WO2014141812A1 - Antibacterial, antiviral photocatalytic titanium oxide, and antibacterial, antiviral photocatalytic titanium oxide slurry dispersed in a neutral area, as well as method for manufacturing same - Google Patents
Antibacterial, antiviral photocatalytic titanium oxide, and antibacterial, antiviral photocatalytic titanium oxide slurry dispersed in a neutral area, as well as method for manufacturing same Download PDFInfo
- Publication number
- WO2014141812A1 WO2014141812A1 PCT/JP2014/053556 JP2014053556W WO2014141812A1 WO 2014141812 A1 WO2014141812 A1 WO 2014141812A1 JP 2014053556 W JP2014053556 W JP 2014053556W WO 2014141812 A1 WO2014141812 A1 WO 2014141812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium oxide
- antibacterial
- copper
- antiviral
- photocatalytic titanium
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 245
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims abstract description 237
- 230000000840 anti-viral effect Effects 0.000 title claims abstract description 139
- 230000000844 anti-bacterial effect Effects 0.000 title claims abstract description 128
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 113
- 239000002002 slurry Substances 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 230000007935 neutral effect Effects 0.000 title abstract description 17
- 238000000034 method Methods 0.000 title abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 95
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 claims abstract description 45
- 239000010949 copper Substances 0.000 claims abstract description 31
- 230000001186 cumulative effect Effects 0.000 claims abstract description 27
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052802 copper Inorganic materials 0.000 claims abstract description 26
- 229910000153 copper(II) phosphate Inorganic materials 0.000 claims abstract description 18
- GQDHEYWVLBJKBA-UHFFFAOYSA-H copper(ii) phosphate Chemical compound [Cu+2].[Cu+2].[Cu+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GQDHEYWVLBJKBA-UHFFFAOYSA-H 0.000 claims abstract description 18
- 238000000149 argon plasma sintering Methods 0.000 claims abstract description 16
- RAOSIAYCXKBGFE-UHFFFAOYSA-K [Cu+3].[O-]P([O-])([O-])=O Chemical compound [Cu+3].[O-]P([O-])([O-])=O RAOSIAYCXKBGFE-UHFFFAOYSA-K 0.000 claims description 43
- 239000003125 aqueous solvent Substances 0.000 claims description 42
- 150000003839 salts Chemical class 0.000 claims description 37
- 239000011248 coating agent Substances 0.000 claims description 29
- 239000006185 dispersion Substances 0.000 claims description 25
- 229910019142 PO4 Inorganic materials 0.000 claims description 24
- 239000010452 phosphate Substances 0.000 claims description 24
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 24
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 claims description 23
- 235000011180 diphosphates Nutrition 0.000 claims description 23
- 239000011230 binding agent Substances 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 15
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 13
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 8
- 239000012736 aqueous medium Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 238000000108 ultra-filtration Methods 0.000 claims description 7
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 7
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 6
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 4
- 229910021592 Copper(II) chloride Inorganic materials 0.000 claims description 3
- 239000011324 bead Substances 0.000 claims description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 3
- 229910000366 copper(II) sulfate Inorganic materials 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 239000005749 Copper compound Substances 0.000 description 22
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 21
- 150000001880 copper compounds Chemical class 0.000 description 21
- 229940048084 pyrophosphate Drugs 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 15
- 239000010408 film Substances 0.000 description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 241000700605 Viruses Species 0.000 description 12
- 238000003756 stirring Methods 0.000 description 11
- 230000002779 inactivation Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 230000000845 anti-microbial effect Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000000415 inactivating effect Effects 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 239000001488 sodium phosphate Substances 0.000 description 6
- 229910000162 sodium phosphate Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000011941 photocatalyst Substances 0.000 description 5
- 238000004062 sedimentation Methods 0.000 description 5
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- MPTQRFCYZCXJFQ-UHFFFAOYSA-L copper(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Cu+2] MPTQRFCYZCXJFQ-UHFFFAOYSA-L 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- VWYGTDAUKWEPCZ-UHFFFAOYSA-L dichlorocopper;hydrate Chemical compound O.Cl[Cu]Cl VWYGTDAUKWEPCZ-UHFFFAOYSA-L 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- -1 phosphorous copper compounds Chemical class 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000005750 Copper hydroxide Substances 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910001956 copper hydroxide Inorganic materials 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 2
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 2
- 229940048086 sodium pyrophosphate Drugs 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 230000014599 transmission of virus Effects 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000002979 Influenza in Birds Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 206010064097 avian influenza Diseases 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- AEJIMXVJZFYIHN-UHFFFAOYSA-N copper;dihydrate Chemical compound O.O.[Cu] AEJIMXVJZFYIHN-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002289 effect on microbe Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical group O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 150000004686 pentahydrates Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
- A01N59/20—Copper
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/185—Phosphorus; Compounds thereof with iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/14—Paints containing biocides, e.g. fungicides, insecticides or pesticides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
Definitions
- the present invention relates to a photocatalytic titanium oxide having antibacterial and antiviral properties, an antibacterial and antiviral photocatalytic titanium oxide slurry in which the photocatalytic titanium oxide is stably dispersed in a neutral region, a production method thereof, and an antibacterial and antiviral photocatalytic titanium oxide.
- the present invention relates to an antibacterial antiviral coating agent comprising a slurry, an antibacterial antiviral coating film, and an antibacterial antiviral article.
- a photocatalyst such as titanium oxide carrying or mixing copper metal or a copper compound is an excellent photocatalyst or antiviral agent.
- U.S. Patent No. 6,057,031 describes the use of nanoparticles of compounds of the general formula M n X y to reduce and / or prevent viral transmission, and as the nanoparticles, TiO 2 , Cu 2 O, CuO and the like or combinations thereof are described.
- Patent Document 3 discloses that monovalent copper-supported titanium oxide exhibits antiviral performance.
- Patent Document 4 describes that monovalent copper exhibits high performance in antibacterial and antiviral performance.
- Patent Document 5 describes a microorganism inactivating agent that contains a monovalent copper compound as an active ingredient and is used for inactivating microorganisms for a short time.
- Patent Document 5 describes a microorganism inactivating agent containing a photocatalytic substance together with a monovalent copper compound, and describes the use of a titanium oxide catalyst as the photocatalytic substance. Furthermore, Patent Document 5 describes that a monovalent copper compound has a much stronger inactivation effect on microorganisms than a divalent copper compound.
- a titanium oxide slurry obtained by dispersing titanium oxide particles in a solvent is suitably used as a raw material for various functional coating agents such as organic compound decomposition, antibacterial, ultraviolet absorption, antifouling, hydrophilicity, and antifogging. Since the isoelectric point of titanium oxide is near neutral, it is generally preferable to make the titanium oxide slurry acidic or alkaline when producing a stably dispersed titanium oxide slurry. If it is in the neutral region, the titanium oxide particles are aggregated, resulting in intense thickening and gelation, and the slurry state cannot be maintained.
- Patent Document 6 discloses that titanium oxide particles are negatively charged by dissolving hydroxycarboxylic acid or polyvalent carboxylic acid in an acidic titanium oxide slurry, and deionizing after neutralization, so that titanium oxide is stable in a neutral region. The production of a slurry is described.
- Patent Documents 7 and 8 describe composite titanium oxide that imparts a negative charge by complexing titanium oxide with a phosphate and generates a stable dispersion in a neutral region.
- Patent Document 9 describes a photocatalyst dispersion liquid containing a photocatalytic titanium oxide, a copper component, and a dispersing agent such as phosphoric acid, condensed phosphoric acid or a salt thereof.
- Patent Document 1 lists TiO 2 , Cu 2 O, CuO, and the like, or combinations thereof, as nanoparticles of the general formula M n X y that reduce viral transmission. In addition, whether it is excellent in the virus infection reduction effect in the dark place has not been sufficiently studied.
- a monovalent copper compound is included as an active ingredient that inactivates the virus.
- the monovalent copper compound is easily oxidized, and the transparency is required to be 200 nm or less. When micronized, it is particularly easily oxidized. When Cu 2 O (red) is oxidized to change to CuO (black), color unevenness occurs, resulting in poor design.
- Patent Documents 1 to 5 do not clearly use copper phosphate or copper pyrophosphate as copper.
- Patent Documents 1 to 5 do not sufficiently examine the stable dispersion of the slurry for the combination of antiviral titanium oxide and copper or a copper compound. Further, when a composition of a combination of titanium oxide and copper or a copper compound is dispersed in an aqueous solvent, as in the case of titanium oxide alone, it is stable in the acidic region or alkaline region, but unstable in the neutral region. However, there is a problem that huge agglomerated particles are generated and settled, but Patent Documents 1 to 5 do not disclose at all that the dispersibility of the slurry decreases due to the loading of the copper compound. Patent Documents 6 to 8 propose dispersions that are stable in a neutral region by negatively charging titanium oxide particles.
- Patent Documents 6 to 8 do not disclose antibacterial and antiviral properties, and do not describe any use of copper phosphate or copper pyrophosphate as copper.
- Patent Document 9 proposes a photocatalyst dispersion liquid containing a photocatalytic titanium oxide, a copper component, and a dispersing agent such as phosphoric acid, condensed phosphoric acid or a salt thereof.
- Patent Document 9 does not disclose antibacterial and antiviral properties.
- phosphoric acid etc. are used as a mere dispersing agent, and it does not describe what makes a copper component and phosphoric acid react.
- the copper component is present in the coating film as +1 or 0, and has a problem of uneven color due to oxidation. Furthermore, when a large amount of copper component is added, the problem of solid-liquid separation of the dispersion cannot be solved, and the amount of copper component added must be kept low.
- the present invention is a photocatalytic titanium oxide that does not have a black color, is excellent in design, exhibits antibacterial and antiviral properties, and aggregation of the corresponding photocatalytic titanium oxide particles even in a neutral region (pH 7.0 to 9.0).
- An object of the present invention is to provide an antibacterial antiviral photocatalytic titanium oxide slurry having a low dispersibility and a method for producing the same.
- the inventors of the present invention are keen to produce a photocatalytic titanium oxide and a photocatalytic titanium oxide slurry that are not blackish, have excellent design properties, exhibit good antibacterial and antiviral properties, and can be stably dispersed even in a neutral region.
- I did research As a result, it has been found that an antibacterial antiviral photocatalytic titanium oxide carrying copper (II) phosphate or copper (II) pyrophosphate on at least a part of the surface of the titanium oxide particles is effective in solving the problem. Further, the present inventors have found that an antibacterial antiviral photocatalytic titanium oxide slurry having good dispersibility can be obtained by dispersing the antibacterial antiviral photocatalytic titanium oxide in a neutral region. That is, the present invention is as follows.
- At least one selected from copper (II) phosphate and copper (II) pyrophosphate is added to at least a part of the surface of the titanium oxide particles with respect to 100 parts by mass of the titanium oxide particles.
- Antibacterial antiviral photocatalytic titanium oxide having 1 to 50 parts by mass and 50% cumulative particle size (D50) of 5 to 200 nm.
- the antibacterial according to [1], wherein the titanium oxide particles are at least one selected from anatase-type titanium oxide, brookite-type titanium oxide, rutile-type titanium oxide, and titanium oxide of two or more mixed crystals thereof.
- Antiviral photocatalytic titanium oxide is provided to at least a part of the surface of the titanium oxide particles with respect to 100 parts by mass of the titanium oxide particles.
- Antibacterial antiviral photocatalytic titanium oxide having 1 to 50 parts by mass and 50% cumulative particle size (D50) of 5 to 200 nm.
- a water-soluble cupric salt is reacted with at least one selected from a phosphate and a pyrophosphate to form water-insoluble copper phosphate (II) and copper pyrophosphate (II). And at least a part of the surface of the titanium oxide particles having a 50% cumulative particle diameter (D50) of 5 to 200 nm, the water-insoluble copper phosphate (II) and copper pyrophosphate ( The method for producing antibacterial antiviral photocatalytic titanium oxide according to claim 1 or 2, wherein at least one selected from II) is supported.
- a water-soluble cupric salt is reacted with at least one selected from a phosphate and a pyrophosphate to form water-insoluble copper phosphate (II) and copper pyrophosphate (II). And at least part of the surface of the titanium oxide particles while dispersing titanium oxide particles having a 50% cumulative particle diameter (D50) of 5 to 200 nm in an aqueous medium.
- An antibacterial antiviral photocatalytic titanium oxide dispersion is obtained by supporting at least one selected from water-insoluble copper phosphate (II) and copper pyrophosphate (II), and then antibacterial antiviral photocatalytic oxidation is performed from the dispersion.
- a method for producing an antibacterial antiviral photocatalytic titanium oxide slurry comprising separating titanium and redispersing the separated antibacterial antiviral photocatalytic titanium oxide in an aqueous solvent.
- a water-soluble cupric salt is reacted with at least one selected from phosphate and pyrophosphate to form water-insoluble copper phosphate (II) and copper pyrophosphate (II).
- II water-insoluble copper phosphate
- IIII copper pyrophosphate
- the dispersion After supporting at least one selected from water-insoluble copper phosphate (II) and copper pyrophosphate (II) to obtain an antibacterial antiviral photocatalytic titanium oxide dispersion, the dispersion is further supplemented with an aqueous solvent.
- a method for producing an antibacterial and antiviral photocatalytic titanium oxide slurry wherein the antibacterial and antiviral photocatalytic titanium oxide separated by ultrafiltration while being redispersed in an aqueous solvent.
- An antibacterial and antiviral coating agent obtained by mixing the antibacterial and antiviral photocatalytic titanium oxide slurry according to [5] and a binder component.
- An antibacterial and antiviral coating film obtained by applying the antibacterial and antiviral coating agent according to [9] to a substrate.
- An antibacterial and antiviral article having the antibacterial and antiviral coating film according to [10] on at least a part of the outermost surface.
- a photocatalytic titanium oxide a photocatalytic titanium oxide slurry that can be stably dispersed even in a neutral region while exhibiting excellent antibacterial and antiviral properties without being blackish, exhibiting good antibacterial and antiviral properties, and a method for producing the same. can do.
- an antibacterial antiviral coating agent, an antibacterial antiviral coating film, and an antibacterial antiviral article comprising the corresponding photocatalytic titanium oxide slurry can be provided.
- the antibacterial antiviral photocatalytic titanium oxide of the present invention is selected from copper (II) phosphate and copper (II) pyrophosphate with respect to 100 parts by mass of titanium oxide particles at least partially on the surface of the titanium oxide particles. At least one of these is supported by 0.1 to 50 parts by mass based on copper and has a 50% cumulative particle size (D50) of 5 to 200 nm.
- D50 cumulative particle size
- the crystal form of the titanium oxide particles may be anatase type, brookite type, rutile type, or a mixed crystal of two or more of these.
- the present inventors have grasped that the rutile type has a relatively high performance as antibacterial and antiviral performance, but the rutile type has a large true specific gravity and is difficult to make into a dispersion. It is difficult to make a transparent coating agent. Therefore, although it is slightly inferior in antibacterial and antiviral performance, it is also important from a practical standpoint to use anatase type or brookite type as a coating agent having high dispersibility and high transparency.
- the crystal form of titanium oxide may be selected according to productivity and use.
- the 50% cumulative particle diameter (D50) (based on light scattering intensity) of the titanium oxide particles is preferably 5 to 200 nm. When it is 5 nm or more, it is well dispersed without agglomeration. When it is 200 nm or less, it is well dispersed without settling. From this viewpoint, the 50% cumulative particle size (D50) is more preferably 7 to 175 nm, and further preferably 10 to 150 nm.
- the 50% cumulative particle size (D50) (light scattering intensity standard) can be measured by a laser Doppler particle size distribution meter, a dynamic light scattering particle size distribution meter, or the like.
- the specific surface area of the titanium oxide particles is preferably 10 to 300 m 2 / g. When it is 10 m 2 / g or more, the antibacterial and antiviral properties are good, and it is well dispersed without settling. When it is 300 m 2 / g or less, it is well dispersed without agglomeration.
- the specific surface area is more preferably 15 to 250 m 2 / g, and further preferably 20 to 200 m 2 / g.
- the specific surface area is a specific surface area measured by a vacuum adsorption method (BET method).
- Copper phosphate or copper pyrophosphate At least one selected from copper (II) phosphate and copper (II) pyrophosphate is supported on at least a part of the surface of the titanium oxide particles. Copper (II) phosphate or copper (II) pyrophosphate may be an anhydride or a hydrate. Further, copper (II) phosphate or copper (II) pyrophosphate may be a crystal or an amorphous crystal. The total content of copper (II) phosphate and copper (II) pyrophosphate is 0.1 to 50 parts by mass with respect to 100 parts by mass of titanium oxide particles.
- the total content of copper (II) phosphate and copper (II) pyrophosphate is preferably 0.5 to 40 parts by mass based on copper with respect to 100 parts by mass of titanium oxide particles.
- the amount is more preferably 0.0 to 30 parts by mass, and further preferably 3.0 to 20 parts by mass.
- copper (II) phosphate and copper (II) pyrophosphate may be referred to as “phosphorous copper compounds”.
- the content (copper standard) of the phosphorus-based copper compound with respect to 100 parts by mass of the titanium oxide particles is specified by measuring antibacterial antiviral photocatalytic titanium oxide by ICP (inductively coupled plasma) emission spectroscopic analysis described later. Can do.
- ICP inductively coupled plasma
- the amount of the phosphorus-based copper compound may be calculated from the amount of phosphate or pyrophosphate and the amount of the water-soluble cupric salt. It is preferable to add the ratio of about 0.5 to 5.0% higher than the target loading amount.
- titanium oxide As the titanium oxide, the above-described titanium oxide can be used.
- the concentration of titanium oxide in the mixed composition comprising at least one selected from an aqueous solvent, a water-soluble cupric salt, and phosphate and pyrophosphate is 3 to 30% by mass. It is desirable to do. If it is less than 3% by mass, the productivity is low and not economical, and if it is 30% by mass or more, the viscosity of the mixed composition becomes high and handling becomes difficult.
- the water-soluble cupric salt can be represented by the following general formula (1).
- CuX 2 (1)
- X represents a monovalent anion, and is preferably a halogen anion such as Cl, Br or I, or a conjugate base of an acid such as CH 3 COO, NO 3 or (SO 4 ) 1/2. , Cl, CH 3 COO, NO 3 , (SO 4 ) 1/2 , more preferably Cl or CH 3 COO.
- the water-soluble cupric salt represented by the general formula (1) is one type of water-soluble cupric salt (that is, a single unit of water-soluble cupric salt in which X is one specific type). Good.
- a mixture of two or more water-soluble cupric salts having different Xs may be used, such as a mixture of Cu (NO 3 ) 2 and Cu (Cl) 2 .
- the water-soluble cupric salt represented by the general formula (1) may be CuX 1 X 2 (where X 1 and X 2 are monovalent anions different from each other).
- the water-soluble cupric salt represented by the general formula (1) may be an anhydride or a hydrate.
- the addition amount of the water-soluble cupric salt is preferably 0.1 to 50 parts by mass, more preferably 0.3 to 40 parts by mass with respect to 100 parts by mass of the titanium oxide particles. More preferably, the content is 0.5 to 30 parts by mass.
- phosphate examples include sodium phosphate, disodium hydrogen phosphate, potassium phosphate, and dipotassium hydrogen phosphate.
- pyrophosphate examples include sodium pyrophosphate.
- the total concentration of at least one of phosphate and pyrophosphate is preferably 0.1 to 5 mol / L, more preferably 0.3 to 4 mol / L in an aqueous solvent, and 0.5 to More preferably, it is 3 mol / L. If it exceeds 5 mol / L, the precipitation of the phosphorus-based copper compound becomes non-uniform, which is not preferable.
- the aqueous solvent can be used without particular limitation as long as it dissolves the water-soluble cupric salt, phosphate and pyrophosphate.
- water is preferably used, but a polar solvent other than water may be further included.
- the polar solvent include alcohols, ketones, or a mixture thereof.
- alcohols include methanol, ethanol, normal propyl alcohol, and isopropyl alcohol.
- the ketone include acetone, methyl ethyl ketone, diethyl ketone, and methyl isoptyl ketone.
- the aqueous solvent may be a mixture of those exemplified above.
- a water-soluble cupric salt is reacted with at least one selected from phosphate and pyrophosphate, and selected from water-insoluble copper phosphate (II) and copper pyrophosphate (II).
- a water-soluble cupric salt at least one of phosphate and pyrophosphate, and an aqueous solvent may be mixed and stirred (dispersed).
- heating is suitable for sufficiently reacting the water-soluble cupric salt with at least one selected from phosphate and pyrophosphate.
- titanium oxide particles may be mixed in an aqueous solvent and stirred (dispersed) as necessary, and then the water-soluble cupric salt may be dissolved and stirred (dispersed).
- the water-soluble cupric salt may be first dissolved in an aqueous solvent and stirred as necessary, and then the titanium oxide particles may be mixed and stirred (dispersed).
- a water-soluble cupric salt and titanium oxide may be simultaneously mixed in an aqueous solvent and stirred (dispersed).
- the phosphate or pyrophosphate may be added at least one of the three timings before, during, and after mixing the titanium oxide particles and / or the water-soluble cupric salt in the aqueous solvent. From the viewpoint of more uniformly supporting the phosphorus-based copper compound on the surface of the titanium oxide particles, it is preferable to add the titanium oxide particles and the water-soluble cupric salt in an aqueous solvent and sufficiently agitate (disperse) the mixture.
- the stirring time is not particularly limited and is, for example, about 5 to 120 minutes. In order to sufficiently react the water-soluble cupric salt with phosphate or pyrophosphate, it is preferable to stir for 30 to 90 minutes in the presence of both.
- the heating may be performed at at least one of the following three timings before, during and after mixing the titanium oxide particles and / or the water-soluble cupric salt with the aqueous solvent.
- the heating temperature is preferably 10 to 90 ° C, more preferably 30 to 60 ° C, and more preferably 35 to 50 ° C.
- the temperature is 10 ° C. or lower, the reaction rate between the water-soluble cupric salt and phosphate or pyrophosphate, and the loading rate of copper phosphate or copper pyrophosphate on titanium oxide particles become slow, and the synthesis efficiency In view of the above, it is not preferable.
- the temperature is 90 ° C. or higher, heat supply increases, which is not preferable from the viewpoint of cost.
- the antibacterial antiviral photocatalytic titanium oxide obtained as described above can be separated as a solid content from the dispersion containing the titanium oxide.
- this separation method There are no particular limitations on this separation method, and examples include filtration, sedimentation separation, centrifugation, and evaporation to dryness. Separation by filtration is preferred.
- the separated antibacterial antiviral photocatalytic titanium oxide is washed with water, dried, pulverized, classified, redispersed, etc. as necessary.
- the antibacterial and antiviral photocatalytic titanium oxide slurry of the present invention contains the above-described antibacterial and antiviral photocatalytic titanium oxide in an aqueous solvent.
- the pH of the slurry is preferably in a neutral region of 7.0 to 9.0 at a temperature of 25 ° C.
- Antimicrobial antiviral photocatalytic titanium oxide As the antibacterial antiviral photocatalytic titanium oxide, the above-described separated antibacterial antiviral photocatalytic titanium oxide can be used. Moreover, the dispersion liquid before isolate
- the concentration of the antibacterial and antiviral photocatalytic titanium oxide is preferably 3 to 50% by mass in the slurry. When the amount is 3% by mass or more, the amount of the aqueous solvent is relatively small, and the time for removing the aqueous solvent by drying or the like is short when using the antibacterial and antiviral photocatalytic titanium oxide slurry.
- the capacity of the photocatalytic titanium oxide slurry can be reduced.
- the content is 50% by mass or less, the dispersibility is improved and stable storage is possible.
- the concentration of the antibacterial and antiviral photocatalytic titanium oxide in the slurry is more preferably 4 to 40% by mass, and further preferably 5 to 30% by mass.
- the slurry may contain a solid content other than the above-described antibacterial antiviral photocatalytic titanium oxide as long as the object of the present invention is not impaired.
- the antibacterial and antiviral photocatalytic titanium oxide is preferably 90% by mass or more, preferably 95% by mass or more, and more preferably 99.9% by mass or more. .
- aqueous solvent As an aqueous solvent, the thing similar to the aqueous solvent mentioned above can be used.
- the 50% cumulative particle diameter (D50%) (based on light scattering intensity) of the antibacterial antiviral photocatalytic titanium oxide in the slurry is preferably 5 to 200 nm. When it is 5 nm or more, it can be easily dispersed well without aggregation. When it is 200 nm or less, it can be easily dispersed well without settling. From this viewpoint, the 50% cumulative particle diameter (D50%) (based on light scattering intensity) of the antibacterial and antiviral photocatalytic titanium oxide in the slurry is more preferably 7 to 175 nm, and further preferably 10 to 150 nm. preferable.
- the 50% cumulative particle size (D50%) (light scattering intensity standard) can be measured by a laser Doppler particle size distribution meter, a dynamic light scattering particle size distribution meter, or the like.
- the antibacterial and antiviral photocatalytic titanium oxide slurry of the present invention can be applied in both neutral and alkaline regions since copper phosphate or copper pyrophosphate is supported on the surface of titanium oxide particles.
- the neutral region is preferably a neutral region in consideration of prevention or suppression of corrosion.
- the pH is preferably 7.0 to 9.0, and more preferably 7.5 to 8.9.
- the pH of the antibacterial and antiviral photocatalytic titanium oxide slurry is measured at 25 ° C., for example, using a pH meter (D-51 manufactured by Horiba, Ltd.).
- an antibacterial and antiviral photocatalytic titanium oxide dispersion and then the antibacterial and antiviral photocatalytic titanium oxide is separated from the dispersion and separated.
- the antibacterial antiviral photocatalytic titanium oxide is washed and then redispersed in an aqueous solvent.
- the method for separating the antibacterial and antiviral photocatalytic titanium oxide from the dispersion include filtration, sedimentation separation, centrifugation, and evaporation to dryness. Separation by filtration is preferred. For washing, an aqueous solvent is preferably used, and water is more preferably used.
- the redispersion can be performed by, for example, ultrasonic dispersion, ball mill dispersion, bead mill dispersion, or the like.
- a mild dispersion method is preferable so as not to break the crystal structure in the redispersion, and among the dispersion methods, ultrasonic dispersion and ball mill dispersion are preferable.
- a water-soluble cupric salt is reacted with at least one selected from phosphate and pyrophosphate, and at least one selected from water-insoluble copper phosphate and copper (II) pyrophosphate.
- the water-insoluble copper phosphate is formed on at least a part of the surface of the titanium oxide particles.
- the aqueous antibacterial antiviral photocatalytic titanium oxide dispersion is further supplemented with an aqueous solvent. While being ultrafiltered, the separated antibacterial antiviral photocatalytic titanium oxide is redispersed in an aqueous solvent. Separation and washing of the antibacterial and antiviral photocatalytic titanium oxide can be performed simultaneously by passing through an ultrafiltration step while replenishing the dispersion with an aqueous solvent. This step is a so-called UF (Ultra Filtration System) cleaning, and can be performed using a commercially available ultrafiltration membrane cleaning device.
- the redispersion can be performed by the same method as in Production Example 1.
- the pH of the antibacterial and antiviral photocatalytic titanium oxide slurry obtained in Production Examples 1 and 2 is usually in the range of 7.0 to 9.0. You may adjust it.
- the antibacterial and antiviral photocatalytic titanium oxide-containing coating agent of the present invention comprises the antibacterial and antiviral photocatalytic titanium oxide slurry of the present invention containing a binder component.
- the binder component is preferably one that cures in an environment of 10 to 120 ° C., and either an inorganic binder or an organic binder may be used. In consideration of the decomposition of the binder by the photocatalytic substance, an inorganic binder is preferable.
- binder is not specifically limited, For example, a silica binder, a zirconia binder, an alumina binder, a titania binder etc. are mentioned, You may use them together. Of these, a silica binder or a zirconia binder is preferable.
- the content of the binder component is preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass in the antibacterial and antiviral photocatalytic titanium oxide-containing coating agent.
- the antibacterial and antiviral coating film of the present invention is formed by applying and curing the antibacterial and antiviral photocatalytic titanium oxide-containing coating agent of the present invention.
- the adherend to which the antibacterial and antiviral photocatalytic titanium oxide-containing coating agent of the present invention is applied include metals, ceramics, glass, fibers, nonwoven fabrics, films, plastics, rubbers, paper, and wood.
- the surface of these adherends may be subjected to easy adhesion treatment or the like.
- the coating method is not particularly limited, and spin coating, dip coating, spray coating, and the like can be applied.
- the curing temperature after coating depends on the binder component used, but is preferably about 20 to 80 ° C.
- the thickness of the antibacterial and antiviral coating film of the present invention obtained by curing is preferably 0.05 to 1 ⁇ m, and more preferably 0.1 to 0.5 ⁇ m.
- the film thickness is 0.05 ⁇ m or less, the amount of the antibacterial and antiviral photocatalytic titanium oxide is small, and the antibacterial and antiviral performance of the material cannot be sufficiently exhibited.
- the film thickness is 1 ⁇ m or more, the amount of antibacterial and antiviral photocatalytic titanium oxide is large, and the antibacterial and antiviral performance of the material can be sufficiently exhibited, but the hardness and durability of the coating film are lowered.
- the antibacterial and antiviral article of the present invention is an article having the antibacterial and antiviral photocatalytic titanium oxide of the present invention on at least a part of the outermost surface (for example, a part touched by humans). Articles such as dirty items are listed.
- Virus inactivation ability was confirmed by the following method by a model experiment using bacteriophage. The method of using the inactivation ability against bacteriophage as a model of virus inactivation ability is described in, for example, Appl. Microbiol Biotechnol., 79, pp. 127-133, 2008, and reliable results are obtained. It is known that A filter paper was laid in the deep petri dish, and a small amount of sterilized water was added.
- a glass base having a thickness of about 5 mm is placed on the filter paper, and the antibacterial and antiviral photocatalytic titanium oxides of Examples 1 to 7 and the samples of Comparative Examples 1 to 7 are each solid content of 2 g / A glass plate (50 mm ⁇ 50 mm ⁇ 1 mm) coated so as to be m 2 was placed.
- This deep petri dish covered with a glass plate was used as a measurement set.
- a plurality of similar measurement sets were prepared.
- a 15W white fluorescent lamp manufactured by Panasonic Corporation, full white fluorescent lamp, FL15N
- a UV light filter manufactured by Nitto Jushi Kogyo Co., Ltd., cuts light of N-169, 380 nm or less
- the light source is used as the light source.
- a plurality of measurement sets were placed at a position where the illuminance reached 800 lux (IM-5 manufactured by TOPCON Co., Ltd. was used as the illuminometer).
- the phage concentration of the sample on the glass plate was measured.
- about Example 1 while performing the phage density
- the phage concentration was measured by the following method.
- the sample on the glass plate was infiltrated into 10 mL of a recovery liquid (SM Buffer) and shaken for 10 minutes with a shaker.
- the phage recovery solution was appropriately diluted, mixed with a separately cultured culture solution of E. coli (NBRC13965) (OD 600 > 1.0, 1 ⁇ 10 8 CFU / mL), and then stirred at 37 ° C.
- the phages were infected with E. coli by standing in a thermostatic chamber for 10 minutes. This solution was spread on an agar medium and cultured at 37 ° C. for 15 hours, and the number of phage plaques was visually measured.
- the phage concentration N was determined by multiplying the number of plaques obtained by the dilution factor of the phage recovery solution.
- the relative phage concentration (LOG (N / N 0 )) was determined from the initial phage concentration N 0 and the phage concentration N after a predetermined time.
- the evaluation results of virus inactivation ability are shown in Table 1.
- Example 1 100 g of anatase-type titanium oxide (50% cumulative particle size (D50%) (light scattering intensity standard): 80 nm, Showa Titanium Co., Ltd.) was dispersed in 1000 mL of distilled water while stirring to obtain a titanium oxide slurry. With respect to 100 parts by mass of titanium oxide, 13.3 g of copper chloride (II) dihydrate having 5 parts by mass (preparation amount) based on copper was dissolved in 10 mL of distilled water to obtain an aqueous solution of copper chloride (II). . While stirring, 10 mL of the aqueous copper (II) chloride solution was added to the titanium oxide slurry, and the slurry was heated to 40 ° C.
- D50% cumulative particle size (D50%) (light scattering intensity standard): 80 nm, Showa Titanium Co., Ltd.
- Example 2 Except that the sodium phosphate was changed to sodium pyrophosphate, a titanium oxide having a surface supported with copper (II) pyrophosphate and a titanium oxide slurry having a surface supported with copper (II) pyrophosphate were prepared in the same manner as in Example 1. Obtained.
- Example 3 Anatase-type titanium oxide (50% cumulative particle diameter (D50%) (light scattering intensity standard): 80 nm, Showa Titanium Co., Ltd.) and brookite-type titanium oxide (50% cumulative particle diameter (D50%) (light scattering intensity standard) ): 50 nm, manufactured by Showa Titanium Co., Ltd.), except that the titanium oxide carrying the surface of the copper phosphate (II) and the titanium oxide carrying the surface of the copper phosphate (II) are the same as in Example 1. A slurry was obtained.
- Example 4 Anatase type titanium oxide (50% cumulative particle size (D50%) (light scattering intensity standard): 80 nm, Showa Titanium Co., Ltd.), rutile type titanium oxide (50% cumulative particle size (D50%) (light scattering intensity standard) ): Titanium oxide surface-supported with copper (II) phosphate and titanium oxide surface-supported with copper (II) phosphate, in the same manner as in Example 1, except that it was changed to 190 nm, manufactured by Showa Titanium Co., Ltd. A slurry was obtained.
- Example 5 In the same manner as in Example 1 except that the addition amount of copper (II) chloride hydrate was changed to 10 parts by mass (preparation amount) with respect to 100 parts by mass of titanium oxide, copper phosphate ( A titanium oxide slurry carrying the surface of II) and a titanium oxide slurry carrying the surface of copper (II) phosphate was obtained.
- Example 6 Except for changing the copper (II) chloride dihydrate to copper sulfate (II) pentahydrate, in the same manner as in Example 1, titanium oxide supporting the surface of copper (II) phosphate and copper phosphate A titanium oxide slurry carrying the surface of (II) was obtained.
- Example 7 In Example 2, using the ultrafiltration (UF) module manufactured by Asahi Kasei Kogyo Co., Ltd., the mixed solution after the reaction for 1 hour was supplied with distilled water, and the conductivity of the mixed solution was in the range of 300 to 500 ⁇ S / cm. Ultrafiltration was performed until Thereafter, ultrasonic dispersion 1h was carried out while stirring the mixed solution to obtain a titanium oxide slurry carrying copper (II) pyrophosphate on the surface.
- UF ultrafiltration
- Iron (III) phosphate was supported on the surface in the same manner as in Example 1 except that copper (II) chloride dihydrate was replaced with iron (III) chloride hexahydrate (manufactured by Kanto Chemical Co., Inc.). A titanium oxide slurry carrying titanium oxide and iron (III) phosphate on the surface was obtained.
- Example 3 Phosphoric acid in the same manner as in Example 1 except that the addition amount of copper (II) chloride hydrate was changed to 0.05 parts by mass (preparation amount) with respect to 100 parts by mass of titanium oxide. Titanium oxide carrying the surface of copper (II) and titanium oxide slurry carrying the surface of copper (II) phosphate were obtained.
- Example 4 In the same manner as in Example 1 except that the addition amount of copper (II) chloride hydrate was changed to 60 parts by mass (preparation amount) with respect to 100 parts by mass of titanium oxide, copper phosphate ( A titanium oxide slurry carrying the surface of II) and a titanium oxide slurry carrying the surface of copper (II) phosphate was obtained.
- Comparative Example 6 The titanium oxide carrying the surface of copper hydroxide (II) obtained in Comparative Example 5 was hydrolyzed to obtain a titanium oxide carrying the surface of copper (II) oxide. Moreover, this titanium oxide was put into 1000 mL distilled water, and ultrasonic dispersion 1h was performed while stirring to obtain a titanium oxide slurry carrying copper (II) oxide on the surface.
- the antibacterial and antiviral photocatalytic titanium oxides of Examples 1 to 7 have good antiviral properties, and the 50% cumulative particle size of the antibacterial and antiviral photocatalytic titanium oxide in the slurry is small, so that sedimentation occurs. There was no product.
- the antibacterial and antiviral photocatalytic titanium oxides of Examples 1 to 7 all have L * a * b * color values of L * values of 85 or more, and are excellent in design without being blackish. It was. L * a * b * measurement of the color values of L * values were performed using Konica Minolta Optics Co., Ltd. of the spectral colorimeter "CM-3700d".
- the antibacterial antiviral photocatalytic titanium oxides of Examples 1 to 7 use copper phosphate or copper pyrophosphate as the copper compound even though it carries the copper compound that hinders dispersibility. Therefore, it has a very remarkable effect that the dispersibility is good and the antiviral property is also good.
- Comparative Examples 1 and 2 were inferior in antiviral properties because the surfaces of the titanium oxide particles were not supported by copper phosphate or copper pyrophosphate.
- Comparative Example 3 the surface of the titanium oxide particles was supported by copper phosphate or copper pyrophosphate, but the amount supported was inferior, and thus the antiviral property was inferior.
- Comparative Example 4 the surface of the titanium oxide particles is supported by copper phosphate or copper pyrophosphate. However, since the supported amount is too large, the dispersibility is inferior and sedimentation occurs, and antiviral properties are achieved. Was inferior.
- the antibacterial and antiviral photocatalytic titanium oxides of Comparative Examples 5 to 7 carry copper on the surface of titanium oxide, but the pH is 7.0 to 9.0 because copper is not copper phosphate or copper pyrophosphate. Titanium oxide particles aggregated in the vicinity of the neutrality and caused sedimentation. Further, the antibacterial and antiviral photocatalytic titanium oxides of Comparative Examples 5 to 7 were inferior in antiviral properties as compared to the examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Plant Pathology (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Catalysts (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
例えば、特許文献3には、1価銅担持酸化チタンが抗ウイルス性能を示すことが開示されている。特許文献4には、抗菌抗ウイルス性能において、1価銅が高い性能を示すことが記載されている。
特許文献5には、1価銅化合物を有効成分として含み、微生物の短時間不活化に用いるための微生物不活化剤が記載されている。また、特許文献5には、1価銅化合物と共に光触媒物質を含む微生物不活化剤が記載されており、光触媒物質として酸化チタン触媒を用いることが記載されている。さらに、特許文献5には、2価銅化合物に比べて1価銅化合物が微生物に対してはるかに強い不活化作用を有すると記載されている。 In the combination of titanium oxide and copper or a copper compound as described above, it is also known that a monovalent copper compound is used as a copper compound, and that monovalent copper is excellent in inactivation performance of microorganisms and viruses.
For example, Patent Document 3 discloses that monovalent copper-supported titanium oxide exhibits antiviral performance. Patent Document 4 describes that monovalent copper exhibits high performance in antibacterial and antiviral performance.
Patent Document 5 describes a microorganism inactivating agent that contains a monovalent copper compound as an active ingredient and is used for inactivating microorganisms for a short time. Patent Document 5 describes a microorganism inactivating agent containing a photocatalytic substance together with a monovalent copper compound, and describes the use of a titanium oxide catalyst as the photocatalytic substance. Furthermore, Patent Document 5 describes that a monovalent copper compound has a much stronger inactivation effect on microorganisms than a divalent copper compound.
酸化チタンの等電点は中性付近であるため、一般的に、安定に分散した酸化チタンスラリーを製造する際に、酸化チタンスラリーを酸性又はアルカリ性にするのは好ましい。中性領域にすると、酸化チタン粒子が凝集し、激しく増粘、ゲル化などを生じ、スラリーの状態を保つことができない。 A titanium oxide slurry obtained by dispersing titanium oxide particles in a solvent is suitably used as a raw material for various functional coating agents such as organic compound decomposition, antibacterial, ultraviolet absorption, antifouling, hydrophilicity, and antifogging.
Since the isoelectric point of titanium oxide is near neutral, it is generally preferable to make the titanium oxide slurry acidic or alkaline when producing a stably dispersed titanium oxide slurry. If it is in the neutral region, the titanium oxide particles are aggregated, resulting in intense thickening and gelation, and the slurry state cannot be maintained.
特許文献9には、光触媒酸化チタン、銅成分並びにリン酸、縮合リン酸またはその塩といった分散剤を含む光触媒分散液が記載されている。 Patent Documents 7 and 8 describe composite titanium oxide that imparts a negative charge by complexing titanium oxide with a phosphate and generates a stable dispersion in a neutral region.
Patent Document 9 describes a photocatalyst dispersion liquid containing a photocatalytic titanium oxide, a copper component, and a dispersing agent such as phosphoric acid, condensed phosphoric acid or a salt thereof.
特許文献2では、CuO/TiO2(質量%比)=1.0~3.5の範囲で銅を含有するアナターゼ型酸化チタンからなるファージ・ウイルスの不活性化剤について、CuOは黒色であるため、意匠性に劣るものとなる。
特許文献3~5のウイルス不活化剤は、1価の銅化合物がウイルスを不活化する有効成分として含まれているが、1価の銅化合物は酸化され易く、透明性を求めて200nm以下に微粒子化すると、特に酸化され易くなる。そして、Cu2O(赤色)が酸化されてCuO(黒色)に変化すると色むらが生じ、意匠性に劣るものとなる。
また、特許文献1~5には、銅としてリン酸銅やピロリン酸銅を用いることが明示されていない。
In
In the virus inactivating agents of Patent Documents 3 to 5, a monovalent copper compound is included as an active ingredient that inactivates the virus. However, the monovalent copper compound is easily oxidized, and the transparency is required to be 200 nm or less. When micronized, it is particularly easily oxidized. When Cu 2 O (red) is oxidized to change to CuO (black), color unevenness occurs, resulting in poor design.
In addition,
また、特許文献6~8には、酸化チタン粒子を負に帯電させることによって、中性領域で安定する分散液を提案している。しかし、特許文献6~8は、抗菌抗ウイルス性について開示がなく、さらに、銅としてリン酸銅やピロリン酸銅を用いることは何ら記載されていない。
特許文献9には、光触媒酸化チタン、銅成分及びリン酸、縮合リン酸またはその塩といった分散剤を含む光触媒分散液を提案している。しかし、特許文献9には、抗菌抗ウイルス性について開示がない。また、リン酸等は単なる分散剤として用いられており、銅成分とリン酸とを反応させることは何ら記載されていない。また、銅成分は塗膜中で+1価または0価で存在するものであり、酸化による色むらの問題を有するものである。さらに、銅成分を多く添加した場合、分散液の固液分離の問題が解決できておらず、銅成分の添加量を低く抑えざるを得ないものである。 Furthermore,
Patent Documents 6 to 8 propose dispersions that are stable in a neutral region by negatively charging titanium oxide particles. However, Patent Documents 6 to 8 do not disclose antibacterial and antiviral properties, and do not describe any use of copper phosphate or copper pyrophosphate as copper.
Patent Document 9 proposes a photocatalyst dispersion liquid containing a photocatalytic titanium oxide, a copper component, and a dispersing agent such as phosphoric acid, condensed phosphoric acid or a salt thereof. However, Patent Document 9 does not disclose antibacterial and antiviral properties. Moreover, phosphoric acid etc. are used as a mere dispersing agent, and it does not describe what makes a copper component and phosphoric acid react. In addition, the copper component is present in the coating film as +1 or 0, and has a problem of uneven color due to oxidation. Furthermore, when a large amount of copper component is added, the problem of solid-liquid separation of the dispersion cannot be solved, and the amount of copper component added must be kept low.
すなわち、本発明は下記の通りである。 The inventors of the present invention are keen to produce a photocatalytic titanium oxide and a photocatalytic titanium oxide slurry that are not blackish, have excellent design properties, exhibit good antibacterial and antiviral properties, and can be stably dispersed even in a neutral region. I did research. As a result, it has been found that an antibacterial antiviral photocatalytic titanium oxide carrying copper (II) phosphate or copper (II) pyrophosphate on at least a part of the surface of the titanium oxide particles is effective in solving the problem. Further, the present inventors have found that an antibacterial antiviral photocatalytic titanium oxide slurry having good dispersibility can be obtained by dispersing the antibacterial antiviral photocatalytic titanium oxide in a neutral region.
That is, the present invention is as follows.
[2] 酸化チタン粒子が、アナターゼ型酸化チタン、ブルッカイト型酸化チタン、ルチル型酸化チタン及びこれらの2種以上の混合結晶の酸化チタンから選ばれる少なくとも1種である、[1]に記載の抗菌抗ウイルス性光触媒酸化チタン。 [1] At least one selected from copper (II) phosphate and copper (II) pyrophosphate is added to at least a part of the surface of the titanium oxide particles with respect to 100 parts by mass of the titanium oxide particles. Antibacterial antiviral photocatalytic titanium oxide having 1 to 50 parts by mass and 50% cumulative particle size (D50) of 5 to 200 nm.
[2] The antibacterial according to [1], wherein the titanium oxide particles are at least one selected from anatase-type titanium oxide, brookite-type titanium oxide, rutile-type titanium oxide, and titanium oxide of two or more mixed crystals thereof. Antiviral photocatalytic titanium oxide.
[4] 水溶性第2銅塩が、塩化銅(II)、硫酸銅(II)、硝酸銅(II)及び酢酸銅(II)から選ばれる少なくとも1種である[3]に記載の抗菌抗ウイルス性光触媒酸化チタンの製造方法。 [3] In an aqueous solvent, a water-soluble cupric salt is reacted with at least one selected from a phosphate and a pyrophosphate to form water-insoluble copper phosphate (II) and copper pyrophosphate (II). And at least a part of the surface of the titanium oxide particles having a 50% cumulative particle diameter (D50) of 5 to 200 nm, the water-insoluble copper phosphate (II) and copper pyrophosphate ( The method for producing antibacterial antiviral photocatalytic titanium oxide according to
[4] The antibacterial and antimicrobial agent according to [3], wherein the water-soluble cupric salt is at least one selected from copper (II) chloride, copper (II) sulfate, copper (II) nitrate and copper (II) acetate. A method for producing a viral photocatalytic titanium oxide.
[7] 水性溶媒中で、水溶性第2銅塩と、リン酸塩及びピロリン酸塩から選ばれる少なくとも1種とを反応させ、水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を得て、さらに水性媒体中で50%累積粒子径(D50)が5~200nmである酸化チタン粒子を分散しながら、該酸化チタン粒子の表面の少なくとも一部に、該水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を担持させて抗菌抗ウイルス性光触媒酸化チタン分散液を得た後、該分散液にさらに水性溶媒を補給しながら限外ろ過膜し、分離した該抗菌抗ウイルス性光触媒酸化チタンを水性溶媒中に再分散する、抗菌抗ウイルス性光触媒酸化チタンスラリーの製造方法。
[8] 前記再分散を、超音波分散、ボールミル分散及びビーズミル分散から選ばれる少なくとも1種の分散手段により行う、[6]又は[7]に記載の抗菌抗ウイルス性光触媒酸化チタンスラリーの製造方法。 [6] In an aqueous solvent, a water-soluble cupric salt is reacted with at least one selected from a phosphate and a pyrophosphate to form water-insoluble copper phosphate (II) and copper pyrophosphate (II). And at least part of the surface of the titanium oxide particles while dispersing titanium oxide particles having a 50% cumulative particle diameter (D50) of 5 to 200 nm in an aqueous medium. An antibacterial antiviral photocatalytic titanium oxide dispersion is obtained by supporting at least one selected from water-insoluble copper phosphate (II) and copper pyrophosphate (II), and then antibacterial antiviral photocatalytic oxidation is performed from the dispersion. A method for producing an antibacterial antiviral photocatalytic titanium oxide slurry comprising separating titanium and redispersing the separated antibacterial antiviral photocatalytic titanium oxide in an aqueous solvent.
[7] In an aqueous solvent, a water-soluble cupric salt is reacted with at least one selected from phosphate and pyrophosphate to form water-insoluble copper phosphate (II) and copper pyrophosphate (II). And at least part of the surface of the titanium oxide particles while dispersing titanium oxide particles having a 50% cumulative particle diameter (D50) of 5 to 200 nm in an aqueous medium. After supporting at least one selected from water-insoluble copper phosphate (II) and copper pyrophosphate (II) to obtain an antibacterial antiviral photocatalytic titanium oxide dispersion, the dispersion is further supplemented with an aqueous solvent. A method for producing an antibacterial and antiviral photocatalytic titanium oxide slurry, wherein the antibacterial and antiviral photocatalytic titanium oxide separated by ultrafiltration while being redispersed in an aqueous solvent.
[8] The method for producing an antibacterial and antiviral photocatalytic titanium oxide slurry according to [6] or [7], wherein the redispersion is performed by at least one dispersing means selected from ultrasonic dispersion, ball mill dispersion, and bead mill dispersion. .
[10] [9]に記載の抗菌抗ウイルス性コート剤を基材に塗布してなる抗菌抗ウイルス性塗膜。
[11] [10]に記載の抗菌抗ウイルス性塗膜を最表面の少なくとも一部に有する抗菌抗ウイルス性物品。 [9] An antibacterial and antiviral coating agent obtained by mixing the antibacterial and antiviral photocatalytic titanium oxide slurry according to [5] and a binder component.
[10] An antibacterial and antiviral coating film obtained by applying the antibacterial and antiviral coating agent according to [9] to a substrate.
[11] An antibacterial and antiviral article having the antibacterial and antiviral coating film according to [10] on at least a part of the outermost surface.
本発明の抗菌抗ウイルス性光触媒酸化チタンは、酸化チタン粒子の表面の少なくても一部に、酸化チタン粒子100質量部に対して、リン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を、銅基準で0.1~50質量部担持してなり、50%累積粒子径(D50)が5~200nmであるものである。
次に、抗菌抗ウイルス性光触媒酸化チタンの各成分について説明する。 [Antimicrobial antiviral photocatalytic titanium oxide]
The antibacterial antiviral photocatalytic titanium oxide of the present invention is selected from copper (II) phosphate and copper (II) pyrophosphate with respect to 100 parts by mass of titanium oxide particles at least partially on the surface of the titanium oxide particles. At least one of these is supported by 0.1 to 50 parts by mass based on copper and has a 50% cumulative particle size (D50) of 5 to 200 nm.
Next, each component of the antibacterial antiviral photocatalytic titanium oxide will be described.
酸化チタン粒子の結晶型は、アナターゼ型、ブルッカイト型及びルチル型又はこれらの2種以上の混合結晶であってもよい。本発明者らは、抗菌抗ウイルス性能として、ルチル型が比較的高い性能を有していることを把握しているが、ルチル型は、真比重が大きく、分散液にすることが難しいため、透明なコート剤にすることが難しい。従って、抗菌抗ウイルス性能についてはわずかに劣るものの、アナターゼ型やブルッカイト型を用いて分散性が高くて、透明性が高いコート剤として使用することも、実用的見地からは重要である。酸化チタンの結晶型については生産性や用途に応じて選択すればよい。また、有機基材の分解を抑制するため、酸化チタン粒子は、シリカ、アパタイトなどで被覆した酸化チタン粒子を使用してもよい。
酸化チタン粒子の50%累積粒子径(D50)(光散乱強度基準)は、5~200nmであることが好ましい。5nm以上であると、凝集することなく良好に分散する。200nm以下であると、沈降することなく良好に分散する。この観点から、50%累積粒子径(D50)は、7~175nmであることがより好ましく、10~150nmであることがさらに好ましい。なお、50%累積粒子径(D50)(光散乱強度基準)は、レーザードップラー式粒度分布計や動的光散乱式粒度分布計等によって測定することができる。
酸化チタン粒子の比表面積は、10~300m2/gであることが好ましい。10m2/g以上であると、抗菌抗ウイルス性が良好となり、また、沈降することなく良好に分散する。300m2/g以下であると、凝集することなく良好に分散する。この観点から、比表面積は、15~250m2/gであることがより好ましく、20~200m2/gであることがさらに好ましい。ここで、比表面積とは、真空吸着法(BET法)によって測定された比表面積のことである。 [Titanium oxide particles]
The crystal form of the titanium oxide particles may be anatase type, brookite type, rutile type, or a mixed crystal of two or more of these. The present inventors have grasped that the rutile type has a relatively high performance as antibacterial and antiviral performance, but the rutile type has a large true specific gravity and is difficult to make into a dispersion. It is difficult to make a transparent coating agent. Therefore, although it is slightly inferior in antibacterial and antiviral performance, it is also important from a practical standpoint to use anatase type or brookite type as a coating agent having high dispersibility and high transparency. The crystal form of titanium oxide may be selected according to productivity and use. Moreover, in order to suppress decomposition | disassembly of an organic base material, you may use the titanium oxide particle coat | covered with the silica, apatite, etc. as a titanium oxide particle.
The 50% cumulative particle diameter (D50) (based on light scattering intensity) of the titanium oxide particles is preferably 5 to 200 nm. When it is 5 nm or more, it is well dispersed without agglomeration. When it is 200 nm or less, it is well dispersed without settling. From this viewpoint, the 50% cumulative particle size (D50) is more preferably 7 to 175 nm, and further preferably 10 to 150 nm. The 50% cumulative particle size (D50) (light scattering intensity standard) can be measured by a laser Doppler particle size distribution meter, a dynamic light scattering particle size distribution meter, or the like.
The specific surface area of the titanium oxide particles is preferably 10 to 300 m 2 / g. When it is 10 m 2 / g or more, the antibacterial and antiviral properties are good, and it is well dispersed without settling. When it is 300 m 2 / g or less, it is well dispersed without agglomeration. In this respect, the specific surface area is more preferably 15 to 250 m 2 / g, and further preferably 20 to 200 m 2 / g. Here, the specific surface area is a specific surface area measured by a vacuum adsorption method (BET method).
酸化チタン粒子の表面の少なくとも一部には、リン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種が担持される。リン酸銅(II)又はピロリン酸銅(II)は、無水物であっても水和物であってもよい。また、リン酸銅(II)又はピロリン酸銅(II)は、結晶であっても不定形結晶であってもよい。
リン酸銅(II)及びピロリン酸銅(II)の合計含有量は、酸化チタン粒子100質量部に対して、銅基準で0.1~50質量部である。0.1質量部以上であると抗菌抗ウイルス性を発揮でき、50質量部以下であると分散性に優れ、かつ経済的である。この観点から、リン酸銅(II)及びピロリン酸銅(II)の合計含有量は、酸化チタン粒子100質量部に対して、銅基準で0.5~40質量部であることが好ましく、1.0~30質量部であることがより好ましく、3.0~20質量部であることがさらに好ましい。なお、以下、リン酸銅(II)及びピロリン酸銅(II)を、「リン系銅化合物」と称する場合がある。
ここで、酸化チタン粒子100質量部に対するリン系銅化合物の含有量(銅基準)は、後述するICP(誘導結合プラズマ)発光分光分析により抗菌抗ウイルス性光触媒酸化チタンを測定することで特定することができる。なお、酸化チタン粒子100質量部に対するリン系銅化合物の含有量を上記範囲とするには、酸化チタンと、リン系銅化合物とを上記割合で仕込み、後述する工程を経ることにより可能である。なお、リン系銅化合物の量は、リン酸塩又はピロリン酸塩の量と、水溶性第2銅塩の量から算出すればよく、また、銅の未担持分を考慮すると、リン系銅化合物の割合を目的とする担持量より0.5~5.0%程度上乗せして仕込むことが好ましい。 [Copper phosphate or copper pyrophosphate]
At least one selected from copper (II) phosphate and copper (II) pyrophosphate is supported on at least a part of the surface of the titanium oxide particles. Copper (II) phosphate or copper (II) pyrophosphate may be an anhydride or a hydrate. Further, copper (II) phosphate or copper (II) pyrophosphate may be a crystal or an amorphous crystal.
The total content of copper (II) phosphate and copper (II) pyrophosphate is 0.1 to 50 parts by mass with respect to 100 parts by mass of titanium oxide particles. When it is 0.1 part by mass or more, antibacterial and antiviral properties can be exhibited, and when it is 50 parts by mass or less, the dispersibility is excellent and economical. From this point of view, the total content of copper (II) phosphate and copper (II) pyrophosphate is preferably 0.5 to 40 parts by mass based on copper with respect to 100 parts by mass of titanium oxide particles. The amount is more preferably 0.0 to 30 parts by mass, and further preferably 3.0 to 20 parts by mass. Hereinafter, copper (II) phosphate and copper (II) pyrophosphate may be referred to as “phosphorous copper compounds”.
Here, the content (copper standard) of the phosphorus-based copper compound with respect to 100 parts by mass of the titanium oxide particles is specified by measuring antibacterial antiviral photocatalytic titanium oxide by ICP (inductively coupled plasma) emission spectroscopic analysis described later. Can do. In addition, in order to make content of the phosphorus type copper compound with respect to 100 mass parts of titanium oxide particles into the said range, it is possible by charging titanium oxide and a phosphorus type copper compound in the said ratio, and passing through the process mentioned later. The amount of the phosphorus-based copper compound may be calculated from the amount of phosphate or pyrophosphate and the amount of the water-soluble cupric salt. It is preferable to add the ratio of about 0.5 to 5.0% higher than the target loading amount.
前記の抗菌抗ウイルス性光触媒酸化チタンの製造方法には特に制限はないが、例えば、水性溶媒中で、水溶性第2銅塩と、リン酸塩及びピロリン酸塩から選ばれる少なくとも1種とを反応させ、水不溶性のリン酸銅及びピロリン酸銅(II)から選ばれる少なくとも1種を得るとともに、50%累積粒子径(D50)(光散乱強度基準)が5~200nmである酸化チタン粒子の表面の少なくとも一部に、該水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を担持させることにより製造できる。 [Method of producing antibacterial antiviral photocatalytic titanium oxide]
Although there is no restriction | limiting in particular in the manufacturing method of the said antibacterial antiviral photocatalytic titanium oxide, For example, in aqueous medium, water-soluble cupric salt and at least 1 sort (s) chosen from phosphate and pyrophosphate are included. Reaction is performed to obtain at least one selected from water-insoluble copper phosphate and copper (II) pyrophosphate, and titanium oxide particles having a 50% cumulative particle diameter (D50) (based on light scattering intensity) of 5 to 200 nm. It can be produced by supporting at least one member selected from the water-insoluble copper phosphate (II) and pyrophosphate copper (II) on at least a part of the surface.
酸化チタンとしては、前述した酸化チタンを用いることができる。上記反応において、水性溶媒、水溶性第2銅塩、並びにリン酸塩及びピロリン酸塩から選ばれる少なくとも1種を配合してなる混合組成物中における酸化チタンの濃度は、3~30質量%とすることが望ましい。3質量%未満では、生産性が低く経済的でなく、30質量%以上では、混合組成物の粘度が高くなり、取り扱いが困難となるので好ましくない。 (Titanium oxide)
As the titanium oxide, the above-described titanium oxide can be used. In the above reaction, the concentration of titanium oxide in the mixed composition comprising at least one selected from an aqueous solvent, a water-soluble cupric salt, and phosphate and pyrophosphate is 3 to 30% by mass. It is desirable to do. If it is less than 3% by mass, the productivity is low and not economical, and if it is 30% by mass or more, the viscosity of the mixed composition becomes high and handling becomes difficult.
水溶性第2銅塩は、下記一般式(1)で表すことができる。
CuX2 (1)
式中、Xは1価の陰イオンを示し、Cl、Br、I等のハロゲンの陰イオン、CH3COO、NO3、(SO4)1/2等の酸の共役塩基であることが好ましく、Cl、CH3COO、NO3、(SO4)1/2であることがより好ましく、Cl又はCH3COOであることがさらに好ましい。
一般式(1)で表される水溶性第2銅塩は、1種類の水溶性第2銅塩(すなわち、Xが特定の1種類である水溶性第2銅塩の単体)であってもよい。また、例えばCu(NO3)2とCu(Cl)2の混合物のように、Xの異なる2種類以上の水溶性第2銅塩の混合物であってもよい。また、一般式(1)で表される水溶性第2銅塩は、CuX1X2(ただし、X1及びX2は互いに異なる一価の陰イオン)であってもよい。
この一般式(1)で表わされる水溶性第2銅塩は、無水物であっても水和物であってもよい。
水溶性第2銅塩の添加量は、酸化チタン粒子100質量部に対して、銅基準で0.1~50質量部とすることが好ましく、0.3~40質量部とすることがより好ましく、0.5~30質量部とすることがさらに好ましい。 (Water-soluble cupric salt)
The water-soluble cupric salt can be represented by the following general formula (1).
CuX 2 (1)
In the formula, X represents a monovalent anion, and is preferably a halogen anion such as Cl, Br or I, or a conjugate base of an acid such as CH 3 COO, NO 3 or (SO 4 ) 1/2. , Cl, CH 3 COO, NO 3 , (SO 4 ) 1/2 , more preferably Cl or CH 3 COO.
Even if the water-soluble cupric salt represented by the general formula (1) is one type of water-soluble cupric salt (that is, a single unit of water-soluble cupric salt in which X is one specific type). Good. Further, for example, a mixture of two or more water-soluble cupric salts having different Xs may be used, such as a mixture of Cu (NO 3 ) 2 and Cu (Cl) 2 . The water-soluble cupric salt represented by the general formula (1) may be CuX 1 X 2 (where X 1 and X 2 are monovalent anions different from each other).
The water-soluble cupric salt represented by the general formula (1) may be an anhydride or a hydrate.
The addition amount of the water-soluble cupric salt is preferably 0.1 to 50 parts by mass, more preferably 0.3 to 40 parts by mass with respect to 100 parts by mass of the titanium oxide particles. More preferably, the content is 0.5 to 30 parts by mass.
リン酸塩としては、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸カリウム、リン酸水素二カリウム等が挙げられ、ピロリン酸塩としては、ピロリン酸ナトリウム等が挙げられる。リン酸塩及びピロリン酸塩の少なくとも一種の合計濃度は、水性溶媒中で0.1~5mol/Lであることが好ましく、0.3~4mol/Lであることがより好ましく、0.5~3mol/Lであることがさらに好ましい。5mol/Lを越えると、リン系銅化合物の析出が不均一になるので好ましくない。 (Phosphate, pyrophosphate)
Examples of the phosphate include sodium phosphate, disodium hydrogen phosphate, potassium phosphate, and dipotassium hydrogen phosphate. Examples of the pyrophosphate include sodium pyrophosphate. The total concentration of at least one of phosphate and pyrophosphate is preferably 0.1 to 5 mol / L, more preferably 0.3 to 4 mol / L in an aqueous solvent, and 0.5 to More preferably, it is 3 mol / L. If it exceeds 5 mol / L, the precipitation of the phosphorus-based copper compound becomes non-uniform, which is not preferable.
水性溶媒としては、水溶性第2銅塩と、リン酸塩及びピロリン酸塩が溶解するものであれば、特に制限することなく使用できる。このような溶媒としては、水が好適に用いられるが、さらに水以外の極性溶媒を含んでもよい。極性溶媒としては、アルコール類、ケトン類、又はそれらの混合液が例示できる。アルコール類としては、メタノール、エタノール、ノルマルプロピルアルコール、イソプロピルアルコール等が挙げられる。ケトンとしては、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソプチルケトン等が挙げられる。水性溶媒は、前記例示したものを混合したものでもよい。 (Aqueous solvent)
The aqueous solvent can be used without particular limitation as long as it dissolves the water-soluble cupric salt, phosphate and pyrophosphate. As such a solvent, water is preferably used, but a polar solvent other than water may be further included. Examples of the polar solvent include alcohols, ketones, or a mixture thereof. Examples of alcohols include methanol, ethanol, normal propyl alcohol, and isopropyl alcohol. Examples of the ketone include acetone, methyl ethyl ketone, diethyl ketone, and methyl isoptyl ketone. The aqueous solvent may be a mixture of those exemplified above.
水性溶媒中で、水溶性第2銅塩と、リン酸塩及びピロリン酸塩から選ばれる少なくとも1種とを反応させ、水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を得るとともに、酸化チタン粒子の表面の少なくとも一部に、該水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を担持させるには、酸化チタン粒子と、水溶性第2銅塩と、リン酸塩及びピロリン酸塩の少なくとも1種と、水性溶媒を混合し、撹拌(分散)すればよい。また、水溶性第2銅塩と、リン酸塩及びピロリン酸塩から選ばれる少なくとも1種とを十分に反応させるには、加熱することが好適である。 (Mixing, stirring and heating)
In an aqueous solvent, a water-soluble cupric salt is reacted with at least one selected from phosphate and pyrophosphate, and selected from water-insoluble copper phosphate (II) and copper pyrophosphate (II). In order to obtain at least one kind and to support at least one kind selected from the water-insoluble copper phosphate (II) and copper pyrophosphate (II) on at least a part of the surface of the titanium oxide particles, the titanium oxide particles And a water-soluble cupric salt, at least one of phosphate and pyrophosphate, and an aqueous solvent may be mixed and stirred (dispersed). In addition, heating is suitable for sufficiently reacting the water-soluble cupric salt with at least one selected from phosphate and pyrophosphate.
リン酸塩又はピロリン酸塩は、水性溶媒に酸化チタン粒子及び/又は水溶性第2銅塩を混合する前、途中、及び後の3つのタイミングのうち少なくとも1つのタイミングで添加すればよいが、リン系銅化合物をより均一に酸化チタン粒子表面に担持させる観点から、水性溶媒に酸化チタン粒子及び水溶性第2銅塩を混合して十分に攪拌(分散)した後に添加するのが好ましい。 There is no particular limitation on the order of mixing and stirring (dispersing) the titanium oxide particles, the water-soluble cupric salt, at least one of phosphate and pyrophosphate, and the aqueous solvent. For example, first, titanium oxide particles may be mixed in an aqueous solvent and stirred (dispersed) as necessary, and then the water-soluble cupric salt may be dissolved and stirred (dispersed). Alternatively, the water-soluble cupric salt may be first dissolved in an aqueous solvent and stirred as necessary, and then the titanium oxide particles may be mixed and stirred (dispersed). In addition, a water-soluble cupric salt and titanium oxide may be simultaneously mixed in an aqueous solvent and stirred (dispersed).
The phosphate or pyrophosphate may be added at least one of the three timings before, during, and after mixing the titanium oxide particles and / or the water-soluble cupric salt in the aqueous solvent. From the viewpoint of more uniformly supporting the phosphorus-based copper compound on the surface of the titanium oxide particles, it is preferable to add the titanium oxide particles and the water-soluble cupric salt in an aqueous solvent and sufficiently agitate (disperse) the mixture.
加熱温度は10~90℃が好ましく、30~60℃がより好ましく、35~50℃がより好ましい。
温度が10℃以下になると、水溶性第2銅塩と、リン酸塩又はピロリン酸塩との反応速度や、リン酸銅又はピロリン酸銅の酸化チタン粒子への担持速度が遅くなり、合成効率の面から考慮すると好ましくない。90℃以上になると、熱供給が多くなるので、コストの面から考慮すると好ましくない。 The heating may be performed at at least one of the following three timings before, during and after mixing the titanium oxide particles and / or the water-soluble cupric salt with the aqueous solvent.
The heating temperature is preferably 10 to 90 ° C, more preferably 30 to 60 ° C, and more preferably 35 to 50 ° C.
When the temperature is 10 ° C. or lower, the reaction rate between the water-soluble cupric salt and phosphate or pyrophosphate, and the loading rate of copper phosphate or copper pyrophosphate on titanium oxide particles become slow, and the synthesis efficiency In view of the above, it is not preferable. When the temperature is 90 ° C. or higher, heat supply increases, which is not preferable from the viewpoint of cost.
上記のようにして得られた抗菌抗ウイルス性光触媒酸化チタンは、該酸化チタンを含有する分散液から固形分として分離することができる。この分離方法には特に限定はなく、ろ過、沈降分離、遠心分離、蒸発乾固等が挙げられるが、ろ過による分離が好適である。
分離した抗菌抗ウイルス性光触媒酸化チタンは、必要に応じて水洗、乾燥、粉砕、分級、再分散等が行われる。 (Separation of the obtained antibacterial antiviral photocatalytic titanium oxide)
The antibacterial antiviral photocatalytic titanium oxide obtained as described above can be separated as a solid content from the dispersion containing the titanium oxide. There are no particular limitations on this separation method, and examples include filtration, sedimentation separation, centrifugation, and evaporation to dryness. Separation by filtration is preferred.
The separated antibacterial antiviral photocatalytic titanium oxide is washed with water, dried, pulverized, classified, redispersed, etc. as necessary.
本発明の抗菌抗ウイルス性光触媒酸化チタンスラリー(以下、単に「スラリー」という場合もある)は、水性溶媒中に上述した抗菌抗ウイルス性光触媒酸化チタンを含有してなるものである。該スラリーのpHは、温度25℃において、7.0~9.0の中性領域であることが好ましい。 [Antimicrobial and antiviral photocatalytic titanium oxide slurry]
The antibacterial and antiviral photocatalytic titanium oxide slurry of the present invention (hereinafter sometimes simply referred to as “slurry”) contains the above-described antibacterial and antiviral photocatalytic titanium oxide in an aqueous solvent. The pH of the slurry is preferably in a neutral region of 7.0 to 9.0 at a temperature of 25 ° C.
抗菌抗ウイルス性光触媒酸化チタンは、上述した分離した抗菌抗ウイルス性光触媒酸化チタンを用いることができる。また、上述した抗菌抗ウイルス性光触媒酸化チタンの固形分を分離する前の分散液を用いることもできる。
抗菌抗ウイルス性光触媒酸化チタンの濃度は、スラリー中の3~50質量%とすることが好ましい。3質量%以上であると、相対的に水性溶媒の量が少なくなり、抗菌抗ウイルス性光触媒酸化チタンスラリーの使用時に水性溶媒を乾燥等によって除去する時間が短くてすみ、また、抗菌抗ウイルス性光触媒酸化チタンスラリーの容量を小さくすることができる。50質量%以下であると、分散性が良好になり、安定に保管できる。この観点から、スラリー中の抗菌抗ウイルス性光触媒酸化チタンの濃度は、より好ましくは4~40質量%であり、さらに好ましくは5~30質量%である。 (Antimicrobial antiviral photocatalytic titanium oxide)
As the antibacterial antiviral photocatalytic titanium oxide, the above-described separated antibacterial antiviral photocatalytic titanium oxide can be used. Moreover, the dispersion liquid before isolate | separating solid content of the antibacterial antiviral photocatalyst titanium oxide mentioned above can also be used.
The concentration of the antibacterial and antiviral photocatalytic titanium oxide is preferably 3 to 50% by mass in the slurry. When the amount is 3% by mass or more, the amount of the aqueous solvent is relatively small, and the time for removing the aqueous solvent by drying or the like is short when using the antibacterial and antiviral photocatalytic titanium oxide slurry. The capacity of the photocatalytic titanium oxide slurry can be reduced. When the content is 50% by mass or less, the dispersibility is improved and stable storage is possible. From this viewpoint, the concentration of the antibacterial and antiviral photocatalytic titanium oxide in the slurry is more preferably 4 to 40% by mass, and further preferably 5 to 30% by mass.
水性溶媒としては、上述した水性溶媒と同様のものを用いることができる。 (Aqueous solvent)
As an aqueous solvent, the thing similar to the aqueous solvent mentioned above can be used.
スラリー中における抗菌抗ウイルス性光触媒酸化チタンの50%累積粒子径(D50%)(光散乱強度基準)は、5~200nmであることが好ましい。5nm以上であると、凝集することなく良好に分散しやすくできる。200nm以下であると、沈降することなく良好に分散しやすくできる。この観点から、スラリー中における抗菌抗ウイルス性光触媒酸化チタンの50%累積粒子径(D50%)(光散乱強度基準)は、7~175nmであることがより好ましく、10~150nmであることがさらに好ましい。なお、50%累積粒子径(D50%)(光散乱強度基準)は、レーザードップラー式粒度分布計や動的光散乱式粒度分布計等によって測定することができる。 (Average particle size of antibacterial antiviral photocatalytic titanium oxide)
The 50% cumulative particle diameter (D50%) (based on light scattering intensity) of the antibacterial antiviral photocatalytic titanium oxide in the slurry is preferably 5 to 200 nm. When it is 5 nm or more, it can be easily dispersed well without aggregation. When it is 200 nm or less, it can be easily dispersed well without settling. From this viewpoint, the 50% cumulative particle diameter (D50%) (based on light scattering intensity) of the antibacterial and antiviral photocatalytic titanium oxide in the slurry is more preferably 7 to 175 nm, and further preferably 10 to 150 nm. preferable. The 50% cumulative particle size (D50%) (light scattering intensity standard) can be measured by a laser Doppler particle size distribution meter, a dynamic light scattering particle size distribution meter, or the like.
本発明の抗菌抗ウイルス性光触媒酸化チタンスラリーは、酸化チタン粒子表面にリン酸銅又はピロリン酸銅が担持されているため、中性領域及びアルカリ性のいずれの領域においても適用できる。しかし、アルカリ性のスラリーは、塗布対象物へ腐食を与える可能性が高いため、腐食の防止又は抑制を考慮すると、中性領域であることが好ましい。
pHは、7.0~9.0であることが好ましく、7.5~8.9であることがより好ましい。
抗菌抗ウイルス性光触媒酸化チタンスラリーのpHは、例えば、pHメーター(株式会社堀場製作所製 D-51)を用いて、25℃で測定する。 (PH of antibacterial antiviral photocatalytic titanium oxide slurry)
The antibacterial and antiviral photocatalytic titanium oxide slurry of the present invention can be applied in both neutral and alkaline regions since copper phosphate or copper pyrophosphate is supported on the surface of titanium oxide particles. However, since the alkaline slurry is highly likely to corrode the object to be coated, the neutral region is preferably a neutral region in consideration of prevention or suppression of corrosion.
The pH is preferably 7.0 to 9.0, and more preferably 7.5 to 8.9.
The pH of the antibacterial and antiviral photocatalytic titanium oxide slurry is measured at 25 ° C., for example, using a pH meter (D-51 manufactured by Horiba, Ltd.).
抗菌抗ウイルス性光触媒酸化チタンスラリーの製造方法には特に制限はないが、以下の2つの製造例が好適である。
(1)製造例1
水性溶媒中で、水溶性第2銅塩と、リン酸塩及びピロリン酸塩から選ばれる少なくとも1種とを反応させ、水不溶性のリン酸銅及びピロリン酸銅(II)から選ばれる少なくとも1種を得て、さらに水性媒体中で50%累積粒子径(D50)が5~200nmである酸化チタン粒子を分散しながら、該酸化チタン粒子の表面の少なくとも一部に、該水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を担持させて抗菌抗ウイルス性光触媒酸化チタン分散液を得た後、該分散液から抗菌抗ウイルス性光触媒酸化チタンを分離し、分離した抗菌抗ウイルス性光触媒酸化チタンを洗浄した後に水性溶媒中に再分散する。
分散液から抗菌抗ウイルス性光触媒酸化チタンを分離する手法としては、ろ過、沈降分離、遠心分離、蒸発乾固等が挙げられるが、ろ過による分離が好適である。
洗浄は水性溶媒を用いることが好ましく、中でも水を用いることがより好ましい。
分離した抗菌抗ウイルス性光触媒酸化チタンを洗浄した後は、すぐに再分散を行っても良いが、脱水する工程を経ることが好ましい。
再分散は、例えば、超音波分散、ボールミル分散、ビーズミル分散等により行うことができる。また、再分散では結晶構造を壊さないようにマイルドな分散方法が好ましく、前記分散手法の中では、超音波分散、ボールミル分散が好適である。 [Method for producing antibacterial antiviral photocatalytic titanium oxide slurry]
Although there is no restriction | limiting in particular in the manufacturing method of an antibacterial antiviral photocatalytic titanium oxide slurry, The following two manufacturing examples are suitable.
(1) Production Example 1
In an aqueous solvent, a water-soluble cupric salt is reacted with at least one selected from phosphate and pyrophosphate, and at least one selected from water-insoluble copper phosphate and copper (II) pyrophosphate. In addition, while dispersing titanium oxide particles having a 50% cumulative particle diameter (D50) of 5 to 200 nm in an aqueous medium, the water-insoluble copper phosphate is formed on at least a part of the surface of the titanium oxide particles. (II) and at least one selected from copper pyrophosphate (II) is supported to obtain an antibacterial and antiviral photocatalytic titanium oxide dispersion, and then the antibacterial and antiviral photocatalytic titanium oxide is separated from the dispersion and separated. The antibacterial antiviral photocatalytic titanium oxide is washed and then redispersed in an aqueous solvent.
Examples of the method for separating the antibacterial and antiviral photocatalytic titanium oxide from the dispersion include filtration, sedimentation separation, centrifugation, and evaporation to dryness. Separation by filtration is preferred.
For washing, an aqueous solvent is preferably used, and water is more preferably used.
After washing the separated antibacterial antiviral photocatalytic titanium oxide, it may be redispersed immediately, but it is preferable to go through a dehydration step.
The redispersion can be performed by, for example, ultrasonic dispersion, ball mill dispersion, bead mill dispersion, or the like. In addition, a mild dispersion method is preferable so as not to break the crystal structure in the redispersion, and among the dispersion methods, ultrasonic dispersion and ball mill dispersion are preferable.
水性溶媒中で、水溶性第2銅塩と、リン酸塩及びピロリン酸塩から選ばれる少なくとも1種とを反応させ、水不溶性のリン酸銅及びピロリン酸銅(II)から選ばれる少なくとも1種を得て、さらに水性媒体中で50%累積粒子径(D50)が5~200nmである酸化チタン粒子を分散しながら、該酸化チタン粒子の表面の少なくとも一部に、該水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を担持させて抗菌抗ウイルス性光触媒酸化チタン分散液を得た後、該抗菌抗ウイルス性光触媒酸化チタン分散液にさらに水性溶媒を補給しながら限外ろ過し、分離した抗菌抗ウイルス性光触媒酸化チタンを水性溶媒中に再分散する。
分散液に水性溶媒を補給しながら限外ろ過する工程を経ることにより、抗菌抗ウイルス性光触媒酸化チタンの分離と洗浄を同時に行うことができる。当該工程は、いわゆるUF(Ultra Filtration System)洗浄と呼ばれる工程であり、市販の限外ろ過膜洗浄装置を用いて行うことができる。
再分散は、製造例1と同様の手法で行うことができる。 (2) Production Example 2
In an aqueous solvent, a water-soluble cupric salt is reacted with at least one selected from phosphate and pyrophosphate, and at least one selected from water-insoluble copper phosphate and copper (II) pyrophosphate. In addition, while dispersing titanium oxide particles having a 50% cumulative particle diameter (D50) of 5 to 200 nm in an aqueous medium, the water-insoluble copper phosphate is formed on at least a part of the surface of the titanium oxide particles. After obtaining at least one selected from (II) and copper (II) pyrophosphate to obtain an antibacterial antiviral photocatalytic titanium oxide dispersion, the aqueous antibacterial antiviral photocatalytic titanium oxide dispersion is further supplemented with an aqueous solvent. While being ultrafiltered, the separated antibacterial antiviral photocatalytic titanium oxide is redispersed in an aqueous solvent.
Separation and washing of the antibacterial and antiviral photocatalytic titanium oxide can be performed simultaneously by passing through an ultrafiltration step while replenishing the dispersion with an aqueous solvent. This step is a so-called UF (Ultra Filtration System) cleaning, and can be performed using a commercially available ultrafiltration membrane cleaning device.
The redispersion can be performed by the same method as in Production Example 1.
本発明の抗菌抗ウイルス性光触媒酸化チタン含有コート剤は、本発明の抗菌抗ウイルス性光触媒酸化チタンスラリーに、バインダー成分を含有してなるものである。
バインダー成分としては、10~120℃の環境下で硬化するものが好ましく、無機系バインダー又は有機系バインダーのいずれを用いてもよい。光触媒物質によるバインダーの分解を考慮すると、無機系バインダーが好ましい。バインダーの種類は特に限定されず、例えば、シリカバインダー、ジルコニアバインダー、アルミナバインダー、チタニアバインダー、等が挙げられ、それらを併用しても良い。なかでも、シリカバインダー又はジルコニアバインダーが好ましい。 [Antimicrobial antiviral photocatalytic titanium oxide-containing coating agent, antimicrobial antiviral coating film, and antimicrobial antiviral article]
The antibacterial and antiviral photocatalytic titanium oxide-containing coating agent of the present invention comprises the antibacterial and antiviral photocatalytic titanium oxide slurry of the present invention containing a binder component.
The binder component is preferably one that cures in an environment of 10 to 120 ° C., and either an inorganic binder or an organic binder may be used. In consideration of the decomposition of the binder by the photocatalytic substance, an inorganic binder is preferable. The kind of binder is not specifically limited, For example, a silica binder, a zirconia binder, an alumina binder, a titania binder etc. are mentioned, You may use them together. Of these, a silica binder or a zirconia binder is preferable.
膜厚は、0.05μm以下になると、抗菌抗ウイルス性光触媒酸化チタンの量が少なく、材料の抗菌抗ウイルス性能を十分に発揮できない。膜厚は、1μm以上になると、抗菌抗ウイルス性光触媒酸化チタンの量が多く、材料の抗菌抗ウイルス性能を十分に発揮できるが、塗膜の硬度、耐久性が低下する。 The curing temperature after coating depends on the binder component used, but is preferably about 20 to 80 ° C. The thickness of the antibacterial and antiviral coating film of the present invention obtained by curing is preferably 0.05 to 1 μm, and more preferably 0.1 to 0.5 μm.
When the film thickness is 0.05 μm or less, the amount of the antibacterial and antiviral photocatalytic titanium oxide is small, and the antibacterial and antiviral performance of the material cannot be sufficiently exhibited. When the film thickness is 1 μm or more, the amount of antibacterial and antiviral photocatalytic titanium oxide is large, and the antibacterial and antiviral performance of the material can be sufficiently exhibited, but the hardness and durability of the coating film are lowered.
なお、諸物性は以下に示す方法に従って求めた。 Hereinafter, the present invention will be specifically described by way of examples.
Various physical properties were determined according to the following methods.
大塚電子株式会社製のゼータ電位・粒径測定システム(機種名「ELSZ-2」)を用い、レーザードップラー法によりD50を測定した。その際、試料(酸化チタンゾル)は、固形分濃度を0.1質量%にイオン交換水で調整したものを用い、超音波振動による撹拌を行うことなく、ハンドシェイクのみを行った後に、当該装置を用いて平均粒子径(散乱強度分布における50%累積粒子径:D50)の測定を行った。 (1) Measurement of average particle diameter of antibacterial antiviral photocatalytic titanium oxide in slurry (50% cumulative particle diameter in scattering intensity distribution: D50) (based on light scattering intensity) Measurement of zeta potential and particle diameter manufactured by Otsuka Electronics Co., Ltd. Using the system (model name “ELSZ-2”), D50 was measured by the laser Doppler method. At that time, the sample (titanium oxide sol) was prepared by adjusting the solid content concentration to 0.1% by mass with ion-exchanged water, and after performing handshake without stirring by ultrasonic vibration, Was used to measure the average particle size (50% cumulative particle size in the scattering intensity distribution: D50).
島津製作所製のICP(誘導結合プラズマ)発光分光分析装置(製品名:ICPS-7500)を用いて、酸化チタン粒子100質量部に対する、リン酸銅及びピロリン酸銅の担持量(銅基準)を測定した。 (2) Amount of copper phosphate or copper pyrophosphate Using an ICP (inductively coupled plasma) emission spectrometer (product name: ICPS-7500) manufactured by Shimadzu Corporation, copper phosphate and 100 parts by mass of titanium oxide particles The amount of copper pyrophosphate supported (copper standard) was measured.
酸化チタン含有スラリーの沈降物の有無を目視で評価した。 (3) Presence or absence of sediment The presence or absence of sediment of the titanium oxide-containing slurry was visually evaluated.
ウイルス不活化能は、バクテリオファージを用いたモデル実験により以下の方法で確認した。なお、バクテリオファージに対する不活化能をウイルス不活化能のモデルとして利用する方法は、例えばAppl.Microbiol Biotechnol.,79,pp.127-133,2008に記載されており、信頼性のある結果が得られることが知られている。
深型シャーレ内にろ紙を敷き、少量の滅菌水を加えた。ろ紙の上に厚さ5mm程度のガラス製の台を置き、その上に実施例1~7の抗菌抗ウイルス性光触媒酸化チタン、及び比較例1~7の試料のそれぞれを、固形分が2g/m2となるように塗布したガラス板(50mm×50mm×1mm)を置いた。この上にあらかじめ馴化しておき濃度も明らかとなっているQBファージ(NBRC20012)懸濁液を100μL滴下し、試料表面とファージを接触させるためにPET(ポリエチレンテレフタレート)製のOHPフィルムを被せた。この深型シャーレにガラス板で蓋をしたものを測定用セットとした。同様の測定用セットを複数個用意した。
また、光源として15W白色蛍光灯(パナソニック株式会社製、フルホワイト蛍光灯、FL15N)に紫外線カットフィルター(日東樹脂工業株式会社製、N-169、380nm以下の光をカット)を取り付けたものを使用し、照度が800ルクスになる位置に複数個の測定用セットを静置した(照度計はTOPCON株式会社製のIM-5を使用)。1時間経過後にガラス板上のサンプルのファージ濃度測定を行った。
なお、実施例1については、前記照射条件で1時間及び2時間経過後のファージ濃度測定を行うとともに、暗所で1時間及び2時間経過後のファージ濃度測定を行った。結果を図1に示す。 (4) Evaluation of virus inactivation ability: measurement of LOG (N / N 0 ) Virus inactivation ability was confirmed by the following method by a model experiment using bacteriophage. The method of using the inactivation ability against bacteriophage as a model of virus inactivation ability is described in, for example, Appl. Microbiol Biotechnol., 79, pp. 127-133, 2008, and reliable results are obtained. It is known that
A filter paper was laid in the deep petri dish, and a small amount of sterilized water was added. A glass base having a thickness of about 5 mm is placed on the filter paper, and the antibacterial and antiviral photocatalytic titanium oxides of Examples 1 to 7 and the samples of Comparative Examples 1 to 7 are each solid content of 2 g / A glass plate (50 mm × 50 mm × 1 mm) coated so as to be m 2 was placed. On top of this, 100 μL of a suspension of QB phage (NBRC20012), which had been acclimated in advance and whose concentration was clear, was dropped, and an OHP film made of PET (polyethylene terephthalate) was covered to bring the sample surface into contact with the phage. This deep petri dish covered with a glass plate was used as a measurement set. A plurality of similar measurement sets were prepared.
In addition, a 15W white fluorescent lamp (manufactured by Panasonic Corporation, full white fluorescent lamp, FL15N) attached to a UV light filter (manufactured by Nitto Jushi Kogyo Co., Ltd., cuts light of N-169, 380 nm or less) is used as the light source. Then, a plurality of measurement sets were placed at a position where the illuminance reached 800 lux (IM-5 manufactured by TOPCON Co., Ltd. was used as the illuminometer). After 1 hour, the phage concentration of the sample on the glass plate was measured.
In addition, about Example 1, while performing the phage density | concentration after 1 hour and 2 hours progress on the said irradiation conditions, the phage density | concentration measurement after 1 hour and 2 hours progressed in the dark place. The results are shown in FIG.
初期ファージ濃度N0と、所定時間後のファージ濃度Nとから、ファージ相対濃度(LOG(N/N0))を求めた。
ウイルス不活化能の評価結果を表1に示す。 The phage concentration was measured by the following method. The sample on the glass plate was infiltrated into 10 mL of a recovery liquid (SM Buffer) and shaken for 10 minutes with a shaker. The phage recovery solution was appropriately diluted, mixed with a separately cultured culture solution of E. coli (NBRC13965) (OD 600 > 1.0, 1 × 10 8 CFU / mL), and then stirred at 37 ° C. The phages were infected with E. coli by standing in a thermostatic chamber for 10 minutes. This solution was spread on an agar medium and cultured at 37 ° C. for 15 hours, and the number of phage plaques was visually measured. The phage concentration N was determined by multiplying the number of plaques obtained by the dilution factor of the phage recovery solution.
The relative phage concentration (LOG (N / N 0 )) was determined from the initial phage concentration N 0 and the phage concentration N after a predetermined time.
The evaluation results of virus inactivation ability are shown in Table 1.
スラリーのpHの測定は、pHメーター(株式会社堀場製作所製 D-51)を用いて、25℃で測定した。 (5) Measurement of pH of slurry The pH of the slurry was measured at 25 ° C using a pH meter (D-51 manufactured by Horiba, Ltd.).
アナターゼ型酸化チタン(50%累積粒子径(D50%)(光散乱強度基準):80nm、昭和タイタニウム株式会社製)100gを蒸留水1000mLに撹拌しながら分散させて、酸化チタンスラリーを得た。酸化チタン100質量部に対して、銅基準で5質量部(仕込み量)の塩化銅(II)二水和物13.3gを蒸留水10mLで溶解して、塩化銅(II)水溶液を得た。該塩化銅(II)水溶液10mLを撹拌しながら、酸化チタンスラリーに投入し、スラリーを40℃に加熱した。リン酸ナトリウム8.5gを蒸留水50mLで溶解して、リン酸ナトリウム水溶液を得た。続いて、50mLのリン酸ナトリウム水溶液を40℃に加熱したスラリーに投入し、撹拌しながら1h反応を行った。その後、混合液を5Cのろ紙でろ過して、300mLの蒸留水で水洗し脱水し、ケーキを得た。該ケーキを80℃で4h乾燥し、メノウ乳鉢にて粉砕し、リン酸銅(II)を表面担持した酸化チタンを得た。
また、前記ケーキを1000mLの蒸留水に入れて、撹拌しながら超音波分散1hを行うことにより、リン酸銅(II)を表面担持した酸化チタンスラリーを得た。 (Example 1)
100 g of anatase-type titanium oxide (50% cumulative particle size (D50%) (light scattering intensity standard): 80 nm, Showa Titanium Co., Ltd.) was dispersed in 1000 mL of distilled water while stirring to obtain a titanium oxide slurry. With respect to 100 parts by mass of titanium oxide, 13.3 g of copper chloride (II) dihydrate having 5 parts by mass (preparation amount) based on copper was dissolved in 10 mL of distilled water to obtain an aqueous solution of copper chloride (II). . While stirring, 10 mL of the aqueous copper (II) chloride solution was added to the titanium oxide slurry, and the slurry was heated to 40 ° C. 8.5 g of sodium phosphate was dissolved in 50 mL of distilled water to obtain an aqueous sodium phosphate solution. Subsequently, 50 mL of an aqueous sodium phosphate solution was added to the slurry heated to 40 ° C., and the reaction was performed for 1 h while stirring. Thereafter, the mixed solution was filtered with 5C filter paper, washed with 300 mL of distilled water and dehydrated to obtain a cake. The cake was dried at 80 ° C. for 4 hours and pulverized in an agate mortar to obtain titanium oxide carrying copper (II) phosphate on the surface.
Moreover, the titanium oxide slurry which carry | supported the copper phosphate (II) on the surface was obtained by putting the said cake in 1000 mL distilled water, and performing ultrasonic dispersion | distribution 1h, stirring.
リン酸ナトリウムを、ピロリン酸ナトリウムに変更した以外は、実施例1と同様にして、ピロリン酸銅(II)を表面担持した酸化チタンと、ピロリン酸銅(II)を表面担持した酸化チタンスラリーを得た。 (Example 2)
Except that the sodium phosphate was changed to sodium pyrophosphate, a titanium oxide having a surface supported with copper (II) pyrophosphate and a titanium oxide slurry having a surface supported with copper (II) pyrophosphate were prepared in the same manner as in Example 1. Obtained.
アナターゼ型酸化チタン(50%累積粒子径(D50%)(光散乱強度基準):80nm、昭和タイタニウム株式会社製)を、ブルッカイト型酸化チタン(50%累積粒子径(D50%)(光散乱強度基準):50nm、昭和タイタニウム株式会社製)に変更した以外は、実施例1と同様にして、リン酸銅(II)を表面担持した酸化チタンと、リン酸銅(II)を表面担持した酸化チタンスラリーを得た。 (Example 3)
Anatase-type titanium oxide (50% cumulative particle diameter (D50%) (light scattering intensity standard): 80 nm, Showa Titanium Co., Ltd.) and brookite-type titanium oxide (50% cumulative particle diameter (D50%) (light scattering intensity standard) ): 50 nm, manufactured by Showa Titanium Co., Ltd.), except that the titanium oxide carrying the surface of the copper phosphate (II) and the titanium oxide carrying the surface of the copper phosphate (II) are the same as in Example 1. A slurry was obtained.
アナターゼ型酸化チタン(50%累積粒子径(D50%)(光散乱強度基準):80nm、昭和タイタニウム株式会社製)を、ルチル型酸化チタン(50%累積粒子径(D50%)(光散乱強度基準):190nm、昭和タイタニウム株式会社製)に変更した以外は、実施例1と同様にして、リン酸銅(II)を表面担持した酸化チタンと、リン酸銅(II)を表面担持した酸化チタンスラリーを得た。 Example 4
Anatase type titanium oxide (50% cumulative particle size (D50%) (light scattering intensity standard): 80 nm, Showa Titanium Co., Ltd.), rutile type titanium oxide (50% cumulative particle size (D50%) (light scattering intensity standard) ): Titanium oxide surface-supported with copper (II) phosphate and titanium oxide surface-supported with copper (II) phosphate, in the same manner as in Example 1, except that it was changed to 190 nm, manufactured by Showa Titanium Co., Ltd. A slurry was obtained.
塩化銅(II)水和物の添加量を、酸化チタン100質量部に対して、銅基準で10質量部(仕込み量)に変更した以外は、実施例1と同様にして、リン酸銅(II)を表面担持した酸化チタンと、リン酸銅(II)を表面担持した酸化チタンスラリーを得た。 (Example 5)
In the same manner as in Example 1 except that the addition amount of copper (II) chloride hydrate was changed to 10 parts by mass (preparation amount) with respect to 100 parts by mass of titanium oxide, copper phosphate ( A titanium oxide slurry carrying the surface of II) and a titanium oxide slurry carrying the surface of copper (II) phosphate was obtained.
塩化銅(II)二水和物を硫酸銅(II)五水和物に変更した以外は、実施例1と同様にして、リン酸銅(II)を表面担持した酸化チタンと、リン酸銅(II)を表面担持した酸化チタンスラリーを得た。 (Example 6)
Except for changing the copper (II) chloride dihydrate to copper sulfate (II) pentahydrate, in the same manner as in Example 1, titanium oxide supporting the surface of copper (II) phosphate and copper phosphate A titanium oxide slurry carrying the surface of (II) was obtained.
実施例2に1h反応後の混合液を、旭化成工業株式会社製の限外ろ過(UF)モジュールを用いて、蒸留水を補給しながら、混合液の電導度が300~500μS/cmの範囲になるまで限外ろ過を行った。その後、混合液を撹拌しながら超音波分散1hを行うことにより、ピロリン酸銅(II)を表面担持した酸化チタンスラリーを得た。 (Example 7)
In Example 2, using the ultrafiltration (UF) module manufactured by Asahi Kasei Kogyo Co., Ltd., the mixed solution after the reaction for 1 hour was supplied with distilled water, and the conductivity of the mixed solution was in the range of 300 to 500 μS / cm. Ultrafiltration was performed until Thereafter, ultrasonic dispersion 1h was carried out while stirring the mixed solution to obtain a titanium oxide slurry carrying copper (II) pyrophosphate on the surface.
塩化銅(II)二水和物を塩化鉄(III)六水和物(関東化学株式会社製)に代えること以外は、実施例1と同様にして、リン酸鉄(III)を表面担持した酸化チタンと、リン酸鉄(III)を表面担持した酸化チタンスラリーを得た。 (Comparative Example 1)
Iron (III) phosphate was supported on the surface in the same manner as in Example 1 except that copper (II) chloride dihydrate was replaced with iron (III) chloride hexahydrate (manufactured by Kanto Chemical Co., Inc.). A titanium oxide slurry carrying titanium oxide and iron (III) phosphate on the surface was obtained.
塩化銅(II)二水和物を加えないこと以外は、実施例1と同様にして、リン酸塩基を表面担持した酸化チタンと、リン酸塩基を表面担持した酸化チタンスラリーを得た。 (Comparative Example 2)
Except that copper (II) chloride dihydrate was not added, in the same manner as in Example 1, titanium oxide carrying a phosphate group on its surface and a titanium oxide slurry carrying a phosphate group on its surface were obtained.
塩化銅(II)水和物の添加量を、酸化チタン100質量部に対して、銅基準で0.05質量部(仕込み量)に変更した以外は、実施例1と同様にして、リン酸銅(II)を表面担持した酸化チタンと、リン酸銅(II)を表面担持した酸化チタンスラリーを得た。 (Comparative Example 3)
Phosphoric acid in the same manner as in Example 1 except that the addition amount of copper (II) chloride hydrate was changed to 0.05 parts by mass (preparation amount) with respect to 100 parts by mass of titanium oxide. Titanium oxide carrying the surface of copper (II) and titanium oxide slurry carrying the surface of copper (II) phosphate were obtained.
塩化銅(II)水和物の添加量を、酸化チタン100質量部に対して、銅基準で60質量部(仕込み量)に変更した以外は、実施例1と同様にして、リン酸銅(II)を表面担持した酸化チタンと、リン酸銅(II)を表面担持した酸化チタンスラリーを得た。 (Comparative Example 4)
In the same manner as in Example 1 except that the addition amount of copper (II) chloride hydrate was changed to 60 parts by mass (preparation amount) with respect to 100 parts by mass of titanium oxide, copper phosphate ( A titanium oxide slurry carrying the surface of II) and a titanium oxide slurry carrying the surface of copper (II) phosphate was obtained.
リン酸ナトリウムを、水酸化ナトリウムに変更した以外は、実施例1と同様にして、水酸化銅(II)を表面担持した酸化チタンと、水酸化銅(II)を表面担持した酸化チタンスラリーを得た。 (Comparative Example 5)
Except for changing sodium phosphate to sodium hydroxide, a titanium oxide having a surface supported copper hydroxide (II) and a titanium oxide slurry having a surface supported copper (II) hydroxide were prepared in the same manner as in Example 1. Obtained.
比較例5で得られた水酸化銅(II)を表面担持した酸化チタンを加水分解することで、酸化銅(II)を表面担持した酸化チタンを得た。また、該酸化チタンを1000mLの蒸留水に入れて、撹拌しながら超音波分散1hを行い、酸化銅(II)を表面担持した酸化チタンスラリーを得た。 (Comparative Example 6)
The titanium oxide carrying the surface of copper hydroxide (II) obtained in Comparative Example 5 was hydrolyzed to obtain a titanium oxide carrying the surface of copper (II) oxide. Moreover, this titanium oxide was put into 1000 mL distilled water, and ultrasonic dispersion 1h was performed while stirring to obtain a titanium oxide slurry carrying copper (II) oxide on the surface.
塩化銅(II)二水和物を硫酸銅(II)五水和物に変更した以外は、比較例6と同様にして、酸化銅(II)を表面担持した酸化チタンと、酸化銅(II)を表面担持した酸化チタンスラリーを得た。 (Comparative Example 7)
Except for changing the copper (II) chloride dihydrate to copper (II) sulfate pentahydrate, in the same manner as in Comparative Example 6, titanium oxide supporting the surface of copper oxide (II) and copper oxide (II) ) Surface-supported titanium oxide slurry was obtained.
比較例1及び2のものは、酸化チタン粒子の表面をリン酸銅又はピロリン酸銅で担持してなるものではないことから、抗ウイルス性に劣るものであった。
比較例3のものは、酸化チタン粒子の表面をリン酸銅又はピロリン酸銅で担持してなるものであるが、担持量が少なくいため、抗ウイルス性に劣るものであった。
比較例4のものは、酸化チタン粒子の表面をリン酸銅又はピロリン酸銅で担持してなるものであるが、担持量が多すぎるため、分散性が劣り沈降を生じるとともに、抗ウイルス性にも劣るものであった。 As shown in Table 1, the antibacterial and antiviral photocatalytic titanium oxides of Examples 1 to 7 have good antiviral properties, and the 50% cumulative particle size of the antibacterial and antiviral photocatalytic titanium oxide in the slurry is small, so that sedimentation occurs. There was no product. In addition, the antibacterial and antiviral photocatalytic titanium oxides of Examples 1 to 7 all have L * a * b * color values of L * values of 85 or more, and are excellent in design without being blackish. It was. L * a * b * measurement of the color values of L * values were performed using Konica Minolta Optics Co., Ltd. of the spectral colorimeter "CM-3700d". Thus, the antibacterial antiviral photocatalytic titanium oxides of Examples 1 to 7 use copper phosphate or copper pyrophosphate as the copper compound even though it carries the copper compound that hinders dispersibility. Therefore, it has a very remarkable effect that the dispersibility is good and the antiviral property is also good.
Comparative Examples 1 and 2 were inferior in antiviral properties because the surfaces of the titanium oxide particles were not supported by copper phosphate or copper pyrophosphate.
In Comparative Example 3, the surface of the titanium oxide particles was supported by copper phosphate or copper pyrophosphate, but the amount supported was inferior, and thus the antiviral property was inferior.
In Comparative Example 4, the surface of the titanium oxide particles is supported by copper phosphate or copper pyrophosphate. However, since the supported amount is too large, the dispersibility is inferior and sedimentation occurs, and antiviral properties are achieved. Was inferior.
Claims (11)
- 酸化チタン粒子の表面の少なくとも一部に、酸化チタン粒子100質量部に対して、リン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を、銅基準で0.1~50質量部担持してなり、50%累積粒子径(D50)(光散乱強度基準)が5~200nmである抗菌抗ウイルス性光触媒酸化チタン。 At least one selected from copper (II) phosphate and copper (II) pyrophosphate with respect to 100 parts by mass of the titanium oxide particles is formed on at least a part of the surface of the titanium oxide particles in an amount of 0.1 to 50 on a copper basis. Antibacterial antiviral photocatalytic titanium oxide having a 50% cumulative particle diameter (D50) (based on light scattering intensity) of 5 to 200 nm, which is supported by mass parts.
- 酸化チタン粒子が、アナターゼ型酸化チタン、ブルッカイト型酸化チタン、ルチル型酸化チタン及びこれらの2種以上の混合結晶の酸化チタンから選ばれる少なくとも1種である、請求項1に記載の抗菌抗ウイルス性光触媒酸化チタン。 The antibacterial and antiviral properties according to claim 1, wherein the titanium oxide particles are at least one selected from anatase type titanium oxide, brookite type titanium oxide, rutile type titanium oxide and titanium oxide of a mixed crystal of two or more thereof. Photocatalytic titanium oxide.
- 水性溶媒中で、水溶性第2銅塩と、リン酸塩及びピロリン酸塩から選ばれる少なくとも1種とを反応させ、水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を得るとともに、50%累積粒子径(D50)が5~200nmである酸化チタン粒子の表面の少なくとも一部に、該水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を担持させる、請求項1又は2に記載の抗菌抗ウイルス性光触媒酸化チタンの製造方法。 In an aqueous solvent, a water-soluble cupric salt is reacted with at least one selected from phosphate and pyrophosphate, and selected from water-insoluble copper phosphate (II) and copper pyrophosphate (II). At least one type is obtained, and at least part of the surface of the titanium oxide particles having a 50% cumulative particle diameter (D50) of 5 to 200 nm is formed on the water-insoluble copper phosphate (II) and copper pyrophosphate (II). The method for producing antibacterial and antiviral photocatalytic titanium oxide according to claim 1 or 2, wherein at least one selected from them is supported.
- 水溶性第2銅塩が、塩化銅(II)、硫酸銅(II)、硝酸銅(II)及び酢酸銅(II)から選ばれる少なくとも1種である、請求項3に記載の抗菌抗ウイルス性光触媒酸化チタンの製造方法。 The antibacterial and antiviral property according to claim 3, wherein the water-soluble cupric salt is at least one selected from copper (II) chloride, copper (II) sulfate, copper (II) nitrate and copper (II) acetate. A method for producing photocatalytic titanium oxide.
- 水性溶媒中に、請求項1又は2に記載の抗菌抗ウイルス性光触媒酸化チタンを分散してなり、pHが7.0~9.0である、抗菌抗ウイルス性光触媒酸化チタンスラリー。 3. An antibacterial antiviral photocatalytic titanium oxide slurry having the pH of 7.0 to 9.0, wherein the antibacterial antiviral photocatalytic titanium oxide according to claim 1 or 2 is dispersed in an aqueous solvent.
- 水性溶媒中で、水溶性第2銅塩と、リン酸塩及びピロリン酸塩から選ばれる少なくとも1種とを反応させ、水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を得て、さらに水性媒体中で50%累積粒子径(D50)(光散乱強度基準)が5~200nmである酸化チタン粒子を分散しながら、該酸化チタン粒子の表面の少なくとも一部に、該水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を担持させて抗菌抗ウイルス性光触媒酸化チタン分散液を得た後、該分散液から抗菌抗ウイルス性光触媒酸化チタンを分離し、分離した抗菌抗ウイルス性光触媒酸化チタンを水性溶媒中に再分散する、抗菌抗ウイルス性光触媒酸化チタンスラリーの製造方法。 In an aqueous solvent, a water-soluble cupric salt is reacted with at least one selected from phosphate and pyrophosphate, and selected from water-insoluble copper phosphate (II) and copper pyrophosphate (II). While obtaining at least one kind and further dispersing titanium oxide particles having a 50% cumulative particle diameter (D50) (based on light scattering intensity) of 5 to 200 nm in an aqueous medium, at least part of the surface of the titanium oxide particles An antibacterial and antiviral photocatalytic titanium oxide dispersion is obtained by supporting at least one selected from the water-insoluble copper phosphate (II) and copper pyrophosphate (II). A method for producing an antibacterial and antiviral photocatalytic titanium oxide slurry, wherein the photocatalytic titanium oxide is separated and the separated antibacterial and antiviral photocatalytic titanium oxide is redispersed in an aqueous solvent.
- 水性溶媒中で、水溶性第2銅塩と、リン酸塩及びピロリン酸塩から選ばれる少なくとも1種とを反応させ、水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を得て、さらに水性媒体中で50%累積粒子径(D50)(光散乱強度基準)が5~200nmである酸化チタン粒子を分散しながら、該酸化チタン粒子の表面の少なくとも一部に、該水不溶性のリン酸銅(II)及びピロリン酸銅(II)から選ばれる少なくとも1種を担持させて抗菌抗ウイルス性光触媒酸化チタン分散液を得た後、該分散液にさらに水性溶媒を補給しながら限外ろ過し、分離した抗菌抗ウイルス性光触媒酸化チタンを水性溶媒中に再分散する、抗菌抗ウイルス性光触媒酸化チタンスラリーの製造方法。 In an aqueous solvent, a water-soluble cupric salt is reacted with at least one selected from phosphate and pyrophosphate, and selected from water-insoluble copper phosphate (II) and copper pyrophosphate (II). While obtaining at least one kind and further dispersing titanium oxide particles having a 50% cumulative particle diameter (D50) (based on light scattering intensity) of 5 to 200 nm in an aqueous medium, at least part of the surface of the titanium oxide particles To obtain an antibacterial antiviral photocatalytic titanium oxide dispersion by supporting at least one selected from the water-insoluble copper phosphate (II) and the copper pyrophosphate (II), and then adding an aqueous solvent to the dispersion. The antibacterial antiviral photocatalytic titanium oxide slurry is re-dispersed in an aqueous solvent by ultrafiltration while replenishing, and the separated antibacterial antiviral photocatalytic titanium oxide slurry is produced.
- 前記再分散を、超音波分散、ボールミル分散及びビーズミル分散から選ばれる少なくとも1種の分散手段により行う、請求項6又は7に記載の抗菌抗ウイルス性光触媒酸化チタンスラリーの製造方法。 The method for producing an antibacterial and antiviral photocatalytic titanium oxide slurry according to claim 6 or 7, wherein the redispersion is performed by at least one dispersion means selected from ultrasonic dispersion, ball mill dispersion, and bead mill dispersion.
- 請求項5に記載の抗菌抗ウイルス性光触媒酸化チタンスラリーと、バインダー成分とを混合してなる抗菌抗ウイルス性コート剤。 An antibacterial and antiviral coating agent obtained by mixing the antibacterial and antiviral photocatalytic titanium oxide slurry according to claim 5 and a binder component.
- 請求項9に記載の抗菌抗ウイルス性コート剤を基材に塗布してなる抗菌抗ウイルス性塗膜。 An antibacterial and antiviral coating film obtained by applying the antibacterial and antiviral coating agent according to claim 9 to a substrate.
- 請求項10に記載の抗菌抗ウイルス性塗膜を最表面の少なくとも一部に有する抗菌抗ウイルス性物品。 An antibacterial and antiviral article having the antibacterial and antiviral coating film according to claim 10 on at least a part of the outermost surface.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157012862A KR20150074071A (en) | 2013-03-15 | 2014-02-14 | Antibacterial, antiviral photocatalytic titanium oxide, and antibacterial, antiviral photocatalytic titanium oxide slurry dispersed in a neutral area, as well as method for manufacturing same |
CN201480010916.3A CN105008049A (en) | 2013-03-15 | 2014-02-14 | Antibacterial, antiviral photocatalytic titanium oxide, and antibacterial, antiviral photocatalytic titanium oxide slurry dispersed in a neutral area, as well as method for manufacturing same |
JP2015505332A JPWO2014141812A1 (en) | 2013-03-15 | 2014-02-14 | Antibacterial antiviral photocatalytic titanium oxide, antibacterial antiviral photocatalytic titanium oxide slurry dispersed in neutral region, and production method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013053641 | 2013-03-15 | ||
JP2013-053641 | 2013-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014141812A1 true WO2014141812A1 (en) | 2014-09-18 |
Family
ID=51536487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053556 WO2014141812A1 (en) | 2013-03-15 | 2014-02-14 | Antibacterial, antiviral photocatalytic titanium oxide, and antibacterial, antiviral photocatalytic titanium oxide slurry dispersed in a neutral area, as well as method for manufacturing same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2014141812A1 (en) |
KR (1) | KR20150074071A (en) |
CN (1) | CN105008049A (en) |
TW (1) | TWI592453B (en) |
WO (1) | WO2014141812A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016120483A (en) * | 2014-12-25 | 2016-07-07 | 太陽工業株式会社 | Titanium oxide-containing composition, method for producing titanium oxide-containing composition, and photocatalyst structure |
JPWO2014112345A1 (en) * | 2013-01-16 | 2017-01-19 | 日本板硝子株式会社 | Base material with antiviral thin film |
KR20170040170A (en) * | 2017-04-04 | 2017-04-12 | 정지희 | Visible-light responsive photocatalytic coating composition and preparation methods thereof |
JPWO2017150063A1 (en) * | 2016-03-01 | 2019-01-24 | 東亞合成株式会社 | Antiviral agent, coating composition, resin composition and antiviral product |
US20190099510A1 (en) * | 2017-09-29 | 2019-04-04 | Shin-Etsu Chemical Co., Ltd. | Deodorizing/antibacterial/antifungal agent, method of preparation thereof, and member having deodorizing/antibacterial/antifungal agent on surface |
JP2022546316A (en) * | 2019-08-29 | 2022-11-04 | クロー バイオテック ホールディングス, エルエルシー | antipathogen composition |
IT202100017894A1 (en) * | 2021-07-07 | 2023-01-07 | L & G Holding S R L | Antibacterial and antiviral treatment for coins, banknotes and tokens |
CN116023853A (en) * | 2023-01-20 | 2023-04-28 | 广东卡百利新材料科技有限公司 | Antiviral artistic coating and preparation process thereof |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101717907B1 (en) | 2016-03-29 | 2017-04-04 | 부성폴리콤 주식회사 | Near-infrared absorption white material and its manufacturing method |
US20210023252A1 (en) * | 2018-04-12 | 2021-01-28 | Shin-Etsu Chemical Co., Ltd. | Interior material having deodorant, antimicrobial surface layer and production method thereof |
KR102080097B1 (en) * | 2019-09-06 | 2020-04-16 | 김근희 | Photocatalytic filter, and method for preparing the same |
CN114829007B (en) * | 2019-12-23 | 2024-03-12 | Dic株式会社 | Self-cleaning agent |
KR102348235B1 (en) * | 2020-06-04 | 2022-01-07 | 강원대학교산학협력단 | Method for pruducing photocatalytic material using paper sludge and photocatalytic material produced by the same |
CN112121234A (en) * | 2020-08-21 | 2020-12-25 | 中国科学院金属研究所 | Controllable and durable anti-infection orthopedic implant and preparation method thereof |
CN112080940B (en) * | 2020-08-21 | 2022-01-14 | 中国科学院金属研究所 | Fabric with lasting antibacterial and antiviral properties and preparation method thereof |
CN114271292B (en) * | 2020-09-27 | 2023-09-01 | 苏州森锋医疗器械有限公司 | Disinfectant and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011056375A (en) * | 2009-09-09 | 2011-03-24 | Panasonic Corp | Active substance generation device |
JP2012096188A (en) * | 2010-11-04 | 2012-05-24 | Toto Ltd | Photocatalyst-coated body and photocatalyst coating liquid |
JP2012210557A (en) * | 2011-03-30 | 2012-11-01 | Panasonic Corp | Water-repellent photocatalytic composition and water-repellent photocatalytic coating film |
WO2013002151A1 (en) * | 2011-06-27 | 2013-01-03 | 昭和電工株式会社 | Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same |
JP2013018736A (en) * | 2011-07-11 | 2013-01-31 | Sumitomo Chemical Co Ltd | Anti-viral agent capable of inactivating virus, and method for inactivating virus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006124267A (en) * | 2004-07-07 | 2006-05-18 | Showa Denko Kk | Composite particle containing titanium dioxide and its application |
CN102573926B (en) * | 2009-10-19 | 2014-09-17 | 国立大学法人东京大学 | Method for inactivating virus and article provided with antiviral properties |
-
2014
- 2014-02-14 CN CN201480010916.3A patent/CN105008049A/en active Pending
- 2014-02-14 JP JP2015505332A patent/JPWO2014141812A1/en active Pending
- 2014-02-14 KR KR1020157012862A patent/KR20150074071A/en not_active Ceased
- 2014-02-14 WO PCT/JP2014/053556 patent/WO2014141812A1/en active Application Filing
- 2014-03-05 TW TW103107420A patent/TWI592453B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011056375A (en) * | 2009-09-09 | 2011-03-24 | Panasonic Corp | Active substance generation device |
JP2012096188A (en) * | 2010-11-04 | 2012-05-24 | Toto Ltd | Photocatalyst-coated body and photocatalyst coating liquid |
JP2012210557A (en) * | 2011-03-30 | 2012-11-01 | Panasonic Corp | Water-repellent photocatalytic composition and water-repellent photocatalytic coating film |
WO2013002151A1 (en) * | 2011-06-27 | 2013-01-03 | 昭和電工株式会社 | Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same |
JP2013018736A (en) * | 2011-07-11 | 2013-01-31 | Sumitomo Chemical Co Ltd | Anti-viral agent capable of inactivating virus, and method for inactivating virus |
Non-Patent Citations (1)
Title |
---|
H.CHEN ET AL.: "Cooperative Effect between Cation and Anion of Copper Phosphate on the Photocatalytic Activity of Ti02 for Phenol Degradation in Aqueous Suspension", J.PHYS.CHEM. C, vol. 116, no. 46, 26 November 2012 (2012-11-26), pages 24582 - 24589 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014112345A1 (en) * | 2013-01-16 | 2017-01-19 | 日本板硝子株式会社 | Base material with antiviral thin film |
JP2016120483A (en) * | 2014-12-25 | 2016-07-07 | 太陽工業株式会社 | Titanium oxide-containing composition, method for producing titanium oxide-containing composition, and photocatalyst structure |
JPWO2017150063A1 (en) * | 2016-03-01 | 2019-01-24 | 東亞合成株式会社 | Antiviral agent, coating composition, resin composition and antiviral product |
KR101990338B1 (en) * | 2017-04-04 | 2019-06-18 | (주)호산이엔씨 | Visible-light responsive photocatalytic coating composition and preparation methods thereof |
KR20170040170A (en) * | 2017-04-04 | 2017-04-12 | 정지희 | Visible-light responsive photocatalytic coating composition and preparation methods thereof |
US11590251B2 (en) * | 2017-09-29 | 2023-02-28 | Shin-Etsu Chemical Co., Ltd. | Deodorizing/antibacterial/antifungal agent, method of preparation thereof, and member having deodorizing/antibacterial/antifungal agent on surface |
US20190099510A1 (en) * | 2017-09-29 | 2019-04-04 | Shin-Etsu Chemical Co., Ltd. | Deodorizing/antibacterial/antifungal agent, method of preparation thereof, and member having deodorizing/antibacterial/antifungal agent on surface |
JP2022546316A (en) * | 2019-08-29 | 2022-11-04 | クロー バイオテック ホールディングス, エルエルシー | antipathogen composition |
US12201115B2 (en) | 2019-08-29 | 2025-01-21 | Claw Biotech Holdings, Llc | Anti-pathogen compositions |
IT202100017894A1 (en) * | 2021-07-07 | 2023-01-07 | L & G Holding S R L | Antibacterial and antiviral treatment for coins, banknotes and tokens |
WO2023281365A1 (en) * | 2021-07-07 | 2023-01-12 | L & G Holding S.R.L. | Antibacterial and antiviral treatment for coins, banknotes and tokens |
CN116023853A (en) * | 2023-01-20 | 2023-04-28 | 广东卡百利新材料科技有限公司 | Antiviral artistic coating and preparation process thereof |
CN116023853B (en) * | 2023-01-20 | 2023-12-01 | 广东卡百利新材料科技有限公司 | Antiviral artistic coating and preparation process thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105008049A (en) | 2015-10-28 |
TW201522543A (en) | 2015-06-16 |
TWI592453B (en) | 2017-07-21 |
KR20150074071A (en) | 2015-07-01 |
JPWO2014141812A1 (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014141812A1 (en) | Antibacterial, antiviral photocatalytic titanium oxide, and antibacterial, antiviral photocatalytic titanium oxide slurry dispersed in a neutral area, as well as method for manufacturing same | |
JP6040021B2 (en) | Antibacterial antiviral composition and method for producing the same | |
JP5812488B2 (en) | Antibacterial antiviral composition and method for producing the same | |
Ma et al. | Preparation of zinc oxide-starch nanocomposite and its application on coating | |
TWI523691B (en) | Methods of inactivating viruses and articles with antiviral properties | |
TWI490037B (en) | Photocatalyst, process for preparing the same, photocatalyst coating agent, photocatalyst dispersion and photocatalyst article using the same | |
Ortelli et al. | TiO2 based nano-photocatalysis immobilized on cellulose substrates | |
KR101397500B1 (en) | Copper-and-titanium-containing composition and production method therefor | |
Tsai et al. | Dispersion of titanium oxide nanoparticles in aqueous solution with anionic stabilizer via ultrasonic wave | |
CN104841015B (en) | High-specific-surface-area silver-loaded titanium dioxide composite antibacterial material and preparation method thereof | |
US8298979B2 (en) | Zirconium oxalate sol | |
JP2013126654A (en) | Visible-light-responsive titanium oxide microparticle dispersion, method for manufacturing same, and member having surficial photocatalyst thin film formed using same dispersion | |
TW201605459A (en) | Anti-viral composition, method for producing the composition, and virus inactivation method | |
TWI581713B (en) | Antiviral compositions, antiviral agents, photocatalysts and virus inactivation methods | |
WO2015125367A1 (en) | Antiviral composition, antiviral agent, photocatalyst and virus inactivation method | |
CN105685100A (en) | Titanium oxide carrying BiVO4, manufacture method and composition for resisting virus | |
Charpentier et al. | Photocatalytic and antibacterial activities of silver and iron doped titania nanoparticles in solution and polyaspartic coatings | |
JP5317432B2 (en) | Deodorant antibacterial composition and method for producing dispersion thereof | |
Arrisujaya et al. | Accelerated water purification with magnetite (Iron (II, III) Oxide) nanoparticles: Coagulation applications | |
Li et al. | High-efficiency bacteriostatic material modified by nano zinc oxide and polyelectrolyte diallyl dimethylammonium chloride based on red mud | |
JP4849778B2 (en) | Antibacterial deodorant and method for producing the same | |
KR20160073308A (en) | Method for producing bivo_4 -carried titanium oxide and antiviral composition | |
Hu et al. | Synthesis and performance of silver photocatalytic nanomaterials for water disinfection | |
JP2015134726A (en) | Antiviral composition, production method thereof and virus inactivation method | |
Shieh et al. | Antibacterial activity of Ag/TiO2 nanocomposite films on ceramic plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14764760 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015505332 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157012862 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14764760 Country of ref document: EP Kind code of ref document: A1 |