WO2014038377A1 - Pneumatic tire - Google Patents
Pneumatic tire Download PDFInfo
- Publication number
- WO2014038377A1 WO2014038377A1 PCT/JP2013/072324 JP2013072324W WO2014038377A1 WO 2014038377 A1 WO2014038377 A1 WO 2014038377A1 JP 2013072324 W JP2013072324 W JP 2013072324W WO 2014038377 A1 WO2014038377 A1 WO 2014038377A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groove
- circumferential
- tire
- width direction
- rib
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0306—Patterns comprising block rows or discontinuous ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/01—Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0304—Asymmetric patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/04—Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1236—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
- B60C11/125—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern arranged at the groove bottom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
- B60C2011/0016—Physical properties or dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0348—Narrow grooves, i.e. having a width of less than 4 mm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0355—Circumferential grooves characterised by depth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0358—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
- B60C2011/0362—Shallow grooves, i.e. having a depth of less than 50% of other grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0358—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
- B60C2011/0365—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0358—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
- B60C2011/0367—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0358—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
- B60C2011/0372—Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0381—Blind or isolated grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0386—Continuous ribs
- B60C2011/039—Continuous ribs provided at the shoulder portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1204—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
- B60C2011/1209—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
- B60C11/1307—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
- B60C2011/133—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls comprising recesses
Definitions
- the present invention relates to a pneumatic tire requiring uneven wear resistance and WET performance.
- a pneumatic tire described in Patent Document 1 is located in a tread portion at one central circumferential groove located on the tire equatorial plane, and between the central circumferential groove and both tread ends.
- a total of three lateral circumferential grooves are arranged. These circumferential grooves form four rows of ribs.
- the rib between the central circumferential groove and the lateral circumferential groove includes a plurality of lateral grooves extending in a direction intersecting the tire circumferential direction from the central circumferential groove, and a first narrow groove extending in the tire circumferential direction communicating with the lateral groove.
- the pneumatic tire described in Patent Document 2 has one end opened in the lateral circumferential groove and the other end communicated with the second narrow groove portion with respect to the pneumatic tire described in Patent Document 2 described above.
- An inclined sipe that continues to the first lateral sipe and extends in a direction inclined with respect to the tire equatorial plane is further provided.
- a rib-shaped land portion is defined between three circumferential main grooves disposed in the tread portion, and one rib-shaped land portion is provided on the rib-shaped land portion.
- a block land portion is defined by arranging a circumferential sub groove, a width direction groove communicating with the circumferential main groove and the circumferential sub groove.
- the pneumatic tires described in Patent Documents 1 to 3 described above are provided with circumferential sub-grooves (first narrow groove section and second narrow groove section) in the rib-like land section (ribs), and the circumferential sub-grooves ( A width direction groove (lateral groove) that communicates the first narrow groove portion and the second narrow groove portion) with the central circumferential main groove (central circumferential groove) is provided, and the central circumferential groove (central circumferential groove) Block land portions are defined on both sides in the tire width direction.
- the block land portions are partitioned on both sides in the tire width direction of the central circumferential groove (central circumferential groove), so that the rigidity of the portion is increased. Therefore, when used mainly in local travel, early wear (center wear wear) tends to occur in the center region of the tread due to repeated stop-and-go during medium and low speed travel. That is, it is difficult to meet the demand for uneven wear resistance.
- the present invention has been made in view of the above, and an object of the present invention is to provide a pneumatic tire capable of improving uneven wear resistance and WET performance.
- the pneumatic tire of the first invention extends in the tire circumferential direction by at least three circumferential main grooves extending along the tire circumferential direction.
- the central circumferential main groove is a center main groove and the circumferential main groove is an even number.
- the rib-like land portions adjacent to both outer sides in the tire width direction of the center main groove are side rib-shaped land portions, Extending along the tire circumferential direction from one side of the lateral rib-shaped land portion in the tire width direction to a range of 40% to 60% of the tire width direction dimension of the lateral rib-shaped land portion. And a circumferential narrow groove formed with a groove depth shallower than the circumferential main groove.
- the one end of the side rib-shaped land portion is connected to the circumferential main groove adjacent to the outer side in the tire width direction of the side rib-shaped land portion, and the other end penetrates the circumferential narrow groove.
- the circumferential narrow groove has drainage performance in the tire circumferential direction and the lateral narrow groove has drainage performance to the outside in the tire width direction, so that WET performance (operability on wet road surface) And braking performance).
- the rib shape can suppress a decrease in rigidity more than necessary and improve uneven wear resistance.
- the occurrence of early wear (center wear wear) in the center region of the tread portion is suppressed by repetition of stop-and-go during medium-low speed traveling.
- the circumferential narrow groove is provided at substantially the center in the tire width direction, which is in the range of 40% to 60% of the tire width direction dimension of the side rib-shaped land portion. Since the difference in rigidity in the tire width direction of the portion becomes small, uneven wear can be suppressed.
- the circumferential narrow groove is formed with a shallower groove depth than the circumferential main groove, the rib of the side rib-shaped land portion is compensated by compensating the difference in the groove depth with the circumferential groove bottom sipe. Uneven wear can be suppressed by keeping the rigidity of the shape uniform in the tire width direction. As a result, it is possible to improve uneven wear resistance and WET performance.
- the pneumatic tire according to a second aspect of the present invention further includes, in the first aspect, a widthwise groove bottom sipe formed along the extending direction of the widthwise narrow groove at the groove bottom of the widthwise narrow groove. It is characterized by that.
- the widthwise narrow groove is formed with a shallower groove depth than the circumferential main groove.
- the block-shaped rigidity of the rib-like land portion can be kept uniform in the tire width direction and the tire circumferential direction, and uneven wear can be suppressed. As a result, the effect of improving uneven wear resistance can be obtained remarkably.
- the pneumatic tire of the third invention extends from the other end of the widthwise narrow groove toward the center main groove and terminates in the lateral rib-shaped land portion.
- a tread surface sipe is further included.
- the other end of the width direction narrow groove is terminated, and the tread surface sipe is extended from there to be While maintaining the uneven wear resistance performance due to the rib shape of the rib-like land portion, the drainage can be further improved to improve the WET performance.
- the pneumatic tire according to a fourth aspect of the present invention is the pneumatic tire according to the second or third aspect, wherein the width direction groove bottom sipe is formed except for an intersection where the width direction narrow groove penetrates the circumferential direction narrow groove. It is characterized by that.
- width direction groove bottom sipe penetrates the intersection where the width direction narrow groove penetrates the circumferential direction narrow groove, the rigidity of the block shape and rib shape near the intersection tends to decrease locally, so this part
- width direction groove bottom sipe except for the above, it is possible to suppress the lowering of the rigidity of the side rib-shaped land portion more than necessary and improve the uneven wear resistance.
- the width direction groove bottom sipe is formed in communication with the tread surface sipe.
- the width direction groove bottom sipe communicate with the tread surface sipe, the effect of the above-described tread surface sipe can be remarkably obtained. That is, while maintaining the uneven wear resistance performance due to the rib shape of the side rib-shaped land portion, it is possible to further improve the drainage and improve the WET performance.
- the pneumatic tire according to a sixth aspect is the pneumatic tire according to any one of the first to fifth aspects, wherein the sipe has a maximum groove depth from the tread surface to a groove depth of the circumferential main groove. On the other hand, the range is from 60% to 90%.
- the maximum groove depth from the tread surface of the sipe is set to 60% or more with respect to the maximum groove depth of the circumferential main groove.
- the ratio is set to 90 [%] or less, the effect of maintaining the rigidity of the rib shape and block shape of the side rib-shaped land portion uniformly in the tire width direction and the tire circumferential direction can be remarkably obtained.
- the effect of improving uneven wear resistance and the effect of improving WET performance can be obtained remarkably.
- the pneumatic tire according to a seventh aspect is the pneumatic tire according to any one of the first to sixth aspects, wherein the narrow groove in the width direction is along each linear component having at least two angles with respect to the tire circumferential direction. It is formed by bending.
- the pneumatic tire according to an eighth aspect of the present invention is the pneumatic tire according to any one of the first to seventh aspects, wherein the widthwise narrow groove includes a groove width W1 on one end side communicating with the circumferential main groove, and the side The groove width W2 at the other end that terminates in the rib-like land portion satisfies the relationship W2 ⁇ W1, and is formed by gradually changing the groove width between the one end and the other end.
- the widthwise narrow groove includes a groove width W1 on one end side communicating with the circumferential main groove, and the side
- the groove width W2 at the other end that terminates in the rib-like land portion satisfies the relationship W2 ⁇ W1, and is formed by gradually changing the groove width between the one end and the other end.
- the groove width W1 at one end communicating with the circumferential main groove is larger than the groove width W2 at the other end terminating at the side rib-shaped land portion, and at one end and the other end. Therefore, the drainage from the side rib-shaped land portion to the circumferential main groove side can be improved.
- the pneumatic tire according to a ninth aspect of the present invention is the pneumatic tire according to any one of the first to eighth aspects, wherein the circumferential narrow groove and the width narrow groove have a maximum groove depth that is the circumferential main groove. It is characterized by being in the range of 10 [%] to 40 [%] with respect to the groove depth.
- the maximum groove depth of the circumferential narrow groove and the width narrow groove is 10% or more with respect to the groove depth of the circumferential main groove, the drainage performance is further exhibited.
- the effect of improving the WET performance can be remarkably obtained.
- the maximum groove depth of the circumferential narrow groove and the width narrow groove is 40% or less with respect to the groove depth of the circumferential main groove, the rigidity reduction of the lateral rib-shaped land portion is further suppressed.
- the effect of improving uneven wear resistance can be obtained remarkably.
- the effect of improving uneven wear resistance and the effect of improving WET performance can be obtained remarkably.
- the pneumatic tire according to a tenth aspect of the invention is the pneumatic tire according to any one of the first to ninth aspects, wherein the center main groove has a groove width of 3 [mm] in the tire width direction from the tire equatorial plane to the ground contact edge. %] And 15 [%] or less, and each circumferential main groove provided between the center main groove and the lateral rib-shaped land portion is located at the tire equatorial plane. It is characterized by being in the range of 50 [%] or more and 60 [%] or less of the dimension in the tire width direction from the ground to the ground contact end.
- the groove width of the center main groove disposed on the center side in the tire width direction is defined, and the position of the circumferential main groove adjacent to the outer side of the center main groove in the tire width direction is the tire width.
- the pneumatic tire according to an eleventh aspect of the invention is the pneumatic tire according to any one of the first to tenth aspects, wherein the outermost rib-like land portion in the tire width direction is 10 with respect to the groove depth of the circumferential main groove. [%] It is characterized by not disposing narrow grooves or sipes.
- the pneumatic tire according to a twelfth aspect of the present invention is the pneumatic tire according to any one of the first to eleventh aspects, wherein the compound constituting the tread portion has a JIS hardness at 20 [° C.] of 60 or more and 75 or less. It is characterized by.
- the pneumatic tire of the thirteenth invention is characterized in that, in any one of the first to twelfth inventions, the pneumatic tire is applied to a pneumatic tire for a small truck having a specified internal pressure of 600 [kPa] or less.
- this pneumatic tire is mainly used for local travel, stop and go is frequently repeated at medium to low speed travel, and excellent uneven wear resistance and grip power (WET performance) are required.
- WET performance uneven wear resistance and grip power
- this pneumatic tire as a pneumatic tire for small trucks mainly used in local running, it is possible to satisfy the requirements for excellent uneven wear resistance and gripping power.
- the pneumatic tire according to the present invention can improve uneven wear resistance and WET performance.
- FIG. 1 is a plan view of a pneumatic tire according to an embodiment of the present invention.
- FIG. 2 is a plan view of another example of the pneumatic tire according to the embodiment of the present invention.
- FIG. 3 is a partially enlarged cross-sectional view of the pneumatic tire shown in FIGS. 1 and 2.
- FIG. 4 is a partially enlarged plan view of the pneumatic tire shown in FIGS. 1 and 2.
- FIG. 5 is a chart showing the results of the performance test of the pneumatic tire according to the example of the present invention.
- FIG. 6 is a chart showing the results of the performance test of the pneumatic tire according to the example of the present invention.
- FIG. 7 is a chart showing the results of the performance test of the pneumatic tire according to the example of the present invention.
- FIG. 8 is a chart showing the results of the performance test of the pneumatic tire according to the example of the present invention.
- FIGS. 1 and 2 are plan views of the pneumatic tire according to the present embodiment
- FIG. 3 is a partially enlarged sectional view of the pneumatic tire shown in FIGS. 1 and 2
- FIG. FIG. 3 is a partially enlarged plan view of the pneumatic tire shown in FIG. 2.
- the tire radial direction refers to a direction orthogonal to the rotation axis (not shown) of the pneumatic tire 1
- the tire radial direction inner side refers to the side toward the rotation axis in the tire radial direction, the tire radial direction outer side.
- the tire width direction means a direction parallel to the rotation axis
- the inner side in the tire width direction means the side toward the tire equator plane (tire equator line) CL in the tire width direction
- the outer side in the tire width direction means the tire width.
- the tire circumferential direction is a circumferential direction with the rotation axis as a central axis.
- the tire equatorial plane CL is a plane that is orthogonal to the rotational axis of the pneumatic tire 1 and passes through the center of the tire width of the pneumatic tire 1.
- the tire equator line is a line along the circumferential direction of the pneumatic tire 1 on the tire equator plane CL. In the present embodiment, the same sign “CL” as that of the tire equator plane is attached to the tire equator line.
- the pneumatic tire 1 of the present embodiment has a tread portion 2 as shown in FIGS. 1 and 2.
- the tread portion 2 is made of a rubber material, exposed at the outermost side in the tire radial direction of the pneumatic tire 1, and the surface thereof becomes the contour of the pneumatic tire 1 as a tread surface 2 a.
- the tread portion 2 has at least three circumferential main grooves 3 extending along the tire circumferential direction on the tread surface 2a (3 in FIG. 1). (4 in FIG. 2).
- the tread portion 2 has at least four rib-like land portions 4 extending along the tire circumferential direction by at least three circumferential main grooves 3 on the tread surface 2a (four in FIG. 1). In FIG. 2, there are five).
- the tread pattern of the tread surface 2a is preferably a symmetrical tread pattern in which both sides in the tire width direction are symmetrical with respect to the tire equatorial plane CL.
- the symmetrical tread pattern indicates that the tread pattern has the same shape when turned over in the tire width direction.
- the symmetrical tread pattern includes a pattern whose phase is shifted in the tire circumferential direction with respect to the tire equatorial plane CL.
- the central circumferential main groove 3 when the circumferential main groove 3 is an odd number, the central circumferential main groove 3 is used as the center main groove 31 (in FIG. 1, the central circumferential main groove 3 3 is on the tire equatorial plane CL).
- the two circumferential main grooves 3 on the center side both outer sides in the tire width direction
- the central circumferential main groove 3 is the center main groove 31.
- the rib-shaped land portions 4 adjacent to the outer sides in the tire width direction of the center main grooves 31 are referred to as side rib-shaped land portions 41.
- the lateral rib-shaped land portion 41 is formed with a circumferential narrow groove 5 and a narrow width groove 6 having a narrower groove width than the circumferential main groove 3.
- the circumferential narrow groove 5 ranges from one side in the tire width direction to 40 [%] or more and 60 [%] or less of the tire width direction dimension W of the side rib-shaped land portion 41. Thus, it extends along the tire circumferential direction.
- the circumferential narrow groove 5 is formed with a groove depth D2 (see FIG. 3) shallower than the groove depth D1 (see FIG. 3) of the circumferential main groove 3.
- one end of the width-direction narrow groove 6 communicates with the circumferential main groove 3 adjacent to the outer side in the tire width direction of the lateral rib-shaped land portion 41 and ends at the other end. It extends through the circumferential narrow groove 5 to extend in the tire circumferential direction while terminating in the side rib-shaped land portion 41, and a plurality of tires are arranged in the tire circumferential direction.
- the width direction narrow groove 6 is formed with a groove depth D3 (see FIG. 3) shallower than the groove depth D1 (see FIG. 3) of the circumferential main groove 3.
- the circumferential main groove 3 has a groove depth D1 in the range of 7 [mm] to 12 [mm] and a groove width of 8 [mm] to 14 [mm]. mm] or less.
- the circumferential narrow grooves 5 and the width narrow grooves 6 have the groove depths D2 and D3 within the specified range, and the groove widths within a range of 2 [mm] to 4 [mm].
- the side rib-shaped land part 41 is formed into a rib shape on the inner side in the tire width direction (center main groove 31 side) with the circumferential narrow groove 5 as a boundary by the circumferential narrow groove 5 and the lateral narrow groove 6.
- the outer side in the tire width direction with the circumferential narrow groove 5 as a boundary is formed into a block shape by a plurality of narrow grooves 6 in the width direction.
- the circumferential narrow groove 5 has a circumferential groove bottom sipe 7 formed at the bottom thereof.
- the circumferential groove bottom sipe 7 is formed from the groove bottom of the circumferential narrow groove 5 toward the inside in the tire radial direction, and extends along the extending direction of the circumferential narrow groove 5 (tire circumferential direction). ing.
- the circumferential groove bottom sipe 7 has a groove width of 1.0 [mm] or less.
- the circumferential groove bottom sipe 7 is formed at the center of the circumferential narrow groove 5 in FIG.
- the circumferential groove bottom sipe 7 is not limited to this, but may be formed along the groove wall of the circumferential narrow groove 5 toward the inside in the tire radial direction, though not explicitly shown in the drawing. Further, when the circumferential groove bottom sipe 7 is formed along the groove wall of the circumferential narrow groove 5, the circumferential groove bottom sipe 7 may be formed on either one or both of the both circumferential groove grooves 5.
- the circumferential narrow groove 5 has the drainage performance in the tire circumferential direction
- the lateral narrow groove 6 has the drainage performance to the outer side in the tire width direction. It is possible to improve operability and braking performance on the road surface.
- the occurrence of early wear (center wear wear) in the center region of the tread portion 2 is suppressed by repetition of stop-and-go during medium-low speed traveling.
- the circumferential narrow groove 5 is provided at substantially the center in the tire width direction, which is in the range of 40% to 60% of the tire width direction dimension W of the lateral rib-shaped land portion 41. Since the difference in rigidity in the tire width direction of the rib-like land portion 41 is reduced, it is possible to suppress uneven wear. In addition, since the circumferential narrow groove 5 is formed with a shallower groove depth than the circumferential main groove 3, the difference in the groove depth is compensated by the circumferential groove bottom sipe 7, so that the lateral rib-like land 5 The rigidity of the rib shape of the portion 41 can be kept uniform in the tire width direction, and uneven wear can be suppressed. As a result, it is possible to improve uneven wear resistance and WET performance.
- the pneumatic tire 1 preferably has a symmetric tread pattern, and can be exchanged in the front / rear and left / right directions in rotation, so that the wear can be made uniform and the life can be extended. .
- the pneumatic tire 1 of the present embodiment has a width direction groove bottom sipe 8 formed at the groove bottom of the width direction narrow groove 6.
- the width direction groove bottom sipe 8 is formed from the groove bottom of the width direction narrow groove 6 toward the inside in the tire radial direction, and is provided along the extending direction of the width direction narrow groove 6.
- the width direction groove bottom sipe 8 has a groove width of 1.0 [mm] or less.
- the width direction groove bottom sipe 8 is formed at the center of the groove bottom of the width direction narrow groove 6 in FIG.
- the width direction groove bottom sipe 8 is not limited to this, but may be formed along the groove wall of the width direction narrow groove 6 although not shown in the drawing. Further, when the width direction groove bottom sipe 8 is formed along the groove wall of the width direction narrow groove 6, the width direction groove bottom sipe 8 may be formed on either or both of the both wall surfaces of the width direction narrow groove 6.
- the width direction narrow groove 6 is formed with a shallower groove depth than the circumferential direction main groove 3, so that the difference in groove depth is compensated by the width direction groove bottom sipe 8.
- the block-shaped rigidity of the side rib-shaped land portion 41 can be kept uniform in the tire width direction and the tire circumferential direction, thereby suppressing uneven wear. As a result, the effect of improving the uneven wear resistance can be remarkably obtained.
- the pneumatic tire 1 of the present embodiment extends from the other end of the width-direction narrow groove 6 to the center main groove 31 side, and in the side rib-shaped land portion 41.
- a tread surface sipe 9 that terminates is formed.
- the tread surface sipe 9 is provided along the extending direction of the widthwise narrow groove 6 at one end of the widthwise narrow groove 6.
- the tread surface sipe 9 has a groove width of 1.0 [mm] or less.
- the other end of the width direction narrow groove 6 is terminated, and the tread surface sipe 9 is extended therefrom.
- the tread surface sipe 9 may be formed along the extending direction of the other end of the widthwise narrow groove 6 or may be formed away from the extending direction of the other end of the widthwise narrow groove 6. However, it is possible to further improve the drainage performance if it is formed along the extending direction of the other end of the width direction narrow groove 6.
- the tread surface sipe 9 preferably has a groove length extending from one end of the widthwise narrow groove 6 of 2 [mm] or more and 8 [mm] or less in order to obtain the above-described effect remarkably.
- the width direction groove bottom sipe 8 is formed except for the intersection X where the width direction narrow groove 6 penetrates the circumferential direction narrow groove 5. It is preferable.
- the width direction groove bottom sipe 8 penetrates the intersection X where the width direction narrow groove 6 penetrates the circumferential direction narrow groove 5, the rigidity of the block shape or rib shape near the intersection X tends to decrease locally. Therefore, by providing the width direction groove bottom sipe 8 except for this portion, it is possible to suppress a reduction in rigidity of the side rib-shaped land portion 41 more than necessary and to improve uneven wear resistance. In addition, it is more preferable to form the circumferential groove bottom sipe 7 excluding the intersecting portion X in order to suppress the local decrease in the rigidity of the block shape and the rib shape in the portion close to the intersecting portion X.
- the width direction groove bottom sipe 8 is preferably formed in communication with the tread surface sipe 9.
- the above-described sipe (circumferential groove bottom sipe 7, width direction groove bottom sipe 8, and tread surface sipe 9) is from the tread surface 2a. It is preferable that the maximum groove depths D4, D5, and D6 be in the range of 60% to 90% with respect to the groove depth D1 of the circumferential main groove 3.
- the maximum groove depths D4, D5, and D6 from the tread surface 2a of the sipes 7, 8, and 9 are set to the maximum of the circumferential main groove 3 in order to obtain the effect of improving uneven wear resistance and the effect of improving WET performance. More preferably, it is in the range of 70 [%] to 80 [%] with respect to the groove depth D1.
- the widthwise narrow groove 6 is bent along each linear component having at least two angles ( ⁇ , ⁇ ) with respect to the tire circumferential direction. Preferably it is formed.
- the width direction narrow groove 6 is bent along each linear component ⁇ 1, ⁇ 1 having two angles ⁇ , ⁇ with respect to the tire circumferential direction.
- the angles ⁇ and ⁇ of the linear components ⁇ 1 and ⁇ 1 are preferably 30 [°] or more with respect to the tire circumferential direction in order to improve drainage.
- the continuous linear components ⁇ 1 and ⁇ 1 are 30 ° or more and 90 ° or less so that the angles ⁇ and ⁇ are oriented in the same direction with respect to the tire circumferential direction. preferable.
- the continuous linear components ⁇ 1 and ⁇ 1 preferably have an angle difference between the angles ⁇ and ⁇ of 10 [°] or more and 40 [°] or less in order to further improve drainage.
- the continuous linear components ⁇ 1 and ⁇ 1 indicate that the relation between the angle ⁇ on the outer side in the tire width direction and the angle ⁇ on the inner side in the tire width direction is ⁇ ⁇ . It is preferable for improving the drainage performance.
- the number of linear components (number of angles) increases, it approaches a circular arc. Therefore, the number of linear components (number of angles) is preferably 2 or more and 4 or less in order to improve drainage.
- the widthwise narrow groove 6 is composed of a groove width W1 on one end side communicating with the circumferential main groove 3 and a side rib-shaped land portion 41. It is preferable that the groove width W2 on the other end side that terminates satisfies the relationship of W2 ⁇ W1, and the groove width is gradually changed between the one end side and the other end side.
- the groove width W ⁇ b> 1 at one end communicating with the circumferential main groove 3 is larger than the groove width W ⁇ b> 2 at the other end terminating at the side rib-shaped land portion 41, and one end side and the other. Since the groove width is gradually changed from the end side, drainage performance from the side rib-shaped land portion 41 to the circumferential main groove 3 side can be improved.
- the groove width W2 at the other end that terminates at the side rib-shaped land portion 41 has a ratio W2 / W1 with respect to the groove width W1 at one end communicating with the main groove of 0.7 to 0.9. It is preferable for improving drainage.
- the groove width W1 on one end side of the width-direction narrow groove 6 communicating with the circumferential main groove 3 is the width of each virtual line along both opening edges in the extending direction of the width-direction narrow groove 6 on the tread surface 2a. This is the shortest distance between the intersections intersecting the imaginary line along the opening edge of the circumferential main groove 3 with which the directional fine groove 6 communicates.
- the groove width W2 on the other end side of the widthwise narrow groove 6 that terminates in the side rib-shaped land portion 41 is an imaginary line along both opening edges in the extending direction of the widthwise narrow groove 6 on the tread surface 2a. Is the shortest distance between the portions away from the narrow groove 6 in the width direction. When the other end of the width direction narrow groove 6 terminates with an arc, it is the shortest distance between the inflection points of the arc.
- the pneumatic tire 1 of the present embodiment has the maximum groove depths D ⁇ b> 2 and D ⁇ b> 3 of the circumferential narrow grooves 5 and the width narrow grooves 6, and the groove depth D ⁇ b> 1 of the circumferential main grooves 3.
- the maximum groove depths D ⁇ b> 2 and D ⁇ b> 3 of the circumferential narrow groove 5 and the widthwise narrow groove 6 are 10% or more with respect to the groove depth D ⁇ b> 1 of the circumferential main groove 3.
- the drainage performance can be further exerted, and the improvement effect of the WET performance can be remarkably obtained.
- the maximum groove depths D2 and D3 of the circumferential narrow groove 5 and the widthwise narrow groove 6 are 40% or less with respect to the groove depth D1 of the circumferential main groove 3, the lateral rib-shaped land portion is formed.
- the maximum groove depths D2 and D3 of the circumferential narrow grooves 5 and the widthwise narrow grooves 6 are set to be the groove depths of the circumferential main grooves 3 in order to obtain the effect of improving uneven wear resistance and the WET performance. More preferably, it is in the range of 20% to 30% with respect to the thickness D1.
- the center main groove 31 has a groove width 3 [L] in the tire width direction dimension L from the tire equatorial plane CL to the ground contact end T. %] And 15 [%] or less, and each circumferential main groove 3 provided adjacent to the center main groove 31 with the lateral rib-shaped land portion 41 in between is a position from the tire equatorial plane CL. Is preferably in the range of 50 [%] or more and 60 [%] or less of the tire width direction dimension L from the tire equatorial plane CL to the ground contact edge T.
- Each circumferential main groove 3 provided apart from the tire equatorial plane CL is positioned at the center of the groove width of the circumferential main groove 3 with respect to the position from the tire equatorial plane CL.
- the contact end T is the contact area (when the pneumatic tire 1 is assembled to a regular rim and filled with a regular internal pressure and 70% of the regular load is applied, the tread portion 2 of the pneumatic tire 1 is applied. These are the outermost ends in the tire width direction of a region where the tread surface 2a is in contact with the road surface).
- the contact end T is shown continuously in the tire circumferential direction.
- the tire width direction dimension L from the tire equatorial plane CL to the ground contact edge T is This corresponds to 1/2 of the grounding width TW.
- the regular rim is a “standard rim” defined by JATMA, a “Design Rim” defined by TRA, or a “Measuring Rim” defined by ETRTO.
- the normal internal pressure is “maximum air pressure” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO.
- the normal load is “maximum load capacity” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “LOAD CAPACITY” defined by ETRTO.
- the groove width of the center main groove 31 disposed on the center side in the tire width direction is defined, and the circumferential main groove 3 adjacent to the outer side of the center main groove 31 in the tire width direction is defined.
- the outermost rib-like land portion 4 in the tire width direction has 10% or more narrow grooves and sipes with respect to the groove depth D1 of the circumferential main groove 3. Preferably not.
- the rib-like land portion 4 on the outermost side in the tire width direction is not provided with a narrow groove or sipe of 10% or more with respect to the groove depth D1 of the circumferential main groove 3. Further, the effect of improving the uneven wear resistance can be obtained more remarkably.
- the pneumatic tire 1 of the present embodiment has a tread surface that has one end communicating with the circumferential main groove 3 and the other end terminating in the rib-like land portion 4 and opening in the tread surface 2 a. It has a sipe 10.
- the compound forming the tread portion 2 has a JIS hardness at 20 [° C.] of 60 or more and 75 or less.
- this pneumatic tire 1 by making the JIS hardness at 20 [° C.] of the compound forming the tread portion 2 60 or more, the effect of improving the uneven wear resistance and the effect of improving the WET performance with an appropriate hardness. Can be obtained remarkably.
- the JIS hardness at 20 [° C.] of the compound forming the tread portion 2 is 75, this is the maximum value used for a general pneumatic tire.
- the pneumatic tire 1 of the present embodiment is preferably applied to a pneumatic tire for a small truck having a specified internal pressure of 600 [kPa] or less.
- pneumatic tires for light trucks are mainly used for local driving, they often stop and go repeatedly at medium to low speeds and require excellent uneven wear resistance and grip power (WET performance).
- WET performance uneven wear resistance and grip power
- 5 to 8 are charts showing the results of the performance test of the pneumatic tire according to this example.
- performance tests on uneven wear resistance and WET performance were performed on multiple types of pneumatic tires with different conditions.
- the evaluation method of uneven wear resistance performance is the uneven wear that occurred in the rib-like land portion after traveling 50,000 [km] at an average speed of 60 [km / h] on the test vehicle (side rib-like land portion and other The difference in the amount of wear on the tread surface from the rib-like land is measured. Then, based on this measurement result, index evaluation using the conventional example as a reference (100) is performed. This evaluation indicates that the larger the value, the better the uneven wear resistance performance.
- the WET performance is evaluated by measuring the braking distance from an initial speed of 60 [km / h] on a test course on a wet road surface with a water depth of 10 ⁇ 1 [mm] using the test vehicle. Then, based on this measurement result, index evaluation using the conventional example as a reference (100) is performed. This evaluation shows that the larger the value, the better the WET performance.
- FIG. 5 and FIG. 6 show a pneumatic tire in which four circumferential main grooves are arranged in the tread portion and the five rib-like land portions are partitioned. That is, the circumferential main groove is not on the tire equatorial plane.
- the pneumatic tire of Conventional Example 1 has a rib-like land portion (side rib-shaped land portion) adjacent to both sides in the tire width direction of each circumferential main groove (center main groove) on both sides in the tire width direction of the tire equatorial plane.
- the pneumatic tire of Comparative Example 1 is a rib-like land portion (side rib-shaped land portion) adjacent to both sides in the tire width direction of each circumferential main groove (center main groove) on both sides in the tire width direction of the tire equatorial plane.
- the circumferential ribs extending in the tire circumferential direction and having a groove depth shallower than the circumferential main groove are arranged so that the side rib-shaped land portion has two rib shapes.
- the pneumatic tire of Comparative Example 2 is connected to the circumferential ribs on both sides in the tire width direction in the side rib-shaped land portion, and the groove depth is larger than the circumferential main groove with respect to the pneumatic tire of Comparative Example 1.
- a plurality of narrow grooves formed in the width direction are arranged to form a side rib-like land portion in a block shape.
- narrow grooves are not formed in other rib-like land portions.
- the pneumatic tires of Examples 1 to 26 are provided on both sides in the tire width direction of each circumferential main groove (center main groove) on both sides of the tire equatorial plane in the tire width direction.
- each circumferential main groove center main groove
- the pneumatic tires of Examples 1 to 26 are provided on both sides in the tire width direction of each circumferential main groove (center main groove) on both sides of the tire equatorial plane in the tire width direction.
- side rib-shaped land portions from one side in the tire width direction of the side rib-shaped land portions to 40 [%] or more and 60 [%] of the tire width direction dimension of the side rib-shaped land portions.
- a circumferential narrow groove extending along the tire circumferential direction and having a groove depth shallower than the circumferential main groove in the following range, and one end of the lateral rib-shaped land portion on the outer side in the tire width direction.
- the other end penetrates the circumferential narrow groove and terminates in the lateral rib-shaped land portion and extends across the tire circumferential direction, and extends from the circumferential main groove.
- the outer side in the tire width direction of the side rib-shaped land portion thus formed is made into a block shape.
- the narrow grooves in the width direction are bent along the linear component.
- the relationship between the groove widths at both ends of the narrow groove in the width direction is defined.
- the groove depth of the narrow grooves is within a specified range.
- the groove width of the center main groove and the position of the adjacent circumferential main groove are satisfied.
- FIG. 7 and FIG. 8 show a pneumatic tire in which four circumferential main grooves are arranged in a tread portion to partition five rib-like land portions. That is, the circumferential main groove is not on the tire equatorial plane.
- the pneumatic tire of Conventional Example 2 is a rib-like land portion (side rib-shaped land portion) adjacent to both sides in the tire width direction of each circumferential main groove (center main groove) on both sides in the tire width direction of the tire equatorial plane.
- the pneumatic tire of Comparative Example 3 is a rib-like land portion (side rib-shaped land portion) adjacent to both sides in the tire width direction of each circumferential main groove (center main groove) on both sides in the tire width direction of the tire equatorial plane.
- the circumferential ribs extending in the tire circumferential direction and having a groove depth shallower than the circumferential main groove are arranged so that the side rib-shaped land portion has two rib shapes.
- the pneumatic tire of Comparative Example 4 is connected to the circumferential ribs on both sides in the tire width direction on the side rib-shaped land portion, and the groove depth of the pneumatic tire of Comparative Example 4 is larger than that of the circumferential main groove.
- a plurality of narrow grooves formed in the width direction are arranged to form a side rib-like land portion in a block shape.
- no narrow grooves are formed in other rib-like land portions.
- the pneumatic tires of Examples 27 to 52 are provided on both sides in the tire width direction of the circumferential main grooves (center main grooves) on both sides of the tire equatorial plane in the tire width direction.
- the pneumatic tires of Examples 27 to 52 are provided on both sides in the tire width direction of the circumferential main grooves (center main grooves) on both sides of the tire equatorial plane in the tire width direction.
- side rib-shaped land portions from one side in the tire width direction of the side rib-shaped land portions to 40 [%] or more and 60 [%] of the tire width direction dimension of the side rib-shaped land portions.
- a circumferential narrow groove extending along the tire circumferential direction and having a groove depth shallower than the circumferential main groove in the following range, and one end of the lateral rib-shaped land portion on the outer side in the tire width direction.
- the other end penetrates the circumferential narrow groove and terminates in the lateral rib-shaped land portion and extends across the tire circumferential direction, and extends from the circumferential main groove.
- the outer side in the tire width direction of the lateral rib-shaped land portion made into a block shape.
- a groove bottom sipe is formed at the groove bottom of the narrow groove in the width direction.
- a tread surface sipe is formed at the other end of the widthwise narrow groove.
- the width direction groove bottom sipe and the circumferential groove bottom sipe are not arranged at the intersections of the narrow grooves.
- the width direction groove bottom sipe communicates with the tread surface sipe.
- the sipe groove depth is within a specified range.
- the narrow grooves in the width direction are bent along the linear component.
- the relationship between the groove widths at both ends of the narrow groove in the width direction is defined.
- the groove depth of the narrow grooves is within a specified range.
- the groove width of the center main groove and the position of the adjacent circumferential main groove are satisfied.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
In order to improve uneven wear resistance and wet road performance, a pneumatic tire comprises: a circumferential narrow groove (5) that is formed with a groove depth shallower than a circumferential main groove (3) and extends in the tire circumferential direction and within a range of 40 to 60 [%] of the tire width direction measurement of a lateral rib (41) from one side of the lateral rib in the tire width direction, where a center main groove (31) is the center circumferential main groove when there is an odd number of circumferential main grooves, and the lateral rib is a rib (4) adjacent to either side of the center main groove in the tire width direction; a tire-width direction narrow groove (6), a plurality of which are disposed in the tire circumferential direction, that is formed with a groove depth shallower than the circumferential main groove and is provided extending in the lateral rib while intersecting with the tire circumferential direction, with one end linked to and terminating in a circumferential main groove that is adjacent to the lateral rib on the exterior side in the tire width direction and the other end passing through the circumferential narrow groove and terminating within the lateral rib; and a circumferential groove bottom sipe (7) formed in the bottom of the circumferential narrow groove along the direction in which the circumferential narrow groove extends.
Description
本発明は、耐偏摩耗性能およびWET性能が求められる空気入りタイヤに関するものである。
The present invention relates to a pneumatic tire requiring uneven wear resistance and WET performance.
JATMAで規定する小型トラック用空気入りタイヤなどでは、主に地場走行で使用されるため、中低速走行でストップアンドゴーが多く繰り返され、優れた耐偏摩耗性能とグリップ力(WET性能)が要求される。
Since pneumatic tires for light trucks specified by JATMA are mainly used for local driving, stop-and-go is repeated many times during medium and low-speed driving, and excellent uneven wear resistance and grip power (WET performance) are required. Is done.
従来、例えば、特許文献1に記載の空気入りタイヤは、トレッド部に、タイヤ赤道面上に位置する1本の中央周方向溝と、この中央周方向溝と両トレッド端との間にそれぞれ位置する一対の側方周方向溝の計3本を配設している。これらの周方向溝により、4列のリブを区画形成する。中央周方向溝と側方周方向溝との間のリブは、中央周方向溝からタイヤ周方向と交差する方向に延びる多数本の横溝と、この横溝に連通しタイヤ周方向に延びる第1細溝部と、第1細溝部に連通する第1横サイプと、第1横サイプに連通しタイヤ周方向に延びる第2細溝部と、第2細溝部と横溝とに連通する第2横サイプと、を設けている。
Conventionally, for example, a pneumatic tire described in Patent Document 1 is located in a tread portion at one central circumferential groove located on the tire equatorial plane, and between the central circumferential groove and both tread ends. A total of three lateral circumferential grooves are arranged. These circumferential grooves form four rows of ribs. The rib between the central circumferential groove and the lateral circumferential groove includes a plurality of lateral grooves extending in a direction intersecting the tire circumferential direction from the central circumferential groove, and a first narrow groove extending in the tire circumferential direction communicating with the lateral groove. A groove portion, a first lateral sipe communicating with the first narrow groove portion, a second narrow groove portion communicating with the first lateral sipe and extending in the tire circumferential direction, a second lateral sipe communicating with the second narrow groove portion and the lateral groove, Is provided.
また、従来、特許文献2に記載の空気入りタイヤは、上述した特許文献2の空気入りタイヤに対して、一端が側方周方向溝に開口し、他端が第2細溝部に連通して第1横サイプに連続し、タイヤ赤道面に対して傾斜する向きに延びる傾斜サイプをさらに設けている。
Conventionally, the pneumatic tire described in Patent Document 2 has one end opened in the lateral circumferential groove and the other end communicated with the second narrow groove portion with respect to the pneumatic tire described in Patent Document 2 described above. An inclined sipe that continues to the first lateral sipe and extends in a direction inclined with respect to the tire equatorial plane is further provided.
また、従来、特許文献3に記載の空気入りタイヤは、トレッド部に配設した3本の周方向主溝の間にそれぞれリブ状陸部を区画し、このリブ状陸部に、1本の周方向副溝、周方向主溝と周方向副溝との間を連通する幅方向溝を配設して、ブロック陸部を区画形成している。
Conventionally, in the pneumatic tire described in Patent Document 3, a rib-shaped land portion is defined between three circumferential main grooves disposed in the tread portion, and one rib-shaped land portion is provided on the rib-shaped land portion. A block land portion is defined by arranging a circumferential sub groove, a width direction groove communicating with the circumferential main groove and the circumferential sub groove.
上述した特許文献1~特許文献3に記載の空気入りタイヤは、リブ状陸部(リブ)に、周方向副溝(第1細溝部および第2細溝部)を設け、この周方向副溝(第1細溝部および第2細溝部)と中央の周方向主溝(中央周方向溝)とを連通する幅方向溝(横溝)を設けており、中央の周方向溝(中央周方向溝)のタイヤ幅方向の両側にブロック陸部が区画形成されている。このような特許文献1~特許文献3に記載の空気入りタイヤは、中央の周方向溝(中央周方向溝)のタイヤ幅方向の両側にブロック陸部が区画されることで、当該部分の剛性が低下することから、主に地場走行で使用される場合、中低速走行でのストップアンドゴーの繰り返しにより、トレッド部のセンター領域における早期摩耗(センターウェア摩耗)が生じやすい傾向となる。すなわち、耐偏摩耗性能の要求に応じることが難しい。
The pneumatic tires described in Patent Documents 1 to 3 described above are provided with circumferential sub-grooves (first narrow groove section and second narrow groove section) in the rib-like land section (ribs), and the circumferential sub-grooves ( A width direction groove (lateral groove) that communicates the first narrow groove portion and the second narrow groove portion) with the central circumferential main groove (central circumferential groove) is provided, and the central circumferential groove (central circumferential groove) Block land portions are defined on both sides in the tire width direction. In the pneumatic tires described in Patent Documents 1 to 3, the block land portions are partitioned on both sides in the tire width direction of the central circumferential groove (central circumferential groove), so that the rigidity of the portion is increased. Therefore, when used mainly in local travel, early wear (center wear wear) tends to occur in the center region of the tread due to repeated stop-and-go during medium and low speed travel. That is, it is difficult to meet the demand for uneven wear resistance.
本発明は、上記に鑑みてなされたものであって、耐偏摩耗性能およびWET性能を向上することのできる空気入りタイヤを提供することを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a pneumatic tire capable of improving uneven wear resistance and WET performance.
上述した課題を解決し、目的を達成するために、第1の発明の空気入りタイヤは、タイヤ周方向に沿って延在する少なくとも3本の周方向主溝により、タイヤ周方向に延在する少なくとも4本のリブ状陸部が形成された空気入りタイヤにおいて、前記周方向主溝が奇数であるときは中央の前記周方向主溝をセンター主溝とし、前記周方向主溝が偶数であるときは中央側の2本の各前記周方向主溝を合わせてセンター主溝とし、前記センター主溝のタイヤ幅方向両外側に隣接するリブ状陸部を側方リブ状陸部とした場合、前記側方リブ状陸部のタイヤ幅方向の一側から当該側方リブ状陸部のタイヤ幅方向寸法の40[%]以上60[%]以下の範囲に、タイヤ周方向に沿って延在し、前記周方向主溝よりも溝深さが浅く形成された周方向細溝と、前記側方リブ状陸部に設けられて一端が前記側方リブ状陸部のタイヤ幅方向外側に隣接する周方向主溝に連通して終端し他端が前記周方向細溝に貫通して前記側方リブ状陸部内で終端しつつタイヤ周方向に交差して延在し、前記周方向主溝よりも溝深さが浅く形成され、タイヤ周方向に複数配置された幅方向細溝と、前記周方向細溝の溝底に当該周方向細溝の延在方向に沿って形成された周方向溝底サイプと、を含み、前記周方向細溝を境にした前記側方リブ状陸部のタイヤ幅方向内側をリブ形状とし、前記周方向細溝を境にした前記側方リブ状陸部のタイヤ幅方向外側をブロック形状とすることを特徴とする。
In order to solve the above-described problems and achieve the object, the pneumatic tire of the first invention extends in the tire circumferential direction by at least three circumferential main grooves extending along the tire circumferential direction. In the pneumatic tire in which at least four rib-like land portions are formed, when the circumferential main groove is an odd number, the central circumferential main groove is a center main groove and the circumferential main groove is an even number. When the two main circumferential grooves on the center side are combined as a center main groove, and the rib-like land portions adjacent to both outer sides in the tire width direction of the center main groove are side rib-shaped land portions, Extending along the tire circumferential direction from one side of the lateral rib-shaped land portion in the tire width direction to a range of 40% to 60% of the tire width direction dimension of the lateral rib-shaped land portion. And a circumferential narrow groove formed with a groove depth shallower than the circumferential main groove. The one end of the side rib-shaped land portion is connected to the circumferential main groove adjacent to the outer side in the tire width direction of the side rib-shaped land portion, and the other end penetrates the circumferential narrow groove. And extending in the tire circumferential direction while terminating in the side rib-shaped land portion, and having a groove depth shallower than the circumferential main groove, and a plurality of widthwise narrow grooves arranged in the tire circumferential direction. And a circumferential groove bottom sipe formed along the extending direction of the circumferential narrow groove at the groove bottom of the circumferential narrow groove, and the side rib shape with the circumferential narrow groove as a boundary An inner side in the tire width direction of the land portion is formed in a rib shape, and an outer side in the tire width direction of the side rib-shaped land portion with the circumferential narrow groove as a boundary is formed in a block shape.
この空気入りタイヤによれば、周方向細溝によりタイヤ周方向の排水性を有し、幅方向細溝によりタイヤ幅方向外側への排水性を有することで、WET性能(湿潤路面での操作性や制動性)を向上することができる。また、側方リブ状陸部のタイヤ幅方向内側(センター主溝側)では、リブ形状により必要以上の剛性低下を抑え、耐偏摩耗性能を向上することができる。特に、主に地場走行で使用される場合、中低速走行でのストップアンドゴーの繰り返しにより、トレッド部のセンター領域における早期摩耗(センターウェア摩耗)の発生を抑制することになる。また、周方向細溝を側方リブ状陸部のタイヤ幅方向寸法の40[%]以上60[%]以下の範囲であるタイヤ幅方向のほぼ中央に設けたことで、側方リブ状陸部のタイヤ幅方向での剛性差が小さくなるため、偏摩耗を抑制することができる。しかも、周方向細溝は、周方向主溝より溝深さが浅く形成されているため、この溝深さの差を周方向溝底サイプにより補填することで、側方リブ状陸部のリブ形状の剛性をタイヤ幅方向で均一に保って、偏摩耗を抑制することができる。この結果、耐偏摩耗性能およびWET性能を向上することができる。
According to this pneumatic tire, the circumferential narrow groove has drainage performance in the tire circumferential direction and the lateral narrow groove has drainage performance to the outside in the tire width direction, so that WET performance (operability on wet road surface) And braking performance). In addition, on the inner side in the tire width direction (center main groove side) of the side rib-shaped land portion, the rib shape can suppress a decrease in rigidity more than necessary and improve uneven wear resistance. In particular, when used mainly in local traveling, the occurrence of early wear (center wear wear) in the center region of the tread portion is suppressed by repetition of stop-and-go during medium-low speed traveling. Further, the circumferential narrow groove is provided at substantially the center in the tire width direction, which is in the range of 40% to 60% of the tire width direction dimension of the side rib-shaped land portion. Since the difference in rigidity in the tire width direction of the portion becomes small, uneven wear can be suppressed. In addition, since the circumferential narrow groove is formed with a shallower groove depth than the circumferential main groove, the rib of the side rib-shaped land portion is compensated by compensating the difference in the groove depth with the circumferential groove bottom sipe. Uneven wear can be suppressed by keeping the rigidity of the shape uniform in the tire width direction. As a result, it is possible to improve uneven wear resistance and WET performance.
また、第2の発明の空気入りタイヤは、第1の発明において、前記幅方向細溝の溝底で当該幅方向細溝の延在方向に沿って形成された幅方向溝底サイプをさらに含むことを特徴とする。
The pneumatic tire according to a second aspect of the present invention further includes, in the first aspect, a widthwise groove bottom sipe formed along the extending direction of the widthwise narrow groove at the groove bottom of the widthwise narrow groove. It is characterized by that.
この空気入りタイヤによれば、幅方向細溝は、周方向主溝より溝深さが浅く形成されているため、この溝深さの差を幅方向溝底サイプにより補填することで、側方リブ状陸部のブロック形状の剛性をタイヤ幅方向やタイヤ周方向で均一に保って、偏摩耗を抑制することができる。この結果、耐偏摩耗性能の向上効果を顕著に得ることができる。
According to this pneumatic tire, the widthwise narrow groove is formed with a shallower groove depth than the circumferential main groove. The block-shaped rigidity of the rib-like land portion can be kept uniform in the tire width direction and the tire circumferential direction, and uneven wear can be suppressed. As a result, the effect of improving uneven wear resistance can be obtained remarkably.
また、第3の発明の空気入りタイヤは、第1または第2の発明において、前記幅方向細溝の他端から前記センター主溝側に延在し、前記側方リブ状陸部内で終端するトレッド面サイプをさらに含むことを特徴とする。
In the first or second invention, the pneumatic tire of the third invention extends from the other end of the widthwise narrow groove toward the center main groove and terminates in the lateral rib-shaped land portion. A tread surface sipe is further included.
この空気入りタイヤによれば、側方リブ状陸部のタイヤ幅方向内側のリブ形状では、幅方向細溝の他端を終端させており、そこからトレッド面サイプを延長させることで、側方リブ状陸部のリブ形状による耐偏摩耗性能を維持しつつ、排水性をさらに向上させてWET性能を向上させることができる。
According to this pneumatic tire, in the rib shape inside the tire width direction of the side rib-shaped land portion, the other end of the width direction narrow groove is terminated, and the tread surface sipe is extended from there to be While maintaining the uneven wear resistance performance due to the rib shape of the rib-like land portion, the drainage can be further improved to improve the WET performance.
また、第4の発明の空気入りタイヤは、第2または第3の発明において、前記幅方向溝底サイプは、前記幅方向細溝が前記周方向細溝に貫通する交差部を除いて形成されることを特徴とする。
The pneumatic tire according to a fourth aspect of the present invention is the pneumatic tire according to the second or third aspect, wherein the width direction groove bottom sipe is formed except for an intersection where the width direction narrow groove penetrates the circumferential direction narrow groove. It is characterized by that.
幅方向細溝が周方向細溝に貫通する交差部に幅方向溝底サイプが貫通すると、交差部に近い部分のブロック形状やリブ形状の剛性が局所的に低下する傾向となるため、この部分を除いて幅方向溝底サイプを設けることにより、側方リブ状陸部の必要以上の剛性低下を抑え、耐偏摩耗性能を向上することができる。
If the width direction groove bottom sipe penetrates the intersection where the width direction narrow groove penetrates the circumferential direction narrow groove, the rigidity of the block shape and rib shape near the intersection tends to decrease locally, so this part By providing the width direction groove bottom sipe except for the above, it is possible to suppress the lowering of the rigidity of the side rib-shaped land portion more than necessary and improve the uneven wear resistance.
また、第5の発明の空気入りタイヤは、第2から第4の何れか1つの発明において、前記幅方向溝底サイプは、前記トレッド面サイプと連通して形成されることを特徴とする。
In the pneumatic tire according to a fifth aspect of the present invention, in any one of the second to fourth aspects, the width direction groove bottom sipe is formed in communication with the tread surface sipe.
この空気入りタイヤによれば、幅方向溝底サイプをトレッド面サイプと連通させることで、上述したトレッド面サイプによる効果を顕著に得ることができる。すなわち、側方リブ状陸部のリブ形状による耐偏摩耗性能を維持しつつ、排水性をさらに向上させてWET性能を向上させることができる。
According to this pneumatic tire, by making the width direction groove bottom sipe communicate with the tread surface sipe, the effect of the above-described tread surface sipe can be remarkably obtained. That is, while maintaining the uneven wear resistance performance due to the rib shape of the side rib-shaped land portion, it is possible to further improve the drainage and improve the WET performance.
また、第6の発明の空気入りタイヤは、第1~第5の何れか1つの発明において、前記サイプは、前記トレッド面からの最大溝深さを、前記周方向主溝の溝深さに対して60[%]以上90[%]以下の範囲とすることを特徴とする。
The pneumatic tire according to a sixth aspect is the pneumatic tire according to any one of the first to fifth aspects, wherein the sipe has a maximum groove depth from the tread surface to a groove depth of the circumferential main groove. On the other hand, the range is from 60% to 90%.
この空気入りタイヤによれば、サイプのトレッド面からの最大溝深さを周方向主溝の最大溝深さに対して60[%]以上とすることで、排水性の向上効果を顕著に得ることができ、90[%]以下とすることで、側方リブ状陸部のリブ形状やブロック形状の剛性をタイヤ幅方向やタイヤ周方向で均一に保つ効果を顕著に得ることができる。この結果、耐偏摩耗性能の向上効果およびWET性能の向上効果を顕著に得ることができる。
According to this pneumatic tire, the maximum groove depth from the tread surface of the sipe is set to 60% or more with respect to the maximum groove depth of the circumferential main groove. By setting the ratio to 90 [%] or less, the effect of maintaining the rigidity of the rib shape and block shape of the side rib-shaped land portion uniformly in the tire width direction and the tire circumferential direction can be remarkably obtained. As a result, the effect of improving uneven wear resistance and the effect of improving WET performance can be obtained remarkably.
また、第7の発明の空気入りタイヤは、第1~第6の何れか1つの発明において、前記幅方向細溝は、タイヤ周方向に対して少なくとも2つの角度をもつ各直線成分に沿って屈曲形成されることを特徴とする。
The pneumatic tire according to a seventh aspect is the pneumatic tire according to any one of the first to sixth aspects, wherein the narrow groove in the width direction is along each linear component having at least two angles with respect to the tire circumferential direction. It is formed by bending.
この空気入りタイヤによれば、幅方向細溝が直線成分に沿って形成されていることで、排水性の向上効果を顕著に得ることができ、WET性能をより向上することができる。
According to this pneumatic tire, since the narrow grooves in the width direction are formed along the linear component, the drainage improvement effect can be remarkably obtained, and the WET performance can be further improved.
また、第8の発明の空気入りタイヤは、第1~第7の何れか1つの発明において、前記幅方向細溝は、前記周方向主溝に連通する一端側の溝幅W1と、前記側方リブ状陸部で終端する他端側の溝幅W2とが、W2<W1の関係を満たし、かつ一端側と他端側との間で溝幅を漸次変化して形成されることを特徴とする。
The pneumatic tire according to an eighth aspect of the present invention is the pneumatic tire according to any one of the first to seventh aspects, wherein the widthwise narrow groove includes a groove width W1 on one end side communicating with the circumferential main groove, and the side The groove width W2 at the other end that terminates in the rib-like land portion satisfies the relationship W2 <W1, and is formed by gradually changing the groove width between the one end and the other end. And
この空気入りタイヤによれば、周方向主溝に連通する一端側の溝幅W1が側方リブ状陸部で終端する他端側の溝幅W2よりも大きく、かつ一端側と他端側との間で溝幅を漸次変化して形成されるため、側方リブ状陸部から周方向主溝側への排水性を向上することができる。
According to this pneumatic tire, the groove width W1 at one end communicating with the circumferential main groove is larger than the groove width W2 at the other end terminating at the side rib-shaped land portion, and at one end and the other end. Therefore, the drainage from the side rib-shaped land portion to the circumferential main groove side can be improved.
また、第9の発明の空気入りタイヤは、第1~第8の何れか1つの発明において、前記周方向細溝および前記幅方向細溝は、その最大溝深さを、前記周方向主溝の溝深さに対して10[%]以上40[%]以下の範囲とすることを特徴とする。
The pneumatic tire according to a ninth aspect of the present invention is the pneumatic tire according to any one of the first to eighth aspects, wherein the circumferential narrow groove and the width narrow groove have a maximum groove depth that is the circumferential main groove. It is characterized by being in the range of 10 [%] to 40 [%] with respect to the groove depth.
この空気入りタイヤによれば、周方向細溝および幅方向細溝の最大溝深さが周方向主溝の溝深さに対して10[%]以上であれば、排水性をより発揮してWET性能の向上効果を顕著に得ることができる。また、周方向細溝および幅方向細溝の最大溝深さが周方向主溝の溝深さに対して40[%]以下であれば、側方リブ状陸部の剛性低下をより抑えて耐偏摩耗性能の向上効果を顕著に得ることができる。この結果、耐偏摩耗性能の向上効果およびWET性能の向上効果を顕著に得ることができる。
According to this pneumatic tire, if the maximum groove depth of the circumferential narrow groove and the width narrow groove is 10% or more with respect to the groove depth of the circumferential main groove, the drainage performance is further exhibited. The effect of improving the WET performance can be remarkably obtained. Moreover, if the maximum groove depth of the circumferential narrow groove and the width narrow groove is 40% or less with respect to the groove depth of the circumferential main groove, the rigidity reduction of the lateral rib-shaped land portion is further suppressed. The effect of improving uneven wear resistance can be obtained remarkably. As a result, the effect of improving uneven wear resistance and the effect of improving WET performance can be obtained remarkably.
また、第10の発明の空気入りタイヤは、第1~第9の何れか1つの発明において、前記センター主溝は、その溝幅がタイヤ赤道面から接地端までのタイヤ幅方向寸法の3[%]以上15[%]以下の範囲とされ、前記センター主溝に対して前記側方リブ状陸部を間において設けられる各前記周方向主溝は、タイヤ赤道面からの位置がタイヤ赤道面から接地端までのタイヤ幅方向寸法の50[%]以上60[%]以下の範囲とされることを特徴とする。
The pneumatic tire according to a tenth aspect of the invention is the pneumatic tire according to any one of the first to ninth aspects, wherein the center main groove has a groove width of 3 [mm] in the tire width direction from the tire equatorial plane to the ground contact edge. %] And 15 [%] or less, and each circumferential main groove provided between the center main groove and the lateral rib-shaped land portion is located at the tire equatorial plane. It is characterized by being in the range of 50 [%] or more and 60 [%] or less of the dimension in the tire width direction from the ground to the ground contact end.
ハイドロブレーニング現象は、トレッド面のタイヤ幅方向中央側を起点として発生する傾向にある。そのため、この空気入りタイヤによれば、タイヤ幅方向中央側に配置されるセンター主溝の溝幅を規定し、かつセンター主溝のタイヤ幅方向外側に隣接する周方向主溝の位置をタイヤ幅方向中央側に配置することで、タイヤ幅方向中央側での排水性が向上するため、WET性能のさらなる向上を図ることができる。
The hydro-browning phenomenon tends to occur starting from the center of the tread surface in the tire width direction. Therefore, according to this pneumatic tire, the groove width of the center main groove disposed on the center side in the tire width direction is defined, and the position of the circumferential main groove adjacent to the outer side of the center main groove in the tire width direction is the tire width. By disposing on the center side in the direction, the drainage performance on the center side in the tire width direction is improved, so that the WET performance can be further improved.
また、第11の発明の空気入りタイヤは、第1~第10の何れか1つの発明において、タイヤ幅方向最外側のリブ状陸部は、前記周方向主溝の溝深さに対して10[%]以上の細溝やサイプを配置しないことを特徴とする。
The pneumatic tire according to an eleventh aspect of the invention is the pneumatic tire according to any one of the first to tenth aspects, wherein the outermost rib-like land portion in the tire width direction is 10 with respect to the groove depth of the circumferential main groove. [%] It is characterized by not disposing narrow grooves or sipes.
この空気入りタイヤによれば、タイヤ幅方向最外側のリブ状陸部に、周方向主溝の溝深さに対して10[%]以上の細溝やサイプを配置しないことで、耐偏摩耗性能の向上効果をより顕著に得ることができる。
According to this pneumatic tire, uneven wear resistance is prevented by disposing 10% or more narrow grooves and sipes with respect to the groove depth of the circumferential main groove in the outermost rib-like land portion in the tire width direction. The performance improvement effect can be obtained more remarkably.
また、第12の発明の空気入りタイヤは、第1~第11の何れか1つの発明において、前記トレッド部をなすコンパウンドの20[℃]でのJIS硬度が60以上75以下の範囲であることを特徴とする。
The pneumatic tire according to a twelfth aspect of the present invention is the pneumatic tire according to any one of the first to eleventh aspects, wherein the compound constituting the tread portion has a JIS hardness at 20 [° C.] of 60 or more and 75 or less. It is characterized by.
この空気入りタイヤによれば、トレッド部をなすコンパウンドの20[℃]でのJIS硬度を60以上とすることで、適度な硬さにより耐偏摩耗性能の向上効果およびWET性能の向上効果を顕著に得ることができる。
According to this pneumatic tire, by making the JIS hardness at 20 [° C.] of the compound forming the tread part 60 or more, the effect of improving the uneven wear resistance and the effect of improving the WET performance with a moderate hardness are remarkable. Can get to.
また、第13の発明の空気入りタイヤは、第1~第12の何れか1つの発明において、規定内圧が600[kPa]以下の小型トラック用空気入りタイヤに適用されることを特徴とする。
Further, the pneumatic tire of the thirteenth invention is characterized in that, in any one of the first to twelfth inventions, the pneumatic tire is applied to a pneumatic tire for a small truck having a specified internal pressure of 600 [kPa] or less.
この空気入りタイヤによれば、主に地場走行で使用されるため、中低速走行でストップアンドゴーが多く繰り返され、優れた耐偏摩耗性能とグリップ力(WET性能)が要求される。この空気入りタイヤによれば、主に地場走行で使用される小型トラック用空気入りタイヤとして、優れた耐偏摩耗性能とグリップ力の要求を満たすことができる。
Since this pneumatic tire is mainly used for local travel, stop and go is frequently repeated at medium to low speed travel, and excellent uneven wear resistance and grip power (WET performance) are required. According to this pneumatic tire, as a pneumatic tire for small trucks mainly used in local running, it is possible to satisfy the requirements for excellent uneven wear resistance and gripping power.
本発明に係る空気入りタイヤは、耐偏摩耗性能およびWET性能を向上することができる。
The pneumatic tire according to the present invention can improve uneven wear resistance and WET performance.
以下に、本発明の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、この実施形態の構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。また、この実施形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. The constituent elements of this embodiment include those that can be easily replaced by those skilled in the art or those that are substantially the same. Further, a plurality of modifications described in this embodiment can be arbitrarily combined within the scope obvious to those skilled in the art.
図1および図2は、本実施形態に係る空気入りタイヤの平面図であり、図3は、図1および図2に示す空気入りタイヤの一部拡大断面図であり、図4は、図1および図2に示す空気入りタイヤの一部拡大平面図である。
1 and 2 are plan views of the pneumatic tire according to the present embodiment, FIG. 3 is a partially enlarged sectional view of the pneumatic tire shown in FIGS. 1 and 2, and FIG. FIG. 3 is a partially enlarged plan view of the pneumatic tire shown in FIG. 2.
以下の説明において、タイヤ径方向とは、空気入りタイヤ1の回転軸(図示せず)と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向において回転軸に向かう側、タイヤ径方向外側とは、タイヤ径方向において回転軸から離れる側をいう。また、タイヤ幅方向とは、前記回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面(タイヤ赤道線)CLに向かう側、タイヤ幅方向外側とは、タイヤ幅方向においてタイヤ赤道面CLから離れる側をいう。また、タイヤ周方向とは、前記回転軸を中心軸とする周方向である。また、タイヤ赤道面CLとは、空気入りタイヤ1の回転軸に直交すると共に、空気入りタイヤ1のタイヤ幅の中心を通る平面である。タイヤ赤道線とは、タイヤ赤道面CL上にあって空気入りタイヤ1の周方向に沿う線をいう。本実施形態では、タイヤ赤道線にタイヤ赤道面と同じ符号「CL」を付す。
In the following description, the tire radial direction refers to a direction orthogonal to the rotation axis (not shown) of the pneumatic tire 1, and the tire radial direction inner side refers to the side toward the rotation axis in the tire radial direction, the tire radial direction outer side. The term “side away from the rotation axis” in the tire radial direction. Further, the tire width direction means a direction parallel to the rotation axis, the inner side in the tire width direction means the side toward the tire equator plane (tire equator line) CL in the tire width direction, and the outer side in the tire width direction means the tire width. The direction away from the tire equatorial plane CL in the direction. The tire circumferential direction is a circumferential direction with the rotation axis as a central axis. The tire equatorial plane CL is a plane that is orthogonal to the rotational axis of the pneumatic tire 1 and passes through the center of the tire width of the pneumatic tire 1. The tire equator line is a line along the circumferential direction of the pneumatic tire 1 on the tire equator plane CL. In the present embodiment, the same sign “CL” as that of the tire equator plane is attached to the tire equator line.
本実施形態の空気入りタイヤ1は、図1および図2に示すように、トレッド部2を有している。トレッド部2は、ゴム材からなり、空気入りタイヤ1のタイヤ径方向の最も外側で露出し、その表面がトレッド面2aとして空気入りタイヤ1の輪郭となる。
The pneumatic tire 1 of the present embodiment has a tread portion 2 as shown in FIGS. 1 and 2. The tread portion 2 is made of a rubber material, exposed at the outermost side in the tire radial direction of the pneumatic tire 1, and the surface thereof becomes the contour of the pneumatic tire 1 as a tread surface 2 a.
また、本実施形態の空気入りタイヤ1は、トレッド部2は、トレッド面2aに、タイヤ周方向に沿って延在する周方向主溝3が、タイヤ幅方向で少なくとも3本(図1では3本であり、図2では4本である)並設されている。そして、トレッド部2は、トレッド面2aに、少なくとも3本の周方向主溝3により、タイヤ周方向に沿って延在するリブ状陸部4が少なくとも4本(図1では4本であり、図2では5本である)形成されている。また、本実施形態の空気入りタイヤ1は、上記トレッド面2aのトレッドパターンが、タイヤ赤道面CLを境にタイヤ幅方向の両側が対称な対称トレッドパターンとされていることが好ましい。対称トレッドパターンは、タイヤ幅方向で裏返した場合に、トレッドパターンが同様の形状であることを示す。対称トレッドパターンは、タイヤ赤道面CLを境にタイヤ周方向で位相がずれているものを含む。
Further, in the pneumatic tire 1 of the present embodiment, the tread portion 2 has at least three circumferential main grooves 3 extending along the tire circumferential direction on the tread surface 2a (3 in FIG. 1). (4 in FIG. 2). The tread portion 2 has at least four rib-like land portions 4 extending along the tire circumferential direction by at least three circumferential main grooves 3 on the tread surface 2a (four in FIG. 1). In FIG. 2, there are five). In the pneumatic tire 1 of the present embodiment, the tread pattern of the tread surface 2a is preferably a symmetrical tread pattern in which both sides in the tire width direction are symmetrical with respect to the tire equatorial plane CL. The symmetrical tread pattern indicates that the tread pattern has the same shape when turned over in the tire width direction. The symmetrical tread pattern includes a pattern whose phase is shifted in the tire circumferential direction with respect to the tire equatorial plane CL.
そして、本実施形態では、図1に示すように、周方向主溝3が奇数であるときは中央の周方向主溝3をセンター主溝31とする(図1では、中央の周方向主溝3がタイヤ赤道面CL上にある)。また、図2に示すように、周方向主溝3が偶数であるときは中央側(タイヤ幅方向両外側)の2本の各周方向主溝3を合わせてセンター主溝31とする。なお、図には明示しないが、周方向主溝3が5本の場合、周方向主溝3が奇数であるから、中央の周方向主溝3をセンター主溝31とする。そして、上記各センター主溝31のタイヤ幅方向両外側に隣接するリブ状陸部4を側方リブ状陸部41とする。
In this embodiment, as shown in FIG. 1, when the circumferential main groove 3 is an odd number, the central circumferential main groove 3 is used as the center main groove 31 (in FIG. 1, the central circumferential main groove 3 3 is on the tire equatorial plane CL). As shown in FIG. 2, when the circumferential main grooves 3 are an even number, the two circumferential main grooves 3 on the center side (both outer sides in the tire width direction) are combined to form a center main groove 31. Although not clearly shown in the figure, when there are five circumferential main grooves 3, the circumferential main grooves 3 are odd numbers, so the central circumferential main groove 3 is the center main groove 31. The rib-shaped land portions 4 adjacent to the outer sides in the tire width direction of the center main grooves 31 are referred to as side rib-shaped land portions 41.
側方リブ状陸部41は、周方向主溝3よりも溝幅が狭い周方向細溝5および幅方向細溝6が形成されている。周方向細溝5は、側方リブ状陸部41において、タイヤ幅方向の一側から当該側方リブ状陸部41のタイヤ幅方向寸法Wの40[%]以上60[%]以下の範囲で、タイヤ周方向に沿って延在して設けられている。この周方向細溝5は、周方向主溝3の溝深さD1(図3参照)よりも溝深さD2(図3参照)が浅く形成されている。また、幅方向細溝6は、側方リブ状陸部41において、一端が側方リブ状陸部41のタイヤ幅方向外側に隣接する周方向主溝3に連通して終端し、他端が周方向細溝5に貫通して側方リブ状陸部41内で終端しつつタイヤ周方向に交差して延在して設けられ、タイヤ周方向に複数配置されている。この幅方向細溝6は、周方向主溝3の溝深さD1(図3参照)よりも溝深さD3(図3参照)が浅く形成されている。
The lateral rib-shaped land portion 41 is formed with a circumferential narrow groove 5 and a narrow width groove 6 having a narrower groove width than the circumferential main groove 3. In the lateral rib-shaped land portion 41, the circumferential narrow groove 5 ranges from one side in the tire width direction to 40 [%] or more and 60 [%] or less of the tire width direction dimension W of the side rib-shaped land portion 41. Thus, it extends along the tire circumferential direction. The circumferential narrow groove 5 is formed with a groove depth D2 (see FIG. 3) shallower than the groove depth D1 (see FIG. 3) of the circumferential main groove 3. Further, in the lateral rib-shaped land portion 41, one end of the width-direction narrow groove 6 communicates with the circumferential main groove 3 adjacent to the outer side in the tire width direction of the lateral rib-shaped land portion 41 and ends at the other end. It extends through the circumferential narrow groove 5 to extend in the tire circumferential direction while terminating in the side rib-shaped land portion 41, and a plurality of tires are arranged in the tire circumferential direction. The width direction narrow groove 6 is formed with a groove depth D3 (see FIG. 3) shallower than the groove depth D1 (see FIG. 3) of the circumferential main groove 3.
ここで、本実施形態の空気入りタイヤ1において、周方向主溝3は、その溝深さD1を7[mm]以上12[mm]以下の範囲とし、溝幅を8[mm]以上14[mm]以下の範囲とする。また、周方向細溝5および幅方向細溝6は、その溝深さD2,D3を上記規定の範囲とし、溝幅を2[mm]以上4[mm]以下の範囲とする。
Here, in the pneumatic tire 1 of the present embodiment, the circumferential main groove 3 has a groove depth D1 in the range of 7 [mm] to 12 [mm] and a groove width of 8 [mm] to 14 [mm]. mm] or less. Further, the circumferential narrow grooves 5 and the width narrow grooves 6 have the groove depths D2 and D3 within the specified range, and the groove widths within a range of 2 [mm] to 4 [mm].
そして、側方リブ状陸部41は、周方向細溝5および幅方向細溝6により、周方向細溝5を境にしたタイヤ幅方向内側(センター主溝31側)をリブ形状とされ、周方向細溝5を境にしたタイヤ幅方向外側を複数の幅方向細溝6によりブロック形状とされている。
And the side rib-shaped land part 41 is formed into a rib shape on the inner side in the tire width direction (center main groove 31 side) with the circumferential narrow groove 5 as a boundary by the circumferential narrow groove 5 and the lateral narrow groove 6. The outer side in the tire width direction with the circumferential narrow groove 5 as a boundary is formed into a block shape by a plurality of narrow grooves 6 in the width direction.
また、周方向細溝5は、その溝底に周方向溝底サイプ7が形成されている。周方向溝底サイプ7は、周方向細溝5の溝底からタイヤ径方向内側に向けて形成され、周方向細溝5の延在方向(タイヤ周方向)に沿って延在して設けられている。周方向溝底サイプ7は、その溝幅を1.0[mm]以下とする。また、周方向溝底サイプ7は、図4では、周方向細溝5の中央に形成されている。これに限らず、周方向溝底サイプ7は、図には明示しないが、周方向細溝5の溝壁に沿ってタイヤ径方向内側に向けて形成されていてもよい。また、周方向溝底サイプ7は、周方向細溝5の溝壁に沿って形成される場合、周方向細溝5の両溝壁の何れか一方または双方に形成されていてもよい。
Further, the circumferential narrow groove 5 has a circumferential groove bottom sipe 7 formed at the bottom thereof. The circumferential groove bottom sipe 7 is formed from the groove bottom of the circumferential narrow groove 5 toward the inside in the tire radial direction, and extends along the extending direction of the circumferential narrow groove 5 (tire circumferential direction). ing. The circumferential groove bottom sipe 7 has a groove width of 1.0 [mm] or less. The circumferential groove bottom sipe 7 is formed at the center of the circumferential narrow groove 5 in FIG. The circumferential groove bottom sipe 7 is not limited to this, but may be formed along the groove wall of the circumferential narrow groove 5 toward the inside in the tire radial direction, though not explicitly shown in the drawing. Further, when the circumferential groove bottom sipe 7 is formed along the groove wall of the circumferential narrow groove 5, the circumferential groove bottom sipe 7 may be formed on either one or both of the both circumferential groove grooves 5.
このような空気入りタイヤ1によれば、周方向細溝5によりタイヤ周方向の排水性を有し、幅方向細溝6によりタイヤ幅方向外側への排水性を有することで、WET性能(湿潤路面での操作性や制動性)を向上することが可能である。また、側方リブ状陸部41のタイヤ幅方向内側(センター主溝31側)では、リブ形状により必要以上の剛性低下を抑え、耐偏摩耗性能を向上することが可能になる。特に、主に地場走行で使用される場合、中低速走行でのストップアンドゴーの繰り返しにより、トレッド部2のセンター領域における早期摩耗(センターウェア摩耗)の発生を抑制することになる。また、周方向細溝5を側方リブ状陸部41のタイヤ幅方向寸法Wの40[%]以上60[%]以下の範囲であるタイヤ幅方向のほぼ中央に設けたことで、側方リブ状陸部41のタイヤ幅方向での剛性差が小さくなるため、偏摩耗を抑制することが可能になる。しかも、周方向細溝5は、周方向主溝3より溝深さが浅く形成されているため、この溝深さの差を周方向溝底サイプ7により補填することで、側方リブ状陸部41のリブ形状の剛性をタイヤ幅方向で均一に保って、偏摩耗を抑制することが可能になる。この結果、耐偏摩耗性能およびWET性能を向上することができる。
According to the pneumatic tire 1 as described above, the circumferential narrow groove 5 has the drainage performance in the tire circumferential direction, and the lateral narrow groove 6 has the drainage performance to the outer side in the tire width direction. It is possible to improve operability and braking performance on the road surface. Further, on the inner side in the tire width direction of the side rib-shaped land portion 41 (on the center main groove 31 side), it is possible to suppress a decrease in rigidity more than necessary due to the rib shape and to improve uneven wear resistance. In particular, when used mainly in local traveling, the occurrence of early wear (center wear wear) in the center region of the tread portion 2 is suppressed by repetition of stop-and-go during medium-low speed traveling. In addition, the circumferential narrow groove 5 is provided at substantially the center in the tire width direction, which is in the range of 40% to 60% of the tire width direction dimension W of the lateral rib-shaped land portion 41. Since the difference in rigidity in the tire width direction of the rib-like land portion 41 is reduced, it is possible to suppress uneven wear. In addition, since the circumferential narrow groove 5 is formed with a shallower groove depth than the circumferential main groove 3, the difference in the groove depth is compensated by the circumferential groove bottom sipe 7, so that the lateral rib-like land 5 The rigidity of the rib shape of the portion 41 can be kept uniform in the tire width direction, and uneven wear can be suppressed. As a result, it is possible to improve uneven wear resistance and WET performance.
なお、この空気入りタイヤ1は、対称トレッドパターンを有することが好ましく、ローテーションにおいて、前後左右の交換をすることが可能であるため、摩耗を均一化させて長寿命化を図ることが可能になる。
The pneumatic tire 1 preferably has a symmetric tread pattern, and can be exchanged in the front / rear and left / right directions in rotation, so that the wear can be made uniform and the life can be extended. .
また、本実施形態の空気入りタイヤ1は、図3および図4に示すように、幅方向細溝6の溝底に幅方向溝底サイプ8が形成されている。幅方向溝底サイプ8は、幅方向細溝6の溝底からタイヤ径方向内側に向けて形成され、幅方向細溝6の延在方向に沿って設けられている。幅方向溝底サイプ8は、その溝幅を1.0[mm]以下とする。また、幅方向溝底サイプ8は、図4では、幅方向細溝6の溝底の中央に形成されている。これに限らず、幅方向溝底サイプ8は、図には明示しないが、幅方向細溝6の溝壁に沿って形成されていてもよい。また、幅方向溝底サイプ8は、幅方向細溝6の溝壁に沿って形成される場合、幅方向細溝6の両溝壁の何れか一方または双方に形成されていてもよい。
Further, as shown in FIGS. 3 and 4, the pneumatic tire 1 of the present embodiment has a width direction groove bottom sipe 8 formed at the groove bottom of the width direction narrow groove 6. The width direction groove bottom sipe 8 is formed from the groove bottom of the width direction narrow groove 6 toward the inside in the tire radial direction, and is provided along the extending direction of the width direction narrow groove 6. The width direction groove bottom sipe 8 has a groove width of 1.0 [mm] or less. Moreover, the width direction groove bottom sipe 8 is formed at the center of the groove bottom of the width direction narrow groove 6 in FIG. The width direction groove bottom sipe 8 is not limited to this, but may be formed along the groove wall of the width direction narrow groove 6 although not shown in the drawing. Further, when the width direction groove bottom sipe 8 is formed along the groove wall of the width direction narrow groove 6, the width direction groove bottom sipe 8 may be formed on either or both of the both wall surfaces of the width direction narrow groove 6.
この空気入りタイヤ1によれば、幅方向細溝6は、周方向主溝3より溝深さが浅く形成されているため、この溝深さの差を幅方向溝底サイプ8により補填することで、側方リブ状陸部41のブロック形状の剛性をタイヤ幅方向やタイヤ周方向で均一に保って、偏摩耗を抑制することが可能になる。この結果、耐偏摩耗性能の向上効果を顕著に得ることが可能になる。
According to this pneumatic tire 1, the width direction narrow groove 6 is formed with a shallower groove depth than the circumferential direction main groove 3, so that the difference in groove depth is compensated by the width direction groove bottom sipe 8. Thus, the block-shaped rigidity of the side rib-shaped land portion 41 can be kept uniform in the tire width direction and the tire circumferential direction, thereby suppressing uneven wear. As a result, the effect of improving the uneven wear resistance can be remarkably obtained.
また、本実施形態の空気入りタイヤ1は、図3および図4に示すように、幅方向細溝6の他端からセンター主溝31側に延在し、側方リブ状陸部41内で終端するトレッド面サイプ9が形成されている。トレッド面サイプ9は、幅方向細溝6の一端部での幅方向細溝6の延在方向に沿って設けられている。トレッド面サイプ9は、その溝幅を1.0[mm]以下とする。
Further, as shown in FIGS. 3 and 4, the pneumatic tire 1 of the present embodiment extends from the other end of the width-direction narrow groove 6 to the center main groove 31 side, and in the side rib-shaped land portion 41. A tread surface sipe 9 that terminates is formed. The tread surface sipe 9 is provided along the extending direction of the widthwise narrow groove 6 at one end of the widthwise narrow groove 6. The tread surface sipe 9 has a groove width of 1.0 [mm] or less.
この空気入りタイヤ1によれば、側方リブ状陸部41のタイヤ幅方向内側のリブ形状では、幅方向細溝6の他端を終端させており、そこからトレッド面サイプ9を延長させることで、側方リブ状陸部41のリブ形状による耐偏摩耗性能を維持しつつ、排水性をさらに向上させてWET性能を向上させることが可能になる。トレッド面サイプ9は、幅方向細溝6の他端部の延在方向に沿って形成されていても、幅方向細溝6の他端部の延在方向から外れて形成されていてもよいが、幅方向細溝6の他端部の延在方向に沿って形成されているほうが、排水性をさらに向上させることができる。また、トレッド面サイプ9は、幅方向細溝6の一端部から延在する溝長さが2[mm]以上8[mm]以下とすることが、上記効果を顕著に得るうえで好ましい。
According to this pneumatic tire 1, in the rib shape inside the tire width direction of the side rib-shaped land portion 41, the other end of the width direction narrow groove 6 is terminated, and the tread surface sipe 9 is extended therefrom. Thus, while maintaining the uneven wear resistance performance due to the rib shape of the lateral rib-like land portion 41, it is possible to further improve the drainage and improve the WET performance. The tread surface sipe 9 may be formed along the extending direction of the other end of the widthwise narrow groove 6 or may be formed away from the extending direction of the other end of the widthwise narrow groove 6. However, it is possible to further improve the drainage performance if it is formed along the extending direction of the other end of the width direction narrow groove 6. The tread surface sipe 9 preferably has a groove length extending from one end of the widthwise narrow groove 6 of 2 [mm] or more and 8 [mm] or less in order to obtain the above-described effect remarkably.
また、本実施形態の空気入りタイヤ1では、図4に示すように、幅方向溝底サイプ8は、幅方向細溝6が周方向細溝5に貫通する交差部Xを除いて形成されることが好ましい。
Moreover, in the pneumatic tire 1 of the present embodiment, as shown in FIG. 4, the width direction groove bottom sipe 8 is formed except for the intersection X where the width direction narrow groove 6 penetrates the circumferential direction narrow groove 5. It is preferable.
幅方向細溝6が周方向細溝5に貫通する交差部Xに幅方向溝底サイプ8が貫通すると、交差部Xに近い部分のブロック形状やリブ形状の剛性が局所的に低下する傾向となるため、この部分を除いて幅方向溝底サイプ8を設けることにより、側方リブ状陸部41の必要以上の剛性低下を抑え、耐偏摩耗性能を向上することが可能になる。なお、周方向溝底サイプ7も、交差部Xを除いて形成することが、交差部Xに近い部分のブロック形状やリブ形状の剛性が局所的に低下することを抑えるうえでより好ましい。
When the width direction groove bottom sipe 8 penetrates the intersection X where the width direction narrow groove 6 penetrates the circumferential direction narrow groove 5, the rigidity of the block shape or rib shape near the intersection X tends to decrease locally. Therefore, by providing the width direction groove bottom sipe 8 except for this portion, it is possible to suppress a reduction in rigidity of the side rib-shaped land portion 41 more than necessary and to improve uneven wear resistance. In addition, it is more preferable to form the circumferential groove bottom sipe 7 excluding the intersecting portion X in order to suppress the local decrease in the rigidity of the block shape and the rib shape in the portion close to the intersecting portion X.
また、本実施形態の空気入りタイヤ1では、図3に示すように、幅方向溝底サイプ8は、トレッド面サイプ9と連通して形成されることが好ましい。
Further, in the pneumatic tire 1 of the present embodiment, as shown in FIG. 3, the width direction groove bottom sipe 8 is preferably formed in communication with the tread surface sipe 9.
この空気入りタイヤ1によれば、幅方向溝底サイプ8をトレッド面サイプ9と連通させることで、上述したトレッド面サイプ9による効果を顕著に得ることが可能になる。すなわち、側方リブ状陸部41のリブ形状による耐偏摩耗性能を維持しつつ、排水性をさらに向上させてWET性能を向上させることが可能になる。
According to this pneumatic tire 1, by making the width direction groove bottom sipe 8 communicate with the tread surface sipe 9, the effect of the above-described tread surface sipe 9 can be remarkably obtained. That is, it is possible to further improve the drainage and improve the WET performance while maintaining the uneven wear resistance performance due to the rib shape of the side rib-shaped land portion 41.
また、本実施形態の空気入りタイヤ1では、図3に示すように、上述したサイプ(周方向溝底サイプ7や、幅方向溝底サイプ8や、トレッド面サイプ9)は、トレッド面2aからの最大溝深さD4,D5,D6を、周方向主溝3の溝深さD1に対して60[%]以上90[%]以下の範囲とすることが好ましい。
Moreover, in the pneumatic tire 1 of this embodiment, as shown in FIG. 3, the above-described sipe (circumferential groove bottom sipe 7, width direction groove bottom sipe 8, and tread surface sipe 9) is from the tread surface 2a. It is preferable that the maximum groove depths D4, D5, and D6 be in the range of 60% to 90% with respect to the groove depth D1 of the circumferential main groove 3.
上述したサイプ7,8,9のトレッド面2aからの最大溝深さD4,D5,D6を周方向主溝3の最大溝深さD1に対して60[%]以上とすることで、排水性の向上効果を顕著に得ることが可能になり、90[%]以下とすることで、側方リブ状陸部41のリブ形状やブロック形状の剛性をタイヤ幅方向やタイヤ周方向で均一に保つ効果を顕著に得ることが可能になる。この結果、耐偏摩耗性能の向上効果およびWET性能の向上効果を顕著に得ることが可能になる。なお、耐偏摩耗性能の向上効果およびWET性能の向上効果を顕著に得るため、サイプ7,8,9のトレッド面2aからの最大溝深さD4,D5,D6を周方向主溝3の最大溝深さD1に対して70[%]以上80[%]以下の範囲とすることがより好ましい。
By setting the maximum groove depth D4, D5, D6 from the tread surface 2a of the sipe 7, 8, 9 described above to 60 [%] or more with respect to the maximum groove depth D1 of the circumferential main groove 3, drainage performance is achieved. As a result, the rigidity of the rib shape and the block shape of the side rib-shaped land portion 41 is kept uniform in the tire width direction and the tire circumferential direction. The effect can be obtained remarkably. As a result, the effect of improving the uneven wear resistance and the effect of improving the WET performance can be remarkably obtained. Note that the maximum groove depths D4, D5, and D6 from the tread surface 2a of the sipes 7, 8, and 9 are set to the maximum of the circumferential main groove 3 in order to obtain the effect of improving uneven wear resistance and the effect of improving WET performance. More preferably, it is in the range of 70 [%] to 80 [%] with respect to the groove depth D1.
また、本実施形態の空気入りタイヤ1では、図4に示すように、幅方向細溝6は、タイヤ周方向に対して少なくとも2つの角度(α,β)をもつ各直線成分に沿って屈曲形成されることが好ましい。
Further, in the pneumatic tire 1 of the present embodiment, as shown in FIG. 4, the widthwise narrow groove 6 is bent along each linear component having at least two angles (α, β) with respect to the tire circumferential direction. Preferably it is formed.
この空気入りタイヤ1によれば、幅方向細溝6が直線成分に沿って形成されていることで、排水性の向上効果を顕著に得ることが可能になり、WET性能をより向上することが可能になる。
According to this pneumatic tire 1, since the widthwise narrow grooves 6 are formed along the linear component, it is possible to obtain a remarkable effect of improving drainage and further improve the WET performance. It becomes possible.
なお、図4に示すように、幅方向細溝6は、タイヤ周方向に対して2つの角度α,βをもつ各直線成分α1,β1に沿って屈曲形成されている。直線成分α1,β1の角度α,βは、タイヤ周方向に対して30[°]以上であることが、排水性を向上するうえで好ましい。連続する直線成分α1,β1は、その角度α,βがタイヤ周方向に対して同方向に向くように30[°]以上90[°]以下であることが、排水性をより向上するうえで好ましい。連続する直線成分α1,β1は、その角度α,βの角度差が10[°]以上40[°]以下であることが、排水性をより向上するうえで好ましい。連続する直線成分α1,β1は、タイヤ幅方向外側の角度αとタイヤ幅方向内側の角度βとの関係が、β<αであることが、タイヤの回転において、タイヤ周方向からタイヤ幅方向に向けた排水性を向上するうえで好ましい。直線成分の数(角度の数)が増加すると、円弧に近づくため、直線成分の数(角度の数)は、2以上4以下であることが、排水性を向上するうえで好ましい。
In addition, as shown in FIG. 4, the width direction narrow groove 6 is bent along each linear component α1, β1 having two angles α, β with respect to the tire circumferential direction. The angles α and β of the linear components α1 and β1 are preferably 30 [°] or more with respect to the tire circumferential direction in order to improve drainage. In order to further improve drainage performance, the continuous linear components α1 and β1 are 30 ° or more and 90 ° or less so that the angles α and β are oriented in the same direction with respect to the tire circumferential direction. preferable. The continuous linear components α1 and β1 preferably have an angle difference between the angles α and β of 10 [°] or more and 40 [°] or less in order to further improve drainage. The continuous linear components α1 and β1 indicate that the relation between the angle α on the outer side in the tire width direction and the angle β on the inner side in the tire width direction is β <α. It is preferable for improving the drainage performance. When the number of linear components (number of angles) increases, it approaches a circular arc. Therefore, the number of linear components (number of angles) is preferably 2 or more and 4 or less in order to improve drainage.
また、本実施形態の空気入りタイヤ1では、図4に示すように、幅方向細溝6は、周方向主溝3に連通する一端側の溝幅W1と、側方リブ状陸部41で終端する他端側の溝幅W2とが、W2<W1の関係を満たし、かつ一端側と他端側との間で溝幅を漸次変化して形成されることが好ましい。
Further, in the pneumatic tire 1 of the present embodiment, as shown in FIG. 4, the widthwise narrow groove 6 is composed of a groove width W1 on one end side communicating with the circumferential main groove 3 and a side rib-shaped land portion 41. It is preferable that the groove width W2 on the other end side that terminates satisfies the relationship of W2 <W1, and the groove width is gradually changed between the one end side and the other end side.
この空気入りタイヤ1によれば、周方向主溝3に連通する一端側の溝幅W1が側方リブ状陸部41で終端する他端側の溝幅W2よりも大きく、かつ一端側と他端側との間で溝幅を漸次変化して形成されるため、側方リブ状陸部41から周方向主溝3側への排水性を向上することが可能になる。
According to this pneumatic tire 1, the groove width W <b> 1 at one end communicating with the circumferential main groove 3 is larger than the groove width W <b> 2 at the other end terminating at the side rib-shaped land portion 41, and one end side and the other. Since the groove width is gradually changed from the end side, drainage performance from the side rib-shaped land portion 41 to the circumferential main groove 3 side can be improved.
なお、側方リブ状陸部41で終端する他端側の溝幅W2は、主溝に連通する一端側の溝幅W1に対する比W2/W1が0.7以上0.9以下であることが排水性を向上するうえで好ましい。また、周方向主溝3に連通する幅方向細溝6の一端側の溝幅W1は、トレッド面2aにおいて、幅方向細溝6の延在方向に両開口縁に沿う各仮想線が、幅方向細溝6が連通する周方向主溝3の開口縁に沿う仮想線に交差する交点間の最短距離である。幅方向細溝6が周方向主溝3に連通する部分に面取部10が形成されている場合は面取部10を無視する。一方、側方リブ状陸部41で終端する幅方向細溝6の他端側の溝幅W2は、トレッド面2aにおいて、幅方向細溝6の延在方向に両開口縁に沿う各仮想線が、幅方向細溝6から離れる部分間の最短距離である。幅方向細溝6の他端が円弧で終端する場合は円弧の変曲点間の最短距離となる。
The groove width W2 at the other end that terminates at the side rib-shaped land portion 41 has a ratio W2 / W1 with respect to the groove width W1 at one end communicating with the main groove of 0.7 to 0.9. It is preferable for improving drainage. Further, the groove width W1 on one end side of the width-direction narrow groove 6 communicating with the circumferential main groove 3 is the width of each virtual line along both opening edges in the extending direction of the width-direction narrow groove 6 on the tread surface 2a. This is the shortest distance between the intersections intersecting the imaginary line along the opening edge of the circumferential main groove 3 with which the directional fine groove 6 communicates. When the chamfered portion 10 is formed in a portion where the width direction narrow groove 6 communicates with the circumferential main groove 3, the chamfered portion 10 is ignored. On the other hand, the groove width W2 on the other end side of the widthwise narrow groove 6 that terminates in the side rib-shaped land portion 41 is an imaginary line along both opening edges in the extending direction of the widthwise narrow groove 6 on the tread surface 2a. Is the shortest distance between the portions away from the narrow groove 6 in the width direction. When the other end of the width direction narrow groove 6 terminates with an arc, it is the shortest distance between the inflection points of the arc.
また、本実施形態の空気入りタイヤ1は、図3に示すように、周方向細溝5および幅方向細溝6の最大溝深さD2,D3を、周方向主溝3の溝深さD1に対して10[%]以上40[%]以下の範囲とすることが好ましい。
In addition, as shown in FIG. 3, the pneumatic tire 1 of the present embodiment has the maximum groove depths D <b> 2 and D <b> 3 of the circumferential narrow grooves 5 and the width narrow grooves 6, and the groove depth D <b> 1 of the circumferential main grooves 3. In contrast, it is preferable to be in the range of 10% to 40%.
この空気入りタイヤ1によれば、周方向細溝5および幅方向細溝6の最大溝深さD2,D3が周方向主溝3の溝深さD1に対して10[%]以上であれば、排水性をより発揮してWET性能の向上効果を顕著に得ることが可能になる。また、周方向細溝5および幅方向細溝6の最大溝深さD2,D3が周方向主溝3の溝深さD1に対して40[%]以下であれば、側方リブ状陸部41の剛性低下をより抑えて耐偏摩耗性能の向上効果を顕著に得ることが可能になる。この結果、耐偏摩耗性能の向上効果およびWET性能の向上効果を顕著に得ることが可能になる。なお、耐偏摩耗性能の向上効果およびWET性能の向上効果を顕著に得るため、周方向細溝5および幅方向細溝6の最大溝深さD2,D3を、周方向主溝3の溝深さD1に対して20[%]以上30[%]以下の範囲とすることがより好ましい。
According to this pneumatic tire 1, if the maximum groove depths D <b> 2 and D <b> 3 of the circumferential narrow groove 5 and the widthwise narrow groove 6 are 10% or more with respect to the groove depth D <b> 1 of the circumferential main groove 3. In addition, the drainage performance can be further exerted, and the improvement effect of the WET performance can be remarkably obtained. If the maximum groove depths D2 and D3 of the circumferential narrow groove 5 and the widthwise narrow groove 6 are 40% or less with respect to the groove depth D1 of the circumferential main groove 3, the lateral rib-shaped land portion is formed. Thus, it is possible to remarkably obtain the effect of improving uneven wear resistance by further suppressing the rigidity reduction of 41. As a result, the effect of improving the uneven wear resistance and the effect of improving the WET performance can be remarkably obtained. Note that the maximum groove depths D2 and D3 of the circumferential narrow grooves 5 and the widthwise narrow grooves 6 are set to be the groove depths of the circumferential main grooves 3 in order to obtain the effect of improving uneven wear resistance and the WET performance. More preferably, it is in the range of 20% to 30% with respect to the thickness D1.
また、本実施形態の空気入りタイヤ1では、図1または図2に示すように、センター主溝31は、その溝幅がタイヤ赤道面CLから接地端Tまでのタイヤ幅方向寸法Lの3[%]以上15[%]以下の範囲とされ、センター主溝31に対して側方リブ状陸部41を間において隣接して設けられる各周方向主溝3は、タイヤ赤道面CLからの位置がタイヤ赤道面CLから接地端Tまでのタイヤ幅方向寸法Lの50[%]以上60[%]以下の範囲とされることが好ましい。
Further, in the pneumatic tire 1 of the present embodiment, as shown in FIG. 1 or FIG. 2, the center main groove 31 has a groove width 3 [L] in the tire width direction dimension L from the tire equatorial plane CL to the ground contact end T. %] And 15 [%] or less, and each circumferential main groove 3 provided adjacent to the center main groove 31 with the lateral rib-shaped land portion 41 in between is a position from the tire equatorial plane CL. Is preferably in the range of 50 [%] or more and 60 [%] or less of the tire width direction dimension L from the tire equatorial plane CL to the ground contact edge T.
なお、タイヤ赤道面CLから離隔して設けられる各周方向主溝3は、タイヤ赤道面CLからの位置とは、当該周方向主溝3の溝幅の中央の位置とする。
Each circumferential main groove 3 provided apart from the tire equatorial plane CL is positioned at the center of the groove width of the circumferential main groove 3 with respect to the position from the tire equatorial plane CL.
ここで、接地端Tとは、接地領域(空気入りタイヤ1を正規リムにリム組みし、かつ正規内圧を充填するとともに正規荷重の70%をかけたとき、この空気入りタイヤ1のトレッド部2のトレッド面2aが路面と接地する領域)のタイヤ幅方向の両最外端をいい、図1および図2では、接地端Tをタイヤ周方向に連続して示している。また、接地端Tのタイヤ幅方向の間隔が接地幅TWとして設定され、対称トレッドパターンである本実施形態の空気入りタイヤ1において、タイヤ赤道面CLから接地端Tまでのタイヤ幅方向寸法Lは、接地幅TWの1/2に相当する。
Here, the contact end T is the contact area (when the pneumatic tire 1 is assembled to a regular rim and filled with a regular internal pressure and 70% of the regular load is applied, the tread portion 2 of the pneumatic tire 1 is applied. These are the outermost ends in the tire width direction of a region where the tread surface 2a is in contact with the road surface). In FIGS. 1 and 2, the contact end T is shown continuously in the tire circumferential direction. Moreover, in the pneumatic tire 1 of the present embodiment in which the interval in the tire width direction of the ground contact edge T is set as the ground contact width TW and has a symmetrical tread pattern, the tire width direction dimension L from the tire equatorial plane CL to the ground contact edge T is This corresponds to 1/2 of the grounding width TW.
なお、正規リムとは、JATMAで規定する「標準リム」、TRAで規定する「Design Rim」、あるいは、ETRTOで規定する「Measuring Rim」である。また、正規内圧とは、JATMAで規定する「最高空気圧」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「INFLATION PRESSURES」である。また、正規荷重とは、JATMAで規定する「最大負荷能力」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「LOAD CAPACITY」である。
The regular rim is a “standard rim” defined by JATMA, a “Design Rim” defined by TRA, or a “Measuring Rim” defined by ETRTO. The normal internal pressure is “maximum air pressure” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO. The normal load is “maximum load capacity” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “LOAD CAPACITY” defined by ETRTO.
ハイドロブレーニング現象は、トレッド面2aのタイヤ幅方向中央側を起点として発生する傾向にある。そのため、この空気入りタイヤ1によれば、タイヤ幅方向中央側に配置されるセンター主溝31の溝幅を規定し、かつセンター主溝31のタイヤ幅方向外側に隣接する周方向主溝3の位置をタイヤ幅方向中央側に配置することで、タイヤ幅方向中央側での排水性が向上するため、WET性能のさらなる向上を図ることが可能になる。
The hydrobrunning phenomenon tends to occur starting from the center side of the tread surface 2a in the tire width direction. Therefore, according to the pneumatic tire 1, the groove width of the center main groove 31 disposed on the center side in the tire width direction is defined, and the circumferential main groove 3 adjacent to the outer side of the center main groove 31 in the tire width direction is defined. By disposing the position on the center side in the tire width direction, drainage performance on the center side in the tire width direction is improved, so that it is possible to further improve the WET performance.
また、本実施形態の空気入りタイヤ1は、タイヤ幅方向最外側のリブ状陸部4は、周方向主溝3の溝深さD1に対して10[%]以上の細溝やサイプを配置しないことが好ましい。
Further, in the pneumatic tire 1 according to the present embodiment, the outermost rib-like land portion 4 in the tire width direction has 10% or more narrow grooves and sipes with respect to the groove depth D1 of the circumferential main groove 3. Preferably not.
この空気入りタイヤ1によれば、タイヤ幅方向最外側のリブ状陸部4に、周方向主溝3の溝深さD1に対して10[%]以上の細溝やサイプを配置しないことで、耐偏摩耗性能の向上効果をより顕著に得ることが可能になる。なお、本実施形態の空気入りタイヤ1は、図4に示すように、周方向主溝3に一端が連通し、他端がリブ状陸部4で終端するとともにトレッド面2aに開口するトレッド面サイプ10を有している。
According to the pneumatic tire 1, the rib-like land portion 4 on the outermost side in the tire width direction is not provided with a narrow groove or sipe of 10% or more with respect to the groove depth D1 of the circumferential main groove 3. Further, the effect of improving the uneven wear resistance can be obtained more remarkably. As shown in FIG. 4, the pneumatic tire 1 of the present embodiment has a tread surface that has one end communicating with the circumferential main groove 3 and the other end terminating in the rib-like land portion 4 and opening in the tread surface 2 a. It has a sipe 10.
また、本実施形態の空気入りタイヤ1は、トレッド部2をなすコンパウンドの20[℃]でのJIS硬度が60以上75以下の範囲であることが好ましい。
Further, in the pneumatic tire 1 of the present embodiment, it is preferable that the compound forming the tread portion 2 has a JIS hardness at 20 [° C.] of 60 or more and 75 or less.
この空気入りタイヤ1によれば、トレッド部2をなすコンパウンドの20[℃]でのJIS硬度を60以上とすることで、適度な硬さにより耐偏摩耗性能の向上効果およびWET性能の向上効果を顕著に得ることが可能になる。トレッド部2をなすコンパウンドの20[℃]でのJIS硬度が75においては、一般的な空気入りタイヤに用いる最大値である。なお、耐偏摩耗性能の向上効果およびWET性能の向上効果をより顕著に得るため、トレッド部2をなすコンパウンドの20[℃]でのJIS硬度を65以上70以下の範囲とすることが好ましい。
According to this pneumatic tire 1, by making the JIS hardness at 20 [° C.] of the compound forming the tread portion 2 60 or more, the effect of improving the uneven wear resistance and the effect of improving the WET performance with an appropriate hardness. Can be obtained remarkably. When the JIS hardness at 20 [° C.] of the compound forming the tread portion 2 is 75, this is the maximum value used for a general pneumatic tire. In addition, in order to obtain the effect of improving uneven wear resistance and the effect of improving WET performance more remarkably, it is preferable to set the JIS hardness at 20 [° C.] of the compound forming the tread portion 2 in the range of 65 to 70.
また、本実施形態の空気入りタイヤ1は、規定内圧が600[kPa]以下の小型トラック用空気入りタイヤに適用されることが好ましい。
Further, the pneumatic tire 1 of the present embodiment is preferably applied to a pneumatic tire for a small truck having a specified internal pressure of 600 [kPa] or less.
小型トラック用空気入りタイヤは、主に地場走行で使用されるため、中低速走行でストップアンドゴーが多く繰り返され、優れた耐偏摩耗性能とグリップ力(WET性能)が要求される。本実施形態の空気入りタイヤ1によれば、主に地場走行で使用される小型トラック用空気入りタイヤとして、優れた耐偏摩耗性能とグリップ力の要求を満たすことが可能になる。
Since pneumatic tires for light trucks are mainly used for local driving, they often stop and go repeatedly at medium to low speeds and require excellent uneven wear resistance and grip power (WET performance). According to the pneumatic tire 1 of the present embodiment, it is possible to satisfy the requirements of excellent uneven wear resistance and gripping force as a small truck pneumatic tire mainly used in local travel.
図5~図8は、本実施例に係る空気入りタイヤの性能試験の結果を示す図表である。本実施例では、条件が異なる複数種類の空気入りタイヤについて、耐偏摩耗性能およびWET性能(WET制動性能)に関する性能試験が行われた。
5 to 8 are charts showing the results of the performance test of the pneumatic tire according to this example. In this example, performance tests on uneven wear resistance and WET performance (WET braking performance) were performed on multiple types of pneumatic tires with different conditions.
この性能試験では、タイヤサイズ205/85R16 117/115L LTRリブタイヤの空気入りタイヤを、正規リムに組み付け、正規内圧を充填し、試験車両(3[t]積み小型トラック)に装着した。
In this performance test, a pneumatic tire of tire size 205 / 85R16 117 / 115L LTR rib tire was assembled to a regular rim, filled with regular internal pressure, and mounted on a test vehicle (3 [t] small truck).
耐偏摩耗性能の評価方法は、上記試験車両にて平均速度60[km/h]で5万[km]走行後におけるリブ状陸部に発生した偏摩耗(側方リブ状陸部と他のリブ状陸部とのトレッド面の摩耗量の差)が測定される。そして、この測定結果に基づいて従来例を基準(100)とした指数評価が行われる。この評価は、その数値が大きいほど耐偏摩耗性能が優れていることを示している。
The evaluation method of uneven wear resistance performance is the uneven wear that occurred in the rib-like land portion after traveling 50,000 [km] at an average speed of 60 [km / h] on the test vehicle (side rib-like land portion and other The difference in the amount of wear on the tread surface from the rib-like land is measured. Then, based on this measurement result, index evaluation using the conventional example as a reference (100) is performed. This evaluation indicates that the larger the value, the better the uneven wear resistance performance.
WET性能の評価方法は、上記試験車両にて水深10±1[mm]の湿潤路面のテストコースで、初速度60[km/h]からの制動距離が測定される。そして、この測定結果に基づいて従来例を基準(100)とした指数評価が行われる。この評価は、その数値が大きいほどWET性能が優れていることを示している。
The WET performance is evaluated by measuring the braking distance from an initial speed of 60 [km / h] on a test course on a wet road surface with a water depth of 10 ± 1 [mm] using the test vehicle. Then, based on this measurement result, index evaluation using the conventional example as a reference (100) is performed. This evaluation shows that the larger the value, the better the WET performance.
図5および図6は、トレッド部に4本の周方向主溝を配置して5本のリブ状陸部を区画した空気入りタイヤである。つまり、周方向主溝がタイヤ赤道面上にない。従来例1の空気入りタイヤは、タイヤ赤道面のタイヤ幅方向両側の各周方向主溝(センター主溝)のタイヤ幅方向両側に隣接するリブ状陸部(側方リブ状陸部)について、そのタイヤ幅方向両側の周方向主溝に各端が連通し、周方向主溝よりも溝深さが浅く形成された複数の幅方向細溝を配置して側方リブ状陸部をブロック形状としている。また、比較例1の空気入りタイヤは、タイヤ赤道面のタイヤ幅方向両側の各周方向主溝(センター主溝)のタイヤ幅方向両側に隣接するリブ状陸部(側方リブ状陸部)について、タイヤ周方向に延在し、周方向主溝よりも溝深さが浅く形成された周方向細溝を配置して側方リブ状陸部を2本のリブ形状としている。また、比較例2の空気入りタイヤは、比較例1の空気入りタイヤに対し、側方リブ状陸部に、タイヤ幅方向両側の周方向主溝に連通し、周方向主溝よりも溝深さが浅く形成された複数の幅方向細溝を配置して側方リブ状陸部をブロック形状としている。この従来例1、比較例1、比較例2の空気入りタイヤは、他のリブ状陸部に細溝を形成していない。
FIG. 5 and FIG. 6 show a pneumatic tire in which four circumferential main grooves are arranged in the tread portion and the five rib-like land portions are partitioned. That is, the circumferential main groove is not on the tire equatorial plane. The pneumatic tire of Conventional Example 1 has a rib-like land portion (side rib-shaped land portion) adjacent to both sides in the tire width direction of each circumferential main groove (center main groove) on both sides in the tire width direction of the tire equatorial plane. Each end communicates with the circumferential main grooves on both sides of the tire width direction, and a plurality of narrow grooves in the width direction formed with a shallower depth than the circumferential main grooves are arranged to block the side rib-shaped land portions It is said. Moreover, the pneumatic tire of Comparative Example 1 is a rib-like land portion (side rib-shaped land portion) adjacent to both sides in the tire width direction of each circumferential main groove (center main groove) on both sides in the tire width direction of the tire equatorial plane. The circumferential ribs extending in the tire circumferential direction and having a groove depth shallower than the circumferential main groove are arranged so that the side rib-shaped land portion has two rib shapes. Further, the pneumatic tire of Comparative Example 2 is connected to the circumferential ribs on both sides in the tire width direction in the side rib-shaped land portion, and the groove depth is larger than the circumferential main groove with respect to the pneumatic tire of Comparative Example 1. A plurality of narrow grooves formed in the width direction are arranged to form a side rib-like land portion in a block shape. In the pneumatic tires of Conventional Example 1, Comparative Example 1, and Comparative Example 2, narrow grooves are not formed in other rib-like land portions.
一方、図5および図6に示すように、実施例1~実施例26の空気入りタイヤは、タイヤ赤道面のタイヤ幅方向両側の各周方向主溝(センター主溝)のタイヤ幅方向両側に隣接するリブ状陸部(側方リブ状陸部)について、側方リブ状陸部のタイヤ幅方向の一側から当該側方リブ状陸部のタイヤ幅方向寸法の40[%]以上60[%]以下の範囲に、タイヤ周方向に沿って延在し、周方向主溝よりも溝深さが浅く形成された周方向細溝と、一端が側方リブ状陸部のタイヤ幅方向外側に隣接する周方向主溝に連通して終端し他端が周方向細溝に貫通して側方リブ状陸部内で終端しつつタイヤ周方向に交差して延在し、周方向主溝よりも溝深さが浅く形成され、タイヤ周方向に複数配置された幅方向細溝と、周方向細溝の溝底に当該周方向細溝の延在方向に沿って形成された周方向溝底サイプと、を含み、周方向細溝を境にした側方リブ状陸部のタイヤ幅方向内側をリブ形状とし、周方向細溝を境にした側方リブ状陸部のタイヤ幅方向外側をブロック形状としている。この実施例1~実施例26の空気入りタイヤは、他のリブ状陸部に細溝を形成していない。実施例5~実施例26の空気入りタイヤは、幅方向細溝の溝底に溝底サイプが形成されている。実施例9~実施例26の空気入りタイヤは、幅方向細溝の他端にトレッド面サイプが形成されている。実施例7、実施例8、実施例11~実施例26の空気入りタイヤは、細溝の交差部で幅方向溝底サイプおよび周方向溝底サイプが配置されていない。実施例13~実施例26の空気入りタイヤは、幅方向溝底サイプをトレッド面サイプと連通している。実施例4、実施例6、実施例10、実施例8、実施例12、実施例14~実施例26の空気入りタイヤは、サイプの溝深さが規定の範囲である。実施例19~実施例26の空気入りタイヤは、幅方向細溝を直線成分に沿って屈曲形成している。実施例20~実施例26の空気入りタイヤは、幅方向細溝の両端の溝幅の関係を規定している。実施例21~実施例26の空気入りタイヤは、細溝の溝深さが規定の範囲である。実施例26の空気入りタイヤは、センター主溝の溝幅および隣接する周方向主溝の位置の規定を満足している。
On the other hand, as shown in FIGS. 5 and 6, the pneumatic tires of Examples 1 to 26 are provided on both sides in the tire width direction of each circumferential main groove (center main groove) on both sides of the tire equatorial plane in the tire width direction. For adjacent rib-shaped land portions (side rib-shaped land portions), from one side in the tire width direction of the side rib-shaped land portions to 40 [%] or more and 60 [%] of the tire width direction dimension of the side rib-shaped land portions. %] A circumferential narrow groove extending along the tire circumferential direction and having a groove depth shallower than the circumferential main groove in the following range, and one end of the lateral rib-shaped land portion on the outer side in the tire width direction. The other end penetrates the circumferential narrow groove and terminates in the lateral rib-shaped land portion and extends across the tire circumferential direction, and extends from the circumferential main groove. Are also formed with a narrow groove depth and a plurality of narrow grooves in the circumferential direction of the tire, and the circumferential narrow grooves at the bottom of the circumferential narrow grooves. A circumferential groove bottom sipe formed along the extending direction, and a rib-shaped inner side in the tire width direction of the side rib-shaped land portion with the circumferential narrow groove as a boundary, with the circumferential narrow groove as a boundary. The outer side in the tire width direction of the side rib-shaped land portion thus formed is made into a block shape. In the pneumatic tires of Examples 1 to 26, no narrow grooves are formed in other rib-like land portions. In the pneumatic tires of Examples 5 to 26, a groove bottom sipe is formed at the groove bottom of the widthwise narrow groove. In the pneumatic tires of Examples 9 to 26, a tread surface sipe is formed at the other end of the narrow groove in the width direction. In the pneumatic tires of Examples 7, 8, and 11 to 26, the width direction groove bottom sipe and the circumferential direction groove bottom sipe are not arranged at the intersections of the narrow grooves. In the pneumatic tires of Examples 13 to 26, the width direction groove bottom sipe communicates with the tread surface sipe. In the pneumatic tires of Example 4, Example 6, Example 10, Example 8, Example 12, Example 14 to Example 26, the sipe groove depth is within a specified range. In the pneumatic tires of Examples 19 to 26, the narrow grooves in the width direction are bent along the linear component. In the pneumatic tires of Examples 20 to 26, the relationship between the groove widths at both ends of the narrow groove in the width direction is defined. In the pneumatic tires of Examples 21 to 26, the groove depth of the narrow grooves is within a specified range. In the pneumatic tire of Example 26, the groove width of the center main groove and the position of the adjacent circumferential main groove are satisfied.
図7および図8は、トレッド部に4本の周方向主溝を配置して5本のリブ状陸部を区画した空気入りタイヤである。つまり、周方向主溝がタイヤ赤道面上にない。従来例2の空気入りタイヤは、タイヤ赤道面のタイヤ幅方向両側の各周方向主溝(センター主溝)のタイヤ幅方向両側に隣接するリブ状陸部(側方リブ状陸部)について、そのタイヤ幅方向両側の周方向主溝に各端が連通し、周方向主溝よりも溝深さが浅く形成された複数の幅方向細溝を配置して側方リブ状陸部をブロック形状としている。また、比較例3の空気入りタイヤは、タイヤ赤道面のタイヤ幅方向両側の各周方向主溝(センター主溝)のタイヤ幅方向両側に隣接するリブ状陸部(側方リブ状陸部)について、タイヤ周方向に延在し、周方向主溝よりも溝深さが浅く形成された周方向細溝を配置して側方リブ状陸部を2本のリブ形状としている。また、比較例4の空気入りタイヤは、比較例3の空気入りタイヤに対し、側方リブ状陸部に、タイヤ幅方向両側の周方向主溝に連通し、周方向主溝よりも溝深さが浅く形成された複数の幅方向細溝を配置して側方リブ状陸部をブロック形状としている。この従来例2、比較例3、比較例4の空気入りタイヤは、他のリブ状陸部に細溝を形成していない。
FIG. 7 and FIG. 8 show a pneumatic tire in which four circumferential main grooves are arranged in a tread portion to partition five rib-like land portions. That is, the circumferential main groove is not on the tire equatorial plane. The pneumatic tire of Conventional Example 2 is a rib-like land portion (side rib-shaped land portion) adjacent to both sides in the tire width direction of each circumferential main groove (center main groove) on both sides in the tire width direction of the tire equatorial plane. Each end communicates with the circumferential main grooves on both sides of the tire width direction, and a plurality of narrow grooves in the width direction formed with a shallower depth than the circumferential main grooves are arranged to block the side rib-shaped land portions It is said. Moreover, the pneumatic tire of Comparative Example 3 is a rib-like land portion (side rib-shaped land portion) adjacent to both sides in the tire width direction of each circumferential main groove (center main groove) on both sides in the tire width direction of the tire equatorial plane. The circumferential ribs extending in the tire circumferential direction and having a groove depth shallower than the circumferential main groove are arranged so that the side rib-shaped land portion has two rib shapes. Further, the pneumatic tire of Comparative Example 4 is connected to the circumferential ribs on both sides in the tire width direction on the side rib-shaped land portion, and the groove depth of the pneumatic tire of Comparative Example 4 is larger than that of the circumferential main groove. A plurality of narrow grooves formed in the width direction are arranged to form a side rib-like land portion in a block shape. In the pneumatic tires of Conventional Example 2, Comparative Example 3, and Comparative Example 4, no narrow grooves are formed in other rib-like land portions.
一方、図7および図8に示すように、実施例27~実施例52の空気入りタイヤは、タイヤ赤道面のタイヤ幅方向両側の各周方向主溝(センター主溝)のタイヤ幅方向両側に隣接するリブ状陸部(側方リブ状陸部)について、側方リブ状陸部のタイヤ幅方向の一側から当該側方リブ状陸部のタイヤ幅方向寸法の40[%]以上60[%]以下の範囲に、タイヤ周方向に沿って延在し、周方向主溝よりも溝深さが浅く形成された周方向細溝と、一端が側方リブ状陸部のタイヤ幅方向外側に隣接する周方向主溝に連通して終端し他端が周方向細溝に貫通して側方リブ状陸部内で終端しつつタイヤ周方向に交差して延在し、周方向主溝よりも溝深さが浅く形成され、タイヤ周方向に複数配置された幅方向細溝と、周方向細溝の溝底に当該周方向細溝の延在方向に沿って形成された周方向溝底サイプと、を含み、周方向細溝を境にした側方リブ状陸部のタイヤ幅方向内側をリブ形状とし、周方向細溝を境にした側方リブ状陸部のタイヤ幅方向外側をブロック形状としている。この実施例27~実施例52の空気入りタイヤは、他のリブ状陸部に細溝を形成していない。実施例31~実施例52の空気入りタイヤは、幅方向細溝の溝底に溝底サイプが形成されている。実施例35~実施例52の空気入りタイヤは、幅方向細溝の他端にトレッド面サイプが形成されている。実施例33、実施例34、実施例37~実施例52の空気入りタイヤは、細溝の交差部で幅方向溝底サイプおよび周方向溝底サイプが配置されていない。実施例39~実施例52の空気入りタイヤは、幅方向溝底サイプをトレッド面サイプと連通している。実施例30、実施例32、実施例34、実施例36、実施例38、実施例40~実施例52の空気入りタイヤは、サイプの溝深さが規定の範囲である。実施例45~実施例52の空気入りタイヤは、幅方向細溝を直線成分に沿って屈曲形成している。実施例46~実施例52の空気入りタイヤは、幅方向細溝の両端の溝幅の関係を規定している。実施例47~実施例52の空気入りタイヤは、細溝の溝深さが規定の範囲である。実施例52の空気入りタイヤは、センター主溝の溝幅および隣接する周方向主溝の位置の規定を満足している。
On the other hand, as shown in FIGS. 7 and 8, the pneumatic tires of Examples 27 to 52 are provided on both sides in the tire width direction of the circumferential main grooves (center main grooves) on both sides of the tire equatorial plane in the tire width direction. For adjacent rib-shaped land portions (side rib-shaped land portions), from one side in the tire width direction of the side rib-shaped land portions to 40 [%] or more and 60 [%] of the tire width direction dimension of the side rib-shaped land portions. %] A circumferential narrow groove extending along the tire circumferential direction and having a groove depth shallower than the circumferential main groove in the following range, and one end of the lateral rib-shaped land portion on the outer side in the tire width direction. The other end penetrates the circumferential narrow groove and terminates in the lateral rib-shaped land portion and extends across the tire circumferential direction, and extends from the circumferential main groove. Are formed with a shallow groove depth, and a plurality of widthwise narrow grooves arranged in the tire circumferential direction and the circumferentially narrow grooves at the groove bottoms of the circumferentially narrow grooves. A circumferential groove bottom sipe formed along the extending direction of the tire, and a rib-shaped inner side in the tire width direction of the side rib-shaped land portion with the circumferential narrow groove as a boundary, and the circumferential narrow groove as a boundary. The outer side in the tire width direction of the lateral rib-shaped land portion made into a block shape. In the pneumatic tires of Examples 27 to 52, no narrow grooves are formed in the other rib-like land portions. In the pneumatic tires of Examples 31 to 52, a groove bottom sipe is formed at the groove bottom of the narrow groove in the width direction. In the pneumatic tires of Examples 35 to 52, a tread surface sipe is formed at the other end of the widthwise narrow groove. In the pneumatic tires of Example 33, Example 34, and Examples 37 to 52, the width direction groove bottom sipe and the circumferential groove bottom sipe are not arranged at the intersections of the narrow grooves. In the pneumatic tires of Examples 39 to 52, the width direction groove bottom sipe communicates with the tread surface sipe. In the pneumatic tires of Example 30, Example 32, Example 34, Example 36, Example 38, and Examples 40 to 52, the sipe groove depth is within a specified range. In the pneumatic tires of Examples 45 to 52, the narrow grooves in the width direction are bent along the linear component. In the pneumatic tires of Examples 46 to 52, the relationship between the groove widths at both ends of the narrow groove in the width direction is defined. In the pneumatic tires of Examples 47 to 52, the groove depth of the narrow grooves is within a specified range. In the pneumatic tire of Example 52, the groove width of the center main groove and the position of the adjacent circumferential main groove are satisfied.
図5~図8の試験結果に示すように、実施例1~実施例52の空気入りタイヤは、耐偏摩耗性およびWET性能が改善されていることが分かる。
As shown in the test results of FIGS. 5 to 8, it can be seen that the pneumatic tires of Examples 1 to 52 have improved uneven wear resistance and WET performance.
1 空気入りタイヤ
2 トレッド部
2a トレッド面
3 周方向主溝
31 センター主溝
4 リブ状陸部
41 側方リブ状陸部
5 周方向細溝
6 幅方向細溝
7 周方向溝底サイプ
8 幅方向溝底サイプ
9 トレッド面サイプ
T 接地端 DESCRIPTION OFSYMBOLS 1 Pneumatic tire 2 Tread part 2a Tread surface 3 Circumferential main groove 31 Center main groove 4 Rib-like land part 41 Side rib-like land part 5 Circumferential narrow groove 6 Width-direction narrow groove 7 Circumferential groove bottom sipe 8 Width direction Groove bottom sipe 9 Tread surface sipe T Grounding end
2 トレッド部
2a トレッド面
3 周方向主溝
31 センター主溝
4 リブ状陸部
41 側方リブ状陸部
5 周方向細溝
6 幅方向細溝
7 周方向溝底サイプ
8 幅方向溝底サイプ
9 トレッド面サイプ
T 接地端 DESCRIPTION OF
Claims (13)
- トレッド部のトレッド面に、タイヤ周方向に沿って延在する少なくとも3本の周方向主溝により、タイヤ周方向に延在する少なくとも4本のリブ状陸部が形成された空気入りタイヤにおいて、
前記周方向主溝が奇数であるときは中央の前記周方向主溝をセンター主溝とし、前記周方向主溝が偶数であるときは中央側の2本の各前記周方向主溝を合わせてセンター主溝とし、前記センター主溝のタイヤ幅方向両外側に隣接するリブ状陸部を側方リブ状陸部とした場合、
前記側方リブ状陸部のタイヤ幅方向の一側から当該側方リブ状陸部のタイヤ幅方向寸法の40[%]以上60[%]以下の範囲に、タイヤ周方向に沿って延在し、前記周方向主溝よりも溝深さが浅く形成された周方向細溝と、
前記側方リブ状陸部に設けられて一端が前記側方リブ状陸部のタイヤ幅方向外側に隣接する周方向主溝に連通して終端し他端が前記周方向細溝に貫通して前記側方リブ状陸部内で終端しつつタイヤ周方向に交差して延在し、前記周方向主溝よりも溝深さが浅く形成され、タイヤ周方向に複数配置された幅方向細溝と、
前記周方向細溝の溝底に当該周方向細溝の延在方向に沿って形成された周方向溝底サイプと、
を含み、前記周方向細溝を境にした前記側方リブ状陸部のタイヤ幅方向内側をリブ形状とし、前記周方向細溝を境にした前記側方リブ状陸部のタイヤ幅方向外側をブロック形状とすることを特徴とする空気入りタイヤ。 In the pneumatic tire in which at least four rib-like land portions extending in the tire circumferential direction are formed on the tread surface of the tread portion by at least three circumferential main grooves extending in the tire circumferential direction.
When the circumferential main groove is an odd number, the central circumferential main groove is a center main groove, and when the circumferential main groove is an even number, the two circumferential main grooves on the center side are combined. When the center main groove and the rib-shaped land portion adjacent to both outer sides in the tire width direction of the center main groove is a side rib-shaped land portion,
Extending along the tire circumferential direction from one side of the lateral rib-shaped land portion in the tire width direction to a range of 40% to 60% of the tire width direction dimension of the lateral rib-shaped land portion. And a circumferential narrow groove formed with a groove depth shallower than the circumferential main groove,
One end is provided in the lateral rib-shaped land portion and ends in communication with the circumferential main groove adjacent to the outer side in the tire width direction of the lateral rib-shaped land portion, and the other end penetrates the circumferential narrow groove. A widthwise narrow groove that extends across the tire circumferential direction while terminating in the side rib-shaped land portion, has a groove depth shallower than the circumferential main groove, and is arranged in the tire circumferential direction. ,
A circumferential groove bottom sipe formed on the groove bottom of the circumferential narrow groove along the extending direction of the circumferential narrow groove;
A rib-shaped inner side in the tire width direction of the lateral rib-shaped land portion with the circumferential narrow groove as a boundary, and an outer side in the tire width direction of the lateral rib-shaped land portion with the circumferential narrow groove as a boundary A pneumatic tire characterized by having a block shape. - 前記幅方向細溝の溝底で当該幅方向細溝の延在方向に沿って形成された幅方向溝底サイプをさらに含むことを特徴とする請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, further comprising a width-direction groove bottom sipe formed at a groove bottom of the width-direction narrow groove along an extending direction of the width-direction narrow groove.
- 前記幅方向細溝の他端から前記センター主溝側に延在し、前記側方リブ状陸部内で終端するトレッド面サイプをさらに含むことを特徴とする請求項1または2に記載の空気入りタイヤ。 3. The pneumatic system according to claim 1, further comprising a tread surface sipe extending from the other end of the width direction narrow groove toward the center main groove side and terminating in the side rib-shaped land portion. tire.
- 前記幅方向溝底サイプは、前記幅方向細溝が前記周方向細溝に貫通する交差部を除いて形成されることを特徴とする請求項2または3に記載の空気入りタイヤ。 The pneumatic tire according to claim 2 or 3, wherein the width direction groove bottom sipe is formed except for an intersection where the width direction narrow groove penetrates the circumferential direction narrow groove.
- 前記幅方向溝底サイプは、前記トレッド面サイプと連通して形成されることを特徴とする請求項2~4の何れか1つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 2 to 4, wherein the width direction groove bottom sipe is formed so as to communicate with the tread surface sipe.
- 前記サイプは、前記トレッド面からの最大溝深さを、前記周方向主溝の溝深さに対して60[%]以上90[%]以下の範囲とすることを特徴とする請求項1~5の何れか1つに記載の空気入りタイヤ。 The sipe has a maximum groove depth from the tread surface in a range of 60% to 90% with respect to a groove depth of the circumferential main groove. The pneumatic tire according to any one of 5.
- 前記幅方向細溝は、タイヤ周方向に対して少なくとも2つの角度をもつ各直線成分に沿って屈曲形成されることを特徴とする請求項1~6の何れか1つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 6, wherein the narrow groove in the width direction is bent along each linear component having at least two angles with respect to the tire circumferential direction. .
- 前記幅方向細溝は、前記周方向主溝に連通する一端側の溝幅W1と、前記側方リブ状陸部で終端する他端側の溝幅W2とが、W2<W1の関係を満たし、かつ一端側と他端側との間で溝幅を漸次変化して形成されることを特徴とする請求項1~7の何れか1つに記載の空気入りタイヤ。 In the width direction narrow groove, the groove width W1 on one end side communicating with the circumferential main groove and the groove width W2 on the other end side terminating on the side rib-shaped land portion satisfy the relationship of W2 <W1. The pneumatic tire according to any one of claims 1 to 7, wherein a groove width is gradually changed between one end side and the other end side.
- 前記周方向細溝および前記幅方向細溝は、その最大溝深さを、前記周方向主溝の溝深さに対して10[%]以上40[%]以下の範囲とすることを特徴とする請求項1~8の何れか1つに記載の空気入りタイヤ。 The circumferential narrow groove and the width narrow groove have a maximum groove depth in the range of 10% to 40% with respect to the groove depth of the circumferential main groove. The pneumatic tire according to any one of claims 1 to 8.
- 前記センター主溝は、その溝幅がタイヤ赤道面から接地端までのタイヤ幅方向寸法の3[%]以上15[%]以下の範囲とされ、前記センター主溝に対して前記側方リブ状陸部を間において設けられる各前記周方向主溝は、タイヤ赤道面からの位置がタイヤ赤道面から接地端までのタイヤ幅方向寸法の50[%]以上60[%]以下の範囲とされることを特徴とする請求項1~9の何れか1つに記載の空気入りタイヤ。 The center main groove has a groove width in a range of 3 [%] to 15 [%] of the tire width direction dimension from the tire equatorial plane to the ground contact edge, and the side main rib is shaped like the side rib. Each of the circumferential main grooves provided between the land portions has a position from the tire equatorial plane in the range of 50% to 60% of the tire width direction dimension from the tire equatorial plane to the ground contact edge. The pneumatic tire according to any one of claims 1 to 9, wherein:
- タイヤ幅方向最外側のリブ状陸部は、前記周方向主溝の溝深さに対して10[%]以上の細溝やサイプを配置しないことを特徴とする請求項1~10の何れか1つに記載の空気入りタイヤ。 11. The outermost rib-like land portion in the tire width direction does not have a narrow groove or sipe of 10% or more with respect to the groove depth of the circumferential main groove. The pneumatic tire according to one.
- 前記トレッド部をなすコンパウンドの20[℃]でのJIS硬度が60以上75以下の範囲であることを特徴とする請求項1~11の何れか1つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 11, wherein the compound constituting the tread portion has a JIS hardness at 20 [° C] of 60 or more and 75 or less.
- 規定内圧が600[kPa]以下の小型トラック用空気入りタイヤに適用されることを特徴とする請求項1~12の何れか1つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 12, which is applied to a pneumatic tire for a small truck having a specified internal pressure of 600 [kPa] or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380029217.9A CN104364090B (en) | 2012-09-06 | 2013-08-21 | Pneumatic tire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-196532 | 2012-09-06 | ||
JP2012196532A JP5803859B2 (en) | 2012-09-06 | 2012-09-06 | Pneumatic tire |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014038377A1 true WO2014038377A1 (en) | 2014-03-13 |
Family
ID=50236991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072324 WO2014038377A1 (en) | 2012-09-06 | 2013-08-21 | Pneumatic tire |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5803859B2 (en) |
CN (1) | CN104364090B (en) |
WO (1) | WO2014038377A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3130483A1 (en) * | 2014-05-29 | 2017-02-15 | Bridgestone Corporation | Pneumatic tire |
US10358001B2 (en) * | 2015-06-19 | 2019-07-23 | Toyo Tire Corporation | Pneumatic tire |
CN112384378A (en) * | 2018-07-13 | 2021-02-19 | 横滨橡胶株式会社 | Pneumatic tire |
US11407255B2 (en) | 2016-04-26 | 2022-08-09 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
CN115103778A (en) * | 2020-03-04 | 2022-09-23 | 横滨橡胶株式会社 | Tyre for vehicle wheels |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6126571B2 (en) * | 2014-12-09 | 2017-05-10 | 住友ゴム工業株式会社 | Pneumatic tire |
JP6534300B2 (en) * | 2015-06-16 | 2019-06-26 | 株式会社ブリヂストン | tire |
CN107685600B (en) * | 2016-08-03 | 2020-09-08 | 横滨橡胶株式会社 | Pneumatic tire |
JP6992573B2 (en) * | 2018-02-14 | 2022-01-13 | 横浜ゴム株式会社 | Pneumatic tires |
JP7123734B2 (en) * | 2018-10-22 | 2022-08-23 | Toyo Tire株式会社 | pneumatic tire |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1128911A (en) * | 1997-07-11 | 1999-02-02 | Toyo Tire & Rubber Co Ltd | Radial tire |
JP2011240876A (en) * | 2010-05-20 | 2011-12-01 | Bridgestone Corp | Pneumatic tire |
JP2012091736A (en) * | 2010-10-28 | 2012-05-17 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
WO2012098895A1 (en) * | 2011-01-19 | 2012-07-26 | 株式会社ブリヂストン | Pneumatic tire |
JP2012153157A (en) * | 2011-01-21 | 2012-08-16 | Bridgestone Corp | Pneumatic tire |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5314343B2 (en) * | 2008-07-15 | 2013-10-16 | 株式会社ブリヂストン | Pneumatic tire |
JP4539774B2 (en) * | 2008-11-20 | 2010-09-08 | 横浜ゴム株式会社 | Heavy duty pneumatic tire |
-
2012
- 2012-09-06 JP JP2012196532A patent/JP5803859B2/en active Active
-
2013
- 2013-08-21 CN CN201380029217.9A patent/CN104364090B/en not_active Expired - Fee Related
- 2013-08-21 WO PCT/JP2013/072324 patent/WO2014038377A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1128911A (en) * | 1997-07-11 | 1999-02-02 | Toyo Tire & Rubber Co Ltd | Radial tire |
JP2011240876A (en) * | 2010-05-20 | 2011-12-01 | Bridgestone Corp | Pneumatic tire |
JP2012091736A (en) * | 2010-10-28 | 2012-05-17 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
WO2012098895A1 (en) * | 2011-01-19 | 2012-07-26 | 株式会社ブリヂストン | Pneumatic tire |
JP2012153157A (en) * | 2011-01-21 | 2012-08-16 | Bridgestone Corp | Pneumatic tire |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3130483A1 (en) * | 2014-05-29 | 2017-02-15 | Bridgestone Corporation | Pneumatic tire |
EP3130483A4 (en) * | 2014-05-29 | 2017-05-10 | Bridgestone Corporation | Pneumatic tire |
US10195904B2 (en) | 2014-05-29 | 2019-02-05 | Bridgestone Corporation | Pneumatic tire |
US10358001B2 (en) * | 2015-06-19 | 2019-07-23 | Toyo Tire Corporation | Pneumatic tire |
US11407255B2 (en) | 2016-04-26 | 2022-08-09 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
CN112384378A (en) * | 2018-07-13 | 2021-02-19 | 横滨橡胶株式会社 | Pneumatic tire |
CN112384378B (en) * | 2018-07-13 | 2022-04-19 | 横滨橡胶株式会社 | Pneumatic tire |
CN115103778A (en) * | 2020-03-04 | 2022-09-23 | 横滨橡胶株式会社 | Tyre for vehicle wheels |
CN115103778B (en) * | 2020-03-04 | 2023-03-21 | 横滨橡胶株式会社 | Tyre for vehicle wheels |
Also Published As
Publication number | Publication date |
---|---|
JP2014051178A (en) | 2014-03-20 |
CN104364090A (en) | 2015-02-18 |
CN104364090B (en) | 2017-02-22 |
JP5803859B2 (en) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5803859B2 (en) | Pneumatic tire | |
JP5895778B2 (en) | Pneumatic tire | |
JP6607041B2 (en) | Pneumatic tire | |
WO2015079858A1 (en) | Pneumatic tire | |
JP6055521B1 (en) | Pneumatic tire | |
JP5590267B1 (en) | Pneumatic tire | |
JP2017105361A (en) | Pneumatic tire | |
JP6382647B2 (en) | Pneumatic tire | |
JP5140146B2 (en) | Pneumatic tire | |
JP2014097697A (en) | Pneumatic tire | |
JP2017170939A (en) | Pneumatic tire | |
JP6558297B2 (en) | Pneumatic tire | |
WO2017187734A1 (en) | Pneumatic tire | |
JP2009143450A (en) | Pneumatic tire | |
WO2016035660A1 (en) | Pneumatic tire | |
JP6097261B2 (en) | Pneumatic tire | |
JP6358970B2 (en) | Pneumatic tire | |
JP6686439B2 (en) | Pneumatic tire | |
JP2018122707A (en) | tire | |
JP6844377B2 (en) | tire | |
WO2016017543A1 (en) | Pneumatic tire | |
JP2010247549A (en) | Pneumatic tire | |
JP2018134992A (en) | Pneumatic tire | |
WO2016143477A1 (en) | Pneumatic tire | |
JP7400429B2 (en) | tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13836004 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13836004 Country of ref document: EP Kind code of ref document: A1 |