplasty
  • STEMI ST-segment elevation myocardial infarction
  • TLA transient ischemic attack
  • UFH unfractionated heparin.
  • CABG denotes coronary artery bypass grafting
  • CAD coronary artery disease
  • GP glycoprotein
  • HF heart failure
  • IV intravenous
  • LMWH low molecular weight heparin
  • MI myocardial infarction
  • NSTEMI non-ST-segment elevation myocardial infarction
  • PAD peripheral artery disease
  • PCI percutaneous coronary intervention
  • PTCA percutaneous transluminal coronary angioplasty
  • STEMI ST-segment elevation myocardial infarction
  • TIA transient ischemic attack
  • UFH unfractionated heparin.
  • PCI was attempted in all but 161 patients (1.8%), 65 in the cangrelor group (1.5%) and 96 in the clopidogrel group (2.2%).
  • the median duration of PCI was 0.4 hours (0.2, 0.6) and the median time from hospital admission to PCI was 6.3 hours (2.6, 23.7).
  • Most procedures involved single-vessel or two-vessel PCI (87.7% and 11.4%, respectively).
  • Drug-eluting stents were used in the majority of interventions (59.1%), bare-metal stents were used in 37.6%.
  • CI denotes confidence interval
  • IDR ischemia-driven revascularization
  • ITT intent to treat
  • MI myocardial infarction
  • MITT modified intent to treat
  • OR odds ratio
  • STEMI ST- segment elevation myocardial infarction.
  • Variables are presented as no. (%) unless otherwise indicated.
  • the bleeding options under each criterion are not mutually exclusive. For example, a patient may have a clinically significant bleed and a minor bleed based on the ACUITY criteria, if more than 1 bleed is present. Each patient will be counted once for each criteria level, regardless of the number of bleeds identified under each criterion.
  • Key secondary and composite exploratory (post-hoc) endpoints are displayed in Table
  • 600 mg has any effect on platelet inhibition by clopidogrel.
  • Patients in the substudy were required to be clopidogrel naive and could not have received glycoprotein Ilb/IIIa inhibition during the procedure.
  • Platelet function parameters were measured using the VerifyNow P2Yi 2 Assay (Accumetrics, San Diego, CA). Samples were taken before study drug administration, at approximately 2 hours (during cangre lor/placebo infusion), and 10 hours or next day following randomization.
  • Randomization was performed before PCI with the use of an interactive voice-response or Web-response system, with stratification according to site, baseline status (normal or abnormal, as defined by a combination of biomarker levels, electrocardiographic changes, and symptoms), and intended loading dose of clopidogrel (600 mg or 300 mg). Randomization divided the patients into two groups: the cangrelor group and the clopidogrel group.
  • Patients assigned to the cangrelor group were administered: (i) placebo capsules (before or immediately after PCI to match clopidogrel capsules administered in the clopidogrel group); (ii) a cangrelor bolus (30 ⁇ g/kg)/infusion (4 ⁇ g/kg/min); and (iii) capsules containing 600 mg of clopidogrel administered at the end of infusion.
  • clopidogrel capsules 300 mg or 600 mg before or immediately after PCI, with the dose and timing of administration determined at the discretion of the site investigator
  • a placebo bolus/infusion to match the cangrelor bolus/infusion administered in the cangrelor group
  • placebo capsules administered at the end of the infusion to match the capsules containing 600 mg of clopidogrel administered at the end of the infusion in the cangrelor group.
  • the cangrelor or placebo infusion was administered for at least 2 hours or the duration of the PCI procedure, whichever was longer.
  • a periprocedural anticoagulant bivalirudin, unfractionated heparin, low-molecular-weight heparin, or fondaparinux was also at the discretion of the investigator.
  • Glycoprotein Ilb/IIIa inhibitors were allowed only as rescue therapy during PCI to treat new or persistent thrombus formation, slow or no reflow, side-branch compromise, dissection, or distal embolization.
  • the investigator at the site determined the protocol for management of the arterial sheath.
  • the inclusion criteria for the trial were men or nonpregnant women, 18 years of age or older with coronary atherosclerosis who required PCI for stable angina, a non-ST-segment elevation acute coronary syndrome, or ST-segment elevation myocardial infarction (STEMI). Patients were required to provide written informed consent.
  • the primary efficacy end point was the composite rate of death from any cause, myocardial infarction, IDR, or stent thrombosis in the 48 hours after randomization in the modified intention-to-treat population (which comprised patients who actually underwent PCI and received the study drug).
  • the protocol specified that if more than 15% of the patients received a 300-mg loading dose of clopidogrel (as compared with a 600-mg dose) at the time of randomization, the primary analysis was to be adjusted for loading dose in addition to baseline status.
  • the key secondary end point was the incidence of stent thrombosis at 48 hours.
  • Intraprocedural stent thrombosis was defined as any new or worsened thrombus related to the stent procedure that was confirmed angiographically.
  • Events of death, myocardial infarction, IDR, and stent thrombosis that occurred during the first 30 days after randomization were adjudicated by the clinical events committee at the Duke Clinical Research Institute.
  • the criteria that the clinical events committee used to define myocardial infarction are provided in Tables 12A and 12B. The study adhered to the universal definition of myocardial infarction for myocardial infarction unrelated to PCI but expanded on the definition of PCI-related myocardial infarction.
  • CKMB creatine kinase-myocardial band isoenzyme
  • ECG denotes electrocardiography
  • MI denotes myocardial infarction
  • NSTE-ACS denotes non-ST-segment elevation acute coronary syndrome
  • STEMI denotes ST-segment elevation myocardial infarction.
  • ECG changes ST segment elevation/ depression > 0. lmV (>lmm) in at least 2 contiguous leads; new LBBB; new Q wave (greater than 0.03 seconds).
  • ECG collection post PCI within 1 hour after PCI; pre-discharge.
  • Ischemic symptoms angina or equivalent symptoms that need to be treated medically or lasting > 20 min. Ischemic symptoms as determined by the treating physician include but are not limited to weakness, shortness of breath, wheezing, tiredness, fainting, sweating, nausea/vomiting, abdominal pain, back pain, jaw pain, palpitations, fast heartbeat, drug use for chest pain
  • MI myocardial infarction
  • CKMB creatine kinase-myocardial band isoenzyme
  • NSTE-ACS denotes non-ST- segment elevation acute coronary syndrome
  • ULN denotes upper limit of normal
  • PCI percutaneous coronary intervention.
  • CKMB collection post PCI 6 hourly collection through 24 hours (minimum of 3 samples required). Core lab values take priority; hospital labs may be used if core lab not available (CKMB priority but troponin may be used).
  • TIMI 2 flow after baseline TIMI 3 flow also termed slow reflow
  • IPTE Intra-Procedural Thrombotic Event
  • IPST may present as either acute thrombotic stent closure after a stent was implanted in a patient with a patent vessel beforehand, or new thrombus formation within or adjacent to a stent in a vessel in which thrombus either was not present or had diminished or resolved before the stent was implanted.
  • Ischemic symptoms angina or equivalent symptoms that need to be treated medically or lasting > 20 min.
  • Ischemic symptoms as determined by the treating physician include but are not limited to weakness, shortness of breath, wheezing, tiredness, fainting, sweating, nausea/vomiting, abdominal pain, back pain, jaw pain, palpitations, fast heartbeat, drag use for chest pain (nitroglycerin, morphine, beta blocker, etc.).
  • ECG changes ST segment elevation/ depression > 0. lmV (>lmm) in at least 2 contiguous leads; new LBBB; new Q wave (greater than 0.03 seconds).
  • ECG collection post PCI within 1 hour after PCI; pre-discharge.
  • the primary safety end point was severe bleeding not related to coronary-artery bypass grafting, according to the Global Use of Strategies to Open Occluded Coronary Arteries
  • CABG coronary-artery bypass grafting
  • NSTE-ACS denotes non-ST-segment elevation acute coronary syndrome, PCI percutaneous coronary intervention, PTCA percutaneous transluminal coronary angioplasty, STEMI ST-segment elevation myocardial infarction, and TIA transient ischemic attack.
  • J Cardiac biomarker status was considered to be abnormal if at least one of the baseline troponin I or T levels, obtained within 72 hours before randomization or after randomization but before imtiation of the study drug, was greater than the upper limit of the normal range, as determined by the local laboratory. If the baseline troponin level was not available, the baseline MB fraction of creatine kinase was used. Table 14 - Additional baseline and procedural characteristics for the modified intention-to-treat population, according to the treatment group.*
  • CAD coronary artery disease
  • IDDM insulin- dependent diabetes mellitus
  • MITT modified intent to treat
  • Type 3 22/5529 ( 0.4) 13/5527 (0.2) 1.69 (0.85, 3.37) 0.13
  • Type 3 a 11/5529 (0.2) 4/5527 (0.1) 2.75 (0.88, 8.65) 0.07
  • Type 3 b 9/5529 (0.2) 8/5527 (0.1) 1.12 (0.43, 2.92) 0.81
  • MI myocardial infarction
  • ST denotes stent thrombosis
  • IDR denotes ischemia-driven revascularization
  • CV denotes cardiovascular
  • GUSTO denotes Global Use of Strategies to Open Occluded Coronary Arteries
  • ACUITY denotes Acute Catheterization and Urgent Intervention Triage Strategy trial
  • BARC denotes Bleeding Academic Research Consortium.
  • the use of rescue therapy with a glycoprotein Ilb/IIIa inhibitor was 2.3% with cangrelor as compared with 3.5% with clopidogrel (odds ratio, 0.65; 95% CI, 0.52 to 0.82; PO.001).
  • a subgroup analysis showed a similar effect of cangrelor among patients who received the infusion for 129 minutes or less (odds ratio, 0.85; 95% CI, 0.68 to 1.07) and those who received the infusion for more than 129 minutes (odds ratio, 0.72; 95% CI, 0.56 to 0.92) (P 0.31 for interaction) (Fig. 10).
  • Example 1 and Example 2 suggested a clinical benefit of cangrelor, including a significant reduction in the secondary end point of stent thrombosis.
  • the rate of the primary end point was not reduced in the previous examples, probably because the definition of periprocedural myocardial infarction in those studies did not allow discrimination of reinfarction in patients presenting for PCI soon after admission with a biomarker-positive acute coronary syndrome.
  • the definition of periprocedural myocardial infarction required careful assessment of patients' baseline biomarker status.
  • the use of an angiographic core laboratory allowed objective determination of intraprocedural complications. Table 20 lists the differences between the trials described in Example 1/Example 2 and the trial described in Example 3.
  • PCI percutaneous coronary intervention
  • STEMI denotes ST-segment elevation myocardial infarction
  • NSTEMI denotes non-ST-elevated myocardial infarction
  • ECG denotes electrocardiography
  • NSTE-ACS denotes non-ST-segment elevation acute coronary syndrome
  • MI denotes myocardial infarction
  • IDR denotes ischemia-driven revascularization
  • ST denotes stent thrombosis
  • UDMI denotes universal definition of myocardial infarction
  • CKMB denotes creatine kinase- myocardial band isoenzyme
  • ULN denotes upper limit of normal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Methods of treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing percutaneous coronary intervention (PCI), comprising administering to the patient a pharmaceutical composition comprising cangrelor. The method may further comprise administering an additional therapeutic agent to the patient, the additional therapeutic agent comprising a P2Yi2 inhibitor. Pharmaceutical compositions useful for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI. The pharmaceutical compositions comprise cangrelor. Methods of preparing a pharmaceutical composition for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising admixing cangrelor with one or more pharmaceutically acceptable excipients. An ischemic event may include stent thrombosis, myocardial infarction, ischemia-driven revascularization, and mortality.

Description

METHODS OF TREATING, REDUCING THE INCIDENCE OF, AND/OR
PREVENTING ISCHEMIC EVENTS
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation-in-part of U.S. application Serial No. 12/943,717 filed on November 10, 2010, which claims priority to U.S. provisional application Serial No.
61/260,361 filed on November 11, 2009, each of which is incorporated herein by reference.
FIELD OF THE INVENTION
[0002] The present invention relates to methods of treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing percutaneous coronary intervention (PCI), comprising administering to the patient a pharmaceutical composition comprising cangrelor. The methods may further comprise administering an additional therapeutic agent to the patient, the additional therapeutic agent comprising a P2Yi2 inhibitor. The present invention also relates to pharmaceutical compositions useful for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI. The pharmaceutical compositions comprise cangrelor. The present invention further relates to methods of preparing a pharmaceutical composition for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising admixing cangrelor with one or more pharmaceutically acceptable excipients. An ischemic event may include stent thrombosis, myocardial infarction, ischemia-driven revascularization (IDR), and mortality.
BACKGROUND OF THE INVENTION
[0003] PCI is a procedure that opens narrowed arteries that supply heart muscle with blood. PCI with stent implantation is widely used to reduce the risk of mortality or myocardial infarction in patients with acute coronary syndromes and to reduce the burden of angina and improve the quality of life in patients with stable angina.1 However, thrombotic complications during PCI are a major concern, particularly if the procedure involves implantation of a stent,
1 Mehta SR, et al., JAMA 2005;293:2908-17; De Bruyne B, et al., N Engl J Med 2012;367:991-1001 [Erratum, N Engl J Med 2012;367: 1768.]; Bhatt DL, JAMA 2005;293:2935-7; Bavry AA, et al., J Am Coll Cardiol
2006;48: 1319-25; and Bhatt DL, et al., JAMA 2004;292:2096-104. which can induce platelet adhesion, activation and thrombus formation on or near the stent.2 Thus, antiplatelet therapies are an important adjunct to PCI.3
[0004] Inhibition of platelet adenosine diphosphate (ADP) receptor P2Yi2 through
pharmacotherapy has been demonstrated to improve cardiovascular outcomes in patients undergoing PCI.4 Such antiplatelet therapies reduce the risk of ischemic events, particularly stent thrombosis.5 Yet, there are several limitations regarding the use of orally administered P2Yi2-receptor inhibitors. For instance, there is a delayed onset of action when these drugs are administered, even when given with a loading dose,6 which is particularly problematic for patients who require urgent or periprocedural treatment. In addition, patients in the acute phase of cardiovascular illness may have conditions such as nausea, impaired absorption, or impaired perfusion that can limit drug bioavailability; in such patients the antiplatelet effect of oral antiplatelet agents such as clopidogrel may not be sufficient.7 Further, multiple studies have now demonstrated that the pharmacokinetic and pharmacodynamic effects of clopidogrel are highly variable8 and may be influenced by genetic polymorphisms,9 which translate into differential pharmacodynamic and therapeutic responses that lead to the notion of clopidogrel "non- responders."10 Moreover, many physicians refrain from administering clopidogrel prior to angiographic definition of coronary anatomy, as this irreversible platelet inhibitor has been associated with an increased risk of perioperative bleeding if coronary artery bypass surgery is required rather than percutaneous revascularization. More potent oral ADP blockers have been tested and found to reduce ischemic outcomes even further, but with increased rates of bleeding.11
2 Windecker S, et al., Circulation 2007;116: 1952-65; Maisel WH, N Engl J Med 2007;356:981-4.
3 Griintzig AR, et al., N Engl J Med 1979;301 :61-8.
4 Yusuf S, et al., N. Eng J Med 2001 ;345:494-502; Mehta SR, et al., Lancet 2001 ;358:527-33; Sabatine MS, et al., N Engl J Med 2005;352: 1179-89; and Steinhubl SR, et al., JAMA 2002;288:2411-20 [Erratum, JAMA 2003;
289:987.].
5 Yousuf O, et al., Nat Rev Cardiol 2011 ;8:547-59; Wiviott SD, et al., N Engl J Med 2007;357:2001-15; Wallentin et al., N Engl J Med 2009;361 : 1045-57; and Bhatt DL, N Engl J Med 2007;357:2078-81.
6 Meadows TA, et al., Circ Res 2007;100: 1261-75.
7 Souckova L, et al., Eur J Clin Pharmacol 2013;69:309-17 and Heestermans AA, et al., Thromb Res 2008;122:776- 81.
8 Gurbel PA, et al., J Am Coll Cardiol 2005;45: 1392-6 and Collet JP, et al., Lancet 2009;373:309-17.
9 Mega JL, et al., N Engl J Med 2009;360:354-62.
10 Gurbel PA, et al., Nature Clin Pract Cardiovasc Med 2006;3:387-95.
11 Wiviott SD, et al., N Engl J Med 2007;357:2001-15; Bhatt DL, N Engl J Med 2007;357:2078-81 ; Bhatt DL, N Engl J Med 2009;361 :940-2; Wallentin L, et al., N Engl J Med 2009;361 : 1045-57; and Schomig A, et al., N Engl J Med 2009;361 : 1108-11. [0005] Thus, despite advances in adjunctive pharmacotherapy, the concern of ischemic events in a patient undergoing PCI has not been eliminated.12 Accordingly, there is a continuing need for a potent, fast-acting, reversible antiplatelet agent that effectively treats, reduces the incidence of, and/or prevents ischemic events without an excessive risk of bleeding.
SUMMARY OF THE INVENTION
[0006] The present invention demonstrates how cangrelor may be utilized in treating, reducing the incidence of, and/or preventing an ischemic event. An ischemic event may include stent thrombosis, myocardial infarction, IDR, and mortality. An ischemic event can occur before, during, or after PCI.
[0007] An aspect of the present invention is directed to a method of treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI. The method comprises administering to the patient a pharmaceutical composition comprising cangrelor. The pharmaceutical composition may be administered before, during, and/or after PCI, and through various routes of administration. For example, the pharmaceutical composition may be administered intravenously, including as a bolus and/or infusion. In addition, the pharmaceutical composition may be administered to a patient undergoing PCI involving stent implantation. The method of the present invention may treat, reduce the incidence of, and/or prevent an ischemic event during or after PCI. In some instances, the method is not accompanied by a significant increase in severe bleeding or the need for transfusions.
[0008] In certain embodiments of the invention, the method may further comprise
administering an additional therapeutic agent to the patient. The additional therapeutic agent may be administered separately from the pharmaceutical composition comprising cangrelor, either sequentially or concurrently. Alternatively, the additional therapeutic agent may be administered in the same pharmaceutical composition as cangrelor. In some embodiments, the additional therapeutic agent comprises a P2Yi2 inhibitor, such as clopidogrel, prasugrel, or ticagrelor. In alternative embodiments, the additional therapeutic agent comprises bivalirudin.
[0009] Another aspect of the present invention is directed to a pharmaceutical composition useful for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI. The pharmaceutical composition comprises cangrelor and may further
12 Stone GW, et al., N Engl J Med 2009;360: 1946-59 and Bavry AA, et al., Lancet 2008;371 :2134-33. comprise one or more pharmaceutically acceptable excipients. In addition, the pharmaceutical composition may be a solid, liquid, or suspension. The pharmaceutical composition of the present invention may be useful for treating, reducing the incidence of, and/or preventing an ischemic event that occurs during or after PCI. In some instances, the pharmaceutical composition does not lead to a significant increase in severe bleeding or the need for transfusions when administered to a patient undergoing PCI.
[0010] A further aspect of the present invention is directed to a method of preparing a pharmaceutical composition for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising admixing cangrelor with a
pharmaceutically acceptable excipient. The pharmaceutically acceptable excipient may comprise NaCl, dextrose, mannitol, or a combination thereof.
Brief Description of the Figures
[0011] Figure 1 - diagram showing trial design for the study described in Example 1.
[0012] Figure 2 - diagram showing the primary modified intent-to-treat analysis population in the study described in Example 1.
[0013] Figures 3 A, 3B and 3C - landmark analysis of Kaplan-Meier curves for the primary efficacy endpoint (Figure 3A), stent thrombosis (Figure 3B), and mortality at 48 hours and 30 days (Figure 3C) in the study described in Example 1.
[0014] Figure 4 - diagram showing transfusion rates for all patients (including coronary artery bypass graft) in subgroups at high risk of bleeding in the study described in Example 1.
[0015] Figure 5 - diagram showing trial design for the study described in Example 2.
[0016] Figures 6 A and 6B - display the primary endpoint odds ratio (OR) data for key subgroups in the study described in Example 2.
[0017] Figure 7 - diagram showing trial design for the study described in Example 3.
[0018] Figure 8 - diagram showing the modified intention-to-treat population in the study described in Example 3.
[0019] Figure 9 A and 9B - landmark analysis of Kaplan Meier curves for the primary endpoint (Figure 9A) and the key secondary end point of stent thrombosis (Figure 9B) in the study described in Example 3. [0020] Figure 10 - diagram showing the subgroup analysis of the primary efficacy end point in the study described in Example 3.
[0021] Figure 11 - diagram showing the subgroup analysis of Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO) severe or moderate bleeding in the study described in Example 3.
DETAILED DESCRIPTION OF THE INVENTION
[0022] The present invention is based on the discovery that cangrelor, a reversible, fast acting, adenosine triphosphate analogue inhibitor of the P2Yi2 ADP receptor, is effective in treating, reducing the incidence of, and/or preventing an ischemic event. Thus, the present invention is directed to a method of treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising administering to the patient a pharmaceutical composition comprising cangrelor. The present invention is also directed to a pharmaceutical composition useful for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, wherein the pharmaceutical composition comprises cangrelor and may further comprise one or more pharmaceutically acceptable excipients. Further, the present invention is directed to a method of preparing a pharmaceutical composition for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising admixing cangrelor with one or more pharmaceutically acceptable excipients.
Cangrelor
[0023] Cangrelor is a non-thienopyridine adenosine triphosphate analogue which reversibly binds to and inhibits the P2Yi2 ADP receptor. Cangrelor is direct-acting, reversible, and selective, and it has a short half-life. It is metabolized through dephosphorylation pathways and has a plasma half-life of 3-5 minutes; platelet function returns to normal within 30-60 minutes of drug termination.13 When given as a bolus plus infusion, it quickly and consistently inhibits platelets to a high degree with normalization of platelet function shortly after discontinuation. A phase 2 trial in patients undergoing PCI demonstrated dose-dependent platelet inhibition similar to that achieved with abciximab, less bleeding time prolongation, and more rapid return to platelet function.14 The chemical structure of cangrelor is shown in Formula I.
13 Storey RF, et al., Br J Haematol 2000; 110:925-34.
14 Greenbaum AB, et al., Am Heart J 2006;151 :689.el-10.
Figure imgf000008_0001
Formula I
[0024] In each of the embodiments of the present invention, the term "cangrelor" encompasses the compound of Formula I, as well as tautomeric, enantiomeric and diastereomeric forms thereof, and racemic mixtures thereof, and pharmaceutically acceptable salts of these
compounds, including a tetrasodium salt. These alternative forms and salts, processes for their production, and pharmaceutical compositions comprising them, are well known in the art and set forth, for example, in U.S. Patent No. 5,721,219. Additional disclosure relevant to the production and use of cangrelor may be found in U.S. Patent Nos. 5,955,447, 6,130,208 and 6,114,313, as well as in U.S. Appln. Publication No. 2006/0270607.
Ischemic Events
[0025] The present invention demonstrates how cangrelor may be utilized in treating, reducing the incidence of, and/or preventing an ischemic event. An ischemic event may include stent thrombosis, myocardial infarction, IDR, and mortality. An ischemic event can occur before, during, or after PCI.
Stent Thrombosis
[0026] In certain embodiments, the present invention relates to treating, reducing the incidence of, and/or preventing stent thrombosis in a patient undergoing PCI. Stent thrombosis may result from any means related to the implantation, presence, or maintenance of the stent in the vasculature of the patient. For example, stent thrombosis may be induced by implantation of a stent into the patient or may develop over time due to the presence of a stent, such as a bare- metal stent, a drug-eluting stent, or other type of stent. In some embodiments, stent thrombosis is defined in accordance with or derived from the Academic Research Consortium definition of stent thrombosis. In certain embodiments of the present invention, stent thrombosis may be intraprocedural stent thrombosis, acute stent thrombosis (<24 hours post implantation), sub-acute stent thrombosis (>24 hours and <30 days post implantation), late stent thrombosis (>30 days and <12 months post implantation) or very late stent thrombosis (>12 months post implantation).
Myocardial Infarction
[0027] In certain embodiments, the present invention relates to treating, reducing the incidence of, and/or preventing myocardial infarction in a patient undergoing PCI. Myocardial infarction may be any form of myocardial infarction, including acute myocardial infarction (first few hours to 7 days), healing myocardial infarction (7 to 28 days), healed myocardial infarction (29 days and beyond), acute non-ST-elevated myocardial infarction (NSTEMI), and acute ST-elevated myocardial infarction (STEMI). In some embodiments, myocardial infarction is defined in accordance with or derived from the universal definition of myocardial infarction.16
[0028] Myocardial infarction may arise during PCI, or may be induced by any mechanism, including implantation of a stent into the patient. Myocardial infarction may also be caused by stent thrombosis or occlusion of a coronary artery.
Ischemia-Driven Revascularization (IDR)
[0029] In certain embodiments, the present invention relates to treating, reducing the incidence of, and/or preventing IDR in a patient undergoing PCI. IDR refers to any type of intervention following PCI in which blood flow through a vessel must be increased or re-established.
Examples of IDR include, but are not limited to, an additional PCI or surgery.
Mortality
[0030] In certain embodiments, the present invention relates to reducing the incidence of and/or preventing mortality in a patient undergoing PCI. In some embodiments, mortality may be associated with other ischemic events. For instance, mortality may be caused by stent thrombosis, occlusion of a coronary artery, and/or myocardial infarction.
Methods of Treating, Reducing the Incidence of, and/or Preventing an Ischemic Event
15 Cutlip DE, et al., Circulation 2007; 115(17):2344-51.
16 Thygesen K, et al., Eur Heart J 2007;28:2525-38. [0031] An aspect of the present invention is methods of treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI, comprising administering to the patient a pharmaceutical composition comprising cangrelor.
[0032] PCI may comprise balloon angioplasty without implantation of a stent, or may also comprise the implantation of a stent. The stent may be a bare-metal stent, or a drug-eluting stent, as known in the art.
Timing, Duration, and Routes of Administration of the Pharmaceutical Composition
[0033] A method of the present invention comprises administering the pharmaceutical composition before, during, and/or after PCI. The administration may continue for a short period of time, such as less than about an hour, or may be one or more hours. In some embodiments, the administration may continue for at least the duration of the PCI. In other embodiments, the administration may continue after the PCI has concluded. In certain embodiments, the administration may continue for at least about 2 hours or the duration of the PCI procedure, whichever is longer. In an additional embodiment, the administration may continue for about 4 hours or longer.
[0034] A method may comprise administering the pharmaceutical composition multiple times before, during, and/or after PCI. For example, administration of the pharmaceutical composition may be for a short period of time before the PCI, and then again once PCI has begun.
[0035] In certain embodiments, the method may comprise administering the pharmaceutical composition periodically after the PCI has concluded. For instance, the pharmaceutical composition may be administered once, twice, thrice or more times a day, once every two days, once every three days, etc., and for weeks, months, or even years, after the PCI, particularly if the PCI involved stent implantation.
[0036] In additional embodiments, the method may comprise administering the pharmaceutical composition once the ischemic event is recognized or diagnosed, or at the onset of symptoms of the ischemic event. For example, the pharmaceutical composition may be administered if symptoms of a myocardial infarction are observed. The pharmaceutical composition may be administered within a short period of time from the onset of symptoms of the ischemic event. The short period of time may range from about one or two minutes to about one or two hours.
[0037] In some embodiments, the method may comprise administering the pharmaceutical composition as a prophylaxis against an ischemic event, such as myocardial infarction. Patients appropriate for such prevention include any patient suspected of having early symptoms of the ischemic event or other disease, or a condition that could lead to the ischemic event against which the pharmaceutical compositions of the invention would be effective. The pharmaceutical composition may be administered to the patient within a short period of time of when early or initial symptoms of the ischemic event are detected.
[0038] Methods of the present invention may comprise administering the pharmaceutical composition concurrently or sequentially with at least one additional therapeutic agent. The additional therapeutic agent may be a P2Yi2 receptor inhibitor, such as clopidogrel, ticagrelor, or prasugrel, or the additional therapeutic agent may be a glycoprotein Ilb/IIIa inhibitor.
Alternatively, the additional therapeutic agent may be aspirin. In some embodiments, the additional therapeutic agent may be administered after the administration of cangrelor, either immediately after or following a short period of time. For example, when cangrelor is administered as a bolus followed by infusion, the additional therapeutic agent, such as clopidogrel, may be administered after the infusion of cangrelor is complete.
[0039] The routes of administration of the methods of the present invention include, for example, oral, sublingual, intranasal, intraocular, rectal, transdermal, mucosal, topical or parenteral administration. Parenteral modes of administration include without limitation, intradermal, subcutaneous (s.c, s.q., sub-Q, Hypo), intramuscular (i.m.), intravenous (i.v.), intraperitoneal (i.p.), intra-arterial, intramedulary, intracardiac, intra-articular (joint),
intrasynovial (joint fluid area), intracranial, intraspinal, and intrathecal (spinal fluids). Any known device useful for parenteral injection or infusion of drug formulations can be used in the methods of the present invention. In noted aspects and embodiments of the present invention, administration is via parenteral administration, preferably intravenous administration, or oral administration.
[0040] When administered intravenously, the pharmaceutical composition comprising cangrelor may be administered as a bolus, as a continuous infusion, or as a bolus followed by a continuous infusion. For example, the pharmaceutical composition may be administered prior to PCI as a bolus, and may be administered during PCI as a continuous infusion.
[0041] Doses of cangrelor in the pharmaceutical compositions administered in the methods of the present invention may vary depending upon the stated goals of the methods (treating, reducing the incidence of, and/or preventing), the physical characteristics of the patient, the significance of the ischemic event, existence of related or unrelated medical conditions, the composition of the formulation and the means used to administer the drug to the patient. The dose for a given patient will generally be set by the judgment of the attending physician.
[0042] When administered as a bolus, a dose of about 5 to about 100 μg/kg cangrelor, such as between about 20 and about 40 μg/kg cangrelor, or about 30 μg/kg cangrelor, is administered. When administered as a continuous infusion, cangrelor may be administered at about 0.1 to about 30 μg/kg/min, for example, between about 1 and about 10 μg/kg/min, or about 4 μg/kg/min. One of ordinary skill in the art will understand that the dose may differ in the periods before PCI, during PCI and after PCI.
[0043] In certain embodiments, the method of the present invention comprises administering a bolus of about 30 μg/kg cangrelor, followed by administering an infusion of about 4 μg/kg/min cangrelor.
[0044] When the pharmaceutical composition is administered orally, a dose of between about 0.5 to about 100 mg/kg cangrelor or about 5 to about 30 mg/kg cangrelor is administered per day. Oral administration may occur once a day or multiple times per day.
[0045] In certain embodiments of the present invention, an additional therapeutic agent is administered in addition to the pharmaceutical composition comprising cangrelor. When the additional therapeutic agent comprises clopidogrel, it may be administered orally with a dose of clopidogrel from about 75 mg to about 600 mg.
Patients
[0046] As used herein, a "patient" upon which the methods of the present invention may be practiced refers to an animal, such as a mammalian or an avian species, including a human, a non-human primate, a horse, a cow, a sheep, a goat, a dog, and a cat. Such patients may have an ischemic event, such as stent thrombosis, myocardial infarction, IDR, or mortality.
[0047] In view of the fact that the patients upon which some of the methods of the present invention are being practiced have underlying health conditions that require PCI, one of ordinary skill in the art will understand that the patients may have various additional physical
characteristics related to such underlying health conditions. For example, in each of the embodiments of the present invention, the patient may have a condition selected from the group consisting of STEMI, NSTEMI, stable angina, unstable angina, and acute coronary syndrome. The patient may be of any age, gender, or weight. The patient may have received different therapeutic agents, such as a periprocedural glycoprotein Ilb/IIIa inhibitor, periprocedural unfractionated heparin (UFH), periprocedural low-molecular-weight heparin (LMWH), periprocedural bivalirudin, or periprocedural clopidogrel.
[0048] To further characterize the patients to which the methods of the present invention may be applied, it is noted that the patient may have suffered a stroke, or may have diabetes mellitus, hypertension, hyperlipidemia, a myocardial infarction, or may have a family history of coronary artery disease (CAD). The patient may have undergone percutaneous transluminal coronary angioplasty (PTCA), PCI, or coronary artery bypass graft (CABG). The patient may have congestive heart failure, peripheral arterial disease (PAD), or stent thrombosis in more than one artery or vein. Further, the patient may be on periprocedural medications such as clopidogrel, bivalirudin, unfractionated heparain, low-molecular-weight heparin, fondaparinux, or aspirin.
Results of the Methods
[0049] Each of the methods recited in the present invention may include the additional step of measuring the effectiveness of the administration of the pharmaceutical composition comprising cangrelor, including the timing, duration, and route of administration of the pharmaceutical composition. The measurement may include the effectiveness of the administration of any additional therapeutic agent. In one example, this additional step may be performed about 0.5 to about 24 hours after administration is complete. Characteristics that are representative of effectiveness include, for example, an increase in luminal diameter within a stent, a decrease in the size of the stent thrombus, and a decreased incidence of myocardial infarction.
Pharmaceutical Compositions Useful for Treating, Reducing the Incidence of, and/or Preventing Ischemic Events
[0050] An aspect of the present invention is directed to a pharmaceutical composition useful for treating, reducing the incidence of, and/or preventing an ischemic event in a patient undergoing PCI. The pharmaceutical composition comprises cangrelor, and may further comprise one or more pharmaceutically acceptable excipients. The pharmaceutical composition may be administered according to any of the methods of the present invention described above.
Pharmaceutically Acceptable Excipients
[0051] These pharmaceutical compositions may comprise one or more pharmaceutically acceptable excipients including, but not limited to, carriers, diluents, stabilizing agents, solubilizing agents, surfactants, buffers, antioxidants, preservatives, tonicity agents, bulking agents, lubricating agents, emulsifiers, suspending or viscosity agents, fillers, disintegrating agents, binding agents, wetting agents, lubricating agents, antibacterials, chelating agents, sweeteners, perfuming agents, flavouring agents, coloring agents, administration aids, and combinations thereof. Particular excipients include, but are not limited to, cornstarch or gelatin, lactose, sucrose, dextrose, microcrystalline cellulose, kaolin, mannitol, sorbitol, dicalcium phosphate, sodium chloride, alginic acid, croscarmellose sodium, sodium starch glycolate, glycerol, ethanol, propylene glycol, polysorbate 80 (Tween-80™), poly(ethylene)glycol 300 and 400 (PEG 300 and 400), PEGylated castor oil (e.g. Cremophor EL), poloxamer 407 and 188, cyclodextrin or cyclodextrin derivatives (including HPCD ((2-hydroxypropyl)-cyclodextrin) and (2-hydroxyethyl)-cyclodextrin), hydrophilic and hydrophobic carriers, and combinations thereof. Hydrophobic carriers include, for example, fat emulsions, lipids, PEGylated phospholipids, polymer matrices, biocompatible polymers, lipospheres, vesicles, particles, and liposomes. In certain embodiments, the pharmaceutical compositions may comprise polyols, such as sorbitol, lactose, sucrose, inositol or trehalose.
[0052] The pharmaceutical compositions of the present invention may be formulated for the route by which they are administered to the patients, which include solids, liquids, and suspensions. For example, if the pharmaceutical composition is formulated for IV
administration, the pharmaceutical composition may comprise an intravenous fluid, which includes, but is not limited to, water- for-injection (WFI), physiological saline, 0.9% NaCl, phosphate buffered saline, 5% dextrose in water, and 0.002% polysorbate 80 in water or
Ringer's™ solution. If the pharmaceutical composition is formulated for intramuscular administration, the pharmaceutical composition may comprise an intravenous fluid, which includes, but is not limited to, WFI, physiological saline, 0.9%> NaCl, phosphate buffered saline, and 5% dextrose in water.
[0053] If the pharmaceutical composition is formulated for oral administration, the
pharmaceutical composition may comprise excipients that include, but are not limited to diluents (e.g., sodium and calcium carbonate, sodium and calcium phosphate, and lactose), binding agents (e.g., acacia gum, starch, gelatin, sucrose, polyvinylpyrrolidone (Povidone), sorbitol, tragacanth, methylcellulose, sodium carboxymethylcellulose, hydroxypropyl methylcellulose, and ethylcellulose), fillers (e.g., calcium phosphate, glycine, lactose, maize-starch, sorbitol, or sucrose), wetting agents, lubricating agents (e.g., metallic stearates, stearic acid, polyethylene glycol, waxes, oils, silica and colloidal silica, silicon fluid or talc), disintegrating agents (e.g., potato starch, corn starch and alginic acid), flavouring agents (e.g. peppermint, oil of
wintergreen, fruit flavoring, bubblegum, and the like), and coloring agents. Excipients may also include coatings such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract. For oral use, the pharmaceutical composition may be made in the form of a tablet, capsule, suspension or liquid syrup or elixir, wafers and the like.
Preparing Pharmaceutical Compositions
[0054] The pharmaceutical compositions of the present invention may be prepared by admixing cangrelor with the one or more pharmaceutically acceptable excipients. Methods of admixing and devices useful for admixing are known in the art.
[0055] In certain embodiments, cangrelor and the one or more pharmaceutically acceptable excipients are dissolved and then admixed. The resulting mixture may be dried, such as through lyophilization, to form a solid pharmaceutical composition, or the resulting mixture may remain in solution form as a liquid pharmaceutical composition. In some embodiments, the solid pharmaceutical composition may be solubilized in an intravenous fluid before administration, for example, as a bolus or infusion.
[0056] In some embodiments, the pharmaceutical composition is prepared by dissolving and admixing cangrelor, mannitol, sorbitol, and optionally sodium hydroxide, and then lyophilizing the mixture. Prior to administration, the lyophilized mixture is dissolved in an intravenous fluid such as WFI or physiological saline.
[0057] The present invention will now be further described by way of the following non- limiting examples, which further illustrate the present invention; such examples are not intended, nor should they be interpreted, to limit the scope of the present invention.
Example 1 - Intravenous Platelet Blockade with Cangrelor Versus Placebo During
Percutaneous Coronary Intervention
[0058] In this example, the efficacy of cangrelor versus placebo was examined when administered to patients during percutaneous coronary intervention (PCI).
[0059] Patients were enrolled at 218 sites in 18 countries from October 2006 to May 2009. Patients were randomized in a double-blind, placebo-controlled, double-dummy design to receive either (i) placebo bolus and infusion or (ii) cangrelor 30 μg/kg bolus and 4 μg/kg/min infusion for the duration of PCI, with a minimum infusion duration of 2 hours and a maximum of 4 hours. Patients in the placebo arm of the trial received 600 mg of clopidogrel at the end of the procedure, while patients in the cangrelor arm received 600 mg of clopidogrel after the end of the cangrelor infusion (Fig. 1).
[0060] The inclusion criteria for the trial were as follows: age >18 years; diagnostic coronary angiography revealing atherosclerotic lesion(s) amenable to PCI with or without stent
implantation; and evidence of either non-ST-segment elevation myocardial infarction or unstable angina. Stable angina was initially allowed at the beginning of the trial prior to a protocol amendment. The diagnosis of non-ST-segment elevation myocardial infarction required troponin I or T greater than the upper limit of normal within 24 hours of randomization (or if troponin results were unavailable at that time, creatine kinase-myocardial band isoenzyme [CK- MB] greater than the upper limit of normal). The diagnosis of unstable angina required ischemic chest discomfort occurring at rest and lasting >10 minutes within the 24 hours prior to
randomization and dynamic electrocardiographic changes; age >65 years and/or diabetes mellitus were also required.
[0061] The exclusion criteria included the following: prior thienopyridine use in the past 7 days, planned staged PCI procedure where the second stage would occur <30 days after the first PCI, admission planned for <12 hours following PCI, ST-segment elevation myocardial infarction within 48 hours of randomization, known or suspected pregnancy, lactating females, increased bleeding risk (ischemic stroke within the last year or any previous hemorrhagic stroke), intracranial tumor, cerebral arteriovenous malformation, intracranial aneurysm, recent (<1 month) trauma or major surgery (including coronary artery bypass grafting), current warfarin use, active bleeding, known International Normalized Ratio >1.5, past or present bleeding disorder, platelet count <100,000/μί, severe hypertension (systolic blood pressure >180 mm Hg or diastolic blood pressure >110 mm Hg), fibrinolytic therapy or glycoprotein Ilb/IIIa inhibitor use in the 12 hours preceding randomization.
[0062] The primary efficacy endpoint was the composite of mortality, myocardial infarction, or ischemia-driven revascularization at 48 hours. The primary analysis was performed on a modified intent-to-treat population. Confirmatory analyses were performed on an intent-to-treat population. Secondary endpoints included the individual rates of mortality, myocardial infarction, new Q-wave myocardial infarction, ischemia-driven revascularization, abrupt vessel closure, or stroke at 48 hours. Mortality at 30 days and 1 year was also recorded. The clinical events committee adjudicated myocardial infarction, Q-wave myocardial infarction, ischemia- driven revascularization, stent thromboses, and stroke (ischemic or hemorrhagic). The definition of stent thrombosis was similar to the Academic Research Consortium definition of definite stent thrombosis. After review of the prespecified analyses, two exploratory endpoints less reliant on periprocedural biomarker ascertainment were examined. The exploratory endpoints, which were composed of prespecified and adjudicated endpoints, were the composite of mortality, Q-wave myocardial infarction, or ischemia-driven revascularization and the composite of mortality, Q- wave myocardial infarction, or stent thrombosis. Bleeding and adverse events through 48 hours were compared.
[0063] Statistical analyses - All efficacy analyses were performed on the modified intent-to- treat population, defined as all randomized patients who received at least one dose of study drug and underwent the index PCI. All safety-related analyses were performed on the safety population, which included all patients who received at least one dose of assigned study drug. Patients in the safety analyses were assigned to a treatment arm based on treatment actually received, not as randomized. Intent-to-treat analyses are also presented for full disclosure of results. All statistical tests were two-tailed using a level of significance of 0.05. The primary endpoint comparison between the cangrelor and placebo arms was performed by calculating an odds ratio (OR) with accompanying 95% confidence intervals (CI) using logistic regression. Logistic regression was also used to analyze the majority of the remaining secondary endpoints. The trial had 85% power to detect a 25% reduction in the primary endpoint, assuming a 7.7% event rate in the placebo arm, with a projected sample size of 6400 patients.
[0064] A total of 5362 patients were included in the intent-to-treat population; of these, 5301 formed the primary modified intent-to-treat analysis population (Fig. 2). There were 61 patients who were not included because they did not receive study drug or undergo PCI. Baseline characteristics were well-matched in the two groups (Table 1).
Table 1 - Baseline characteristics for ITT, MITT, and Safety populations
Figure imgf000019_0001
Figure imgf000020_0001
Variables are presented as median (25th, 75th) unless otherwise indicated. CABG denotes coronary artery bypass grafting; CAD, coronary artery disease; GP, glycoprotein; HF, heart failure; ITT, intent to treat; IV, intravenous; LMWH, low molecular weight heparin; MI, myocardial infarction; MITT, modified intent to treat; NSTEMI, non-ST-segment elevation myocardial infarction; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; TIA, transient ischemic attack; UFH, unfractionated heparin.
[0065] The majority of patients were enrolled with non-ST-segment elevation myocardial infarction (59.8%). During PCI, unfractionated heparin was the most frequently used antithrombin (63.9%) and glycoprotein Ilb/IIIa inhibitors were used sparingly (9.2%). Drug- eluting stents were used less often than bare metal stents (38.7% vs 56.9%>). The time from hospital admission to PCI was short (median of 7.9 hours [3.3, 24.1]). The primary endpoint occurred in 7.0% of patients receiving cangrelor and 8.0%> of patients receiving placebo (OR 0.87, 95% CI 0.71-1.07; P=0.17) (Table 2, Fig. 3A).
Table 2 - 48-hour endpoints for MITT, ITT, and Safety Populations
Figure imgf000021_0001
Mortality/Q-wave MI/Stent 14 (0.5) 35 (1.3) 0.395 (0.212, 0.735) 0.0034 thrombosis
Variables are presented as no. (%) unless otherwise indicated. CI denotes confidence interval; IDR, ischemia-driven revascularization; ITT, intent to treat; MI, myocardial infarction; MITT, modified intent to treat; OR, odds ratio.
[0066] There was no significant difference in overall myocardial infarction, Q-wave myocardial infarction, or ischemia-driven revascularization (Table 2). Rates of stent thrombosis were significantly lower with cangrelor (0.2% vs 0.6% [OR 0.31, 95% CI 0.11-0.85; P=0.022]) (Fig. 3B). The rate of mortality at 48 hours was significantly lower in the cangrelor arm (0.2% vs 0.7% [OR 0.33, 95% CI 0.13-0.83; P=0.019]), though by 30 days, this difference was no longer significant (Table 3, Fig. 3C).
Table 3 - 30-day endpoints for ITT, MITT, and Safety Populations
Figure imgf000022_0001
Mortality/Q-wave MI/Stent 49 (1.8) 74 (2.8) 0.651 (0.452, 0.938) 0.0212 thrombosis
Variables are presented as no. (%) unless otherwise indicated. CI denotes confidence interval; IDR, ischemia-driven revascularization; ITT, intent to treat; MI, myocardial infarction; MITT, modified intent to treat; OR, odds ratio.
[0067] Somewhat counterintuitively, in the subgroup of 1659 patients enrolled without baseline troponin elevation, the primary efficacy endpoint was reduced with cangrelor from 7.2 % to 4.6% (OR 0.62, 95% CI 0.41, 0.95; P=0.0266). Therefore, exploratory analyses were performed in the overall study population examining the following two clinical endpoints: mortality, Q- wave myocardial infarction, or stent thrombosis; and mortality, Q-wave myocardial infarction, or ischemia-driven revascularization. These endpoints were significantly reduced in favor of cangrelor.
[0068] The rates of Thrombolysis in Myocardial Infarction (TIMI) major or minor or Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries (GUSTO) severe or moderate bleeding were not significantly different between the groups, though the rates of Acute Catheterization and Urgent Intervention Triage Strategy (ACUITY) major and minor bleeding and of GUSTO mild bleeding were significantly higher with cangrelor (Table 4).
Table 4 - 48-hour bleeding events for safety population
Figure imgf000023_0001
Minor bleeding 22 (0.8) 16 (0.6) 1.372 (0.719, 2.618) 0.3376
Major bleeding 4 (0.2) 9 (0.3) 0.442 (0.136, 1.436) 0.1742
Variables are presented as no. (%) unless otherwise indicated. The bleeding options under each criterion are not mutually exclusive. For example, a patient may have a clinically significant bleed and a minor bleed based on the ACUITY criteria, if more than 1 bleed is present. Each patient was counted only once for each criteria level, regardless of the number of bleeds identified under each criterion. Bleeding listed here included CABG-related bleeding.
[0069] The difference in ACUITY major bleeding was due to an excess of groin hematomas, but not more serious forms of bleeding. The rates of red blood cell transfusion were not significantly different (0.9% with cangrelor vs 0.6% with placebo; P=0.12). Notably, patients at higher risk of bleeding, such as the elderly or those with prior stroke or transient ischemic attack, did not have a higher rate of transfusion with cangrelor (Fig. 4). There was no difference in the rate of arrhythmia (2.3% vs 2.4%; P=0.7664) and the incidence of dyspnea was higher with cangrelor (1.4% [37] vs 0.5% [14]; P=0.0019).
[0070] The results demonstrate that important prespecified endpoints, including stent thrombosis and mortality, were significantly reduced by cangrelor.
Example 2 - Platelet Inhibition with Cangrelor in Patients with Acute Coronary Syndromes Undergoing Percutaneous Coronary Intervention
[0071] In this example, the efficacy of cangrelor versus clopidogrel was examined when administered to patients before percutaneous coronary intervention (PCI).
[0072] Patients were eligible for enrollment if they had stable angina, unstable angina, or non- ST-segment elevation (NSTE) MI with obstructive coronary artery disease and were scheduled to undergo PCI. An additional 1000 patients with STEMI for whom primary PCI was planned were also eligible. A protocol amendment issued in May 2007 required that patients have definite features of an acute coronary syndrome (either STEMI undergoing planned primary PCI or a NSTE acute coronary syndrome with positive cardiac biomarkers or chest pain with dynamic electrocardiographic changes in patients >65 years or with diabetes). Patients could not have received fibrinolysis or glycoprotein Ilb/IIIa inhibitors within the prior 12 hours or clopidogrel >75 mg/day in the prior 5 days.
[0073] Patients were randomized in a 1 : 1 double-blind, double-dummy fashion using an IVRS system to either cangrelor or clopidogrel. All patients received a 30 μg/kg intravenous bolus of cangrelor or placebo followed by a 4 μg/kg/min intravenous infusion (Fig. 5). The infusion began within 30 minutes prior to PCI and continued for at least 2 hours or until the conclusion of the index procedure, whichever was longer. At the treating physician's discretion, the infusion could be continued for 4 hours. Patients received 600 mg encapsulated clopidogrel (four 150 mg capsules) or placebo at the time of infusion. To allow the transition from intravenous cangrelor to oral clopidogrel, patients ingested another four capsules (clopidogrel for cangrelor patients, placebo for clopidogrel patients) at the cessation of study drug infusion. The duration of daily clopidogrel following the procedure was left to the discretion of the treating physician, though additional clopidogrel beyond the prescribed study medication was not allowed until the day following the index procedure.
[0074] All patients received aspirin 75-325 mg per local site standards. Adjunctive anticoagulants (unfractionated heparin, low molecular weight heparin, bivalirudin, or fondaparinux) and the procedural use of glycoprotein Ilb/IIIa inhibitors were determined by the treating physician.
[0075] The primary efficacy endpoint was the 48-hour composite of all-cause mortality, MI, or ischemia-driven revascularization. Prespecified secondary efficacy endpoints included the composite of mortality or MI at 48 hours and 30 days; the composite of mortality, MI, or ischemia-driven revascularization at 30 days; the components of the composite endpoints at 48 hours and 30 days; stroke at 48 hours; abrupt closure, threatened abrupt closure, need for urgent coronary artery bypass grafting, or unsuccessful procedure during the index PCI; acute (24 hours) and subacute (48 hours) stent thrombosis; and all-cause mortality at 6 months and 1 year.
[0076] Rates of MI and ischemia-driven revascularization up to 30 days following the index procedure were assessed. Ischemia-driven revascularization was defined as symptoms of myocardial ischemia leading to urgent (within 24 hours of the last episode of ischemia) revascularization, which must have occurred after the index procedure concluded (ie, guidewire removal). New electrocardiographic changes, acute pulmonary edema, ventricular arrhythmias, or hemodynamic instability could also constitute evidence of ischemia.
[0077] MI was defined by a new Q wave (duration >0.03 seconds) in two contiguous electrocardiographic leads or elevations in creatine kinase (CK) and CK-MB, including a rise of CK-MB >3 times the local upper limit or normal and, when biomarkers were elevated prior to PCI, an additional 50% above baseline (Thygesen K. et al, Circulation 116:2634-53 (2007)). One baseline troponin measurement was required for patients undergoing urgent PCI.
Measurements of CK-MB were obtained at 2, 10, 17, and 24 hours post-PCI. Stent thrombosis was defined using Academic Research Consortium criteria (Cutlip D.E. et al, Circulation 115:2344-51 (2007)).
[0078] Bleeding was assessed up to 48 hours using clinical and laboratory definitions.
Multiple definitions of bleeding were used for full disclosure of bleeding risks associated with cangrelor: (1) The Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries (GUSTO) criteria (The GUSTO Investigators. N Engl J Med 329:673-82 (1993); mild, moderate, or severe/life-threatening based on transfusion use and presence/absence of hemodynamic compromise); (2) Thrombolysis in Myocardial Infarction (TIMI) criteria (Chesebro J.H. et al., Circulation 76: 142-54 (1987); minor or major bleeding based on clinical and laboratory findings); (3) Acute Catheterization and Urgent Intervention Triage Strategy (ACUITY) criteria (Stone G.W. et al, N EnglJ Med 355:2203-16 (2006); using detailed clinical assessment, changes in hemoglobin, hematomas >5 cm, and need for blood transfusion). Investigators reported adverse and serious adverse events according to
International Conference on Harmonization guidance (International Conference on
Harmonization (ICH) Guidance Documents. U.S. Food and Drug Administration Web site. (Accessed on October 8, 2009, at the FDA website beginning with "www." and ending with "fda.gov/RegulatoryInformation/Guidances/ucml22049.htm")).
[0079] An independent clinical events committee reviewed and adjudicated suspected MI, ischemia-driven revascularization, stent thrombosis, and stroke blinded to knowledge of the study medication (Mahaffey K.W. et al, Am Heart J 143:242-8 (2002)).
[0080] Determination of periprocedural MI can be challenging when most patients have elevated biomarkers and a single baseline sample. After the initial analyses were completed and reviewed, additional post-hoc composites were performed to better understand the potential effect of the drug on periprocedural outcomes less reliant on biomarkers (e.g., mortality, stent thrombosis, and Q-wave MI).
[0081] The sample size was based on the estimated composite incidence of all-cause mortality, MI, and ischemia-driven revascularization at 48 hours. Since there was no prior information about the use of cangrelor in the setting of STEMI and primary PCI and given the challenge of measuring re-infarction in the early hours of STEMI, the primary efficacy endpoint excluded these patients from the analysis, though they were included in analyses of safety. The composite event rate was estimated at 7% in the control clopidogrel arm. The trial was designed as a superiority trial to demonstrate a benefit of cangrelor over 600 mg clopidogrel. Assuming a 22% risk reduction, a sample size of 8000 patients would provide approximately 82% power with an alpha level of 0.05. The plan was to include up to 1000 patients with STEMI, raising the sample size to 9000 patients.
[0082] The primary efficacy analysis was to be determined in the modified intent-to-treat (mITT) population, defined as all randomized patients (excluding STEMI cohort) who received at least one dose of study drug and underwent the index PCI. The safety population consisted of all randomized patients who received any study drug. Patients in the safety analyses were assigned to a treatment arm based on treatment received, not as randomized. The ITT analysis with and without the STEMI cohort is reported.
[0083] All statistical tests were two-tailed using a level of significance of 0.05. The primary endpoint comparison between the cangrelor and placebo arms was performed by calculating an odds ratio (OR), with accompanying 95% confidence intervals (CI), using logistic regression. Logistic regression was used to analyze the majority of the remaining secondary endpoints. Continuous variables are summarized by medians and interquartile ranges. Categorical variables are summarized by frequencies and percentages. In the secondary efficacy analyses, there was no attempt to adjust the P values for the multiplicity issue. These analyses were considered exploratory and hypothesis-generating.
[0084] At the end of the study, 98% (n=8877) of the expected 9000 patients had been enrolled at 268 sites across 14 countries. For the 48-hour and 30-day endpoints, vital status follow-up was 99.7%) and 98.6%> complete, respectively.
[0085] Baseline demographics on the ITT population are shown in Table 5. Baseline demographics for the MITT and safety populations are shown in Tables 6 and 7.
Table 5 - Baseline characteristics for ITT Population
Figure imgf000028_0001
Figure imgf000029_0001
Variables are presented as median (25th, 75th) unless otherwise indicated. CABG denotes coronary artery bypass grafting; CAD, coronary artery disease; GP, glycoprotein; HF, heart failure; ITT , intent to treat; IV, intravenous; LMWH, low molecular weight heparin; MI, myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; STEMI, ST-segment elevation myocardial infarction; TLA, transient ischemic attack; UFH, unfractionated heparin.
Table 6 - MITT and MITT NSTEMl Population
Figure imgf000030_0001
Number of target vessels,
Figure imgf000031_0001
Variables are presented as median (25th, 75th) unless otherwise indicated. CABG denotes coronary artery bypass grafting; CAD, coronary artery disease; GP, glycoprotein; HF, heart failure; IV, intravenous; LMWH, low molecular weight heparin; MI, myocardial infarction; MITT, modified intent to treat; NSTEMI, non-ST-segment elevation myocardial infarction; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; STEMI, ST-segment elevation myocardial infarction; TLA, transient ischemic attack; UFH, unfractionated heparin.
Table 7 - Safety Population
Figure imgf000032_0001
Infusion administered, No. (%) 4365 (99.8) 4352 (99.7)
Duration of infusion, hrs 2.1 (2.0, 2.2) 2.1 (2.0, 2.2)
Oral study drug administered, No. (%) 4352 (99.5) 4344 (99.5)
Variables are presented as median (25th, 75th) unless otherwise indicated. CABG denotes coronary artery bypass grafting; CAD, coronary artery disease; GP, glycoprotein; HF, heart failure; IV, intravenous; LMWH, low molecular weight heparin; MI, myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; PAD, peripheral artery disease; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; STEMI, ST-segment elevation myocardial infarction; TIA, transient ischemic attack; UFH, unfractionated heparin.
[0086] There were no significant differences regarding baseline characteristics. Enrolled patients were typical of a contemporary PCI population, being mostly men and having a median age of 62 years (54.0, 71.0). Diabetes was noted in 30.5% while hypertension or hyperlipidemia was present in the majority of patients. Previous cardiac events included MI in 24.7% and revascularization in 41.1% (28.6% PCI, 12.5% bypass grafting). Almost half (49%) of enrolled patients had NSTEMI at baseline while stable angina and unstable angina were the baseline diagnoses in 15.0% and 24.6%, respectively. The STEMI cohort included 996 (11.2%) patients.
[0087] During the index procedure, a majority of patients (55.1 %>) received unfractionated heparin, and 29.9% received bivalirudin. Glycoprotein Ilb/IIIa inhibitors were used in 26.5% with most receiving eptifibatide (75.0%). Almost all (98%) patients in the ITT population received study drug. Sites were instructed to start PCI within 30 minutes of clopidogrel capsules.
[0088] PCI was attempted in all but 161 patients (1.8%), 65 in the cangrelor group (1.5%) and 96 in the clopidogrel group (2.2%). The median duration of PCI was 0.4 hours (0.2, 0.6) and the median time from hospital admission to PCI was 6.3 hours (2.6, 23.7). Most procedures involved single-vessel or two-vessel PCI (87.7% and 11.4%, respectively). Drug-eluting stents were used in the majority of interventions (59.1%), bare-metal stents were used in 37.6%.
[0089] Cangrelor was equivalent to 600 mg clopidogrel in the primary composite of all-cause mortality, MI, or ischemia-driven revascularization at 48 hours (7.5% vs 7.1%; OR 1.05, 95% CI 0.88, 1.24; P=0.59) (Table 8).
Table 8 - 48-hour endpoints for MITT Without STEMI Population
Figure imgf000033_0001
IDR 13 (0.3) 23 (0.6) 0.56 (0.28, 1.11) 0.10
All-cause mortality 8 (0.2) 5 (0.1) 1.59 (0.52, 4.87) 0.42
Stent thrombosis 7 (0.2) 11 (0.3) 0.63 (0.25, 1.63) 0.34
Stroke 6 (0.2) 7 (0.2) 0.85 (0.29, 2.54) 0.77
Q-wave MI 4 (0.1) 10 (0.3) 0.40 (0.12, 1.27) 0.12
Exploratory (Midpoints
Mortality/Q-wave MI/IDR 23 (0.6) 34 (0.9) 0.67 (0.39, 1.14) 0.14
Mortality/Q-wave MFStent 18 (0.5) 23 (0.6) 0.78 (0.42, 1.44) 0.42 thrombosis
[0090] The primary efficacy composite did not differ at 30 days (Table 9). Figures 6 A and 6B display the primary endpoint OR data for key subgroups.
Table 9 - 30-day endpoints for ITT, MITT, and Safety Populations
Figure imgf000034_0001
Figure imgf000035_0001
MI/Stent thrombosis
Variables are presented as no. (%) unless otherwise indicated. CI denotes confidence interval; IDR, ischemia-driven revascularization; ITT, intent to treat; MI, myocardial infarction; MITT, modified intent to treat; OR, odds ratio; STEMI, ST- segment elevation myocardial infarction.
[0091] Forty-eight-hour bleeding events as observed in the safety population (including those with STEMI) are in Table 10. Reported adverse events were comparable between the groups (26.4% cangrelor, 25.7% clopidogrel) and discontinuation of study drug due to an adverse event was unusual in both groups (0.5% in both). Serious adverse events were infrequent and similar between the groups (2.7% in both). Dyspnea was reported in 1.0% of cangrelor patients compared with 0.4% of clopidogrel patients (P=0.001).
Table 10 - 48-hour bleeding events for safety population
Figure imgf000036_0001
Variables are presented as no. (%) unless otherwise indicated. The bleeding options under each criterion are not mutually exclusive. For example, a patient may have a clinically significant bleed and a minor bleed based on the ACUITY criteria, if more than 1 bleed is present. Each patient will be counted once for each criteria level, regardless of the number of bleeds identified under each criterion. Key secondary and composite exploratory (post-hoc) endpoints are displayed in Table
Table 11 - 48-hour endpoints for ITT, MITT, and Safety Populations
Figure imgf000037_0001
Figure imgf000038_0001
segment elevation myocardial infarction.
[0093] A substudy was conducted at 15 sites to evaluate platelet function during infusion and to assess whether the administration of a cangrelor infusion prior to administration of clopidogrel
600 mg has any effect on platelet inhibition by clopidogrel. Patients in the substudy were required to be clopidogrel naive and could not have received glycoprotein Ilb/IIIa inhibition during the procedure. Platelet function parameters were measured using the VerifyNow P2Yi2 Assay (Accumetrics, San Diego, CA). Samples were taken before study drug administration, at approximately 2 hours (during cangre lor/placebo infusion), and 10 hours or next day following randomization.
[0094] The median baseline P2Yi2 reaction units (PRU) from the VerifyNow P2Yi2 assay were 335 in the cangrelor arm (264, 384; n=97) and 329 in the clopidogrel arm (285.5, 376.5; n=100). During the study drug infusion, the median PRU was significantly lower in the cangrelor arm (93.5; 40.0, 173.5; n=64) compared with the clopidogrel arm during the same time period (277; 206.0, 355.0; n=74). At 12-24 hours after discontinuation of the cangrelor infusion, the median PRU was 228 in the cangrelor arm (156.0, 298.0; n=87) and 206 in the clopidogrel arm (135.0, 274.0; n=87).
[0095] The results of this study demonstrated that the benefits of cangrelor infusion were equivalent to those of 600 mg clopidogrel using the predefined primary endpoint, although significantly higher levels of periprocedural platelet inhibition were achieved with cangrelor.
Example 3 - Comparison of Cangrelor to Clopidogrel Standard of Care Therapy in Patients who Require Percutaneous Coronary Intervention
[0096] The efficacy and safety of cangrelor versus clopidogrel standard of care therapy was examined in patients with atherosclerosis undergoing PCI in a double-blind, placebo-controlled, double-dummy study.
[0097] A total of 11,145 patients underwent randomization at 153 sites in 12 countries from
September 30, 2010 to October 3, 2012. Randomization was performed before PCI with the use of an interactive voice-response or Web-response system, with stratification according to site, baseline status (normal or abnormal, as defined by a combination of biomarker levels, electrocardiographic changes, and symptoms), and intended loading dose of clopidogrel (600 mg or 300 mg). Randomization divided the patients into two groups: the cangrelor group and the clopidogrel group. Patients assigned to the cangrelor group were administered: (i) placebo capsules (before or immediately after PCI to match clopidogrel capsules administered in the clopidogrel group); (ii) a cangrelor bolus (30 μg/kg)/infusion (4 μg/kg/min); and (iii) capsules containing 600 mg of clopidogrel administered at the end of infusion. Patients assigned to the clopidogrel group were administered: (i) clopidogrel capsules (300 mg or 600 mg before or immediately after PCI, with the dose and timing of administration determined at the discretion of the site investigator); (ii) a placebo bolus/infusion (to match the cangrelor bolus/infusion administered in the cangrelor group); and (iii) placebo capsules administered at the end of the infusion (to match the capsules containing 600 mg of clopidogrel administered at the end of the infusion in the cangrelor group). The cangrelor or placebo infusion was administered for at least 2 hours or the duration of the PCI procedure, whichever was longer. A summary of the study design is shown in Figure 7.
[0098] The protocol called for aspirin (75 to 325 mg) to be administered to all patients. The protocol also called for a maintenance dose of clopidogrel (75 mg) to be administered during the first 48 hours after randomization; thereafter, clopidogrel or another P2Yi2 inhibitor could be administered at the discretion of the investigator, according to local guidelines. The choice of a periprocedural anticoagulant (bivalirudin, unfractionated heparin, low-molecular-weight heparin, or fondaparinux) was also at the discretion of the investigator. Glycoprotein Ilb/IIIa inhibitors were allowed only as rescue therapy during PCI to treat new or persistent thrombus formation, slow or no reflow, side-branch compromise, dissection, or distal embolization. The investigator at the site determined the protocol for management of the arterial sheath.
[0099] The inclusion criteria for the trial were men or nonpregnant women, 18 years of age or older with coronary atherosclerosis who required PCI for stable angina, a non-ST-segment elevation acute coronary syndrome, or ST-segment elevation myocardial infarction (STEMI). Patients were required to provide written informed consent.
[00100] Major exclusion criteria were receipt of a P2Yi2 inhibitor or abciximab at any time in the 7 days before randomization and receipt of eptifibatide or tirofiban or fibrinolytic therapy in the 12 hours before randomization.
[00101] The primary efficacy end point was the composite rate of death from any cause, myocardial infarction, IDR, or stent thrombosis in the 48 hours after randomization in the modified intention-to-treat population (which comprised patients who actually underwent PCI and received the study drug). The protocol specified that if more than 15% of the patients received a 300-mg loading dose of clopidogrel (as compared with a 600-mg dose) at the time of randomization, the primary analysis was to be adjusted for loading dose in addition to baseline status. The key secondary end point was the incidence of stent thrombosis at 48 hours. This end point included definite stent thrombosis, defined according to the criteria of the Academic Research Consortium, or intraprocedural stent thrombosis, which was assessed, with group assignments concealed, at an angiographic core laboratory (Cardiovascular Research
Foundation). Intraprocedural stent thrombosis was defined as any new or worsened thrombus related to the stent procedure that was confirmed angiographically. Events of death, myocardial infarction, IDR, and stent thrombosis that occurred during the first 30 days after randomization were adjudicated by the clinical events committee at the Duke Clinical Research Institute. The criteria that the clinical events committee used to define myocardial infarction are provided in Tables 12A and 12B. The study adhered to the universal definition of myocardial infarction for myocardial infarction unrelated to PCI but expanded on the definition of PCI-related myocardial infarction.
Table 12 A - Baseline status assessment and trigger logic*
Figure imgf000041_0001
Baseline unknown No samples pre PCI available
*CKMB denotes creatine kinase-myocardial band isoenzyme, ECG denotes electrocardiography, MI denotes myocardial infarction, NSTE-ACS denotes non-ST-segment elevation acute coronary syndrome, and STEMI denotes ST-segment elevation myocardial infarction.
1 ECG changes: ST segment elevation/ depression > 0. lmV (>lmm) in at least 2 contiguous leads; new LBBB; new Q wave (greater than 0.03 seconds). ECG collection post PCI: within 1 hour after PCI; pre-discharge.
2 Ischemic symptoms: angina or equivalent symptoms that need to be treated medically or lasting > 20 min. Ischemic symptoms as determined by the treating physician include but are not limited to weakness, shortness of breath, wheezing, tiredness, fainting, sweating, nausea/vomiting, abdominal pain, back pain, jaw pain, palpitations, fast heartbeat, drug use for chest pain
(nitroglycerin, morphine, beta blocker, etc).
Table 12B - Definition of PCI-related myocardial infarction.*
Figure imgf000042_0001
MI denotes myocardial infarction, CKMB denotes creatine kinase-myocardial band isoenzyme, NSTE-ACS denotes non-ST- segment elevation acute coronary syndrome, ULN denotes upper limit of normal, and PCI denotes percutaneous coronary intervention.
1 CKMB collection post PCI: 6 hourly collection through 24 hours (minimum of 3 samples required). Core lab values take priority; hospital labs may be used if core lab not available (CKMB priority but troponin may be used).
2 Angiographic evidence of complication (assessed by the angiographic core laboratory):
• New onset of vessel closure or compromise defined as TIMI 0/1 flow after baseline TIMI 2/3 flow (also termed acute closure or no reflow); or
• TIMI 2 flow after baseline TIMI 3 flow (also termed slow reflow); or
• Sustained distal embolization; or
• Sustained side-branch closure of a vessel > 2mm in diameter; or
Intra-Procedural Thrombotic Event (IPTE): new or worsening thrombus formation at any time during the procedure. The occurrence of IPTE can be a stent related or not stent related complication phenomena or intra-procedural stent thrombosis (IPST) new or worsening thrombus related to the stent or abrupt closure due to thrombosis. Abrupt closure due to non- thrombotic causes, including major dissections, perforation, or other etiologies, will not be considered IPST. If a non- thrombotic cause of abrupt stent closure cannot be definitively determined, the cause will be considered IPST. IPST may present as either acute thrombotic stent closure after a stent was implanted in a patient with a patent vessel beforehand, or new thrombus formation within or adjacent to a stent in a vessel in which thrombus either was not present or had diminished or resolved before the stent was implanted.
3 Ischemic symptoms: angina or equivalent symptoms that need to be treated medically or lasting > 20 min. Ischemic symptoms as determined by the treating physician include but are not limited to weakness, shortness of breath, wheezing, tiredness, fainting, sweating, nausea/vomiting, abdominal pain, back pain, jaw pain, palpitations, fast heartbeat, drag use for chest pain (nitroglycerin, morphine, beta blocker, etc.).
4 ECG changes: ST segment elevation/ depression > 0. lmV (>lmm) in at least 2 contiguous leads; new LBBB; new Q wave (greater than 0.03 seconds). ECG collection post PCI: within 1 hour after PCI; pre-discharge.
[00102] The primary safety end point was severe bleeding not related to coronary-artery bypass grafting, according to the Global Use of Strategies to Open Occluded Coronary Arteries
(GUSTO) criteria, at 48 hours. Several other bleeding definitions were also applied.
[00103] On the basis of prior studies, it was assumed that the rate of the composite primary end point would be 5.1% in the clopidogrel group and 3.9% in the cangrelor group, representing a 24.5% reduction in the odds ratio with cangrelor. It was estimated that approximately 10,900 patients would need to be enrolled for the study to have 85% power to detect that reduction. A two-sided overall alpha level of 0.05 was used for all analyses. This study had an adaptive design with conditional power calculation and potential for reestimation of the sample size, if necessary, after the interim analysis that was scheduled to be performed after 70% of the patients were enrolled.
[00104] The numbers and percentages of patients within each analysis population (modified intention-to-treat, intention-to-treat, and safety) were summarized according to treatment group. The primary efficacy analysis of the rate of the composite end point of death from any cause, myocardial infarction, IDR, or stent thrombosis (with all events adjudicated by the clinical events committee) in the 48 hours after randomization was conducted in the modified intention- to-treat population. The primary safety analysis was conducted in the safety population, which comprised all patients who underwent randomization and received at least one dose of the study drug; patients were classified according to the actual treatment received. All calculations and statistical analyses were performed with the use of SAS software, version 9.2.
[00105] Of the 11,145 patients who underwent randomization, 203 did not undergo PCI or did not receive a study drug; therefore, the modified intention-to-treat population comprised 10,942 patients (Fig. 8). The baseline characteristics were well balanced between the two groups. The characteristics of the patients and the procedure are shown in Tables 13 and 14.
Table 13 - Baseline characteristics of the patients and characteristics of the procedure in the modified intention-to-treat population, according to treatment group.*
Figure imgf000043_0001
Median 64.0 64.0
Interquartile range 56-72 56-72
Female sex— no. (%) 1558 (28.5) 1493 (27.3)
White race— no./total no. (%)† 5132/5469 (93.8) 5120/5463 (93.7)
Weight— kg
Median 84.0 84.0
Interquartile range 73-95 74-96
Diagnosis at presentation— no. (%)
Stable angina 3121 (57.0) 3019 (55.2)
NSTE-ACS 1389 (25.4) 1421 (26.0)
STEMI 962 (17.6) 1030 (18.8)
Region— no. (%)
United States 2048 (37.4) 2049 (37.5)
Other countries 3424 (62.6) 3421 (62.5)
Cardiac -biomarker status— no./total no. (%)$
Normal 3520/5467 (64.4) 3432/5466 (62.8)
Abnormal 1947/5467 (35.6) 2034/5466 (37.2)
Medical history— no./total no (%)
Diabetes mellitus 1519/5464 (27.8) 1536/5463 (28.1)
Current smoker 1504/5339 (28.2) 1549/5339 (29.0)
Hypertension 4374/5459 (80.1) 4332/5454 (79.4)
Hyperlipidemia 3363/4851 (69.3) 3338/4836 (69.0)
Prior stroke or TIA 271/5455 (5.0) 244/5452 (4.5)
Prior myocardial infarction 1092/5441 (20.1) 1175/5431 (21.6)
PTCA or PCI 1268/5462 (23.2) 1333/5461 (24.4)
CABG 578/5466 (10.6) 500/5464 (9.2)
Congestive heart failure 552/5460 (10.1) 584/5456 (10.7)
Peripheral artery disease 447/5407 (8.3) 385/5419 (7.1)
Periprocedural medications— no./total no. (%)
Clopidogrel, 300-mg loading dose 1405/5472 (25.7) 1401/5470 (25.6)
Clopidogrel, 600-mg loading dose 4067/5472 (74.3) 4069/5470 (74.4)
Bivalirudin 1252/5472 (22.9) 1269/5468 (23.2)
Unfractionated heparin 4272/5472 (78.1) 4276/5469 (78.2)
Low-molecular-weight heparin 732/5472 (13.4) 753/5468 (13.8)
Fondaparinux 156/5471 (2.9) 135/5470 (2.5)
Aspirin 5164/5469 (94.4) 5148/5465 (94.2)
Duration of PCI— min
Median 18 17
Interquartile range 10-30 10-30
Drug-eluting stent— no. (%) 3061 (55.9) 3020 (55.2)
Bare -metal stent— no. (%) 2308 (42.2) 2344 (42.9)
Balloon angioplasty— no. (%) 292 (5.3) 273 (5.0)
: Denominators exclude patients in whom the status was reported as unknown by the study center. There were no significant differences between the two groups, except for a history of coronary-artery bypass grafting (CABG) (P = 0.01), prior myocardial infarction (P = 0.04), and peripheral-artery disease (P = 0.02). NSTE-ACS denotes non-ST-segment elevation acute coronary syndrome, PCI percutaneous coronary intervention, PTCA percutaneous transluminal coronary angioplasty, STEMI ST-segment elevation myocardial infarction, and TIA transient ischemic attack.
† Race was self -reported.
J Cardiac biomarker status was considered to be abnormal if at least one of the baseline troponin I or T levels, obtained within 72 hours before randomization or after randomization but before imtiation of the study drug, was greater than the upper limit of the normal range, as determined by the local laboratory. If the baseline troponin level was not available, the baseline MB fraction of creatine kinase was used. Table 14 - Additional baseline and procedural characteristics for the modified intention-to-treat population, according to the treatment group.*
Figure imgf000045_0001
* Denominators exclude patients in whom the status was reported as unknown by the site. There were no significant differences between the two groups, except for type of diabetes (p<0.05). CAD denotes coronary artery disease; IDDM denotes insulin- dependent diabetes mellitus; and MITT denotes modified intent to treat.
[00106] The results of the analyses of the efficacy and safety end points at 48 hours after randomization are provided in Tables 15, 16, and 17.
[00107] The rate of the primary composite efficacy end point of death from any cause, myocardial infarction, IDR, or stent thrombosis at 48 hours was significantly lower in the cangrelor group than in the clopidogrel group (4.7% vs. 5.9%; odds ratio, 0.78; 95% confidence interval [CI], 0.66 to 0.93; P = 0.005), on the basis of the prespecified logistic-regression analysis, which adjusted for baseline status (normal vs. abnormal) and clopidogrel loading dose (600 mg vs. 300 mg) (Table 15). The result of the crude analysis was similar (odds ratio, 0.79; 95% CI, 0.67 to 0.93; P = 0.006). Figure 9A shows the Kaplan-Meier estimates of the time-to- event distributions for the primary end point. The number needed to treat with cangrelor to prevent one primary end-point event is 84 (95% CI, 49 to 285).
[00108] The rate of the key secondary efficacy end point of stent thrombosis at 48 hours was also lower in the cangrelor group than in the clopidogrel group (0.8%> vs. 1.4%; odds ratio, 0.62; 95% CI, 0.43 to 0.90; P = 0.01) (Table 15). Figure 9B shows the Kaplan-Meier estimates of the time-to-event distributions for the key secondary end point.
[00109] The rate of the primary safety end point, GUSTO-defmed severe bleeding, was 0.16% in the cangrelor group as compared with 0.11% in the clopidogrel group (odds ratio, 1.50; 95% CI, 0.53 to 4.22; P = 0.44) (Table 15). Bleeding events according to several other bleeding definitions were also examined (Table 17). In a post hoc analysis, the primary efficacy end point and the primary safety end point were combined to provide a composite end point of the net rate of adverse clinical events, which was 4.8% in the cangrelor group as compared with 6.0% in the clopidogrel group (odds ratio, 0.80; 95% CI, 0.68 to 0.94; P = 0.008) (Table 15).
Table 15 - Efficacy and safety end points at 48 hours after randomization.*
Figure imgf000046_0001
Major or minor bleeding 14/5529 (0.3) 8/5527 (0.3) 1.75 (0.73-4.18) 0.20
Any blood transfusion 25/5529 (0.5) 16/5527 (0.3) 1.56 (0.83-2.93) 0.16
Efficacy and safety: net adverse clinical
events!
Death, myocardial infarction, ischemia- 264/5470 (4.8) 327/5469 (6.0) 0.80 (0.68-0.94) 0.008 driven revascularization, stent thrombosis,
or GUSTO-defmed severe bleeding
*GUSTO denotes Global Use of Strategies to Open Occluded Coronary Arteries, and TIMI denotes Thrombolysis in Myocardial Infarction.
†'The prespecified logistic-regression analysis was adjusted for baseline status (normal vs. abnormal) and clopidogrel loading dose (600 mg vs. 300 mg).
JThe primary efficacy and primary safety end points were combined to provide a composite end point of net adverse clinical events in the modified intention-to-treat population.
Table 16 - Additional efficacy endpoints at 48 hours after randomization for the modified
Figure imgf000047_0001
Death/MI/IDR/ST/GUSTO 267/5573 (4.8) 330/5561 (5.9) 0.80 (0.68,0.94) 0.007 Severe Bleeding
(Net Adverse Clinical
Events, NACE)
Safety
Non-CABG Related
Bleeding Cangrelor Clopidogrel
OR (95% CI) P Value (N=5529) (N=5527)
ACUITY criteria
Major bleeding 235/5529 (4.3) 139/5527 (2.5) 1.72 (1.39, 2.13) <0.001
Major without > 5 cm 42/5529 (0.8) 26/5527 (0.5) 1.62 (0.99, 2.64) 0.05 hematoma
Minor bleeding 653/5529 (11.8) 475/5527 (8.6) 1.42 (1.26, 1.61) <0.001
BARC criteria*
Type 3 22/5529 ( 0.4) 13/5527 (0.2) 1.69 (0.85, 3.37) 0.13
Type 3 a 11/5529 (0.2) 4/5527 (0.1) 2.75 (0.88, 8.65) 0.07
Type 3 b 9/5529 (0.2) 8/5527 (0.1) 1.12 (0.43, 2.92) 0.81
Type 3 c 2/5529 (0.0) 1/5527 (0.0) 2.00 (0.18, 22.06) 0.56
*MI denotes myocardial infarction, ST denotes stent thrombosis, and IDR denotes ischemia-driven revascularization, CV denotes cardiovascular, GUSTO denotes Global Use of Strategies to Open Occluded Coronary Arteries, ACUITY denotes Acute Catheterization and Urgent Intervention Triage Strategy trial, and BARC denotes Bleeding Academic Research Consortium.
[00110] The rate of intraprocedural stent thrombosis was lower in the cangrelor group than in the clopidogrel group (0.6% vs. 1.0%; odds ratio, 0.65; 95% CI, 0.42 to 0.99; P = 0.04). The use of rescue therapy with a glycoprotein Ilb/IIIa inhibitor was 2.3% with cangrelor as compared with 3.5% with clopidogrel (odds ratio, 0.65; 95% CI, 0.52 to 0.82; PO.001). The rate of procedural complications was lower with cangrelor than with clopidogrel (3.4%> vs. 4.5%>; odds ratio, 0.74; 95% CI, 0.61 to 0.90; P = 0.002).
[00111] At 30 days, the rate of the composite efficacy end point remained significantly lower in the cangrelor group than in the clopidogrel group (6.0% vs. 7.0%>; odds ratio, 0.85; 95%> CI, 0.73 to 0.99; P = 0.03); the relative reduction in stent thrombosis also persisted (1.3% vs. 1.9%; odds ratio, 0.68; 95% CI, 0.50 to 0.92; P = 0.01) (Table 18).
Table 18 - Efficacy outcomes at 30 days after randomization.
Figure imgf000048_0001
revascularization, or stent thrombosis† Stent thrombosis 71/5462 (1.3) 104/5457 (1.9) 0.68 (0.50-0.92) 0.01
Myocardial infarction 225/5462 (4.1) 272/5457 (5.0) 0.82 (0.68-0.98) 0.03
Q-wave myocardial infarction 14/5462 (0.3) 22/5457 (0.4) 0.63 (0.32-1.24) 0.18
Ischemia-driven revascularization 56/5462 (1.0) 66/5457 (1.2) 0.85 (0.59-1.21) 0.36
Death from any cause 60/5462 (1.1) 55/5457 (1.0) 1.09 (0.76-1.58) 0.64
Death from cardiovascular causes 48/5462 (0.9) 46/5457 (0.8) 1.04 (0.69-1.57) 0.84
†'The prespecified logistic-regression analysis was adjusted for baseline biomarker status (normal vs. abnormal) and clopidogrel loading dose (600-mg vs. 300-mg).
[00112] The rate of adverse events related to treatment was similar in the cangrelor and clopidogrel groups (20.2% and 19.1%, respectively; P = 0.13); 0.5%> of these adverse events in the cangrelor group and 0.4%> of those in the clopidogrel group led to discontinuation of the study drug (P = 0.21). There were significantly more cases of transient dyspnea with cangrelor than with clopidogrel (1.2% vs. 0.3%, PO.001) (Table 19).
Table 19 - Statistically significant treatment emergent adverse events at 48 hours after randomization (safety population).
Figure imgf000049_0001
P values not adjusted for multiple comparisons.
[00113] The reduction in the primary efficacy end point with cangrelor was consistent across multiple subgroups, with no significant interactions with baseline variables except for status with respect to a history of peripheral-artery disease. The benefit with cangrelor was similar among patients presenting with STEMI, those presenting with non-ST-segment elevation acute coronary syndrome, and those presenting with stable angina. There was no heterogeneity of treatment effect between patients in the United States and those in other countries (P = 0.26) (Fig. 10). [00114] According to the protocol, patients received a loading dose of clopidogrel or placebo after their coronary anatomy was delineated. The majority of patients received the loading dose before PCI was started (63.4%). The rest of the patients received the loading dose in the catheterization laboratory before PCI was completed (6.4%), within 1 hour after PCI was completed (30.1%), or more than 1 hour after PCI was completed (0.1%). There was no significant difference in the effect of cangrelor on the primary end point between patients who received the loading dose immediately before PCI (odds ratio, 0.80; 95% CI, 0.64 to 0.98) and those who received it during or after PCI (odds ratio, 0.79; 95% CI, 0.59 to 1.06) (P = 0.99 for interaction). Similarly, there was no significant difference in the effect of cangrelor on the primary end point between patients who received a 600-mg loading dose of clopidogrel (74.4% of the population) and those who received a 300-mg loading dose (25.6% of the population): the odds ratio for the primary end point with cangrelor was 0.77 (95% CI, 0.63 to 0.94) with the 600- mg loading dose and 0.84 (95% CI, 0.62 to 1.14) with the 300-mg loading dose (P = 0.62 for interaction). The protocol required at least 2 hours of study-drug infusion; the median duration of infusion in the cangrelor group was 129 minutes (interquartile range, 120 to 146); the duration of infusion was similar in the clopidogrel group (in which patients received a placebo infusion). A subgroup analysis showed a similar effect of cangrelor among patients who received the infusion for 129 minutes or less (odds ratio, 0.85; 95% CI, 0.68 to 1.07) and those who received the infusion for more than 129 minutes (odds ratio, 0.72; 95% CI, 0.56 to 0.92) (P = 0.31 for interaction) (Fig. 10).
[00115] Since the rate of the primary safety end point, GUSTO-defmed severe bleeding, was very low, severe bleeding according to GUSTO criteria was combined with moderate bleeding to provide a larger number of events for an analysis of potential subgroup interactions. There were no interactions at P<0.05 (Fig. 11).
[00116] As compared with clopidogrel administered immediately before or after PCI, intravenous ADP-receptor blockade with cangrelor significantly reduced the rate of
periprocedural complications of PCI, including stent thrombosis. A reduction in the rate of acute periprocedural myocardial infarction accounted for most of the benefit. The odds of an ischemic event were 22% lower with cangrelor than with clopidogrel, and this benefit was not
accompanied by a significant increase in severe bleeding or in the need for transfusions. In addition, the odds of stent thrombosis were 38% lower with cangrelor than with clopidogrel. The use of cangrelor resulted in a reduction in ischemic complications across the full spectrum of patients undergoing contemporary PCI, with a consistent benefit in major subgroups.
[00117] Example 1 and Example 2 suggested a clinical benefit of cangrelor, including a significant reduction in the secondary end point of stent thrombosis. However, the rate of the primary end point was not reduced in the previous examples, probably because the definition of periprocedural myocardial infarction in those studies did not allow discrimination of reinfarction in patients presenting for PCI soon after admission with a biomarker-positive acute coronary syndrome. In the trial described in Example 3, the definition of periprocedural myocardial infarction required careful assessment of patients' baseline biomarker status. In addition, the use of an angiographic core laboratory allowed objective determination of intraprocedural complications. Table 20 lists the differences between the trials described in Example 1/Example 2 and the trial described in Example 3.
Table 20 - Differences between the study of Example 3 and the studies of Examples 1 and 2.*†
Figure imgf000051_0001
ECG changes or angiographic evidence
Stent Non-standard definition in IDR patients ARC definition in patients
thrombosis but confirmed by CEC using angiographic IPST (Intra-procedural stent thrombosis) = any definition source data procedural new or worsened thrombus related to the stent based on angiographic evidence
Statistics Event rate placebo: 7.7%; Assumed Event rate placebo: 5.1"
Effect size: 22.5-25% Assumed Effect size: 24.5%
*PCI denotes percutaneous coronary intervention, STEMI denotes ST-segment elevation myocardial infarction, NSTEMI denotes non-ST-elevated myocardial infarction, ECG denotes denotes electrocardiography, NSTE-ACS denotes non-ST-segment elevation acute coronary syndrome, MI denotes myocardial infarction, IDR denotes ischemia-driven revascularization, ST denotes stent thrombosis, UDMI denotes universal definition of myocardial infarction, CKMB denotes creatine kinase- myocardial band isoenzyme, and ULN denotes upper limit of normal.
† Bhatt DL, et al. N Engl J Med 2009;361 2330-41.
Harrington RA, et al. N Engl J Med 2009;361 2318-29
White HD, Am Heart J 2012; 163: 182-190.e4
Thygesen, J Am Coll Cardiol 2007;50:2173-95.
[00118] Having thus described in detail embodiments of the present invention, it is to be understood that the invention defined by the above paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.

Claims

What is claimed is:
1. A method of treating, reducing the incidence of, or preventing an ischemic event in a patient undergoing percutaneous coronary intervention (PCI), comprising administering to the patient a pharmaceutical composition comprising cangrelor.
2. The method of claim 1, wherein the method treats, reduces the incidence of, or prevents an ischemic event during PCI.
3. The method of claim 1, wherein the method treats, reduces the incidence of, or prevents an ischemic event after PCI.
4. The method of claim 1, wherein the ischemic event is selected from the group consisting of stent thrombosis, myocardial infarction, ischemia-driven revascularization, and mortality.
5. The method of claim 4, wherein the ischemic event is stent thrombosis.
6. The method of claim 5, wherein the stent thrombosis is intraprocedural stent thrombosis.
7. The method of claim 1, wherein the pharmaceutical composition is administered to the patient before PCI, during PCI, after PCI, or a combination thereof.
8. The method of claim 1, wherein the pharmaceutical composition is administered to the patient intravenously.
9. The method of claim 8, wherein the pharmaceutical composition is administered as a bolus, as a continuous infusion, or as a bolus followed by a continuous infusion.
10. The method of claim 9, wherein the bolus comprises cangrelor in a dose of about 20 μg/kg to about 40 μg/kg.
11. The method of claim 10, wherein the continuous infusion comprises cangrelor in a dose of about 1 μg/kg/min to about 10 μg/kg/min.
12. The method of claim 9, wherein the continuous infusion is administered for the longer of (a) duration of the PCI, or (b) at least about 2 hours.
13. The method of claim 1, wherein the administration of the pharmaceutical composition to the patient is not accompanied by a significant increase in severe bleeding or the need for transfusions.
14. The method of claim 1, wherein the PCI comprises stent implantation.
15. A method of treating, reducing the incidence of, or preventing an ischemic event in a patient undergoing PCI, comprising administering to the patient (i) a pharmaceutical composition comprising cangrelor, and (ii) a P2Yi2 inhibitor.
16. The method of claim 15, wherein the method treats, reduces the incidence of, or prevents an ischemic event during PCI.
17. The method of claim 15, wherein the method treats, reduces the incidence of, or prevents an ischemic event after PCI.
18. The method of claim 15, wherein the P2Yi2 inhibitor is selected from the group consisting of clopidogrel, prasugrel, and ticagrelor.
19. The method of claim 18, wherein the P2Yi2 inhibitor is clopidogrel.
20. The method of claim 19, wherein the clopidogrel is administered after administration of the pharmaceutical composition.
PCT/US2013/030081 2013-03-09 2013-03-09 Methods of treating, reducing the incidence of, and/or preventing ischemic events WO2014142780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2013/030081 WO2014142780A1 (en) 2013-03-09 2013-03-09 Methods of treating, reducing the incidence of, and/or preventing ischemic events

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/030081 WO2014142780A1 (en) 2013-03-09 2013-03-09 Methods of treating, reducing the incidence of, and/or preventing ischemic events

Publications (1)

Publication Number Publication Date
WO2014142780A1 true WO2014142780A1 (en) 2014-09-18

Family

ID=51537225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/030081 WO2014142780A1 (en) 2013-03-09 2013-03-09 Methods of treating, reducing the incidence of, and/or preventing ischemic events

Country Status (1)

Country Link
WO (1) WO2014142780A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110112030A1 (en) * 2009-11-11 2011-05-12 The Medicines Company Methods of treating or preventing stent thrombosis
US20120141468A1 (en) * 2008-05-13 2012-06-07 Lisa Ruderman Chen Maintenance of platelet inhibition during antiplatelet therapy
US20130040898A1 (en) * 2010-04-29 2013-02-14 Pär Johansson Methods of treatment of patients at increased risk of development of ischemic events and compounds hereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120141468A1 (en) * 2008-05-13 2012-06-07 Lisa Ruderman Chen Maintenance of platelet inhibition during antiplatelet therapy
US20110112030A1 (en) * 2009-11-11 2011-05-12 The Medicines Company Methods of treating or preventing stent thrombosis
US20130040898A1 (en) * 2010-04-29 2013-02-14 Pär Johansson Methods of treatment of patients at increased risk of development of ischemic events and compounds hereof
WO2013025476A1 (en) * 2011-08-12 2013-02-21 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy

Similar Documents

Publication Publication Date Title
US11351187B2 (en) Methods of treating, reducing the incidence of, and/or preventing ischemic events
US20240350638A1 (en) Methods of treating or preventing stent thrombosis
US20230210880A1 (en) Methods of Treating, Reducing the Incidence of, and/or Preventing Ischemic Events
US8680052B1 (en) Methods of treating, reducing the incidence of, and/or preventing ischemic events
Leonardi et al. Rationale and design of the Cangrelor versus standard therapy to acHieve optimal Management of Platelet InhibitiON PHOENIX trial
JP6840197B2 (en) How to treat ischemic events and reduce and / or prevent their incidence
WO2014142780A1 (en) Methods of treating, reducing the incidence of, and/or preventing ischemic events
WO2015054542A1 (en) Methods of treating, reducing the incidence of, and/or preventing ischemic events
Manolis et al. Cardiology News/Recent Literature Review/Second Quarter 2020: Cardiology News
Manolis et al. Cardiology News/Recent Literature Review/Second Quarter 2020
Armaganijan et al. Antithrombotic Therapy in Patients with ACS and Atrial Fibrillation: A Challenge in Clinical Practice
TW200409638A (en) Use of MELOXICAM in combination with an antiplatelet agent for treatment of acute coronary syndrome and related conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877970

Country of ref document: EP

Kind code of ref document: A1