[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014141375A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014141375A1
WO2014141375A1 PCT/JP2013/056714 JP2013056714W WO2014141375A1 WO 2014141375 A1 WO2014141375 A1 WO 2014141375A1 JP 2013056714 W JP2013056714 W JP 2013056714W WO 2014141375 A1 WO2014141375 A1 WO 2014141375A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
compressor
temperature
pressure
Prior art date
Application number
PCT/JP2013/056714
Other languages
English (en)
French (fr)
Inventor
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/056714 priority Critical patent/WO2014141375A1/ja
Priority to EP13878466.5A priority patent/EP2975338B1/en
Priority to CN201380074500.3A priority patent/CN105190199B/zh
Priority to US14/758,597 priority patent/US10168068B2/en
Priority to JP2015505116A priority patent/JP5855312B2/ja
Publication of WO2014141375A1 publication Critical patent/WO2014141375A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • an air conditioner that includes a supercooling heat exchanger on the outlet side of the condenser, controls the flow rate of refrigerant flowing to the supercooling heat exchanger, and controls the discharge temperature of the compressor (for example, Patent Document 3).
  • Japanese Patent Laying-Open No. 2005-282972 page 4, FIG. 1, etc.
  • JP-A-2-110255 page 3, FIG. 1 etc.
  • Japanese Patent Laid-Open No. 2001-227823 page 4, FIG. 1, etc.
  • a check valve is installed in parallel with both the indoor and outdoor throttle devices, and therefore, a configuration capable of sucking and injecting liquid refrigerant during cooling and heating. It has become.
  • a special indoor unit is required, and a normal indoor unit in which a check valve is not connected in parallel to the throttle device cannot be used.
  • the present invention has been made to solve the above-described problem, and in both the cooling operation and the heating operation, the refrigerant that flows out of the outdoor unit during the cooling operation while controlling the discharge temperature of the compressor to an appropriate temperature. It is the first to obtain an air conditioner that can maintain an appropriate value of the supercooling degree and can be allowed to flow into the indoor unit in the state of liquid refrigerant even when the extension pipe is long, and can perform stable control. It is intended.
  • the second object of the present invention is to obtain an air conditioner that can lower the discharge temperature of the compressor and exhibit the required heating capacity in the heating operation when the outside air temperature is low. To do.
  • An air conditioner includes a compressor, a first heat exchanger, and a first supercooling heat exchanger that superheats a high-temperature refrigerant by exchanging heat between the high-temperature refrigerant and the low-temperature refrigerant.
  • a flow path, a first expansion device, a second heat exchanger, and an accumulator are connected by a refrigerant pipe, and a refrigerant is circulated therein to form a refrigeration cycle.
  • the refrigerant pipe between the first heat exchanger and the second heat exchanger having an injection port for introducing a refrigerant from outside to the inside, wherein the accumulator is provided on the suction side of the compressor;
  • a second expansion device a second flow path of the supercooling heat exchanger that exchanges heat with the refrigerant flowing through the first flow path of the supercooling heat exchanger, and a first switching device
  • a first bypass pipe connected to the inlet-side flow path of the accumulator,
  • the temperature of the refrigerant discharged from the compressor is controlled, and in the heating operation, the temperature of the refrigerant discharged from the compressor and the compression are controlled.
  • a control device that controls the degree of superheated discharge calculated from the pressure of the refrigerant discharged from the machine.
  • the air conditioner according to the present invention can prevent the discharge temperature of the compressor from becoming too high in both the cooling operation and the heating operation. Therefore, according to the air conditioning apparatus according to the present invention, it is possible to prevent the compressor from being damaged, to prolong the service life, and to exhibit the necessary heating capacity in the heating operation when the outside air temperature is low.
  • FIG. 3 is a ph diagram (pressure-enthalpy diagram) when the air-conditioning apparatus according to Embodiment 1 of the present invention is in a cooling operation mode.
  • FIG. 3 is a ph diagram (pressure-enthalpy diagram) in the heating operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a ph diagram (pressure-enthalpy diagram) when there is an indoor unit 2 that is stopped in the heating operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic diagram showing an installation example of an air-conditioning apparatus according to an embodiment of the present invention. Based on FIG. 1, the installation example of an air conditioning apparatus is demonstrated.
  • This air conditioner can select either a cooling mode or a heating mode as an operation mode by using a refrigeration cycle in which a refrigerant is circulated.
  • the air-conditioning apparatus includes one outdoor unit 1 that is a heat source unit and a plurality of indoor units 2.
  • the outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 5 that conducts the refrigerant, and cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2.
  • extension pipe refrigerant pipe
  • the outdoor unit 1 is usually arranged in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2.
  • the indoor unit 2 is disposed at a position where air whose temperature is adjusted can be supplied to the indoor space 7 which is a space inside the building 9 (for example, a living room). Supply air.
  • an outdoor unit 1 and each indoor unit 2 are connected to each other using two extension pipes 5.
  • the indoor unit 2 is a ceiling cassette type
  • mold is shown as an example, it is not limited to this, It is directly or directly in the indoor space 7, such as a ceiling embedded type and a ceiling suspended type. Any type of air can be used as long as heating air or cooling air can be blown out by a duct or the like.
  • FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the exhaust heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed or may be installed inside the building 9 using the water-cooled outdoor unit 1. No matter what place the outdoor unit 1 is installed, no particular problem occurs.
  • the number of connected outdoor units 1 and indoor units 2 is not limited to the number shown in FIG. 1, and the number of units can be determined according to the building 9 in which the air-conditioning apparatus according to the present embodiment is installed. That's fine.
  • FIG. 2 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air conditioning apparatus according to the present embodiment (hereinafter referred to as the air conditioning apparatus 100). Based on FIG. 2, the detailed structure of the air conditioning apparatus 100 is demonstrated. As shown in FIG. 2, the outdoor unit 1 and the indoor unit 2 are connected by an extension pipe 5.
  • the outdoor unit 1 is mounted with a compressor 10, a refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 15 connected in series by a refrigerant pipe.
  • the outdoor unit 1 includes a first bypass pipe 4a, a second bypass pipe 4b, a third bypass pipe 4c, a throttling device 14a, a throttling device 14b, a throttling device 14c, an opening / closing device 19a, an opening / closing device 19b, A cooling heat exchanger 13 and a liquid separator 18 are provided.
  • the compressor 10 sucks the refrigerant and compresses the refrigerant to a high temperature / high pressure state, and may be composed of, for example, an inverter compressor capable of capacity control.
  • An injection port is provided on the side surface of the compression chamber for compressing the refrigerant inside the compressor 10 so that the refrigerant can be introduced into the compression chamber from the outside of the compressor 10.
  • the compressor 10 has, for example, a low-pressure shell structure that has a compression chamber in a sealed container, the inside of the sealed container has a low-pressure refrigerant pressure atmosphere, and sucks and compresses the low-pressure refrigerant in the sealed container in the compression chamber. Should be used.
  • a second bypass pipe 4 b is connected to the injection port of the compressor 10.
  • the refrigerant flow switching device 11 switches the refrigerant flow during the heating operation and the refrigerant flow during the cooling operation.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and performs heat exchange between air and refrigerant supplied from a blower (not shown).
  • the refrigerant is vaporized or condensed and liquefied.
  • the accumulator 15 is provided on the suction side of the compressor 10 and stores the surplus refrigerant in the refrigerant circuit.
  • the first bypass pipe 4a connects the third bypass pipe 4c on the upstream side of the expansion device 14b and the refrigerant pipe on the upstream side of the accumulator 15 via the expansion device 14a, the supercooling heat exchanger 13, and the switching device 19a. Connected.
  • the first bypass pipe 4a is configured to reduce the refrigerant condensed and liquefied by the condenser (heat source side heat exchanger 12) during the cooling operation by the action of the expansion device 14a, and then the supercooling heat exchanger 13 and the open / close
  • the refrigerant is bypassed to the upstream side of the accumulator 15 as a low-pressure superheated gas refrigerant.
  • the second bypass pipe 4b includes a first bypass pipe 4a between the supercooling heat exchanger 13 and the switch 19a and an injection port provided in the compression chamber of the compressor 10 via the switch 19b. Connected. In the heating operation when the outside air temperature is low, the second bypass pipe 4b supplies the first medium-pressure liquid refrigerant separated by the liquid separator 18 to the expansion device 14a in order to improve the heating capacity. After reducing the pressure by the action, the compressor 10 is converted into a two-phase refrigerant having a second intermediate pressure lower than the first intermediate pressure and having a high dryness through the supercooling heat exchanger 13 and the switch 19b. Is injected into the compression chamber.
  • the third bypass pipe 4c connects the liquid separator 18 and the refrigerant pipe between the accumulator 15 and the compressor 10 via the expansion device 14b.
  • the third bypass pipe 4c reduces the pressure of the high-pressure or medium-pressure liquid refrigerant during the cooling operation and the heating operation by the action of the expansion device 14b, and forms a low-pressure two-phase refrigerant between the accumulator 15 and the compressor 10. Bypass to the flow path between.
  • the expansion device 14a functions as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
  • the expansion device 14 a is installed in the first bypass pipe 4 a on the upstream side of the supercooling heat exchanger 13.
  • the expansion device 14a may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the expansion device 14b has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
  • the expansion device 14b is installed in the third bypass pipe 4c.
  • the expansion device 14b may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the expansion device 14c has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
  • the expansion device 14 c is installed in the refrigerant pipe between the heat source side heat exchanger 12 and the liquid separator 18.
  • the expansion device 14c may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the opening / closing device 19a includes a two-way valve, a solenoid valve, an electronic expansion valve, and the like, and opens and closes the first bypass pipe 4a.
  • the opening / closing device 19 a is provided in the first bypass pipe 4 a on the downstream side of the supercooling heat exchanger 13.
  • the opening / closing device 19b includes a two-way valve, a solenoid valve, an electronic expansion valve, and the like, and opens and closes the second bypass pipe 4b.
  • the opening / closing device 19b is provided in the second bypass pipe 4b.
  • the supercooling heat exchanger 13 is composed of, for example, a double-pipe heat exchanger or the like, and includes a refrigerant passing through a refrigerant pipe between the expansion device 14c and the liquid separator 18, and an expansion device 14a and an opening / closing device 19a. Heat exchange is performed with the refrigerant passing through the first bypass pipe 4a.
  • the supercooling heat exchanger 13 is not limited to a double-pipe heat exchanger, and the first refrigerant and the refrigerant passing through the refrigerant pipe extending from the heat source side heat exchanger 12 to the outlet of the outdoor unit 1 during cooling operation. As long as the refrigerant passing through the bypass pipe 4a can exchange heat, it may have any structure.
  • the liquid separator 18 separates the liquid refrigerant from the refrigerant flowing through the refrigerant pipe.
  • the liquid separator 18 is connected with a third bypass pipe 4c.
  • the first medium pressure is lower than the high pressure on the discharge side of the compressor 10 and is the pressure on the downstream side of the second bypass pipe 4b and the pressure of the injection port of the compression chamber of the compressor 10.
  • the pressure is higher than the medium pressure.
  • the second intermediate pressure is a pressure on the downstream side of the second bypass pipe 4b, which is lower than the first intermediate pressure, and is a pressure in the injection port of the compressor chamber of the compressor 10.
  • the outdoor unit 1 includes various detection devices (discharge refrigerant temperature detection device 21, high pressure detection device 22, low pressure detection device 23, liquid refrigerant temperature detection device 24, supercooling heat exchanger inlet refrigerant temperature detection device 25, supercooling.
  • a heat exchanger outlet refrigerant temperature detection device 26 is provided.
  • Information (temperature information, pressure information) detected by these detection devices is sent to the control device 50 provided in the outdoor unit 1, and the driving frequency of the compressor 10, switching of the refrigerant flow switching device 11, switching
  • the discharge refrigerant temperature detection device 21 is provided in the discharge flow path of the compressor 10 and detects the temperature of the refrigerant discharged from the compressor 10, and may be composed of, for example, a thermistor.
  • the high-pressure detection device 22 is provided in the discharge flow path of the compressor 10 and detects the pressure of the refrigerant discharged from the compressor 10, and may be configured by, for example, a pressure sensor.
  • the low-pressure detection device 23 is provided in the suction flow path of the compressor 10 and detects the pressure of the refrigerant sucked into the compressor 10, and may be configured with, for example, a thermistor.
  • the liquid refrigerant temperature detection device 24 is provided in a refrigerant pipe between the supercooling heat exchanger 13 and the outlet of the outdoor unit 1 during the cooling operation, and detects the temperature of the refrigerant flowing through the installation location.
  • the thermistor Etc the temperature of the refrigerant flowing through the installation location.
  • the supercooling heat exchanger inlet refrigerant temperature detection device 25 is provided in the first bypass pipe 4a between the expansion device 14a and the supercooling heat exchanger 13, and detects the temperature of the refrigerant flowing through the installation location.
  • a thermistor may be used.
  • the supercooling heat exchanger outlet refrigerant temperature detection device 26 is provided in the first bypass pipe 4a between the supercooling heat exchanger 13 and the switching device 19a, and detects the temperature of the refrigerant flowing through the installation location.
  • a thermistor may be used.
  • control device 50 is configured by a microcomputer or the like, and based on detection information from various detection devices and instructions from a remote controller, the driving frequency of the compressor 10, switching of the refrigerant flow switching device 11, and the expansion device 14a. Controls the opening degree to 14c, the rotation speed of a blower (not shown) attached to the heat source side heat exchanger 12, switching of the switching device 19a, switching switching of the switching device 19b, etc. It is supposed to be.
  • the compressor 10 has an injection port to which the second bypass pipe 4b is connected, and the inside of the compression chamber of the compressor 10 is depressurized from a high pressure or a first medium pressure. It is possible to inject a two-phase refrigerant having a second medium pressure lower than the one medium pressure and having a large dryness. By injecting a two-phase refrigerant into the compression chamber of the compressor 10, the discharge temperature of the compressor 10 can be lowered and the frequency of the compressor 10 can be increased. In the heating operation at the time, the heating capacity can be increased.
  • the action of the supercooling heat exchanger 13 can increase the enthalpy difference between the outlet refrigerant and the inlet refrigerant of the evaporator (heat source side heat exchanger 12) during the heating operation. It is possible to operate with a high suction pressure) and to further increase the heating capacity.
  • a third bypass pipe 4 c for introducing a refrigerant from outside is connected to the flow path between the suction side of the compressor 10 and the accumulator 15, and a high pressure or first pressure is connected to the suction side of the compressor 10. It is possible to inject a low-pressure two-phase refrigerant decompressed from a medium pressure. By injecting a two-phase refrigerant into the suction side of the compressor 10, the discharge temperature of the compressor 10 can be lowered when a refrigerant such as R32 that has a high discharge temperature of the compressor 10 is used. .
  • the control device 50 controls the expansion device 14a, the expansion device 14b, the expansion device 14c, the opening / closing device 19a, the opening / closing device 19b, etc., so that the flow rate of the refrigerant injected to the suction side of the accumulator 15, the presence / absence of injection, the compressor 10
  • the flow rate of refrigerant injected into the compression chamber through the second bypass pipe 4b and the presence or absence of injection, the flow quantity of refrigerant injected into the compressor 10 through the third bypass pipe 4c and the presence or absence of injection Can be controlled.
  • movement it demonstrates in operation
  • control device 50 controls each actuator of the outdoor unit 1 based on detection information from various detection devices and instructions from the remote controller.
  • the use side heat exchanger 17 and the expansion device 16 are connected in series and mounted.
  • the use side heat exchanger 17 is connected to the outdoor unit 1 by the extension pipe 5.
  • the use side heat exchanger 17 exchanges heat between air supplied from a blower (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7.
  • the expansion device 16 has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
  • the expansion device 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • FIG. 2 shows an example in which four indoor units 2 are connected, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page.
  • the use side heat exchanger 17 also uses the use side heat exchanger 17a, the use side heat exchanger 17b, the use side heat exchanger 17c, and the use side heat exchanger 17d from the lower side of the drawing. As shown.
  • the diaphragm device 16 is also illustrated as a diaphragm device 16a, a diaphragm device 16b, a diaphragm device 16c, and a diaphragm device 16d from the lower side of the drawing.
  • the number of connected indoor units 2 is not limited to four as shown in FIG.
  • the indoor unit 2 is provided with various detection devices (a use-side heat exchanger liquid refrigerant temperature detection device 27, a use-side heat exchanger gas refrigerant temperature detection device 28, and a use-side heat exchanger intermediate refrigerant temperature detection device 29). It has been. Information (temperature information) detected by these detection devices is sent to a control device (not shown) provided in the indoor unit 2 and used for controlling the actuator of the indoor unit 2.
  • This control device is constituted by a microcomputer or the like, and based on detection information from various detection devices and instructions from a remote controller, the rotational speed of a blower (not shown) attached to the use side heat exchanger 17 and the throttle device 16
  • Each operation mode to be described later is executed by controlling the opening degree and the like and in cooperation with the control device 50.
  • the use side heat exchanger liquid refrigerant temperature detection device 27 is provided in a refrigerant pipe between the expansion device 16 and the use side heat exchanger 17, and detects the temperature of the refrigerant flowing through the installation location. It is good to comprise. Depending on the indoor units 2a to 2d, the usage-side heat exchanger liquid refrigerant temperature detection device 27 also uses the usage-side heat exchanger liquid refrigerant temperature detection device 27a, the usage-side heat exchanger liquid refrigerant temperature detection device 27b from the lower side of the page, The utilization side heat exchanger liquid refrigerant temperature detection device 27c and the utilization side heat exchanger liquid refrigerant temperature detection device 27d are illustrated.
  • the use-side heat exchanger gas refrigerant temperature detection device 28 is provided at the entrance / exit of the use-side heat exchanger 17 on the opposite side to the use-side heat exchanger liquid refrigerant temperature detection device 27 and detects the temperature of the refrigerant flowing through the installation location. For example, a thermistor may be used.
  • the usage-side heat exchanger gas refrigerant temperature detection device 28 also uses the usage-side heat exchanger gas refrigerant temperature detection device 28a, the usage-side heat exchanger gas refrigerant temperature detection device 28b, from the lower side of the page.
  • the utilization side heat exchanger gas refrigerant temperature detection device 28c and the utilization side heat exchanger gas refrigerant temperature detection device 28d are illustrated.
  • the use-side heat exchanger intermediate refrigerant temperature detection device 29 is provided at an intermediate position of the use-side heat exchanger 17 and detects the temperature of the refrigerant flowing through the installation location, and may be configured with, for example, a thermistor.
  • the usage-side heat exchanger intermediate refrigerant temperature detection device 29 is also used from the lower side of the drawing with respect to the usage-side heat exchanger intermediate refrigerant temperature detection device 29a, the usage-side heat exchanger intermediate refrigerant temperature detection device 29b, The utilization side heat exchanger intermediate refrigerant temperature detection device 29c and the utilization side heat exchanger intermediate refrigerant temperature detection device 29d are illustrated. Note that the use side heat exchanger intermediate refrigerant temperature detection device 29 may not be installed. The control operation when the use-side heat exchanger intermediate refrigerant temperature detection device 29 is installed and when it is not installed will be described later.
  • the heat source side heat exchanger 12 corresponds to the “first heat exchanger” of the present invention.
  • the use side heat exchanger 17 (17a to 17d) corresponds to the “second heat exchanger” of the present invention.
  • the diaphragm device 16 (16a to 16d) corresponds to the “first diaphragm device” of the present invention.
  • the expansion device 14a corresponds to the “second expansion device” of the present invention.
  • the expansion device 14b corresponds to the “third expansion device” of the present invention.
  • the expansion device 14c corresponds to the “fourth expansion device” of the present invention.
  • the air conditioner 100 determines the operation mode of the outdoor unit 1 to be either the cooling operation mode or the heating operation mode based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation (cooling operation or heating operation) for all of the indoor units 2 and adjusts the indoor temperature. Note that each indoor unit 2 can be freely operated / stopped in both the cooling operation mode and the heating operation mode.
  • the operation mode executed by the air conditioner 100 includes a cooling operation mode in which all the driven indoor units 2 perform a cooling operation (including a stop), and all of the driven indoor units 2 are in a heating operation. There is a heating operation mode for executing (including stopping). Below, each operation mode is demonstrated with the flow of a refrigerant
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling operation mode.
  • the cooling operation mode will be described by taking as an example a case where a cooling load is generated in all the use side heat exchangers 17.
  • a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a flow direction of the refrigerant is indicated by a solid line arrow.
  • the refrigerant flow switching device 11 is switched so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the opening / closing device 19a is opened, and the opening / closing device 19b is closed.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and is discharged from the compressor 10 as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the first flow path (the flow path of the refrigerant that flows through the refrigerant pipe) of the expansion device 14c and the supercooling heat exchanger 13 that are fully open. .
  • the refrigerant that has passed through the first flow path of the supercooling heat exchanger 13 is branched into two flow paths by the liquid separator 18.
  • One of the branched refrigerants passes through the liquid separator 18 and flows out of the outdoor unit 1.
  • the other branched refrigerant flows into the first bypass pipe 4a via the third bypass pipe 4c.
  • the refrigerant that has flowed into the first bypass pipe 4a flows into the expansion device 14a, is reduced in pressure to become a low-temperature / low-pressure two-phase refrigerant, and is supplied to the second channel (first bypass pipe 4a) of the supercooling heat exchanger 13. Through the refrigerant flow path).
  • the refrigerant that has passed through the second flow path joins the flow path on the upstream side of the accumulator 15 through the open / close device 19a.
  • the supercooling heat exchanger 13 performs heat exchange between the high-temperature refrigerant passing through the first flow path and the low-temperature refrigerant passing through the second flow path. That is, in the supercooling heat exchanger 13, the refrigerant passing through the first flow path is cooled by the refrigerant passing through the second flow path, and the refrigerant passing through the second flow path passes through the first flow path. The refrigerant is heated.
  • a double-pipe heat exchanger is used as the supercooling heat exchanger 13, but the supercooling heat exchanger 13 is not limited to a double-pipe heat exchanger. Any structure may be used as long as the refrigerant passing through and the refrigerant passing through the second flow path can exchange heat.
  • the flow rate of the refrigerant passing through the first bypass pipe 4a is adjusted by the opening degree (opening area) of the expansion device 14a.
  • the opening degree (opening area) of the expansion device 14a is the temperature difference between the detected temperature of the subcooling heat exchanger outlet refrigerant temperature detecting device 26 and the detected temperature of the subcooling heat exchanger inlet refrigerant temperature detecting device 25, that is, the excessive amount.
  • the temperature difference (superheat degree) before and after the supercooling heat exchanger 13 in the second flow path of the cooling heat exchanger 13 is controlled so as to approach the target value.
  • the opening degree (opening area) of the expansion device 14a may be controlled so that the degree of supercooling on the downstream side of the first flow path of the supercooling heat exchanger 13 approaches the target value.
  • the high-temperature and high-pressure liquid refrigerant that has flowed out of the outdoor unit 1 passes through the extension pipe 5 and flows into each of the indoor units 2 (2a to 2d).
  • the high-temperature and high-pressure liquid refrigerant that has flowed into the indoor unit 2 is expanded by the expansion device 16 (16a to 16d) to become a low-temperature and low-pressure two-phase refrigerant, and the use-side heat exchanger 17 (17a that acts as an evaporator). To 17d).
  • the refrigerant flowing into the use side heat exchanger 17 absorbs heat from the air flowing around the use side heat exchanger 17 and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flows out of the indoor unit 2, flows into the outdoor unit 1 again through the extension pipe 5, passes through the refrigerant flow switching device 11, and flows through the first bypass pipe 4a. After joining the refrigerant bypassed to the upstream side of the accumulator 15, the refrigerant flows into the accumulator 15, and is then sucked into the compressor 10 again.
  • the opening degree (opening area) of the expansion devices 16a to 16d is determined by the detection temperature of the use side heat exchanger gas refrigerant temperature detection device 28 and the detection temperature of the use side heat exchanger liquid refrigerant temperature detection device 27.
  • the temperature difference (degree of superheat) is controlled so as to approach the target value.
  • the supercooling heat exchanger 13 is provided to reliably supercool the refrigerant when the extension pipe 5 is long (for example, 100 m).
  • the extension pipe 5 When the extension pipe 5 is long, the pressure loss in the extension pipe 5 increases, and if the degree of supercooling of the refrigerant is small, the refrigerant may become a two-phase refrigerant before reaching the indoor unit 2.
  • the two-phase refrigerant flows into the indoor unit 2
  • the two-phase refrigerant flows into the expansion device 16.
  • the throttling device has the property that sound is generated around when the two-phase refrigerant flows. Since the expansion device 16 is disposed in the indoor unit 2 that sends temperature-controlled air to the indoor space 7, the generated sound may leak into the indoor space 7 and make the resident feel uncomfortable.
  • the first bypass pipe 4a is provided with a throttle device 14a, and the opening degree (opening area) of the throttle device 14a is increased so that the low-temperature and low-pressure two-phase refrigerant flowing in the second flow path of the supercooling heat exchanger 13 Is increased, the degree of supercooling of the outlet refrigerant in the first flow path of the supercooling heat exchanger 13 increases.
  • the degree of supercooling of the outlet refrigerant in the first flow path of the supercooling heat exchanger 13 can be controlled to an appropriate value.
  • the compressor 10 does not want to suck in a low dryness refrigerant mixed with a large amount of liquid refrigerant from the viewpoint of reliability. Therefore, the first bypass pipe 4a is connected to the inlet side of the accumulator 15 ( (Upstream side).
  • the accumulator 15 is for storing surplus refrigerant. Most of the refrigerant bypassed to the inlet side (upstream side) of the accumulator 15 by the first bypass pipe 4a is stored in the accumulator 15 and compressed. A large amount of liquid refrigerant can be prevented from returning to the machine 10.
  • the above is the operation of the refrigerant in the basic cooling operation mode.
  • a refrigerant whose discharge temperature of the compressor 10 is higher than that of R410A such as R32 is used as the refrigerant, deterioration of the refrigerating machine oil or the compressor In order to prevent burnout of 10, it is necessary to lower the discharge temperature. Therefore, in the air conditioner 100, a part of the liquid refrigerant is branched from the liquid separator 18 and flows to the third bypass pipe 4c.
  • the refrigerant that has flown into the third bypass pipe 4c is reduced in pressure by the expansion device 14b to become a two-phase refrigerant, and then the flow path between the accumulator 15 and the compressor 10 (on the downstream side of the accumulator 15, and Into the upstream side of the compressor 10). If it does in this way, the temperature of the refrigerant
  • the third bypass pipe 4c is connected to the pipe between the accumulator 15 and the compressor 10.
  • the reason why the refrigerant is injected into the flow path between the accumulator 15 and the compressor 10 is to allow the compressor 10 to directly suck the refrigerant containing a large amount of liquid and having a low dryness.
  • the accumulator 15 is for storing surplus refrigerant, and most of the refrigerant bypassed to the inlet side (upstream side) of the accumulator 15 like the first bypass pipe 4a is stored in the accumulator 15, and the compressor Only a part of the refrigerant flows into 10.
  • the third bypass pipe 4c is connected to the flow path between the accumulator 15 and the compressor 10. Then, the flow rate of the refrigerant passing through the third bypass pipe 4c is adjusted by the opening degree (opening area) of the expansion device 14b.
  • the opening degree (opening area) of the expansion device 14b is increased and the flow rate of the refrigerant flowing through the third bypass pipe 4c is increased, the discharge temperature of the compressor 10 is lowered.
  • the opening degree (opening area) of the expansion device 14b is reduced and the flow rate of the refrigerant flowing through the third bypass pipe 4c is reduced, the discharge temperature of the compressor 10 increases (rises). Therefore, by adjusting the opening degree (opening area) of the expansion device 14b, the discharge temperature that is the detection value of the discharge refrigerant temperature detection device 21 can be brought close to the target value.
  • the injection through the third bypass pipe 4c is performed when the discharge temperature is high. Accordingly, in the cooling operation mode, when the temperature around the heat source side heat exchanger 12 (outside air temperature) is high, the high pressure is high and the discharge temperature is also high, so the discharge temperature by injection through the third bypass pipe 4c is high. And the injection through the third bypass pipe 4c is also performed while flowing the refrigerant through the first bypass pipe 4a. On the other hand, in the state where the outside air temperature is low, the discharge temperature of the refrigerant discharged from the compressor 10 does not increase, so that the injection through the third bypass pipe 4c is unnecessary, and the expansion device 14b is fully closed or the refrigerant flows. The opening is set to a small opening so that the injection through the third bypass pipe 4c does not occur.
  • FIG. 4 is a ph diagram (pressure-enthalpy diagram) when the air-conditioning apparatus 100 is in the cooling operation mode.
  • the refrigerant (point I in FIG. 4) sucked into the compressor 10 and compressed by the compressor 10 is condensed and liquefied by the heat source side heat exchanger 12 to become a high-pressure liquid refrigerant (FIG. Point J).
  • the high-pressure liquid refrigerant is cooled by the refrigerant branched to the first bypass pipe 4a in the supercooling heat exchanger 13, and the degree of supercooling increases (point L in FIG. 4), and flows into the liquid separator 18. .
  • a part of the liquid refrigerant branched to the third bypass pipe 4c by the liquid separator 18 is decompressed by the expansion device 14b (point M in FIG. 4) and injected into the flow path between the accumulator 15 and the compressor 10. Then, it merges with the refrigerant from the accumulator 15 to the compressor 10.
  • the high-pressure two-phase refrigerant that has passed through the liquid separator 18 flows out of the outdoor unit 1, passes through the extension pipe 5, and flows into the indoor unit 2.
  • the high-pressure two-phase refrigerant that has flowed into the indoor unit 2 is decompressed by the expansion device 16 (16a to 16d) (point K in FIG. 4) and is evaporated by the use side heat exchanger 17 (17a to 17d).
  • the refrigerant that has flowed out of the use side heat exchanger 17 flows out of the indoor unit 2, passes through the extension pipe 5, and flows into the outdoor unit 1.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the refrigerant flow switching device 11, flows through the first bypass pipe 4a, merges with the refrigerant that is bypassed upstream of the accumulator 15, and then flows into the accumulator 15 ( Point F in FIG.
  • the refrigerant that has flowed out of the accumulator 15 merges with the refrigerant injected into the flow path between the accumulator 15 and the compressor 10 via the third bypass pipe 4c and is cooled (point H in FIG. 4). ). Thereafter, the refrigerant is sucked into the compressor 10.
  • the compressor 10 When the compressor 10 is constituted by a low-pressure shell type compressor, refrigerant and oil sucked into the lower part flow into the compressor 10, and a motor is arranged in the middle part, and compressed in the compression chamber from the upper part. After the high-temperature and high-pressure refrigerant is discharged into the discharge chamber in the sealed container, it is discharged from the compressor 10. Accordingly, since the metal sealed container of the compressor 10 has a portion exposed to the high-temperature / high-pressure refrigerant and a portion exposed to the low-temperature / low-pressure refrigerant, the temperature of the sealed container is an intermediate temperature. become. Further, since current flows through the motor, the motor generates heat.
  • the low-temperature and low-pressure refrigerant sucked into the compressor 10 is heated by the hermetic container and the motor of the compressor 10 and rises in temperature (point F in FIG. 4 when no suction injection is performed), and then compressed. Inhaled into the chamber.
  • the low-temperature and low-pressure gas refrigerant that has passed through the evaporator and the injected low-temperature two-phase refrigerant are merged and sucked into the compressor 10 in a two-phase state. Is done.
  • the two-phase refrigerant is heated and evaporated by the sealed container and motor of the compressor 10, and becomes a low-temperature and low-pressure refrigerant having a lower temperature than that in the case where no injection is performed (point H in FIG. 4), and is sucked into the compression chamber.
  • the discharge temperature of the refrigerant discharged from the compressor 10 also decreases (point I in FIG. 4), and with respect to the discharge temperature of the compressor 10 when injection is not performed (point G in FIG. 4). As a result, the discharge temperature is lowered.
  • the discharge temperature of the compressor 10 can be lowered and used safely, for example, when a refrigerant such as R32 that discharges the compressor 10 at a high temperature is used.
  • the refrigerant (point H in FIG. 4) sucked into the compressor 10 is shown as if it is a superheated gas refrigerant.
  • the position of point H is the internal energy (product of the flow rate and enthalpy (point F)) flowing out of the accumulator 15 and the internal energy (flow rate and enthalpy (point M) of the refrigerant passing through the third bypass pipe 4c).
  • Product the internal energy
  • the expansion device 14a is desirably an electronic expansion valve or the like that can change the opening area. If an electronic expansion valve is used, the flow rate of the refrigerant passing through the second flow path of the supercooling heat exchanger 13 is reduced. It can be arbitrarily controlled, and the controllability of the degree of supercooling of the refrigerant flowing out of the outdoor unit 1 is good.
  • the expansion device 14a is not limited to this, and a plurality of opening areas may be selected by combining on-off valves such as small solenoid valves, or the degree of supercooling as a capillary tube according to the pressure loss of the refrigerant. Although the controllability is slightly deteriorated, the degree of supercooling can be controlled as a target.
  • the expansion device 14b can change the opening area of an electronic expansion valve or the like, and the opening of the expansion device 14b is prevented so that the discharge temperature of the compressor 10 detected by the discharge refrigerant temperature detection device 21 does not become too high. The area is controlled.
  • the opening / closing device 19a and the opening / closing device 19b open and close the flow path, and use an electromagnetic valve or the like, but are not limited thereto, and the flow path can be closed and the opening degree (opening area) is adjusted.
  • An electronic expansion valve that can be used may be used, and any electronic expansion valve can be used as long as the flow path can be opened and closed.
  • the configuration of the switchgear 19a and the switchgear 19b is the same in the heating operation mode described later.
  • both the expansion device 14a and the expansion device 14b are connected to the liquid take-out pipes (the first bypass pipe 4a and the third bypass pipe 4c) of the same liquid separator 18.
  • the liquid refrigerant separated from the liquid separator 18 is configured to flow in.
  • two liquid separators 18 may be installed, and the liquid refrigerant taken out of each may be allowed to flow into the expansion device 14a and the expansion device 14b.
  • a system can be constructed at low cost by branching and connecting the pipes so that the liquid refrigerant can be supplied to both the expansion device 14a and the expansion device 14b.
  • the operation is stopped because there is no need to flow the refrigerant to the use side heat exchanger 17 (including the thermo-off) without the heat load.
  • the expansion device 16 corresponding to the stopped indoor unit 2 is fully closed or set to a small opening at which the refrigerant does not flow.
  • the air conditioner 100 includes the first bypass pipe 4a and the third bypass pipe 4c in the refrigerant circuit, and is separated from the liquid separator 18 into the flow path on the upstream side of the accumulator 15,
  • the first bypass pipe 4a through which the refrigerant flows through the cooling heat exchanger 13 and the expansion device 14a is connected and separated from the liquid separator 18 into the flow path between the accumulator 15 and the compressor 10, and the expansion device 14b
  • the third bypass pipe 4c in which the refrigerant whose flow rate has been adjusted in (3) flows without passing through the supercooling heat exchanger 13 is connected.
  • the adjustment of the supercooling degree of the refrigerant flowing out of the outdoor unit 1 and the control of the discharge temperature by adjusting the injection amount to the suction side of the compressor 10 are performed separately. Therefore, even when the extension pipe 5 is long, the refrigerant flowing into the indoor unit 2 can be reliably brought into a state of supercooling.
  • the air conditioning apparatus 100 it is possible to reliably control the discharge temperature of the compressor 10 so as not to exceed the upper limit under the condition that the discharge temperature of the compressor 10 becomes high.
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating operation mode.
  • the heating operation mode will be described by taking as an example a case where a thermal load is generated in all the use side heat exchangers 17.
  • a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a flow direction of the refrigerant is indicated by a solid line arrow.
  • the refrigerant flow switching device 11 causes the refrigerant discharged from the compressor 10 to flow into the indoor unit 2 without passing through the heat source side heat exchanger 12. Switch to.
  • the opening / closing device 19a is closed, the opening / closing device 19b is opened when injection is performed, and is closed when injection is not performed.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and is discharged from the compressor 10 as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant flow switching device 11 and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows through the extension pipe 5 into each of the indoor units 2 (2a to 2d).
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 2 flows into each of the usage-side heat exchangers 17 (17a to 17d) and condenses and liquefies while releasing heat to the air that flows around the usage-side heat exchanger 17. It becomes a high-temperature, high-pressure liquid refrigerant.
  • the liquid refrigerant that has flowed out of the use-side heat exchanger 17 is expanded by the expansion device 16 (16a to 16d), becomes a first medium-pressure two-phase refrigerant, and flows out of the indoor unit 2.
  • the first medium-pressure two-phase refrigerant flowing out of the indoor unit 2 flows into the outdoor unit 1 again through the extension pipe 5.
  • the opening degree (opening area) of the expansion devices 16a to 16d is determined by the detection temperature of the use side heat exchanger intermediate refrigerant temperature detection device 29 and the detection temperature of the use side heat exchanger liquid refrigerant temperature detection device 27.
  • the temperature difference (degree of supercooling) is controlled so as to approach the target value.
  • the use side heat exchanger intermediate refrigerant temperature detection device 29 is not necessarily required and may not be installed.
  • the control device 50 installed in the outdoor unit 1 obtains the condensation temperature by converting the high pressure detected by the high pressure detection device 22 into a saturation temperature.
  • the determined condensing temperature is transmitted by communication from the control device 50 of the outdoor unit 1 to a control device (not shown) provided in the indoor unit 2, and the control device of the indoor unit 2
  • the expansion device 16 is controlled such that the temperature difference (degree of supercooling) from the detected temperature of the use side heat exchanger liquid refrigerant temperature detection device 27 approaches the target value.
  • a part of the liquid refrigerant is separated from the first medium-pressure two-phase refrigerant flowing into the outdoor unit 1 by the liquid separator 18.
  • a part of the liquid refrigerant is separated, and the remaining first medium-pressure two-phase refrigerant passes through the first flow path of the supercooling heat exchanger 13 and is expanded through the expansion device 14c.
  • -It becomes a low-pressure two-phase refrigerant and flows into the heat source side heat exchanger 12.
  • the low-temperature and low-pressure two-phase refrigerant flowing into the heat source side heat exchanger 12 absorbs heat from the air flowing around the heat source side heat exchanger 12 and evaporates to become a low-temperature and low-pressure gas refrigerant. And it is sucked into the compressor 10 again through the accumulator 15.
  • the liquid refrigerant separated by the liquid separator 18 is decompressed by the expansion device 14a to become a second medium-pressure two-phase refrigerant.
  • This second medium-pressure two-phase refrigerant passes through the second flow path of the supercooling heat exchanger 13 to become a two-phase refrigerant having a high degree of dryness, and the second bypass pipe 4b and the open / closed switching device. It is injected into the inside of a compression chamber from the injection port provided in the compression chamber of the compressor 10 via 19b.
  • the second bypass pipe 4b is connected to an injection port provided in the compression chamber of the compressor 10.
  • the second bypass pipe 4 b is connected to an injection port provided in the compression chamber of the compressor 10. Then, the refrigerant liquid is injected into the compression chamber of the compressor 10. The flow rate of the refrigerant passing through the second bypass pipe 4b is adjusted by the opening degree (opening area) of the expansion device 14a.
  • the opening degree (opening area) of the expansion device 14a is increased and the flow rate of the refrigerant flowing through the second bypass pipe 4b is increased, the discharge temperature of the compressor 10 is lowered.
  • the discharge temperature of the compressor 10 increases. Therefore, the discharge temperature of the compressor 10 can be changed by adjusting the opening degree (opening area) of the expansion device 14a.
  • the discharge temperature control may be performed, but in many cases, the discharge superheat degree is controlled. This is because when the injection is performed via the supercooling heat exchanger 13, it is possible to inject a larger amount of refrigerant when performing the discharge superheat degree control than when performing the discharge temperature control. This is because the heating capacity at the time is improved.
  • the discharge temperature control is preferable because the injection amount can be reduced.
  • the discharge superheat degree control will be described later.
  • the above is the operation of the refrigerant in the basic heating operation mode, and the two-phase refrigerant having a high dryness is injected into the compression chamber of the compressor 10 through the second bypass pipe 4b.
  • the refrigerant flowing through the second bypass pipe 4b can cool the refrigerant flowing through the heat source side heat exchanger 12, and the outlet of the evaporator (heat source side heat exchanger 12).
  • the difference between the enthalpy of the refrigerant and the enthalpy of the inlet refrigerant can be increased. Therefore, the low pressure of the compressor 10 can be kept high, and the heating capacity can be further improved.
  • the refrigerant is injected into the compressor 10 using the second bypass pipe 4b provided with the supercooling heat exchanger 13 instead of the third bypass pipe 4c.
  • the refrigerant may be injected into the suction side of the compressor 10 using the third bypass pipe 4c.
  • the expansion device 14c acts to control the refrigerant pressure between the expansion device 16 and the expansion device 14a to the first medium pressure.
  • the differential pressure across the second bypass pipe 4b is ensured.
  • the opening degree (opening area) of the expansion device 14c is controlled so that the first intermediate pressure obtained by converting the detected temperature of the liquid refrigerant temperature detection device 24 into the saturation pressure approaches the target value.
  • the second bypass pipe 4b When the temperature around the heat source side heat exchanger 12 (outside air temperature) is low, in the case of low outside air heating, etc., the low pressure becomes low and the discharge temperature becomes high, so the second bypass pipe 4b The injection via is necessary.
  • the injection through the second bypass pipe 4b is not necessary, and the expansion device 14a is fully closed or the opening degree is small so that the refrigerant does not flow, or the opening / closing device 19b is closed.
  • the injection through the second bypass pipe 4b is prevented from occurring. Note that the closing of the flow path of the second bypass pipe 4b when injection is not performed may be performed by the expansion device 14a instead of the opening / closing device 19b.
  • FIG. 6 is a ph diagram (pressure-enthalpy diagram) when the air-conditioning apparatus 100 is in the heating operation mode.
  • the refrigerant (point I in FIG. 6) sucked into the compressor 10 and compressed by the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11 and passes through the extension pipe 5. And flows into the indoor unit 2.
  • the refrigerant that has flowed into the indoor unit 2 is condensed by the use side heat exchanger 17, expanded by the expansion device 16, returns to the outdoor unit 1 through the extension pipe 5, and flows into the liquid separator 18.
  • the pressure of the refrigerant on the upstream side of the expansion device 14c is controlled to the first intermediate pressure state by the action of the expansion device 14c (point J in FIG. 6).
  • the liquid refrigerant branched by the liquid separator 18 is depressurized by the expansion device 14a to become the second medium-pressure two-phase refrigerant ( Point M in FIG.
  • the second medium pressure two-phase refrigerant flows through the second flow path of the supercooling heat exchanger 13 and is heated by the first medium pressure refrigerant flowing through the first flow path of the supercooling heat exchanger 13.
  • a two-phase refrigerant having a high degree of dryness is obtained (point P in FIG. 6).
  • coolant is injected into a compression chamber from the injection port provided in the compression chamber of the compressor 10 via the 2nd bypass piping 4b.
  • the first medium-pressure refrigerant that has passed through the liquid separator 18 flows through the first flow path of the supercooling heat exchanger 13 and flows through the second flow path of the supercooling heat exchanger 13. Cooled by the medium pressure refrigerant, the enthalpy is reduced (point L in FIG. 6). Then, the refrigerant is depressurized by the expansion device 14 c to become a low-pressure two-phase refrigerant (point K in FIG. 6), evaporates in the heat source side heat exchanger 12, and then accumulators through the refrigerant flow switching device 11. 15 (point F in FIG. 6). The refrigerant flowing out of the accumulator 15 is sucked into the compressor 10, compressed to the second medium pressure (point N in FIG. 6), and injected through the second bypass pipe 4b (point P in FIG. 6). ) And cooled (point H in FIG. 6).
  • the metal sealed container of the compressor 10 is exposed to a portion exposed to a high-temperature / high-pressure discharge refrigerant and to a low-temperature / low-pressure intake refrigerant. Since there is a portion, the temperature of the sealed container is an intermediate temperature. In addition, since current flows through the motor, the motor generates heat. Therefore, the low-temperature and low-pressure refrigerant sucked into the compressor 10 is heated by the hermetic container and the motor of the compressor 10 and the temperature rises (point F in FIG. 6 when no injection is performed), and then the compression chamber Inhaled.
  • the gas refrigerant (point N in FIG. 6) sucked into the compressor 10 and compressed to the second medium pressure was injected into the compression chamber.
  • the two-phase refrigerant is combined and cooled. Therefore, the refrigerant has a lower temperature than the case where injection is not performed (point H in FIG. 6), and further compression is continued to become a high-pressure gas refrigerant.
  • the discharge temperature of the refrigerant discharged from the compressor 10 also decreases (point I in FIG. 6), and with respect to the discharge temperature of the compressor 10 when the injection is not performed (point G in FIG. 6). As a result, the discharge temperature decreases. By operating in this manner, the discharge temperature of the compressor 10 can be lowered and used safely during heating operation where the outside air temperature is low.
  • the expansion device 14c is preferably an electronic expansion valve or the like that can change the opening area. If an electronic expansion valve is used, the first intermediate pressure upstream of the expansion device 14c is controlled to an arbitrary pressure. And control of the discharge temperature is stable.
  • the expansion device 14c is not limited to this, and a plurality of opening areas may be selected by combining open / close valves such as small solenoid valves, or the capillary tube has a medium pressure depending on the pressure loss of the refrigerant. It may be formed, and the controllability is slightly deteriorated, but the discharge temperature can be controlled to the target.
  • the expansion device 14a can change the opening area of an electronic expansion valve or the like, and discharge overheating of the compressor 10 calculated from the detected temperature of the discharged refrigerant temperature detecting device 21 and the detected pressure of the high pressure detecting device 22.
  • the opening area of the expansion device 14a is controlled so that the degree falls within the target range.
  • both the first bypass pipe 4a and the second bypass pipe 4b are connected to the flow path on the opposite side of the expansion device 14a of the supercooling heat exchanger 13, and the switching device 19a and the switching device 19b The flow path of the refrigerant that has flowed through the cooling heat exchanger 13 is switched.
  • Two expansion devices 14a and two supercooling heat exchangers 13 may be installed and connected to the first bypass pipe 4a and the second bypass pipe 4b.
  • the generated flow occurs during the cooling operation, and the flow through the second bypass pipe 4b occurs during the heating operation and does not occur at the same time. Therefore, a set of the liquid separator 18, the expansion device 14a, and the supercooling heat exchanger 13 are used, and the flow through the first bypass pipe 4a and the second bypass pipe by the switchgear 19a and the switchgear 19b. By switching the flow through 4b, the system can be configured at low cost.
  • two liquid separators 18 may be installed.
  • the heating operation mode When the heating operation mode is executed, it is not necessary to flow the refrigerant to the use side heat exchanger 17 (including the thermo-off) that has no heat load.
  • the heating operation mode if the expansion device 16 corresponding to the use-side heat exchanger 17 having no heating load is fully closed or has a small opening at which the refrigerant does not flow, the inside of the use-side heat exchanger 17 that is not in operation.
  • the opening degree (opening area) of the expansion device 16 corresponding to the use side heat exchanger 17 having no heat load is set to a large opening degree such as full opening to prevent the accumulation of refrigerant.
  • the expansion device 16 When there is a stopped indoor unit 2, the expansion device 16 is controlled as described above, so that a refrigerant flow through the stopped indoor unit 2 is generated. At this time, since the refrigerant is not condensed in the use side heat exchanger 17 having no heat load, the corresponding expansion device 16 depressurizes the high-temperature and high-pressure gas refrigerant, and the ph diagram (pressure-enthalpy line) ( Figure) is different from the previous explanation. The operation in this case will be described with reference to the ph diagram (pressure-enthalpy diagram) in FIG.
  • FIG. 7 is a ph diagram (pressure-enthalpy diagram) when there is an indoor unit 2 that is stopped when the air-conditioning apparatus 100 is in the heating operation mode.
  • the refrigerant (point I in FIG. 7) sucked into the compressor 10 and compressed by the compressor 10 passes through the refrigerant flow switching device 11.
  • the outdoor unit 1 flows out, passes through the extension pipe 5, and flows into the indoor unit 2.
  • the refrigerant flowing into the indoor unit 2 is condensed by the use side heat exchanger 17 having a heating load, and then expanded by the expansion device 16 to become the first medium pressure (point J in FIG. 7). 5 to return to the outdoor unit 1.
  • the refrigerant that has flowed to the use-side heat exchanger 17 without a heating load does not condense and remains as a gas refrigerant. Pass through. Thereafter, the refrigerant is depressurized by the expansion device 16 to a first medium pressure (point I 1 in FIG. 7), and returns to the outdoor unit 1 through the extension pipe 5.
  • the first medium pressure liquid refrigerant condensed and throttled and the first medium pressure gas refrigerant decompressed without being condensed are mixed at any position of the extension pipe 5.
  • the first medium-pressure two-phase refrigerant (point J 1 in FIG. 7) flows into the liquid separator 18 of the outdoor unit 1.
  • the first medium-pressure two-phase refrigerant flowing into the liquid separator 18 is partially branched by the action of the liquid separator 18 (point J L in FIG. 7).
  • the branched liquid refrigerant is decompressed by the expansion device 14a and becomes a second medium pressure two-phase refrigerant lower than the first medium pressure (point M in FIG. 7).
  • the refrigerant flows through the second flow path of the supercooling heat exchanger 13 and is heated by the first medium-pressure refrigerant flowing through the first flow path of the supercooling heat exchanger 13 so that the dryness is large. It becomes a two-phase refrigerant (point P in FIG. 7). And this refrigerant
  • coolant is introduce
  • the first medium-pressure refrigerant (point J 2 in FIG. 7) having passed through the liquid separator 18 and slightly increased in dryness flows through the first flow path of the supercooling heat exchanger 13 to generate supercooling heat. Cooled by the second medium-pressure refrigerant flowing through the second flow path of the exchanger 13, the enthalpy is reduced (point L in FIG. 7). Then, the refrigerant is decompressed by the expansion device 14c to become a low-pressure two-phase refrigerant (point K in FIG. 7). Thereafter, the refrigerant evaporates in the heat source side heat exchanger 12, and then flows into the accumulator 15 through the refrigerant flow switching device 11 (point F in FIG. 7).
  • the refrigerant flowing out of the accumulator 15 is sucked into the compressor 10, compressed to the second medium pressure (point N in FIG. 7), and merged with the refrigerant injected through the second bypass pipe 4b to be cooled. (Point H in FIG. 7).
  • the flow rate of the refrigerant flowing through the expansion device varies depending on the density of the refrigerant even at the same opening degree (opening area).
  • a two-phase refrigerant is a mixture of a low-density gas refrigerant and a high-density liquid refrigerant.
  • the refrigerant density changes greatly.
  • the opening degree (opening area) that is an appropriate flow rate for reducing the discharge temperature of the compressor 10 by a certain amount is greatly different.
  • the opening degree of the expansion device 14a must be changed greatly as the indoor unit 2 starts and stops, and stable control cannot be performed. Therefore, in the air conditioner 100, by providing the liquid separator 18, even when the stopped indoor unit 2 exists, only the liquid refrigerant can be separated by the liquid separator 18, and the liquid is supplied to the expansion device 14a. Only the refrigerant can be introduced, so that stable control can be performed.
  • the opening degree (opening area) of the expansion device 14a is set so that the discharge superheat degree of the compressor 10 calculated from the detection temperature of the discharge refrigerant temperature detection device 21 and the detection pressure of the high pressure detection device 22 falls within a target range. Control. Since the optimum value of the flow rate of the refrigerant to be injected differs depending on the outside air temperature, the efficiency is improved if the target value of the discharge superheat degree is changed depending on the outside air temperature. By controlling the discharge superheat degree, it is possible to prevent the discharge temperature from becoming too high. Note that the target value of the discharge superheat degree may be the same value without changing depending on the outside air temperature, the target value of the discharge superheat degree may be a constant value, for example, 40 ° C. It may be between 40 ° C. Further, the opening degree of the expansion device 14a may be controlled so that the discharge temperature, which is the detection temperature of the discharge refrigerant temperature detection device 21, becomes the target value.
  • the refrigerant flow switching device 11 generally uses a four-way valve. However, the refrigerant flow switching device 11 is not limited to this, and a plurality of two-way flow switching valves and three-way flow switching valves are used. May be configured to flow.
  • each indoor unit 2 during heating operation is provided with an open / close valve that opens and closes the flow path, and if it is possible to prevent refrigerant from accumulating into the stop indoor unit during heating operation, stop it. Since the flow of the refrigerant through the indoor unit 2 is not generated, the liquid separator 18 may not be installed.
  • the liquid separator 18 has one inlet channel and two outlet channels, and separates a part of the liquid refrigerant from the two-phase refrigerant flowing in from the inlet channel, and remains with the separated liquid refrigerant. As long as the two-phase refrigerant flows out of the two outlet channels, any structure may be used. Further, the separation efficiency of separating the liquid refrigerant from the two-phase refrigerant is not 100%, and even if some gas refrigerant is mixed in the liquid refrigerant in the flow path for taking out the liquid refrigerant, the mixing degree of the gas refrigerant can be reduced. It does not matter as long as it does not have a great influence on the control.
  • the influence of the pressure loss in the first flow path of the supercooling heat exchanger 13 during the heating operation is reduced. Without being received, the measurement accuracy of the first medium pressure by the liquid refrigerant temperature detection device 24 is improved, and the control accuracy of the discharge temperature is improved.
  • the compressor 10 has been described as an example in which a low-pressure shell type compressor is used. Naturally, the suction refrigerant is directly sucked into the compression chamber and compressed, and the refrigerant discharged from the compression chamber is sealed container. A high-pressure shell-type compressor discharged from the compressor 10 after being ejected into the interior may be used, and the same effect is achieved.
  • a relay machine is provided between the outdoor unit 1 and the indoor unit 2, and a relay machine is installed from the outdoor unit 1 to it.
  • the refrigerant circulates to the indoor unit 2 through the relay unit, and generates both cold and hot in the relay unit.
  • the indoor unit 2 having a cooling demand is supplied with a cold refrigerant
  • the indoor unit 2 having a heating demand is supplied with a warm refrigerant.
  • a cooling and heating simultaneous type air conditioner supplied may be used, and the same effect is obtained by the same method.
  • the present invention is not limited thereto, and a relay device is provided between the outdoor unit 1 and the indoor unit 2, Air conditioning in which refrigerant circulates between the outdoor unit 1 and the relay unit, heat exchange between the refrigerant and a heat medium such as water or brine is performed in the relay unit, and the heat medium is circulated between the relay unit and the indoor unit 2
  • a relay device is provided between the outdoor unit 1 and the indoor unit 2
  • Air conditioning in which refrigerant circulates between the outdoor unit 1 and the relay unit, heat exchange between the refrigerant and a heat medium such as water or brine is performed in the relay unit, and the heat medium is circulated between the relay unit and the indoor unit 2
  • An apparatus may be used, and the same effect is obtained by a similar method.
  • an air conditioner that can generate only cold water or hot water with a relay machine or an air conditioner that can generate both cold water and hot water with a relay machine may be used.
  • the refrigerant is highly effective when a refrigerant such as R32 having a high discharge temperature is used.
  • a refrigerant such as R32 having a high discharge temperature
  • a tetrafluoropropene refrigerant having a small global warming potential and a chemical formula of CF 3 CF ⁇ CH 2 is used.
  • HFO1234yf or HFO1234ze, and a mixed refrigerant (non-azeotropic mixed refrigerant) may be used.
  • R32 is used as the refrigerant, the discharge temperature rises by about 20 ° C. in the same operation state as compared to the case where R410A is used. Therefore, it is necessary to lower the discharge temperature and use the suction injection. large.
  • the discharge temperature is 3 ° C. or more higher than when the R410A refrigerant is used. The effect is great if the value is lowered.
  • the discharge temperature is 3 ° C. or higher than when the R410A refrigerant is used.
  • the effect is great when the discharge temperature is lowered.
  • the refrigerant type in the mixed refrigerant is not limited to this, and even a mixed refrigerant containing a small amount of other refrigerant components has no significant effect on the discharge temperature and has the same effect.
  • any refrigerant can be used in a mixed refrigerant containing a small amount of R32, HFO1234yf, and other refrigerants, and the discharge temperature must be lower than any refrigerant as long as the discharge temperature is higher than R410A. There is an effect.
  • the heat source side heat exchanger 12 and the use side heat exchangers 17a to 17d are equipped with a blower, and in many cases, condensation or evaporation is promoted by blowing, but this is not restrictive.
  • a blower for example, as the use side heat exchangers 17a to 17d, a panel heater using radiation can be used, and as the heat source side heat exchanger 12, a water-cooled type in which heat is transferred by water or antifreeze. Any material can be used as long as it can dissipate or absorb heat.
  • the air conditioner 100 can prevent the discharge temperature of the compressor 10 from becoming too high in both the cooling operation and the heating operation. Therefore, according to the air conditioning apparatus 100, damage to the compressor 10 can be prevented, the life of the compressor 10 can be extended, and the required heating capacity can be exhibited in the heating operation when the outside air temperature is low. it can.
  • the third bypass pipe 4c is compressed when the liquid separator 18 and the refrigerant pipe between the accumulator 15 and the compressor 10 are connected and the discharge temperature during the cooling operation is high.
  • injection is performed on the suction side of the machine 10
  • the present invention is not limited to this.
  • the discharge temperature may be lowered by injecting the medium pressure of the compressor 10.
  • the case where the third bypass pipe 4c is provided has been described as an example.
  • the present invention is not limited to this, and the object of the present invention is achieved as an aspect in which the third bypass pipe 4c is not provided.
  • the refrigerant may be allowed to flow through the second bypass pipe 4b during the cooling operation to execute the discharge temperature control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 空気調和装置100は、第二の絞り装置14a、過冷却熱交換器13の第一の流路を流れる冷媒と熱交換をする過冷却熱交換器13の第二の流路、及び第一の開閉装置19aを介して、アキュムレータ15の入口側流路に接続する第一のバイパス配管4aと、過冷却熱交換器13と第一の開閉装置19aとの間における第一のバイパス配管4aを分岐し、第二の開閉装置19bを介して、圧縮機10のインジェクションポートに接続する第二のバイパス配管4bと、熱源側熱交換器12と利用側熱交換器17との間の冷媒配管を分岐し、第三の絞り装置14bを介して、圧縮機10の入口側とアキュムレータ15の出口側との間の冷媒配管に接続する第三のバイパス配管4cと、を備えている。

Description

空気調和装置
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
 ビル用マルチエアコンなどの空気調和装置において、外気温が低温の時に暖房運転を行うと、圧縮機の吐出温度が高くなり過ぎるため、圧縮機の周波数を大きくすることができず、必要な暖房能力を発揮させることができない。また、R32等の冷媒を用いると、高外気冷房運転時にも、圧縮機の吐出温度が高くなり過ぎてしまう。そこで、圧縮機の吐出温度を低下させて、負荷に応じた熱量を供給できるようにする必要がある。圧縮機の吐出温度を低下させるために、冷凍サイクルの高圧液管から圧縮機の中間に液インジェクションをする回路、および運転状態によらず吐出温度を設定温度に制御できる空気調和装置が存在している(たとえば、特許文献1)。
 冷房運転および暖房運転のいずれにおいても、冷凍サイクルの高圧状態の液冷媒を圧縮機の吸入側にインジェクションできる空気調和装置も存在している(たとえば、特許文献2)。
 凝縮器の出口側に過冷却熱交換器を備え、過冷却熱交換器へ流す冷媒流量を制御し、圧縮機の吐出温度を制御する空気調和装置も存在している(たとえば、特許文献3)。
特開2005-282972号公報(第4頁、図1等) 特開平2-110255号公報(第3頁、図1等) 特開2001-227823号公報(第4頁、図1等)
 特許文献1に記載の空気調和装置においては、高圧液管から圧縮機の中間にインジェクションする方法しか記載されておらず、冷凍サイクルの循環路を逆転させた場合(冷房、暖房の切り替え)等の対応ができないという課題があった。
 特許文献2に記載の空気調和装置においては、室内側および室外側の双方の絞り装置と並列に逆止弁が設置されており、そのため、冷房時も暖房時も、液冷媒を吸入インジェクションできる構成となっている。しかしながら、そのためには特殊な室内機が必要で、絞り装置に逆止弁が並列接続されていない通常の室内機を用いることはできず、汎用的な構成ではないという課題があった。
 特許文献3に記載の空気調和装置においては、過冷却熱交換器に付属の絞り装置で、過冷却熱交換器に流す冷媒の流量を制御し、吐出温度を制御している。そのため、吐出温度と凝縮器出口の過冷却度の双方を別々に目標値に制御することができず、冷房運転において、適正な過冷却度を保ちながら、吐出温度を適正に制御することができない。よって、室外機と室内機とを接続する延長配管が長い場合、吐出温度を目標値に制御すると、室外機出口の過冷却度を目標値に制御できず、延長配管での圧力損失のため、室内機に流入する冷媒が二相化してしまう可能性がある。そのため、マルチ型の空気調和装置等のように室内機に絞り装置を備えている場合、絞り装置の入口側が二相になると音が出たり制御が不安定になったりしてしまう、という課題があった。
 本発明は、上記の課題を解決するためになされたもので、冷房運転および暖房運転の双方において、圧縮機の吐出温度を適切な温度に制御しながら、冷房運転時の室外機を流出する冷媒の過冷却度も適切な値に保つことができ、延長配管が長い場合にも、液冷媒の状態で室内機に流入させることができ、安定した制御を行える空気調和装置を得ることを第1の目的とするものである。また、本発明は、外気温が低温の時の暖房運転において、圧縮機の吐出温度を低下させ、かつ、必要な暖房能力を発揮することができる空気調和装置を得ることを第2の目的とするものである。
 本発明に係る空気調和装置は、圧縮機と、第一の熱交換器と、高温の冷媒と低温の冷媒とを熱交換させて高温の冷媒を過冷却させる過冷却熱交換器の第一の流路と、第一の絞り装置と、第二の熱交換器と、アキュムレータと、を冷媒配管で接続し、内部に冷媒を循環させて冷凍サイクルを構成し、前記圧縮機は、圧縮室の内部に外部から冷媒を導入するためのインジェクションポートを有し、前記アキュムレータを前記圧縮機の吸入側に設け、前記第一の熱交換器と前記第二の熱交換器との間の前記冷媒配管を分岐し、第二の絞り装置、前記過冷却熱交換器の前記第一の流路を流れる冷媒と熱交換をする前記過冷却熱交換器の第二の流路、及び第一の開閉装置を介して、前記アキュムレータの入口側流路に接続する第一のバイパス配管と、前記過冷却熱交換器と前記第一の開閉装置との間における前記第一のバイパス配管を分岐し、第二の開閉装置を介して、前記圧縮機のインジェクションポートに接続する第二のバイパス配管と、前記第一の熱交換器を凝縮器として作用させ前記第二の熱交換器を蒸発器として作用させる冷房運転と、前記第一の熱交換器を蒸発器として作用させ前記第二の熱交換器を凝縮器として作用させる暖房運転と、前記冷房運転においては、前記圧縮機から吐出される冷媒の温度を制御し、前記暖房運転においては、前記圧縮機から吐出される冷媒の温度及び前記圧縮機から吐出される冷媒の圧力から演算される吐出過熱度を制御する制御装置と、を備えるものである。
 本発明に係る空気調和装置は、冷房運転および暖房運転の双方において、圧縮機の吐出温度が高くなりすぎないようにできる。よって、本発明に係る空気調和装置によれば、圧縮機の損傷を防げ、寿命が長くなり、かつ、外気温が低温の時の暖房運転においては、必要な暖房能力を発揮することができる。
本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態1に係る空気調和装置の回路構成の一例を示す概略回路構成図である。 本発明の実施の形態1に係る空気調和装置の冷房運転モード時における冷媒および熱媒体の流れを示すシステム回路図である。 本発明の実施の形態1に係る空気調和装置の冷房運転モード時のp-h線図(圧力-エンタルピ線図)である。 本発明の実施の形態1に係る空気調和装置の暖房運転モード時における冷媒および熱媒体の流れを示すシステム回路図である。 本発明の実施の形態1に係る空気調和装置の暖房運転モード時のp-h線図(圧力-エンタルピ線図)である。 本発明の実施の形態1に係る空気調和装置の暖房運転モード時において停止している室内機2がある場合のp-h線図(圧力-エンタルピ線図)である。
 以下、図面に基づいてこの発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
 図1は、本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。図1に基づいて、空気調和装置の設置例について説明する。この空気調和装置は、冷媒を循環させる冷凍サイクルを利用することで、運転モードとして冷房モードあるいは暖房モードのいずれかを選択できるものである。
 図1においては、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、を有している。室外機1と室内機2とは、冷媒を導通する延長配管(冷媒配管)5で接続され、室外機1で生成された冷熱あるいは温熱は、室内機2に配送されるようになっている。
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、室内機2に冷熱または温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に温調された空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。
 図1に示すように、本実施の形態に係る空気調和装置においては、室外機1と各室内機2とが2本の延長配管5を用いて、それぞれ接続されている。
 なお、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いて、建物9の内部に設置するようにしてもよい。どのような場所に室外機1を設置するとしても、特段の問題が発生することはない。
 また、室外機1および室内機2の接続台数を図1に図示してある台数に限定するものではなく、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
 図2は、本実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の回路構成の一例を示す概略回路構成図である。図2に基づいて、空気調和装置100の詳しい構成について説明する。図2に示すように、室外機1と室内機2とが、延長配管5で接続されている。
[室外機1]
 室外機1には、圧縮機10と、四方弁等の冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレータ15とが冷媒配管で直列に接続されて搭載されている。また、室外機1には、第一のバイパス配管4a、第二のバイパス配管4b、第三のバイパス配管4c、絞り装置14a、絞り装置14b、絞り装置14c、開閉装置19a、開閉装置19b、過冷却熱交換器13、および、液分離器18が設けられている。
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。なお、圧縮機10の内部の冷媒を圧縮する圧縮室の側面には、圧縮機10の外部から冷媒を圧縮室の内部に導入することができるインジェクションポートが備えられている。
 また、圧縮機10は、例えば、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気となり、圧縮室に密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造のものを使用するとよい。
 そして、圧縮機10のインジェクションポートには、第二のバイパス配管4bが接続されている。
 冷媒流路切替装置11は、暖房運転時における冷媒の流れと、冷房運転時における冷媒の流れとを切り替えるものである。
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能し、図示省略の送風機から供給される空気と冷媒との間で熱交換を行ない、その冷媒を蒸発ガス化または凝縮液化するものである。
 アキュムレータ15は、圧縮機10の吸入側に設けられており、冷媒回路中で余剰となった冷媒を貯留するものである。
 第一のバイパス配管4aは、絞り装置14bの上流側における第三のバイパス配管4cと、アキュムレータ15の上流側における冷媒配管と、を絞り装置14a、過冷却熱交換器13、開閉装置19aを介して接続するものである。この第一のバイパス配管4aは、冷房運転時に、凝縮器(熱源側熱交換器12)で凝縮、液化された冷媒を、絞り装置14aの作用で減圧した後、過冷却熱交換器13および開閉装置19aを介して、低圧の過熱ガス冷媒として、アキュムレータ15の上流側にバイパスするものである。
 第二のバイパス配管4bは、過冷却熱交換器13と開閉装置19aとの間における第一のバイパス配管4aと、圧縮機10の圧縮室に設けられたインジェクションポートと、を開閉装置19bを介して接続するものである。この第二のバイパス配管4bは、外気温が低温の時の暖房運転において、暖房能力を向上させるために、液分離器18で分離された第一の中圧の液冷媒を、絞り装置14aの作用で減圧した後、過冷却熱交換器13および開閉装置19bを介して、第一の中圧よりも圧力が低い第二の中圧でありかつ乾き度が大きい二相冷媒として、圧縮機10の圧縮室の内部にインジェクションするものである。
 第三のバイパス配管4cは、液分離器18と、アキュムレータ15と圧縮機10との間における冷媒配管と、を絞り装置14bを介して接続するものである。この第三のバイパス配管4cは、冷房運転時および暖房運転時に、高圧または中圧の液冷媒を、絞り装置14bの作用で減圧し、低圧の二相冷媒として、アキュムレータ15と圧縮機10との間の流路にバイパスするものである。
 絞り装置14aは、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。絞り装置14aは、過冷却熱交換器13の上流側における第一のバイパス配管4aに設置されている。絞り装置14aは、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 絞り装置14bは、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。絞り装置14bは、第三のバイパス配管4cに設置されている。絞り装置14bは、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 絞り装置14cは、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。絞り装置14cは、熱源側熱交換器12と液分離器18との間における冷媒配管に設置されている。絞り装置14cは、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 開閉装置19aは、二方弁、電磁弁、電子式膨張弁等で構成されており、第一のバイパス配管4aを開閉するものである。開閉装置19aは、過冷却熱交換器13の下流側における第一のバイパス配管4aに設けられている。
 開閉装置19bは、二方弁、電磁弁、電子式膨張弁等で構成されており、第二のバイパス配管4bを開閉するものである。開閉装置19bは、第二のバイパス配管4bに設けられている。
 過冷却熱交換器13は、例えば二重管式の熱交換器等で構成され、絞り装置14cと液分離器18との間における冷媒配管を通る冷媒と、絞り装置14aと開閉装置19aとの間における第一のバイパス配管4aを通る冷媒とで熱交換を行うものである。なお、過冷却熱交換器13は、二重管式の熱交換器に限るものではなく、熱源側熱交換器12から冷房運転時における室外機1の出口に至る冷媒配管を通る冷媒と第一のバイパス配管4aを通る冷媒とが熱交換可能なものであれば、どのような構造のものでも構わない。
 液分離器18は、冷媒配管を流れる冷媒から液冷媒を分離するものである。この液分離器18には、第三のバイパス配管4cが接続されている。
 なお、第一の中圧とは、圧縮機10の吐出側の高圧よりも低く、第二のバイパス配管4bの下流側の圧力であり圧縮機10の圧縮室のインジェクションポートの圧力である第二の中圧よりも高い圧力である。
 そして、第二の中圧とは、第一の中圧よりも圧力が低い、第二のバイパス配管4bの下流側の圧力であり圧縮機10の圧縮室のインジェクションポートの圧力である。
 さらに、室外機1には、各種検出装置(吐出冷媒温度検出装置21、高圧検出装置22、低圧検出装置23、液冷媒温度検出装置24、過冷却熱交換器入口冷媒温度検出装置25、過冷却熱交換器出口冷媒温度検出装置26)が設けられている。これらの検出装置で検出された情報(温度情報、圧力情報)は、室外機1に設けられている制御装置50に送られ、圧縮機10の駆動周波数、冷媒流路切替装置11の切り替え、絞り装置14aの開度、絞り装置14bの開度、絞り装置14cの開度、図示省略の熱源側熱交換器12に送風する送風機の回転数、開閉装置19aの開閉、開閉装置19bの開閉等の制御に利用されることになる。
 吐出冷媒温度検出装置21は、圧縮機10の吐出流路に設けられ、圧縮機10から吐出される冷媒の温度を検出するものであり、例えばサーミスタ等で構成するとよい。
 高圧検出装置22は、圧縮機10の吐出流路に設けられ、圧縮機10から吐出される冷媒の圧力を検出するものであり、例えば圧力センサー等で構成するとよい。
 低圧検出装置23は、圧縮機10の吸入流路に設けられ、圧縮機10に吸入される冷媒の圧力を検出するものであり、例えばサーミスタ等で構成するとよい。
 液冷媒温度検出装置24は、過冷却熱交換器13と冷房運転時における室外機1の出口との間における冷媒配管に設けられ、設置箇所を流れる冷媒の温度を検出するものであり、例えばサーミスタ等で構成するとよい。
 過冷却熱交換器入口冷媒温度検出装置25は、絞り装置14aと過冷却熱交換器13との間における第一のバイパス配管4aに設けられ、設置箇所を流れる冷媒の温度を検出するものであり、例えばサーミスタ等で構成するとよい。
 過冷却熱交換器出口冷媒温度検出装置26は、過冷却熱交換器13と開閉装置19aとの間における第一のバイパス配管4aに設けられ、設置箇所を流れる冷媒の温度を検出するものであり、例えばサーミスタ等で構成するとよい。
 また、制御装置50は、マイコン等で構成されており、各種検出装置での検出情報およびリモコンからの指示に基づいて、圧縮機10の駆動周波数、冷媒流路切替装置11の切り替え、絞り装置14a~14cの開度、熱源側熱交換器12に付属の図示省略の送風機の回転数、開閉装置19aの開閉の切り替え、開閉装置19bの開閉の切り替え等を制御し、後述する各運転モードを実行するようになっている。
 上述したように、圧縮機10は、第二のバイパス配管4bが接続されるインジェクションポートを有しており、圧縮機10の圧縮室の内部に、高圧または第一の中圧から減圧した、第一の中圧よりも圧力が低い第二の中圧でありかつ乾き度が大きい二相冷媒をインジェクションすることができるようになっている。圧縮機10の圧縮室の内部に二相状態の冷媒をインジェクションすることにより、圧縮機10の吐出温度を低下させることができ、圧縮機10の周波数を大きくすることができるため、外気温が低温時の暖房運転において、暖房能力を大きくすることができる。
 また、過冷却熱交換器13の作用により、暖房運転時に、蒸発器(熱源側熱交換器12)の出口冷媒と入口冷媒とのエンタルピー差を大きくすることができるため、低圧(圧縮機10の吸入圧力)が高い状態で運転でき、更に暖房能力を大きくすることができる。
 さらに、圧縮機10の吸入側とアキュムレータ15との間の流路には、外部から冷媒を導入する第三のバイパス配管4cが接続されており、圧縮機10の吸入側に、高圧または第一の中圧から減圧した低圧二相状態の冷媒をインジェクションすることができるようになっている。圧縮機10の吸入側に二相状態の冷媒をインジェクションすることにより、R32等の圧縮機10の吐出温度が高温になる冷媒を使用している場合に圧縮機10の吐出温度を下げることができる。
 制御装置50は、絞り装置14a、絞り装置14b、絞り装置14c、開閉装置19a、開閉装置19b等を制御することにより、アキュムレータ15の吸入側にインジェクションする冷媒の流量およびインジェクションの有無、圧縮機10の圧縮室の内部に第二のバイパス配管4bを介してインジェクションする冷媒の流量およびインジェクションの有無、圧縮機10の吸入側に第三のバイパス配管4cを介してインジェクションする冷媒の流量およびインジェクションの有無、を制御することができる。なお、具体的な制御動作については、後述の各運転モードの動作説明において説明を行う。
 なお、制御装置50は、上述したように、各種検出装置での検出情報およびリモコンからの指示に基づいて、室外機1の各アクチュエータの制御を行うもので、上述のアクチュエータの制御の他に、圧縮機10の駆動周波数、熱源側熱交換器12に付属の送風機の回転数(ON/OFF含む)、冷媒流路切替装置11の切り替え等を制御し、後述する各運転モードを実行するようになっている。
[室内機2]
 室内機2には、それぞれ利用側熱交換器17及び絞り装置16が直列に接続されて搭載されている。この利用側熱交換器17は、延長配管5によって室外機1に接続するようになっている。利用側熱交換器17は、図示省略の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。絞り装置16は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 この図2では、4台の室内機2が接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~2dに応じて、利用側熱交換器17も、紙面下側から利用側熱交換器17a、利用側熱交換器17b、利用側熱交換器17c、利用側熱交換器17dとして図示している。さらに、室内機2a~2dに応じて、絞り装置16も、紙面下側から絞り装置16a、絞り装置16b、絞り装置16c、絞り装置16dとして図示している。なお、図1と同様に、室内機2の接続台数を図2に示す4台に限定するものではない。
 また、室内機2には、各種検出装置(利用側熱交換器液冷媒温度検出装置27、利用側熱交換器ガス冷媒温度検出装置28、利用側熱交換器中間冷媒温度検出装置29)が設けられている。これらの検出装置で検出された情報(温度情報)は、室内機2に設けられている制御装置(図示省略)に送られ、室内機2のアクチュエータの制御に利用される。この制御装置は、マイコン等で構成されており、各種検出装置での検出情報およびリモコンからの指示に基づいて、利用側熱交換器17に付属の図示省略の送風機の回転数、絞り装置16の開度等を制御し、制御装置50と連携することで後述する各運転モードを実行するようになっている。
 利用側熱交換器液冷媒温度検出装置27は、絞り装置16と利用側熱交換器17との間における冷媒配管に設けられ、設置箇所を流れる冷媒の温度を検出するものであり、例えばサーミスタ等で構成するとよい。室内機2a~2dに応じて、利用側熱交換器液冷媒温度検出装置27も、紙面下側から利用側熱交換器液冷媒温度検出装置27a、利用側熱交換器液冷媒温度検出装置27b、利用側熱交換器液冷媒温度検出装置27c、利用側熱交換器液冷媒温度検出装置27dとして図示している。
 利用側熱交換器ガス冷媒温度検出装置28は、利用側熱交換器液冷媒温度検出装置27とは反対側の利用側熱交換器17の出入口に設けられ、設置箇所を流れる冷媒の温度を検出するものであり、例えばサーミスタ等で構成するとよい。室内機2a~2dに応じて、利用側熱交換器ガス冷媒温度検出装置28も、紙面下側から利用側熱交換器ガス冷媒温度検出装置28a、利用側熱交換器ガス冷媒温度検出装置28b、利用側熱交換器ガス冷媒温度検出装置28c、利用側熱交換器ガス冷媒温度検出装置28dとして図示している。
 利用側熱交換器中間冷媒温度検出装置29は、利用側熱交換器17の中間位置に設けられ、設置箇所を流れる冷媒の温度を検出するものであり、例えばサーミスタ等で構成するとよい。室内機2a~2dに応じて、利用側熱交換器中間冷媒温度検出装置29も、紙面下側から利用側熱交換器中間冷媒温度検出装置29a、利用側熱交換器中間冷媒温度検出装置29b、利用側熱交換器中間冷媒温度検出装置29c、利用側熱交換器中間冷媒温度検出装置29dとして図示している。なお、利用側熱交換器中間冷媒温度検出装置29は設置しなくてもよい。利用側熱交換器中間冷媒温度検出装置29を設置する場合と設置しない場合の制御動作については後述する。
 本実施の形態においては、熱源側熱交換器12が本発明の「第一の熱交換器」に相当する。
 本実施の形態においては、利用側熱交換器17(17a~17d)が本発明の「第二の熱交換器」に相当する。
 本実施の形態においては、絞り装置16(16a~16d)が本発明の「第一の絞り装置」に相当する。
 本実施の形態においては、絞り装置14aが本発明の「第二の絞り装置」に相当する。
 本実施の形態においては、絞り装置14bが本発明の「第三の絞り装置」に相当する。
 本実施の形態においては、絞り装置14cが本発明の「第四の絞り装置」に相当する。
 空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて室外機1の運転モードを冷房運転モードか暖房運転モードかのいずれかに決定する。すなわち、空気調和装置100は、室内機2の全部で同一運転(冷房運転か暖房運転)をすることができ、室内の温度調節を行う。なお、冷房運転モード、暖房運転モードのいずれにおいても、各室内機2の運転/停止は自由に行うことができる。
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転(停止も含む)を実行する冷房運転モード、および、駆動している室内機2の全てが暖房運転(停止も含む)を実行する暖房運転モードがある。以下に、各運転モードについて、冷媒および熱媒体の流れとともに説明する。
[冷房運転モード]
 図3は、空気調和装置100の冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、全部の利用側熱交換器17において冷熱負荷が発生している場合を例に冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。
 図3に示す冷房運転モードの場合、室外機1では、冷媒流路切替装置11を、圧縮機10から吐出された冷媒が、熱源側熱交換器12へ流入させるように切り替える。開閉装置19aは開とし、開閉装置19bは閉とする。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって圧縮機10から吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、全開状態となっている絞り装置14cおよび過冷却熱交換器13の第一の流路(冷媒配管を流れる冷媒の導通流路)を通過する。
 過冷却熱交換器13の第一の流路を通過した冷媒は、液分離器18によって2つの流路に分岐される。分岐された一方の冷媒は、液分離器18を通過して室外機1から流出する。分岐された他方の冷媒は、第三のバイパス配管4cを介して第一のバイパス配管4aに流れる。第一のバイパス配管4aに流れた冷媒は、絞り装置14aに流入し、減圧されて低温・低圧の二相冷媒となり、過冷却熱交換器13の第二の流路(第一のバイパス配管4aを流れる冷媒の導通流路)を通過する。第二の流路を通過した冷媒は、開状態の開閉装置19aを介して、アキュムレータ15の上流側の流路に合流する。
 なお、過冷却熱交換器13は、第一の流路を通った高温の冷媒と、第二の流路を通った低温の冷媒とで熱交換を行うようになっている。つまり、過冷却熱交換器13では、第一の流路を通った冷媒が第二の流路を通った冷媒によって冷却され、第二の流路を通った冷媒が第一の流路を通った冷媒によって加熱されるようになっている。また、過冷却熱交換器13は、上述したように、例えば二重管式の熱交換器が使用されるが、二重管式の熱交換器に限るものではなく、第一の流路を通る冷媒と第二の流路を通る冷媒とが熱交換可能なものであれば、どのような構造のものでも構わない。
 第一のバイパス配管4aを通る冷媒の流量は、絞り装置14aの開度(開口面積)で調整される。絞り装置14aの開度(開口面積)は、過冷却熱交換器出口冷媒温度検出装置26の検出温度と、過冷却熱交換器入口冷媒温度検出装置25の検出温度と、の温度差、すなわち過冷却熱交換器13の第二の流路における過冷却熱交換器13の前後の温度差(過熱度)、が目標値に近づくように制御される。なお、絞り装置14aの開度(開口面積)は、過冷却熱交換器13の第一の流路の下流側の過冷却度が目標値に近づくように制御してもよい。
 室外機1を流出した高温・高圧の液冷媒は、延長配管5を通って、室内機2(2a~2d)のそれぞれに流入する。室内機2に流入した高温・高圧の液冷媒は、絞り装置16(16a~16d)で膨張させられて、低温・低圧の二相冷媒となり、蒸発器として作用する利用側熱交換器17(17a~17d)のそれぞれに流入する。利用側熱交換器17に流入した冷媒は、利用側熱交換器17の周囲を流通する空気から吸熱して、低温・低圧のガス冷媒となる。そして、低温・低圧のガス冷媒は、室内機2から流出し、延長配管5を通って再び室外機1へ流入し、冷媒流路切替装置11を通り、第一のバイパス配管4aを流通してアキュムレータ15の上流側にバイパスさせられた冷媒と合流した後、アキュムレータ15へ流入し、その後、圧縮機10へ再度吸入される。
 このとき、絞り装置16a~16dの開度(開口面積)は、利用側熱交換器ガス冷媒温度検出装置28の検出温度と、利用側熱交換器液冷媒温度検出装置27の検出温度と、の温度差(過熱度)が目標値に近づくように制御される。
 なお、過冷却熱交換器13は、延長配管5が長い(例えば100m等)場合に確実に冷媒を過冷却させておくために設けられている。延長配管5が長い場合、延長配管5内での圧力損失が大きくなり、冷媒の過冷却度が小さいと、室内機2に至るまでに二相冷媒になってしまう可能性がある。二相冷媒が室内機2に流入すると、絞り装置16に二相冷媒が流入することになる。絞り装置は二相冷媒が流入すると周囲に音が発生するという性質がある。絞り装置16は、室内空間7に温調された空気を送る室内機2内に配置されているため、発生した音が室内空間7に漏れ、居住者に不快な思いをさせることがある。
 また、二相冷媒が絞り装置16に流入すると、絞り装置16の制御も不安定になる。そこで、絞り装置16には、確実に過冷却された液状態の冷媒を流入させる必要があり、過冷却熱交換器13が設けられている。第一のバイパス配管4aには絞り装置14aが設けられ、絞り装置14aの開度(開口面積)を増やして、過冷却熱交換器13の第二の流路に流れる低温・低圧の二相冷媒の流量を増加させると、過冷却熱交換器13の第一の流路の出口冷媒の過冷却度が増加する。一方、絞り装置14aの開度(開口面積)を減らして、過冷却熱交換器13の第二の流路に流れる低温・低圧の二相冷媒の流量を低下させると過冷却熱交換器13の第一の流路の出口冷媒の過冷却度が低下する。
 すなわち、絞り装置14aの開度(開口面積)を調整することにより、過冷却熱交換器13の第一の流路の出口冷媒の過冷却度を適切な値に制御することができる。しかし、圧縮機10には、通常の運転では、信頼性面から、液冷媒が多く混ざった乾き度の小さい冷媒を吸入させたくないため、第一のバイパス配管4aは、アキュムレータ15の入口側(上流側)と接続されている。アキュムレータ15は余剰冷媒を貯留するためのものであり、第一のバイパス配管4aにより、アキュムレータ15の入口側(上流側)にバイパスされた冷媒は、その大半がアキュムレータ15の内部に貯留され、圧縮機10に、多量の液冷媒が戻るのを防ぐことができる。
 以上が基本的な冷房運転モードでの冷媒の動作であるが、冷媒として、R32等のR410Aよりも圧縮機10の吐出温度が高温になる冷媒を使用する場合は、冷凍機油の劣化や圧縮機10の焼損を防ぐために、吐出温度を低下させる必要がある。そこで、空気調和装置100では、液分離器18から液冷媒の一部を分岐させ、第三のバイパス配管4cに流すようにしている。第三のバイパス配管4cに流れた冷媒は、絞り装置14bで減圧されて二相冷媒になった後、アキュムレータ15と圧縮機10との間の流路(アキュムレータ15の下流側であり、かつ、圧縮機10の上流側である流路)に流入する。このようにすると、圧縮機10に吸入される冷媒の温度を下げることができ、その吸入冷媒の温度低下分、圧縮機10の吐出冷媒の温度を低下させることができ、安全に使用できるようになる。
 なお、上述したように、第三のバイパス配管4cは、アキュムレータ15と圧縮機10との間の配管に接続されている。冷媒をアキュムレータ15と圧縮機10との間の流路にインジェクションするのは、液を多く含んだ乾き度の小さい冷媒を直接圧縮機10に吸入させるためである。アキュムレータ15は、余剰冷媒を貯留するためのものであり、第一のバイパス配管4aのようにアキュムレータ15の入口側(上流側)にバイパスされた冷媒は、大半がアキュムレータ15に貯留され、圧縮機10にはその一部の冷媒しか流入しない。しかし、圧縮機10の吐出温度が高くなる場合、圧縮機10の吐出温度を下げる必要があり、そのためには、アキュムレータ15の下流側であり、圧縮機10の上流側である流路に、冷媒液をインジェクションする必要がある。
 そこで、空気調和装置100では、第三のバイパス配管4cを、アキュムレータ15と圧縮機10との間の流路に接続している。そして、第三のバイパス配管4cを通る冷媒の流量は、絞り装置14bの開度(開口面積)で調整する。絞り装置14bの開度(開口面積)を増やし、第三のバイパス配管4cを流れる冷媒の流量を増やすと、圧縮機10の吐出温度が低下する。一方、絞り装置14bの開度(開口面積)を減らし、第三のバイパス配管4cを流れる冷媒の流量を減らすと、圧縮機10の吐出温度が増加(上昇)する。そのため、絞り装置14bの開度(開口面積)を調整することにより、吐出冷媒温度検出装置21の検出値である吐出温度を目標値に近づけることができる。
 第三のバイパス配管4cを介したインジェクションは吐出温度が高い時に行われる。従って、冷房運転モードにおいては、熱源側熱交換器12の周囲の温度(外気温度)が高い状態では高圧が高くなり吐出温度も高くなるため、第三のバイパス配管4cを介したインジェクションによる吐出温度の抑制がなされ、第一のバイパス配管4aに冷媒を流しながら、第三のバイパス配管4cを介したインジェクションもされているという状態になる。一方、外気温度が低い状態では、圧縮機10から吐出される冷媒の吐出温度が高くならないため、第三のバイパス配管4cを介したインジェクションは不要であり、絞り装置14bを全閉または冷媒が流れない小さい開度にし、第三のバイパス配管4cを介したインジェクションが発生しないようにする。
 インジェクションの動作の詳細を図4のp-h線図(圧力-エンタルピ線図)により説明する。図4は、空気調和装置100の冷房運転モード時のp-h線図(圧力-エンタルピ線図)である。
 冷房運転モードにおいては、圧縮機10に吸入され、圧縮機10で圧縮された冷媒(図4の点I)は、熱源側熱交換器12にて凝縮液化されて高圧の液冷媒となる(図4の点J)。この高圧の液冷媒は、過冷却熱交換器13で第一のバイパス配管4aに分岐された冷媒で冷却されて過冷却度が増加し(図4の点L)、液分離器18に流入する。液分離器18で第三のバイパス配管4cに分岐された一部の液冷媒は、絞り装置14bで減圧され(図4の点M)、アキュムレータ15と圧縮機10との間の流路にインジェクションされ、アキュムレータ15から圧縮機10に至る冷媒と合流する。
 一方、液分離器18を通過した高圧二相冷媒は、室外機1を流出し、延長配管5を通過して、室内機2に流入する。室内機2に流入した高圧二相冷媒は、絞り装置16(16a~16d)で減圧され(図4の点K)、利用側熱交換器17(17a~17d)で蒸発する。利用側熱交換器17を流出した冷媒は、室内機2を流出して、延長配管5を通過して室外機1に流入する。室外機1に流入した冷媒は、冷媒流路切替装置11を通り、第一のバイパス配管4aを流通してアキュムレータ15の上流側にバイパスさせられた冷媒と合流した後、アキュムレータ15に流入する(図4の点F)。
 そして、アキュムレータ15を流出した冷媒は、第三のバイパス配管4cを介してアキュムレータ15と圧縮機10との間の流路にインジェクションされた冷媒と合流して、冷却される(図4の点H)。その後、この冷媒は、圧縮機10に吸入される。
 圧縮機10を低圧シェル型の圧縮機で構成した場合、圧縮機10内には、下部に吸入された冷媒と油が流入し、中間部にはモータが配置され、上部から圧縮室で圧縮された高温・高圧の冷媒が密閉容器内の吐出室に吐出された後、圧縮機10から吐出される。従って、圧縮機10の金属製の密閉容器は高温・高圧の冷媒にさらされている部分と、低温・低圧の冷媒にさらされている部分があるため、密閉容器の温度はその中間的な温度になる。また、モータには電流が流れるため、モータは発熱する。
 従って、圧縮機10に吸入された低温・低圧の冷媒は、圧縮機10の密閉容器とモータによって加熱され、温度が上昇した後に(吸入インジェクションを行わない場合は、図4の点F)、圧縮室に吸入される。そして、圧縮機10の吸入側へのインジェクションを行った場合は、蒸発器を通過した低温・低圧のガス冷媒とインジェクションされた低温二相の冷媒が合流され、二相状態で圧縮機10に吸入される。その二相冷媒が圧縮機10の密閉容器およびモータで加熱されて蒸発し、インジェクションを行わない場合よりも温度の低い低温・低圧の冷媒になり(図4の点H)、圧縮室に吸入される。
 そのため、インジェクションを行うと、圧縮機10から吐出される冷媒の吐出温度も低下し(図4の点I)、インジェクションを行わない場合の圧縮機10の吐出温度(図4の点G)に対して、吐出温度が低くなる。このように動作させることにより、R32等の圧縮機10の吐出温度が高温になる冷媒を使用している場合等に、圧縮機10の吐出温度を低下させることができ、安全に使用できる。
 なお、本実施の形態の図4等のp-h線図においては、圧縮機10に吸入される冷媒(図4の点H)が過熱ガス冷媒であるかのように図示されているが、点Hの位置は、アキュムレータ15を流出した冷媒の内部エネルギー(流量とエンタルピー(点F)との積)と第三のバイパス配管4cを通過した冷媒の内部エネルギー(流量とエンタルピー(点M)との積)との関係で決まる。第三のバイパス配管4cを通過した冷媒の流量が小さい場合は過熱ガス冷媒が圧縮機10に吸入され、第二のバイパス配管4bを通過した冷媒の流量が大きい場合は二相冷媒が圧縮機10に吸入される。実際は、少しの冷媒を第三のバイパス配管4cに流すだけで、点Hは二相になり、大半の場合は圧縮機10に二相冷媒を吸入させることにより圧縮機10の吐出温度を低下させている。
 なお、絞り装置14aは、電子式膨張弁等の開口面積を変化させられるものが望ましく、電子式膨張弁を使用すれば、過冷却熱交換器13の第二の流路を通る冷媒の流量を任意に制御することができ、室外機1を流出する冷媒の過冷却度の制御性がよい。ただし、絞り装置14aは、これに限るものではなく、小型の電磁弁等の開閉弁を組み合わせて開口面積を複数選択できるようにしてもよいし、キャピラリチューブとして冷媒の圧損に応じて過冷却度が形成されるようにしてもよく、制御性は少し悪化するが、過冷却度を目標に制御することはできる。
 また、絞り装置14bは、電子式膨張弁等の開口面積を変化させられるものとし、吐出冷媒温度検出装置21が検出する圧縮機10の吐出温度が高くなり過ぎないように、絞り装置14bの開口面積が制御される。
 また、開閉装置19aおよび開閉装置19bは、流路の開閉を行うものであり、電磁弁等を用いるが、これに限るものではなく、流路の閉止ができかつ開度(開口面積)が調整できる電子式膨張弁であってもよく、流路の開閉ができればどのようなものでもよい。開閉装置19aおよび開閉装置19bの構成については、後述の暖房運転モードでも同様である。
 また、絞り装置14aおよび絞り装置14bは、どちらも、同じ液分離器18の液の取り出し配管(第一のバイパス配管4a、第三のバイパス配管4c)に接続されている。絞り装置には、二相を流入させると、動作が不安定になりかつ冷媒音が発生するため、液冷媒を流入させる必要がある。そこで、液分離器18から分離された液冷媒を流入させるように構成する。このとき、液分離器18を2つ設置し、それぞれで取り出した液冷媒を絞り装置14aおよび絞り装置14bに流入させるようにしてもよいが、1つの液分離器18から液を取り出した後に、分岐し、絞り装置14aと絞り装置14bとの双方に液冷媒を供給できるように配管接続をすれば、安価にシステムを構成することができる。
 冷房運転モードを実行する際、熱負荷のない利用側熱交換器17(サーモオフを含む)へは冷媒を流す必要がないため、運転を停止させる。このとき、停止している室内機2に対応する絞り装置16は、全閉または冷媒が流れない小さい開度としておく。
 以上のように、空気調和装置100は、冷媒回路に第一のバイパス配管4aと第三のバイパス配管4cとを備え、アキュムレータ15の上流側の流路に、液分離器18から分離され、過冷却熱交換器13および絞り装置14aを介した冷媒が流れる第一のバイパス配管4aを接続し、アキュムレータ15と圧縮機10との間の流路に、液分離器18から分離され、絞り装置14bで流量調整された冷媒が過冷却熱交換器13を通らずに流れる第三のバイパス配管4cを接続するようにしている。
 こうすることにより、空気調和装置100によれば、室外機1を流出する冷媒の過冷却度の調節と、圧縮機10の吸入側へのインジェクション量の調節による吐出温度の制御とを、別々に行えるため、延長配管5が長い場合であっても、室内機2に流入する冷媒を、確実に過冷却度がついている状態にできる。加えて、空気調和装置100によれば、圧縮機10の吐出温度が高くなる条件において、圧縮機10の吐出温度が上限を超えないように、確実に制御することができる。
[暖房運転モード]
 図5は、空気調和装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、全部の利用側熱交換器17において温熱負荷が発生している場合を例に暖房運転モードについて説明する。なお、図5では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。
 図5に示す暖房運転モードの場合、室外機1では、冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12を経由させずに室内機2へ流入させるように切り替える。開閉装置19aは閉とし、開閉装置19bはインジェクションを行う時は開とし、インジェクションを行わない場合は閉とする。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって圧縮機10から吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を通り、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、延長配管5を通って室内機2(2a~2d)のそれぞれに流入する。室内機2に流入した高温・高圧のガス冷媒は、利用側熱交換器17(17a~17d)のそれぞれに流入し、利用側熱交換器17の周囲を流通する空気に放熱しながら凝縮液化し、高温・高圧の液冷媒となる。利用側熱交換器17から流出した液冷媒は、絞り装置16(16a~16d)で膨張させられて、第一の中圧の二相冷媒となり、室内機2から流出する。室内機2から流出した第一の中圧の二相冷媒は、延長配管5を通って再び室外機1へ流入する。
 このとき、絞り装置16a~16dの開度(開口面積)は、利用側熱交換器中間冷媒温度検出装置29の検出温度と、利用側熱交換器液冷媒温度検出装置27の検出温度と、の温度差(過冷却度)が目標値に近づくように制御される。なお、上述したように、利用側熱交換器中間冷媒温度検出装置29は必ずしも必要ではなく設置しなくてもよい。利用側熱交換器中間冷媒温度検出装置29を設置しない場合は、室外機1に設置された制御装置50において、高圧検出装置22の検出圧力である高圧を飽和温度換算して凝縮温度を求める。そして、求められた凝縮温度を、室外機1の制御装置50から室内機2に設けられた制御装置(図示せず)に通信により送信し、室内機2の制御装置は、受信した凝縮温度と利用側熱交換器液冷媒温度検出装置27の検出温度との温度差(過冷却度)が目標値に近づくように、絞り装置16を制御する。
 室外機1に流入した第一の中圧の二相冷媒は、液分離器18で一部の液冷媒が分離される。一部の液冷媒が分離され、残った第一の中圧の二相冷媒は、過冷却熱交換器13の第一の流路を通過し、絞り装置14cを通って膨張させられて、低温・低圧の二相冷媒になり、熱源側熱交換器12に流入する。熱源側熱交換器12に流入した低温・低圧の二相冷媒は、熱源側熱交換器12の周囲に流れる空気から吸熱し、蒸発して低温・低圧のガス冷媒となり、冷媒流路切替装置11およびアキュムレータ15を介して、再び圧縮機10に吸入される。
 また、液分離器18で分離された液冷媒は、絞り装置14aで減圧されて第二の中圧の二相冷媒となる。この第二の中圧の二相冷媒は、過冷却熱交換器13の第二の流路を通過して、乾き度の大きい二相冷媒となり、第二のバイパス配管4bおよび開状態の開閉装置19bを介して、圧縮機10の圧縮室に設けられたインジェクションポートから、圧縮室の内部にインジェクションされる。
 なお、第二のバイパス配管4bは、圧縮機10の圧縮室に設けられたインジェクションポートに接続されている。冷媒を圧縮機10の圧縮室に設けられたインジェクションポートから圧縮室の内部にインジェクションすることにより、液を含んだ二相冷媒を直接圧縮機10に導入することができる。アキュムレータ15の入口側(上流側)に冷媒をバイパスすると、その大半がアキュムレータ15に貯留され、圧縮機10にはその一部の冷媒しか流入しない。
 しかし、圧縮機10の吐出温度が高くなる場合、圧縮機10の吐出温度を下げる必要があり、そのために、第二のバイパス配管4bを圧縮機10の圧縮室に設けられたインジェクションポートに接続し、圧縮機10の圧縮室に冷媒液をインジェクションする。そして、第二のバイパス配管4bを通る冷媒の流量は、絞り装置14aの開度(開口面積)で調整する。絞り装置14aの開度(開口面積)を増やし、第二のバイパス配管4bを流れる冷媒の流量を増やすと、圧縮機10の吐出温度が低下する。一方、絞り装置14aの開度(開口面積)を減らし、第二のバイパス配管4bを流れる冷媒の流量を減らすと、圧縮機10の吐出温度が増加する。そのため、絞り装置14aの開度(開口面積)を調整することにより、圧縮機10の吐出温度を変化させることができる。なお、暖房運転時においては、吐出温度制御でも構わないが、多くの場合は吐出過熱度の制御を行っている。これは、過冷却熱交換器13を介してインジェクションをする場合、吐出過熱度制御を行った方が、吐出温度制御を行う場合よりも、より多くの冷媒量をインジェクションすることができ、低温暖房時の暖房能力が向上するためである。一方、冷房時においては、インジェクション量を大きくし過ぎると、蒸発器に流れる冷媒流量が低下し、冷房能力が下がってしまうため、吐出温度制御の方がインジェクション量を少なくでき望ましい。吐出過熱度制御については後述する。
 以上が基本的な暖房運転モードでの冷媒の動作であり、第二のバイパス配管4bを介して、乾き度の大きい二相冷媒を圧縮機10の圧縮室の内部にインジェクションする。こうすることにより、圧縮機10の吐出温度が低下するため、圧縮機10の周波数を大きくすることができ、外気温度が低い暖房運転時等に、暖房能力を向上させることができる。また、過冷却熱交換器13にて、第二のバイパス配管4bを流れる冷媒で、熱源側熱交換器12に流れる冷媒を冷却することができ、蒸発器(熱源側熱交換器12)の出口冷媒のエンタルピーと入口冷媒のエンタルピーとの差を大きくできる。そのため、圧縮機10の低圧を高めに保つことができ、暖房能力を更に向上させることができる。
 よって、空気調和装置100では、暖房運転時は、第三のバイパス配管4cではなく、過冷却熱交換器13が設けられている第二のバイパス配管4bを用いて、圧縮機10に冷媒をインジェクションするようにしている。ただし、暖房能力が十分大きい状態で、吐出温度が高くなり過ぎる運転状態が発生した場合は、第三のバイパス配管4cを用いて、圧縮機10の吸入側に冷媒をインジェクションしても構わない。
 ここで、絞り装置14cは、絞り装置16と絞り装置14aとの間の冷媒の圧力を第一の中圧に制御する作用をする。絞り装置16と絞り装置14cとの間の冷媒、すなわち液分離器18内の冷媒の圧力を、第一の中圧に保つことのより、第二のバイパス配管4bの前後差圧を確保することができ、圧縮機10の圧縮室の内部に確実に冷媒をインジェクションすることができるようになる。なお、絞り装置14cの開度(開口面積)は、液冷媒温度検出装置24の検出温度を飽和圧力に換算した第一の中圧が目標値に近づくように制御される。
 また、暖房運転モードにおいては、熱源側熱交換器12の周囲の温度(外気温度)が低い、低外気暖房の場合等に、低圧が低くなり吐出温度も高くなるため、第二のバイパス配管4bを介したインジェクションが必要となる。外気温度が高い時の暖房運転においては、第二のバイパス配管4bを介したインジェクションは不要であり、絞り装置14aを全閉または冷媒が流れない小さい開度にするか、開閉装置19bを閉とし、第二のバイパス配管4bを介したインジェクションが発生しないようにする。なお、インジェクションを行わない場合の第二のバイパス配管4bの流路の閉止は、開閉装置19bではなく、絞り装置14aで行ってもよい。
 インジェクションの動作の詳細を図6のp-h線図(圧力-エンタルピ線図)により説明する。図6は、空気調和装置100の暖房運転モード時のp-h線図(圧力-エンタルピ線図)である。
 暖房運転モードにおいては、圧縮機10に吸入され、圧縮機10で圧縮された冷媒(図6の点I)は、冷媒流路切替装置11を介して室外機1を流出し、延長配管5を通り、室内機2に流入する。室内機2に流入した冷媒は、利用側熱交換器17で凝縮された後、絞り装置16で膨張させられ、延長配管5を介して、室外機1に戻り、液分離器18に流入する。このとき、絞り装置14cの作用により、絞り装置14cの上流側の冷媒の圧力は第一の中圧状態に制御される(図6の点J)。
 絞り装置14cにより、第一の中圧になった二相冷媒のうち、液分離器18で分岐された液冷媒は、絞り装置14aによって減圧されて第二の中圧の二相冷媒となる(図6の点M)。この第二の中圧の二相冷媒は、過冷却熱交換器13の第二の流路を流れ、過冷却熱交換器13の第一の流路を流れる第一の中圧の冷媒によって加熱されて乾き度の大きい二相冷媒になる(図6の点P)。そして、この二相冷媒は、第二のバイパス配管4bを介して、圧縮機10の圧縮室に設けられたインジェクションポートから圧縮室にインジェクションされる。
 一方、液分離器18を通過した第一の中圧の冷媒は、過冷却熱交換器13の第一の流路を流れ、過冷却熱交換器13の第二の流路を流れる第二の中圧の冷媒によって冷却されてエンタルピーが小さくなる(図6の点L)。それから、この冷媒は、絞り装置14cで減圧されて、低圧の二相冷媒となり(図6の点K)、熱源側熱交換器12で蒸発した後、冷媒流路切替装置11を介して、アキュムレータ15に流入する(図6の点F)。アキュムレータ15を流出した冷媒は、圧縮機10に吸入され、第二の中圧まで圧縮され(図6の点N)、第二のバイパス配管4bを介してインジェクションされた冷媒(図6の点P)と合流して、冷却される(図6の点H)。
 圧縮機10を低圧シェル型の圧縮機で構成した場合、圧縮機10の金属製の密閉容器は高温・高圧の吐出冷媒にさらされている部分と、低温・低圧の吸入冷媒にさらされている部分があるため、密閉容器の温度はその中間的な温度になる。また、モータには電流が流れるため、モータは発熱をする。従って、圧縮機10に吸入された低温・低圧の冷媒は、圧縮機10の密閉容器とモータによって加熱され、温度が上昇した後に(インジェクションを行わない場合は、図6の点F)、圧縮室に吸入される。一方、圧縮機10の圧縮室の内部に冷媒をインジェクションした場合は、圧縮機10に吸入され、第二の中圧まで圧縮されたガス冷媒(図6の点N)が圧縮室にインジェクションされた二相冷媒と合流して冷却される。そのため、インジェクションを行わない場合よりも温度の低い冷媒になり(図6の点H)、更に圧縮が継続され、高圧のガス冷媒になる。
 よって、インジェクションを行うと、圧縮機10から吐出される冷媒の吐出温度も低下し(図6の点I)、インジェクションを行わない場合の圧縮機10の吐出温度(図6の点G)に対して、吐出温度が低下する。このように動作させることにより、外気温度が低い暖房運転時等に、圧縮機10の吐出温度を低下させて使用することができ、安全に使用できる。
 なお、絞り装置14cは、電子式膨張弁等の開口面積を変化させられるものが望ましく、電子式膨張弁を使用すれば、絞り装置14cの上流側の第一の中圧を任意の圧力に制御でき、吐出温度の制御が安定する。ただし、絞り装置14cは、これに限るものではなく、小型の電磁弁等の開閉弁を組み合わせて開口面積を複数選択できるようにしてもよいし、キャピラリチューブとして冷媒の圧損に応じて中圧が形成されるようにしてもよく、制御性は少し悪化するが、吐出温度を目標に制御することはできる。
 また、第一の中圧は、液冷媒温度検出装置24の検出温度を飽和圧力換算して求める場合について説明したが、このようにするとシステムを安価に構成できるが、当然、これに限るものではなく、圧力センサーを用いてもよい。また、絞り装置14aは、電子式膨張弁等の開口面積を変化させられるものとし、吐出冷媒温度検出装置21の検出温度と高圧検出装置22の検出圧力とから演算される圧縮機10の吐出過熱度が目標の範囲内に入るように、絞り装置14aの開口面積が制御される。
 また、第一のバイパス配管4aおよび第二のバイパス配管4bの双方は、過冷却熱交換器13の絞り装置14aと反対側の流路に接続され、開閉装置19aおよび開閉装置19bにて、過冷却熱交換器13を流れた冷媒の流路を切り替えるように構成している。
 絞り装置14aおよび過冷却熱交換器13を2つ設置し、それぞれが第一のバイパス配管4aおよび第二のバイパス配管4bと接続されるようにしてもよいが、第一のバイパス配管4aを通した流れは冷房運転時に発生し、第二のバイパス配管4bを通した流れは暖房運転時に発生し、同時には発生しない。そのため、1組の液分離器18と絞り装置14aと過冷却熱交換器13とを使用し、開閉装置19aと開閉装置19bとで、第一のバイパス配管4aを通る流れと第二のバイパス配管4bを通る流れとを切り替えるようにすることで、安価にシステムを構成することができる。なお、絞り装置14aおよび過冷却熱交換器13を2つ設置する場合は、液分離器18を2つ設置してもよい。
 暖房運転モードを実行する際、熱負荷のない利用側熱交換器17(サーモオフを含む)へは冷媒を流す必要がない。しかし、暖房運転モードにおいて、暖房負荷のない利用側熱交換器17と対応する絞り装置16を全閉または冷媒が流れない小さい開度とすると、運転していない利用側熱交換器17の内部で冷媒が周囲空気によって冷やされて凝縮し、冷媒が溜まり込んでしまい、冷媒回路全体として冷媒不足に陥ってしまう可能性がある。そこで、暖房運転時においては、熱負荷のない利用側熱交換器17と対応する絞り装置16の開度(開口面積)は全開等の大きい開度にし、冷媒の溜まり込みを防止する。
 なお、停止している室内機2がある場合、絞り装置16を上述のように制御するため、停止している室内機2を通る冷媒の流れが発生する。このとき、熱負荷のない利用側熱交換器17においては冷媒が凝縮しないため、対応する絞り装置16では高温・高圧のガス冷媒を減圧することになり、p-h線図(圧力-エンタルピ線図)が先の説明と異なったものとなる。この場合の動作を図7のp-h線図(圧力-エンタルピ線図)により説明する。図7は、空気調和装置100の暖房運転モード時において停止している室内機2がある場合のp-h線図(圧力-エンタルピ線図)である。
 停止している室内機2がある場合の暖房運転モードにおいては、圧縮機10に吸入され、圧縮機10で圧縮された冷媒(図7の点I)は、冷媒流路切替装置11を介して室外機1を流出し、延長配管5を通り、室内機2に流入する。室内機2に流入した冷媒は、暖房負荷のある利用側熱交換器17で凝縮された後、絞り装置16で膨張させられて第一の中圧になり(図7の点J)、延長配管5を介して、室外機1に戻る。
 一方、利用側熱交換器17への冷媒の溜まり込みを防ぐために、暖房負荷のない利用側熱交換器17に流された冷媒は、凝縮することなく、ガス冷媒のまま利用側熱交換器17を通過する。その後、この冷媒は、絞り装置16で減圧されて第一の中圧になり(図7の点I)、延長配管5を介して、室外機1に戻る。
 この途中、延長配管5のいずれかの位置で、凝縮し絞られた第一の中圧の液冷媒と、凝縮されること無く減圧された第一の中圧のガス冷媒と、が混合して、第一の中圧の二相冷媒となり(図7の点J)、室外機1の液分離器18に流入する。液分離器18に流入した第一の中圧の二相冷媒は、液分離器18の作用によって、液冷媒の一部が分岐される(図7の点J)。分岐された液冷媒は、絞り装置14aによって減圧されて第一の中圧よりも低い第二の中圧の二相冷媒となる(図7の点M)。それから、この冷媒は、過冷却熱交換器13の第二の流路を流れ、過冷却熱交換器13の第一の流路を流れる第一の中圧の冷媒によって加熱されて乾き度の大きい二相冷媒になる(図7の点P)。そして、この冷媒は、第二のバイパス配管4bを介して、圧縮機10の圧縮機に設けられたインジェクションポートから圧縮室の内部に導入される。
 一方、液分離器18を通過し乾き度が少し増えた第一の中圧の冷媒(図7の点J)は、過冷却熱交換器13の第一の流路を流れ、過冷却熱交換器13の第二の流路を流れる第二の中圧の冷媒によって冷却されてエンタルピーが小さくなる(図7の点L)。それから、この冷媒は、絞り装置14cで減圧されて、低圧の二相冷媒となる(図7の点K)。その後、この冷媒は、熱源側熱交換器12で蒸発した後、冷媒流路切替装置11を介して、アキュムレータ15に流入する(図7の点F)。アキュムレータ15を流出した冷媒は、圧縮機10に吸入され、第二の中圧まで圧縮され(図7の点N)、第二のバイパス配管4bを介してインジェクションされた冷媒と合流して、冷却される(図7の点H)。
 絞り装置を流れる冷媒の流量は、同一の開度(開口面積)であっても、冷媒の密度によって異なったものとなる。二相冷媒は、密度の小さいガス冷媒と密度の大きい液冷媒とが混在しているものであり、絞り装置に流入する冷媒が液冷媒から二相冷媒に変わると、冷媒の密度が大きく変化し、圧縮機10の吐出温度を一定量低下させるための適正流量となる開度(開口面積)が大きく異なったものになる。
 このままだと、室内機2の発停に伴い、絞り装置14aの開度を大きく変化させなければならず、安定した制御が行えない。そこで、空気調和装置100では、液分離器18を設けることにより、停止している室内機2が存在する場合においても、液分離器18で液状態の冷媒のみを分離でき、絞り装置14aに液冷媒のみを流入させることができるようになり、安定した制御を行えるようにしている。
 絞り装置14aの開度(開口面積)は、吐出冷媒温度検出装置21の検出温度と高圧検出装置22の検出圧力とから演算される圧縮機10の吐出過熱度が目標の範囲内に入るように制御する。外気温度によって、インジェクションすべき冷媒の流量の最適値が異なるため、吐出過熱度の目標値は、外気温度によって値を変化させるとすると、効率が向上する。吐出過熱度を制御することにより、吐出温度が高くなりすぎるのを防ぐことができる。なお、吐出過熱度の目標値を外気温度によって変化させずに同じ値としてもよいし、吐出過熱度の目標値は、一定の値、例えば40℃としてもよいし、目標範囲、例えば20℃から40℃の間としてもよい。また、絞り装置14aの開度を、吐出冷媒温度検出装置21の検出温度である吐出温度が目標値になるように制御してもよい。
 また、冷媒流路切替装置11は、四方弁を用いるのが一般的であるが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
 また、室内機2が4台接続されている場合を例に説明したが、室内機2の接続台数は何台接続されていてもよく、同様のことが成り立つのは言うまでもない。ただし、室内機2が1台しか接続されない場合は、暖房運転中の停止室内機が存在しないため、液分離器18は設置しなくてよい。
 また、暖房運転時の各室内機2の入口側の流路に、流路を開閉する開閉弁を備え、暖房運転時の停止室内機への冷媒の溜まり込みを防止できる場合は、停止している室内機2を通した冷媒の流れが発生しないため、液分離器18は設置しなくてもよい。
 なお、液分離器18は、1つの入口流路と2つの出口流路を持ち、入口流路から流入した二相状態の冷媒を、液冷媒の一部を分離し、分離した液冷媒と残った二相冷媒とを、それぞれ2つの出口流路から流出させるものであれば、どんな構造のものでもよい。また、二相冷媒から液冷媒を分離する分離効率が100%でなく、液冷媒を取り出す流路に、多少のガス冷媒が液冷媒に混入していても、ガス冷媒の混入度が、絞り装置の制御に大きな影響を与えない程度であれば、構わない。また、液分離器18を、暖房運転時の過冷却熱交換器13の上流側に備えるようにすると、暖房運転時の過冷却熱交換器13の第一の流路での圧力損失の影響を受けず、液冷媒温度検出装置24による第一の中圧の測定精度が向上し、吐出温度の制御精度が向上する。
 また、室外機1が複数台接続されており、複数の室外機1の冷媒回路が室外機1の外部で合流するように、配管接続されている場合でも、同じであり、同様のことが成り立つ。
 また、圧縮機10は、低圧シェル型の圧縮機を使用する場合を例に説明したが、当然、吸入冷媒が圧縮室に直接吸入され、圧縮され、圧縮室から吐出された冷媒が、密閉容器内に噴出した後に、圧縮機10から吐出される、高圧シェル型の圧縮機を使用してもよく、同様の効果を奏する。
 また、冷房と暖房を切り替えるタイプの空気調和装置を例に説明をしたが、これに限るものではなく、室外機1と室内機2との間に中継機を設け、室外機1から中継機を介して室内機2まで冷媒が循環し、中継機で冷熱と温熱の双方を発生させ、冷房需要がある室内機2には冷たい冷媒を供給し、暖房需要がある室内機2には暖かい冷媒を供給する、冷暖同時タイプの空気調和装置でもよく、同様の方法により、同様の効果を奏する。
 また、冷媒が室外機1から室内機2まで循環している空気調和装置を例に説明をしたが、これに限るものではなく、室外機1と室内機2との間に中継機を設け、室外機1と中継機との間を冷媒が循環し、中継機で冷媒と水やブライン等の熱媒体とを熱交換させ、中継機と室内機2との間を熱媒体を循環させる空気調和装置でもよく、同様の方法により、同様の効果を奏する。また、このタイプの空気調和装置において、中継機で冷水または温水のいずれかしか生成できない空気調和装置でも、中継機で冷水と温水の双方を生成できる空気調和装置でも構わない。
 冷媒としては、R32等の吐出温度が高くなる冷媒を使用する時に効果が大きく、R32の他、R32と地球温暖化係数が小さく化学式がCFCF=CHで表されるテトラフルオロプロペン系冷媒であるHFO1234yfやHFO1234zeと混合冷媒(非共沸混合冷媒)を使用してもよい。冷媒としてR32を使用した場合は、R410Aを使用した場合に対して、同一運転状態において、吐出温度が約20℃上昇するため、吐出温度を低下させて使用する必要があり、吸入インジェクションの効果が大きい。R32とHFO1234yfとの混合冷媒においては、R32の質量比率が62%(62wt%)以上である場合に、R410A冷媒を使用した場合よりも吐出温度が3℃以上高くなり、吸入インジェクションにより、吐出温度を低下させるようにすると、効果が大きい。
 また、R32とHFO1234zeとの混合冷媒においては、R32の質量比率が43%(43wt%)以上である場合に、R410A冷媒を使用した場合よりも吐出温度が3℃以上高くなり、吸入インジェクションにより、吐出温度を低下させるようにすると、効果が大きい。また、混合冷媒における冷媒種はこれに限るものではなく、その他の冷媒成分を少量含んだ混合冷媒であっても、吐出温度には大きな影響がなく、同様の効果を奏する。例えば、R32とHFO1234yfとその他の冷媒を少量含んだ混合冷媒等においても使用でき、吐出温度がR410Aよりも高くなる冷媒であれば、どんな冷媒であっても吐出温度を低下させる必要があり、同様の効果がある。
 また、一般的に、熱源側熱交換器12および利用側熱交換器17a~17dには、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではなく、例えば利用側熱交換器17a~17dとしては放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができ、放熱あるいは吸熱をできる構造のものであればどんなものでも用いることができる。
 以上より、空気調和装置100は、冷房運転および暖房運転の双方において、圧縮機10の吐出温度が高くなりすぎないようにできる。そのため、空気調和装置100によれば、圧縮機10の損傷を防げ、圧縮機10の寿命が長くなり、かつ、外気温が低温の時の暖房運転においては、必要な暖房能力を発揮することができる。
 上記実施の形態では、第三のバイパス配管4cを、液分離器18と、アキュムレータ15と圧縮機10との間における冷媒配管と、を接続し、冷房運転時の吐出温度が高い場合に、圧縮機10の吸入側にインジェクションするよう場合を例に説明したが、これに限定するものではない。例えば、第三のバイパス配管4cを、液分離器18と、開閉装置19bと圧縮機10との間における第二のバイパス配管4bと、を接続し、冷房運転時の吐出温度が高い場合に、圧縮機10の吸入側にインジェクションする代わりに、圧縮機10の中圧にインジェクションをして、吐出温度を低下させるように構成してもよい。
 上記実施の形態では、第三のバイパス配管4cを設けた場合を例に説明したが、これに限定するものではなく、第三のバイパス配管4cを設けない態様としても本発明の目的を達成することができ、例えば、冷房運転時にも、第二のバイパス配管4bに冷媒を流して、吐出温度制御を実行するようにしてもよい。
 1 室外機、2 室内機、2a 室内機、2b 室内機、2c 室内機、2d 室内機、4a 第一のバイパス配管、4b 第二のバイパス配管、4c 第三のバイパス配管、5 延長配管、6 室外空間、7 室内空間、9 建物、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 過冷却熱交換器、14a 絞り装置、14b 絞り装置、14c 絞り装置、15 アキュムレータ、16 絞り装置、16a 絞り装置、16b 絞り装置、16c 絞り装置、16d 絞り装置、17 利用側熱交換器、17a 利用側熱交換器、17b 利用側熱交換器、17c 利用側熱交換器、17d 利用側熱交換器、18 液分離器、19a 開閉装置、19b 開閉装置、21 吐出冷媒温度検出装置、22 高圧検出装置、23 低圧検出装置、24 液冷媒温度検出装置、25 過冷却熱交換器入口冷媒温度検出装置、26 過冷却熱交換器出口冷媒温度検出装置、27 利用側熱交換器液冷媒温度検出装置、27a 利用側熱交換器液冷媒温度検出装置、27b 利用側熱交換器液冷媒温度検出装置、27c 利用側熱交換器液冷媒温度検出装置、27d 利用側熱交換器液冷媒温度検出装置、28 利用側熱交換器ガス冷媒温度検出装置、28a 利用側熱交換器ガス冷媒温度検出装置、28b 利用側熱交換器ガス冷媒温度検出装置、28c 利用側熱交換器ガス冷媒温度検出装置、28d 利用側熱交換器ガス冷媒温度検出装置、29 利用側熱交換器中間冷媒温度検出装置、29a 利用側熱交換器中間冷媒温度検出装置、29b 利用側熱交換器中間冷媒温度検出装置、29c 利用側熱交換器中間冷媒温度検出装置、29d 利用側熱交換器中間冷媒温度検出装置、50 制御装置、100 空気調和装置。

Claims (12)

  1.  圧縮機と、第一の熱交換器と、高温の冷媒と低温の冷媒とを熱交換させて高温の冷媒を過冷却させる過冷却熱交換器の第一の流路と、第一の絞り装置と、第二の熱交換器と、アキュムレータと、を冷媒配管で接続し、内部に冷媒を循環させて冷凍サイクルを構成し、
     前記圧縮機は、
     圧縮室の内部に外部から冷媒を導入するためのインジェクションポートを有し、
     前記アキュムレータを前記圧縮機の吸入側に設け、
     前記第一の熱交換器と前記第二の熱交換器との間の前記冷媒配管を分岐し、第二の絞り装置、前記過冷却熱交換器の前記第一の流路を流れる冷媒と熱交換をする前記過冷却熱交換器の第二の流路、及び第一の開閉装置を介して、前記アキュムレータの入口側流路に接続する第一のバイパス配管と、
     前記過冷却熱交換器と前記第一の開閉装置との間における前記第一のバイパス配管を分岐し、第二の開閉装置を介して、前記圧縮機のインジェクションポートに接続する第二のバイパス配管と、
     前記第一の熱交換器を凝縮器として作用させ前記第二の熱交換器を蒸発器として作用させる冷房運転と、
     前記第一の熱交換器を蒸発器として作用させ前記第二の熱交換器を凝縮器として作用させる暖房運転と、
     前記冷房運転においては、前記圧縮機から吐出される冷媒の温度を制御し、前記暖房運転においては、前記圧縮機から吐出される冷媒の温度及び前記圧縮機から吐出される冷媒の圧力から演算される吐出過熱度を制御する制御装置と、を備える
     ことを特徴とする空気調和装置。
  2.  圧縮機と、第一の熱交換器と、高温の冷媒と低温の冷媒とを熱交換させて高温の冷媒を過冷却させる過冷却熱交換器の第一の流路と、第一の絞り装置と、第二の熱交換器と、アキュムレータと、を冷媒配管で接続し、内部に冷媒を循環させて冷凍サイクルを構成し、
     前記圧縮機は、
     圧縮室の内部に外部から冷媒を導入するためのインジェクションポートを有し、
     前記アキュムレータを前記圧縮機の吸入側に設け、
     前記第一の熱交換器と前記第二の熱交換器との間の前記冷媒配管を分岐し、第二の絞り装置、前記過冷却熱交換器の前記第一の流路を流れる冷媒と熱交換をする前記過冷却熱交換器の第二の流路、及び第一の開閉装置を介して、前記アキュムレータの入口側流路に接続する第一のバイパス配管と、
     前記過冷却熱交換器と前記第一の開閉装置との間における前記第一のバイパス配管を分岐し、第二の開閉装置を介して、前記圧縮機のインジェクションポートに接続する第二のバイパス配管と、
     前記第一の熱交換器と前記第二の熱交換器との間の前記冷媒配管と、前記圧縮機の入口側と前記アキュムレータの出口側との間の前記冷媒配管と、を接続する、または、前記第一の熱交換器と前記第二の熱交換器との間の前記冷媒配管と、前記圧縮機のインジェクションポートと、を接続する、第三のバイパス配管と、
     前記第三のバイパス配管に設けられた第三の絞り装置と、を備え、
     前記第一の熱交換器を凝縮器として作用させ前記第二の熱交換器を蒸発器として作用させる冷房運転と、
     前記第一の熱交換器を蒸発器として作用させ前記第二の熱交換器を凝縮器として作用させる暖房運転と、
     前記第二の絞り装置および前記第三の絞り装置を制御する制御装置と、を有し、
     前記制御装置は、
     前記冷房運転においては、前記第三の絞り装置を制御して、前記圧縮機から吐出される冷媒の温度を制御し、
     前記暖房運転においては、前記第二の絞り装置を制御して、前記圧縮機から吐出される冷媒の温度及び前記圧縮機から吐出される冷媒の圧力から演算される吐出過熱度を制御する
     ことを特徴とする空気調和装置。
  3.  前記圧縮機の吐出温度がR410Aよりも高温になる冷媒を前記冷媒配管の内部に循環させ、
     前記圧縮機の出口側流路の冷媒の温度を検出する吐出温度検出装置と、
     前記圧縮機の出口側流路の冷媒の圧力を検出する高圧圧力検出装置と、を備え、
     前記制御装置は、
     前記冷房運転においては、前記第三の絞り装置を制御して、前記吐出温度検出装置の検出温度である吐出温度を制御し、
     前記暖房運転においては、前記第二の絞り装置を制御して、前記吐出温度と前記高圧圧力検出装置の検出圧力とから演算される吐出過熱度を制御する
     ことを特徴とする請求項2に記載の空気調和装置。
  4.  前記制御装置は、
     前記冷房運転において、
     前記吐出温度検出装置の検出温度である吐出温度または前記吐出温度と前記高圧圧力検出装置の検出圧力とから演算される吐出過熱度を基に、前記第三の絞り装置の開度を調整し、前記第三のバイパス配管に流れる冷媒の流量を制御する
     ことを特徴とする請求項3に記載の空気調和装置。
  5.  前記制御装置は、
     前記冷房運転において、少なくとも、前記第一の熱交換器において前記冷媒と熱交換する前記第一の熱交換器の周囲の空気温度が高い場合に、前記第一のバイパス配管に冷媒を流しながら、前記第三のバイパス配管にも冷媒を流す
     ことを特徴とする請求項4に記載の空気調和装置。
  6.  前記制御装置は、
     前記冷房運転において、前記第三の絞り装置の開度を調整し、前記吐出温度検出装置の検出温度である吐出温度を制御する
     ことを特徴とする請求項4または5に記載の空気調和装置。
  7.  前記暖房運転において、前記第二の熱交換器の下流側に位置する前記第一の絞り装置と前記第一の熱交換器との間に第四の絞り装置を設け、
     前記制御装置は、
     前記暖房運転において、
     前記吐出温度検出装置の検出温度である吐出温度または前記吐出温度と前記高圧圧力検出装置の検出圧力とから演算される吐出過熱度を基に、前記第四の絞り装置の上流側から分岐した冷媒を流入させる前記第二の絞り装置の開度を調整し、前記第二のバイパス配管に流れる冷媒の流量を制御する
     ことを特徴とする請求項3に記載の空気調和装置。
  8.  前記制御装置は、
     前記暖房運転において、少なくとも、前記第一の熱交換器において前記冷媒と熱交換する前記第一の熱交換器の周囲の空気温度が低い場合に、前記第二のバイパス配管に冷媒を流す
     ことを特徴とする請求項7に記載の空気調和装置。
  9.  前記制御装置は、
     前記暖房運転において、前記第二の絞り装置の開度を調整して、前記吐出温度と前記高圧圧力検出装置の検出圧力とから演算される吐出過熱度を制御する
     ことを特徴とする請求項7または8に記載の空気調和装置。
  10.  前記冷媒配管の内部にR32またはR32を62%以上含む混合冷媒を循環させる
     ことを特徴とする請求項2、請求項2に従属する3~8のいずれか一項に記載の空気調和装置。
  11.  前記圧縮機と、前記アキュムレータと、前記過冷却熱交換器と、前記第二の絞り装置と、前記第三の絞り装置と、前記第一の熱交換器と、前記第一のバイパス配管と、前記第二のバイパス配管と、前記第三のバイパス配管と、を室外機に収容した
     ことを特徴とする請求項2~10のいずれか一項に記載の空気調和装置。
  12.  前記第一の熱交換器と前記第二の熱交換器との間を流れる冷媒から液冷媒の一部を取り出す液分離器を備え、
     前記液分離器の液冷媒の取り出し口に接続した配管を分岐して、前記第二の絞り装置と前記第三の絞り装置とに接続する
     ことを特徴とする請求項2~11のいずれか一項に記載の空気調和装置。
PCT/JP2013/056714 2013-03-12 2013-03-12 空気調和装置 WO2014141375A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/056714 WO2014141375A1 (ja) 2013-03-12 2013-03-12 空気調和装置
EP13878466.5A EP2975338B1 (en) 2013-03-12 2013-03-12 Air conditioner
CN201380074500.3A CN105190199B (zh) 2013-03-12 2013-03-12 空调装置
US14/758,597 US10168068B2 (en) 2013-03-12 2013-03-12 Air-conditioning apparatus
JP2015505116A JP5855312B2 (ja) 2013-03-12 2013-03-12 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/056714 WO2014141375A1 (ja) 2013-03-12 2013-03-12 空気調和装置

Publications (1)

Publication Number Publication Date
WO2014141375A1 true WO2014141375A1 (ja) 2014-09-18

Family

ID=51536078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056714 WO2014141375A1 (ja) 2013-03-12 2013-03-12 空気調和装置

Country Status (5)

Country Link
US (1) US10168068B2 (ja)
EP (1) EP2975338B1 (ja)
JP (1) JP5855312B2 (ja)
CN (1) CN105190199B (ja)
WO (1) WO2014141375A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065659A (ja) * 2014-09-24 2016-04-28 東芝キヤリア株式会社 ヒートポンプ装置
JP2016151372A (ja) * 2015-02-17 2016-08-22 株式会社富士通ゼネラル 空気調和装置
JPWO2016194098A1 (ja) * 2015-06-01 2017-12-28 三菱電機株式会社 空気調和装置及び運転制御装置
WO2018062188A1 (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 空気調和装置
JP2018087688A (ja) * 2018-02-16 2018-06-07 ダイキン工業株式会社 空気調和装置
JP2019211207A (ja) * 2019-09-25 2019-12-12 ダイキン工業株式会社 空気調和装置
WO2020026374A1 (ja) * 2018-08-01 2020-02-06 三菱電機株式会社 空気調和装置
GB2533041B (en) * 2013-08-30 2020-06-24 Mitsubishi Electric Corp Air conditioning apparatus
GB2533042B (en) * 2013-08-30 2020-08-12 Mitsubishi Electric Corp Air-conditioning apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240332B2 (ja) * 2011-09-01 2013-07-17 ダイキン工業株式会社 冷凍装置
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机系统
CN106440579B (zh) * 2016-09-26 2019-01-18 珠海格力电器股份有限公司 一种空调器及其化霜系统
CN106524610A (zh) * 2016-11-22 2017-03-22 广东美的暖通设备有限公司 空调系统和空调
KR101873419B1 (ko) * 2016-12-22 2018-07-02 엘지전자 주식회사 공기조화기의 냉동사이클 장치
WO2019082372A1 (ja) 2017-10-27 2019-05-02 三菱電機株式会社 冷凍サイクル装置
EP3832227A4 (en) * 2018-07-27 2021-08-04 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT DEVICE
CN110296554B (zh) * 2019-07-02 2020-08-25 珠海格力电器股份有限公司 分流组件及其分流控制方法和多联式空调器
ES2964488T3 (es) * 2019-09-09 2024-04-08 Mitsubishi Electric Corp Unidad exterior y dispositivo de ciclo de refrigeración
ES2924929T3 (es) * 2020-03-06 2022-10-11 Daikin Ind Ltd Sistema de bomba de calor y método para controlar el mismo
KR20210121437A (ko) * 2020-03-30 2021-10-08 엘지전자 주식회사 공기 조화기
CN114087744B (zh) * 2020-07-29 2023-04-25 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110255A (ja) 1988-10-18 1990-04-23 Mitsubishi Electric Corp 空気調和装置
JPH03105156A (ja) * 1989-09-18 1991-05-01 Daikin Ind Ltd エコノマイザ付冷凍装置及びその運転制御方法
JPH09229494A (ja) * 1996-02-23 1997-09-05 Hitachi Ltd 空気調和機
JP2001012786A (ja) * 1999-06-30 2001-01-19 Hitachi Ltd ヒートポンプ式空気調和機
JP2001227823A (ja) 2000-02-17 2001-08-24 Daikin Ind Ltd 冷凍装置
JP2005282972A (ja) 2004-03-30 2005-10-13 Hitachi Ltd 冷凍装置
JP2008157550A (ja) * 2006-12-25 2008-07-10 Samsung Electronics Co Ltd 空気調和機
JP2008180420A (ja) * 2007-01-23 2008-08-07 Mitsubishi Electric Corp 空気調和システムの運転制御方法及び空気調和システム
JP2008215697A (ja) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp 空気調和装置
JP2009270822A (ja) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の室外機
JP2010071614A (ja) * 2008-09-22 2010-04-02 Hitachi Appliances Inc 冷凍装置
JP2010276239A (ja) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp 冷凍空気調和装置
WO2013001572A1 (ja) * 2011-06-29 2013-01-03 三菱電機株式会社 空気調和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799297B2 (ja) * 1986-06-25 1995-10-25 株式会社日立製作所 空気調和機
JP3062824B2 (ja) * 1990-11-21 2000-07-12 株式会社日立製作所 空気調和システム
JPH10259959A (ja) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp 冷凍サイクルを用いた加熱装置
JP4459776B2 (ja) * 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
JP4812606B2 (ja) * 2006-11-30 2011-11-09 三菱電機株式会社 空気調和装置
CN101688696B (zh) * 2007-04-24 2012-05-23 开利公司 制冷剂蒸气压缩系统及跨临界运行方法
WO2008143611A1 (en) 2007-05-17 2008-11-27 Carrier Corporation Economized refrigerant system with flow control
JP2008039388A (ja) * 2007-09-21 2008-02-21 Hitachi Appliances Inc マルチ式空気調和機
JP4497234B2 (ja) * 2008-07-29 2010-07-07 ダイキン工業株式会社 空気調和装置
CN202117935U (zh) * 2011-06-08 2012-01-18 广东美芝制冷设备有限公司 使用r32冷媒的旋转压缩机

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110255A (ja) 1988-10-18 1990-04-23 Mitsubishi Electric Corp 空気調和装置
JPH03105156A (ja) * 1989-09-18 1991-05-01 Daikin Ind Ltd エコノマイザ付冷凍装置及びその運転制御方法
JPH09229494A (ja) * 1996-02-23 1997-09-05 Hitachi Ltd 空気調和機
JP2001012786A (ja) * 1999-06-30 2001-01-19 Hitachi Ltd ヒートポンプ式空気調和機
JP2001227823A (ja) 2000-02-17 2001-08-24 Daikin Ind Ltd 冷凍装置
JP2005282972A (ja) 2004-03-30 2005-10-13 Hitachi Ltd 冷凍装置
JP2008157550A (ja) * 2006-12-25 2008-07-10 Samsung Electronics Co Ltd 空気調和機
JP2008180420A (ja) * 2007-01-23 2008-08-07 Mitsubishi Electric Corp 空気調和システムの運転制御方法及び空気調和システム
JP2008215697A (ja) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp 空気調和装置
JP2010071614A (ja) * 2008-09-22 2010-04-02 Hitachi Appliances Inc 冷凍装置
JP2010276239A (ja) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp 冷凍空気調和装置
JP2009270822A (ja) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の室外機
WO2013001572A1 (ja) * 2011-06-29 2013-01-03 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975338A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2533041B (en) * 2013-08-30 2020-06-24 Mitsubishi Electric Corp Air conditioning apparatus
GB2533042B (en) * 2013-08-30 2020-08-12 Mitsubishi Electric Corp Air-conditioning apparatus
JP2016065659A (ja) * 2014-09-24 2016-04-28 東芝キヤリア株式会社 ヒートポンプ装置
JP2016151372A (ja) * 2015-02-17 2016-08-22 株式会社富士通ゼネラル 空気調和装置
JPWO2016194098A1 (ja) * 2015-06-01 2017-12-28 三菱電機株式会社 空気調和装置及び運転制御装置
CN107709887A (zh) * 2015-06-01 2018-02-16 三菱电机株式会社 空气调节装置以及运行控制装置
EP3306214A4 (en) * 2015-06-01 2018-06-06 Mitsubishi Electric Corporation Air-conditioning device and operation control device
AU2017338197B2 (en) * 2016-09-30 2021-02-25 Daikin Industries, Ltd. Air conditioner
JP2018054235A (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 空気調和装置
WO2018062188A1 (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 空気調和装置
US11047590B2 (en) 2016-09-30 2021-06-29 Daikin Industries, Ltd. Air conditioner
JP2018087688A (ja) * 2018-02-16 2018-06-07 ダイキン工業株式会社 空気調和装置
WO2020026374A1 (ja) * 2018-08-01 2020-02-06 三菱電機株式会社 空気調和装置
JPWO2020026374A1 (ja) * 2018-08-01 2021-04-30 三菱電機株式会社 空気調和装置
JP6991338B2 (ja) 2018-08-01 2022-02-03 三菱電機株式会社 空気調和装置
JP2019211207A (ja) * 2019-09-25 2019-12-12 ダイキン工業株式会社 空気調和装置
JP7126481B2 (ja) 2019-09-25 2022-08-26 ダイキン工業株式会社 空気調和装置

Also Published As

Publication number Publication date
US20150338121A1 (en) 2015-11-26
EP2975338A4 (en) 2016-10-19
CN105190199A (zh) 2015-12-23
JP5855312B2 (ja) 2016-02-09
CN105190199B (zh) 2017-04-12
EP2975338A1 (en) 2016-01-20
JPWO2014141375A1 (ja) 2017-02-16
EP2975338B1 (en) 2020-11-25
US10168068B2 (en) 2019-01-01

Similar Documents

Publication Publication Date Title
JP5855312B2 (ja) 空気調和装置
JP6005255B2 (ja) 空気調和装置
JP5968519B2 (ja) 空気調和装置
JP6685409B2 (ja) 空気調和装置
US10107533B2 (en) Air-conditioning apparatus with subcooling heat exchanger
US9709304B2 (en) Air-conditioning apparatus
AU2014219806B2 (en) Air-conditioning apparatus
WO2015029160A1 (ja) 空気調和装置
JP6895901B2 (ja) 空気調和装置
WO2014097439A1 (ja) 空気調和装置
WO2014054120A1 (ja) 空気調和装置
WO2013179334A1 (ja) 空気調和装置
JP6017048B2 (ja) 空気調和装置
JP6017049B2 (ja) 空気調和装置
WO2017138243A1 (ja) 冷凍サイクル装置
JP2008051438A (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074500.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505116

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14758597

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013878466

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE