[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014141891A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2014141891A1
WO2014141891A1 PCT/JP2014/054887 JP2014054887W WO2014141891A1 WO 2014141891 A1 WO2014141891 A1 WO 2014141891A1 JP 2014054887 W JP2014054887 W JP 2014054887W WO 2014141891 A1 WO2014141891 A1 WO 2014141891A1
Authority
WO
WIPO (PCT)
Prior art keywords
hue
color
region
correction
arbitrary
Prior art date
Application number
PCT/JP2014/054887
Other languages
French (fr)
Japanese (ja)
Inventor
昭宏 加藤
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2015505384A priority Critical patent/JP5921761B2/en
Publication of WO2014141891A1 publication Critical patent/WO2014141891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/631Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals

Definitions

  • the present invention relates to an imaging apparatus, and more particularly to lens iris control.
  • An auto iris control system that automatically controls the iris of a lens so that the brightness level is constant is known in order to reduce the burden of camera operation on the cameraman (see Patent Document 1).
  • detection is performed based on a specific screen area, such as center-weighted metering, which detects the brightness level at the center of the screen, and split metering, which divides the screen into multiple blocks.
  • an auto iris control system has appeared that selects a person or a pet in a subject using a touch panel or the like and performs iris control so that the luminance level of the object is constant.
  • the television camera has a function of detecting a specific hue for each pixel and correcting the specific hue for each pixel, which is called 6-color independent masking or 12-color masking (see Patent Document 2). ).
  • the present invention controls the lens iris so that the luminance level of a specific hue portion such as the blue color of the tennis court or the green color of the soccer ground is constant, not the detection based on the conventional screen area. It aims at realization.
  • the present invention provides means for detecting a specific hue for each pixel (such as 6-color independent masking and 12-color masking) (and correcting a specific hue for each pixel) and a lens iris. And a means for detecting a luminance signal level of a pixel in an arbitrary hue region in the specific hue, and a luminance signal level of the pixel in the detected arbitrary hue region is constant. Means for controlling the iris of the lens to detect the luminance signal level of a pixel in an arbitrary hue region in the specific hue, and the luminance signal level of the pixel in the detected arbitrary hue region is The imaging apparatus is characterized in that the iris of the lens is controlled to be constant.
  • the (R, G, B) primary color hue region and the (Ye, Cy, Mg) are detected by the color difference calculation (RG, RB, GB) and the detection of the color difference signal level.
  • Detecting means for detecting a luminance signal level of a pixel in an arbitrary hue area within a specific hue in the complementary hue area color difference calculation (for RG, RB, GB) and the color difference signal level Detection and primary color, complementary color, and intermediate color constant selection, any hue within a specific hue in the primary hue area (for R, G, B), complementary hue area (for Ye, Cy, Mg), and intermediate hue area
  • An image pickup apparatus having at least one of detection means and detection means for detecting a luminance signal level of a pixel in a region.
  • the imaging apparatus further includes an image display unit (such as a view finder or a monitor display) that displays a setting menu of the imaging apparatus or an arbitrary hue region within the specific hue, and the image display unit includes the specific display.
  • an image display unit such as a view finder or a monitor display
  • the image display unit includes the specific display.
  • the lens iris so that the luminance level of a specific hue portion such as the blue color of the tennis court or the green color of the soccer ground becomes constant.
  • the block diagram which shows one Example of the television camera of this invention Schematic diagram showing R / G / B magnitude relationship and corresponding hue range
  • amendment of one Example of this invention The conceptual diagram of the hue area
  • Explanatory drawing of calculation principle of primary color component and complementary color component of one embodiment of the present invention Explanatory drawing of the color tone correction process by the 6 color independent color tone correction method of one Example of this invention.
  • Correction characteristic diagram of one embodiment of the present invention The block diagram which shows the structure of the hue detection correction
  • FIG. 1 is a block diagram showing an embodiment of a television camera of the present invention.
  • Incident light from the subject is imaged by the lens unit 31, and the formed incident light is decomposed into red light, green light, and blue light by the prism unit 32 of the television camera 30, and each is a CCD (Charge Coupled Device) unit.
  • Photoelectric conversion is performed by 33R, 33G, and 33B.
  • the photoelectrically converted R / G / B signal is subjected to correlated double sampling, gain correction, and analog-to-digital conversion by an AFE (analog front end processor) 34, and is a video signal processing unit 35 with a hue detection correction function.
  • AFE analog front end processor
  • Various video signal processing such as color correction, contour correction, gamma correction, knee correction, and the like are performed.
  • R / G / B is converted into a luminance signal (Y) and a color difference signal (Pb / Pr). Then, it is converted into a serial video signal by the parallel-serial converter 7 and outputted to the outside.
  • a CPU (Central Processing Unit) 39 controls each part of the television camera 1.
  • the image display unit 40 of the viewfinder or the monitor display displays a setting menu of the imaging apparatus and an arbitrary hue region in the specific hue.
  • the hue detection / correction unit 38 in the video signal processing unit 35 with the hue detection / correction function shown in FIG. 3 of the block diagram showing the configuration of the hue detection / correction unit according to the embodiment of the present invention is the R / G / B.
  • the hue range in which the color of the subject is detected is detected from the magnitude relationship between the signal levels.
  • FIG. 2 shows the hue range corresponding to the magnitude relationship of R / G / B.
  • the hue is displayed in 6 divisions here, the hue can be further subdivided by further subdividing the magnitude relationship between the signal levels of R / G / B.
  • the CPU 9 passes information on an arbitrary hue range set by the user to the hue detection correction unit 38 in the video signal processing unit 35 with a hue detection correction function, and the hue detection correction unit in the video signal processing unit 35 with a hue detection correction function. 38 passes the area information that matches the user-set hue range to the CPU 9. Based on the area information, the CPU 9 gates the luminance signal from the matrix conversion unit 36 in the video signal processing unit 35 with the hue detection correction function, and the luminance signal level of the area in the arbitrary hue range set by the user is The iris of the lens 31 is controlled so as to be an arbitrary level set by the user. When the set hue range area is out of the subject, the iris control is stopped (the previous state is maintained) until the hue range area comes into the subject again.
  • FIG. 14 is a schematic diagram showing a menu screen according to an embodiment of the present invention.
  • the luminance signal level that is the convergence target of iris control is set in the range of 0 to 100%.
  • COLOR DEPEND performs conventional screen area detection type iris control when set to OFF, and performs hue-dependent type iris control of the present invention when set to ON.
  • the hue range of 6 divisions (R-Mg, Mg-B, B-Cy, Cy-G, G-Ye, Ye-R) and each hue range in PHASE below Is further subdivided into 1 to 100 hues.
  • the marker below is turned on, a striped marker is superimposed on the video portion that matches the actually selected hue to facilitate selection of the subject color for auto iris control. I can do it.
  • the lens iris by controlling the lens iris so that the luminance signal level in an arbitrary hue range set by the user is constant, the brightness of the tennis court blue, the soccer ground green, etc. Can be made constant automatically.
  • the arithmetic / comparators 1, 2, and 3 calculate the color difference signals RG, RB, and GB from the input video signals R, G, and B, and compare their magnitudes. Are supplied to the hue region determination circuit 4 and the primary color component amount and complementary color component amount calculation circuit 5. Therefore, the hue area determination circuit 4 first determines the hue area as shown in FIG. 5 based on the calculation results of the calculation / comparators 1, 2, and 3.
  • FIG. 5 is a conceptual diagram of this hue region, in which a straight line from the center point in each color direction is used as a reference line, and is divided into six hue regions.
  • the primary color component amount and complementary color component amount calculation circuit 4 compares the levels of the signals R, G, and B to determine the maximum level, the intermediate level, and the minimum level as shown in FIG. Then, in the process of this comparison and determination, the level difference between the maximum level and the intermediate level is obtained and used as the primary color component amount, and further the level difference between the intermediate level and the minimum level is obtained and used as the complementary color component amount.
  • the maximum level color corresponds to the primary color
  • the minimum level component corresponds to the white component.
  • the complementary color can be determined from the information of the maximum level color and the minimum level color. As a result, as shown in FIG. 4, the primary color component and the complementary color component can be determined.
  • the primary color component is R
  • the complementary color component is Ye (yellow), which is the hue between R and G.
  • the primary color component amount is RG
  • the complementary color component amount is GB
  • the minimum level B amount is the white component amount. Therefore, in the case of FIG. 8, the result shown second from the bottom in FIG. 4 is obtained.
  • the determination result of the hue region by the determination circuit 4 is supplied to the constant selection circuit 6, and a specific gain constant is selected according to the determination result and is supplied to the multipliers 7 and 8, so that the calculation circuit 5 calculates it. Correction is performed by multiplying the primary color component amount and the complementary color component amount.
  • the primary color component amount RG is multiplied by a specific constant Kr and then added to the video signal R.
  • Kr the ratio by the constant Kr is in the range of ⁇ 1 to 1 times
  • the level difference between the intermediate level and the minimum level (complementary color component amount) and the minimum level amount (white component amount) are also obtained by this correction. It does not change.
  • the complementary color component amount GB is multiplied by a specific constant Ky and then added to R and G, respectively. Also at this time, if the ratio according to the constant Ky is in the range of ⁇ 1 to 1 times, this correction also makes the difference between the maximum level and the intermediate level (primary color component amount) and the minimum level amount (white component amount). Does not change.
  • the saturation direction of the primary color R and the complementary color Ye can be independently corrected while maintaining the white balance.
  • the chromaticity direction can be corrected independently, and even when the input video signal is in a different hue, independent correction is possible as well. Is omitted.
  • FIG. 9 shows an embodiment of the present invention, in which 15 is an intermediate hue setting circuit, 16 is a primary color / complementary color area determination circuit, 17 is an ⁇ / ⁇ , ⁇ / ⁇ calculation circuit, 18 is a constant selection circuit, 20 is a multiplier, 21 is a data selection addition / subtraction circuit, and the others are the same as in the prior art shown in FIG.
  • the intermediate hue setting circuit 15 functions to enable setting of an intermediate color that is newly set as a reference color. For example, a flesh color (hue F) that is an intermediate color between R and Ye is preset.
  • the primary color / complementary color area determination circuit 16 determines the hues of the input video signals R, G, and B based on the data from the hue area determination circuit 4 and the hue F given from the intermediate color hue setting circuit 15 to obtain a predetermined color. It serves to generate the control signal S.
  • the ⁇ / ⁇ , ⁇ / ⁇ calculating circuit 17 functions to calculate predetermined constants ⁇ / ⁇ , ⁇ / ⁇ based on the data supplied from the intermediate hue setting circuit 15. These constants ⁇ / ⁇ and ⁇ / ⁇ will be described later.
  • the constant selection circuit 18 functions to select and output one of constants ⁇ / ⁇ and ⁇ / ⁇ according to the control signal S.
  • Multipliers 19 and 20 multiply the primary color component and the complementary color component output from the primary color component amount and complementary color component amount calculation circuit 5 by one of the constants ⁇ / ⁇ and ⁇ / ⁇ selected by the constant selection circuit 18.
  • the data selection addition / subtraction circuit 21 selects data according to the determination result by the hue area determination circuit 4 and the control signal S, and performs predetermined addition / subtraction. Details of the operation of this circuit will be described later.
  • 10 and 11 are diagrams showing saturation (color saturation) and chromaticity (hue) for explaining the operation principle of the present invention.
  • the directions away from the origin O are saturation and saturation.
  • the direction perpendicular to represents the chromaticity.
  • the present invention can be applied to any intermediate color correction, but it is considered that the present invention is particularly often applied to skin color correction.
  • correction of skin color will be mainly described below as an example. Then, since the hue of this skin color is located in the region between R and Ye, that is, the region 6, in these FIGS. 10 and 11, only the region 6 from R (red) to Ye (yellow) is shown. Is represented by a point F.
  • this point is set as the auxiliary reference color F as shown in the figure, and the data is set in the intermediate color hue setting circuit 15 as described above.
  • the region 6 is divided into two auxiliary regions, that is, the region (1) and the region (2) by an axis passing from the center point O to the auxiliary reference color F point, that is, the auxiliary reference line. .
  • the hue of the input video signal is divided by the primary color / complementary color area determination circuit 16 into an area (1) between R and F and an area (2) between F and Ye as shown in FIG. Judgment.
  • the primary color component amount and the complementary color component amount output from the calculation circuit 5 are respectively It is as follows.
  • the primary color / complementary color region indicates whether the hue of the input video signal is in these regions (1) or (2). Identification is made by the determination of the determination circuit 16, and correction is performed separately as shown below.
  • the output from each circuit is as follows. First, the constant selection circuit 18 selects the constant ⁇ / ⁇ and outputs the constant ⁇ / ⁇ to the multipliers 19 and 20. Next, the data selection addition / subtraction circuit 21 outputs a signal [Rc ⁇ Yc ⁇ ( ⁇ / ⁇ )], a signal ( ⁇ Yc), and a signal [Yc ⁇ ( ⁇ / ⁇ )]. Further, the constant selection circuit 6 selects constants Kr and Kf and outputs these constants Kr and Kf to the multipliers 7 and 8.
  • the signal [Rc ⁇ Yc ⁇ ( ⁇ / ⁇ )] ⁇ Kr + Kf ⁇ [Yc ⁇ ( ⁇ / ⁇ )] is output from the data selection / addition circuit 11 to the adder 12 and the signal R Then, the signal [( ⁇ Yc) ⁇ Kf] is output to the adder 14 and added to the signal B.
  • the vector A is represented by the synthesis of the R component vector R1 and the skin color component vector F1.
  • R component basic vector is R
  • skin color component basic vector is F
  • Ye component basic vector Y
  • B component basic vector is B.
  • the coordinate vector A of the input video signal is represented by the synthesis of the R component and the Ye component.
  • A Y ⁇ Yc + R ⁇ Rc and Rc and Yc can be easily obtained as described in the conventional color tone correction method.
  • the output from each circuit is as follows. First, the constant selection circuit 18 selects a constant ⁇ / ⁇ and outputs the constant ⁇ / ⁇ to the multipliers 19 and 20. Next, the data selection addition / subtraction circuit 21 outputs a signal [Yc ⁇ Rc ⁇ ( ⁇ / ⁇ )], a signal (Rc), and a signal [ ⁇ Rc ⁇ ( ⁇ / ⁇ )]. Further, the constant selection circuit 6 selects constants Ky and Kf and outputs these constants Ky and Kf to the multipliers 7 and 8.
  • the data selection / addition circuit 11 first outputs the signal [Rc ⁇ Kf] to the adder 12 and adds it to the signal R, and then the signal ⁇ [Yc ⁇ Rc ⁇ ( ⁇ / ⁇ )] ⁇ Ky ⁇ Kf ⁇ [Rc ⁇ ( ⁇ / ⁇ )] is output to the adder 14 and added to the signal B.
  • this vector C is represented by the synthesis of the Ye component vector Y1 and the skin color component vector F2.
  • the characteristics obtained by the correction described in the above sections (1) and (2) are shown in FIG.
  • the characteristics shown in FIG. 4 are obtained by superimposing gain characteristics of color correction in the saturation direction of R, color correction in the saturation direction of Ye, and color correction in the saturation direction of the skin color.
  • the skin color saturation direction gain constant Kf is controlled, color correction in the skin color saturation direction can be performed regardless of the R saturation direction gain constant Kr and the Ye saturation direction gain constant Ky. I understand.
  • the influence on R and Ye can be suppressed to a minimum, and the effective tone correction can be performed on the skin color, so that a sense of incongruity can be ensured when the television camera is switched. It can be lost.
  • FIG. 5 shows correction characteristics according to another embodiment of the present invention.
  • a correction function having a gain characteristic with the skin color axis F as the center is generated and extracted.
  • This is added to the conventional function in the embodiment shown in FIG. 5.
  • correction can be performed in such a way as to compensate for an area that cannot be corrected by the conventional method.
  • the hue range is limited to R and Ye.
  • the present invention can be applied to any hue, and the type and number of reference colors are also applicable. Needless to say, it can be set arbitrarily.
  • the lens iris so that the brightness level of a specific hue portion such as the blue color of the tennis court or the green color of the soccer ground is constant, and to realize a sports broadcast broadcasting camera. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Processing Of Color Television Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Abstract

[Problem] To provide a television camera for controlling the lens iris so that the brightness level of an arbitrary hue portion designated by the user is automatically at a given level. [Solution] An imaging device having a function for detecting a specific hue and correcting the hue for every pixel and a function for controlling the iris of the lens, wherein the imaging device has an image display for displaying the setting menu for the imaging device or an arbitrary hue region within the specific hue, the arbitrary hue region within the specific hue is selected through the image display, and the iris of the lens is controlled so that the brightness level of the arbitrary hue region within the specific hue is at a given level.

Description

撮像装置Imaging device
 本発明は、撮像装置に関し、特にレンズのアイリス制御に関するものである。 The present invention relates to an imaging apparatus, and more particularly to lens iris control.
 カメラマンのカメラ操作の負担を軽減するために、輝度レベルが一定になるようにレンズのアイリスを自動的に制御するオートアイリス制御システムが知られている(特許文献1参照)。
 従来は、輝度レベルを一定にするための検出エリアを、画面の中心部分で検出する中央重点測光や、画面を複数ブロックに分割する分割測光など、特定の画面エリアに基づいて検出を行っている。近年は、タッチパネル等で被写体中の人物やペットなどを選択し、その対象物の輝度レベルが一定になるようにアイリス制御するようなオートアイリス制御システムも登場している。
An auto iris control system that automatically controls the iris of a lens so that the brightness level is constant is known in order to reduce the burden of camera operation on the cameraman (see Patent Document 1).
Conventionally, detection is performed based on a specific screen area, such as center-weighted metering, which detects the brightness level at the center of the screen, and split metering, which divides the screen into multiple blocks. . In recent years, an auto iris control system has appeared that selects a person or a pet in a subject using a touch panel or the like and performs iris control so that the luminance level of the object is constant.
 しかしながら、これらの方法では、スポーツ中継等の、複数台のカメラを切り替えて運用するテレビジョンカメラシステムにおいて、テニスコートの青色やサッカーグラウンドの緑色等、視聴者が着目しやすい色の部分の明るさを一定にしようとした場合、日光の当たり具合などによってカメラの位置毎に明るさが変化するために、従来の画面エリアに基づく検出方法では、明るさを一定にすることは困難である。 However, with these methods, in a television camera system that switches between multiple cameras such as sports broadcasts, the brightness of the color parts that are easy for the viewer to focus on, such as the blue color of the tennis court and the green color of the soccer ground. When it is going to be constant, since brightness changes for every position of a camera by the sunlight condition etc., it is difficult to make brightness constant by the detection method based on the conventional screen area.
 一方、テレビジョンカメラは、6色独立マスキングや12色マスキングと称される、画素ごとに特定の色相を検出し、画素ごとに特定の色相を補正する機能を有している(特許文献2参照)。 On the other hand, the television camera has a function of detecting a specific hue for each pixel and correcting the specific hue for each pixel, which is called 6-color independent masking or 12-color masking (see Patent Document 2). ).
特開平8-181907JP-A-8-181907 特開平9-247701JP-A-9-247701
 本発明はこの欠点を解決するため、従来の画面エリアに基づく検出ではなく、テニスコートの青色やサッカーグラウンドの緑色等の特定の色相部分の輝度レベルが一定になるようにレンズアイリスを制御することの実現を目的とする。 In order to solve this drawback, the present invention controls the lens iris so that the luminance level of a specific hue portion such as the blue color of the tennis court or the green color of the soccer ground is constant, not the detection based on the conventional screen area. It aims at realization.
 上記の目的を解決するため、本発明は、(6色独立マスキングや12色マスキング等の)画素ごとに特定の色相を検出(し、画素ごとに特定の色相を補正)する手段とレンズのアイリスを制御する手段とを有する撮像装置において、前記特定の色相の内の任意の色相領域の画素の輝度信号レベルを検出する手段と、前記検出した任意の色相領域の画素の輝度信号レベルが一定になるようにレンズのアイリスを制御する手段とを有し、前記特定の色相の内の任意の色相領域の画素の輝度信号レベルを検出し、前記検出した任意の色相領域の画素の輝度信号レベルが一定になるようにレンズのアイリスを制御することを特徴とする撮像装置である。
 また、上記撮像装置において、(R-G、R-B、G-Bの)色差演算と該色差信号レベルの検出により、(R、G、Bの)原色色相領域と(Ye、Cy、Mgの)補色色相領域の特定の色相の内の任意の色相領域の画素の輝度信号レベルを検出する検出手段と、(R-G、R-B、G-Bの)色差演算と該色差信号レベルの検出および原色と補色と中間色の定数選択により、(R、G、Bの)原色色相領域と(Ye、Cy、Mgの)補色色相領域と中間色色相領域の特定の色相の内の任意の色相領域の画素の輝度信号レベルを検出する検出手段との少なくとも一方の検出手段を有することを特徴とする撮像装置である。
 さらに上記撮像装置において、前記撮像装置の設定用メニューや前記特定の色相の内の任意の色相領域を表示する(ビューファインダやモニタディスプレイ等の)画像表示部を有し、画像表示部で前記特定の色相の内の任意の色相領域を選択する手段を有し、前記画像表示部に前記撮像装置の設定用メニューや前記特定の色相の内の任意の色相領域を表示して、前記特定の色相を選択する撮像装置である。
In order to solve the above object, the present invention provides means for detecting a specific hue for each pixel (such as 6-color independent masking and 12-color masking) (and correcting a specific hue for each pixel) and a lens iris. And a means for detecting a luminance signal level of a pixel in an arbitrary hue region in the specific hue, and a luminance signal level of the pixel in the detected arbitrary hue region is constant. Means for controlling the iris of the lens to detect the luminance signal level of a pixel in an arbitrary hue region in the specific hue, and the luminance signal level of the pixel in the detected arbitrary hue region is The imaging apparatus is characterized in that the iris of the lens is controlled to be constant.
In the imaging apparatus, the (R, G, B) primary color hue region and the (Ye, Cy, Mg) are detected by the color difference calculation (RG, RB, GB) and the detection of the color difference signal level. Detecting means for detecting a luminance signal level of a pixel in an arbitrary hue area within a specific hue in the complementary hue area, color difference calculation (for RG, RB, GB) and the color difference signal level Detection and primary color, complementary color, and intermediate color constant selection, any hue within a specific hue in the primary hue area (for R, G, B), complementary hue area (for Ye, Cy, Mg), and intermediate hue area An image pickup apparatus having at least one of detection means and detection means for detecting a luminance signal level of a pixel in a region.
The imaging apparatus further includes an image display unit (such as a view finder or a monitor display) that displays a setting menu of the imaging apparatus or an arbitrary hue region within the specific hue, and the image display unit includes the specific display. Means for selecting an arbitrary hue area in the hue of the image, and displaying the setting hue menu of the imaging apparatus or an arbitrary hue area in the specific hue on the image display unit, and the specific hue It is an imaging device that selects.
 本発明によれば、テニスコートの青色やサッカーグラウンドの緑色等の特定の色相部分の輝度レベルが一定になるようにレンズアイリスを制御することを実現できる。 According to the present invention, it is possible to control the lens iris so that the luminance level of a specific hue portion such as the blue color of the tennis court or the green color of the soccer ground becomes constant.
本発明のテレビジョンカメラの一実施例を示すブロック図The block diagram which shows one Example of the television camera of this invention R/G/Bの大小関係と対応する色相範囲を示す模式図Schematic diagram showing R / G / B magnitude relationship and corresponding hue range 本発明の一実施例の色相検出補正部の構成を示すブロック図The block diagram which shows the structure of the hue detection correction | amendment part of one Example of this invention. 本発明の一実施例の色調補正における色相領域の説明図Explanatory drawing of the hue area | region in the color tone correction | amendment of one Example of this invention 本発明の一実施例の色相領域の概念図The conceptual diagram of the hue area | region of one Example of this invention 本発明の一実施例の原色成分と補色成分の算定原理の説明図Explanatory drawing of calculation principle of primary color component and complementary color component of one embodiment of the present invention 本発明の一実施例の6色独立色調補正方式による色調補正処理の説明図Explanatory drawing of the color tone correction process by the 6 color independent color tone correction method of one Example of this invention. 本発明の一実施例の補正特性図Correction characteristic diagram of one embodiment of the present invention 本発明の他の一実施例の色相検出補正部の構成を示すブロック図The block diagram which shows the structure of the hue detection correction | amendment part of other one Example of this invention. 本発明の他の一実施例の色調補正における色相領域の説明図Explanatory drawing of the hue area | region in the color tone correction of other one Example of this invention. 本発明の他の一実施例の色相領域の概念図Conceptual diagram of a hue area according to another embodiment of the present invention. 本発明の他の一実施例の原色成分と補色成分の算定原理の説明図Explanatory drawing of calculation principle of primary color component and complementary color component of another embodiment of the present invention 本発明の他の一実施例の補正特性図Correction characteristic diagram of another embodiment of the present invention 本発明の一実施例のメニュー画面を示す模式図The schematic diagram which shows the menu screen of one Example of this invention
 以下、本発明の一実施例を図1~図2を用いて説明する。
 図1は本発明のテレビジョンカメラの一実施例を示すブロック図である。被写体からの入射光はレンズ部31で結像され、結像された入射光はテレビジョンカメラ30のプリズム部32で赤色光と緑色光および青色光に分解され、各々CCD(Charge Coupled Device)部33R・33G・33Bで光電変換される。光電変換されたR/G/Bの信号はAFE(アナログフロントエンドプロセッサ)34で、相関二重サンプリング、ゲイン補正、およびアナログ-デジタル変換を行い、色相検出補正機能付きの映像信号処理部の35に送られ、色補正、輪郭補正、ガンマ補正、ニー補正等の各種映像信号処理が行われる。
An embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a block diagram showing an embodiment of a television camera of the present invention. Incident light from the subject is imaged by the lens unit 31, and the formed incident light is decomposed into red light, green light, and blue light by the prism unit 32 of the television camera 30, and each is a CCD (Charge Coupled Device) unit. Photoelectric conversion is performed by 33R, 33G, and 33B. The photoelectrically converted R / G / B signal is subjected to correlated double sampling, gain correction, and analog-to-digital conversion by an AFE (analog front end processor) 34, and is a video signal processing unit 35 with a hue detection correction function. Various video signal processing such as color correction, contour correction, gamma correction, knee correction, and the like are performed.
デジタル信号処理部5では各種映像信号処理などが施された後、Y=0.2126R+0.7152G+0.0722BPb=0.5389(B-Y)Pr=0.6350(R-Y)の計算式により、R/G/Bから輝度信号(Y)と色差信号(Pb/Pr)に変換する。そしてパラレル-シリアル変換部7でシリアル映像信号に変換され、外部に出力される。 After various video signal processing and the like are performed in the digital signal processing unit 5, Y = 0.2126R + 0.7152G + 0.0722BPb = 0.5389 (BY) Pr = 0.6350 (RY) R / G / B is converted into a luminance signal (Y) and a color difference signal (Pb / Pr). Then, it is converted into a serial video signal by the parallel-serial converter 7 and outputted to the outside.
 CPU(Central Processing Unit)39は、テレビジョンカメラ1の各部を制御する。また、ビューファインダまたはモニタディスプレイの画像表示部40は撮像装置の設定用メニューや前記特定の色相の内の任意の色相領域を表示する。 A CPU (Central Processing Unit) 39 controls each part of the television camera 1. In addition, the image display unit 40 of the viewfinder or the monitor display displays a setting menu of the imaging apparatus and an arbitrary hue region in the specific hue.
 ここで、本発明の一実施例の色相検出補正部の構成を示すブロック図の図3に示す、色相検出補正機能付き映像信号処理部35内の色相検出補正部38は、R/G/Bの各信号レベルの大小関係から、被写体の色がどの色相範囲にあるかを検出する。図2にR/G/Bの大小関係と対応する色相範囲を示す。なお、ここでは色相を6分割で表示しているが、R/G/Bの各信号レベルの大小関係をさらに細分化すれば、もっと色相を再分化することも可能である。 Here, the hue detection / correction unit 38 in the video signal processing unit 35 with the hue detection / correction function shown in FIG. 3 of the block diagram showing the configuration of the hue detection / correction unit according to the embodiment of the present invention is the R / G / B. The hue range in which the color of the subject is detected is detected from the magnitude relationship between the signal levels. FIG. 2 shows the hue range corresponding to the magnitude relationship of R / G / B. Although the hue is displayed in 6 divisions here, the hue can be further subdivided by further subdividing the magnitude relationship between the signal levels of R / G / B.
 CPU9では、ユーザーが設定した任意の色相範囲の情報を色相検出補正機能付き映像信号処理部35内の色相検出補正部38へ渡し、色相検出補正機能付き映像信号処理部35内の色相検出補正部38は、ユーザー設定の色相範囲と一致したエリア情報をCPU9へ渡す。CPU9ではそのエリア情報に基づき、色相検出補正機能付き映像信号処理部35内のマトリクス変換部36からの輝度信号にゲートをかけ、ユーザーが設定した任意の色相範囲にあるエリアの輝度信号レベルが、ユーザーが設定した任意のレベルになるように、レンズ31のアイリスを制御する。なお、設定した色相範囲のエリアが被写体から外れた場合は、色相範囲のエリアが再度被写体に入ってくるまで、アイリス制御は停止(直前の状態を保持)しておく。 The CPU 9 passes information on an arbitrary hue range set by the user to the hue detection correction unit 38 in the video signal processing unit 35 with a hue detection correction function, and the hue detection correction unit in the video signal processing unit 35 with a hue detection correction function. 38 passes the area information that matches the user-set hue range to the CPU 9. Based on the area information, the CPU 9 gates the luminance signal from the matrix conversion unit 36 in the video signal processing unit 35 with the hue detection correction function, and the luminance signal level of the area in the arbitrary hue range set by the user is The iris of the lens 31 is controlled so as to be an arbitrary level set by the user. When the set hue range area is out of the subject, the iris control is stopped (the previous state is maintained) until the hue range area comes into the subject again.
 ビューファインダまたはモニタディスプレイの40では被写体の映像にメニュー画面を重畳し、ユーザーはメニュー画面を見ながら色相範囲や輝度信号レベルを設定する。また、ユーザーが設定した色相範囲が目的とする被写体の色に合致しているかを確認できるように、ビューファインダまたはモニタディスプレイの40の被写体映像に重ねて、設定した色相範囲と一致している箇所のエリアにマーカーを表示するようにしてもよい。
 図14は本発明の一実施例のメニュー画面を示す模式図である。TARGET LEVELではアイリス制御の収束目標とする輝度信号レベルを0~100%の範囲で設定する。COLOR DEPENDでは、OFFに設定時は従来の画面エリア検出型のアイリス制御を行い、ONに設定時は本発明の色相依存型のアイリス制御を行う。また、ONに設定したときは、その下のPHASEにて、6分割の色相範囲(R-Mg,Mg-B,B-Cy,Cy-G,G-Ye,Ye-R)と各色相範囲をさらに1~100に細分化した色相を設定する。また、その下のMARKERをONにすると、実際に選択している色相と一致している映像箇所に、縞模様のマーカーを重畳し、オートアイリス制御の目標とする被写体の色の選択をし易くすることが出来る。
In the viewfinder or monitor display 40, the menu screen is superimposed on the subject image, and the user sets the hue range and the luminance signal level while viewing the menu screen. In addition, in order to check whether the hue range set by the user matches the target subject's color, it is superimposed on the 40 subject video in the viewfinder or monitor display and matches the set hue range Markers may be displayed in these areas.
FIG. 14 is a schematic diagram showing a menu screen according to an embodiment of the present invention. In TARGET LEVEL, the luminance signal level that is the convergence target of iris control is set in the range of 0 to 100%. COLOR DEPEND performs conventional screen area detection type iris control when set to OFF, and performs hue-dependent type iris control of the present invention when set to ON. When set to ON, the hue range of 6 divisions (R-Mg, Mg-B, B-Cy, Cy-G, G-Ye, Ye-R) and each hue range in PHASE below Is further subdivided into 1 to 100 hues. When the marker below is turned on, a striped marker is superimposed on the video portion that matches the actually selected hue to facilitate selection of the subject color for auto iris control. I can do it.
 以上のように本発明によれば、ユーザーが設定する任意の色相範囲にある輝度信号レベルが一定になるようにレンズアイリスを制御することにより、テニスコートの青色やサッカーグラウンドの緑色等の明るさを自動的に一定にすることができる。 As described above, according to the present invention, by controlling the lens iris so that the luminance signal level in an arbitrary hue range set by the user is constant, the brightness of the tennis court blue, the soccer ground green, etc. Can be made constant automatically.
 以下、本発明の他の1実施例を図3~図8を用いて説明する。
 図3は、まず、演算・比較器1、2、3により、入力映像信号R、G、Bから色差信号R-G、R-B、G-Bの演算及びその大小比較を行ない、その結果を色相領域の判定回路4と、原色成分量及び補色成分量の算出回路5に供給する。
 そこで、この演算・比較器1、2、3による演算結果により、まず色相領域の判定回路4では、図5に示すようにして、色相領域の判定を行なう。図5は、この色相領域の概念図で、中心点から各色方向に向かう直線を基準線として、これにより6個の色相領域に区切ったものである。
 また、原色成分量及び補色成分量の算出回路4では、信号R、G、Bのレベル比較を行ない、図6に示すようにして最大レベル、中間レベル、最小レベルを判定する。そして、この比較判定の過程で、最大レベルと中間レベルのレベル差を求め、これを原色成分量とし、さらに中間レベルと最小レベルのレベル差を求め、これを補色成分量とする。ここで、最大レベルの色が原色に相当し、最小レベルの成分が白成分に相当する。そして、最大レベルの色と最小レベルの色の情報から補色が判定でき、この結果、図4に示すように、原色成分と補色成分を判定することができる。
Another embodiment of the present invention will be described below with reference to FIGS.
In FIG. 3, first, the arithmetic / comparators 1, 2, and 3 calculate the color difference signals RG, RB, and GB from the input video signals R, G, and B, and compare their magnitudes. Are supplied to the hue region determination circuit 4 and the primary color component amount and complementary color component amount calculation circuit 5.
Therefore, the hue area determination circuit 4 first determines the hue area as shown in FIG. 5 based on the calculation results of the calculation / comparators 1, 2, and 3. FIG. 5 is a conceptual diagram of this hue region, in which a straight line from the center point in each color direction is used as a reference line, and is divided into six hue regions.
Further, the primary color component amount and complementary color component amount calculation circuit 4 compares the levels of the signals R, G, and B to determine the maximum level, the intermediate level, and the minimum level as shown in FIG. Then, in the process of this comparison and determination, the level difference between the maximum level and the intermediate level is obtained and used as the primary color component amount, and further the level difference between the intermediate level and the minimum level is obtained and used as the complementary color component amount. Here, the maximum level color corresponds to the primary color, and the minimum level component corresponds to the white component. Then, the complementary color can be determined from the information of the maximum level color and the minimum level color. As a result, as shown in FIG. 4, the primary color component and the complementary color component can be determined.
 図6の例では、最大レベルがRで、中間レベルはGになっているので、原色成分はRで、補色成分は、RとGの中間の色相であるYe(黄)になる。そして、原色成分量はR-Gで、補色成分量はG-B、そして最小レベルBの量が白成分量となる。従って、この図8の場合は、図4の下から2番目に示す結果となる。
 判定回路4による色相領域の判定結果は定数選択回路6に供給され、判定結果に応じて特定の利得定数が選択され、それが乗算器7、8に供給されることにより、算出回路5で算出された原色成分量及び補色成分量にそれぞれ乗算されることにより補正が行なわれる。このため、定数選択回路6には、予め領域1から領域6までのそれぞれの色相領域に対応した特定の利得定数が設定してある。
 こうして乗算器7、8により利得定数が乗算された原色成分量及び補色成分量は、加算・減算の選択及び映像信号R、G、Bに対する接続選択を行なうためのデータ選択加算回路11に、一方では直接、他方では補数器(-1倍乗算器)9、10を介して、それぞれ供給される。そして、このデータ選択加算回路11により加算先が選択された上で各加算器12、13、14に供給され、映像信号R、G、Bに加算されることになる。従って、以上の処理をフローチャートで示すと、図7のようになる。
In the example of FIG. 6, since the maximum level is R and the intermediate level is G, the primary color component is R, and the complementary color component is Ye (yellow), which is the hue between R and G. The primary color component amount is RG, the complementary color component amount is GB, and the minimum level B amount is the white component amount. Therefore, in the case of FIG. 8, the result shown second from the bottom in FIG. 4 is obtained.
The determination result of the hue region by the determination circuit 4 is supplied to the constant selection circuit 6, and a specific gain constant is selected according to the determination result and is supplied to the multipliers 7 and 8, so that the calculation circuit 5 calculates it. Correction is performed by multiplying the primary color component amount and the complementary color component amount. For this reason, in the constant selection circuit 6, specific gain constants corresponding to the respective hue regions from the region 1 to the region 6 are set in advance.
The primary color component amount and the complementary color component amount thus multiplied by the gain constant by the multipliers 7 and 8 are sent to the data selection / addition circuit 11 for selecting addition / subtraction and connection selection for the video signals R, G, B, respectively. Are supplied directly via the complements (-1 times multipliers) 9 and 10, respectively. Then, after the addition destination is selected by the data selection / addition circuit 11, it is supplied to each adder 12, 13, 14 and added to the video signals R, G, B. Therefore, the above processing is shown in the flowchart in FIG.
 そこで、いま、信号Rの色調補正を行なう場合、例えば彩度方向の補正であれば原色成分量R-Gに特定の定数Krを乗じてから映像信号Rに加算することになる。このとき、定数Krによる比率が-1倍から1倍の範囲であれば、この補正によっても、中間レベルと最小レベルのレベル差(補色成分量)、及び最小レベルの量(白成分量)は変化しない。
 また、信号Yeの彩度方向の補正を行なう場合、補色成分量G-Bに特定の定数Kyを乗じてからRとGにそれぞれ加算することになる。このときも、定数Kyによる比率が-1倍から1倍の範囲であれば、この補正によっても、最大レベルと中間レベルのレベル差(原色成分量)、及び最小レベルの量(白成分量)は変化しない。
Therefore, when correcting the tone of the signal R, for example, in the case of correction in the saturation direction, the primary color component amount RG is multiplied by a specific constant Kr and then added to the video signal R. At this time, if the ratio by the constant Kr is in the range of −1 to 1 times, the level difference between the intermediate level and the minimum level (complementary color component amount) and the minimum level amount (white component amount) are also obtained by this correction. It does not change.
When correcting the saturation of the signal Ye, the complementary color component amount GB is multiplied by a specific constant Ky and then added to R and G, respectively. Also at this time, if the ratio according to the constant Ky is in the range of −1 to 1 times, this correction also makes the difference between the maximum level and the intermediate level (primary color component amount) and the minimum level amount (white component amount). Does not change.
 従って、この場合には、定数Kr及びKyを操作すれば、白バランスを保ちながら原色Rと補色Yeの彩度方向の補正を独立して行なうことができる。なお、以上の6色独立色調補正方式では、同様に色度方向の補正も独立に行なえ、さらには入力映像信号が別の色相にある場合も同様に独立補正が可能であるが、詳細な説明は省略する。 Therefore, in this case, if the constants Kr and Ky are operated, the saturation direction of the primary color R and the complementary color Ye can be independently corrected while maintaining the white balance. In the above-described six-color independent tone correction method, the chromaticity direction can be corrected independently, and even when the input video signal is in a different hue, independent correction is possible as well. Is omitted.
 以下、本発明他の一実施例の色調検出と補正装置について、図示の実施形態により詳細に説明する。まず図9は、本発明の一実施形態例で、15は中間色色相設定回路、16は原色/補色領域判定回路、17はα/β、β/α算出回路、18は定数選択回路、19、20は乗算器、21はデータ選択加減算回路であり、その他は図3に示した従来技術と同じである。 Hereinafter, a color tone detection and correction apparatus according to another embodiment of the present invention will be described in detail with reference to the illustrated embodiment. First, FIG. 9 shows an embodiment of the present invention, in which 15 is an intermediate hue setting circuit, 16 is a primary color / complementary color area determination circuit, 17 is an α / β, β / α calculation circuit, 18 is a constant selection circuit, 20 is a multiplier, 21 is a data selection addition / subtraction circuit, and the others are the same as in the prior art shown in FIG.
 中間色色相設定回路15は、新たに基準色として設定したい中間色の設定を可能にする働きをするもので、例えば、RとYeの中間色である肌色(色相F)が予め設定されるものである。原色/補色領域判定回路16は、色相領域判定回路4からのデータと、中間色色相設定回路15から与えられている色相Fとにより、入力映像信号R、G、Bの色相を判別し、所定の制御信号Sを発生する働きをする。
 α/β、β/α算出回路17は、中間色色相設定回路15から与えられるデータにより、所定の定数α/β、β/αを算出する働きをする。なお、これらの定数α/β、β/αについては後述する。定数選択回路18は、制御信号Sに応じて定数α/β、β/αの何れか一方を選択して出力する働きをする。
The intermediate hue setting circuit 15 functions to enable setting of an intermediate color that is newly set as a reference color. For example, a flesh color (hue F) that is an intermediate color between R and Ye is preset. The primary color / complementary color area determination circuit 16 determines the hues of the input video signals R, G, and B based on the data from the hue area determination circuit 4 and the hue F given from the intermediate color hue setting circuit 15 to obtain a predetermined color. It serves to generate the control signal S.
The α / β, β / α calculating circuit 17 functions to calculate predetermined constants α / β, β / α based on the data supplied from the intermediate hue setting circuit 15. These constants α / β and β / α will be described later. The constant selection circuit 18 functions to select and output one of constants α / β and β / α according to the control signal S.
 乗算器19、20は、原色成分量及び補色成分量の算出回路5から出力されてくる原色成分と補色成分に、定数選択回路18で選択された定数α/β、β/αの一方を乗算する働きをする。データ選択加減算回路21は、色相領域判定回路4による判定結果と制御信号Sに応じてデータを選択し、所定の加減算を行なう。なお、この回路の動作の詳細は後述する。 Multipliers 19 and 20 multiply the primary color component and the complementary color component output from the primary color component amount and complementary color component amount calculation circuit 5 by one of the constants α / β and β / α selected by the constant selection circuit 18. To work. The data selection addition / subtraction circuit 21 selects data according to the determination result by the hue area determination circuit 4 and the control signal S, and performs predetermined addition / subtraction. Details of the operation of this circuit will be described later.
 次に、この実施形態例の動作について説明する。図10、11は、本発明の動作原理を説明するため彩度(色飽和度)及び色度(色相)を表した図で、これらの図において、原点Oから遠ざかる方向が彩度、彩度に垂直な方向(円を描く方向)が色度を表わしている。 Next, the operation of this embodiment will be described. 10 and 11 are diagrams showing saturation (color saturation) and chromaticity (hue) for explaining the operation principle of the present invention. In these diagrams, the directions away from the origin O are saturation and saturation. The direction perpendicular to (the direction in which the circle is drawn) represents the chromaticity.
 ここで本発明は、どのような中間色の補正にも適用可能であるが、特に肌色の補正に適用される場合が多いと考えられる。そこで、この実施形態例では、以下、主として、肌色の補正を例に挙げて説明する。そうすると、この肌色の色相はRとYeの間の領域、すなわち、領域6に位置するので、これらの図10、11ではR(赤)からYe(黄)の領域6だけを示し、ここで肌色の色相は点Fで表わされることになる。 Here, the present invention can be applied to any intermediate color correction, but it is considered that the present invention is particularly often applied to skin color correction. In this embodiment, therefore, correction of skin color will be mainly described below as an example. Then, since the hue of this skin color is located in the region between R and Ye, that is, the region 6, in these FIGS. 10 and 11, only the region 6 from R (red) to Ye (yellow) is shown. Is represented by a point F.
 そこで、この点を、図示のように、補助基準色Fとし、そのデータを、上記したように、中間色色相設定回路15に設定する。 Therefore, this point is set as the auxiliary reference color F as shown in the figure, and the data is set in the intermediate color hue setting circuit 15 as described above.
 これにより、領域6は、中心点Oから補助基準色F点を通る軸、つまり補助基準線により、2個の補助領域、すなわち、領域(1)と領域(2)とに分けられることになる。次に、入力映像信号の色相を、原色/補色領域判定回路16により、図2に示すように、RとFの間の領域(1)と、FとYeの間の領域(2)に分割して判定する。そうすると、まず、このときは、何れも色相領域判定回路4の判定結果が領域6になっているときの動作となるので、算出回路5から出力されている原色成分量と補色成分量は、それぞれ以下の通りになっている。 Thus, the region 6 is divided into two auxiliary regions, that is, the region (1) and the region (2) by an axis passing from the center point O to the auxiliary reference color F point, that is, the auxiliary reference line. . Next, the hue of the input video signal is divided by the primary color / complementary color area determination circuit 16 into an area (1) between R and F and an area (2) between F and Ye as shown in FIG. Judgment. Then, first, in this case, since the operation is performed when the determination result of the hue region determination circuit 4 is the region 6, the primary color component amount and the complementary color component amount output from the calculation circuit 5 are respectively It is as follows.
 原色成分量=R-G=Rc補色成分量=G-B=Yc次に、入力映像信号の色相が、これらの領域(1)と領域(2)の何れにあるかを、原色/補色領域判定回路16の判定により識別し、それぞれ以下に示すように、別個に補正を行なうのである。 Primary color component amount = RG = Rc complementary color component amount = GB = Yc Next, the primary color / complementary color region indicates whether the hue of the input video signal is in these regions (1) or (2). Identification is made by the determination of the determination circuit 16, and correction is performed separately as shown below.
 <領域(1)での補正処理>このときは、各回路からの出力は以下の通りとなる。まず、定数選択回路18では定数β/αが選択され、この定数β/αが乗算器19、20に出力される。次に、データ選択加減算回路21からは信号〔Rc-Yc×(β/α)〕、信号(-Yc)、それに信号〔Yc×(β/α)〕が出力される。さらに、定数選択回路6では定数Kr、Kfが選択され、これらの定数Kr、Kfが乗算器7、8に出力される。 <Correction process in area (1)> At this time, the output from each circuit is as follows. First, the constant selection circuit 18 selects the constant β / α and outputs the constant β / α to the multipliers 19 and 20. Next, the data selection addition / subtraction circuit 21 outputs a signal [Rc−Yc × (β / α)], a signal (−Yc), and a signal [Yc × (β / α)]. Further, the constant selection circuit 6 selects constants Kr and Kf and outputs these constants Kr and Kf to the multipliers 7 and 8.
 そして、これらの結果、データ選択加算回路11からは、まず、信号〔Rc-Yc×(β/α)〕×Kr+Kf×〔Yc×(β/α)〕が加算器12に出力されて信号Rに加算され、次に、信号〔(-Yc)×Kf〕が加算器14に出力されて信号Bに加算されることになる。 As a result, first, the signal [Rc−Yc × (β / α)] × Kr + Kf × [Yc × (β / α)] is output from the data selection / addition circuit 11 to the adder 12 and the signal R Then, the signal [(−Yc) × Kf] is output to the adder 14 and added to the signal B.
 そこで、図10において、いま、A点を入力映像信号の座標とし、ベクトルAで表わすと、このベクトルAは、R成分ベクトルR1と肌色成分ベクトルF1の合成で表される。 Therefore, in FIG. 10, when the point A is the coordinates of the input video signal and is represented by the vector A, the vector A is represented by the synthesis of the R component vector R1 and the skin color component vector F1.
 A=R1+F1次に、Rの彩度方向調整専用の利得定数をKrとし、肌色の彩度方向調整専用の利得定数をKfとすると、Rの彩度方向の色補正を行なう場合には、|R1|×KrをRの彩度方向に加算、つまりRに加算してやれば良く、肌色の彩度方向の色補正を行なう場合には、|F1|×Kfを肌色彩度方向に加算してやれば良い。 A = R1 + F1 Next, assuming that Kr is a gain constant dedicated to adjusting the saturation direction of R and Kf is a gain constant dedicated to adjusting the saturation direction of skin color, when performing color correction in the saturation direction of R, | R1 | × Kr may be added in the saturation direction of R, that is, added to R. When color correction is performed in the saturation direction of the skin color, | F1 | × Kf may be added in the skin color saturation direction. .
 そこで、これらの量|R1|、|F1|の算出方法及び肌色彩度方向への加算方法について説明すると、このためには、全ての補正を、R、G、B成分への補正として表現してやれば良い。そこで、まずR成分基本ベクトルをR、肌色成分基本ベクトルをF、Ye成分基本ベクトルをY、そしてB成分基本ベクトルをBとし、F=α×Y+β×R=α×(-B)+β×Rとする。 Therefore, the calculation method of these amounts | R1 | and | F1 | and the addition method in the skin color saturation direction will be described. For this purpose, all corrections can be expressed as corrections to the R, G, and B components. It ’s fine. Therefore, R component basic vector is R, skin color component basic vector is F, Ye component basic vector is Y, and B component basic vector is B. F = α × Y + β × R = α × (−B) + β × R And
 次に、入力映像信号の座標ベクトルAをR成分とYe成分の合成で表わす。ここで、A=Y×Yc+R×Rcと、Rc及びYcは、従来の色調補正方式で説明したように、簡単に求まる。この場合、R>G>Bであり、従って、図9から明らかなように、Rc=R-G、Yc=G-Bとなる。 Next, the coordinate vector A of the input video signal is represented by the synthesis of the R component and the Ye component. Here, A = Y × Yc + R × Rc and Rc and Yc can be easily obtained as described in the conventional color tone correction method. In this case, R> G> B, and as is apparent from FIG. 9, Rc = RG and Yc = GB.
 そうすると、 A=Y×Yc+R×Rc=(1/α)×(F-β×R)×Yc+R×Rc =F×Yc/α+R×(Rc-β×Yc/α)となり、よって、|R1|=Rc-β×Yc/α|F1|=Yc/αとなる。 Then, A = Y × Yc + R × Rc = (1 / α) × (F−β × R) × Yc + R × Rc = F × Yc / α + R × (Rc−β × Yc / α), and thus | R1 | = Rc−β × Yc / α | F1 | = Yc / α.
 そこで、F×Yc/αをベクトルRとベクトルBで表現すると、F×Yc/α=(α×(-B)+β×R)×Yc/α=B×(-Yc)+R×(β×Yc/α)となる。 Therefore, if F × Yc / α is expressed by vector R and vector B, F × Yc / α = (α × (−B) + β × R) × Yc / α = B × (−Yc) + R × (β × Yc / α).
 従って、以上の結果をまとめると、以下の通りである。すなわち、まず、Rの彩度方向の色補正を行なうためには、|R1|Kr=(Rc-β×Yc/α)×KrをRに加算すればよい。次に、肌色の彩度方向の色補正を行なうためには、|F1|×Kfを肌色彩度方向に加算すればよいが、このことは、-Yc×KfをBに加算し、(β×Yc/α)×KfをRに加算することに等しい。 Therefore, the above results are summarized as follows. That is, in order to perform color correction in the saturation direction of R, | R1 | Kr = (Rc−β × Yc / α) × Kr may be added to R. Next, in order to perform color correction in the skin color saturation direction, | F1 | × Kf may be added in the skin color saturation direction. This means that −Yc × Kf is added to B and (β Equal to adding (Yc / α) × Kf to R.
 ここで、いま、Rベクトルと肌色ベクトルの間の角度をθとすると、α×Sin(60°-θ)=β×Sin(θ)であるため、β/α=Sin(60°-θ)/Sin(θ)となる。 Here, if the angle between the R vector and the skin color vector is θ, α × Sin (60 ° −θ) = β × Sin (θ), and therefore β / α = Sin (60 ° −θ). / Sin (θ).
 従って、θ=20°のときは、β/α=1.8794になるが、これを≒2.0とすると、このときの補正は、Rの彩度方向の色補正については、(Rc-2×Yc)×KrをRに加算すればよく、肌色の彩度方向の色補正については、-Yc×KfをBに加算し、2×Yc×KfをRに加算すればよい。そして、β/αを変えることにより、肌色の基準軸を調整することができる。 Therefore, when θ = 20 °, β / α = 1.7944. When this is set to ≈2.0, the correction at this time is (Rc− 2 × Yc) × Kr may be added to R, and for color correction in the saturation direction of the skin color, −Yc × Kf may be added to B and 2 × Yc × Kf may be added to R. Then, by changing β / α, the skin color reference axis can be adjusted.
 以上は彩度方向の補正についての説明であるが、色度方向の補正に対しても同様の概念が適用できるため、説明は省略する。 The above is the description about the correction in the saturation direction, but the description is omitted because the same concept can be applied to the correction in the chromaticity direction.
 <領域(2)での補正処理>このときは、各回路からの出力は以下の通りとなる。まず、定数選択回路18では定数α/βが選択され、この定数α/βが乗算器19、20に出力される。次に、データ選択加減算回路21からは信号〔Yc-Rc×(α/β)〕、信号(Rc)、それに信号〔-Rc×(α/β)〕が出力される。さらに、定数選択回路6では定数Ky、Kfが選択され、これらの定数Ky、Kfが乗算器7、8に出力される。 <Correction process in area (2)> At this time, the output from each circuit is as follows. First, the constant selection circuit 18 selects a constant α / β and outputs the constant α / β to the multipliers 19 and 20. Next, the data selection addition / subtraction circuit 21 outputs a signal [Yc−Rc × (α / β)], a signal (Rc), and a signal [−Rc × (α / β)]. Further, the constant selection circuit 6 selects constants Ky and Kf and outputs these constants Ky and Kf to the multipliers 7 and 8.
 そして、これらの結果、データ選択加算回路11からは、まず、信号〔Rc×Kf〕が加算器12に出力されて信号Rに加算され、次に、信号-〔Yc-Rc×(α/β)〕×Ky-Kf×〔Rc×(α/β)〕が加算器14に出力されて信号Bに加算されることになる。 As a result, the data selection / addition circuit 11 first outputs the signal [Rc × Kf] to the adder 12 and adds it to the signal R, and then the signal − [Yc−Rc × (α / β )] × Ky−Kf × [Rc × (α / β)] is output to the adder 14 and added to the signal B.
 そこで、図3において、今度はC点を入力映像信号の座標とし、これをベクトルCで表わすと、このベクトルCは、Ye成分ベクトルY1と肌色成分ベクトルF2の合成で表される。 Therefore, in FIG. 3, when the point C is the coordinates of the input video signal and this is represented by a vector C, this vector C is represented by the synthesis of the Ye component vector Y1 and the skin color component vector F2.
 C=Y1+F2次に、Yeの彩度方向調整専用の利得定数をKyとし、肌色の彩度方向調整専用の利得定数をKfとすると、Yeの彩度方向の色補正には、|Y1|×KyをBから減算してやれば良く、肌色の彩度方向の色補正には、|F2|×Kfを肌色彩度方向に加算してやれぱ良い。 C = Y1 + F2 Next, let Yy be a gain constant dedicated to adjusting the saturation direction of Ye, and Kf be a gain constant dedicated to adjusting the saturation direction of skin color. For color correction in the saturation direction of Ye, | Y1 | × Ky may be subtracted from B. For color correction in the skin color saturation direction, | F2 | × Kf may be added in the skin color saturation direction.
 次に、これら|Y1|、|F2|の算出方法及び肌色彩度方向への加算方法については、上記した領域(1)のときと同じであり、従って、以下のようになる。C=Y×Yc+R×Rc=Y×Yc+(1/β)×(F-α×Y)×Rc =F×Rc/β+Y×(Yc-α×Rc/β)となり、よって|Y1|=Yc-α×Rc/β|F2|=Rc/βとなる。 Next, the calculation method of | Y1 | and | F2 | and the addition method in the direction of skin color saturation are the same as those in the above-described region (1), and thus are as follows. C = Y × Yc + R × Rc = Y × Yc + (1 / β) × (F−α × Y) × RcF = F × Rc / β + Y × (Yc−α × Rc / β), and thus | Y1 | = Yc −α × Rc / β | F2 | = Rc / β.
 ここで、F×Rc/βをベクトルRとベクトルBで表現すると、F×Rc/β=(α×(-B)+β×R)×Rc/β=-B×(α×Rc/β)+R×Rcとなる。 Here, when F × Rc / β is expressed by a vector R and a vector B, F × Rc / β = (α × (−B) + β × R) × Rc / β = −B × (α × Rc / β) + R × Rc.
 従って、以上の結果をまとめると、以下の通りとなる。すなわち、まず、Yeの彩度方向の色補正を行なう場合には、|Y1|×Ky=(Yc-α×Rc/β)×KyをBから減算すれば良い。次に、肌色の彩度方向の色補正を行なう場合には、|F2|×Kfを肌色彩度方向に加算するのであるが、このことは(-α×Rc/β)×KfをBに加算し、Rc×KfをRに加算することに等しい。 Therefore, the above results are summarized as follows. That is, when color correction in the saturation direction of Ye is performed, | Y1 | × Ky = (Yc−α × Rc / β) × Ky may be subtracted from B. Next, when performing color correction in the skin color saturation direction, | F2 | × Kf is added in the skin color saturation direction. This means that (−α × Rc / β) × Kf is set to B. It is equivalent to adding Rc × Kf to R.
 そこで、Rベクトルと肌色ベクトルの間の角度θを、上記した領域(1)のときと同じく20°とすると、α/β=0.5321になるので、これを≒0.5とすると、このときの補正はYeの彩度方向の色補正を行なう場合、(Yc-0.5Rc)×KyをBから減算すれば良く、肌色の彩度方向の色補正を行なう場合、-0.5×Rc×KfをBに加算し、Rc×KfをRに加算してやれば良い。 Therefore, if the angle θ between the R vector and the skin color vector is set to 20 ° as in the above-described region (1), α / β = 0.5321 is obtained. When correcting the color in the saturation direction of Ye, (Yc−0.5Rc) × Ky may be subtracted from B, and when correcting the color in the saturation direction of the skin color, −0.5 × Rc × Kf may be added to B and Rc × Kf may be added to R.
 以上は、彩度方向の補正についての説明であるが、色度方向の補正に対しても同様の概念が適用できるため、説明は省略する。 The above is the description about the correction in the saturation direction, but the description is omitted because the same concept can be applied to the correction in the chromaticity direction.
 上記領域(1)及び領域(2)の各項で説明した補正によって得られる特性を示すと、図4の通りになる。この図4の特性は、Rの彩度方向の色補正、Yeの彩度方向の色補正、及び肌色の彩度方向の色補正のそれぞれの利得特性を重ねて示したもので、図示のように、肌色の彩度方向利得定数Kfを制御してやれば、Rの彩度方向利得定数Krと、Yeの彩度方向の利得定数Kyに関係なく、肌色の彩度方向の色補正を行なえることが判る。 The characteristics obtained by the correction described in the above sections (1) and (2) are shown in FIG. The characteristics shown in FIG. 4 are obtained by superimposing gain characteristics of color correction in the saturation direction of R, color correction in the saturation direction of Ye, and color correction in the saturation direction of the skin color. In addition, if the skin color saturation direction gain constant Kf is controlled, color correction in the skin color saturation direction can be performed regardless of the R saturation direction gain constant Kr and the Ye saturation direction gain constant Ky. I understand.
 従って、この実施形態例によれば、RとYeへの影響を最小限に押さえ、肌色に対して有効な色調補正を行なうことができ、テレビジョンカメラを切換えたときなどでの違和感を確実に無くすことができる。 Therefore, according to this embodiment, the influence on R and Ye can be suppressed to a minimum, and the effective tone correction can be performed on the skin color, so that a sense of incongruity can be ensured when the television camera is switched. It can be lost.
 次に、図5は、本発明の他の実施形態例による補正特性を示したもので、この実施形態例では、肌色軸Fを中心とした利得特性を持つ補正関数を生成し、これを取り出す。これを従来の機能に加算したものが、この図5の実施形態例で、この方式によれば、従来方式で補正しきれない領域を補うような形で補正することができる。 Next, FIG. 5 shows correction characteristics according to another embodiment of the present invention. In this embodiment, a correction function having a gain characteristic with the skin color axis F as the center is generated and extracted. . This is added to the conventional function in the embodiment shown in FIG. 5. According to this method, correction can be performed in such a way as to compensate for an area that cannot be corrected by the conventional method.
 なお、上記実施形態例では、色相の範囲をRとYeに限定して説明したが、本発明は、任意の色相に適用可能なことは、言うまでもなく、また、基準色の種類や数についても任意に設定可能なことは、言うまでもない。 In the above embodiment, the hue range is limited to R and Ye. However, it goes without saying that the present invention can be applied to any hue, and the type and number of reference colors are also applicable. Needless to say, it can be set arbitrarily.
 本発明によれば、テニスコートの青色やサッカーグラウンドの緑色等の特定の色相部分の輝度レベルが一定になるようにレンズアイリスを制御することを実現でき、スポーツ中継の放送用カメラを実現することができる。 According to the present invention, it is possible to control the lens iris so that the brightness level of a specific hue portion such as the blue color of the tennis court or the green color of the soccer ground is constant, and to realize a sports broadcast broadcasting camera. Can do.
1,2,3:演算・比較器、4:色相領域判定回路、5:原色成分量及び補色成分量算出回路、6:定数選択回路、7,8:乗算器9,10:補数器(-1倍乗算器)、11:データ選択加算回路12,13,14:加算器、15:中間色色相設定回路、16:原色/補色領域判定回路、17:α/β、α/β算出回路、18:定数選択回路、19,20:乗算器、21:データ選択加減算回路30:テレビジョンカメラ、31:レンズ、32:プリズム、33R,33G,33B:CCD(電荷結合素子)、34R,34G,34B:AFE(アナログフロントエンドプロセッサ)、35:色相検出補正機能付き映像信号処理部、37:パラレル-シリアル変換部、39:CPU、40:ビューファインダ、  1, 2, 3: arithmetic / comparator, 4: hue area determination circuit, 5: primary color component amount and complementary color component amount calculation circuit, 6: constant selection circuit, 7, 8: multiplier 9, 10: complement (- 11: data selection adder circuits 12, 13, 14: adder, 15: intermediate hue setting circuit, 16: primary color / complementary color area determination circuit, 17: α / β, α / β calculation circuit, 18 : Constant selection circuit, 19, 20: multiplier, 21: data selection addition / subtraction circuit 30: television camera, 31: lens, 32: prism, 33R, 33G, 33B: CCD (charge coupled device), 34R, 34G, 34B : AFE (Analog Front End Processor), 35: Video signal processor with hue detection and correction function, 37: Parallel-serial converter, 39: CPU, 40: Viewfinder,

Claims (3)

  1.  画素ごとに特定の色相を検出する手段とレンズのアイリスを制御する手段とを有する撮像装置において、
     前記特定の色相の内の任意の色相領域の画素の輝度信号レベルを検出する手段と、前記検出した任意の色相領域の画素の輝度信号レベルが一定になるようにレンズのアイリスを制御する手段とを有し、
     前記特定の色相の内の任意の色相領域の画素の輝度信号レベルを検出し、前記検出した任意の色相領域の画素の輝度信号レベルが一定になるようにレンズのアイリスを制御することを特徴とする撮像装置。
    In an imaging apparatus having means for detecting a specific hue for each pixel and means for controlling the iris of the lens,
    Means for detecting a luminance signal level of a pixel in an arbitrary hue region in the specific hue, and means for controlling an iris of the lens so that the detected luminance signal level of the pixel in the arbitrary hue region is constant; Have
    Detecting a luminance signal level of a pixel in an arbitrary hue region in the specific hue, and controlling an iris of the lens so that the detected luminance signal level of the pixel in the arbitrary hue region is constant; An imaging device.
  2.  請求項1の撮像装置において、
     (R-G、R-B、G-Bの)色差演算と該色差信号レベルの検出により、(R、G、Bの)原色色相領域と(Ye、Cy、Mgの)補色色相領域の特定の色相の内の任意の色相領域の画素の輝度信号レベルを検出する検出手段と、
     (R-G、R-B、G-Bの)色差演算と該色差信号レベルの検出および原色と補色と中間色の定数選択により、(R、G、Bの)原色色相領域と(Ye、Cy、Mgの)補色色相領域と中間色色相領域の特定の色相の内の任意の色相領域の画素の輝度信号レベルを検出する検出手段と
     の少なくとも一方の検出手段を有することを特徴とする撮像装置。
    The imaging device according to claim 1.
    Identification of primary hue areas (R, G, B) and complementary hue areas (Ye, Cy, Mg) by color difference calculation (RG, RB, GB) and detection of the color difference signal level Detecting means for detecting a luminance signal level of a pixel in an arbitrary hue region in the hue of
    By calculating the color difference (RG, RB, GB), detecting the color difference signal level, and selecting constants of the primary color, complementary color, and intermediate color, the primary color hue region (R, G, B) and the (Ye, Cy) An image pickup apparatus comprising: at least one of detection means for detecting a luminance signal level of a pixel in an arbitrary hue area within a specific hue of a complementary hue area and an intermediate hue area of Mg).
  3.  請求項1乃至請求項2の撮像装置において、
     前記撮像装置の設定用メニューや前記特定の色相の内の任意の色相領域を表示する画像表示部を有し、
     画像表示部で前記特定の色相の内の任意の色相領域を選択する手段を有し、
     前記画像表示部に前記撮像装置の設定用メニューや前記特定の色相の内の任意の色相領域を表示して、前記特定の色相を選択する撮像装置。
    The imaging apparatus according to claim 1 or 2,
    An image display unit for displaying a menu for setting the imaging device and an arbitrary hue region in the specific hue;
    Means for selecting an arbitrary hue region of the specific hue in the image display unit;
    An imaging apparatus for selecting the specific hue by displaying a menu for setting the imaging apparatus or an arbitrary hue area in the specific hue on the image display unit.
PCT/JP2014/054887 2013-03-13 2014-02-27 Imaging device WO2014141891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015505384A JP5921761B2 (en) 2013-03-13 2014-02-27 Imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-050917 2013-03-13
JP2013050917 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014141891A1 true WO2014141891A1 (en) 2014-09-18

Family

ID=51536566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054887 WO2014141891A1 (en) 2013-03-13 2014-02-27 Imaging device

Country Status (2)

Country Link
JP (1) JP5921761B2 (en)
WO (1) WO2014141891A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141316A1 (en) * 2016-02-15 2017-08-24 株式会社日立国際電気 Imaging device and color correction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318773A (en) * 1991-04-18 1992-11-10 Sharp Corp Exposure controller
JPH08172572A (en) * 1994-12-19 1996-07-02 Sony Corp Image pickup device
JPH09247701A (en) * 1996-03-04 1997-09-19 Hitachi Denshi Ltd Color tone correction device
WO2010044432A1 (en) * 2008-10-17 2010-04-22 オリンパスメディカルシステムズ株式会社 Endoscope system and endoscopic image processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318773A (en) * 1991-04-18 1992-11-10 Sharp Corp Exposure controller
JPH08172572A (en) * 1994-12-19 1996-07-02 Sony Corp Image pickup device
JPH09247701A (en) * 1996-03-04 1997-09-19 Hitachi Denshi Ltd Color tone correction device
WO2010044432A1 (en) * 2008-10-17 2010-04-22 オリンパスメディカルシステムズ株式会社 Endoscope system and endoscopic image processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141316A1 (en) * 2016-02-15 2017-08-24 株式会社日立国際電気 Imaging device and color correction method

Also Published As

Publication number Publication date
JP5921761B2 (en) 2016-05-24
JPWO2014141891A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6027242B2 (en) Imaging device
WO2011132618A1 (en) Imaging device, captured image processing method, and captured image processing program
JP2013126222A (en) Auto white balance adjustment system
US20070229676A1 (en) Physical quantity interpolating method, and color signal processing circuit and camera system using the same
EP2846532A1 (en) System, device and method for displaying a harmonised combined image
JP2010114667A (en) Automatic white balance adjustment system
JP2005109991A (en) Signal processing method and device, and imaging device
US8363151B2 (en) Focus-adjustment signal generating apparatus and method, and imaging apparatus and method, with manual focus adjustments
JP5921761B2 (en) Imaging device
JP4892909B2 (en) Signal processing method, signal processing circuit, and camera system using the same
JP6590955B2 (en) Imaging apparatus and color correction method
JP2003304556A (en) Video signal processing apparatus and video signal processing method
TWI479878B (en) Correction of pseudo - color pixels in digital image
JP6635578B2 (en) Imaging device and viewfinder
KR20110017274A (en) Method for correcting image
WO2015056514A1 (en) Imaging device and color-correction method
JP2010041507A (en) View finder display circuit
Ray et al. Computation and correction of dynamic white balance in the automotive cameras
JPH03250992A (en) White balance adjustment device
JP6753787B2 (en) Imaging device
EP1938623A1 (en) Improved chrominance filter for white balance statistics
WO2018061615A1 (en) Imaging apparatus
JP3928223B2 (en) Image display device
JP3348311B2 (en) Video signal processing apparatus and method
JPH11177881A (en) Image pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762885

Country of ref document: EP

Kind code of ref document: A1