[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014141668A1 - Magnetic device - Google Patents

Magnetic device Download PDF

Info

Publication number
WO2014141668A1
WO2014141668A1 PCT/JP2014/001319 JP2014001319W WO2014141668A1 WO 2014141668 A1 WO2014141668 A1 WO 2014141668A1 JP 2014001319 W JP2014001319 W JP 2014001319W WO 2014141668 A1 WO2014141668 A1 WO 2014141668A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
patterns
surface layer
heat
heat radiation
Prior art date
Application number
PCT/JP2014/001319
Other languages
French (fr)
Japanese (ja)
Inventor
崇介 古井
俊之 竹内
Original Assignee
オムロンオートモーティブエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンオートモーティブエレクトロニクス株式会社 filed Critical オムロンオートモーティブエレクトロニクス株式会社
Publication of WO2014141668A1 publication Critical patent/WO2014141668A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2819Planar transformers with printed windings, e.g. surrounded by two cores and to be mounted on printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10409Screws
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink

Definitions

  • the present invention relates to a magnetic device such as a choke coil or a transformer including a core made of a magnetic material and a substrate on which a coil pattern is formed.
  • a switching power supply device such as a DC-DC converter (DC-DC converter) that switches a high-voltage direct current to a alternating current after switching to a low-voltage direct current.
  • the switching power supply device uses a magnetic device such as a choke coil or a transformer.
  • Patent Documents 1 to 6 disclose a magnetic device including a coil pattern in which a coil winding is formed on a substrate.
  • a core made of a magnetic material penetrates the substrate.
  • the substrate is made of an insulator and has a plurality of layers.
  • a coil pattern is formed on each layer so as to be wound around the core.
  • Coil patterns of different layers are connected by through holes or the like.
  • the coil pattern and the through hole are made of a conductor such as copper.
  • a substrate is composed of a pair of insulating layers and a magnetic layer sandwiched between the insulating layers.
  • a coil pattern made of a conductor is formed on the magnetic layer. The coil pattern is wound a plurality of times in the plate surface direction and the thickness direction of the substrate.
  • Patent Document 1 When a current flows through the coil pattern, heat is generated from the coil pattern and the substrate temperature rises.
  • the coil pattern is spread over almost the entire area of each layer of the substrate.
  • patent document 3 the width
  • Patent Document 6 a heat-dissipating conductor layer is provided on the inner side of the coil pattern, the heat-transmitting penetrating conductor penetrating the magnetic layer and the lower insulating layer, and connected to the heat-transmitting penetrating conductor on the lower surface of the substrate. Is provided.
  • JP 2008-205350 A Japanese Unexamined Patent Publication No. 7-38262 JP-A-7-86755 Reissue WO2010 / 026690 JP-A-8-69935 JP 2008-177516 A
  • An object of the present invention is to provide a magnetic device that can easily dissipate heat from a substrate provided with a coil pattern without increasing the size.
  • a magnetic device includes a core made of a magnetic material, a substrate made of an insulator, through which the core penetrates, and a conductor provided on the substrate including a coil pattern wound around the core. .
  • a radiator is provided on the back side of the substrate, and the area of the conductor provided on the back layer of the substrate is larger than the area of the conductor provided on the surface layer of the substrate.
  • the heat of the substrate on which the coil pattern is provided can be easily transferred from the conductor having a large area provided on the back surface layer to the radiator, so that the substrate can be easily dissipated.
  • the width of the coil pattern does not have to be increased over the entire length of the coil pattern so that the amount of generated heat is reduced, and the magnetic device can be prevented from being enlarged.
  • the conductor provided on the front surface layer and the back surface layer of the substrate may include a coil pattern and a heat radiation pattern formed integrally or separately from the coil pattern. Good.
  • the substrate and the radiator may be fixed with screws in a region where no conductor exists on the surface layer of the substrate.
  • an insulating sheet having heat conductivity may be sandwiched between the substrate and the radiator.
  • the present invention it is possible to provide a magnetic device that can easily dissipate heat from a substrate provided with a coil pattern without increasing its size.
  • FIG. 1 is an exploded perspective view of a magnetic device according to a first embodiment of the present invention. It is a top view of each layer of the board
  • FIG. 1 is a configuration diagram of the switching power supply device 100.
  • the switching power supply device 100 is a DC-DC converter for an electric vehicle (or a hybrid car), which switches a high voltage direct current to an alternating current and then converts it to a low voltage direct current. This will be described in detail below.
  • the high voltage battery 50 is connected to the input terminals T1 and T2 of the switching power supply apparatus 100.
  • the voltage of the high voltage battery 50 is, for example, DC 220V to DC 400V.
  • the DC voltage Vi of the high-voltage battery 50 input to the input terminals T1 and T2 is applied to the switching circuit 52 after noise is removed by the filter circuit 51.
  • the switching circuit 52 is formed of a known circuit having, for example, an FET (Field Effect Transistor).
  • the FET is turned on / off based on a PWM (Pulse Width Modulation: pulse width modulation) signal from the PWM drive unit 58 to perform a switching operation on the DC voltage.
  • PWM Pulse Width Modulation: pulse width modulation
  • the pulse voltage is given to the rectifier circuit 54 via the transformer 53.
  • the rectifier circuit 54 rectifies the pulse voltage by a pair of diodes D1 and D2.
  • the voltage rectified by the rectifier circuit 54 is input to the smoothing circuit 55.
  • the smoothing circuit 55 smoothes the rectified voltage by the filtering action of the choke coil L and the capacitor C, and outputs the smoothed voltage to the output terminals T3 and T4 as a low DC voltage.
  • the low voltage battery 60 connected to the output terminals T3 and T4 is charged to, for example, DC12V.
  • the DC voltage of the low-voltage battery 60 is supplied to various on-vehicle electrical components (not shown).
  • the output voltage Vo of the smoothing circuit 55 is detected by the output voltage detection circuit 59 and then output to the PWM drive unit 58.
  • the PWM drive unit 58 calculates the duty ratio of the PWM signal based on the output voltage Vo, generates a PWM signal corresponding to the duty ratio, and outputs the PWM signal to the gate of the FET of the switching circuit 52. As a result, feedback control is performed to keep the output voltage constant.
  • the control unit 57 controls the operation of the PWM drive unit 58.
  • a power source 56 is connected to the output side of the filter circuit 51.
  • the power supply 56 steps down the voltage of the high voltage battery 50 and supplies a power supply voltage (for example, DC 12 V) to the control unit 57.
  • magnetic devices 1 and 1 'described later are used as the choke coil L of the smoothing circuit 55.
  • a large current of, for example, DC 150A flows through the choke coil L.
  • terminals 6i and 6o for power input / output are provided.
  • FIG. 2 is an exploded perspective view of the magnetic device 1.
  • FIG. 3 is a plan view of each layer of the substrate 3 of the magnetic device 1.
  • 4A and 4B are cross-sectional views of the magnetic device 1, wherein FIG. 4A shows the XX cross section of FIG. 3, and FIG. 4B shows the YY cross section of FIG.
  • the cores 2a and 2b are composed of two pairs of an E-shaped upper core 2a and an I-shaped lower core 2b.
  • the cores 2a and 2b are made of a magnetic material such as ferrite or amorphous metal.
  • the upper core 2a has three convex portions 2m, 2L, and 2r so as to protrude downward.
  • the left and right protrusions 2L and 2r have a larger amount of protrusion than the center protrusion 2m.
  • the lower ends of the left and right convex portions 2L, 2r of the upper core 2a are brought into close contact with the upper surface of the lower core 2b, and the cores 2a, 2b are combined.
  • a gap of a predetermined size is provided on the upper surface of the convex portion 2m of the upper core 2a and the upper surface of the lower core 2b in order to improve the DC superimposition characteristics.
  • the cores 2a and 2b are fixed by fixing means such as screws and metal fittings (not shown).
  • the lower core 2 b is fitted into a recess 10 k (FIG. 2) provided on the upper side of the heat sink 10.
  • a fin 10 f is provided on the lower side of the heat sink 10.
  • the heat sink 10 is made of metal and is an example of the “heat radiator” of the present invention.
  • the substrate 3 is composed of a thick copper foil substrate in which a pattern is formed of a thick copper foil (conductor) on each layer of a thin plate-like base material made of an insulator.
  • other electronic components and circuits are not provided on the substrate 3, but when the magnetic device 1 is actually used in the switching power supply device 100 of FIG. 1, the magnetic device 1 and the switching power supply device are provided on the same substrate. 100 other electronic components and circuits are provided (the same applies to a magnetic device 1 ′ described later).
  • a surface layer L1 as shown in FIG. 3A is provided on the surface of the substrate 3 (the upper surface in FIGS. 2 and 4).
  • a back surface layer L3 as shown in FIG. 3C is provided on the back surface of the substrate 3 (the bottom surface in FIGS. 2 and 4).
  • an intermediate layer L2 as shown in FIG. 3B is provided between the front surface layer L1 and the back surface layer L3. That is, the substrate 3 has three layers L1, L2, and L3 that can form a circuit.
  • the substrate 3 is provided with a plurality of through holes 3m, 3L, 3r, and 3a. Among them, the convex portions 2m, 2L, and 2r of the core 2a are inserted into the large-diameter through holes 3m, 3L, and 3r, respectively, as shown in FIGS. That is, the convex portions 2m, 2L, and 2r of the core 2a penetrate the substrate 3.
  • Each screw 11 is inserted into the plurality of small diameter through holes 3a as shown in FIG.
  • the back surface (back surface layer L3) of the substrate 3 is opposed to the upper surface of the heat sink 10 (the surface opposite to the fin 10f). Then, the screws 11 are passed through the through holes 3 a from the surface (surface layer L 1) side of the substrate 3 and screwed into the screw holes 10 a of the heat sink 10. Thereby, as shown in FIG. 4, the heat sink 10 is fixed to the back surface side of the board
  • An insulating sheet 12 having heat conductivity is sandwiched between the substrate 3 and the heat sink 10. Since the insulating sheet 12 has flexibility, it is in close contact with the substrate 3 and the heat sink 10 without a gap.
  • the substrate 3 is provided with conductors such as through holes 8a, 8d, 9a to 9d, pads 8b and 8c, terminals 6i and 6o, patterns 4a to 4f, 5a to 5e, and pins 7a to 7f. It has been.
  • the through holes 8a, 8d, 9a to 9d connect the patterns 4a to 4f and 5c to 5e in the different layers L1, L2, and L3.
  • the plurality of through holes 8a connect the patterns 4a and 4b of the upper layer L1 to the other layers L2 and L3.
  • Each through hole 8d connects the upper layer L1 and the other layers L2, L3, connects the patterns 4a, 4b of the upper layer L1 and the pattern 5e of the lower layer L3, and connects the patterns 4c, 4d of the intermediate layer L2 and the lower layer L3.
  • the patterns 5c and 5d are connected.
  • the through holes 9a and 9d connect the patterns 4a and 4b of the upper layer L1 and the patterns 4c and 4d of the intermediate layer L2.
  • the through holes 9b and 9c connect the patterns 4c and 4d of the intermediate layer L2 and the pattern 4e of the lower layer L3.
  • one through hole 8a has a power input terminal 6i embedded therein.
  • a power output terminal 6o is embedded in the other through hole 8a.
  • Terminals 6i and 6o are made of copper pins.
  • a pad 8b made of copper foil is provided around the terminals 6i and 6o of the front surface layer L1 and the back surface layer L3. Copper plating is applied to the surfaces of the terminals 6i and 6o and the pad 8b. The lower ends of the terminals 6i and 6o are in contact with the insulating sheet 12 (not shown).
  • the heat dissipation pins 7a to 7f are embedded in the plurality of large-diameter through holes 8d.
  • the radiating pins 7a to 7f are made of copper pins.
  • a pad 8c made of copper foil is provided around the heat radiation pins 7a to 7f of the front surface layer L1 and the back surface layer L3. Copper plating is applied to the surfaces of the heat radiation pins 7a to 7f and the pad 8c.
  • the lower ends of the heat radiation pins 7a to 7f are in contact with the insulating sheet 12 (see FIG. 4A).
  • each layer L1, L2, L3 of the substrate 3 coil patterns 4a to 4e and heat radiation patterns 5a to 5e are provided.
  • Each pattern 4a to 4e, 5a to 5e is made of copper foil.
  • the surfaces of the patterns 4a to 4e and 5a to 5e of the surface layer L1 are subjected to insulation processing.
  • the width, thickness, and cross-sectional area of the coil patterns 4a to 4e can suppress the amount of heat generated from the coil patterns 4a to 4e to some extent even when a predetermined large current (for example, DC150A) flows, and the coil patterns 4a to 4e. It is set to be able to dissipate heat from the surface.
  • a predetermined large current for example, DC150A
  • the coil pattern 4a is wound once in the four directions around the convex portion 2L.
  • the coil pattern 4b is wound once in four directions around the convex portion 2r.
  • the coil pattern 4c is wound once in the four directions around the convex portion 2L.
  • the coil pattern 4d is wound once in the four directions around the convex portion 2r.
  • the coil pattern 4e is wound once in the four directions around the convex portion 2L, and then wound once in the three directions around the convex portion 2m. Further, it is wound once in four directions around the convex portion 2r.
  • One end of the coil pattern 4a and one end of the coil pattern 4c are connected by a through hole 9a.
  • the other end of the coil pattern 4c and one end of the coil pattern 4e are connected by a through hole 9c.
  • the other end of the coil pattern 4e and one end of the coil pattern 4d are connected by a through hole 9b.
  • the other end of the coil pattern 4d and one end of the coil pattern 4b are connected by a through hole 9d.
  • Small patterns 4f are provided around the through holes 9b and 9c of the surface layer L1 and around the through holes 9a and 9d of the back layer L3 in order to facilitate the formation of the through holes 9a to 9d.
  • the respective through holes 9a to 9d and the small pattern 4f are connected.
  • the small pattern 4f is made of copper foil.
  • the surface of the small pattern 4f of the surface layer L1 is subjected to insulation processing. Copper plating is applied to the surface of each through hole 9a to 9d.
  • the inside of each through hole 9a-9d may be filled with copper or the like.
  • the other end of the coil pattern 4a is connected to a terminal 6i through a pad 8b.
  • the other end of the coil pattern 4b is connected to the terminal 6o through a pad 8b.
  • the coil patterns 4a to 4e of the substrate 3 are the surface layer L1, and after the first turn is wound around the convex portion 2L from the starting terminal 6i, the intermediate layer L2 is passed through the through hole 9a. Connected to. Next, in the intermediate layer L2, the second time is wound around the convex portion 2L, and then connected to the back surface layer L3 via the through hole 9c.
  • the coil pattern is the back surface layer L3, the third time is wound around the convex portion 2L, the fourth time is wound around the convex portion 2r via the periphery of the convex portion 2m, and then the through hole is formed. It is connected to the intermediate layer L2 via 9b.
  • the coil pattern is the intermediate layer L2, and after the fifth round is wound around the convex portion 2r, it is connected to the surface layer L1 via the through hole 9d.
  • the coil pattern is the surface layer L1, and after the sixth time is wound around the convex portion 2r, the coil pattern is connected to the terminal 6o that is the end point.
  • the current flowing through the magnetic device 1 is also the terminal 6i, the coil pattern 4a, the through hole 9a, the coil pattern 4c, the through hole 9c, the coil pattern 4e, the through hole 9b, the coil pattern 4d, the through hole 9d, and the coil pattern. 4b and terminal 6o in this order.
  • the heat radiation patterns 5a to 5e are formed separately from the patterns 4a to 4e and 4f in the empty areas around the coil patterns 4a to 4e and the small patterns 4f of the layers L1 to L3.
  • the pad 8b, the terminals 6i and 6o, the through hole 3a, and the screw 11 are insulated from the heat radiation patterns 5a to 5e.
  • the shortest insulation distance S1 between the through-hole 3a in the surface layer L1 and the heat radiation pattern 5a is larger than the shortest insulation distance S2 between the through-hole 3a in the intermediate layer L2 and the back layer L3 and the heat radiation patterns 5b to 5e. It is getting bigger.
  • the head portion 11a having a diameter larger than the shaft portion 11b of the screw 11 is disposed on the surface side of the substrate 3, so that the head portion 11a and the heat radiation pattern 5a are insulated. That is, the substrate 3 and the heat sink 10 are fixed by the screws 11 in the regions R1 and R2 where no conductor exists in each of the layers L1 to L3 of the substrate 3.
  • the heat radiation pin 7a and the surrounding pad 8c are connected to the coil pattern 4a. Further, the heat radiation pin 7b and the surrounding pad 8c are connected to the coil pattern 4b. The heat radiation pins 7c to 7f and the surrounding pad 8c are insulated from the heat radiation pattern 5a. Further, the coil patterns 4a, 4b and the small pattern 4f are insulated from the heat radiation pattern 5a.
  • heat radiation pins 7c and 7e are connected to the coil pattern 4c.
  • heat radiation pins 7d and 7f are connected to the coil pattern 4d.
  • the heat radiation pin 7a is insulated from the heat radiation pattern 5b.
  • the coil patterns 4c and 4d are insulated from the heat radiation pattern 5b.
  • the heat radiation pins 7a to 7f and the surrounding pads 8c are connected to the heat radiation patterns 5c to 5e. Further, the coil pattern 4e and the small pattern 4f are insulated from the heat radiation patterns 5c to 5e.
  • the coil patterns 4a and 4b on the front surface layer L1 and the left and right heat radiation patterns 5e on the back surface layer L3 are connected by the heat radiation pins 7a and 7b, respectively. Further, the coil patterns 4c and 4d of the intermediate layer L2 and the left and right heat radiation patterns 5c and 5d of the back surface layer L3 are connected by the heat radiation pins 7c to 7f, respectively.
  • the surface areas of the through holes 8a, 8d, 9a to 9d, which are conductors, the pads 8b and 8c, the terminals 6i and 6o, the small pattern 4f, and the pins 7a to 7f are the same. Further, the total surface area of the coil patterns 4a and 4b of the surface layer L1 is larger than the surface area of the coil pattern 4e of the back surface layer L3.
  • the total surface area of the heat radiation patterns 5c to 5e of the back surface layer L3 is larger than the surface area of the heat radiation pattern 5a of the front surface layer L1. This is apparent when attention is paid to the regions R1 and R2 around the screw 11.
  • the difference in surface area between the heat radiation patterns 5a, 5c to 5e of the surface layer L1 and the back surface layer L3 is larger than the difference in surface area between the coil patterns 4a, 4b, 4e.
  • the area of the conductor provided in the surface layer L1 (the total of the through holes 8a, 8d, 9a to 9d, the pads 8b and 8c, the terminals 6i and 6o, the patterns 4a, 4b, 4f, and 5a, and the pins 7a to 7f)
  • Area of the conductor provided in the back surface layer L3 (through holes 8a, 8d, 9a to 9d, pads 8b and 8c, terminals 6i and 6o, patterns 4e, 4f, 5c to 5e, and pins 7a to 7f). The total surface area) is wider.
  • the surface areas of the through holes 8a, 8d, 9a to 9d, the terminals 6i and 6o, and the pins 7a to 7f, which are conductors, are the same. Further, there is almost no difference in the surface areas of the patterns 4a, 4b, 4c, 4d, and 4f of the surface layer L1 and the intermediate layer L2. Further, the pads 8b and 8c in the surface layer L1 are not in the intermediate layer L2.
  • the surface area of the heat radiation pattern 5b of the intermediate layer L2 is larger than the surface area of the heat radiation pattern 5a of the surface layer L1. This is apparent when attention is paid to the regions R1 and R2 around the screw 11.
  • the difference in surface area between the heat radiation patterns 5a and 5b of the surface layer L1 and the intermediate layer L2 is larger than the surface area of the pads 8b and 8c.
  • the area of the conductor provided in the surface layer L1 (the total of the through holes 8a, 8d, 9a to 9d, the pads 8b and 8c, the terminals 6i and 6o, the patterns 4a, 4b, 4f, and 5a, and the pins 7a to 7f)
  • the surface area of the conductor provided in the intermediate layer L2 (the total surface area of the through holes 8a, 8d, 9a to 9d, the terminals 6i and 6o, the patterns 4c, 4d, and 5b, and the pins 7a to 7f) is wider than the surface area). It has become.
  • the coil patterns 4a to 4e serve as heat generation sources, and the temperature of the substrate 3 rises.
  • the heat of the substrate 3 is diffused to a conductor such as the heat radiation pattern 5a and is radiated on the surface of the conductor.
  • the heat of the substrate 3 is radiated by the heat sink 10 through the insulating sheet 12 through conductors that penetrate the substrate 3 such as the heat radiation pins 7a and 7f and the through holes 8d, 8a, and 9a to 9d.
  • the heat generation of the coil patterns 4a and 4b of the surface layer L1 is transmitted through the heat dissipation pins 7a and 7b, the terminals 6i and 6o, the through holes 8d, 8a, 9a and 9d, and the heat dissipation pattern 5e of the back surface layer L3, thereby Heat is radiated by the heat sink 10 through 12.
  • the through holes 9a to 9d also function as thermal vias.
  • the heat of the substrate 3 is diffused to a conductor such as the heat radiation pattern 5b.
  • the heat of the substrate 3 is radiated by the heat sink 10 through the insulating sheet 12 through conductors that penetrate the substrate 3 such as the heat radiation pins 7c to 7f and the through holes 8d and 9a to 9d.
  • the heat generation of the coil patterns 4c and 4d of the intermediate layer L2 is transmitted through the heat radiation pins 7c, 7d, 7e and 7f, the through holes 8d and 9a to 9d, and the heat radiation patterns 5c and 5d of the back surface layer L3, to the insulating sheet 12.
  • the heat sink 10 dissipates heat.
  • the heat of the substrate 3 is diffused to conductors such as the heat radiation patterns 5c to 5e and the heat radiation pins 7a to 7f.
  • the heat diffused in these conductors is radiated by the heat sink 10 through the insulating sheet 12.
  • the heat generated by the coil pattern 4e is radiated by the heat sink 10 through the insulating sheet 12 from the surface of the coil pattern 4e.
  • the heat of the substrate 3 provided with the coil patterns 4a to 4e is easily transferred to the heat sink 10 from the conductor having a large area provided on the back surface layer L3. can do. Thereby, heat generation of the coil patterns 4a to 4e is allowed. As a result, the width of the coil patterns 4a to 4e does not have to be increased over the entire length of the coil patterns 4a to 4e so that the heat generation amount is reduced, and the magnetic device 1 can be prevented from being enlarged.
  • the heat of the substrate 3 can be radiated from the front surface side and the back surface side of the substrate 3.
  • heat can be efficiently transferred to the heat sink 10 from the surface of the coil pattern 4e and the heat radiation patterns 5c to 5e to be radiated.
  • heat can be radiated from the surfaces of the coil patterns 4a and 4b and the heat radiation pattern 5a.
  • the screws 11 and the conductors of the substrate 3 can be securely connected even if the screws 11 are not insulated. Can be insulated.
  • the head 11a of the screw 11 on the surface layer L1 side of the substrate 3 and providing a region R1 in which no conductor exists around the head 11a, the back surface layer L3 from the area of the conductor of the surface layer L1.
  • the area of the conductor can be easily increased.
  • the substrate 3 and the heat sink 10 can be insulated without applying insulation processing to the back surface layer L3 of the substrate 3, The heat of the substrate 3 can be transferred to the heat sink 10.
  • the present invention is not limited to this.
  • a heat radiation pattern integrated with the coil pattern may be provided.
  • FIG. 5 is a plan view of each layer of the substrate 3 ′ of the magnetic device 1 ′ according to the second embodiment.
  • FIG. 6 is a cross-sectional view of the magnetic device 1 ′ and shows a ZZ cross-section of FIG. 5.
  • the cores 2 a ′ and 2 b ′ made of a magnetic material are composed of a pair of an upper core 2 a ′ having an E shape and a lower core 2 b ′ having an I shape.
  • the lower ends of the left and right convex portions 2L ′ and 2r ′ are brought into close contact with the upper surface of the lower core 2b ′, and the core 2a ′. 2b 'are combined.
  • a gap having a predetermined size is provided on the upper surface of the protrusion 2m 'of the upper core 2a' and the lower core 2b '.
  • the cores 2a 'and 2b' are fixed by fixing means such as screws or metal fittings (not shown).
  • the lower core 2 b ′ is fitted into a recess 10 k provided on the upper side of the heat sink 10.
  • the substrate 3 ' is composed of a thick copper foil substrate having a front surface layer L1', an intermediate layer L2 ', and a back surface layer L3'.
  • the central protrusion 2m 'of the cores 2a' and 2b ' passes through the through hole 3m' of the substrate 3 '.
  • the left and right notches 3k have left and right protrusions 2L 'and 2r' of the cores 2a 'and 2b'.
  • the back surface of the substrate 3 ′ is opposed to the upper surface of the heat sink 10, and as shown in FIG. 6, the screw 11 is passed through the through hole 3 a from the surface side of the substrate 3 ′ and screwed into the screw hole 10 a of the heat sink 10. Thereby, the heat sink 10 is fixed to the back surface side of the substrate 3 ′ in the proximity state.
  • An insulating sheet 12 is sandwiched between the substrate 3 ′ and the heat sink 10.
  • the substrate 3 ′ has through holes 8a, 8d, 9a ′, 9b ′, pads 8b, 8c, terminals 6i, 6o, patterns 4a ′, 4b ′, 4c ′, 4f ′, 5t 0.
  • Conductors such as ⁇ 5t 6 , 5s 0 ⁇ 5s 9 , and pins 7g 0 ⁇ 7g 3 are provided.
  • Terminals 6i and 6o are respectively embedded in the through holes 8a.
  • Pads 8b are provided around the terminals 6i and 6o of the surface layer L1 ′ and the back surface layer L3 ′.
  • Radiation pins 7g 0 to 7g 3 are embedded in the through holes 8d, respectively.
  • the heat radiation pins 7g 0 to 7g 3 are made of copper pins, and the surfaces thereof are plated with copper.
  • a pad 8c is provided around the heat radiation pins 7g 0 to 7g 3 of the surface layer L1 ′ and the back surface layer L3 ′. The lower ends of the radiating pins 7g 0 to 7g 3 are in contact with the insulating sheet 12.
  • each layer L1 ′ to L3 ′ coil patterns 4a ′ to 4c ′ and heat radiation patterns 5t 0 to 5t 6 and 5s 0 to 5s 9 are provided.
  • Each of the patterns 4a ′ to 4c ′, 5t 0 to 5t 6 , and 5s 0 to 5s 9 is made of a copper foil.
  • the surface of each pattern 4a ′ to 4c ′, 5t 0 to 5t 6 , 5s 0 to 5s 9 of the surface layer L1 ′ is subjected to insulation processing.
  • the width, thickness, and cross-sectional area of the coil patterns 4a ′ to 4c ′ can suppress the amount of heat generated from the coil patterns 4a ′ to 4c ′ to a certain extent even when a predetermined large current (for example, DC 150A) flows.
  • the heat radiation is set from the surface of the patterns 4a ′ to 4c ′.
  • the coil patterns 4a 'to 4c' are wound twice around the central convex portion 2m '.
  • One end of the coil pattern 4a 'and one end of the coil pattern 4b' are connected by a through hole 9a '.
  • the other end of the coil pattern 4b 'and one end of the coil pattern 4c' are connected by a through hole 9b '.
  • the other end of the coil pattern 4a ' is connected to the terminal 6o via the pad 8b on the surface layer L1'.
  • the other end of the coil pattern 4c ' is connected to the terminal 6i through the pad 8b on the back surface layer L3'.
  • Small patterns 4 f ′ made of copper foil are provided around the through hole 9 b ′ of the front surface layer L ⁇ b> 1 ′ and around the through hole 9 a ′ of the back surface layer L ⁇ b> 3 ′.
  • the respective through holes 9a 'and 9b' are connected to the small pattern 4f '.
  • the surface of the small pattern 4f 'of the surface layer L1' is subjected to insulation processing. Copper plating is applied to the surface of each through hole 9a ', 9b'.
  • the coil patterns 4a ′ to 4c ′ of the substrate 3 ′ are formed on the back surface layer L3 ′ after the first and second windings around the convex portion 2m ′ from the starting terminal 6i, and then through holes 9b. It is connected to the intermediate layer L2 'via'.
  • the coil pattern is the intermediate layer L2 ', and after the third and fourth turns are wound around the convex portion 2m', the coil pattern is connected to the surface layer L1 'through the through hole 9a'.
  • the coil pattern is connected to the terminal 6o which is the end point after the fifth and sixth turns are wound around the convex portion 2m 'on the surface layer L1'.
  • the current flowing through the magnetic device 1 ' also flows along the above-described normal path.
  • the heat radiation patterns 5t 0 to 5t 6 and 5s 0 to 5s 9 are formed in empty areas around the coil patterns 4a ′ to 4c ′ and the small patterns 4f ′ of the layers L1 ′ to L3 ′.
  • the heat radiation patterns 5t 0 to 5t 6 are formed integrally with the coil patterns 4a ′ to 4c ′ by extending the coil patterns 4a ′ to 4c ′.
  • the heat radiation patterns 5s 0 to 5s 9 are formed separately from the coil patterns 4a ′ to 4c ′, the small pattern 4f ′, and the heat radiation patterns 5t 0 to 5t 6 .
  • the heat radiation patterns 5s 0 to 5s 2 are insulated from each other, and are also insulated from the heat radiation patterns 5t 0 to 5t 2 and the coil pattern 4a ′.
  • the radiating pins 7g 0 and 7g 1 and the surrounding pads 8c are provided in the radiating patterns 5t 0 and 5t 1 respectively, and are connected to the radiating patterns 5t 0 to 5t 2 and the coil pattern 4a ′.
  • the surrounding terminal 6o pad 8b is provided on the heat radiation pattern 5t 2, heat radiation patterns 5t 0 ⁇ 5t 2 and coil patterns 4a' surface layer L1 is connected to the heat radiation pattern 5s 0 ⁇ 5s 2 and are insulated.
  • the terminal 6i and the surrounding pad 8b are insulated from the coil pattern 4a ′ and the heat radiation patterns 5t 0 to 5t 2 .
  • the radiating pins 7g 2 and 7g 3 and the surrounding pad 8c are provided in the radiating patterns 5s 1 and 5s 2 respectively, and are connected to the radiating patterns 5s 1 and 5s 2, and the radiating patterns 5s 0 , 5t 0 to 5t. 2 and the coil pattern 4a ′.
  • the heat radiation patterns 5s 3 , 5s 4 are insulated from each other, and further, the heat radiation patterns 5t 3 , 5t 4 and the coil pattern 4b ′ are also insulated.
  • the heat radiation pins 7g 2 and 7g 3 and the surrounding through holes 8d are provided in the heat radiation patterns 5t 3 and 5t 4 , respectively, and the heat radiation patterns 5t 3 and 5t 4 and the coil pattern 4b. 'It is connected to the.
  • Radiation fins 7 g 0, 7 g 1 and through holes 8d in the surroundings is provided respectively on the heat radiation pattern 5s 3, 5s 4, is connected to the heat radiation pattern 5s 3, 5s 4, the heat radiation pattern 5t 3, 5t 4 Ya It is insulated from the coil pattern 4b ′.
  • the heat radiation patterns 5s 5 to 5s 9 are insulated from each other, and are also insulated from the heat radiation patterns 5t 5 , 5t 6 and the coil pattern 4c ′.
  • the radiating pins 7g 0 to 7g 3 and the surrounding pads 8c are provided in the radiating patterns 5s 5 to 5s 8 , respectively, and are connected to the radiating patterns 5s 5 to 5s 8, and the radiating patterns 5s 9 , 5t 5 , 5t. 6 and the coil pattern 4c ′.
  • the back surface layer L3 ', pad 8b of the surrounding terminal 6o is radiating pattern 5s provided within 9 is connected to the heat radiation pattern 5s 9, the heat radiation pattern 5s 5 ⁇ 5s 8, 5t 5 , 5t 6 And insulated from the coil pattern 4c ′.
  • Pad 8b of the surrounding terminal 6i is provided on the heat radiation pattern 5t 5, the heat radiation pattern 5t 5, 5t 6, and is connected to the coil pattern 4c ', is insulated from the heat radiation pattern 5s 5 ⁇ 5s 9 .
  • the heat radiation pins 7g 0 and 7g 1 and the terminal 6o are used to form the coil pattern 4a ′ of the surface layer L1 ′, the heat radiation patterns 5t 0 to 5t 2 , the heat radiation patterns 5s 3 to 5s 4 of the intermediate layer L2 ′, and the back surface layer L3 ′.
  • the heat radiation patterns 5s 5 , 5t 6 and 5t 9 are connected.
  • the heat radiation pins 7g 2 and 7g 3 allow the heat radiation patterns 5s 1 and 5s 2 of the surface layer L1 ′, the coil pattern 4b ′ of the intermediate layer L2 ′, the heat radiation patterns 5t 3 and 5t 4 , and the heat radiation pattern of the back surface layer L3 ′. 5s 7 and 5s 8 are connected.
  • the through hole 3a and the screw 11 are insulated from the patterns 4a ′ to 4c ′, 4f ′, 5t 0 to 5t 6 , 5s 0 to 5s 9 . Yes.
  • the pattern 4a ′ of the surface layer L1 ′ is obtained from the pattern 4b ′, 4c ′, 4f ′, 5t 3 to 5t 6 , 5s 3 to 5s 9 of the intermediate layer L2 ′ and the back surface layer L3 ′ and the shortest insulation distance S2 of the through hole 3a 4f ′, 5t 0 to 5t 2 , 5s 0 to 5s 2 and the shortest insulation distance S1 between the through holes 3a are larger (see also FIG. 6).
  • the substrate 3 ′ and the heat sink 10 are fixed by screws 11 in the regions R1 and R2 where the conductor of the substrate 3 ′ does not exist.
  • the through holes 8a, 8d, 9a ′, 9b ′ which are conductors, the pads 8b, 8c, the terminals 6i, 6o, the small pattern 4f ′, and the surface areas of the pins 7g 0 to 7g 3 are the same.
  • the total surface area of the patterns 4a ′, 5t 0 to 5t 2 and 5s 0 to 5s 2 of the surface layer L1 ′ the total surface area of the patterns 4c ′, 5t 5 , 5t 6 and 5s 5 to 5s 9 of the back surface layer L3 ′. Is wider. This is apparent when attention is paid to the regions R1 and R2 around the screw 11.
  • the area of the conductor provided in the surface layer L1 ′ (through holes 8a, 8d, 9a ′, 9b ′, pads 8b, 8c, terminals 6i, 6o, patterns 4a ′, 4f ′, 5t 0 to 5t 2 , 5s 0 to 5s 2 and the total surface area of the pins 7g 0 to 7g 3 ), the area of the conductor (through holes 8a, 8d, 9a ′, 9b ′, pads 8b, 8c, terminals 6i, 6o, patterns 4c ′, 4f ′, 5t 5 , 5t 6 , 5s 5 to 5s 9 , and the total surface area of pins 7g 0 to 7g 3 ) are wider.
  • the heat generated when a large current is passed through the coil patterns 4a ′ to 4c ′ is easily transmitted to the heat sink 10 from the conductor having a large area provided on the back surface layer L3 ′ of the substrate 3 ′. Can be easily dissipated.
  • the coil patterns 4a ′ to 4c ′ and the heat radiation patterns 5t 0 to 5t 6 and 5s 0 to 5s 9 are provided on the respective layers L1 ′ to L3 ′ of the substrate 3 ′, the heat of the substrate 3 ′ is dispersed, Heat can be dissipated from the front side or the back side of the substrate 3 '.
  • the width of the coil patterns 4a ′ to 4c ′ does not have to be increased over the entire length of the coil patterns 4a ′ to 4c ′ so that the heat generation amount is reduced, and the magnetic device 1 ′ can be prevented from being enlarged.
  • the coil patterns 4a to 4e and 4a ′ to 4c ′ ′ are formed on all the layers L1 to L3 and L1 ′ to L3 ′ ′ of the substrates 3 and 3 ′. It is not limited to this.
  • a coil pattern may be formed on at least one layer of a substrate having a plurality of layers.
  • the coil pattern should just be wound by the at least 1 convex part of the core.
  • the back surface layers L3 and L3 ′ of the substrates 3 and 3 ′ are not subjected to insulation processing, and the insulating sheet 12 is sandwiched between the substrates 3 and 3 ′ and the heat sink 10.
  • the present invention is not limited to this.
  • the insulating layers 12 may be omitted by applying an insulating process to the back surface layers L3 and L3 '.
  • a heat transfer body is preferably sandwiched between the substrates 3 and 3 ′ and the heat sink 10.
  • the example which used the heat sink 10 was shown as a heat radiator in the above embodiment, this invention is not limited only to this, Other air-cooled type or water-cooled type heat radiators, or refrigerant
  • the present invention is not limited to this.
  • Through holes may be used instead of heat dissipation pins to transfer heat from one layer to another.
  • a heat dissipation pin may be used instead of the through hole.
  • the present invention can be applied to a magnetic device to be used. Further, the present invention can be applied to a magnetic device other than a vehicle, for example, used in a switching power supply device for electronic equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

This magnetic device (1) is provided with the following: a magnetic core (2a); an insulating substrate (3) through which protrusions (2m, 2L, 2r) on the core (2a) pass; and a conductor provided on the substrate (3). Said conductor contains coil patterns (4a, 4b, 4c, 4d, 4e), which wind around the aforementioned protrusions (2m, 2L, 2r), and heat-dissipating patterns (5a, 5b, 5c, 5d, 5e). A heat sink is provided on the bottom of the substrate (3), and the conductor surface area on a top-surface layer (L1) of the substrate (3) is made larger than the conductor surface area on a bottom-surface layer (L3) of the substrate (3).

Description

磁気デバイスMagnetic device
 本発明は、磁性体から成るコアと、コイルパターンが形成された基板とを備えた、チョークコイルやトランスなどの磁気デバイスに関する。 The present invention relates to a magnetic device such as a choke coil or a transformer including a core made of a magnetic material and a substrate on which a coil pattern is formed.
 たとえば、高電圧の直流をスイッチングして交流に変換した後、低電圧の直流に変換する、直流-直流変換装置(DC-DCコンバータ)のようなスイッチング電源装置がある。このスイッチング電源装置には、チョークコイルやトランスなどの磁気デバイスが使用されている。 For example, there is a switching power supply device such as a DC-DC converter (DC-DC converter) that switches a high-voltage direct current to a alternating current after switching to a low-voltage direct current. The switching power supply device uses a magnetic device such as a choke coil or a transformer.
 たとえば、特許文献1~6には、コイルの巻線が基板に形成されたコイルパターンから成る、磁気デバイスが開示されている。 For example, Patent Documents 1 to 6 disclose a magnetic device including a coil pattern in which a coil winding is formed on a substrate.
 特許文献1~5では、磁性体から成るコアが、基板を貫通している。基板は、絶縁体から成り、複数の層を有している。各層には、コアの周囲に巻回されるように、コイルパターンが形成されている。異なる層のコイルパターン同士は、スルーホールなどで接続されている。コイルパターンやスルーホールは、銅などの導体から成る。 In Patent Documents 1 to 5, a core made of a magnetic material penetrates the substrate. The substrate is made of an insulator and has a plurality of layers. A coil pattern is formed on each layer so as to be wound around the core. Coil patterns of different layers are connected by through holes or the like. The coil pattern and the through hole are made of a conductor such as copper.
 特許文献6では、基板が、一対の絶縁層と、該絶縁層に挟持された磁性体層とから構成されている。磁性体層には、導体から成るコイルパターンが形成されている。コイルパターンは、基板の板面方向や厚み方向に複数回巻回されている。 In Patent Document 6, a substrate is composed of a pair of insulating layers and a magnetic layer sandwiched between the insulating layers. A coil pattern made of a conductor is formed on the magnetic layer. The coil pattern is wound a plurality of times in the plate surface direction and the thickness direction of the substrate.
 コイルパターンに電流が流れると、コイルパターンから発熱し、基板の温度が上昇する。基板の放熱対策として、特許文献1では、コイルパターンを基板の各層のほぼ全域に広げている。また、特許文献3では、基板の各層のコイルパターンの一部の幅を広げて、放熱パターン部を設けている。また、特許文献6では、コイルパターンの内側に、磁性体層と下方の絶縁層とを貫通する伝熱用貫通導体を設け、基板の下面に伝熱用貫通導体と接続された放熱用導体層を設けている。 When a current flows through the coil pattern, heat is generated from the coil pattern and the substrate temperature rises. As a heat dissipation measure for the substrate, in Patent Document 1, the coil pattern is spread over almost the entire area of each layer of the substrate. Moreover, in patent document 3, the width | variety of a part of coil pattern of each layer of a board | substrate is expanded, and the thermal radiation pattern part is provided. In Patent Document 6, a heat-dissipating conductor layer is provided on the inner side of the coil pattern, the heat-transmitting penetrating conductor penetrating the magnetic layer and the lower insulating layer, and connected to the heat-transmitting penetrating conductor on the lower surface of the substrate. Is provided.
特開2008-205350号公報JP 2008-205350 A 特開平7-38262号公報Japanese Unexamined Patent Publication No. 7-38262 特開平7-86755号公報JP-A-7-86755 再表WO2010/026690号公報Reissue WO2010 / 026690 特開平8-69935号公報JP-A-8-69935 特開2008-177516号公報JP 2008-177516 A
 たとえば、大電流が流れるDC-DCコンバータで使用される磁気デバイスでは、コイルパターンに大電流が流れて、発熱量が多くなる。この発熱により、基板の温度が高くなると、磁気デバイスの特性の変動や性能の劣化を生じるおそれがある。また、同一基板上に他のICチップなどの電子部品が実装されている場合、電子部品の誤動作や破壊を生じるおそれがある。 For example, in a magnetic device used in a DC-DC converter through which a large current flows, a large current flows through the coil pattern and the amount of heat generation increases. If the temperature of the substrate increases due to this heat generation, the characteristics of the magnetic device may vary or the performance may deteriorate. In addition, when an electronic component such as another IC chip is mounted on the same substrate, there is a risk of malfunction or destruction of the electronic component.
 コイルパターンの全長に渡って幅を広げて、直流抵抗を低くすると、コイルパターンからの発熱量を低減することができる。しかし、それに伴って、磁気デバイスが大型化するため、小型化の要求に反することになる。 ¡By increasing the width over the entire length of the coil pattern and reducing the DC resistance, the amount of heat generated from the coil pattern can be reduced. However, this increases the size of the magnetic device, which is against the demand for miniaturization.
 本発明の課題は、大型化することなく、コイルパターンが設けられた基板を放熱させ易くすることができる磁気デバイスを提供することである。 An object of the present invention is to provide a magnetic device that can easily dissipate heat from a substrate provided with a coil pattern without increasing the size.
 本発明による磁気デバイスは、磁性体から成るコアと、絶縁体から成り、コアが貫通する基板と、コアの周囲に巻回されるコイルパターンを含む、基板に設けられた導体とを備えている。基板の裏面側に放熱器が設けられ、基板の表面層に設けられた導体の面積より、基板の裏面層に設けられた導体の面積の方が広くなっている。 A magnetic device according to the present invention includes a core made of a magnetic material, a substrate made of an insulator, through which the core penetrates, and a conductor provided on the substrate including a coil pattern wound around the core. . A radiator is provided on the back side of the substrate, and the area of the conductor provided on the back layer of the substrate is larger than the area of the conductor provided on the surface layer of the substrate.
 これにより、コイルパターンが設けられた基板の熱が、裏面層に設けられた面積が大きな導体から放熱器に伝わり易くなるので、基板を放熱させ易くすることができる。またこの結果、発熱量が低減されるように、コイルパターンの全長に渡って幅を広げなくてもよくなり、磁気デバイスが大型化するのを回避することができる。 Thereby, the heat of the substrate on which the coil pattern is provided can be easily transferred from the conductor having a large area provided on the back surface layer to the radiator, so that the substrate can be easily dissipated. As a result, the width of the coil pattern does not have to be increased over the entire length of the coil pattern so that the amount of generated heat is reduced, and the magnetic device can be prevented from being enlarged.
 また、本発明では、上記磁気デバイスにおいて、基板の表面層および裏面層に設けられた導体は、コイルパターンと、コイルパターンに対して一体または別体で形成された放熱パターンとを含んでいてもよい。 According to the present invention, in the above magnetic device, the conductor provided on the front surface layer and the back surface layer of the substrate may include a coil pattern and a heat radiation pattern formed integrally or separately from the coil pattern. Good.
 また、本発明では、上記磁気デバイスにおいて、基板と放熱器とを、基板の表面層における導体が存在しない領域でねじにより固定してもよい。 In the present invention, in the magnetic device, the substrate and the radiator may be fixed with screws in a region where no conductor exists on the surface layer of the substrate.
 さらに、本発明では、上記磁気デバイスにおいて、基板と放熱器との間に、伝熱性を有する絶縁シートを挟み込んでもよい。 Furthermore, in the present invention, in the magnetic device, an insulating sheet having heat conductivity may be sandwiched between the substrate and the radiator.
 本発明によれば、大型化することなく、コイルパターンが設けられた基板を放熱させ易くすることができる磁気デバイスを提供することが可能となる。 According to the present invention, it is possible to provide a magnetic device that can easily dissipate heat from a substrate provided with a coil pattern without increasing its size.
スイッチング電源装置の構成図である。It is a block diagram of a switching power supply device. 本発明の第1実施形態による磁気デバイスの分解斜視図である。1 is an exploded perspective view of a magnetic device according to a first embodiment of the present invention. 図2の基板の各層の平面図である。It is a top view of each layer of the board | substrate of FIG. 図2の磁気デバイスの断面図である。It is sectional drawing of the magnetic device of FIG. 本発明の第2実施形態による磁気デバイスの基板の各層の平面図である。It is a top view of each layer of a substrate of a magnetic device by a 2nd embodiment of the present invention. 図5の磁気デバイスの断面図である。It is sectional drawing of the magnetic device of FIG.
 以下、本発明の実施形態につき、図面を参照しながら説明する。各図において、同一の部分または対応する部分には、同一符号を付してある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
 図1は、スイッチング電源装置100の構成図である。スイッチング電源装置100は、電気自動車(またはハイブリッドカー)用のDC-DCコンバータであり、高電圧の直流をスイッチングして交流に変換した後、低電圧の直流に変換する。以下で詳述する。 FIG. 1 is a configuration diagram of the switching power supply device 100. The switching power supply device 100 is a DC-DC converter for an electric vehicle (or a hybrid car), which switches a high voltage direct current to an alternating current and then converts it to a low voltage direct current. This will be described in detail below.
 スイッチング電源装置100の入力端子T1、T2には、高電圧バッテリ50が接続されている。高電圧バッテリ50の電圧は、たとえばDC220V~DC400Vである。入力端子T1、T2へ入力される高電圧バッテリ50の直流電圧Viは、フィルタ回路51でノイズが除去された後、スイッチング回路52へ与えられる。 The high voltage battery 50 is connected to the input terminals T1 and T2 of the switching power supply apparatus 100. The voltage of the high voltage battery 50 is, for example, DC 220V to DC 400V. The DC voltage Vi of the high-voltage battery 50 input to the input terminals T1 and T2 is applied to the switching circuit 52 after noise is removed by the filter circuit 51.
 スイッチング回路52は、たとえばFET(Field Effect Transistor:電界効果トランジスタ)を有する公知の回路からなる。スイッチング回路52では、PWM駆動部58からのPWM(Pulse Width Modulation:パルス幅変調)信号に基づいて、FETをオンオフさせて、直流電圧に対してスイッチング動作を行う。これにより、直流電圧が高周波のパルス電圧に変換される。 The switching circuit 52 is formed of a known circuit having, for example, an FET (Field Effect Transistor). In the switching circuit 52, the FET is turned on / off based on a PWM (Pulse Width Modulation: pulse width modulation) signal from the PWM drive unit 58 to perform a switching operation on the DC voltage. As a result, the DC voltage is converted into a high-frequency pulse voltage.
 そのパルス電圧は、トランス53を介して、整流回路54へ与えられる。整流回路54は、一対のダイオードD1、D2によりパルス電圧を整流する。整流回路54で整流された電圧は、平滑回路55へ入力される。平滑回路55は、チョークコイルLおよびコンデンサCのフィルタ作用により整流電圧を平滑し、低電圧の直流電圧として出力端子T3、T4へ出力する。この直流電圧により、出力端子T3、T4に接続された低圧バッテリ60が、たとえばDC12Vに充電される。低圧バッテリ60の直流電圧は、図示しない各種の車載電装品へ供給される。 The pulse voltage is given to the rectifier circuit 54 via the transformer 53. The rectifier circuit 54 rectifies the pulse voltage by a pair of diodes D1 and D2. The voltage rectified by the rectifier circuit 54 is input to the smoothing circuit 55. The smoothing circuit 55 smoothes the rectified voltage by the filtering action of the choke coil L and the capacitor C, and outputs the smoothed voltage to the output terminals T3 and T4 as a low DC voltage. With this DC voltage, the low voltage battery 60 connected to the output terminals T3 and T4 is charged to, for example, DC12V. The DC voltage of the low-voltage battery 60 is supplied to various on-vehicle electrical components (not shown).
 また、平滑回路55の出力電圧Voは、出力電圧検出回路59により検出された後、PWM駆動部58へ出力される。PWM駆動部58は、出力電圧Voに基づいてPWM信号のデューティ比を演算し、該デューティ比に応じたPWM信号を生成して、スイッチング回路52のFETのゲートへ出力する。これにより、出力電圧を一定に保つためのフィードバック制御が行なわれる。 The output voltage Vo of the smoothing circuit 55 is detected by the output voltage detection circuit 59 and then output to the PWM drive unit 58. The PWM drive unit 58 calculates the duty ratio of the PWM signal based on the output voltage Vo, generates a PWM signal corresponding to the duty ratio, and outputs the PWM signal to the gate of the FET of the switching circuit 52. As a result, feedback control is performed to keep the output voltage constant.
 制御部57は、PWM駆動部58の動作を制御する。フィルタ回路51の出力側には、電源56が接続されている。電源56は、高電圧バッテリ50の電圧を降圧し、制御部57に電源電圧(たとえばDC12V)を供給する。 The control unit 57 controls the operation of the PWM drive unit 58. A power source 56 is connected to the output side of the filter circuit 51. The power supply 56 steps down the voltage of the high voltage battery 50 and supplies a power supply voltage (for example, DC 12 V) to the control unit 57.
 上記のスイッチング電源装置100において、平滑回路55のチョークコイルLとして、後述する磁気デバイス1、1’が用いられる。チョークコイルLには、たとえばDC150Aの大電流が流れる。チョークコイルLの両端には、電力入出力用の端子6i、6oが設けられている。 In the switching power supply apparatus 100 described above, magnetic devices 1 and 1 'described later are used as the choke coil L of the smoothing circuit 55. A large current of, for example, DC 150A flows through the choke coil L. At both ends of the choke coil L, terminals 6i and 6o for power input / output are provided.
 次に、第1実施形態による磁気デバイス1の構造を、図2~図4を参照しながら説明する。 Next, the structure of the magnetic device 1 according to the first embodiment will be described with reference to FIGS.
 図2は、磁気デバイス1の分解斜視図である。図3は、磁気デバイス1の基板3の各層の平面図である。図4は、磁気デバイス1の断面図であって、(a)に図3のX-X断面、(b)に図3のY-Y断面を示している。 FIG. 2 is an exploded perspective view of the magnetic device 1. FIG. 3 is a plan view of each layer of the substrate 3 of the magnetic device 1. 4A and 4B are cross-sectional views of the magnetic device 1, wherein FIG. 4A shows the XX cross section of FIG. 3, and FIG. 4B shows the YY cross section of FIG.
 図2に示すように、コア2a、2bは、E字形の上コア2aとI字形の下コア2bの、2個1対で構成されている。コア2a、2bは、フェライトまたはアモルファス金属などの磁性体から成る。 As shown in FIG. 2, the cores 2a and 2b are composed of two pairs of an E-shaped upper core 2a and an I-shaped lower core 2b. The cores 2a and 2b are made of a magnetic material such as ferrite or amorphous metal.
 上コア2aは、下方へ突出するように、3つの凸部2m、2L、2rを有している。中央の凸部2mに対して、左右の凸部2L、2rの方が、突出量が多くなっている。 The upper core 2a has three convex portions 2m, 2L, and 2r so as to protrude downward. The left and right protrusions 2L and 2r have a larger amount of protrusion than the center protrusion 2m.
 図4(a)に示すように、上コア2aの左右の凸部2L、2rの下端を、下コア2bの上面に密着させて、該コア2a、2bは組み合わされる。この状態では、直流重畳特性を高めるため、上コア2aの凸部2mと下コア2bの上面には所定の大きさの隙間が設けられている。これにより、磁気デバイス1に大電流を流したときでも、所定のインダクタンスを実現することができる(後述の磁気デバイス1’も同様)。コア2a、2b同士は、図示しないねじや金具などの固定手段により固定される。 As shown in FIG. 4A, the lower ends of the left and right convex portions 2L, 2r of the upper core 2a are brought into close contact with the upper surface of the lower core 2b, and the cores 2a, 2b are combined. In this state, a gap of a predetermined size is provided on the upper surface of the convex portion 2m of the upper core 2a and the upper surface of the lower core 2b in order to improve the DC superimposition characteristics. Thereby, even when a large current is passed through the magnetic device 1, a predetermined inductance can be realized (the same applies to a magnetic device 1 'described later). The cores 2a and 2b are fixed by fixing means such as screws and metal fittings (not shown).
 下コア2bは、ヒートシンク10の上側に設けられた凹部10k(図2)に嵌め込まれる。ヒートシンク10の下側には、フィン10fが設けられている。ヒートシンク10は、金属製であり、本発明の「放熱器」の一例である。 The lower core 2 b is fitted into a recess 10 k (FIG. 2) provided on the upper side of the heat sink 10. A fin 10 f is provided on the lower side of the heat sink 10. The heat sink 10 is made of metal and is an example of the “heat radiator” of the present invention.
 基板3は、絶縁体から成る薄板状の基材の各層に、厚みの厚い銅箔(導体)でパターンが形成された厚銅箔基板から構成されている。本実施形態では、基板3に他の電子部品や回路が設けられていないが、実際に磁気デバイス1を図1のスイッチング電源装置100で使用する場合、同一基板上に磁気デバイス1とスイッチング電源装置100の他の電子部品や回路が設けられる(後述の磁気デバイス1’も同様)。 The substrate 3 is composed of a thick copper foil substrate in which a pattern is formed of a thick copper foil (conductor) on each layer of a thin plate-like base material made of an insulator. In the present embodiment, other electronic components and circuits are not provided on the substrate 3, but when the magnetic device 1 is actually used in the switching power supply device 100 of FIG. 1, the magnetic device 1 and the switching power supply device are provided on the same substrate. 100 other electronic components and circuits are provided (the same applies to a magnetic device 1 ′ described later).
 基板3の表面(図2および図4で上面)には、図3(a)に示すような表面層L1が設けられている。基板3の裏面(図2および図4で下面)には、図3(c)に示すような裏面層L3が設けられている。図4に示すように、表面層L1と裏面層L3の間には、図3(b)に示すような中間層L2が設けられている。つまり、基板3は、回路を形成可能な3つの層L1、L2、L3を有している。 A surface layer L1 as shown in FIG. 3A is provided on the surface of the substrate 3 (the upper surface in FIGS. 2 and 4). A back surface layer L3 as shown in FIG. 3C is provided on the back surface of the substrate 3 (the bottom surface in FIGS. 2 and 4). As shown in FIG. 4, an intermediate layer L2 as shown in FIG. 3B is provided between the front surface layer L1 and the back surface layer L3. That is, the substrate 3 has three layers L1, L2, and L3 that can form a circuit.
 基板3には、複数の貫通孔3m、3L、3r、3aが設けられている。そのうち、大径の貫通孔3m、3L、3rには、図2~図4に示すように、コア2aの各凸部2m、2L、2rがそれぞれ挿入される。つまり、コア2aの凸部2m、2L、2rは、基板3を貫通する。 The substrate 3 is provided with a plurality of through holes 3m, 3L, 3r, and 3a. Among them, the convex portions 2m, 2L, and 2r of the core 2a are inserted into the large-diameter through holes 3m, 3L, and 3r, respectively, as shown in FIGS. That is, the convex portions 2m, 2L, and 2r of the core 2a penetrate the substrate 3.
 複数の小径の貫通孔3aには、図2に示すように、各ねじ11が挿入される。基板3の裏面(裏面層L3)をヒートシンク10の上面(フィン10fと反対の面)と対向させる。そして、各ねじ11を基板3の表面(表面層L1)側から各貫通孔3aに貫通させて、ヒートシンク10の各ねじ孔10aに螺合する。これにより、図4に示すように、基板3の裏面側にヒートシンク10が近接状態で固定される。 Each screw 11 is inserted into the plurality of small diameter through holes 3a as shown in FIG. The back surface (back surface layer L3) of the substrate 3 is opposed to the upper surface of the heat sink 10 (the surface opposite to the fin 10f). Then, the screws 11 are passed through the through holes 3 a from the surface (surface layer L 1) side of the substrate 3 and screwed into the screw holes 10 a of the heat sink 10. Thereby, as shown in FIG. 4, the heat sink 10 is fixed to the back surface side of the board | substrate 3 in the proximity | contact state.
 基板3とヒートシンク10の間には、伝熱性を有する絶縁シート12が挟み込まれる。絶縁シート12は可撓性を有しているため、基板3やヒートシンク10と隙間なく密着する。 An insulating sheet 12 having heat conductivity is sandwiched between the substrate 3 and the heat sink 10. Since the insulating sheet 12 has flexibility, it is in close contact with the substrate 3 and the heat sink 10 without a gap.
 図3に示すように、基板3には、スルーホール8a、8d、9a~9d、パッド8b、8c、端子6i、6o、パターン4a~4f、5a~5e、およびピン7a~7fといった導体が設けられている。 As shown in FIG. 3, the substrate 3 is provided with conductors such as through holes 8a, 8d, 9a to 9d, pads 8b and 8c, terminals 6i and 6o, patterns 4a to 4f, 5a to 5e, and pins 7a to 7f. It has been.
 スルーホール8a、8d、9a~9dは、異なる層L1、L2、L3にあるパターン4a~4f、5c~5e同士を接続する。詳しくは、複数のスルーホール8aは、上層L1のパターン4a、4bと他の層L2、L3を接続する。各スルーホール8dは、上層L1と他の層L2、L3を接続したり、上層L1のパターン4a、4bと下層L3のパターン5eを接続したり、中間層L2のパターン4c、4dと下層L3のパターン5c、5dを接続したりする。スルーホール9a、9dは上層L1のパターン4a、4bと中間層L2のパターン4c、4dを接続する。スルーホール9b、9cは中間層L2のパターン4c、4dと下層L3のパターン4eを接続する。 The through holes 8a, 8d, 9a to 9d connect the patterns 4a to 4f and 5c to 5e in the different layers L1, L2, and L3. Specifically, the plurality of through holes 8a connect the patterns 4a and 4b of the upper layer L1 to the other layers L2 and L3. Each through hole 8d connects the upper layer L1 and the other layers L2, L3, connects the patterns 4a, 4b of the upper layer L1 and the pattern 5e of the lower layer L3, and connects the patterns 4c, 4d of the intermediate layer L2 and the lower layer L3. The patterns 5c and 5d are connected. The through holes 9a and 9d connect the patterns 4a and 4b of the upper layer L1 and the patterns 4c and 4d of the intermediate layer L2. The through holes 9b and 9c connect the patterns 4c and 4d of the intermediate layer L2 and the pattern 4e of the lower layer L3.
 一対の大径のスルーホール8aのうち、一方のスルーホール8aには、電力入力用の端子6iが埋設されている。他方のスルーホール8aには、電力出力用の端子6oが埋設されている。端子6i、6oは、銅ピンから成る。表面層L1と裏面層L3の端子6i、6oの周囲には、銅箔から成るパッド8bが設けられている。端子6i、6oやパッド8bの表面には、銅めっきが施されている。端子6i、6oの下端は、絶縁シート12と接触している(図示省略)。 Among the pair of large-diameter through holes 8a, one through hole 8a has a power input terminal 6i embedded therein. A power output terminal 6o is embedded in the other through hole 8a. Terminals 6i and 6o are made of copper pins. A pad 8b made of copper foil is provided around the terminals 6i and 6o of the front surface layer L1 and the back surface layer L3. Copper plating is applied to the surfaces of the terminals 6i and 6o and the pad 8b. The lower ends of the terminals 6i and 6o are in contact with the insulating sheet 12 (not shown).
 複数の大径のスルーホール8dには、放熱ピン7a~7fがそれぞれ埋め込まれている。放熱ピン7a~7fは、銅ピンから成る。表面層L1と裏面層L3の放熱ピン7a~7fの周囲には、銅箔から成るパッド8cが設けられている。放熱ピン7a~7fやパッド8cの表面には、銅めっきが施されている。放熱ピン7a~7fの下端は、絶縁シート12と接触している(図4(a)参照)。 The heat dissipation pins 7a to 7f are embedded in the plurality of large-diameter through holes 8d. The radiating pins 7a to 7f are made of copper pins. A pad 8c made of copper foil is provided around the heat radiation pins 7a to 7f of the front surface layer L1 and the back surface layer L3. Copper plating is applied to the surfaces of the heat radiation pins 7a to 7f and the pad 8c. The lower ends of the heat radiation pins 7a to 7f are in contact with the insulating sheet 12 (see FIG. 4A).
 基板3の各層L1、L2、L3には、コイルパターン4a~4eと放熱パターン5a~5eが設けられている。各パターン4a~4e、5a~5eは、銅箔から成る。表面層L1の各パターン4a~4e、5a~5eの表面には、絶縁加工が施されている。コイルパターン4a~4eの幅や、厚みや、断面積は、所定の大電流(たとえばDC150A)を流しても、コイルパターン4a~4eからの発熱量をある程度に抑えて、しかもコイルパターン4a~4eの表面から放熱できるように設定されている。 In each layer L1, L2, L3 of the substrate 3, coil patterns 4a to 4e and heat radiation patterns 5a to 5e are provided. Each pattern 4a to 4e, 5a to 5e is made of copper foil. The surfaces of the patterns 4a to 4e and 5a to 5e of the surface layer L1 are subjected to insulation processing. The width, thickness, and cross-sectional area of the coil patterns 4a to 4e can suppress the amount of heat generated from the coil patterns 4a to 4e to some extent even when a predetermined large current (for example, DC150A) flows, and the coil patterns 4a to 4e. It is set to be able to dissipate heat from the surface.
 図3(a)に示すように、表面層L1において、コイルパターン4aは、凸部2Lの周囲4方向に1回巻回されている。コイルパターン4bは、凸部2rの周囲4方向に1回巻回されている。 As shown in FIG. 3A, in the surface layer L1, the coil pattern 4a is wound once in the four directions around the convex portion 2L. The coil pattern 4b is wound once in four directions around the convex portion 2r.
 図3(b)に示すように、中間層L2において、コイルパターン4cは、凸部2Lの周囲4方向に1回巻回されている。コイルパターン4dは、凸部2rの周囲4方向に1回巻回されている。 As shown in FIG. 3B, in the intermediate layer L2, the coil pattern 4c is wound once in the four directions around the convex portion 2L. The coil pattern 4d is wound once in the four directions around the convex portion 2r.
 図3(c)に示すように、裏面層L3において、コイルパターン4eは、凸部2Lの周囲4方向に1回巻回されてから、凸部2mの周囲3方向に1回巻回され、さらに凸部2rの周囲4方向に1回巻回されている。 As shown in FIG. 3C, in the back layer L3, the coil pattern 4e is wound once in the four directions around the convex portion 2L, and then wound once in the three directions around the convex portion 2m. Further, it is wound once in four directions around the convex portion 2r.
 コイルパターン4aの一端とコイルパターン4cの一端とは、スルーホール9aにより接続されている。コイルパターン4cの他端とコイルパターン4eの一端とは、スルーホール9cにより接続されている。コイルパターン4eの他端とコイルパターン4dの一端とは、スルーホール9bにより接続されている。コイルパターン4dの他端とコイルパターン4bの一端とは、スルーホール9dにより接続されている。 One end of the coil pattern 4a and one end of the coil pattern 4c are connected by a through hole 9a. The other end of the coil pattern 4c and one end of the coil pattern 4e are connected by a through hole 9c. The other end of the coil pattern 4e and one end of the coil pattern 4d are connected by a through hole 9b. The other end of the coil pattern 4d and one end of the coil pattern 4b are connected by a through hole 9d.
 表面層L1のスルーホール9b、9cの周辺と、裏面層L3のスルーホール9a、9dの周辺には、スルーホール9a~9dを形成し易くするため、小パターン4fがそれぞれ設けられている。それぞれのスルーホール9a~9dと小パターン4fは接続されている。小パターン4fは、銅箔から成る。表面層L1の小パターン4fの表面には、絶縁加工が施されている。各スルーホール9a~9dの表面には、銅めっきが施されている。各スルーホール9a~9dの内側は、銅などで埋められていてもよい。 Small patterns 4f are provided around the through holes 9b and 9c of the surface layer L1 and around the through holes 9a and 9d of the back layer L3 in order to facilitate the formation of the through holes 9a to 9d. The respective through holes 9a to 9d and the small pattern 4f are connected. The small pattern 4f is made of copper foil. The surface of the small pattern 4f of the surface layer L1 is subjected to insulation processing. Copper plating is applied to the surface of each through hole 9a to 9d. The inside of each through hole 9a-9d may be filled with copper or the like.
 コイルパターン4aの他端は、パッド8bを介して端子6iと接続されている。コイルパターン4bの他端は、パッド8bを介して端子6oと接続されている。 The other end of the coil pattern 4a is connected to a terminal 6i through a pad 8b. The other end of the coil pattern 4b is connected to the terminal 6o through a pad 8b.
 上記により、基板3のコイルパターン4a~4eは、表面層L1で、起点である端子6iから、凸部2Lの周囲に1回目が巻かれた後、スルーホール9aを経由して、中間層L2に接続される。次に、中間層L2で、凸部2Lの周囲に2回目が巻かれた後、スルーホール9cを経由して、裏面層L3に接続される。 As described above, the coil patterns 4a to 4e of the substrate 3 are the surface layer L1, and after the first turn is wound around the convex portion 2L from the starting terminal 6i, the intermediate layer L2 is passed through the through hole 9a. Connected to. Next, in the intermediate layer L2, the second time is wound around the convex portion 2L, and then connected to the back surface layer L3 via the through hole 9c.
 次に、コイルパターンは、裏面層L3で、凸部2Lの周囲に3回目が巻かれ、凸部2mの周囲を経由して、凸部2rの周囲に4回目が巻かれた後、スルーホール9bを経由して、中間層L2に接続される。次に、コイルパターンは、中間層L2で、凸部2rの周囲に5回目が巻かれた後、スルーホール9dを経由して、表面層L1に接続される。そして、コイルパターンは、表面層L1で、凸部2rの周囲に6回目が巻かれた後、終点である端子6oに接続される。 Next, the coil pattern is the back surface layer L3, the third time is wound around the convex portion 2L, the fourth time is wound around the convex portion 2r via the periphery of the convex portion 2m, and then the through hole is formed. It is connected to the intermediate layer L2 via 9b. Next, the coil pattern is the intermediate layer L2, and after the fifth round is wound around the convex portion 2r, it is connected to the surface layer L1 via the through hole 9d. The coil pattern is the surface layer L1, and after the sixth time is wound around the convex portion 2r, the coil pattern is connected to the terminal 6o that is the end point.
 磁気デバイス1に流れる電流も、上記のように、端子6i、コイルパターン4a、スルーホール9a、コイルパターン4c、スルーホール9c、コイルパターン4e、スルーホール9b、コイルパターン4d、スルーホール9d、コイルパターン4b、および端子6oの順番で流れる。 As described above, the current flowing through the magnetic device 1 is also the terminal 6i, the coil pattern 4a, the through hole 9a, the coil pattern 4c, the through hole 9c, the coil pattern 4e, the through hole 9b, the coil pattern 4d, the through hole 9d, and the coil pattern. 4b and terminal 6o in this order.
 放熱パターン5a~5eは、各層L1~L3のコイルパターン4a~4eや小パターン4fの周辺にある空き領域に、該パターン4a~4e、4fと別体で形成されている。 The heat radiation patterns 5a to 5e are formed separately from the patterns 4a to 4e and 4f in the empty areas around the coil patterns 4a to 4e and the small patterns 4f of the layers L1 to L3.
 放熱パターン5a~5eに対して、パッド8b、端子6i、6o、貫通孔3a、およびねじ11は絶縁されている。図3に示すように、中間層L2や裏面層L3の貫通孔3aと放熱パターン5b~5eの最短絶縁間隔S2より、表面層L1の貫通孔3aと放熱パターン5aの最短絶縁間隔S1の方が大きくなっている。 The pad 8b, the terminals 6i and 6o, the through hole 3a, and the screw 11 are insulated from the heat radiation patterns 5a to 5e. As shown in FIG. 3, the shortest insulation distance S1 between the through-hole 3a in the surface layer L1 and the heat radiation pattern 5a is larger than the shortest insulation distance S2 between the through-hole 3a in the intermediate layer L2 and the back layer L3 and the heat radiation patterns 5b to 5e. It is getting bigger.
 これは、ねじ11の軸部11bより径の大きな頭部11aが基板3の表面側に配置されるので、頭部11aと放熱パターン5aとを絶縁するためである。つまり、基板3の各層L1~L3における導体が存在しない領域R1、R2で、ねじ11により基板3とヒートシンク10が固定されている。 This is because the head portion 11a having a diameter larger than the shaft portion 11b of the screw 11 is disposed on the surface side of the substrate 3, so that the head portion 11a and the heat radiation pattern 5a are insulated. That is, the substrate 3 and the heat sink 10 are fixed by the screws 11 in the regions R1 and R2 where no conductor exists in each of the layers L1 to L3 of the substrate 3.
 図3(a)に示すように、表面層L1では、コイルパターン4aに対して、放熱ピン7aとこの周囲のパッド8cが接続されている。また、コイルパターン4bに対して、放熱ピン7bとこの周囲のパッド8cが接続されている。放熱パターン5aに対して、放熱ピン7c~7fとこの周囲のパッド8cは絶縁されている。また、放熱パターン5aに対して、コイルパターン4a、4bや小パターン4fは絶縁されている。 As shown in FIG. 3 (a), in the surface layer L1, the heat radiation pin 7a and the surrounding pad 8c are connected to the coil pattern 4a. Further, the heat radiation pin 7b and the surrounding pad 8c are connected to the coil pattern 4b. The heat radiation pins 7c to 7f and the surrounding pad 8c are insulated from the heat radiation pattern 5a. Further, the coil patterns 4a, 4b and the small pattern 4f are insulated from the heat radiation pattern 5a.
 図3(b)に示すように、中間層L2では、コイルパターン4cに対して、放熱ピン7c、7eが接続されている。また、コイルパターン4dに対して、放熱ピン7d、7fが接続されている。放熱パターン5bに対して、放熱ピン7aは絶縁されている。また、放熱パターン5bに対して、コイルパターン4c、4dは絶縁されている。 As shown in FIG. 3B, in the intermediate layer L2, heat radiation pins 7c and 7e are connected to the coil pattern 4c. In addition, heat radiation pins 7d and 7f are connected to the coil pattern 4d. The heat radiation pin 7a is insulated from the heat radiation pattern 5b. The coil patterns 4c and 4d are insulated from the heat radiation pattern 5b.
 図3(c)に示すように、裏面層L3では、放熱パターン5c~5eに対して、放熱ピン7a~7fとこの周囲のパッド8cが接続されている。また、放熱パターン5c~5eに対して、コイルパターン4eや小パターン4fは絶縁されている。 As shown in FIG. 3C, in the back surface layer L3, the heat radiation pins 7a to 7f and the surrounding pads 8c are connected to the heat radiation patterns 5c to 5e. Further, the coil pattern 4e and the small pattern 4f are insulated from the heat radiation patterns 5c to 5e.
 つまり、放熱ピン7a、7bにより、表面層L1のコイルパターン4a、4bと、裏面層L3の左右の放熱パターン5eがそれぞれ接続されている。また、放熱ピン7c~7fにより、中間層L2のコイルパターン4c、4dと、裏面層L3の左右の放熱パターン5c、5dがそれぞれ接続されている。 That is, the coil patterns 4a and 4b on the front surface layer L1 and the left and right heat radiation patterns 5e on the back surface layer L3 are connected by the heat radiation pins 7a and 7b, respectively. Further, the coil patterns 4c and 4d of the intermediate layer L2 and the left and right heat radiation patterns 5c and 5d of the back surface layer L3 are connected by the heat radiation pins 7c to 7f, respectively.
 図3に示すように、表面層L1と裏面層L3では、導体であるスルーホール8a、8d、9a~9d、パッド8b、8c、端子6i、6o、小パターン4f、およびピン7a~7fの表面積は同一である。また、裏面層L3のコイルパターン4eの表面積より、表面層L1のコイルパターン4a、4bの合計表面積の方が広くなっている。 As shown in FIG. 3, in the surface layer L1 and the back surface layer L3, the surface areas of the through holes 8a, 8d, 9a to 9d, which are conductors, the pads 8b and 8c, the terminals 6i and 6o, the small pattern 4f, and the pins 7a to 7f Are the same. Further, the total surface area of the coil patterns 4a and 4b of the surface layer L1 is larger than the surface area of the coil pattern 4e of the back surface layer L3.
 一方、表面層L1の放熱パターン5aの表面積より、裏面層L3の放熱パターン5c~5eの合計表面積の方が広くなっている。これは、ねじ11の周囲の領域R1、R2に注目すれば明らかである。表面層L1と裏面層L3の放熱パターン5a、5c~5eの表面積の差は、コイルパターン4a、4b、4eの表面積の差より大きくなっている。 On the other hand, the total surface area of the heat radiation patterns 5c to 5e of the back surface layer L3 is larger than the surface area of the heat radiation pattern 5a of the front surface layer L1. This is apparent when attention is paid to the regions R1 and R2 around the screw 11. The difference in surface area between the heat radiation patterns 5a, 5c to 5e of the surface layer L1 and the back surface layer L3 is larger than the difference in surface area between the coil patterns 4a, 4b, 4e.
 このため、表面層L1に設けられた導体の面積(スルーホール8a、8d、9a~9d、パッド8b、8c、端子6i、6o、パターン4a、4b、4f、5a、およびピン7a~7fの合計表面積)より、裏面層L3に設けられた導体の面積(スルーホール8a、8d、9a~9d、パッド8b、8c、端子6i、6o、パターン4e、4f、5c~5e、およびピン7a~7fの合計表面積)の方が広くなっている。 Therefore, the area of the conductor provided in the surface layer L1 (the total of the through holes 8a, 8d, 9a to 9d, the pads 8b and 8c, the terminals 6i and 6o, the patterns 4a, 4b, 4f, and 5a, and the pins 7a to 7f) Area of the conductor provided in the back surface layer L3 (through holes 8a, 8d, 9a to 9d, pads 8b and 8c, terminals 6i and 6o, patterns 4e, 4f, 5c to 5e, and pins 7a to 7f). The total surface area) is wider.
 表面層L1と中間層L2では、導体であるスルーホール8a、8d、9a~9d、端子6i、6o、およびピン7a~7fの表面積は同一である。また、表面層L1と中間層L2のパターン4a、4b、4c、4d、4fの表面積には、ほとんど差がない。また、表面層L1にあるパッド8b、8cは、中間層L2にはない。 In the surface layer L1 and the intermediate layer L2, the surface areas of the through holes 8a, 8d, 9a to 9d, the terminals 6i and 6o, and the pins 7a to 7f, which are conductors, are the same. Further, there is almost no difference in the surface areas of the patterns 4a, 4b, 4c, 4d, and 4f of the surface layer L1 and the intermediate layer L2. Further, the pads 8b and 8c in the surface layer L1 are not in the intermediate layer L2.
 一方、表面層L1の放熱パターン5aの表面積より、中間層L2の放熱パターン5bの表面積の方が広くなっている。これは、ねじ11の周囲の領域R1、R2に注目すれば明らかである。表面層L1と中間層L2の放熱パターン5a、5bの表面積の差は、パッド8b、8cの表面積より大きくなっている。 On the other hand, the surface area of the heat radiation pattern 5b of the intermediate layer L2 is larger than the surface area of the heat radiation pattern 5a of the surface layer L1. This is apparent when attention is paid to the regions R1 and R2 around the screw 11. The difference in surface area between the heat radiation patterns 5a and 5b of the surface layer L1 and the intermediate layer L2 is larger than the surface area of the pads 8b and 8c.
 このため、表面層L1に設けられた導体の面積(スルーホール8a、8d、9a~9d、パッド8b、8c、端子6i、6o、パターン4a、4b、4f、5a、およびピン7a~7fの合計表面積)より、中間層L2に設けられた導体の面積(スルーホール8a、8d、9a~9d、端子6i、6o、パターン4c、4d、5b、およびピン7a~7fの合計表面積)の方が広くなっている。 Therefore, the area of the conductor provided in the surface layer L1 (the total of the through holes 8a, 8d, 9a to 9d, the pads 8b and 8c, the terminals 6i and 6o, the patterns 4a, 4b, 4f, and 5a, and the pins 7a to 7f) The surface area of the conductor provided in the intermediate layer L2 (the total surface area of the through holes 8a, 8d, 9a to 9d, the terminals 6i and 6o, the patterns 4c, 4d, and 5b, and the pins 7a to 7f) is wider than the surface area). It has become.
 コイルパターン4a~4eには大電流が流れるため、コイルパターン4a~4eが発熱源となって、基板3の温度が上昇する。 Since a large current flows through the coil patterns 4a to 4e, the coil patterns 4a to 4e serve as heat generation sources, and the temperature of the substrate 3 rises.
 表面層L1では、基板3の熱は、放熱パターン5aなどの導体に拡散され、該導体の表面で放熱される。また、基板3の熱は、放熱ピン7a、7fやスルーホール8d、8a、9a~9dなどの基板3を貫通する導体を伝って、絶縁シート12を介してヒートシンク10で放熱される。 In the surface layer L1, the heat of the substrate 3 is diffused to a conductor such as the heat radiation pattern 5a and is radiated on the surface of the conductor. The heat of the substrate 3 is radiated by the heat sink 10 through the insulating sheet 12 through conductors that penetrate the substrate 3 such as the heat radiation pins 7a and 7f and the through holes 8d, 8a, and 9a to 9d.
 特に、表面層L1のコイルパターン4a、4bの発熱は、放熱ピン7a、7b、端子6i、6o、スルーホール8d、8a、9a、9d、および裏面層L3の放熱パターン5eを伝って、絶縁シート12を介してヒートシンク10で放熱される。スルーホール9a~9dは、サーマルビアとしても機能する。 In particular, the heat generation of the coil patterns 4a and 4b of the surface layer L1 is transmitted through the heat dissipation pins 7a and 7b, the terminals 6i and 6o, the through holes 8d, 8a, 9a and 9d, and the heat dissipation pattern 5e of the back surface layer L3, thereby Heat is radiated by the heat sink 10 through 12. The through holes 9a to 9d also function as thermal vias.
 中間層L2では、基板3の熱は、放熱パターン5bなどの導体に拡散される。また、基板3の熱は、放熱ピン7c~7fやスルーホール8d、9a~9dなどの基板3を貫通する導体を伝って、絶縁シート12を介してヒートシンク10で放熱される。 In the intermediate layer L2, the heat of the substrate 3 is diffused to a conductor such as the heat radiation pattern 5b. The heat of the substrate 3 is radiated by the heat sink 10 through the insulating sheet 12 through conductors that penetrate the substrate 3 such as the heat radiation pins 7c to 7f and the through holes 8d and 9a to 9d.
 特に、中間層L2のコイルパターン4c、4dの発熱は、放熱ピン7c、7d、7e、7f、スルーホール8d、9a~9d、裏面層L3の放熱パターン5c、5dを伝って、絶縁シート12を介してヒートシンク10で放熱される。 In particular, the heat generation of the coil patterns 4c and 4d of the intermediate layer L2 is transmitted through the heat radiation pins 7c, 7d, 7e and 7f, the through holes 8d and 9a to 9d, and the heat radiation patterns 5c and 5d of the back surface layer L3, to the insulating sheet 12. The heat sink 10 dissipates heat.
 裏面層L3では、基板3の熱は、放熱パターン5c~5eや放熱ピン7a~7fなどの導体に拡散される。これらの導体に拡散された熱は、絶縁シート12を伝って、ヒートシンク10で放熱される。特に、コイルパターン4eの発熱は、コイルパターン4eの表面から絶縁シート12を伝って、ヒートシンク10で放熱される。 In the back layer L3, the heat of the substrate 3 is diffused to conductors such as the heat radiation patterns 5c to 5e and the heat radiation pins 7a to 7f. The heat diffused in these conductors is radiated by the heat sink 10 through the insulating sheet 12. In particular, the heat generated by the coil pattern 4e is radiated by the heat sink 10 through the insulating sheet 12 from the surface of the coil pattern 4e.
 上記第1実施形態によると、コイルパターン4a~4eが設けられた基板3の熱が、裏面層L3に設けられた面積の大きな導体から、ヒートシンク10に伝わり易くなるので、基板3を放熱させ易くすることができる。これにより、コイルパターン4a~4eの発熱が許容される。またこの結果、発熱量が低減されるように、コイルパターン4a~4eの全長に渡って幅を広げなくてもよくなり、磁気デバイス1が大型化するのを回避することができる。 According to the first embodiment, the heat of the substrate 3 provided with the coil patterns 4a to 4e is easily transferred to the heat sink 10 from the conductor having a large area provided on the back surface layer L3. can do. Thereby, heat generation of the coil patterns 4a to 4e is allowed. As a result, the width of the coil patterns 4a to 4e does not have to be increased over the entire length of the coil patterns 4a to 4e so that the heat generation amount is reduced, and the magnetic device 1 can be prevented from being enlarged.
 また、基板3の各層L1~L3にコイルパターン4a~4eと放熱パターン5a~5eを設けているので、基板3の熱を基板3の表面側や裏面側から放熱させることができる。 In addition, since the coil patterns 4a to 4e and the heat radiation patterns 5a to 5e are provided in the layers L1 to L3 of the substrate 3, the heat of the substrate 3 can be radiated from the front surface side and the back surface side of the substrate 3.
 特に、裏面層L3では、コイルパターン4eと放熱パターン5c~5eの表面から、熱をヒートシンク10に効率良く伝えて、放熱させることができる。また、表面層L1では、コイルパターン4a、4bと放熱パターン5aの表面から、熱を放熱させることができる。 In particular, in the back surface layer L3, heat can be efficiently transferred to the heat sink 10 from the surface of the coil pattern 4e and the heat radiation patterns 5c to 5e to be radiated. Moreover, in the surface layer L1, heat can be radiated from the surfaces of the coil patterns 4a and 4b and the heat radiation pattern 5a.
 また、基板3とヒートシンク10とを基板3の導体が存在しない領域R1、R2でねじ11により固定することで、ねじ11に絶縁加工を施さなくても、ねじ11と基板3の導体とを確実に絶縁させることができる。 Further, by fixing the substrate 3 and the heat sink 10 with the screws 11 in the regions R1 and R2 where the conductors of the substrate 3 do not exist, the screws 11 and the conductors of the substrate 3 can be securely connected even if the screws 11 are not insulated. Can be insulated.
 また、ねじ11の頭部11aを基板3の表面層L1側に配置して、頭部11aの周囲に導体の存在しない領域R1を設けることで、表面層L1の導体の面積より、裏面層L3の導体の面積の方を容易に広くすることができる。 Further, by arranging the head 11a of the screw 11 on the surface layer L1 side of the substrate 3 and providing a region R1 in which no conductor exists around the head 11a, the back surface layer L3 from the area of the conductor of the surface layer L1. The area of the conductor can be easily increased.
 さらに、基板3とヒートシンク10との間に、伝熱性を有する絶縁シート12を挟み込むことで、基板3の裏面層L3に絶縁加工を施さなくても、基板3とヒートシンク10とを絶縁しつつ、基板3の熱をヒートシンク10に伝えることができる。 Furthermore, by sandwiching the insulating sheet 12 having heat conductivity between the substrate 3 and the heat sink 10, the substrate 3 and the heat sink 10 can be insulated without applying insulation processing to the back surface layer L3 of the substrate 3, The heat of the substrate 3 can be transferred to the heat sink 10.
 上記第1実施形態では、基板3の各層L1~L3にコイルパターン4a~4eと別体で放熱パターン5a~5eを設けた例を示したが、本発明はこれのみに限定するものではない。下記の第2実施形態のように、コイルパターンと一体の放熱パターンを設けてもよい。 In the first embodiment, the example in which the heat radiation patterns 5a to 5e are provided in the layers L1 to L3 of the substrate 3 separately from the coil patterns 4a to 4e is shown, but the present invention is not limited to this. As in the second embodiment described below, a heat radiation pattern integrated with the coil pattern may be provided.
 図5は、第2実施形態による磁気デバイス1’の基板3’の各層の平面図である。図6は、磁気デバイス1’の断面図であって、図5のZ-Z断面を示している。 FIG. 5 is a plan view of each layer of the substrate 3 ′ of the magnetic device 1 ′ according to the second embodiment. FIG. 6 is a cross-sectional view of the magnetic device 1 ′ and shows a ZZ cross-section of FIG. 5.
 図6に示すように、磁性体から成るコア2a’、2b’は、断面がE字形の上コア2a’と、I字形の下コア2b’の、2個1対で構成されている。上コア2a’の下方へ突出する凸部2m’、2L’、2r’のうち、左右の凸部2L’、2r’の下端を、下コア2b’の上面に密着させて、該コア2a’、2b’は組み合わされる。上コア2a’の突起2m’と下コア2b’の上面には所定の大きさの隙間が設けられている。コア2a’、2b’同士は、図示しないねじや金具などの固定手段により固定される。下コア2b’は、ヒートシンク10の上側に設けられた凹部10kに嵌め込まれる。 As shown in FIG. 6, the cores 2 a ′ and 2 b ′ made of a magnetic material are composed of a pair of an upper core 2 a ′ having an E shape and a lower core 2 b ′ having an I shape. Of the convex portions 2m ′, 2L ′ and 2r ′ projecting downward from the upper core 2a ′, the lower ends of the left and right convex portions 2L ′ and 2r ′ are brought into close contact with the upper surface of the lower core 2b ′, and the core 2a ′. 2b 'are combined. A gap having a predetermined size is provided on the upper surface of the protrusion 2m 'of the upper core 2a' and the lower core 2b '. The cores 2a 'and 2b' are fixed by fixing means such as screws or metal fittings (not shown). The lower core 2 b ′ is fitted into a recess 10 k provided on the upper side of the heat sink 10.
 基板3’は、表面層L1’、中間層L2’、および裏面層L3’を有する厚銅箔基板から構成されている。図5に示すように、基板3’の貫通孔3m’には、コア2a’、2b’の中央の凸部2m’が貫通している。左右の切欠き3kには、コア2a’、2b’の左右の凸部2L’、2r’が入り込んでいる。 The substrate 3 'is composed of a thick copper foil substrate having a front surface layer L1', an intermediate layer L2 ', and a back surface layer L3'. As shown in FIG. 5, the central protrusion 2m 'of the cores 2a' and 2b 'passes through the through hole 3m' of the substrate 3 '. The left and right notches 3k have left and right protrusions 2L 'and 2r' of the cores 2a 'and 2b'.
 基板3’の裏面をヒートシンク10の上面と対向させ、図6に示すように、ねじ11を基板3’の表面側から貫通孔3aに貫通させて、ヒートシンク10のねじ孔10aに螺合する。これにより、基板3’の裏面側にヒートシンク10が近接状態で固定される。基板3’とヒートシンク10の間には、絶縁シート12が挟み込まれる。 The back surface of the substrate 3 ′ is opposed to the upper surface of the heat sink 10, and as shown in FIG. 6, the screw 11 is passed through the through hole 3 a from the surface side of the substrate 3 ′ and screwed into the screw hole 10 a of the heat sink 10. Thereby, the heat sink 10 is fixed to the back surface side of the substrate 3 ′ in the proximity state. An insulating sheet 12 is sandwiched between the substrate 3 ′ and the heat sink 10.
 図5に示すように、基板3’には、スルーホール8a、8d、9a’、9b’、パッド8b、8c、端子6i、6o、パターン4a’、4b’、4c’、4f’、5t~5t、5s~5s、およびピン7g~7gといった導体が設けられている。スルーホール8aには、端子6i、6oがそれぞれ埋設されている。表面層L1’と裏面層L3’の端子6i、6oの周囲には、パッド8bが設けられている。 As shown in FIG. 5, the substrate 3 ′ has through holes 8a, 8d, 9a ′, 9b ′, pads 8b, 8c, terminals 6i, 6o, patterns 4a ′, 4b ′, 4c ′, 4f ′, 5t 0. Conductors such as ˜5t 6 , 5s 0 ˜5s 9 , and pins 7g 0 ˜7g 3 are provided. Terminals 6i and 6o are respectively embedded in the through holes 8a. Pads 8b are provided around the terminals 6i and 6o of the surface layer L1 ′ and the back surface layer L3 ′.
 スルーホール8dには、放熱ピン7g~7gがそれぞれ埋め込まれている。放熱ピン7g~7gは、銅ピンから成り、表面に銅めっきが施されている。表面層L1’と裏面層L3’の放熱ピン7g~7gの周囲には、パッド8cが設けられている。放熱ピン7g~7gの下端は、絶縁シート12と接触している。 Radiation pins 7g 0 to 7g 3 are embedded in the through holes 8d, respectively. The heat radiation pins 7g 0 to 7g 3 are made of copper pins, and the surfaces thereof are plated with copper. A pad 8c is provided around the heat radiation pins 7g 0 to 7g 3 of the surface layer L1 ′ and the back surface layer L3 ′. The lower ends of the radiating pins 7g 0 to 7g 3 are in contact with the insulating sheet 12.
 各層L1’~L3 ’には、コイルパターン4a’~4c’と放熱パターン5t~5t、5s~5sが設けられている。各パターン4a’~4c’、5t~5t、5s~5sは、銅箔から成る。表面層L1’の各パターン4a’~4c’、5t~5t、5s~5sの表面には、絶縁加工が施されている。コイルパターン4a’~4c’の幅や、厚みや、断面積は、所定の大電流(たとえばDC150A)を流しても、コイルパターン4a’~4c’からの発熱量をある程度に抑えて、しかもコイルパターン4a’~4c’の表面から放熱できるように設定されている。 In each layer L1 ′ to L3 ′, coil patterns 4a ′ to 4c ′ and heat radiation patterns 5t 0 to 5t 6 and 5s 0 to 5s 9 are provided. Each of the patterns 4a ′ to 4c ′, 5t 0 to 5t 6 , and 5s 0 to 5s 9 is made of a copper foil. The surface of each pattern 4a ′ to 4c ′, 5t 0 to 5t 6 , 5s 0 to 5s 9 of the surface layer L1 ′ is subjected to insulation processing. The width, thickness, and cross-sectional area of the coil patterns 4a ′ to 4c ′ can suppress the amount of heat generated from the coil patterns 4a ′ to 4c ′ to a certain extent even when a predetermined large current (for example, DC 150A) flows. The heat radiation is set from the surface of the patterns 4a ′ to 4c ′.
 各層L1’~L3 ’において、コイルパターン4a’ ~4c’は、中央の凸部2m’の周囲に2回巻回されている。コイルパターン4a’の一端とコイルパターン4b’の一端とは、スルーホール9a’により接続されている。コイルパターン4b’の他端とコイルパターン4c’の一端とは、スルーホール9b’により接続されている。コイルパターン4a’の他端は、表面層L1’でパッド8bを介して端子6oと接続されている。コイルパターン4c’の他端は、裏面層L3’でパッド8bを介して端子6iと接続されている。 In each of the layers L1 'to L3', the coil patterns 4a 'to 4c' are wound twice around the central convex portion 2m '. One end of the coil pattern 4a 'and one end of the coil pattern 4b' are connected by a through hole 9a '. The other end of the coil pattern 4b 'and one end of the coil pattern 4c' are connected by a through hole 9b '. The other end of the coil pattern 4a 'is connected to the terminal 6o via the pad 8b on the surface layer L1'. The other end of the coil pattern 4c 'is connected to the terminal 6i through the pad 8b on the back surface layer L3'.
 表面層L1’のスルーホール9b’の周辺と、裏面層L3’のスルーホール9a’の周辺には、銅箔から成る小パターン4f’が設けられている。それぞれのスルーホール9a’、9b’と小パターン4f’は接続されている。表面層L1’の小パターン4f’の表面には、絶縁加工が施されている。各スルーホール9a’、9b’の表面には、銅めっきが施されている。 Small patterns 4 f ′ made of copper foil are provided around the through hole 9 b ′ of the front surface layer L <b> 1 ′ and around the through hole 9 a ′ of the back surface layer L <b> 3 ′. The respective through holes 9a 'and 9b' are connected to the small pattern 4f '. The surface of the small pattern 4f 'of the surface layer L1' is subjected to insulation processing. Copper plating is applied to the surface of each through hole 9a ', 9b'.
 上記により、基板3’のコイルパターン4a’~4c ’は、裏面層L3’で、起点である端子6iから、凸部2m’の周囲に1回目と2回目が巻かれた後、スルーホール9b’を経由して、中間層L2’に接続される。次に、コイルパターンは、中間層L2’で、凸部2m’の周囲に3回目と4回目が巻かれた後、スルーホール9a’を経由して、表面層L1’ に接続される。そして、コイルパターンは、表面層L1’で、凸部2m’の周囲に5回目と6回目が巻かれた後、終点である端子6oに接続される。磁気デバイス1’に流れる電流も、上記の順路で流れる。 As described above, the coil patterns 4a ′ to 4c ′ of the substrate 3 ′ are formed on the back surface layer L3 ′ after the first and second windings around the convex portion 2m ′ from the starting terminal 6i, and then through holes 9b. It is connected to the intermediate layer L2 'via'. Next, the coil pattern is the intermediate layer L2 ', and after the third and fourth turns are wound around the convex portion 2m', the coil pattern is connected to the surface layer L1 'through the through hole 9a'. Then, the coil pattern is connected to the terminal 6o which is the end point after the fifth and sixth turns are wound around the convex portion 2m 'on the surface layer L1'. The current flowing through the magnetic device 1 'also flows along the above-described normal path.
 放熱パターン5t~5t、5s~5sは、各層L1’~L3 ’のコイルパターン4a’~4c ’や小パターン4f’の周辺にある空き領域に形成されている。そのうち、放熱パターン5t~5tは、コイルパターン4a’~4c ’を延長することにより、コイルパターン4a’~4c ’と一体で形成されている。放熱パターン5s~5sは、コイルパターン4a’~4c ’、小パターン4f’、および放熱パターン5t~5tと別体で形成されている。 The heat radiation patterns 5t 0 to 5t 6 and 5s 0 to 5s 9 are formed in empty areas around the coil patterns 4a ′ to 4c ′ and the small patterns 4f ′ of the layers L1 ′ to L3 ′. Among them, the heat radiation patterns 5t 0 to 5t 6 are formed integrally with the coil patterns 4a ′ to 4c ′ by extending the coil patterns 4a ′ to 4c ′. The heat radiation patterns 5s 0 to 5s 9 are formed separately from the coil patterns 4a ′ to 4c ′, the small pattern 4f ′, and the heat radiation patterns 5t 0 to 5t 6 .
 図5(a)に示すように、表面層L1’では、放熱パターン5s~5s同士は絶縁され、さらに放熱パターン5t~5tやコイルパターン4a’とも絶縁されている。放熱ピン7g、7gとこの周囲のパッド8cは、放熱パターン5t、5t内にそれぞれ設けられていて、放熱パターン5t~5tとコイルパターン4a’に接続されている。 As shown in FIG. 5A, in the surface layer L1 ′, the heat radiation patterns 5s 0 to 5s 2 are insulated from each other, and are also insulated from the heat radiation patterns 5t 0 to 5t 2 and the coil pattern 4a ′. The radiating pins 7g 0 and 7g 1 and the surrounding pads 8c are provided in the radiating patterns 5t 0 and 5t 1 respectively, and are connected to the radiating patterns 5t 0 to 5t 2 and the coil pattern 4a ′.
 また、表面層L1’では、端子6oとこの周囲のパッド8bは、放熱パターン5t内に設けられていて、放熱パターン5t~5tやコイルパターン4a’に接続され、放熱パターン5s~5sと絶縁されている。端子6iとこの周囲のパッド8bは、コイルパターン4a’と放熱パターン5t~5tに対して絶縁されている。放熱ピン7g、7gとこの周囲のパッド8cは、放熱パターン5s、5s内にそれぞれ設けられていて、放熱パターン5s、5sと接続され、放熱パターン5s、5t~5tやコイルパターン4a’と絶縁されている。 Further, 'in, the surrounding terminal 6o pad 8b is provided on the heat radiation pattern 5t 2, heat radiation patterns 5t 0 ~ 5t 2 and coil patterns 4a' surface layer L1 is connected to the heat radiation pattern 5s 0 ~ 5s 2 and are insulated. The terminal 6i and the surrounding pad 8b are insulated from the coil pattern 4a ′ and the heat radiation patterns 5t 0 to 5t 2 . The radiating pins 7g 2 and 7g 3 and the surrounding pad 8c are provided in the radiating patterns 5s 1 and 5s 2 respectively, and are connected to the radiating patterns 5s 1 and 5s 2, and the radiating patterns 5s 0 , 5t 0 to 5t. 2 and the coil pattern 4a ′.
 図5(b)に示すように、中間層L2’では、放熱パターン5s、5s同士は絶縁され、さらに放熱パターン5t、5tやコイルパターン4b’とも絶縁されている。 As shown in FIG. 5B, in the intermediate layer L2 ′, the heat radiation patterns 5s 3 , 5s 4 are insulated from each other, and further, the heat radiation patterns 5t 3 , 5t 4 and the coil pattern 4b ′ are also insulated.
 また、中間層L2’では、放熱ピン7g、7gとこの周囲のスルーホール8dは、放熱パターン5t、5t内にそれぞれ設けられていて、放熱パターン5t、5tとコイルパターン4b’に接続されている。放熱ピン7g、7gとこの周囲のスルーホール8dは、放熱パターン5s、5s内にそれぞれ設けられていて、放熱パターン5s、5sと接続され、放熱パターン5t、5tやコイルパターン4b’と絶縁されている。 In the intermediate layer L2 ′, the heat radiation pins 7g 2 and 7g 3 and the surrounding through holes 8d are provided in the heat radiation patterns 5t 3 and 5t 4 , respectively, and the heat radiation patterns 5t 3 and 5t 4 and the coil pattern 4b. 'It is connected to the. Radiation fins 7 g 0, 7 g 1 and through holes 8d in the surroundings is provided respectively on the heat radiation pattern 5s 3, 5s 4, is connected to the heat radiation pattern 5s 3, 5s 4, the heat radiation pattern 5t 3, 5t 4 Ya It is insulated from the coil pattern 4b ′.
 図5(c)に示すように、裏面層L3’では、放熱パターン5s~5s同士は絶縁され、さらに放熱パターン5t、5tやコイルパターン4c’とも絶縁されている。放熱ピン7g~7gとこの周囲のパッド8cは、放熱パターン5s~5s内にそれぞれ設けられていて、放熱パターン5s~5sと接続され、放熱パターン5s、5t、5tやコイルパターン4c’と絶縁されている。 As shown in FIG. 5C, in the back surface layer L3 ′, the heat radiation patterns 5s 5 to 5s 9 are insulated from each other, and are also insulated from the heat radiation patterns 5t 5 , 5t 6 and the coil pattern 4c ′. The radiating pins 7g 0 to 7g 3 and the surrounding pads 8c are provided in the radiating patterns 5s 5 to 5s 8 , respectively, and are connected to the radiating patterns 5s 5 to 5s 8, and the radiating patterns 5s 9 , 5t 5 , 5t. 6 and the coil pattern 4c ′.
 また、裏面層L3’では、端子6oとこの周囲のパッド8bは、放熱パターン5s内に設けられていて、放熱パターン5sに接続され、放熱パターン5s~5s、5t、5t、やコイルパターン4c’と絶縁されている。端子6iとこの周囲のパッド8bは、放熱パターン5t内に設けられていて、放熱パターン5t、5t、やコイルパターン4c’に接続され、放熱パターン5s~5sと絶縁されている。 Further, the back surface layer L3 ', pad 8b of the surrounding terminal 6o is radiating pattern 5s provided within 9 is connected to the heat radiation pattern 5s 9, the heat radiation pattern 5s 5 ~ 5s 8, 5t 5 , 5t 6 And insulated from the coil pattern 4c ′. Pad 8b of the surrounding terminal 6i is provided on the heat radiation pattern 5t 5, the heat radiation pattern 5t 5, 5t 6, and is connected to the coil pattern 4c ', is insulated from the heat radiation pattern 5s 5 ~ 5s 9 .
 つまり、放熱ピン7g、7gと端子6oにより、表面層L1’のコイルパターン4a’、放熱パターン5t~5t、中間層L2’の放熱パターン5s~5s、および裏面層L3’の放熱パターン5s、5t、5tが接続されている。 That is, the heat radiation pins 7g 0 and 7g 1 and the terminal 6o are used to form the coil pattern 4a ′ of the surface layer L1 ′, the heat radiation patterns 5t 0 to 5t 2 , the heat radiation patterns 5s 3 to 5s 4 of the intermediate layer L2 ′, and the back surface layer L3 ′. The heat radiation patterns 5s 5 , 5t 6 and 5t 9 are connected.
 また、放熱ピン7g、7gにより、表面層L1’の放熱パターン5s、5s、中間層L2’のコイルパターン4b’ 、放熱パターン5t、5t、および裏面層L3’の放熱パターン5s、5sが接続されている。 Further, the heat radiation pins 7g 2 and 7g 3 allow the heat radiation patterns 5s 1 and 5s 2 of the surface layer L1 ′, the coil pattern 4b ′ of the intermediate layer L2 ′, the heat radiation patterns 5t 3 and 5t 4 , and the heat radiation pattern of the back surface layer L3 ′. 5s 7 and 5s 8 are connected.
 図5に示すように、各層L1’~L3’で、パターン4a’~4c’、4f’、5t~5t、5s~5sに対して、貫通孔3aとねじ11が絶縁されている。中間層L2’や裏面層L3’のパターン4b’、 4c’、4f’、5t~5t、5s~5sと貫通孔3aの最短絶縁間隔S2より、表面層L1’のパターン4a’、4f’、5t~5t、5s~5sと貫通孔3aの最短絶縁間隔S1の方が大きくなっている(図6も参照)。基板3’とヒートシンク10は、基板3’の導体が存在しない領域R1、R2で、ねじ11により固定されている。 As shown in FIG. 5, in each layer L1 ′ to L3 ′, the through hole 3a and the screw 11 are insulated from the patterns 4a ′ to 4c ′, 4f ′, 5t 0 to 5t 6 , 5s 0 to 5s 9 . Yes. The pattern 4a ′ of the surface layer L1 ′ is obtained from the pattern 4b ′, 4c ′, 4f ′, 5t 3 to 5t 6 , 5s 3 to 5s 9 of the intermediate layer L2 ′ and the back surface layer L3 ′ and the shortest insulation distance S2 of the through hole 3a 4f ′, 5t 0 to 5t 2 , 5s 0 to 5s 2 and the shortest insulation distance S1 between the through holes 3a are larger (see also FIG. 6). The substrate 3 ′ and the heat sink 10 are fixed by screws 11 in the regions R1 and R2 where the conductor of the substrate 3 ′ does not exist.
 表面層L1’と裏面層L3’では、導体であるスルーホール8a、8d、9a’、9b’、パッド8b、8c、端子6i、6o、小パターン4f’、およびピン7g~7gの表面積は同一である。一方、表面層L1’のパターン4a’、5t~5t、5s~5sの合計表面積より、裏面層L3’のパターン4c’、5t、5t、5s~5sの合計表面積の方が広くなっている。これは、ねじ11の周囲の領域R1、R2に注目すれば明らかである。 In the surface layer L1 ′ and the back surface layer L3 ′, the through holes 8a, 8d, 9a ′, 9b ′, which are conductors, the pads 8b, 8c, the terminals 6i, 6o, the small pattern 4f ′, and the surface areas of the pins 7g 0 to 7g 3 Are the same. On the other hand, from the total surface area of the patterns 4a ′, 5t 0 to 5t 2 and 5s 0 to 5s 2 of the surface layer L1 ′, the total surface area of the patterns 4c ′, 5t 5 , 5t 6 and 5s 5 to 5s 9 of the back surface layer L3 ′. Is wider. This is apparent when attention is paid to the regions R1 and R2 around the screw 11.
 よって、表面層L1’に設けられた導体の面積(スルーホール8a、8d、9a’、9b’、パッド8b、8c、端子6i、6o、パターン4a’、4f’、5t~5t、5s~5s、およびピン7g~7gの合計表面積)より、裏面層L3’に設けられた導体の面積(スルーホール8a、8d、9a’、9b’、パッド8b、8c、端子6i、6o、パターン4c’、4f’、5t、5t、5s~5s、およびピン7g~7gの合計表面積)の方が広くなっている。 Therefore, the area of the conductor provided in the surface layer L1 ′ (through holes 8a, 8d, 9a ′, 9b ′, pads 8b, 8c, terminals 6i, 6o, patterns 4a ′, 4f ′, 5t 0 to 5t 2 , 5s 0 to 5s 2 and the total surface area of the pins 7g 0 to 7g 3 ), the area of the conductor (through holes 8a, 8d, 9a ′, 9b ′, pads 8b, 8c, terminals 6i, 6o, patterns 4c ′, 4f ′, 5t 5 , 5t 6 , 5s 5 to 5s 9 , and the total surface area of pins 7g 0 to 7g 3 ) are wider.
 これにより、コイルパターン4a’~4c ’に大電流を流したときの発熱は、基板3’の裏面層L3’に設けられた面積の大きな導体から、ヒートシンク10に伝わり易くなるので、基板3’を放熱させ易くすることができる。また、基板3’の各層L1’~L3 ’にコイルパターン4a’~4c ’と放熱パターン5t~5t、5s~5sを設けているので、基板3’の熱を分散させて、基板3’の表面側や裏面側から放熱させることができる。さらにこの結果、発熱量が低減されるように、コイルパターン4a’~4c ’の全長に渡って幅を広げなくてもよくなり、磁気デバイス1’が大型化するのを回避することができる。 As a result, the heat generated when a large current is passed through the coil patterns 4a ′ to 4c ′ is easily transmitted to the heat sink 10 from the conductor having a large area provided on the back surface layer L3 ′ of the substrate 3 ′. Can be easily dissipated. Further, since the coil patterns 4a ′ to 4c ′ and the heat radiation patterns 5t 0 to 5t 6 and 5s 0 to 5s 9 are provided on the respective layers L1 ′ to L3 ′ of the substrate 3 ′, the heat of the substrate 3 ′ is dispersed, Heat can be dissipated from the front side or the back side of the substrate 3 '. Further, as a result, the width of the coil patterns 4a ′ to 4c ′ does not have to be increased over the entire length of the coil patterns 4a ′ to 4c ′ so that the heat generation amount is reduced, and the magnetic device 1 ′ can be prevented from being enlarged.
 本発明では、以上述べた以外にも種々の実施形態を採用することができる。たとえば、以上の実施形態では、基板3、3’の全ての層L1~L3、L1’~L3 ’にコイルパターン4a~4e、4a’~4c ’を形成した例を示したが、本発明はこれのみに限定するものではない。複数の層を有する基板の少なくとも1層にコイルパターンを形成してもよい。また、コイルパターンは、コアの少なくとも1つの凸部に巻回されていればよい。 In the present invention, various embodiments other than those described above can be adopted. For example, in the above embodiment, the coil patterns 4a to 4e and 4a ′ to 4c ′ ′ are formed on all the layers L1 to L3 and L1 ′ to L3 ′ ′ of the substrates 3 and 3 ′. It is not limited to this. A coil pattern may be formed on at least one layer of a substrate having a plurality of layers. Moreover, the coil pattern should just be wound by the at least 1 convex part of the core.
 また、以上の実施形態では、基板3、3’の裏面層L3、L3’に絶縁加工を施さず、基板3、3’とヒートシンク10との間に絶縁シート12を挟み込んだ例を示したが、本発明はこれのみに限定するものではない。これ以外に、裏面層L3、L3’に絶縁加工を施して、絶縁シート12を省略してもよい。この場合、基板3、3’とヒートシンク10との間に伝熱体を挟み込むと良い。 In the above embodiment, the back surface layers L3 and L3 ′ of the substrates 3 and 3 ′ are not subjected to insulation processing, and the insulating sheet 12 is sandwiched between the substrates 3 and 3 ′ and the heat sink 10. However, the present invention is not limited to this. In addition to this, the insulating layers 12 may be omitted by applying an insulating process to the back surface layers L3 and L3 '. In this case, a heat transfer body is preferably sandwiched between the substrates 3 and 3 ′ and the heat sink 10.
 また、以上の実施形態では、放熱器として、ヒートシンク10を用いた例を示したが、本発明はこれのみに限定するものではなく、これ以外の、空冷式や水冷式の放熱器、または冷媒を用いた放熱器などを用いてもよい。 Moreover, although the example which used the heat sink 10 was shown as a heat radiator in the above embodiment, this invention is not limited only to this, Other air-cooled type or water-cooled type heat radiators, or refrigerant | coolants You may use the radiator etc. which used.
 また、以上の実施形態では、厚銅箔基板を用いた例を示したが、本発明はこれのみに限定するものではなく、一般的な樹脂製のプリント基板や金属製の基板などのような、他の基板を用いてもよい。金属製の基板の場合は、基材とコイルパターンとの間に絶縁体を設ければよい。 Moreover, although the example using a thick copper foil board | substrate was shown in the above embodiment, this invention is not limited only to this, A general resin-made printed boards, metal boards, etc. Other substrates may be used. In the case of a metal substrate, an insulator may be provided between the base material and the coil pattern.
 また、以上の実施形態では、ある層から他の層へ熱を伝えるために、放熱ピンを使用した例を示したが、本発明はこれのみに限定されるものではない。放熱ピンの替わりにスルーホールを使用して、ある層から他の層へ熱を伝えてもよい。逆に、スルーホールの替わりに放熱ピンを使用してもよい。 In the above embodiment, the example in which the heat dissipation pin is used to transmit heat from one layer to the other layer is shown, but the present invention is not limited to this. Through holes may be used instead of heat dissipation pins to transfer heat from one layer to another. Conversely, a heat dissipation pin may be used instead of the through hole.
 また、以上の実施形態では、E字形の上コア2a、2a’にI字形の下コア2b、2b’を組み合わせた例を示したが、本発明は、E字形コアのみを備えた磁気デバイスにも適用することができる。 In the above embodiment, an example in which the I-shaped lower cores 2b and 2b 'are combined with the E-shaped upper cores 2a and 2a' has been described. However, the present invention is applicable to a magnetic device having only an E-shaped core. Can also be applied.
 さらに、以上の実施形態では、車両用のスイッチング電源装置100における、平滑回路55のチョークコイルLとして使用される磁気デバイス1に本発明を適用した例を挙げたが、トランス53(図1)として使用される磁気デバイスに対しても、本発明を適用することは可能である。また、車両以外の、たとえば電子機器用のスイッチング電源装置で使用される磁気デバイスにも本発明を適用することは可能である。 Furthermore, although the example which applied this invention to the magnetic device 1 used as the choke coil L of the smoothing circuit 55 in the switching power supply device 100 for vehicles in the above embodiment was given, as the transformer 53 (FIG. 1) The present invention can be applied to a magnetic device to be used. Further, the present invention can be applied to a magnetic device other than a vehicle, for example, used in a switching power supply device for electronic equipment.
   1、1’ 磁気デバイス
   2a、2a’ 上コア
   2b、2b’ 下コア
   3、3’ 基板
   4a~4e、4a’~4c’ コイルパターン
   4f、4f’ 小パターン
   5a~5e、5t~5t、5s~5s 放熱パターン
   6i、6o 端子
   7a~7f、7g~7g 放熱ピン
   8a、8d スルーホール
   8b、8c パッド
   9a、9b、9c、9d、9a’、9b’ スルーホール
   10 ヒートシンク
   11 ねじ
   12 絶縁シート
   L1、L1’ 表面層
   L2、L2’ 中間層
   L3、L3’ 裏面層
   R1、R2 導体が存在しない領域
1, 1 ' Magnetic device 2a, 2a' Upper core 2b, 2b 'Lower core 3, 3' Substrate 4a to 4e, 4a 'to 4c' Coil pattern 4f, 4f 'Small pattern 5a to 5e, 5t 0 to 5t 6 , 5s 0 to 5s 9 Heat radiation pattern 6i, 6o Terminals 7a to 7f, 7g 0 to 7g 3 Heat radiation pin 8a, 8d Through hole 8b, 8c Pad 9a, 9b, 9c, 9d, 9a ', 9b' Through hole 10 Heat sink 11 Screw 12 Insulating sheet L1, L1 ′ Surface layer L2, L2 ′ Intermediate layer L3, L3 ′ Back surface layer R1, R2 Region where no conductor exists

Claims (4)

  1.  磁性体から成るコアと、
     絶縁体から成り、前記コアが貫通する基板と、
     前記コアの周囲に巻回されるコイルパターンを含む、前記基板に設けられた導体と、を備えた磁気デバイスにおいて、
     前記基板の裏面側に放熱器を設け、
     前記基板の表面層に設けられた前記導体の面積より、前記基板の裏面層に設けられた前記導体の面積の方が広い、ことを特徴とする磁気デバイス。
    A core made of magnetic material,
    A substrate made of an insulator through which the core penetrates;
    A magnetic device comprising a coil pattern wound around the core and provided on the substrate;
    Provide a radiator on the back side of the substrate,
    A magnetic device, wherein an area of the conductor provided on a back surface layer of the substrate is larger than an area of the conductor provided on a surface layer of the substrate.
  2.  請求項1に記載の磁気デバイスにおいて、
     前記基板の前記表面層および前記裏面層に設けられた前記導体は、
     前記コイルパターンと、
     前記コイルパターンに対して一体または別体で形成された放熱パターンと、を含む、ことを特徴とする磁気デバイス。
    The magnetic device according to claim 1.
    The conductor provided on the front surface layer and the back surface layer of the substrate,
    The coil pattern;
    And a heat radiation pattern formed integrally or separately with respect to the coil pattern.
  3.  請求項1または請求項2に記載の磁気デバイスにおいて、
     前記基板と前記放熱器とを、前記基板の前記表面層における前記導体が存在しない領域でねじにより固定した、ことを特徴とする磁気デバイス。
    The magnetic device according to claim 1 or 2,
    The magnetic device, wherein the substrate and the radiator are fixed with screws in a region of the surface layer of the substrate where the conductor does not exist.
  4.  請求項1ないし請求項3のいずれかに記載の磁気デバイスにおいて、
     前記基板と前記放熱器との間に、伝熱性を有する絶縁シートを挟み込んだ、ことを特徴とする磁気デバイス。
    The magnetic device according to any one of claims 1 to 3,
    A magnetic device, wherein an insulating sheet having heat conductivity is sandwiched between the substrate and the radiator.
PCT/JP2014/001319 2013-03-13 2014-03-10 Magnetic device WO2014141668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013049870A JP2014175631A (en) 2013-03-13 2013-03-13 Magnetic device
JP2013-049870 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014141668A1 true WO2014141668A1 (en) 2014-09-18

Family

ID=51536347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001319 WO2014141668A1 (en) 2013-03-13 2014-03-10 Magnetic device

Country Status (2)

Country Link
JP (1) JP2014175631A (en)
WO (1) WO2014141668A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110024497A (en) * 2016-12-09 2019-07-16 三菱电机株式会社 Electronic circuit board, power-converting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350345B2 (en) * 2014-05-30 2018-07-04 株式会社村田製作所 Transformer module and power receiving device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059839A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Lc composite component
JP2008502293A (en) * 2004-06-04 2008-01-24 シーメンス ヴイディーオー エレクトリック ドライブズ インコーポレイテッド Integration of planar transformer and / or planar inductor and power switch in power converter
JP2010153724A (en) * 2008-12-26 2010-07-08 Tdk Corp Coil substrate structure, and switching power supply device
JP2010161258A (en) * 2009-01-09 2010-07-22 Panasonic Corp Thin coil, method of manufacturing the same, and power supply using the same
WO2011010491A1 (en) * 2009-07-23 2011-01-27 株式会社村田製作所 Switching power supply module having built-in coil
JP2013062355A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Electromagnetic induction apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463260B2 (en) * 1998-11-17 2003-11-05 Tdk株式会社 Coil parts and their mounting structure
JP2005223078A (en) * 2004-02-04 2005-08-18 Murata Mfg Co Ltd Circuit module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502293A (en) * 2004-06-04 2008-01-24 シーメンス ヴイディーオー エレクトリック ドライブズ インコーポレイテッド Integration of planar transformer and / or planar inductor and power switch in power converter
JP2007059839A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Lc composite component
JP2010153724A (en) * 2008-12-26 2010-07-08 Tdk Corp Coil substrate structure, and switching power supply device
JP2010161258A (en) * 2009-01-09 2010-07-22 Panasonic Corp Thin coil, method of manufacturing the same, and power supply using the same
WO2011010491A1 (en) * 2009-07-23 2011-01-27 株式会社村田製作所 Switching power supply module having built-in coil
JP2013062355A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Electromagnetic induction apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110024497A (en) * 2016-12-09 2019-07-16 三菱电机株式会社 Electronic circuit board, power-converting device
CN110024497B (en) * 2016-12-09 2021-06-01 三菱电机株式会社 Electronic circuit board and power conversion device

Also Published As

Publication number Publication date
JP2014175631A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP6084147B2 (en) Coil integrated printed circuit board, magnetic device
JP6084079B2 (en) Magnetic device
JP6084148B2 (en) Coil integrated printed circuit board, magnetic device
JP6213979B2 (en) Magnetic device
JP6168556B2 (en) Coil integrated printed circuit board, magnetic device
JP6120623B2 (en) Magnetic device
JP2015095938A (en) Power supply device
JP6153158B2 (en) Magnetic device
JP6084103B2 (en) Magnetic device
JPH10189351A (en) Insulated transformer
JP2017199940A (en) Magnetic device
JP6261071B2 (en) Coil integrated printed circuit board, magnetic device
JP6261032B2 (en) Multilayer printed circuit boards, magnetic devices
WO2014141668A1 (en) Magnetic device
JP2014160785A (en) Magnetic device
JP2014170869A (en) Magnetic device
JP2014179402A (en) Magnetic device
JP2015088689A (en) Multilayer printed board and magnetic device
JP6120619B2 (en) Magnetic device
JP6265459B2 (en) Electronic component mounting structure
JP2016197952A (en) Electronic apparatus
JP3022180B2 (en) Mounting structure of printed coil type transformer
JP2014179399A (en) Magnetic device
JP2014179403A (en) Mounting structure of electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765100

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765100

Country of ref document: EP

Kind code of ref document: A1