WO2014034746A1 - Process for producing glass substrate for magnetic disc - Google Patents
Process for producing glass substrate for magnetic disc Download PDFInfo
- Publication number
- WO2014034746A1 WO2014034746A1 PCT/JP2013/073061 JP2013073061W WO2014034746A1 WO 2014034746 A1 WO2014034746 A1 WO 2014034746A1 JP 2013073061 W JP2013073061 W JP 2013073061W WO 2014034746 A1 WO2014034746 A1 WO 2014034746A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zirconia
- polishing
- glass substrate
- abrasive grains
- base plate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
Definitions
- the present invention relates to a method for producing a glass substrate for a magnetic disk.
- a personal computer or a DVD (Digital Versatile Disc) recording device has a built-in hard disk device (HDD: Hard Disk Drive) for data recording.
- HDD Hard Disk Drive
- a hard disk device used in a portable computer such as a notebook personal computer
- a magnetic disk in which a magnetic layer is provided on a glass substrate is used, and the magnetic head slightly floats above the surface of the magnetic disk.
- magnetic recording information is recorded on or read from the magnetic layer.
- a glass substrate is preferably used because it has a property that it is less likely to be plastically deformed than a metal substrate (aluminum substrate) or the like.
- the density of magnetic recording has been increased.
- the magnetic recording information area (recording bit) is miniaturized by using a perpendicular magnetic recording method in which the magnetization direction in the magnetic layer is perpendicular to the surface of the substrate.
- the storage capacity of one disk substrate can be increased.
- the distance from the magnetic recording layer is extremely shortened by further protruding the recording / reproducing element portion of the magnetic head, thereby further improving the accuracy of information recording / reproducing (S / N). To improve the ratio).
- Such control of the recording / reproducing element portion of the magnetic head is called a DFH (Dynamic Flying Height) control mechanism, and a magnetic head equipped with this control mechanism is called a DFH head.
- DFH Dynamic Flying Height
- a magnetic head equipped with this control mechanism is called a DFH head.
- the surface irregularity of the substrate is extremely small in order to avoid collision and contact with the magnetic head and the recording / reproducing element portion protruding further therefrom. It is made to be smaller.
- the main surface of the plate-like glass material that has become flat after press molding is ground on the main surface, and the grinding process remains on the main surface.
- a main surface polishing step is included for the purpose of removing scratches and distortions.
- a method of using it as abrasive grains containing zirconium dioxide (zirconia) is known.
- Patent Document 1 discloses a method of polishing a glass substrate for a magnetic disk using a polishing liquid obtained by adding calcium aluminate, magnesium sulfate, magnesium chloride or the like to zirconia abrasive grains.
- Patent Documents 2 to 4 disclose polishing liquid compositions containing composite oxide particles containing cerium and zirconia.
- a glide head equipped with a piezoelectric element or the like is caused to fly with a predetermined flying height with respect to the main surface of the magnetic disk, and whether or not there is a collision between the glide head and a projection such as a foreign object on the main surface of the magnetic disk.
- the detection is performed by a piezoelectric element or the like.
- an object of the present invention is to provide a method for manufacturing a glass substrate for a magnetic disk that makes it difficult for foreign matter to remain on the glass substrate when the main surface is polished with a polishing liquid containing an abrasive containing zirconia. To do.
- the inventors of the present application have conducted intensive studies in order to investigate the cause of the decrease in yield due to the above glide inspection.
- the main surface of the glass substrate has zirconia particles adhering to the main surface during the formation of the magnetic layer, even after the main surface is sufficiently cleaned and the particles are removed after polishing with a mirror finish.
- minute convex portions are formed on the surface of the magnetic disk. And this minute convex part causes troubles, such as a head crash trouble and a thermal asperity trouble.
- the zirconia particles adhering to the main surface of the glass substrate are also derived from zirconia abrasive grains used for polishing or a part thereof, which are attached to the outer peripheral surface and inner peripheral surface of the glass substrate. It was.
- cleaning method which removes effectively the zirconia particle adhering to the glass substrate is not established.
- the inventors of the present application consider the reason why zirconia particles may adhere to the main surface when the magnetic layer is formed even if the main surface is sufficiently washed and particles are removed. Yes. That is, even if zirconia particles remain on the glass base plate by main surface polishing with zirconia abrasive grains, the zirconia particles remaining on the main surface are removed by final polishing on the main surface thereafter, but on the side wall surface of the glass base plate. Residual or adhered zirconia particles are not removed by subsequent cleaning of the glass base plate.
- the zirconia particles adhere to the side wall surface of the glass base plate by the glass base plate contacting the carrier during polishing. Conceivable. And in the process after the main surface grinding
- zirconia particles are detached from the side wall surface when the outer side wall surface is gripped in the film forming process on the magnetic disk glass substrate, or from the outer side wall surface in the magnetic disk glass substrate cleaning process. It is also possible that the particles are detached.
- the inventors of the present application have the reason that the zirconia particles remain or adhere to the side wall surface of the glass base plate in the step of polishing the main surface of the glass base plate, because the adhesion area between the zirconia particle surface and the glass surface is large, and the zirconia particles and It is assumed that a high pressure is applied between the glass surface and the zirconia particles are fixed to the glass surface due to some mechanism acting between the zirconia and the glass surface. Although this mechanism is not clear, the inventors of the present invention have a part of the surface of the zirconia particles cleaned by cleaning the main surface by constituting a part of the surface of the zirconia particles with a substance other than zirconia.
- zirconia particles can be made difficult to remain or adhere to the side wall surface of the glass base plate by promoting cleaning and removal of zirconia abrasive grains. The invention has been completed.
- the present invention provides a polishing step for polishing at least a part of the surface of a glass substrate using a polishing liquid containing abrasive grains mainly composed of zirconia as an abrasive, and a cleaning step for cleaning the glass substrate after the polishing step.
- a method of manufacturing a glass substrate for a magnetic disk comprising: A part of the surface of the abrasive grains mainly composed of zirconia is formed with a non-zirconia substance that is a substance other than zirconia, In the cleaning step, the polished surface of the glass substrate is brought into contact with a cleaning liquid in which the non-zirconia substance is soluble.
- “Abrasive grains mainly composed of zirconia” means that the amount of zirconia is the largest among a plurality of substances contained in the abrasive grains.
- the crystallite diameter of a substance other than zirconia is preferably 10 nm or more.
- the main surface of the glass substrate may be polished so that the arithmetic average roughness (Ra) on the main surface of the glass substrate after polishing is 1.5 nm or less.
- the end surface of the glass substrate may be polished so that the arithmetic average roughness (Ra) at the end surface of the glass substrate after polishing is 50 nm or less.
- the non-zirconia substance may be at least one selected from the group consisting of cerium oxide, iron oxide, titanium oxide, zinc oxide, alumina, copper oxide, and manganese oxide.
- the non-zirconia substance is preferably cerium oxide, and the cleaning liquid preferably contains fluorine ions.
- the non-zirconia substance is preferably iron oxide, and the cleaning liquid preferably contains an acid containing carboxylic acid and a divalent ion of iron.
- polishing apparatus double-side polish apparatus used at a 1st grinding
- polishing process The figure which shows the structure of the abrasive grain of embodiment typically.
- Aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used as the material for the magnetic disk glass substrate in the present embodiment.
- aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced. More preferably, it is an amorphous aluminosilicate glass.
- the composition of the glass substrate for a magnetic disk of this embodiment is not limited, the glass substrate of this embodiment is preferably converted to an oxide standard and expressed in mol%, SiO 2 is 50 to 75%, Al 2 to O 3 to 1 to 15%, at least one component selected from Li 2 O, Na 2 O and K 2 O in total 5 to 35%, selected from MgO, CaO, SrO, BaO and ZnO 0-20% in total of at least one component, and at least one selected from ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 An amorphous aluminosilicate glass having a composition having a total of 0 to 10% of components.
- the glass substrate for magnetic disk in this embodiment is an annular thin glass substrate.
- the size of the glass substrate for magnetic disks is not ask
- the surface of the glass substrate for a magnetic disk in the present embodiment includes a pair of main surfaces, a side wall surface orthogonal to the pair of main surfaces, and a chamfered surface interposed between the main surface and the side wall surface.
- the side wall surface and the chamfered surface are collectively referred to as an end surface.
- the “polishing step” of the present invention corresponds to both or either one of the first polishing (main surface polishing) step and the end surface polishing step.
- a glass gob made of molten glass is supplied onto a lower mold that is a receiving gob forming mold, and an upper mold that is a lower mold and an opposing gob forming mold is used.
- Glass gob is press molded. More specifically, after a glass gob made of molten glass is supplied onto the lower mold, the lower surface of the upper mold cylinder and the upper surface of the lower mold cylinder are brought into contact with each other, and the upper mold and the upper mold mold are slid. Form a thin glass blank forming space outside the moving surface and the sliding surface of the lower mold and the lower mold body, and lower the upper mold to perform press molding. To rise.
- the glass base plate used as the origin of the glass substrate for magnetic discs is shape
- a glass base plate can be manufactured using not only the method mentioned above but well-known manufacturing methods, such as a downdraw method, a redraw method, and a fusion method.
- lapping processing using loose abrasive grains is performed on both main surfaces of the glass base plate cut into a predetermined shape, if necessary.
- the lapping platen is pressed on both sides of the glass base plate from above and below, a grinding liquid (slurry) containing free abrasive grains is supplied onto the main surface of the glass base plate, and these are moved relatively.
- a grinding liquid (slurry) containing free abrasive grains is supplied onto the main surface of the glass base plate, and these are moved relatively. Perform lapping.
- a glass base plate is shape
- a chamfering step of forming a chamfered portion at the end (outer peripheral end and inner peripheral end) is performed.
- the chamfered portion is formed by chamfering the outer peripheral end portion and the inner peripheral end portion of the annular glass base plate with, for example, a grindstone using diamond abrasive grains.
- end face polishing (edge polishing) of an annular glass base plate is performed.
- the inner peripheral side wall surface (end surface) and the outer peripheral side wall surface (end surface) of the glass base plate are mirror-finished by brush polishing.
- a slurry containing fine particles such as cerium oxide as free abrasive grains is used.
- the end face polishing step is performed before the first polishing step. It is preferable to carry out. For example, it is preferable to perform end face polishing so that the arithmetic average roughness Ra of the end face of the glass base plate after the end face polishing step is 50 nm or less. “The arithmetic average roughness Ra of the end face of the glass base plate is 50 nm or less” means that the arithmetic average roughness Ra of at least one of the side wall surface and the chamfered surface is 50 nm or less.
- the arithmetic average roughness Ra is preferably 50 nm or less, more preferably 10 nm or less.
- polishing may be performed using a polishing liquid containing abrasive grains in a first polishing step described later, and cleaning may be performed using a cleaning liquid in a first polishing step described later after the polishing.
- the machining allowance by grinding is, for example, about several ⁇ m to 100 ⁇ m.
- the double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular glass base plate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving both the upper surface plate and the lower surface plate, or both of them, the main surface of the glass base plate is ground by relatively moving the glass base plate and each surface plate. be able to.
- polishing (main surface grinding
- polishing is given to the main surface of the ground glass base plate.
- the machining allowance by the first polishing is, for example, about 1 ⁇ m to 50 ⁇ m.
- the purpose of the first polishing is to remove scratches, distortion, waviness, and fine waviness remaining on the main surface by grinding with fixed abrasive grains.
- FIG. 1 is an exploded perspective view of a polishing apparatus (double-side polishing apparatus) used in the first polishing step.
- FIG. 2 is a cross-sectional view of a polishing apparatus (double-side polishing apparatus) used in the first polishing process. Note that the same configuration as this polishing apparatus can be applied to a grinding apparatus used in the above-described grinding process.
- the polishing apparatus has a pair of upper and lower surface plates, that is, an upper surface plate 40 and a lower surface plate 50.
- An annular glass base plate G is sandwiched between the upper surface plate 40 and the lower surface plate 50, and either one or both of the upper surface plate 40 and the lower surface plate 50 are moved to operate the glass base plate G. By moving the surface plates relative to each other, both main surfaces of the glass base plate G can be polished.
- an annular flat polishing pad 10 is attached to the upper surface of the lower platen 50 and the bottom surface of the upper platen 40 as a whole.
- the carrier 30 has a tooth portion 31 that is provided on the outer peripheral portion and meshes with the sun gear 61 and the internal gear 62, and one or a plurality of hole portions 31 for accommodating and holding the glass base plate G.
- the sun gear 61, the internal gear 62 provided on the outer edge, and the disk-shaped carrier 30 constitute a planetary gear mechanism centered on the central axis CTR as a whole.
- the disc-shaped carrier 30 meshes with the sun gear 61 on the inner peripheral side and meshes with the internal gear 62 on the outer peripheral side, and accommodates and holds one or more glass base plates G (workpieces).
- the carrier 30 revolves while rotating as a planetary gear, and the glass base plate G and the lower surface plate 50 are relatively moved.
- the sun gear 61 rotates in the CCW (counterclockwise) direction
- the carrier 30 rotates in the CW (clockwise) direction
- the internal gear 62 rotates in the CCW direction.
- relative movement occurs between the polishing pad 10 and the glass base plate G.
- the glass base plate G and the upper surface plate 40 may be relatively moved.
- the upper surface plate 40 is pressed against the glass base plate G (that is, in the vertical direction) with a predetermined load, and the polishing pad 10 is pressed against the glass base plate G.
- a polishing liquid (slurry) is supplied between the glass base plate G and the polishing pad 10 from the polishing liquid supply tank 71 via one or a plurality of pipes 72 by a pump (not shown).
- the main surface of the glass base plate G is polished by the abrasive contained in the polishing liquid.
- the load of the upper surface plate 40 applied to the glass base plate G is adjusted for the purpose of setting a desired polishing load on the glass base plate G.
- Load, 50 g / cm 2 or more is preferred from the viewpoint of high polishing rate achieved, more preferably 70 g / cm 2 or more, 90 g / cm 2 or more is more preferable.
- the polishing load is preferably 180 g / cm 2 or less, more preferably 160 g / cm 2 or less, and even more preferably 140 g / cm 2 or less. That is, the load is preferably 50 g / cm 2 to 180 g / cm 2, more preferably 70 g / cm 2 to 160 g / cm 2, and still more preferably 90 g / cm 2 to 140 g / cm 2 .
- the supply rate of the polishing liquid during polishing processing varies depending on the polishing pad 10, the composition and concentration of the polishing liquid, and the size of the glass base plate G, but is preferably 500 to 5000 ml / min, more preferably from the viewpoint of improving the polishing rate. Is 1000 to 4500 ml / min, more preferably 1500 to 4000 ml / min.
- the number of rotations of the polishing pad 10 is preferably 10 to 50 rpm, more preferably 20 to 40 rpm, and even more preferably 25 to 35 rpm from the viewpoint of improving the polishing rate and reducing scratches.
- polishing abrasive grains (polishing abrasive grains mainly composed of zirconia (ZrO 2 ))
- a part of the surface of zirconia particles is composed of a substance other than zirconia (hereinafter referred to as “non-zirconia substance”).
- zirconia particles can be made difficult to remain or adhere to the side wall surface of the glass base plate G.
- the zirconia particles may be produced by either a dry method or a wet method.
- the polishing liquid is alkaline. More specifically, the pH is preferably 9 or more.
- the polishing liquid used in the polishing apparatus of FIG. 1 includes polishing abrasive grains mainly composed of zirconia as a polishing agent, and the surface of the polishing abrasive grains. Some are composed of non-zirconia materials. “Abrasive grains mainly composed of zirconia” means that the amount of zirconia is the largest among a plurality of substances contained in the abrasive grains. An example of the structure of such abrasive grains will be described with reference to FIG. E1 in FIG. 3 is an example of a structure in which fine particles of a non-zirconia substance are attached to the surface of zirconia particles.
- E2 in FIG. 3 and E3 in FIG. 3 are examples of structures in which zirconia particles and a non-zirconia substance are compounded in units of abrasive grains.
- Each of the hatched areas indicated as “non-zirconia substance” in E2 of FIG. 3 and E3 of FIG. 3 represents a crystallite.
- a plurality of crystallites collected at E3 in FIG. 3 are primary particles. Note that when the polishing abrasive grains (zirconia-non-zirconia material composite particles) of the present embodiment are expressed as Zr x A 1-x O2 (A: element name of non-zirconia material) using a molar ratio, x is 0.
- the content of the non-zirconia substance in the abrasive grains is preferably 2 mol% or more, more preferably 8 mol% or more, and more preferably 10 mol% or more. More preferably it is.
- the content of the non-zirconia substance in the abrasive grains is preferably 50% mol or less, more preferably 30 mol% or less, and 25 mol% or less. More preferably it is.
- the size of the abrasive grains of this embodiment is preferably 0.3 to 2.0 ⁇ m in terms of average particle diameter (D50). If D50 is smaller than 0.3 ⁇ m, the polishing rate may decrease and productivity may deteriorate. On the other hand, if it is larger than 2.0 ⁇ m, the scratch may increase.
- the average particle size (D50) was measured by a light scattering method using a particle size / particle size distribution measuring device. D50 is a particle size in which when the powder volume is accumulated from the side of smaller particle diameter in the powder group, the accumulated volume is 50% of the total volume of the powder group.
- the crystallite diameter (described later) of the zirconia and non-zirconia substances in the abrasive grains of this embodiment is preferably 10 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more.
- the amount of non-zirconia substance dissolved or the area of contact between the abrasive grains and the glass surface can be increased during cleaning after polishing, so the contact area on the glass surface is reduced. This makes it easier to remove the abrasive grains.
- the crystallite diameter becomes too large scratches are likely to occur during polishing, and therefore it is preferably 60 nm or less.
- the crystallite diameter of the zirconia part and the non-zirconia substance part in the abrasive grains is 10 nm or more.
- the polishing rate can be further increased.
- Zirconia particles are added to an aqueous solution containing ions of a non-zirconia substance, and a hydroxide of the non-zirconia substance is adhered to the surface of the zirconia particles while boiling at reflux.
- the zirconia particles used here may be commercially available or self-made.
- pH adjustment or an additive may be added to change the precipitation curve.
- the zirconia particle-non-zirconia substance sol obtained by reflux boiling is subjected to decantation and the like several times to remove unnecessary ions, solid-liquid separated, dried and fired to obtain E1 in FIG.
- the sol of zirconia particles-non-zirconia substance may be replaced with a water-soluble organic substance such as acetone or alcohol before drying.
- the firing condition may be any firing condition in which the hydroxide of the non-zirconia substance can be chemically changed to an oxide. It is still better if it is in a dissolved form.
- an aqueous solution containing zirconium ions and non-zirconia substance ions (aqueous solution condition 1)
- an aqueous solution containing zirconium hydroxide and non-zirconia substance ions (aqueous solution condition 2)
- zirconium hydroxide and non-zirconia substances (aqueous solution condition 2)
- a hydroxide sol of the zirconium hydroxide-non-zirconia substance is obtained by reflux boiling as in the case of E1 in FIG.
- the resulting sol is decanted, dried and fired to obtain composite particles having the structure shown in E2 of FIG. 3 and E3 of FIG.
- pH adjustment, acetone or alcohol may be substituted.
- pH adjustment or an additive may be added to change the precipitation curve.
- a small amount of zirconium ions may be added in order to promote the bonding between the zirconium hydroxide and the hydroxide of the non-zirconia substance.
- a small amount of zirconium ions and non-zirconia substance ions may be added.
- Zirconium ions may be obtained by dissolving a zirconium-containing chloride, sulfate, nitrate or the like in an aqueous solution.
- chlorides, sulfates, nitrates, etc. containing non-zirconia substances may be dissolved in an aqueous solution.
- the particles of zirconia-non-zirconia substance obtained by firing need to have a particle size distribution in an appropriate range when used as an abrasive.
- Commercially available ball mills, hammer mills, bead mills, etc. can be used for crushing and grinding, and commercially available classifiers can also be used for classification.
- Wet classifiers such as dry classifiers and liquid cyclones using sieves and air currents. May be used. Since the particle size distribution and coarse particle factors greatly affect the polishing characteristics, it is desirable to perform the crushing / pulverizing step and the classification step in multiple stages.
- Non-zirconia substance and cleaning liquid The non-zirconia substance constituting a part of the surface of the abrasive grains and the cleaning liquid used after polishing in the first polishing step are the following requirements (a) to (d): It is preferably selected so as to satisfy the characteristics.
- Non-zirconia substance can be dissolved with a cleaning liquid
- the abrasive grains of this embodiment are made of non-zirconia substance on a part of the surface of zirconia in order to reduce the adhesion area between zirconia and the glass surface during polishing. Although formed, this non-zirconia substance dissolves in the cleaning liquid, so that the non-zirconia substance attached to the glass surface of the glass base plate G can be removed from the glass surface relatively easily.
- the cleaning liquid does not significantly etch the glass base plate G.
- the surface of the glass base plate G is greatly etched by immersing the glass base plate G in the cleaning liquid, the surface of the glass base plate G This is not preferable because it deteriorates properties (waviness, roughness, and latent scratches).
- Non-zirconia substances are low in harm to the human body, have a low environmental impact, and are suitable for mass production. Non-zirconia substances that cause pollution diseases and substances that are harmful to the human body In addition, it is not preferable to use a substance which causes a problem in the waste liquid treatment of the polishing liquid.
- the non-zirconia material does not deteriorate the polishing characteristics with respect to the glass base plate G.
- the non-zirconia material directly contacts the surface (main surface and side wall surface) of the glass base plate G during main surface polishing. If the polishing characteristics of the non-zirconia substance itself contained in the polishing abrasive grains of this embodiment (for example, the polishing rate and the presence or absence of scratches after polishing) are poor, the polishing characteristics as polishing abrasive grains Cannot be made good.
- Non-zirconia material cerium oxide (CeO 2 )
- Cleaning liquid Cleaning liquid containing fluorine ions (hereinafter referred to as “cleaning liquid A”)
- cleaning liquid A As an example of the cleaning liquid A, for example, the cleaning liquid described in Japanese Patent No. 4041110 can be used.
- Non-zirconia substances Iron oxides such as ferric oxide (Fe 2 O 3 ) and triiron tetroxide (Fe 3 O 4 )
- Washing liquid Cleaning liquid containing acid containing carboxylic acid and divalent ions of iron (hereinafter, (Referred to as “cleaning liquid B”)
- cleaning liquid B As an example of the cleaning liquid B, for example, a cleaning liquid described in International Publication WO2011 / 125894 can be used.
- Cerium oxide (cerium dioxide) is a material conventionally known as an abrasive capable of achieving both a high polishing rate and a high quality surface property with respect to a glass substrate.
- Ferric oxide is a material that was used for polishing glass substrates before cerium oxide. It is not as good as cerium oxide, but it is known as an abrasive that can achieve a relatively high polishing rate and high quality surface properties. ing.
- ferric oxide is an abrasive that can achieve a higher polishing rate and higher quality surface properties than alumina. Since it is described in detail in Japanese Patent No.
- the cleaning liquid A is excellent in dissolving performance with respect to rare earth oxides such as cerium oxide.
- the fluorine ion content can be set to 40 ppm or less in the cleaning liquid A, the etching action on the glass surface can be suppressed.
- Fluorine ions can be supplied, for example, by including silicic acid in the cleaning solution.
- the cleaning liquid A further contains an acid.
- the acid can enhance the detergency of rare earth oxides such as cerium oxide while suppressing the etching action.
- sulfuric acid is preferable because of its high cleaning effect.
- the cleaning liquid A further contains a reducing agent.
- the solubility of rare earth oxides such as cerium oxide can be increased by the reducing agent.
- the reducing agent preferably further contains at least one of strong acids such as ascorbic acid and sulfuric acid.
- the cleaning liquid has a fluorine ion of 0.001 to 0.02 [mol / L], sulfuric acid of 0.05 to 1 [mol / L], ascorbic acid of 0.001 to 0.2 [mol / L], Including.
- a cleaning liquid A ′ containing an acid and a reducing agent may be used.
- the acid is preferably a strong acid, particularly one or more of sulfuric acid, hydrochloric acid and nitric acid.
- the sulfuric acid concentration is 20 wt% or more and 80 wt% or less, preferably 50 wt% or more and 80 wt% or less. When the sulfuric acid concentration is lower than 20 wt%, the surface of the substrate is easily etched and roughened. When the sulfuric acid concentration is higher than 80 wt%, the above-mentioned action as an acid cannot be sufficiently obtained.
- the concentration of hydrochloric acid, nitric acid, phosphoric acid and hydrogen bromide is 10 wt% or less, preferably 5 wt% or less.
- concentration of hydrochloric acid, nitric acid, phosphoric acid and hydrogen bromide is higher than 10 wt%, the substrate surface is easily etched.
- acid hydrochloric acid, sulfuric acid, nitric acid and hydrogen bromide are preferable, and sulfuric acid is particularly preferable.
- a reducing agent hydrogen, aqueous hydrogen peroxide, sodium borohydride, hydroxylamine sulfate, hydroxylamine hydrochloride, sodium nitrite, sodium sulfite, sodium hydrogensulfite, sodium hydrogensulfate, sodium sulfide, ammonium sulfide, formic acid, Ascorbic acid, oxalic acid, acetaldehyde, hydrogen iodide, sodium hydrogen phosphate, disodium hydrogen phosphate, sodium phosphite, ferrous sulfate and stannic chloride and chelating agents having a reducing action (eg oxidation of catechols) At least one of the products is preferred.
- a reducing action eg oxidation of catechols
- the concentration of the reducing agent is 1 wt% or more and 10 wt% or less, preferably 3 wt% or more and 10 t% or less.
- concentration of the hydrogen peroxide solution is lower than 1 wt%, the above-described action as a reducing agent cannot be obtained sufficiently. Even if the concentration of the hydrogen peroxide solution is higher than 10 wt%, the action as the reducing agent is not improved so much.
- the concentration of the reducing agent other than the hydrogen peroxide solution is 0.01 wt% or more and 5 wt% or less, preferably 0.1 wt% or more and 5 wt% or less due to the limitation of solubility.
- the concentration of the reducing agent other than the hydrogen peroxide solution is lower than 0.01 wt%, the above-described action as the reducing agent cannot be sufficiently obtained. Even if the concentration of the reducing agent other than the hydrogen peroxide solution is higher than 5 wt%, the action as the reducing agent is not improved so much.
- As the reducing agent ascorbic acid and hydrogen peroxide are preferable, and hydrogen peroxide is particularly preferable.
- the combination of oxidizing agent and reducing agent is typically concentrated sulfuric acid and hydrogen peroxide.
- the temperature of the cleaning liquid is more preferably 50 ° C. or higher and 100 ° C. or lower.
- the solubility of rare earth oxides, such as cerium oxide, can further be improved by setting it as 50 degreeC or more.
- the cleaning liquid B is made of iron oxide such as ferric oxide or triiron tetroxide or hydroxide without roughening the surface of the glass substrate. Iron or the like can be dissolved.
- the acid containing carboxylic acid oxalic acid, malic acid, tartaric acid, fumaric acid, citric acid and the like can be used, and oxalic acid is particularly preferable because of its high reducing power.
- the concentration of the acid containing carboxylic acid is preferably in the range of 0.01 to 0.5 mol / L. If the concentration is lower than this range, the cleaning effect may be insufficient.
- the concentration of iron divalent ions is preferably in the range of 0.0001 to 0.01 mol / L. If the concentration is lower than this range, the cleaning effect may be insufficient. On the other hand, if it is higher than this range, the cost of the cleaning treatment may increase.
- the iron divalent ions can be supplied by adding, for example, ammonium iron sulfate (II), iron sulfate (II), iron oxalate (II) or the like to the cleaning liquid.
- the non-zirconia substance contained in the abrasive grains of this embodiment is not limited to the above-described substances.
- manganese oxides such as titanium dioxide (TiO 2 ), zinc oxide (ZnO), alumina, copper oxide (CuO), manganese dioxide (MnO 2 ), and manganese tetraoxide (Mn 3 O 4 ) may be used.
- titanium dioxide When titanium dioxide is contained, it is preferable to add hydrogen peroxide to the polishing liquid after polishing because a high dissolution effect can be obtained.
- zinc oxide (ZnO), alumina, copper oxide (CuO), and manganese oxide it is preferable to use the above-described cleaning liquid A because a high dissolution effect can be obtained.
- a part of the surface of the zirconia particles that are the main components of the abrasive grains is composed of a non-zirconia substance, and a cleaning liquid in which the non-zirconia substance is easily dissolved is used.
- the zirconia particles can be made difficult to remain or adhere to the side wall surface of the glass base plate G.
- Patent Documents 2 to 4 describe polishing liquid compositions containing composite oxide particles containing cerium and zirconia. With such composite oxide particles, The same effect as abrasive grains cannot be obtained. The reason is as follows.
- the zirconia and non-zirconia substance bonding portion is in a state where the zirconia and non-zirconia substance are in solid solution, and most of the non-zirconia substance remains in a crystalline or amorphous state. Therefore, good detergency can be obtained by dissolving the non-zirconia substance with a cleaning liquid.
- the composite oxide particles described in Patent Documents 2 to 4 since cerium oxide and zirconium oxide are uniformly dissolved to form one solid phase, for example, the composite oxide using the cleaning liquid A described above is used. The particles cannot be dissolved and removed.
- FIG. 4 is a view showing a state in which the glass base plate G is accommodated in the hole 31 of the carrier 30.
- the glass base plate G is accommodated in the carrier 30 of the polishing apparatus, in order to enable the glass base plate G to be detached from the carrier 30, between the carrier 30 and the glass base plate G. Is provided with a slight gap CL in the horizontal direction (that is, the direction parallel to the main surface of the glass base plate G).
- the glass base plate G moves in an unconstrained state in the hole 31 of the carrier 30 in a direction parallel to the main surface while being loaded with a surface plate in the thickness direction.
- the side wall surface Gt of the glass base plate G is brought into contact with the side wall surface 30t forming the hole 31, and the abrasive grains that have entered the gap CL are pressed against the side wall surface Gt of the glass base plate G.
- the zirconia particles which are the main components of the abrasive grains is composed of a non-zirconia substance, even if the abrasive grains are pressed against the side wall surface Gt of the glass base plate G, the zirconia particles Since the contact area with the glass surface is small, the adhesion to the glass surface when pressed is weak, and the abrasive grains can be easily removed from the glass surface by dissolving and removing non-zirconia substances present on the surface of the abrasive grains. It is thought that it can be made to leave.
- the arithmetic average roughness (Ra) of the surface irregularities on the main surface of the glass base plate is set to 0.5 nm or less, and the micro waveness ( Polishing is performed so that (MW-Rq) is 0.5 nm or less.
- the micro waveness can be represented by an RMS (Rq) value calculated as a roughness of a wavelength band of 100 to 500 ⁇ m over the entire main surface, and can be measured using, for example, an optical surface roughness meter.
- the roughness of the main surface is represented by an arithmetic average roughness Ra defined by JIS B0601: 2001, and can be measured by, for example, a scanning probe microscope (atomic force microscope; AFM).
- the arithmetic average roughness Ra when measured at a resolution of 512 ⁇ 512 pixels in a 1 ⁇ m ⁇ 1 ⁇ m square measurement area can be used.
- the arithmetic average roughness Ra may be measured using a stylus type surface roughness measuring machine.
- the glass base plate after the first polishing is chemically strengthened.
- the chemical strengthening liquid for example, a mixed melt of potassium nitrate and sodium sulfate can be used. In this way, by immersing the glass base plate in the chemical strengthening solution, lithium ions and sodium ions on the surface layer of the glass base plate are replaced with sodium ions and potassium ions having a relatively large ion radius in the chemical strengthening solution, respectively.
- the glass base plate is strengthened.
- the glass substrate that has been chemically strengthened and sufficiently cleaned is subjected to final polishing.
- the machining allowance by the final polishing is 5 ⁇ m or less.
- the final polishing aims at mirror polishing of the main surface.
- the polishing apparatus used in the first polishing is used.
- the difference from the first polishing is that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different.
- the free abrasive grains used in the final polishing for example, fine particles (particle size: diameter of about 10 to 50 nm) such as colloidal silica made turbid in the slurry are used.
- a glass substrate for a magnetic disk can be obtained by washing the polished glass base plate with a neutral detergent, pure water, IPA or the like.
- the order of a process is not restricted to the order mentioned above.
- particles such as colloidal silica are supplied between the glass base plate and the hole of the carrier, whereby the side wall surface of the glass base plate is polished and adhered to the side wall surface.
- the zirconia particles that may be removed may be removed.
- a magnetic disk is obtained as follows using a magnetic disk glass substrate.
- the magnetic disk is, for example, on the main surface of a glass substrate for magnetic disk (hereinafter simply referred to as “substrate”), in order from the closest to the main surface, at least an adhesion layer, an underlayer, a magnetic layer (magnetic recording layer), and a protection A layer and a lubricating layer are laminated.
- the substrate is introduced into a film forming apparatus that has been evacuated, and a film is sequentially formed from an adhesion layer to a magnetic layer on the main surface of the substrate in an Ar atmosphere by a DC magnetron sputtering method.
- a CoPt alloy can be used as the adhesion layer
- CrRu can be used as the underlayer.
- a CoPt alloy can be used. It is also possible to form a CoPt-based alloy and FePt based alloy L 10 regular structure and magnetic layer for heat-assisted magnetic recording.
- a magnetic recording medium can be formed by forming a protective layer using, for example, C 2 H 4 by a CVD method and subsequently performing nitriding treatment for introducing nitrogen into the surface. Thereafter, for example, PFPE (perfluoropolyether) is applied on the protective layer by a dip coating method, whereby a lubricating layer can be formed.
- PFPE perfluoropolyether
- a SUL soft magnetic layer
- a seed layer in addition, between the adhesion layer and the magnetic recording layer, a SUL (soft magnetic layer), a seed layer, an intermediate layer, etc., sputtering method (including DC magnetron sputtering method, RF magnetron sputtering method, etc.), vacuum deposition method, etc.
- sputtering method including DC magnetron sputtering method, RF magnetron sputtering method, etc.
- vacuum deposition method etc. You may form using the well-known film-forming method.
- the produced magnetic disk is preferably incorporated in an HDD (Hard Disk Drive) as a magnetic recording / reproducing apparatus together with a magnetic head equipped with a DFH (Dynamic Flying Height) control mechanism.
- HDD Hard Disk Drive
- DFH Dynamic Flying Height
- the glass substrate for magnetic disks which consists of the following glass compositions was produced.
- Glass composition In terms of mass%, SiO 2 is 65.08%, Al 2 O 3 is 15.14%, Li 2 O is 3.61%, Na 2 O is 10.68%, K 2 O is 0.35%, An amorphous aluminosilicate glass having a composition having 0.99% MgO, 2.07% CaO, 1.98% ZrO 2 and 0.10% Fe 2 O 3 , and has a glass transition temperature of 510 ° C. It is.
- Each process of the manufacturing method of the glass substrate for magnetic disks of this embodiment was performed in order.
- a press molding method was used for forming the glass base plate of (1).
- lapping loose abrasive grains were used.
- cerium oxide was used as loose abrasive grains and polished with a polishing brush.
- grinding with the fixed abrasive grains of (5) grinding was performed using a grinding apparatus in which a sheet of diamond abrasive grains hardened with resin bonds was attached to a surface plate.
- polishing main surface polishing
- polishing pad hard urethane pad (JIS-A hardness: 80 to 100), polishing load: 120 g / cm 2 , and platen rotation speed: 30 rpm.
- the polishing liquid and the cleaning liquid will be described later.
- a mixed melt of potassium nitrate salt and sodium nitrate salt or the like was used as the chemical strengthening solution.
- polishing was performed using another polishing apparatus similar to FIGS. 1 and 2.
- a polishing pad made of a soft polisher (suede) (a foamed polyurethane having an Asker C hardness of 75) was used as the polisher, and colloidal silica having an average particle size of 30 ⁇ m was used as abrasive grains.
- the glass substrate after the final polishing was cleaned using a neutral cleaning solution and an alkaline cleaning solution. This obtained the glass substrate for magnetic discs.
- polishing liquid The abrasive grains contain 10% by weight of zirconia abrasive grains prepared by a wet method.
- the primary particle diameter of the zirconia abrasive grains was 110 nm, and the average particle diameter (D50) of the zirconia abrasive grains in the particle size distribution meter was 0.5 ⁇ m.
- the crystallite diameter of zirconia particles having a tetragonal or cubic crystal structure was calculated using the first peak having a vertex in the 2 ⁇ region of 29.6 to 30.3 °.
- the powder X-ray diffraction spectrum was analyzed using ICDD (International Center for Diffraction Data) data.
- Examples 1 to 4 differ from Comparative Example 1 in the polishing liquid used.
- Polishing liquid The abrasive grains contain 10% by weight of zirconia abrasive grains prepared by a wet method. The primary particle diameter of the zirconia abrasive grains was 110 nm, and the average particle diameter (D50) of the zirconia abrasive grains in the particle size distribution meter was 0.5 ⁇ m.
- the abrasive grains are composed mainly of zirconia particles, and a part of the surface of the zirconia particles is composed of cerium oxide. The content of cerium oxide was 15 mol% in all cases.
- the pH of the polishing liquid was adjusted to be 10.
- the abrasive grains of Examples 1 to 4 were produced as follows. In the following description, unless otherwise specified, the concentration of hydrogen peroxide water and ammonia water is 30%. First, 180 g of zirconium chloride octahydrate is dissolved in 500 mL of RO water, and 175 mL of hydrogen peroxide water is added thereto and stirred. Subsequently, 55 mL of aqueous ammonia is added, and this solution is added to a flask equipped with a reflux condenser. For about 40 hours at 94 to 100 ° C. and then concentrated to 150 mL by heating to obtain a sol (S1) containing zirconium hydroxide.
- An aqueous solution prepared by dissolving 10 g of zirconium chloride octahydrate in 50 mL of RO water was prepared and added to 150 mL of sol (S1) containing zirconium hydroxide to obtain 200 mL of sol (S3) containing zirconium hydroxide.
- an aqueous solution in which 25 g of cerium (III) nitrate hexahydrate is dissolved in 50 mL of RO water is prepared and added to 150 mL of sol (S2) containing cerium hydroxide, and 200 mL of sol (S4) containing cerium hydroxide is added. Obtained.
- a sol containing zirconium hydroxide and cerium hydroxide was concentrated to 150 mL by heating to obtain a sol containing zirconium hydroxide and cerium hydroxide.
- an alkaline aqueous solution such as aqueous ammonia or potassium hydroxide was added.
- the pH may be 10-13.
- the precipitate after decantation was replaced with acetone or ethanol, filtered and dried, and calcined at a calcining temperature of 1000 ° C. for about 3 hours.
- the powder obtained here is a composite oxide of zirconia-cerium oxide and corresponds to composite particles having the structure shown in FIG.
- the crystallite diameter of zirconia was 40 nm.
- the crystal structure of cerium oxide was cubic, and the crystallite diameter was 30 nm.
- the heating time when preparing the sol (S1) containing zirconium hydroxide, the heating time when preparing the sol (S2) containing cerium oxide, and the firing temperature it has different crystallite diameters. Zirconia and cerium oxide can be produced.
- the powder obtained after firing was crushed and pulverized in order to make the particle size distribution uniform, and then classified.
- Commercially available ball mills, hammer mills, bead mills, etc. can be used for crushing and grinding, and commercially available classifiers can also be used for classification.
- Wet classifiers such as dry classifiers and liquid cyclones using sieves and air currents. May be used.
- the crystallite diameter of the abrasive grains was calculated in the same manner as in the comparative example. At this time, focusing on the crystal structure of zirconia and cerium oxide constituting the abrasive grains, the crystallite diameter was calculated as follows. Regarding the abrasive grains composed of monoclinic zirconia and cubic cerium oxide, the crystallite diameter of monoclinic zirconia was calculated in the same manner as in the comparative example.
- Cleaning solution The above-mentioned cleaning solution A, sulfuric acid concentration: 0.5 mol / L, ascorbic acid concentration: 0.05 mol / L, and fluorosilicic acid concentration: 0.012 mol / L.
- the etching amount on the glass surface was 20 nm on one side.
- polishing liquid used is different from that in Comparative Example 2.
- the abrasive grains contain 10% by weight of zirconia abrasive grains prepared by a wet method.
- the primary particle diameter of the zirconia abrasive grains was 110 nm, and the average particle diameter (D50) of the zirconia abrasive grains in the particle size distribution meter was 0.5 ⁇ m.
- the abrasive grains are composed mainly of zirconia particles, and part of the surface of the zirconia particles is made of ferric oxide.
- the ferric oxide content was 15 mol% in all cases.
- the pH of the polishing liquid was adjusted to be 10.
- the abrasive grains of Examples 5 to 8 were produced as follows.
- zirconium hydroxide (S3) was obtained by a method similar to the method for producing the abrasive grains of the above-described Examples.
- 45 g of ammonium iron (II) sulfate hexahydrate is dissolved in 500 mL of RO water, 100 mL of hydrogen peroxide solution is added thereto and stirred, and then 40 mL of aqueous ammonia is added, and this solution is placed in a flask equipped with a reflux condenser. And heated at 94-100 ° C. for about 26 hours, and then concentrated to 100 mL by heating to obtain a sol (S5) containing iron hydroxide.
- the content of iron hydroxide in the final abrasive grains can be adjusted by changing the mixing ratio of the sol containing zirconium hydroxide (S3) and the sol containing iron hydroxide (S6). . Thereafter, 60 mL of hydrogen peroxide solution was gradually added, and subsequently 40 mL of ammonia solution was gradually added, and this solution was heated in a range of 94 to 100 degrees for about 30 hours in a flask equipped with a reflux condenser. Thereafter, the mixture was concentrated to 150 mL by heating to obtain a sol containing zirconium hydroxide and iron hydroxide.
- the powder obtained here is a composite oxide of zirconia-iron oxide and corresponds to composite particles having the structure shown in FIG.
- the crystal structure of zirconia was monoclinic, and zirconia having a crystal structure corresponding to tetragonal crystal or cubic crystal was not obtained.
- the crystallite diameter of zirconia was 40 nm.
- the crystal structure of iron oxide was rhombohedral and the crystallite diameter was 20 nm.
- the heating time for producing the sol (S1) containing zirconium hydroxide and the sol (S5) containing iron hydroxide are produced.
- zirconia and iron oxide having different crystallite sizes can be produced.
- the crystallite diameter of the abrasive grains was calculated in the same manner as in the comparative example. At this time, focusing on the crystal structure of zirconia and ferric oxide constituting the abrasive grains, the crystallite diameter was calculated as follows. Regarding the abrasive grains composed of monoclinic zirconia and rhombohedral ferric oxide, the crystallite diameter of monoclinic zirconia was calculated in the same manner as in the comparative example, and rhombohedral oxide second For iron, the value calculated using the first peak having a vertex in the 2 ⁇ region of 33.0 to 33.3 ° was taken as the crystallite diameter.
- ICDD data was used for the analysis of the powder X-ray diffraction spectrum.
- Examples 5 to 8 have different crystallite diameters of ferric oxide (Fe 2 O 3 ).
- the following cleaning solutions were used.
- Cleaning liquid Cleaning liquid B described above, oxalic acid concentration: 0.022 mol / L, malic acid concentration: 0.04 mol / L, ammonium iron (II) sulfate concentration: 0.00078 mol / L, potassium hydroxide
- the pH is adjusted to 2.
- the trivalent iron ion complex produced by oxidation of the divalent iron ion complex contained in the washing solution was reduced by ultraviolet irradiation.
- the evaluation of the cleaning property is based on the following criteria by measuring the number of particles caused by the abrasive grains among the defects marked with 20 optical microscopes on the polished substrate. I went. ⁇ , ⁇ and ⁇ are acceptable. ⁇ (Excellent): 2 or less ⁇ (Good): 3 or 4 ⁇ (Fair): 5 or 6 ⁇ (Poor): 7 or more
- the crystallite size of the non-zirconia substance is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 30 nm or more.
- the polishing rate was good in any of the examples.
- the non-zirconia material is ferric oxide
- the crystallite diameter is 40 nm or more. A slight decrease in the polishing rate was confirmed.
- Table 1 an experiment was performed under the same conditions as in Example 1 except that the crystallite diameter of cerium oxide was set to 5 nm. Also, the polishing rate decreased.
- Table 2 an experiment was performed under the same conditions as in Example 5 except that the crystallite diameter of the iron oxide was changed to 5 nm. Also, the polishing rate decreased. From these experiments, it is understood that the crystallite diameter is preferably 10 nm or more from the viewpoint of the polishing rate.
- Example 4 the experiment was performed under the same conditions as in Example 4 except that the content of cerium oxide in the abrasive grains was 9 mol% (Example 4-1) and 5 mol% (Example 4-2), respectively. As a result, the washability of Example 4-1 was ⁇ , and the washability of Example 4-2 was ⁇ .
- Example 8-1 the content of iron oxide in the abrasive grains was 9 mol% (Example 8-1) and 5 mol% (Example 8-2), respectively. As a result, the washability of Example 8-1 was ⁇ , and the washability of Example 8-2 was ⁇ .
- the increase amount for Example 4 is Example 4-3: 5%, 4-4: 10%, 4-5: 15%, and the increase amount for Example 8 is Example 8-3: 3%, 8-4: 9%, 8-5: 14%. This shows that the number of scratches is reduced by making the polishing liquid alkaline. The number of scratches was measured by scanning the main surface of the glass substrate using a laser type surface defect inspection apparatus and detecting scattered light.
- Example 4 experiments were performed under the conditions of Example 4 and Example 8 except that the crystallite diameter was set to 5, 10, 20, and 60 nm. However, when the crystallite size of the zirconia portion was 5 nm, the polishing rate was slightly reduced.
- an adhesion layer, a SUL, a seed layer, an underlayer, a magnetic layer (magnetic recording layer), a protective layer, a magnetic disk glass substrate manufactured through the first polishing process of Examples 1 to 8 and Comparative Example A magnetic disk was manufactured by laminating a lubricating layer, and a glide test was performed with the flying height of the glide head set to 7 nm.
- the yield inspection pass rate
- the yield was lower than 90%, which was unacceptable.
- the defect position detected by the glide inspection was observed by SEM / EDX, a foreign matter was found.
- Composition analysis of the found foreign matter revealed that it was a foreign matter derived from a zirconia abrasive. That is, it is considered that the zirconia particles used in the polishing step adhered to the glass base plate during the polishing process, and the attached zirconia particles were found as foreign substances without being detached by washing.
- polishing may be performed by a single wafer method in which polishing is performed one by one.
- the polishing and cleaning using the polishing liquid and the cleaning liquid described in the first polishing process of the embodiment may be applied in the end surface polishing process.
- the arithmetic average roughness Ra of the end face of the glass base plate can be set to 50 nm or less, and the detergency can be improved as compared with the case of using an abrasive made only of zirconia particles.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Surface Treatment Of Glass (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Provided is a process for producing a glass substrate for a magnetic disc. According to the process, foreign particles are less susceptible to remaining on a glass substrate in polishing the principal surface of the glass substrate with a polishing fluid that contains a zirconia-containing polishing agent. The process includes a polishing step for polishing at least a part of the surface of a glass substrate with a polishing fluid which contains zirconia-based abrasive grains as a polishing agent, and a cleaning step for cleaning the polished glass substrate, wherein: a non-zirconia substance is formed on a part of the surface of each zirconia-based abrasive grain; and the cleaning step is conducted by bringing the polished surface of the glass substrate into contact with a cleaning fluid in which the non-zirconia substance can be dissolved.
Description
本発明は、磁気ディスク用ガラス基板の製造方法に関する。
The present invention relates to a method for producing a glass substrate for a magnetic disk.
今日、パーソナルコンピュータ、あるいはDVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置(HDD:Hard Disk Drive)が内蔵されている。特に、ノート型パーソナルコンピュータ等の可搬性を前提とした機器に用いられるハードディスク装置では、ガラス基板に磁性層が設けられた磁気ディスクが用いられ、磁気ディスクの面上を僅かに浮上させた磁気ヘッドで磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板として、金属基板(アルミニウム基板)等に比べて塑性変形し難い性質を持つことから、ガラス基板が好適に用いられる。
Today, a personal computer or a DVD (Digital Versatile Disc) recording device has a built-in hard disk device (HDD: Hard Disk Drive) for data recording. In particular, in a hard disk device used in a portable computer such as a notebook personal computer, a magnetic disk in which a magnetic layer is provided on a glass substrate is used, and the magnetic head slightly floats above the surface of the magnetic disk. Thus, magnetic recording information is recorded on or read from the magnetic layer. As a substrate for this magnetic disk, a glass substrate is preferably used because it has a property that it is less likely to be plastically deformed than a metal substrate (aluminum substrate) or the like.
また、ハードディスク装置における記憶容量の増大の要請を受けて、磁気記録の高密度化が図られている。例えば、磁性層における磁化方向を基板の面に対して垂直方向にする垂直磁気記録方式を用いて、磁気記録情報エリア(記録ビット)の微細化が行われている。これにより、1枚のディスク基板における記憶容量を増大させることができる。さらに、記憶容量の一層の増大化のために、磁気ヘッドの記録再生素子部をさらに突き出すことによって磁気記録層との距離を極めて短くして、情報の記録再生の精度をより高める(S/N比を向上させる)ことも行われている。なお、このような磁気ヘッドの記録再生素子部の制御はDFH(Dynamic Flying Height)制御機構と呼ばれ、この制御機構を搭載した磁気ヘッドはDFHヘッドと呼ばれている。このようなDFHヘッドと組み合わされてHDDに用いられる磁気ディスク用の基板においては、磁気ヘッドやそこからさらに突き出された記録再生素子部との衝突や接触を避けるために、基板の表面凹凸は極めて小さくなるように作製されている。
In addition, in response to a request for an increase in storage capacity in a hard disk device, the density of magnetic recording has been increased. For example, the magnetic recording information area (recording bit) is miniaturized by using a perpendicular magnetic recording method in which the magnetization direction in the magnetic layer is perpendicular to the surface of the substrate. Thereby, the storage capacity of one disk substrate can be increased. Furthermore, in order to further increase the storage capacity, the distance from the magnetic recording layer is extremely shortened by further protruding the recording / reproducing element portion of the magnetic head, thereby further improving the accuracy of information recording / reproducing (S / N). To improve the ratio). Such control of the recording / reproducing element portion of the magnetic head is called a DFH (Dynamic Flying Height) control mechanism, and a magnetic head equipped with this control mechanism is called a DFH head. In a substrate for a magnetic disk used in an HDD in combination with such a DFH head, the surface irregularity of the substrate is extremely small in order to avoid collision and contact with the magnetic head and the recording / reproducing element portion protruding further therefrom. It is made to be smaller.
磁気ディスク用ガラス基板を作製する工程には、プレス成形後に平板状となった板状ガラス素材の主表面に対して固定砥粒による研削を行う研削工程と、この研削工程によって主表面に残留したキズ、歪みの除去を目的として主表面の研磨工程が含まれる。従来、磁気ディスク用ガラス基板の主表面の研磨工程においては、二酸化ジルコニウム(ジルコニア)を含む研磨砥粒として用いる方法が知られている。
In the process of producing the glass substrate for magnetic disk, the main surface of the plate-like glass material that has become flat after press molding is ground on the main surface, and the grinding process remains on the main surface. A main surface polishing step is included for the purpose of removing scratches and distortions. Conventionally, in the polishing process of the main surface of the glass substrate for magnetic disks, a method of using it as abrasive grains containing zirconium dioxide (zirconia) is known.
例えば、特許文献1には、ジルコニア砥粒に、アルミン酸カルシウム、硫酸マグネシウム、塩化マグネシウム等を添加した研磨液を使用して磁気ディスク用ガラス基板を研磨する方法が開示されている。特許文献2~4には、セリウムとジルコニアとを含む複合酸化物粒子を含む研磨液組成物が開示されている。
For example, Patent Document 1 discloses a method of polishing a glass substrate for a magnetic disk using a polishing liquid obtained by adding calcium aluminate, magnesium sulfate, magnesium chloride or the like to zirconia abrasive grains. Patent Documents 2 to 4 disclose polishing liquid compositions containing composite oxide particles containing cerium and zirconia.
しかし、ジルコニアをガラス素板の遊離砥粒の研磨剤として作製したガラス基板に磁気層を成膜して磁気ディスクを作製し、グライドヘッドを用いてグライド検査を行ったところ、従来の酸化セリウムを研磨剤として用いて作製したガラス基板に比べて、歩留まりの低下(つまり、不良発生率の上昇)が認められた。グライド検査は、磁気ヘッドが磁気ディスクに対する所定の浮上量で安定して動作を維持できるか否かを判別するものである。グライド検査は、圧電素子等を取り付けたグライドヘッドを磁気ディスクの主表面上に対して所定の浮上量で飛行させ、グライドヘッドと磁気ディスク主表面上の異物等の突起物との衝突の有無を圧電素子等によって検出することにより行われる。
However, when a magnetic disk was made by forming a magnetic layer on a glass substrate made of zirconia as an abrasive for loose abrasive grains on a glass base plate, and a glide test was performed using a glide head, conventional cerium oxide was Compared to a glass substrate produced using an abrasive, a decrease in yield (that is, an increase in defect occurrence rate) was observed. The glide inspection is to determine whether or not the magnetic head can stably operate with a predetermined flying height with respect to the magnetic disk. In the glide inspection, a glide head equipped with a piezoelectric element or the like is caused to fly with a predetermined flying height with respect to the main surface of the magnetic disk, and whether or not there is a collision between the glide head and a projection such as a foreign object on the main surface of the magnetic disk. The detection is performed by a piezoelectric element or the like.
そこで、本発明は、ジルコニアを含む研磨剤を含有する研磨液で主表面を研磨するときに、ガラス基板上に異物を残留し難くした磁気ディスク用ガラス基板の製造方法を提供することを目的とする。
Accordingly, an object of the present invention is to provide a method for manufacturing a glass substrate for a magnetic disk that makes it difficult for foreign matter to remain on the glass substrate when the main surface is polished with a polishing liquid containing an abrasive containing zirconia. To do.
本願発明者らは、上記グライド検査による歩留まりの低下の原因を究明するために鋭意検討した。その結果、ガラス基板の主表面には、鏡面仕上げの研磨後、主表面が十分に洗浄されて粒子等が取り除かれても、磁性層の成膜時、主表面にジルコニア粒子が付着している場合があることがわかった。この場合、ジルコニア粒子の上方に磁性層等が積層されるため、磁気ディスクの表面に微小凸部が形成される。そして、この微小凸部がヘッドクラッシュ障害やサーマルアスペリティ障害等の不具合の原因となる。さらに、ガラス基板の主表面に付着したジルコニア粒子は、研磨に用いたジルコニア砥粒やその一部分であって、ガラス基板の外周面及び内周面の側壁面に付着したものに由来することもわかった。なお、ガラス基板に付着したジルコニア粒子を効果的に除去する洗浄方法は確立されていない。
The inventors of the present application have conducted intensive studies in order to investigate the cause of the decrease in yield due to the above glide inspection. As a result, the main surface of the glass substrate has zirconia particles adhering to the main surface during the formation of the magnetic layer, even after the main surface is sufficiently cleaned and the particles are removed after polishing with a mirror finish. I found out that there was a case. In this case, since a magnetic layer or the like is laminated above the zirconia particles, minute convex portions are formed on the surface of the magnetic disk. And this minute convex part causes troubles, such as a head crash trouble and a thermal asperity trouble. Furthermore, the zirconia particles adhering to the main surface of the glass substrate are also derived from zirconia abrasive grains used for polishing or a part thereof, which are attached to the outer peripheral surface and inner peripheral surface of the glass substrate. It was. In addition, the washing | cleaning method which removes effectively the zirconia particle adhering to the glass substrate is not established.
本願発明者らは、主表面が十分に洗浄されて粒子等が取り除かれても、磁性層の成膜時、主表面にジルコニア粒子が付着している場合がある理由を、以下のとおり考えている。つまり、ジルコニア砥粒による主表面研磨によってガラス素板にジルコニア粒子が残留した場合でも、その後の主表面に対する最終研磨によって主表面に残留したジルコニア粒子は除去されるが、ガラス素板の側壁面に残留あるいは付着したジルコニア粒子は、その後のガラス素板の洗浄によっては除去されない。特に、ジルコニア砥粒による主表面研磨において、ガラス素板をキャリアに保持させて行う場合には、研磨中にガラス素板がキャリアに当接することによってジルコニア粒子がガラス素板の側壁面に固着すると考えられる。そして、ジルコニア砥粒による主表面研磨の後の工程において、側壁面に付着していたジルコニア粒子が離脱してガラス素板あるいは磁気ディスク用ガラス基板の主表面に付着すると推察される。例えば、ガラス素板の主表面研磨の後には、主表面の表面性状を悪化させることがないように、工程上ガラス素板あるいは磁気ディスク用ガラス基板の側壁面が把持されるが、それによってジルコニア粒子が離脱することが考えられる。また、磁気ディスク用ガラス基板に対して成膜する工程において外形の側壁面を把持するときにジルコニア粒子が側壁面から離脱することや、磁気ディスク用ガラス基板の洗浄工程において外形の側壁面からジルコニア粒子が離脱することも考えられる。
The inventors of the present application consider the reason why zirconia particles may adhere to the main surface when the magnetic layer is formed even if the main surface is sufficiently washed and particles are removed. Yes. That is, even if zirconia particles remain on the glass base plate by main surface polishing with zirconia abrasive grains, the zirconia particles remaining on the main surface are removed by final polishing on the main surface thereafter, but on the side wall surface of the glass base plate. Residual or adhered zirconia particles are not removed by subsequent cleaning of the glass base plate. In particular, in the main surface polishing with zirconia abrasive grains, when the glass base plate is held on a carrier, the zirconia particles adhere to the side wall surface of the glass base plate by the glass base plate contacting the carrier during polishing. Conceivable. And in the process after the main surface grinding | polishing by a zirconia abrasive grain, it is guessed that the zirconia particle adhering to the side wall surface will detach | leave and adhere to the main surface of a glass base plate or the glass substrate for magnetic discs. For example, after polishing the main surface of the glass base plate, the side wall surface of the glass base plate or the magnetic disk glass substrate is gripped in the process so as not to deteriorate the surface properties of the main surface. It is considered that the particles are detached. In addition, zirconia particles are detached from the side wall surface when the outer side wall surface is gripped in the film forming process on the magnetic disk glass substrate, or from the outer side wall surface in the magnetic disk glass substrate cleaning process. It is also possible that the particles are detached.
本願発明者らは、ガラス素板の主表面研磨の工程においてガラス素板の側壁面にジルコニア粒子が残留あるいは付着する理由が、ジルコニア粒子表面とガラス表面との接着面積が大きく、かつジルコニア粒子とガラス表面との間で高い圧力がかかった状態となっており、ジルコニアとガラス表面との間で何らかのメカニズムが作用してジルコニア粒子がガラス表面に固着することによるものであると推察している。このメカニズムは明らかではないが、本願発明者らは、ジルコニア粒子の表面の一部をジルコニア以外の物質で構成することによって、主表面研磨後の洗浄を、ジルコニア粒子の表面の一部に存在するジルコニア以外の物質が溶解しやすい洗浄液を用いて行うことによりジルコニア砥粒の洗浄除去を促進することで、ジルコニア粒子がガラス素板の側壁面に残留あるいは付着し難くすることができることを見出し、本発明を完成するに至った。
The inventors of the present application have the reason that the zirconia particles remain or adhere to the side wall surface of the glass base plate in the step of polishing the main surface of the glass base plate, because the adhesion area between the zirconia particle surface and the glass surface is large, and the zirconia particles and It is assumed that a high pressure is applied between the glass surface and the zirconia particles are fixed to the glass surface due to some mechanism acting between the zirconia and the glass surface. Although this mechanism is not clear, the inventors of the present invention have a part of the surface of the zirconia particles cleaned by cleaning the main surface by constituting a part of the surface of the zirconia particles with a substance other than zirconia. By using a cleaning solution in which substances other than zirconia are easily dissolved, it is found that zirconia particles can be made difficult to remain or adhere to the side wall surface of the glass base plate by promoting cleaning and removal of zirconia abrasive grains. The invention has been completed.
本発明は、ジルコニアを主成分とする砥粒を研磨剤として含む研磨液を用いて、ガラス基板の表面の少なくとも一部を研磨する研磨工程と、前記研磨工程後のガラス基板を洗浄する洗浄工程とを含む磁気ディスク用ガラス基板の製造方法であって、
前記ジルコニアを主成分とする砥粒の表面の一部には、ジルコニア以外の物質である非ジルコニア物質が形成されており、
前記洗浄工程では、前記ガラス基板の研磨された表面を、前記非ジルコニア物質が可溶な洗浄液と接触させることを特徴とする。
なお、「ジルコニアを主成分とする砥粒」とは、砥粒に含まれる複数の物質のうちジルコニアの成分量が最も大きいことを意味する。 The present invention provides a polishing step for polishing at least a part of the surface of a glass substrate using a polishing liquid containing abrasive grains mainly composed of zirconia as an abrasive, and a cleaning step for cleaning the glass substrate after the polishing step. A method of manufacturing a glass substrate for a magnetic disk comprising:
A part of the surface of the abrasive grains mainly composed of zirconia is formed with a non-zirconia substance that is a substance other than zirconia,
In the cleaning step, the polished surface of the glass substrate is brought into contact with a cleaning liquid in which the non-zirconia substance is soluble.
“Abrasive grains mainly composed of zirconia” means that the amount of zirconia is the largest among a plurality of substances contained in the abrasive grains.
前記ジルコニアを主成分とする砥粒の表面の一部には、ジルコニア以外の物質である非ジルコニア物質が形成されており、
前記洗浄工程では、前記ガラス基板の研磨された表面を、前記非ジルコニア物質が可溶な洗浄液と接触させることを特徴とする。
なお、「ジルコニアを主成分とする砥粒」とは、砥粒に含まれる複数の物質のうちジルコニアの成分量が最も大きいことを意味する。 The present invention provides a polishing step for polishing at least a part of the surface of a glass substrate using a polishing liquid containing abrasive grains mainly composed of zirconia as an abrasive, and a cleaning step for cleaning the glass substrate after the polishing step. A method of manufacturing a glass substrate for a magnetic disk comprising:
A part of the surface of the abrasive grains mainly composed of zirconia is formed with a non-zirconia substance that is a substance other than zirconia,
In the cleaning step, the polished surface of the glass substrate is brought into contact with a cleaning liquid in which the non-zirconia substance is soluble.
“Abrasive grains mainly composed of zirconia” means that the amount of zirconia is the largest among a plurality of substances contained in the abrasive grains.
前記ジルコニアを主成分とする砥粒において、前記ジルコニア以外の物質の結晶子径が10nm以上であることが好ましい。
In the abrasive grains mainly composed of zirconia, the crystallite diameter of a substance other than zirconia is preferably 10 nm or more.
前記研磨工程では、研磨後の前記ガラス基板の主表面における算術平均粗さ(Ra)が1.5nm以下となるように、前記ガラス基板の主表面を研磨してもよい。
In the polishing step, the main surface of the glass substrate may be polished so that the arithmetic average roughness (Ra) on the main surface of the glass substrate after polishing is 1.5 nm or less.
前記研磨工程では、研磨後の前記ガラス基板の端面における算術平均粗さ(Ra)が50nm以下となるように、前記ガラス基板の端面を研磨してもよい。
In the polishing step, the end surface of the glass substrate may be polished so that the arithmetic average roughness (Ra) at the end surface of the glass substrate after polishing is 50 nm or less.
前記非ジルコニア物質は、酸化セリウム、酸化鉄、酸化チタン、酸化亜鉛、アルミナ、酸化銅、及び酸化マンガンからなる群の中から選択された少なくともいずれかの物質であってもよい。
The non-zirconia substance may be at least one selected from the group consisting of cerium oxide, iron oxide, titanium oxide, zinc oxide, alumina, copper oxide, and manganese oxide.
前記非ジルコニア物質は、酸化セリウムであって、前記洗浄液は、フッ素イオンを含有することが好ましい。
The non-zirconia substance is preferably cerium oxide, and the cleaning liquid preferably contains fluorine ions.
前記非ジルコニア物質は、酸化鉄であって、前記洗浄液は、カルボン酸を含む酸と鉄の2価イオンを含むことが好ましい。
The non-zirconia substance is preferably iron oxide, and the cleaning liquid preferably contains an acid containing carboxylic acid and a divalent ion of iron.
上述の磁気ディスク用ガラス基板の製造方法によれば、ジルコニアを含む研磨剤を含有する研磨液で主表面を研磨するときに、ガラス基板上に異物を残留し難くすることができる。
According to the method for manufacturing a glass substrate for a magnetic disk described above, when the main surface is polished with a polishing liquid containing an abrasive containing zirconia, it is possible to make it difficult for foreign matter to remain on the glass substrate.
以下、本実施形態の磁気ディスク用ガラス基板の製造方法について詳細に説明する。
Hereinafter, the manufacturing method of the glass substrate for magnetic disks of this embodiment will be described in detail.
[磁気ディスク用ガラス基板]
本実施形態における磁気ディスク用ガラス基板の材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平坦度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。アモルファスのアルミノシリケートガラスとするとさらに好ましい。 [Magnetic disk glass substrate]
Aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used as the material for the magnetic disk glass substrate in the present embodiment. In particular, aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced. More preferably, it is an amorphous aluminosilicate glass.
本実施形態における磁気ディスク用ガラス基板の材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平坦度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。アモルファスのアルミノシリケートガラスとするとさらに好ましい。 [Magnetic disk glass substrate]
Aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used as the material for the magnetic disk glass substrate in the present embodiment. In particular, aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced. More preferably, it is an amorphous aluminosilicate glass.
本実施形態の磁気ディスク用ガラス基板の組成を限定するものではないが、本実施形態のガラス基板は好ましくは、酸化物基準に換算し、モル%表示で、SiO2を50~75%、Al2O3を1~15%、Li2O、Na2O及びK2Oから選択される少なくとも1種の成分を合計で5~35%、MgO、CaO、SrO、BaO及びZnOから選択される少なくとも1種の成分を合計で0~20%、ならびにZrO2、TiO2、La2O3、Y2O3、Ta2O5、Nb2O5及びHfO2から選択される少なくとも1種の成分を合計で0~10%、有する組成からなるアモルファスのアルミノシリケートガラスである。
Although the composition of the glass substrate for a magnetic disk of this embodiment is not limited, the glass substrate of this embodiment is preferably converted to an oxide standard and expressed in mol%, SiO 2 is 50 to 75%, Al 2 to O 3 to 1 to 15%, at least one component selected from Li 2 O, Na 2 O and K 2 O in total 5 to 35%, selected from MgO, CaO, SrO, BaO and ZnO 0-20% in total of at least one component, and at least one selected from ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 An amorphous aluminosilicate glass having a composition having a total of 0 to 10% of components.
本実施形態における磁気ディスク用ガラス基板は、円環状の薄板のガラス基板である。磁気ディスク用ガラス基板のサイズは問わないが、例えば、公称直径2.5インチの磁気ディスク用ガラス基板として好適である。本実施形態における磁気ディスク用ガラス基板の表面は、一対の主表面と、当該一対の主表面に直交する側壁面と、主表面と側壁面との間に介在する面取り面とを含む。側壁面と面取り面を総称して、端面ともいう。
The glass substrate for magnetic disk in this embodiment is an annular thin glass substrate. Although the size of the glass substrate for magnetic disks is not ask | required, for example, it is suitable as a glass substrate for magnetic disks with a nominal diameter of 2.5 inches. The surface of the glass substrate for a magnetic disk in the present embodiment includes a pair of main surfaces, a side wall surface orthogonal to the pair of main surfaces, and a chamfered surface interposed between the main surface and the side wall surface. The side wall surface and the chamfered surface are collectively referred to as an end surface.
[磁気ディスク用ガラス基板の製造方法]
以下、本実施形態の磁気ディスク用ガラス基板の製造方法について、工程毎に説明する。ただし、各工程の順番は適宜入れ替えてもよい。
なお、本発明の「研磨工程」は、第1研磨(主表面研磨)工程、及び端面研磨工程の双方、又はいずれか一方に対応する。 [Method of manufacturing glass substrate for magnetic disk]
Hereinafter, the manufacturing method of the glass substrate for magnetic disks of this embodiment is demonstrated for every process. However, the order of each step may be changed as appropriate.
The “polishing step” of the present invention corresponds to both or either one of the first polishing (main surface polishing) step and the end surface polishing step.
以下、本実施形態の磁気ディスク用ガラス基板の製造方法について、工程毎に説明する。ただし、各工程の順番は適宜入れ替えてもよい。
なお、本発明の「研磨工程」は、第1研磨(主表面研磨)工程、及び端面研磨工程の双方、又はいずれか一方に対応する。 [Method of manufacturing glass substrate for magnetic disk]
Hereinafter, the manufacturing method of the glass substrate for magnetic disks of this embodiment is demonstrated for every process. However, the order of each step may be changed as appropriate.
The “polishing step” of the present invention corresponds to both or either one of the first polishing (main surface polishing) step and the end surface polishing step.
(1)ガラス素板の成形およびラッピング工程
例えばフロート法によるガラス素板の成形工程では先ず、錫などの溶融金属の満たされた浴槽内に、例えば上述した組成の溶融ガラスを連続的に流し入れることで板状ガラスを得る。溶融ガラスは厳密な温度操作が施された浴槽内で進行方向に沿って流れ、最終的に所望の厚さ、幅に調整された板状ガラスが形成される。この板状ガラスから、磁気ディスク用ガラス基板の元となる所定形状のガラス素板が切り出される。浴槽内の溶融錫の表面は水平であるために、フロート法により得られるガラス素板は、その表面の平坦度が十分に高いものとなる。
また、例えばプレス成形法よるガラス素板の成形工程では、受けゴブ形成型である下型上に、溶融ガラスからなるガラスゴブが供給され、下型と対向ゴブ形成型である上型を使用してガラスゴブがプレス成形される。より具体的には、下型上に溶融ガラスからなるガラスゴブを供給した後に上型用胴型の下面と下型用胴型の上面を当接させ、上型と上型用胴型との摺動面および下型と下型用胴型との摺動面を超えて外側に肉薄ガラス素板の成形空間を形成し、さらに上型を下降してプレス成形を行い、プレス成形直後に上型を上昇する。これにより、磁気ディスク用ガラス基板の元となるガラス素板が成形される。
なお、ガラス素板は、上述した方法に限らず、ダウンドロー法、リドロー法、フュージョン法などの公知の製造方法を用いて製造することができる。 (1) Molding and lapping process of glass base plate In the process of forming a glass base plate by, for example, the float process, first, for example, molten glass having the above-described composition is continuously poured into a bath filled with a molten metal such as tin. To obtain plate glass. The molten glass flows along the traveling direction in a bathtub that has been subjected to a strict temperature operation, and finally a plate-like glass adjusted to a desired thickness and width is formed. From this plate glass, a glass base plate having a predetermined shape as a base of the glass substrate for a magnetic disk is cut out. Since the surface of the molten tin in the bath is horizontal, the flatness of the surface of the glass base plate obtained by the float process is sufficiently high.
For example, in a glass base plate molding process by a press molding method, a glass gob made of molten glass is supplied onto a lower mold that is a receiving gob forming mold, and an upper mold that is a lower mold and an opposing gob forming mold is used. Glass gob is press molded. More specifically, after a glass gob made of molten glass is supplied onto the lower mold, the lower surface of the upper mold cylinder and the upper surface of the lower mold cylinder are brought into contact with each other, and the upper mold and the upper mold mold are slid. Form a thin glass blank forming space outside the moving surface and the sliding surface of the lower mold and the lower mold body, and lower the upper mold to perform press molding. To rise. Thereby, the glass base plate used as the origin of the glass substrate for magnetic discs is shape | molded.
In addition, a glass base plate can be manufactured using not only the method mentioned above but well-known manufacturing methods, such as a downdraw method, a redraw method, and a fusion method.
例えばフロート法によるガラス素板の成形工程では先ず、錫などの溶融金属の満たされた浴槽内に、例えば上述した組成の溶融ガラスを連続的に流し入れることで板状ガラスを得る。溶融ガラスは厳密な温度操作が施された浴槽内で進行方向に沿って流れ、最終的に所望の厚さ、幅に調整された板状ガラスが形成される。この板状ガラスから、磁気ディスク用ガラス基板の元となる所定形状のガラス素板が切り出される。浴槽内の溶融錫の表面は水平であるために、フロート法により得られるガラス素板は、その表面の平坦度が十分に高いものとなる。
また、例えばプレス成形法よるガラス素板の成形工程では、受けゴブ形成型である下型上に、溶融ガラスからなるガラスゴブが供給され、下型と対向ゴブ形成型である上型を使用してガラスゴブがプレス成形される。より具体的には、下型上に溶融ガラスからなるガラスゴブを供給した後に上型用胴型の下面と下型用胴型の上面を当接させ、上型と上型用胴型との摺動面および下型と下型用胴型との摺動面を超えて外側に肉薄ガラス素板の成形空間を形成し、さらに上型を下降してプレス成形を行い、プレス成形直後に上型を上昇する。これにより、磁気ディスク用ガラス基板の元となるガラス素板が成形される。
なお、ガラス素板は、上述した方法に限らず、ダウンドロー法、リドロー法、フュージョン法などの公知の製造方法を用いて製造することができる。 (1) Molding and lapping process of glass base plate In the process of forming a glass base plate by, for example, the float process, first, for example, molten glass having the above-described composition is continuously poured into a bath filled with a molten metal such as tin. To obtain plate glass. The molten glass flows along the traveling direction in a bathtub that has been subjected to a strict temperature operation, and finally a plate-like glass adjusted to a desired thickness and width is formed. From this plate glass, a glass base plate having a predetermined shape as a base of the glass substrate for a magnetic disk is cut out. Since the surface of the molten tin in the bath is horizontal, the flatness of the surface of the glass base plate obtained by the float process is sufficiently high.
For example, in a glass base plate molding process by a press molding method, a glass gob made of molten glass is supplied onto a lower mold that is a receiving gob forming mold, and an upper mold that is a lower mold and an opposing gob forming mold is used. Glass gob is press molded. More specifically, after a glass gob made of molten glass is supplied onto the lower mold, the lower surface of the upper mold cylinder and the upper surface of the lower mold cylinder are brought into contact with each other, and the upper mold and the upper mold mold are slid. Form a thin glass blank forming space outside the moving surface and the sliding surface of the lower mold and the lower mold body, and lower the upper mold to perform press molding. To rise. Thereby, the glass base plate used as the origin of the glass substrate for magnetic discs is shape | molded.
In addition, a glass base plate can be manufactured using not only the method mentioned above but well-known manufacturing methods, such as a downdraw method, a redraw method, and a fusion method.
次に、所定形状に切り出されたガラス素板の両主表面に対して、必要に応じて、遊離砥粒を用いたラッピング加工を行う。具体的には、ガラス素板の両面に上下からラップ定盤を押圧させ、遊離砥粒を含む研削液(スラリー)をガラス素板の主表面上に供給し、これらを相対的に移動させてラッピング加工を行う。なお、フロート法でガラス素板を成形した場合には、成形後の主表面の粗さの精度が高いため、このラッピング加工を省略してもよい。
Next, lapping processing using loose abrasive grains is performed on both main surfaces of the glass base plate cut into a predetermined shape, if necessary. Specifically, the lapping platen is pressed on both sides of the glass base plate from above and below, a grinding liquid (slurry) containing free abrasive grains is supplied onto the main surface of the glass base plate, and these are moved relatively. Perform lapping. In addition, when a glass base plate is shape | molded with the float glass process, since the precision of the roughness of the main surface after shaping | molding is high, you may abbreviate | omit this lapping process.
(2)円孔形成工程
円筒状のダイヤモンドドリルを用いて、ガラス素板の中心部に内孔を形成し、円環状のガラス素板とする。 (2) Circular hole forming step Using a cylindrical diamond drill, an inner hole is formed at the center of the glass base plate to obtain an annular glass base plate.
円筒状のダイヤモンドドリルを用いて、ガラス素板の中心部に内孔を形成し、円環状のガラス素板とする。 (2) Circular hole forming step Using a cylindrical diamond drill, an inner hole is formed at the center of the glass base plate to obtain an annular glass base plate.
(3)面取り工程
円孔形成工程の後、端部(外周端部及び内周端部)に面取り部を形成する面取り工程が行われる。面取り工程では、円環状のガラス素板の外周端部及び内周端部に対して、例えば、ダイヤモンド砥粒を用いた砥石等によって面取りが施され、面取り部が形成される。 (3) Chamfering step After the circular hole forming step, a chamfering step of forming a chamfered portion at the end (outer peripheral end and inner peripheral end) is performed. In the chamfering step, the chamfered portion is formed by chamfering the outer peripheral end portion and the inner peripheral end portion of the annular glass base plate with, for example, a grindstone using diamond abrasive grains.
円孔形成工程の後、端部(外周端部及び内周端部)に面取り部を形成する面取り工程が行われる。面取り工程では、円環状のガラス素板の外周端部及び内周端部に対して、例えば、ダイヤモンド砥粒を用いた砥石等によって面取りが施され、面取り部が形成される。 (3) Chamfering step After the circular hole forming step, a chamfering step of forming a chamfered portion at the end (outer peripheral end and inner peripheral end) is performed. In the chamfering step, the chamfered portion is formed by chamfering the outer peripheral end portion and the inner peripheral end portion of the annular glass base plate with, for example, a grindstone using diamond abrasive grains.
(4)端面研磨工程
次に、円環状のガラス素板の端面研磨(エッジポリッシング)が行われる。
端面研磨では、ガラス素板の内周側の側壁面(端面)及び外周側の側壁面(端面)をブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の微粒子を遊離砥粒として含むスラリーが用いられる。端面研磨を行うことにより、ガラス素板の側壁面での塵等が付着した汚染、ダメージあるいはキズ等の損傷の除去を行うことにより、サーマルアスペリティの発生の防止や、ナトリウムやカリウム等のコロージョンの原因となるイオン析出の発生を防止することができる。
ガラス素板の端面を平滑にし、それによって後工程の第1の研磨工程においてジルコニア砥粒がガラス素板の側壁面に付着し難くするために、端面研磨工程は、第1の研磨工程の前に行うことが好ましい。例えば、端面研磨工程後のガラス素板の端面の算術平均粗さRaを50nm以下とするように、端面研磨を行うことが好ましい。「ガラス素板の端面の算術平均粗さRaを50nm以下とする」とは、側壁面又は面取り面のいずれか少なくとも一方の算術平均粗さRaを50nm以下とすることを意味する。なお、側壁面については後述のとおり主表面の研磨時にキャリアとの接触により研磨砥粒が押し込まれて固着しやすいため、算術平均粗さRaを50nm以下、より好ましくは10nm以下とすることが好ましい。
なお、端面研磨工程では、後述する第1研磨工程の研磨砥粒を含む研磨液を用いて研磨を行い、その研磨後に後述する第1研磨工程の洗浄液を用いて洗浄を行ってもよい。 (4) End face polishing step Next, end face polishing (edge polishing) of an annular glass base plate is performed.
In the end surface polishing, the inner peripheral side wall surface (end surface) and the outer peripheral side wall surface (end surface) of the glass base plate are mirror-finished by brush polishing. At this time, a slurry containing fine particles such as cerium oxide as free abrasive grains is used. By performing end surface polishing, removal of contamination such as dust on the side wall surface of the glass base plate, damage or scratches, etc., preventing the occurrence of thermal asperity, corrosion of sodium and potassium, etc. It is possible to prevent the occurrence of ion precipitation that is a cause.
In order to make the end face of the glass base plate smooth, thereby making it difficult for the zirconia abrasive grains to adhere to the side wall surface of the glass base plate in the first polishing step of the subsequent step, the end face polishing step is performed before the first polishing step. It is preferable to carry out. For example, it is preferable to perform end face polishing so that the arithmetic average roughness Ra of the end face of the glass base plate after the end face polishing step is 50 nm or less. “The arithmetic average roughness Ra of the end face of the glass base plate is 50 nm or less” means that the arithmetic average roughness Ra of at least one of the side wall surface and the chamfered surface is 50 nm or less. As will be described later, since the abrasive grains are easily pushed into and fixed by contact with the carrier during the polishing of the main surface as described later, the arithmetic average roughness Ra is preferably 50 nm or less, more preferably 10 nm or less. .
In the end face polishing step, polishing may be performed using a polishing liquid containing abrasive grains in a first polishing step described later, and cleaning may be performed using a cleaning liquid in a first polishing step described later after the polishing.
次に、円環状のガラス素板の端面研磨(エッジポリッシング)が行われる。
端面研磨では、ガラス素板の内周側の側壁面(端面)及び外周側の側壁面(端面)をブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の微粒子を遊離砥粒として含むスラリーが用いられる。端面研磨を行うことにより、ガラス素板の側壁面での塵等が付着した汚染、ダメージあるいはキズ等の損傷の除去を行うことにより、サーマルアスペリティの発生の防止や、ナトリウムやカリウム等のコロージョンの原因となるイオン析出の発生を防止することができる。
ガラス素板の端面を平滑にし、それによって後工程の第1の研磨工程においてジルコニア砥粒がガラス素板の側壁面に付着し難くするために、端面研磨工程は、第1の研磨工程の前に行うことが好ましい。例えば、端面研磨工程後のガラス素板の端面の算術平均粗さRaを50nm以下とするように、端面研磨を行うことが好ましい。「ガラス素板の端面の算術平均粗さRaを50nm以下とする」とは、側壁面又は面取り面のいずれか少なくとも一方の算術平均粗さRaを50nm以下とすることを意味する。なお、側壁面については後述のとおり主表面の研磨時にキャリアとの接触により研磨砥粒が押し込まれて固着しやすいため、算術平均粗さRaを50nm以下、より好ましくは10nm以下とすることが好ましい。
なお、端面研磨工程では、後述する第1研磨工程の研磨砥粒を含む研磨液を用いて研磨を行い、その研磨後に後述する第1研磨工程の洗浄液を用いて洗浄を行ってもよい。 (4) End face polishing step Next, end face polishing (edge polishing) of an annular glass base plate is performed.
In the end surface polishing, the inner peripheral side wall surface (end surface) and the outer peripheral side wall surface (end surface) of the glass base plate are mirror-finished by brush polishing. At this time, a slurry containing fine particles such as cerium oxide as free abrasive grains is used. By performing end surface polishing, removal of contamination such as dust on the side wall surface of the glass base plate, damage or scratches, etc., preventing the occurrence of thermal asperity, corrosion of sodium and potassium, etc. It is possible to prevent the occurrence of ion precipitation that is a cause.
In order to make the end face of the glass base plate smooth, thereby making it difficult for the zirconia abrasive grains to adhere to the side wall surface of the glass base plate in the first polishing step of the subsequent step, the end face polishing step is performed before the first polishing step. It is preferable to carry out. For example, it is preferable to perform end face polishing so that the arithmetic average roughness Ra of the end face of the glass base plate after the end face polishing step is 50 nm or less. “The arithmetic average roughness Ra of the end face of the glass base plate is 50 nm or less” means that the arithmetic average roughness Ra of at least one of the side wall surface and the chamfered surface is 50 nm or less. As will be described later, since the abrasive grains are easily pushed into and fixed by contact with the carrier during the polishing of the main surface as described later, the arithmetic average roughness Ra is preferably 50 nm or less, more preferably 10 nm or less. .
In the end face polishing step, polishing may be performed using a polishing liquid containing abrasive grains in a first polishing step described later, and cleaning may be performed using a cleaning liquid in a first polishing step described later after the polishing.
(5)固定砥粒による研削工程
固定砥粒による研削工程では、遊星歯車機構を備えた両面研削装置を用いて円環状のガラス素板の主表面に対して研削加工を行う。研削による取り代は、例えば数μm~100μm程度である。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間に円環状のガラス素板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作することにより、ガラス素板と各定盤とを相対的に移動させることで、ガラス素板の両主表面を研削することができる。 (5) Grinding process using fixed abrasive grains In the grinding process using fixed abrasive grains, grinding is performed on the main surface of the annular glass base plate using a double-side grinding apparatus equipped with a planetary gear mechanism. The machining allowance by grinding is, for example, about several μm to 100 μm. The double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular glass base plate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving both the upper surface plate and the lower surface plate, or both of them, the main surface of the glass base plate is ground by relatively moving the glass base plate and each surface plate. be able to.
固定砥粒による研削工程では、遊星歯車機構を備えた両面研削装置を用いて円環状のガラス素板の主表面に対して研削加工を行う。研削による取り代は、例えば数μm~100μm程度である。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間に円環状のガラス素板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作することにより、ガラス素板と各定盤とを相対的に移動させることで、ガラス素板の両主表面を研削することができる。 (5) Grinding process using fixed abrasive grains In the grinding process using fixed abrasive grains, grinding is performed on the main surface of the annular glass base plate using a double-side grinding apparatus equipped with a planetary gear mechanism. The machining allowance by grinding is, for example, about several μm to 100 μm. The double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular glass base plate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving both the upper surface plate and the lower surface plate, or both of them, the main surface of the glass base plate is ground by relatively moving the glass base plate and each surface plate. be able to.
(6)第1研磨(主表面研磨)工程
次に、研削されたガラス素板の主表面に第1研磨が施される。第1研磨による取り代は、例えば1μm~50μm程度である。第1研磨は、固定砥粒による研削により主表面に残留したキズ、歪みの除去、うねり、微小うねりの調整を目的とする。 (6) 1st grinding | polishing (main surface grinding | polishing) process Next, 1st grinding | polishing is given to the main surface of the ground glass base plate. The machining allowance by the first polishing is, for example, about 1 μm to 50 μm. The purpose of the first polishing is to remove scratches, distortion, waviness, and fine waviness remaining on the main surface by grinding with fixed abrasive grains.
次に、研削されたガラス素板の主表面に第1研磨が施される。第1研磨による取り代は、例えば1μm~50μm程度である。第1研磨は、固定砥粒による研削により主表面に残留したキズ、歪みの除去、うねり、微小うねりの調整を目的とする。 (6) 1st grinding | polishing (main surface grinding | polishing) process Next, 1st grinding | polishing is given to the main surface of the ground glass base plate. The machining allowance by the first polishing is, for example, about 1 μm to 50 μm. The purpose of the first polishing is to remove scratches, distortion, waviness, and fine waviness remaining on the main surface by grinding with fixed abrasive grains.
(6-1)研磨装置
第1研磨工程で使用される研磨装置について、図1及び図2を参照して説明する。図1は、第1研磨工程で使用される研磨装置(両面研磨装置)の分解斜視図である。図2は、第1研磨工程で使用される研磨装置(両面研磨装置)の断面図である。なお、この研磨装置と同様の構成は、上述した研削工程に使用される研削装置においても適用できる。 (6-1) Polishing Device A polishing device used in the first polishing step will be described with reference to FIGS. FIG. 1 is an exploded perspective view of a polishing apparatus (double-side polishing apparatus) used in the first polishing step. FIG. 2 is a cross-sectional view of a polishing apparatus (double-side polishing apparatus) used in the first polishing process. Note that the same configuration as this polishing apparatus can be applied to a grinding apparatus used in the above-described grinding process.
第1研磨工程で使用される研磨装置について、図1及び図2を参照して説明する。図1は、第1研磨工程で使用される研磨装置(両面研磨装置)の分解斜視図である。図2は、第1研磨工程で使用される研磨装置(両面研磨装置)の断面図である。なお、この研磨装置と同様の構成は、上述した研削工程に使用される研削装置においても適用できる。 (6-1) Polishing Device A polishing device used in the first polishing step will be described with reference to FIGS. FIG. 1 is an exploded perspective view of a polishing apparatus (double-side polishing apparatus) used in the first polishing step. FIG. 2 is a cross-sectional view of a polishing apparatus (double-side polishing apparatus) used in the first polishing process. Note that the same configuration as this polishing apparatus can be applied to a grinding apparatus used in the above-described grinding process.
図1に示すように、研磨装置は、上下一対の定盤、すなわち上定盤40および下定盤50を有している。上定盤40および下定盤50の間に円環状のガラス素板Gが狭持され、上定盤40または下定盤50のいずれか一方、または、双方を移動操作することにより、ガラス素板Gと各定盤とを相対的に移動させることで、このガラス素板Gの両主表面を研磨することができる。
As shown in FIG. 1, the polishing apparatus has a pair of upper and lower surface plates, that is, an upper surface plate 40 and a lower surface plate 50. An annular glass base plate G is sandwiched between the upper surface plate 40 and the lower surface plate 50, and either one or both of the upper surface plate 40 and the lower surface plate 50 are moved to operate the glass base plate G. By moving the surface plates relative to each other, both main surfaces of the glass base plate G can be polished.
図1及び図2を参照して研磨装置の構成をさらに具体的に説明する。
研磨装置において、下定盤50の上面および上定盤40の底面には、全体として円環形状の平板の研磨パッド10が取り付けられている。キャリア30は、外周部に設けられて太陽歯車61及び内歯車62に噛合する歯部31と、ガラス素板Gを収容し保持するための1または複数の孔部31とを有する。太陽歯車61、外縁に設けられた内歯車62および円板状のキャリア30は全体として、中心軸CTRを中心とする遊星歯車機構を構成する。円板状のキャリア30は、内周側で太陽歯車61に噛合し、かつ外周側で内歯車62に噛合するともに、ガラス素板G(ワーク)を1または複数を収容し保持する。下定盤50上では、キャリア30が遊星歯車として自転しながら公転し、ガラス素板Gと下定盤50とが相対的に移動させられる。例えば、太陽歯車61がCCW(反時計回り)の方向に回転すれば、キャリア30はCW(時計回り)の方向に回転し、内歯車62はCCWの方向に回転する。その結果、研磨パッド10とガラス素板Gの間に相対運動が生じる。同様にして、ガラス素板Gと上定盤40とを相対的に移動させてよい。 The configuration of the polishing apparatus will be described more specifically with reference to FIGS.
In the polishing apparatus, an annularflat polishing pad 10 is attached to the upper surface of the lower platen 50 and the bottom surface of the upper platen 40 as a whole. The carrier 30 has a tooth portion 31 that is provided on the outer peripheral portion and meshes with the sun gear 61 and the internal gear 62, and one or a plurality of hole portions 31 for accommodating and holding the glass base plate G. The sun gear 61, the internal gear 62 provided on the outer edge, and the disk-shaped carrier 30 constitute a planetary gear mechanism centered on the central axis CTR as a whole. The disc-shaped carrier 30 meshes with the sun gear 61 on the inner peripheral side and meshes with the internal gear 62 on the outer peripheral side, and accommodates and holds one or more glass base plates G (workpieces). On the lower surface plate 50, the carrier 30 revolves while rotating as a planetary gear, and the glass base plate G and the lower surface plate 50 are relatively moved. For example, if the sun gear 61 rotates in the CCW (counterclockwise) direction, the carrier 30 rotates in the CW (clockwise) direction, and the internal gear 62 rotates in the CCW direction. As a result, relative movement occurs between the polishing pad 10 and the glass base plate G. Similarly, the glass base plate G and the upper surface plate 40 may be relatively moved.
研磨装置において、下定盤50の上面および上定盤40の底面には、全体として円環形状の平板の研磨パッド10が取り付けられている。キャリア30は、外周部に設けられて太陽歯車61及び内歯車62に噛合する歯部31と、ガラス素板Gを収容し保持するための1または複数の孔部31とを有する。太陽歯車61、外縁に設けられた内歯車62および円板状のキャリア30は全体として、中心軸CTRを中心とする遊星歯車機構を構成する。円板状のキャリア30は、内周側で太陽歯車61に噛合し、かつ外周側で内歯車62に噛合するともに、ガラス素板G(ワーク)を1または複数を収容し保持する。下定盤50上では、キャリア30が遊星歯車として自転しながら公転し、ガラス素板Gと下定盤50とが相対的に移動させられる。例えば、太陽歯車61がCCW(反時計回り)の方向に回転すれば、キャリア30はCW(時計回り)の方向に回転し、内歯車62はCCWの方向に回転する。その結果、研磨パッド10とガラス素板Gの間に相対運動が生じる。同様にして、ガラス素板Gと上定盤40とを相対的に移動させてよい。 The configuration of the polishing apparatus will be described more specifically with reference to FIGS.
In the polishing apparatus, an annular
上記相対運動の動作中には、上定盤40がガラス素板Gに対して(つまり、鉛直方向に)所定の荷重で押圧され、ガラス素板Gに対して研磨パッド10が押圧される。また、図示しないポンプによって研磨液(スラリー)が、研磨液供給タンク71から1または複数の配管72を経由してガラス素板Gと研磨パッド10の間に供給される。この研磨液に含まれる研磨剤によってガラス素板Gの主表面が研磨される。
During the relative movement, the upper surface plate 40 is pressed against the glass base plate G (that is, in the vertical direction) with a predetermined load, and the polishing pad 10 is pressed against the glass base plate G. A polishing liquid (slurry) is supplied between the glass base plate G and the polishing pad 10 from the polishing liquid supply tank 71 via one or a plurality of pipes 72 by a pump (not shown). The main surface of the glass base plate G is polished by the abrasive contained in the polishing liquid.
なお、この研磨装置では、ガラス素板Gに対する所望の研磨負荷を設定する目的で、ガラス素板Gに与えられる上定盤40の荷重が調整されることが好ましい。荷重は、高研磨速度達成の観点から50g/cm2以上が好ましく、70g/cm2以上がより好ましく、90g/cm2以上がさらに好ましい。またスクラッチ低減及び品質安定化の観点から、研磨荷重は180g/cm2以下が好ましく、160g/cm2以下がより好ましく、140g/cm2以下がさらに好ましい。すなわち、荷重は、50g/cm2~180g/cm2が好ましく、70g/cm2~160g/cm2がより好ましく、90g/cm2~140g/cm2がさらに好ましい。
In this polishing apparatus, it is preferable that the load of the upper surface plate 40 applied to the glass base plate G is adjusted for the purpose of setting a desired polishing load on the glass base plate G. Load, 50 g / cm 2 or more is preferred from the viewpoint of high polishing rate achieved, more preferably 70 g / cm 2 or more, 90 g / cm 2 or more is more preferable. Further, from the viewpoint of reducing scratches and stabilizing the quality, the polishing load is preferably 180 g / cm 2 or less, more preferably 160 g / cm 2 or less, and even more preferably 140 g / cm 2 or less. That is, the load is preferably 50 g / cm 2 to 180 g / cm 2, more preferably 70 g / cm 2 to 160 g / cm 2, and still more preferably 90 g / cm 2 to 140 g / cm 2 .
研磨加工時の研磨液の供給速度は、研磨パッド10、研磨液の組成及び濃度、ガラス素板Gの大きさによって異なるが、研磨速度を向上させる観点から500~5000ml/分が好ましく、より好ましくは1000~4500ml/分であり、さらに好ましくは1500~4000ml/分である。研磨パッド10の回転数は研磨速度の向上とスクラッチ低減の観点から10~50rpmが好ましく、20~40rpmがより好ましく、25~35rpmがさらに好ましい。
The supply rate of the polishing liquid during polishing processing varies depending on the polishing pad 10, the composition and concentration of the polishing liquid, and the size of the glass base plate G, but is preferably 500 to 5000 ml / min, more preferably from the viewpoint of improving the polishing rate. Is 1000 to 4500 ml / min, more preferably 1500 to 4000 ml / min. The number of rotations of the polishing pad 10 is preferably 10 to 50 rpm, more preferably 20 to 40 rpm, and even more preferably 25 to 35 rpm from the viewpoint of improving the polishing rate and reducing scratches.
(6-2)研磨砥粒(ジルコニア(ZrO2)を主成分とする研磨砥粒)
本実施形態の研磨砥粒は、ジルコニア粒子の表面の一部がジルコニア以外の物質(以下、「非ジルコニア物質」という。)で構成される。それによって、主表面研磨中において、ジルコニアとガラス表面との間の接着面積を小さくし、かつ主表面研磨後の洗浄を、ジルコニア粒子の表面の一部に存在する非ジルコニア物質が溶解しやすい洗浄液を用いて行うことによりジルコニア砥粒の洗浄除去を促進する。そのため、ジルコニア粒子がガラス素板Gの側壁面に残留あるいは付着し難くすることができる。
なお、ジルコニア粒子は、乾式法及び湿式法のいずれの方法によって作製したものでもよい。また、研磨液の液性はアルカリ性とすることがスクラッチ低減の観点で好ましい。より具体的にはpHを9以上とすることが好ましい。液性が酸性又は中性の場合、研磨砥粒内のジルコニア部分と非ジルコニア部分におけるゼータ電位の符号が逆になり易いため、砥粒が不安定となって凝集しやすいためと考えられる。 (6-2) Polishing abrasive grains (polishing abrasive grains mainly composed of zirconia (ZrO 2 ))
In the abrasive grains of this embodiment, a part of the surface of zirconia particles is composed of a substance other than zirconia (hereinafter referred to as “non-zirconia substance”). Thereby, during the main surface polishing, the bonding area between the zirconia and the glass surface is reduced, and the cleaning after the main surface polishing is a cleaning solution in which the non-zirconia substance existing on a part of the surface of the zirconia particles is easily dissolved. The cleaning removal of the zirconia abrasive grains is promoted by using this. Therefore, zirconia particles can be made difficult to remain or adhere to the side wall surface of the glass base plate G.
The zirconia particles may be produced by either a dry method or a wet method. Moreover, it is preferable from the viewpoint of scratch reduction that the polishing liquid is alkaline. More specifically, the pH is preferably 9 or more. When the liquidity is acidic or neutral, the sign of the zeta potential in the zirconia portion and the non-zirconia portion in the polishing abrasive grains tends to be reversed, which is considered to be because the abrasive grains become unstable and easily aggregate.
本実施形態の研磨砥粒は、ジルコニア粒子の表面の一部がジルコニア以外の物質(以下、「非ジルコニア物質」という。)で構成される。それによって、主表面研磨中において、ジルコニアとガラス表面との間の接着面積を小さくし、かつ主表面研磨後の洗浄を、ジルコニア粒子の表面の一部に存在する非ジルコニア物質が溶解しやすい洗浄液を用いて行うことによりジルコニア砥粒の洗浄除去を促進する。そのため、ジルコニア粒子がガラス素板Gの側壁面に残留あるいは付着し難くすることができる。
なお、ジルコニア粒子は、乾式法及び湿式法のいずれの方法によって作製したものでもよい。また、研磨液の液性はアルカリ性とすることがスクラッチ低減の観点で好ましい。より具体的にはpHを9以上とすることが好ましい。液性が酸性又は中性の場合、研磨砥粒内のジルコニア部分と非ジルコニア部分におけるゼータ電位の符号が逆になり易いため、砥粒が不安定となって凝集しやすいためと考えられる。 (6-2) Polishing abrasive grains (polishing abrasive grains mainly composed of zirconia (ZrO 2 ))
In the abrasive grains of this embodiment, a part of the surface of zirconia particles is composed of a substance other than zirconia (hereinafter referred to as “non-zirconia substance”). Thereby, during the main surface polishing, the bonding area between the zirconia and the glass surface is reduced, and the cleaning after the main surface polishing is a cleaning solution in which the non-zirconia substance existing on a part of the surface of the zirconia particles is easily dissolved. The cleaning removal of the zirconia abrasive grains is promoted by using this. Therefore, zirconia particles can be made difficult to remain or adhere to the side wall surface of the glass base plate G.
The zirconia particles may be produced by either a dry method or a wet method. Moreover, it is preferable from the viewpoint of scratch reduction that the polishing liquid is alkaline. More specifically, the pH is preferably 9 or more. When the liquidity is acidic or neutral, the sign of the zeta potential in the zirconia portion and the non-zirconia portion in the polishing abrasive grains tends to be reversed, which is considered to be because the abrasive grains become unstable and easily aggregate.
(A)研磨砥粒の構造及びその製造方法
上述したように、図1の研磨装置に使用する研磨液は、ジルコニアを主成分とする研磨砥粒を研磨剤として含み、研磨砥粒の表面の一部が非ジルコニア物質で構成されている。なお、「ジルコニアを主成分とする砥粒」とは、砥粒に含まれる複数の物質のうちジルコニアの成分量が最も大きいことを意味する。このような研磨砥粒の構造の例について、図3を参照して説明する。
図3のE1は、ジルコニア粒子の表面に、非ジルコニア物質の微粒子が付着した構造の例である。図3のE2及び図3のE3は、ジルコニア粒子と非ジルコニア物質が研磨砥粒の一粒単位で複合化した構造の例である。なお、図3のE2及び図3のE3において「非ジルコニア物質」と示した斜線の領域の一つ一つが、結晶子を示す。また、図3のE3において結晶子が複数集まったものが1次粒子である。
なお、本実施形態の研磨砥粒(ジルコニア-非ジルコニア物質の複合粒子)をモル比を用いてZrxA1-xO2(A:非ジルコニア物質の元素名)と表記した場合、xは0<x<1であればよいが、好ましくは0.50<x<0.98であり、より好ましくは0.70<x<0.92であり、さらに好ましくは、0.75<x<0.90である。また、研磨後の洗浄効果を高める観点で、研磨砥粒における非ジルコニア物質の含有量は、2モル%以上であることが好ましく、8モル%以上であることがより好ましく、10モル%以上であることがさらに好ましい。また、ジルコニアによる研磨効果を維持するために、研磨砥粒における非ジルコニア物質の含有量は、50%モル以下であることが好ましく、30モル%以下であることがより好ましく、25モル%以下であることがさらに好ましい。
また、本実施形態の研磨砥粒の大きさは、平均粒子径(D50)で、0.3~2.0μmとすることが好ましい。D50が0.3μmより小さいと、研磨レートが低下して生産性が悪化する場合がある。一方、2.0μmより大きいとスクラッチが増加する場合がある。
なお、平均粒径(D50)は、粒子径・粒度分布測定装置を用いて光散乱法により測定した。D50とは、粉体の集団において、粉体の体積を粒径が小さい側から累積したとき、その累積体積が粉体の集団の全体積の50%となる粒径である。
また、本実施形態の研磨砥粒におけるジルコニア及び非ジルコニア物質の結晶子径(後述)は、10nm以上が好ましく、20nm以上がより好ましく、30nm以上がさらに好ましい。結晶子径を大きくすることで、研磨後の洗浄時に、研磨砥粒とガラス表面との接触部分における非ジルコニア物質の溶解量または溶解面積を大きくすることができるので、ガラス表面における接触面積を減らして研磨砥粒を除去しやすくなる。また、結晶子径が大きくなりすぎると研磨時にスクラッチが入り易くなるため、60nm以下とすることが好ましい。また、研磨砥粒内におけるジルコニア部分及び非ジルコニア物質部分の結晶子径は、10nm以上であることが好ましい。10nm以上とすることで研磨レートをさらに高めることが可能となる。 (A) Structure of polishing abrasive grains and method for producing the same As described above, the polishing liquid used in the polishing apparatus of FIG. 1 includes polishing abrasive grains mainly composed of zirconia as a polishing agent, and the surface of the polishing abrasive grains. Some are composed of non-zirconia materials. “Abrasive grains mainly composed of zirconia” means that the amount of zirconia is the largest among a plurality of substances contained in the abrasive grains. An example of the structure of such abrasive grains will be described with reference to FIG.
E1 in FIG. 3 is an example of a structure in which fine particles of a non-zirconia substance are attached to the surface of zirconia particles. E2 in FIG. 3 and E3 in FIG. 3 are examples of structures in which zirconia particles and a non-zirconia substance are compounded in units of abrasive grains. Each of the hatched areas indicated as “non-zirconia substance” in E2 of FIG. 3 and E3 of FIG. 3 represents a crystallite. Further, a plurality of crystallites collected at E3 in FIG. 3 are primary particles.
Note that when the polishing abrasive grains (zirconia-non-zirconia material composite particles) of the present embodiment are expressed as Zr x A 1-x O2 (A: element name of non-zirconia material) using a molar ratio, x is 0. <X <1, but preferably 0.50 <x <0.98, more preferably 0.70 <x <0.92, and even more preferably 0.75 <x <0. .90. Further, from the viewpoint of enhancing the cleaning effect after polishing, the content of the non-zirconia substance in the abrasive grains is preferably 2 mol% or more, more preferably 8 mol% or more, and more preferably 10 mol% or more. More preferably it is. Moreover, in order to maintain the polishing effect by zirconia, the content of the non-zirconia substance in the abrasive grains is preferably 50% mol or less, more preferably 30 mol% or less, and 25 mol% or less. More preferably it is.
In addition, the size of the abrasive grains of this embodiment is preferably 0.3 to 2.0 μm in terms of average particle diameter (D50). If D50 is smaller than 0.3 μm, the polishing rate may decrease and productivity may deteriorate. On the other hand, if it is larger than 2.0 μm, the scratch may increase.
The average particle size (D50) was measured by a light scattering method using a particle size / particle size distribution measuring device. D50 is a particle size in which when the powder volume is accumulated from the side of smaller particle diameter in the powder group, the accumulated volume is 50% of the total volume of the powder group.
In addition, the crystallite diameter (described later) of the zirconia and non-zirconia substances in the abrasive grains of this embodiment is preferably 10 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more. By increasing the crystallite diameter, the amount of non-zirconia substance dissolved or the area of contact between the abrasive grains and the glass surface can be increased during cleaning after polishing, so the contact area on the glass surface is reduced. This makes it easier to remove the abrasive grains. Further, if the crystallite diameter becomes too large, scratches are likely to occur during polishing, and therefore it is preferably 60 nm or less. Moreover, it is preferable that the crystallite diameter of the zirconia part and the non-zirconia substance part in the abrasive grains is 10 nm or more. By setting the thickness to 10 nm or more, the polishing rate can be further increased.
上述したように、図1の研磨装置に使用する研磨液は、ジルコニアを主成分とする研磨砥粒を研磨剤として含み、研磨砥粒の表面の一部が非ジルコニア物質で構成されている。なお、「ジルコニアを主成分とする砥粒」とは、砥粒に含まれる複数の物質のうちジルコニアの成分量が最も大きいことを意味する。このような研磨砥粒の構造の例について、図3を参照して説明する。
図3のE1は、ジルコニア粒子の表面に、非ジルコニア物質の微粒子が付着した構造の例である。図3のE2及び図3のE3は、ジルコニア粒子と非ジルコニア物質が研磨砥粒の一粒単位で複合化した構造の例である。なお、図3のE2及び図3のE3において「非ジルコニア物質」と示した斜線の領域の一つ一つが、結晶子を示す。また、図3のE3において結晶子が複数集まったものが1次粒子である。
なお、本実施形態の研磨砥粒(ジルコニア-非ジルコニア物質の複合粒子)をモル比を用いてZrxA1-xO2(A:非ジルコニア物質の元素名)と表記した場合、xは0<x<1であればよいが、好ましくは0.50<x<0.98であり、より好ましくは0.70<x<0.92であり、さらに好ましくは、0.75<x<0.90である。また、研磨後の洗浄効果を高める観点で、研磨砥粒における非ジルコニア物質の含有量は、2モル%以上であることが好ましく、8モル%以上であることがより好ましく、10モル%以上であることがさらに好ましい。また、ジルコニアによる研磨効果を維持するために、研磨砥粒における非ジルコニア物質の含有量は、50%モル以下であることが好ましく、30モル%以下であることがより好ましく、25モル%以下であることがさらに好ましい。
また、本実施形態の研磨砥粒の大きさは、平均粒子径(D50)で、0.3~2.0μmとすることが好ましい。D50が0.3μmより小さいと、研磨レートが低下して生産性が悪化する場合がある。一方、2.0μmより大きいとスクラッチが増加する場合がある。
なお、平均粒径(D50)は、粒子径・粒度分布測定装置を用いて光散乱法により測定した。D50とは、粉体の集団において、粉体の体積を粒径が小さい側から累積したとき、その累積体積が粉体の集団の全体積の50%となる粒径である。
また、本実施形態の研磨砥粒におけるジルコニア及び非ジルコニア物質の結晶子径(後述)は、10nm以上が好ましく、20nm以上がより好ましく、30nm以上がさらに好ましい。結晶子径を大きくすることで、研磨後の洗浄時に、研磨砥粒とガラス表面との接触部分における非ジルコニア物質の溶解量または溶解面積を大きくすることができるので、ガラス表面における接触面積を減らして研磨砥粒を除去しやすくなる。また、結晶子径が大きくなりすぎると研磨時にスクラッチが入り易くなるため、60nm以下とすることが好ましい。また、研磨砥粒内におけるジルコニア部分及び非ジルコニア物質部分の結晶子径は、10nm以上であることが好ましい。10nm以上とすることで研磨レートをさらに高めることが可能となる。 (A) Structure of polishing abrasive grains and method for producing the same As described above, the polishing liquid used in the polishing apparatus of FIG. 1 includes polishing abrasive grains mainly composed of zirconia as a polishing agent, and the surface of the polishing abrasive grains. Some are composed of non-zirconia materials. “Abrasive grains mainly composed of zirconia” means that the amount of zirconia is the largest among a plurality of substances contained in the abrasive grains. An example of the structure of such abrasive grains will be described with reference to FIG.
E1 in FIG. 3 is an example of a structure in which fine particles of a non-zirconia substance are attached to the surface of zirconia particles. E2 in FIG. 3 and E3 in FIG. 3 are examples of structures in which zirconia particles and a non-zirconia substance are compounded in units of abrasive grains. Each of the hatched areas indicated as “non-zirconia substance” in E2 of FIG. 3 and E3 of FIG. 3 represents a crystallite. Further, a plurality of crystallites collected at E3 in FIG. 3 are primary particles.
Note that when the polishing abrasive grains (zirconia-non-zirconia material composite particles) of the present embodiment are expressed as Zr x A 1-x O2 (A: element name of non-zirconia material) using a molar ratio, x is 0. <X <1, but preferably 0.50 <x <0.98, more preferably 0.70 <x <0.92, and even more preferably 0.75 <x <0. .90. Further, from the viewpoint of enhancing the cleaning effect after polishing, the content of the non-zirconia substance in the abrasive grains is preferably 2 mol% or more, more preferably 8 mol% or more, and more preferably 10 mol% or more. More preferably it is. Moreover, in order to maintain the polishing effect by zirconia, the content of the non-zirconia substance in the abrasive grains is preferably 50% mol or less, more preferably 30 mol% or less, and 25 mol% or less. More preferably it is.
In addition, the size of the abrasive grains of this embodiment is preferably 0.3 to 2.0 μm in terms of average particle diameter (D50). If D50 is smaller than 0.3 μm, the polishing rate may decrease and productivity may deteriorate. On the other hand, if it is larger than 2.0 μm, the scratch may increase.
The average particle size (D50) was measured by a light scattering method using a particle size / particle size distribution measuring device. D50 is a particle size in which when the powder volume is accumulated from the side of smaller particle diameter in the powder group, the accumulated volume is 50% of the total volume of the powder group.
In addition, the crystallite diameter (described later) of the zirconia and non-zirconia substances in the abrasive grains of this embodiment is preferably 10 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more. By increasing the crystallite diameter, the amount of non-zirconia substance dissolved or the area of contact between the abrasive grains and the glass surface can be increased during cleaning after polishing, so the contact area on the glass surface is reduced. This makes it easier to remove the abrasive grains. Further, if the crystallite diameter becomes too large, scratches are likely to occur during polishing, and therefore it is preferably 60 nm or less. Moreover, it is preferable that the crystallite diameter of the zirconia part and the non-zirconia substance part in the abrasive grains is 10 nm or more. By setting the thickness to 10 nm or more, the polishing rate can be further increased.
図3のE1に示す構造の複合粒子の製造方法の一例を記載する。非ジルコニア物質のイオンを含む水溶液中にジルコニア粒子を添加し、還流煮沸しながらジルコニア粒子の表面に非ジルコニア物質の水酸化物等を付着させる。ここで用いるジルコニア粒子は、市販品でも自製したものでもよい。また、非ジルコニア物質の水酸化物を生成させる工程で、沈殿曲線を変化させるためにpH調整や添加物を加えてもよい。
還流煮沸で得られたジルコニア粒子-非ジルコニア物質のゾルを、デカンテーション等を数回繰り返して不要なイオン分を除去し、固液分離した後、乾燥させ、焼成することで、図3のE1に示す構造の複合粒子を得ることができる。デカンテーションの際、ジルコニア粒子-非ジルコニア物質のゾルの沈降性を良好にすることや塩化物イオンや硝酸イオン、硫酸イオンなどをジルコニア粒子-非ジルコニア物質のゾルから取り除くことを目的として、pH調整を行ってもよい。また、焼結後の水分凝集を緩和するために、ジルコニア粒子-非ジルコニア物質のゾルを乾燥させる前に、アセトンやアルコール等の水溶性の有機物で置換してもよい。
焼成条件は、非ジルコニア物質の水酸化物が酸化物に化学変化できる焼成条件であればよく、非ジルコニア物質とジルコニア粒子の結合力を高めるために、ジルコニア粒子と非ジルコニア物質とが一部固溶している形態であれば、なお良い。 An example of a method for producing a composite particle having a structure indicated by E1 in FIG. 3 will be described. Zirconia particles are added to an aqueous solution containing ions of a non-zirconia substance, and a hydroxide of the non-zirconia substance is adhered to the surface of the zirconia particles while boiling at reflux. The zirconia particles used here may be commercially available or self-made. Further, in the step of generating a hydroxide of a non-zirconia substance, pH adjustment or an additive may be added to change the precipitation curve.
The zirconia particle-non-zirconia substance sol obtained by reflux boiling is subjected to decantation and the like several times to remove unnecessary ions, solid-liquid separated, dried and fired to obtain E1 in FIG. Composite particles having the structure shown in FIG. During decantation, the pH is adjusted to improve the settling of the sol of zirconia particles-non-zirconia material and to remove chloride ions, nitrate ions, sulfate ions, etc. from the sol of zirconia particles-non-zirconia material. May be performed. In order to reduce moisture aggregation after sintering, the sol of zirconia particles-non-zirconia substance may be replaced with a water-soluble organic substance such as acetone or alcohol before drying.
The firing condition may be any firing condition in which the hydroxide of the non-zirconia substance can be chemically changed to an oxide. It is still better if it is in a dissolved form.
還流煮沸で得られたジルコニア粒子-非ジルコニア物質のゾルを、デカンテーション等を数回繰り返して不要なイオン分を除去し、固液分離した後、乾燥させ、焼成することで、図3のE1に示す構造の複合粒子を得ることができる。デカンテーションの際、ジルコニア粒子-非ジルコニア物質のゾルの沈降性を良好にすることや塩化物イオンや硝酸イオン、硫酸イオンなどをジルコニア粒子-非ジルコニア物質のゾルから取り除くことを目的として、pH調整を行ってもよい。また、焼結後の水分凝集を緩和するために、ジルコニア粒子-非ジルコニア物質のゾルを乾燥させる前に、アセトンやアルコール等の水溶性の有機物で置換してもよい。
焼成条件は、非ジルコニア物質の水酸化物が酸化物に化学変化できる焼成条件であればよく、非ジルコニア物質とジルコニア粒子の結合力を高めるために、ジルコニア粒子と非ジルコニア物質とが一部固溶している形態であれば、なお良い。 An example of a method for producing a composite particle having a structure indicated by E1 in FIG. 3 will be described. Zirconia particles are added to an aqueous solution containing ions of a non-zirconia substance, and a hydroxide of the non-zirconia substance is adhered to the surface of the zirconia particles while boiling at reflux. The zirconia particles used here may be commercially available or self-made. Further, in the step of generating a hydroxide of a non-zirconia substance, pH adjustment or an additive may be added to change the precipitation curve.
The zirconia particle-non-zirconia substance sol obtained by reflux boiling is subjected to decantation and the like several times to remove unnecessary ions, solid-liquid separated, dried and fired to obtain E1 in FIG. Composite particles having the structure shown in FIG. During decantation, the pH is adjusted to improve the settling of the sol of zirconia particles-non-zirconia material and to remove chloride ions, nitrate ions, sulfate ions, etc. from the sol of zirconia particles-non-zirconia material. May be performed. In order to reduce moisture aggregation after sintering, the sol of zirconia particles-non-zirconia substance may be replaced with a water-soluble organic substance such as acetone or alcohol before drying.
The firing condition may be any firing condition in which the hydroxide of the non-zirconia substance can be chemically changed to an oxide. It is still better if it is in a dissolved form.
図3のE2及び図3のE3に示す構造の複合粒子の製造方法の一例を記載する。先ず、ジルコニウムイオンと非ジルコニア物質のイオンが存在する水溶液(水溶液の条件1)、もしくは、水酸化ジルコニウムと非ジルコニア物質のイオンが存在する水溶液(水溶液の条件2)、もしくは、水酸化ジルコニウムと非ジルコニア物質の水酸化物が存在する水溶液(水溶液の条件3)に関して、図3のE1の場合と同様に、還流煮沸等で水酸化ジルコニウム-非ジルコニア物質の水酸化物のゾルを得る。その後、得られたゾルに対してデカンテーションを行い、乾燥させ、焼成することで、図3のE2及び図3のE3に示す構造の複合粒子が得られる。デカンテーションの際は、前述に記載した事項と同様の目的で、pH調整やアセトンやアルコール等で置換しても良い。また、水酸化ジルコニウムや非ジルコニア物質の水酸化物を生成させる工程で、沈殿曲線を変化させるためにpH調整や添加物を加えてもよい。
水溶液の条件2では、水酸化ジルコニウムと非ジルコニア物質の水酸化物との結合を促進するために、ジルコニウムイオンを微量添加させてもよい。同様の目的で、水溶液の条件3では、ジルコニウムイオンと非ジルコニア物質のイオンを微量添加しても良い。
ジルコニウムイオンは、ジルコニウムを含有する塩化物や硫酸塩、硝酸塩等を水溶液に溶解して得ればよい。非ジルコニア物質に関しても同様に、非ジルコニア物質を含有する塩化物や硫酸塩、硝酸塩等を水溶液中で溶解させればよい。
図3のE2及び図3のE3は共に、焼成前に水酸化ジルコニウム‐非ジルコニア物質の水酸化物が化学的に結合したゾルを得た後、デカンテーションや乾燥後に焼成させることにより得られ、図3のE2及び図3のE3に示す構造のいずれの状態になるかについては、明確には分かっていないが、水酸化ジルコニウムと非ジルコニア物質の水酸化物を生成させる際の核生成自由エネルギーと熱力学的臨界核の因子に影響されると推測される。 An example of a method for producing composite particles having the structure shown in E2 of FIG. 3 and E3 of FIG. 3 will be described. First, an aqueous solution containing zirconium ions and non-zirconia substance ions (aqueous solution condition 1), an aqueous solution containing zirconium hydroxide and non-zirconia substance ions (aqueous solution condition 2), or zirconium hydroxide and non-zirconia substances. With respect to the aqueous solution in which the hydroxide of the zirconia substance exists (condition 3 of the aqueous solution), a hydroxide sol of the zirconium hydroxide-non-zirconia substance is obtained by reflux boiling as in the case of E1 in FIG. Thereafter, the resulting sol is decanted, dried and fired to obtain composite particles having the structure shown in E2 of FIG. 3 and E3 of FIG. In decantation, for the same purpose as described above, pH adjustment, acetone or alcohol may be substituted. Further, in the step of generating a hydroxide of zirconium hydroxide or a non-zirconia substance, pH adjustment or an additive may be added to change the precipitation curve.
In the condition 2 of the aqueous solution, a small amount of zirconium ions may be added in order to promote the bonding between the zirconium hydroxide and the hydroxide of the non-zirconia substance. For the same purpose, in condition 3 of the aqueous solution, a small amount of zirconium ions and non-zirconia substance ions may be added.
Zirconium ions may be obtained by dissolving a zirconium-containing chloride, sulfate, nitrate or the like in an aqueous solution. Similarly, for non-zirconia substances, chlorides, sulfates, nitrates, etc. containing non-zirconia substances may be dissolved in an aqueous solution.
Both E2 in FIG. 3 and E3 in FIG. 3 are obtained by obtaining a sol in which a hydroxide of zirconium hydroxide-non-zirconia substance is chemically bonded before firing, and then firing after decantation and drying. Although it is not clearly understood which state of the structure shown in E2 of FIG. 3 and E3 of FIG. 3 is, the free energy of nucleation when forming hydroxide of zirconium hydroxide and non-zirconia substance It is speculated that it is influenced by the factors of thermodynamic critical nuclei.
水溶液の条件2では、水酸化ジルコニウムと非ジルコニア物質の水酸化物との結合を促進するために、ジルコニウムイオンを微量添加させてもよい。同様の目的で、水溶液の条件3では、ジルコニウムイオンと非ジルコニア物質のイオンを微量添加しても良い。
ジルコニウムイオンは、ジルコニウムを含有する塩化物や硫酸塩、硝酸塩等を水溶液に溶解して得ればよい。非ジルコニア物質に関しても同様に、非ジルコニア物質を含有する塩化物や硫酸塩、硝酸塩等を水溶液中で溶解させればよい。
図3のE2及び図3のE3は共に、焼成前に水酸化ジルコニウム‐非ジルコニア物質の水酸化物が化学的に結合したゾルを得た後、デカンテーションや乾燥後に焼成させることにより得られ、図3のE2及び図3のE3に示す構造のいずれの状態になるかについては、明確には分かっていないが、水酸化ジルコニウムと非ジルコニア物質の水酸化物を生成させる際の核生成自由エネルギーと熱力学的臨界核の因子に影響されると推測される。 An example of a method for producing composite particles having the structure shown in E2 of FIG. 3 and E3 of FIG. 3 will be described. First, an aqueous solution containing zirconium ions and non-zirconia substance ions (aqueous solution condition 1), an aqueous solution containing zirconium hydroxide and non-zirconia substance ions (aqueous solution condition 2), or zirconium hydroxide and non-zirconia substances. With respect to the aqueous solution in which the hydroxide of the zirconia substance exists (condition 3 of the aqueous solution), a hydroxide sol of the zirconium hydroxide-non-zirconia substance is obtained by reflux boiling as in the case of E1 in FIG. Thereafter, the resulting sol is decanted, dried and fired to obtain composite particles having the structure shown in E2 of FIG. 3 and E3 of FIG. In decantation, for the same purpose as described above, pH adjustment, acetone or alcohol may be substituted. Further, in the step of generating a hydroxide of zirconium hydroxide or a non-zirconia substance, pH adjustment or an additive may be added to change the precipitation curve.
In the condition 2 of the aqueous solution, a small amount of zirconium ions may be added in order to promote the bonding between the zirconium hydroxide and the hydroxide of the non-zirconia substance. For the same purpose, in condition 3 of the aqueous solution, a small amount of zirconium ions and non-zirconia substance ions may be added.
Zirconium ions may be obtained by dissolving a zirconium-containing chloride, sulfate, nitrate or the like in an aqueous solution. Similarly, for non-zirconia substances, chlorides, sulfates, nitrates, etc. containing non-zirconia substances may be dissolved in an aqueous solution.
Both E2 in FIG. 3 and E3 in FIG. 3 are obtained by obtaining a sol in which a hydroxide of zirconium hydroxide-non-zirconia substance is chemically bonded before firing, and then firing after decantation and drying. Although it is not clearly understood which state of the structure shown in E2 of FIG. 3 and E3 of FIG. 3 is, the free energy of nucleation when forming hydroxide of zirconium hydroxide and non-zirconia substance It is speculated that it is influenced by the factors of thermodynamic critical nuclei.
焼成で得られたジルコニア-非ジルコニア物質の粒子は、研磨材として使用する際、粒度分布を適切な範囲に揃えることが必要である。解砕・粉砕に関しては市販のボールミルやハンマーミル、ビーズミル等を用いれば良く、分級に関しても市販の分級機を用いればよく、ふるいや気流を用いた乾式の分級機や液体サイクロン等の湿式分級機を用いればよい。粒度分布や粗大粒子の因子は研磨特性に大きく影響するため、解砕・粉砕工程や分級工程はそれぞれ多段階で行うことが望ましい。
The particles of zirconia-non-zirconia substance obtained by firing need to have a particle size distribution in an appropriate range when used as an abrasive. Commercially available ball mills, hammer mills, bead mills, etc. can be used for crushing and grinding, and commercially available classifiers can also be used for classification. Wet classifiers such as dry classifiers and liquid cyclones using sieves and air currents. May be used. Since the particle size distribution and coarse particle factors greatly affect the polishing characteristics, it is desirable to perform the crushing / pulverizing step and the classification step in multiple stages.
(B)非ジルコニア物質、及び、洗浄液
第1研磨工程において、研磨砥粒の表面の一部を構成する非ジルコニア物質、及び研磨後に使用する洗浄液は、以下の(a)~(d)の要求特性を満足するように選択されることが好ましい。 (B) Non-zirconia substance and cleaning liquid The non-zirconia substance constituting a part of the surface of the abrasive grains and the cleaning liquid used after polishing in the first polishing step are the following requirements (a) to (d): It is preferably selected so as to satisfy the characteristics.
第1研磨工程において、研磨砥粒の表面の一部を構成する非ジルコニア物質、及び研磨後に使用する洗浄液は、以下の(a)~(d)の要求特性を満足するように選択されることが好ましい。 (B) Non-zirconia substance and cleaning liquid The non-zirconia substance constituting a part of the surface of the abrasive grains and the cleaning liquid used after polishing in the first polishing step are the following requirements (a) to (d): It is preferably selected so as to satisfy the characteristics.
(a)非ジルコニア物質が洗浄液で溶解できること
本実施形態の研磨砥粒は、研磨中におけるジルコニアとガラス表面との間の接着面積を小さくするために、ジルコニアの表面の一部に非ジルコニア物質を形成しているが、この非ジルコニア物質が洗浄液に溶解することで、ガラス素板Gのガラス表面に付着した非ジルコニア物質をガラス表面から比較的容易に除去することができるようになる。 (A) Non-zirconia substance can be dissolved with a cleaning liquid The abrasive grains of this embodiment are made of non-zirconia substance on a part of the surface of zirconia in order to reduce the adhesion area between zirconia and the glass surface during polishing. Although formed, this non-zirconia substance dissolves in the cleaning liquid, so that the non-zirconia substance attached to the glass surface of the glass base plate G can be removed from the glass surface relatively easily.
本実施形態の研磨砥粒は、研磨中におけるジルコニアとガラス表面との間の接着面積を小さくするために、ジルコニアの表面の一部に非ジルコニア物質を形成しているが、この非ジルコニア物質が洗浄液に溶解することで、ガラス素板Gのガラス表面に付着した非ジルコニア物質をガラス表面から比較的容易に除去することができるようになる。 (A) Non-zirconia substance can be dissolved with a cleaning liquid The abrasive grains of this embodiment are made of non-zirconia substance on a part of the surface of zirconia in order to reduce the adhesion area between zirconia and the glass surface during polishing. Although formed, this non-zirconia substance dissolves in the cleaning liquid, so that the non-zirconia substance attached to the glass surface of the glass base plate G can be removed from the glass surface relatively easily.
(b)その洗浄液がガラス素板Gを大きくエッチングしないものであること
ガラス素板Gを洗浄液に漬すことによりガラス素板Gの表面が大きくエッチングされる場合には、ガラス素板Gの表面性状の悪化(うねりや粗さの悪化、潜傷の発生)を発生させるため好ましくない。 (B) The cleaning liquid does not significantly etch the glass base plate G. When the surface of the glass base plate G is greatly etched by immersing the glass base plate G in the cleaning liquid, the surface of the glass base plate G This is not preferable because it deteriorates properties (waviness, roughness, and latent scratches).
ガラス素板Gを洗浄液に漬すことによりガラス素板Gの表面が大きくエッチングされる場合には、ガラス素板Gの表面性状の悪化(うねりや粗さの悪化、潜傷の発生)を発生させるため好ましくない。 (B) The cleaning liquid does not significantly etch the glass base plate G. When the surface of the glass base plate G is greatly etched by immersing the glass base plate G in the cleaning liquid, the surface of the glass base plate G This is not preferable because it deteriorates properties (waviness, roughness, and latent scratches).
(c)非ジルコニア物質は、人体への有害性が低く、環境負荷が大きくなく、かつ量産に適したものであること
非ジルコニア物質として、公害病の原因となる金属類、人体に有害な物質、及び研磨液の廃液処理で問題となる物質を使用することは好ましくない。 (C) Non-zirconia substances are low in harm to the human body, have a low environmental impact, and are suitable for mass production. Non-zirconia substances that cause pollution diseases and substances that are harmful to the human body In addition, it is not preferable to use a substance which causes a problem in the waste liquid treatment of the polishing liquid.
非ジルコニア物質として、公害病の原因となる金属類、人体に有害な物質、及び研磨液の廃液処理で問題となる物質を使用することは好ましくない。 (C) Non-zirconia substances are low in harm to the human body, have a low environmental impact, and are suitable for mass production. Non-zirconia substances that cause pollution diseases and substances that are harmful to the human body In addition, it is not preferable to use a substance which causes a problem in the waste liquid treatment of the polishing liquid.
(d)非ジルコニア物質は、ガラス素板Gに対して研磨特性を悪化させるものでないこと
非ジルコニア物質は主表面研磨中にガラス素板Gの表面(主表面及び側壁面)に対して直接接触するものであり、本実施形態の研磨砥粒に含まれる非ジルコニア物質自体の研磨特性(例えば、研磨レートや研磨後のスクラッチの有無)が不良である場合には、研磨砥粒としての研磨特性を良好なものとすることができない。 (D) The non-zirconia material does not deteriorate the polishing characteristics with respect to the glass base plate G. The non-zirconia material directly contacts the surface (main surface and side wall surface) of the glass base plate G during main surface polishing. If the polishing characteristics of the non-zirconia substance itself contained in the polishing abrasive grains of this embodiment (for example, the polishing rate and the presence or absence of scratches after polishing) are poor, the polishing characteristics as polishing abrasive grains Cannot be made good.
非ジルコニア物質は主表面研磨中にガラス素板Gの表面(主表面及び側壁面)に対して直接接触するものであり、本実施形態の研磨砥粒に含まれる非ジルコニア物質自体の研磨特性(例えば、研磨レートや研磨後のスクラッチの有無)が不良である場合には、研磨砥粒としての研磨特性を良好なものとすることができない。 (D) The non-zirconia material does not deteriorate the polishing characteristics with respect to the glass base plate G. The non-zirconia material directly contacts the surface (main surface and side wall surface) of the glass base plate G during main surface polishing. If the polishing characteristics of the non-zirconia substance itself contained in the polishing abrasive grains of this embodiment (for example, the polishing rate and the presence or absence of scratches after polishing) are poor, the polishing characteristics as polishing abrasive grains Cannot be made good.
本願発明者らが、第1研磨工程において、研磨砥粒の表面の一部を構成する非ジルコニア物質、及び研磨後に使用する洗浄液の組み合わせについて考察した結果、以下の組み合わせにより、上記(a)~(d)の要求特性を満たす点で好ましいことがわかった。
[組み合わせ1]
・非ジルコニア物質:酸化セリウム(CeO2)
・洗浄液:フッ素イオンを含有する洗浄液(以下、「洗浄液A」という。)
洗浄液Aの例として、例えば、特許第4041110号に記載されている洗浄液を用いることができる。
[組み合わせ2]
・非ジルコニア物質:酸化第二鉄(Fe2O3)、四酸化三鉄(Fe3O4)などの酸化鉄
・洗浄液:カルボン酸を含む酸と鉄の2価イオンを含む洗浄液(以下、「洗浄液B」という。)
洗浄液Bの例として、例えば、国際公開WO2011/125894に記載されている洗浄液を用いることができる。 As a result of considering the combination of the non-zirconia substance constituting a part of the surface of the abrasive grain and the cleaning liquid used after polishing in the first polishing step, the inventors of the present application have found that the following combinations (a) to (a) to It turned out that it is preferable at the point which satisfy | fills the required characteristic of (d).
[Combination 1]
Non-zirconia material: cerium oxide (CeO 2 )
Cleaning liquid: Cleaning liquid containing fluorine ions (hereinafter referred to as “cleaning liquid A”)
As an example of the cleaning liquid A, for example, the cleaning liquid described in Japanese Patent No. 4041110 can be used.
[Combination 2]
Non-zirconia substances: Iron oxides such as ferric oxide (Fe 2 O 3 ) and triiron tetroxide (Fe 3 O 4 ) Washing liquid: Cleaning liquid containing acid containing carboxylic acid and divalent ions of iron (hereinafter, (Referred to as “cleaning liquid B”)
As an example of the cleaning liquid B, for example, a cleaning liquid described in International Publication WO2011 / 125894 can be used.
[組み合わせ1]
・非ジルコニア物質:酸化セリウム(CeO2)
・洗浄液:フッ素イオンを含有する洗浄液(以下、「洗浄液A」という。)
洗浄液Aの例として、例えば、特許第4041110号に記載されている洗浄液を用いることができる。
[組み合わせ2]
・非ジルコニア物質:酸化第二鉄(Fe2O3)、四酸化三鉄(Fe3O4)などの酸化鉄
・洗浄液:カルボン酸を含む酸と鉄の2価イオンを含む洗浄液(以下、「洗浄液B」という。)
洗浄液Bの例として、例えば、国際公開WO2011/125894に記載されている洗浄液を用いることができる。 As a result of considering the combination of the non-zirconia substance constituting a part of the surface of the abrasive grain and the cleaning liquid used after polishing in the first polishing step, the inventors of the present application have found that the following combinations (a) to (a) to It turned out that it is preferable at the point which satisfy | fills the required characteristic of (d).
[Combination 1]
Non-zirconia material: cerium oxide (CeO 2 )
Cleaning liquid: Cleaning liquid containing fluorine ions (hereinafter referred to as “cleaning liquid A”)
As an example of the cleaning liquid A, for example, the cleaning liquid described in Japanese Patent No. 4041110 can be used.
[Combination 2]
Non-zirconia substances: Iron oxides such as ferric oxide (Fe 2 O 3 ) and triiron tetroxide (Fe 3 O 4 ) Washing liquid: Cleaning liquid containing acid containing carboxylic acid and divalent ions of iron (hereinafter, (Referred to as “cleaning liquid B”)
As an example of the cleaning liquid B, for example, a cleaning liquid described in International Publication WO2011 / 125894 can be used.
酸化セリウム(二酸化セリウム)は従来からガラス基板に対して、高研磨レートと高品質の表面性状とを両立できる研磨剤として知られている材料である。酸化第二鉄は、酸化セリウム以前にガラス基板の研磨に使用されていた材料であり、酸化セリウムほどではないが、比較的高研磨レートと高品質の表面性状とを実現できる研磨剤として知られている。例えば、酸化第二鉄は、アルミナよりも高研磨レートと高品質の表面性状とを実現できる研磨剤である。
特許第4041110号に詳細に記載されているため、ここでは詳しく述べないが、洗浄液Aは、酸化セリウム等の希土類酸化物に対する溶解性能に優れていることが確認されている。洗浄液Aにおいてフッ素イオンの含有量を40ppm以下とすることで、ガラス表面のエッチング作用を抑制できることができる。フッ素イオンは、例えばケイフッ酸を洗浄液に含むことで供給することができる。洗浄液Aはさらに、酸を含むことが好ましい。酸によって、エッチング作用を抑制しつつ、酸化セリウム等の希土類酸化物の洗浄性を高めることができる。各種の酸の中では硫酸を用いると洗浄効果が高く好ましい。洗浄液Aはさらにまた、還元剤を含むことが好ましい。還元剤により酸化セリウム等の希土類酸化物の溶解性を高めることができる。還元剤としては、アスコルビン酸、及び硫酸等の強酸のうち少なくともいずれかをさらに含むことが好ましい。例えば、洗浄液は、フッ素イオンを0.001~0.02[mol/L]、硫酸を0.05~1[mol/L]、アスコルビン酸を0.001~0.2[mol/L]、含む。 Cerium oxide (cerium dioxide) is a material conventionally known as an abrasive capable of achieving both a high polishing rate and a high quality surface property with respect to a glass substrate. Ferric oxide is a material that was used for polishing glass substrates before cerium oxide. It is not as good as cerium oxide, but it is known as an abrasive that can achieve a relatively high polishing rate and high quality surface properties. ing. For example, ferric oxide is an abrasive that can achieve a higher polishing rate and higher quality surface properties than alumina.
Since it is described in detail in Japanese Patent No. 4041110, it is not described in detail here, but it has been confirmed that the cleaning liquid A is excellent in dissolving performance with respect to rare earth oxides such as cerium oxide. By setting the fluorine ion content to 40 ppm or less in the cleaning liquid A, the etching action on the glass surface can be suppressed. Fluorine ions can be supplied, for example, by including silicic acid in the cleaning solution. It is preferable that the cleaning liquid A further contains an acid. The acid can enhance the detergency of rare earth oxides such as cerium oxide while suppressing the etching action. Among various acids, sulfuric acid is preferable because of its high cleaning effect. It is preferable that the cleaning liquid A further contains a reducing agent. The solubility of rare earth oxides such as cerium oxide can be increased by the reducing agent. The reducing agent preferably further contains at least one of strong acids such as ascorbic acid and sulfuric acid. For example, the cleaning liquid has a fluorine ion of 0.001 to 0.02 [mol / L], sulfuric acid of 0.05 to 1 [mol / L], ascorbic acid of 0.001 to 0.2 [mol / L], Including.
特許第4041110号に詳細に記載されているため、ここでは詳しく述べないが、洗浄液Aは、酸化セリウム等の希土類酸化物に対する溶解性能に優れていることが確認されている。洗浄液Aにおいてフッ素イオンの含有量を40ppm以下とすることで、ガラス表面のエッチング作用を抑制できることができる。フッ素イオンは、例えばケイフッ酸を洗浄液に含むことで供給することができる。洗浄液Aはさらに、酸を含むことが好ましい。酸によって、エッチング作用を抑制しつつ、酸化セリウム等の希土類酸化物の洗浄性を高めることができる。各種の酸の中では硫酸を用いると洗浄効果が高く好ましい。洗浄液Aはさらにまた、還元剤を含むことが好ましい。還元剤により酸化セリウム等の希土類酸化物の溶解性を高めることができる。還元剤としては、アスコルビン酸、及び硫酸等の強酸のうち少なくともいずれかをさらに含むことが好ましい。例えば、洗浄液は、フッ素イオンを0.001~0.02[mol/L]、硫酸を0.05~1[mol/L]、アスコルビン酸を0.001~0.2[mol/L]、含む。 Cerium oxide (cerium dioxide) is a material conventionally known as an abrasive capable of achieving both a high polishing rate and a high quality surface property with respect to a glass substrate. Ferric oxide is a material that was used for polishing glass substrates before cerium oxide. It is not as good as cerium oxide, but it is known as an abrasive that can achieve a relatively high polishing rate and high quality surface properties. ing. For example, ferric oxide is an abrasive that can achieve a higher polishing rate and higher quality surface properties than alumina.
Since it is described in detail in Japanese Patent No. 4041110, it is not described in detail here, but it has been confirmed that the cleaning liquid A is excellent in dissolving performance with respect to rare earth oxides such as cerium oxide. By setting the fluorine ion content to 40 ppm or less in the cleaning liquid A, the etching action on the glass surface can be suppressed. Fluorine ions can be supplied, for example, by including silicic acid in the cleaning solution. It is preferable that the cleaning liquid A further contains an acid. The acid can enhance the detergency of rare earth oxides such as cerium oxide while suppressing the etching action. Among various acids, sulfuric acid is preferable because of its high cleaning effect. It is preferable that the cleaning liquid A further contains a reducing agent. The solubility of rare earth oxides such as cerium oxide can be increased by the reducing agent. The reducing agent preferably further contains at least one of strong acids such as ascorbic acid and sulfuric acid. For example, the cleaning liquid has a fluorine ion of 0.001 to 0.02 [mol / L], sulfuric acid of 0.05 to 1 [mol / L], ascorbic acid of 0.001 to 0.2 [mol / L], Including.
なお、洗浄液Aの替わりに、酸と還元剤とを含む洗浄液A’を用いてもよい。酸としては、強酸特に硫酸、塩酸及び硝酸の1種又は2種以上が好適である。硫酸濃度は20wt%以上80wt%以下、好ましくは50wt%以上80wt%以下である。硫酸濃度が20wt%よりも低い場合には基板表面がエッチングされて荒れやすくなる。硫酸濃度が80wt%よりも高い場合には上記の酸としての作用が十分に得られない。塩酸、硝酸、リン酸および臭化水素の濃度は10wt%以下、好ましくは5wt%以下である。塩酸、硝酸、リン酸および臭化水素の濃度が10wt%よりも高い場合には基板表面がエッチングされやすくなる。酸としては塩酸、硫酸、硝酸及び臭化水素が好ましく、硫酸が特に好ましい。他方、還元剤としては、水素、過酸化水素水、水素化ホウ素ナトリウム、硫酸ヒドロキシルアミン、塩酸ヒドロキシルアミン、亜硝酸ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸水素ナトリウム、硫化ナトリウム、硫化アンモニウム、ギ酸、アスコルビン酸、シュウ酸、アセトアルデヒド、ヨウ化水素、リン酸水素ナトリウム、リン酸水素二ナトリウム、亜リン酸ナトリウム、硫酸第一鉄及び塩化第二スズ並びに還元作用を有するキレート剤(例えばカテコール類の酸化物)の少なくとも1種が好適である。この還元剤の濃度は、過酸化水素水の濃度は1wt%以上10wt%以下、好ましくは3wt%以上10t%以下である。過酸化水素水の濃度が1wt%よりも低い場合には上記の還元剤としての作用が十分に得られない。過酸化水素水の濃度を10wt%よりも高くしても上記の還元剤としての作用はあまり向上しない。過酸化水素水以外の還元剤の濃度は、溶解度の制限があり0.01wt%以上5wt%以下、好ましくは0.1wt%以上5wt%以下である。過酸化水素水以外の還元剤の濃度が0.01wt%よりも低い場合には上記の還元剤としての作用が十分に得られない。過酸化水素水以外の還元剤の濃度を5wt%よりも高くしても上記の還元剤としての作用はあまり向上しない。還元剤としてはアスコルビン酸及び過酸化水素が好ましく、過酸化水素が特に好ましい。酸化剤と還元剤の組み合わせは典型的には濃硫酸および過酸化水素である。なおこのとき、洗浄液の液温は50℃以上100℃以下とするとより好ましい。50℃以上とすることで酸化セリウム等の希土類酸化物の溶解性をさらに高めることができる。
In place of the cleaning liquid A, a cleaning liquid A ′ containing an acid and a reducing agent may be used. The acid is preferably a strong acid, particularly one or more of sulfuric acid, hydrochloric acid and nitric acid. The sulfuric acid concentration is 20 wt% or more and 80 wt% or less, preferably 50 wt% or more and 80 wt% or less. When the sulfuric acid concentration is lower than 20 wt%, the surface of the substrate is easily etched and roughened. When the sulfuric acid concentration is higher than 80 wt%, the above-mentioned action as an acid cannot be sufficiently obtained. The concentration of hydrochloric acid, nitric acid, phosphoric acid and hydrogen bromide is 10 wt% or less, preferably 5 wt% or less. When the concentration of hydrochloric acid, nitric acid, phosphoric acid and hydrogen bromide is higher than 10 wt%, the substrate surface is easily etched. As the acid, hydrochloric acid, sulfuric acid, nitric acid and hydrogen bromide are preferable, and sulfuric acid is particularly preferable. On the other hand, as a reducing agent, hydrogen, aqueous hydrogen peroxide, sodium borohydride, hydroxylamine sulfate, hydroxylamine hydrochloride, sodium nitrite, sodium sulfite, sodium hydrogensulfite, sodium hydrogensulfate, sodium sulfide, ammonium sulfide, formic acid, Ascorbic acid, oxalic acid, acetaldehyde, hydrogen iodide, sodium hydrogen phosphate, disodium hydrogen phosphate, sodium phosphite, ferrous sulfate and stannic chloride and chelating agents having a reducing action (eg oxidation of catechols) At least one of the products is preferred. The concentration of the reducing agent is 1 wt% or more and 10 wt% or less, preferably 3 wt% or more and 10 t% or less. When the concentration of the hydrogen peroxide solution is lower than 1 wt%, the above-described action as a reducing agent cannot be obtained sufficiently. Even if the concentration of the hydrogen peroxide solution is higher than 10 wt%, the action as the reducing agent is not improved so much. The concentration of the reducing agent other than the hydrogen peroxide solution is 0.01 wt% or more and 5 wt% or less, preferably 0.1 wt% or more and 5 wt% or less due to the limitation of solubility. When the concentration of the reducing agent other than the hydrogen peroxide solution is lower than 0.01 wt%, the above-described action as the reducing agent cannot be sufficiently obtained. Even if the concentration of the reducing agent other than the hydrogen peroxide solution is higher than 5 wt%, the action as the reducing agent is not improved so much. As the reducing agent, ascorbic acid and hydrogen peroxide are preferable, and hydrogen peroxide is particularly preferable. The combination of oxidizing agent and reducing agent is typically concentrated sulfuric acid and hydrogen peroxide. At this time, the temperature of the cleaning liquid is more preferably 50 ° C. or higher and 100 ° C. or lower. The solubility of rare earth oxides, such as cerium oxide, can further be improved by setting it as 50 degreeC or more.
また、国際公開WO2011/125894に記載されているため、ここでは詳しく述べないが、洗浄液Bは、ガラス基板の表面を粗くすることなく酸化第二鉄、四酸化三鉄等の酸化鉄や水酸化鉄等を溶解させることができる。なお、カルボン酸を含む酸としては、シュウ酸、リンゴ酸、酒石酸、フマル酸、クエン酸などを用いることができるが、特にシュウ酸は還元力が高く好ましい。カルボン酸を含む酸の濃度は、0.01~0.5mol/Lの範囲内とすることが好ましい。この範囲内より低い濃度だと、洗浄効果が不足する場合がある。また、この範囲内より高いと、洗浄処理のコストが高くなる場合がある。また、鉄の2価イオンの濃度は、0.0001~0.01mol/Lの範囲内とすることが好ましい。この範囲内より低い濃度だと、洗浄効果が不足する場合がある。また、この範囲内より高いと、洗浄処理のコストが高くなる場合がある。鉄の2価イオンは、例えば硫酸アンモニウム鉄(II)、硫酸鉄(II)、シュウ酸鉄(II)などを洗浄液に添加して供給することができる。
In addition, since it is described in International Publication WO2011 / 125894, it will not be described in detail here. However, the cleaning liquid B is made of iron oxide such as ferric oxide or triiron tetroxide or hydroxide without roughening the surface of the glass substrate. Iron or the like can be dissolved. As the acid containing carboxylic acid, oxalic acid, malic acid, tartaric acid, fumaric acid, citric acid and the like can be used, and oxalic acid is particularly preferable because of its high reducing power. The concentration of the acid containing carboxylic acid is preferably in the range of 0.01 to 0.5 mol / L. If the concentration is lower than this range, the cleaning effect may be insufficient. On the other hand, if it is higher than this range, the cost of the cleaning treatment may increase. The concentration of iron divalent ions is preferably in the range of 0.0001 to 0.01 mol / L. If the concentration is lower than this range, the cleaning effect may be insufficient. On the other hand, if it is higher than this range, the cost of the cleaning treatment may increase. The iron divalent ions can be supplied by adding, for example, ammonium iron sulfate (II), iron sulfate (II), iron oxalate (II) or the like to the cleaning liquid.
本実施形態の研磨砥粒に含まれる非ジルコニア物質は、上述した物質に限られない。例えば、二酸化チタン(TiO2)、酸化亜鉛(ZnO)、アルミナ、酸化銅(CuO)、二酸化マンガン(MnO2)や四三酸化マンガン(Mn3O4)などの酸化マンガンを使用してもよい。二酸化チタンを含有させる場合、研磨後の洗浄液に過酸化水素を含有させれば高い溶解効果を得ることができるので好ましい。また、酸化亜鉛(ZnO)、アルミナ、酸化銅(CuO)、酸化マンガンを含有させる場合は、上述の洗浄液Aを用いれば高い溶解効果を得ることができるので好ましい。
The non-zirconia substance contained in the abrasive grains of this embodiment is not limited to the above-described substances. For example, manganese oxides such as titanium dioxide (TiO 2 ), zinc oxide (ZnO), alumina, copper oxide (CuO), manganese dioxide (MnO 2 ), and manganese tetraoxide (Mn 3 O 4 ) may be used. . When titanium dioxide is contained, it is preferable to add hydrogen peroxide to the polishing liquid after polishing because a high dissolution effect can be obtained. Further, when zinc oxide (ZnO), alumina, copper oxide (CuO), and manganese oxide are contained, it is preferable to use the above-described cleaning liquid A because a high dissolution effect can be obtained.
上述したように、本実施形態の主表面研磨工程では、研磨砥粒の主成分であるジルコニア粒子の表面の一部が非ジルコニア物質で構成され、かつ非ジルコニア物質が溶解しやすい洗浄液を用いて研磨後の洗浄を行うために、ジルコニア粒子がガラス素板Gの側壁面に残留あるいは付着し難くすることができる。一方、前述したように特許文献2~4には、セリウムとジルコニアとを含む複合酸化物粒子を含む研磨液組成物が記載されているが、このような複合酸化物粒子では、本実施形態の研磨砥粒と同様の効果が得られない。その理由は以下のとおりである。すなわち、本実施形態の研磨砥粒において、ジルコニアと非ジルコニア物質の結合部分はジルコニアと非ジルコニア物質が固溶している状態であり、大半は非ジルコニア物質が結晶もしくはアモルファスの状態で残っているため、その非ジルコニア物質を洗浄液で溶解させることで、良好な洗浄性を得ることができる。一方、特許文献2~4に記載されている複合酸化物粒子は、酸化セリウムと酸化ジルコニウムが均一に溶け合って1つの固相を形成しているため、例えば上述した洗浄液Aを用いて複合酸化物粒子を溶解除去することができない。
As described above, in the main surface polishing step of the present embodiment, a part of the surface of the zirconia particles that are the main components of the abrasive grains is composed of a non-zirconia substance, and a cleaning liquid in which the non-zirconia substance is easily dissolved is used. In order to perform the cleaning after polishing, the zirconia particles can be made difficult to remain or adhere to the side wall surface of the glass base plate G. On the other hand, as described above, Patent Documents 2 to 4 describe polishing liquid compositions containing composite oxide particles containing cerium and zirconia. With such composite oxide particles, The same effect as abrasive grains cannot be obtained. The reason is as follows. That is, in the abrasive grains of this embodiment, the zirconia and non-zirconia substance bonding portion is in a state where the zirconia and non-zirconia substance are in solid solution, and most of the non-zirconia substance remains in a crystalline or amorphous state. Therefore, good detergency can be obtained by dissolving the non-zirconia substance with a cleaning liquid. On the other hand, in the composite oxide particles described in Patent Documents 2 to 4, since cerium oxide and zirconium oxide are uniformly dissolved to form one solid phase, for example, the composite oxide using the cleaning liquid A described above is used. The particles cannot be dissolved and removed.
本研磨工程において、主成分であるジルコニア粒子の表面の一部が非ジルコニア物質で構成される研磨砥粒を研磨液に含有させることによる作用について、図4を参照して説明する。
図4は、ガラス素板Gがキャリア30の孔部31に収容された状態を示す図である。図4に示すように、研磨装置のキャリア30にガラス素板Gが収容された状態では、ガラス素板Gのキャリア30からの着脱を可能にするために、キャリア30とガラス素板Gの間には、水平方向(つまり、ガラス素板Gの主表面と平行な方向)に僅かな間隙CLが設けられている。つまり、研磨対象であるガラス素板Gの外径をD1、キャリア30の孔部31の径(ガラス素板が当接する当接面の径)をD2としたときにはD2>D1が成立する。それによって、研磨中には、ガラス素板Gの側壁面Gtと、キャリア30の孔部31を形成する側壁面30tとの間の間隙CLには、研磨液中の研磨砥粒が入り込むようになる。 With reference to FIG. 4, an explanation will be given on the action of the polishing liquid containing polishing abrasive grains in which a part of the surface of the zirconia particles as the main component is made of a non-zirconia substance in the polishing process.
FIG. 4 is a view showing a state in which the glass base plate G is accommodated in thehole 31 of the carrier 30. As shown in FIG. 4, in a state where the glass base plate G is accommodated in the carrier 30 of the polishing apparatus, in order to enable the glass base plate G to be detached from the carrier 30, between the carrier 30 and the glass base plate G. Is provided with a slight gap CL in the horizontal direction (that is, the direction parallel to the main surface of the glass base plate G). That is, when the outer diameter of the glass base plate G to be polished is D1 and the diameter of the hole 31 of the carrier 30 (the diameter of the contact surface with which the glass base plate contacts) is D2, D2> D1 is established. Thereby, during polishing, the abrasive grains in the polishing liquid enter the gap CL between the side wall surface Gt of the glass base plate G and the side wall surface 30t forming the hole 31 of the carrier 30. Become.
図4は、ガラス素板Gがキャリア30の孔部31に収容された状態を示す図である。図4に示すように、研磨装置のキャリア30にガラス素板Gが収容された状態では、ガラス素板Gのキャリア30からの着脱を可能にするために、キャリア30とガラス素板Gの間には、水平方向(つまり、ガラス素板Gの主表面と平行な方向)に僅かな間隙CLが設けられている。つまり、研磨対象であるガラス素板Gの外径をD1、キャリア30の孔部31の径(ガラス素板が当接する当接面の径)をD2としたときにはD2>D1が成立する。それによって、研磨中には、ガラス素板Gの側壁面Gtと、キャリア30の孔部31を形成する側壁面30tとの間の間隙CLには、研磨液中の研磨砥粒が入り込むようになる。 With reference to FIG. 4, an explanation will be given on the action of the polishing liquid containing polishing abrasive grains in which a part of the surface of the zirconia particles as the main component is made of a non-zirconia substance in the polishing process.
FIG. 4 is a view showing a state in which the glass base plate G is accommodated in the
研磨加工中においてガラス素板Gは、板厚方向に定盤による荷重が掛かりつつ、主表面と平行な方向についてはキャリア30の孔部31内を拘束されない状態で運動する。このとき、ガラス素板Gの側壁面Gtは、孔部31を形成する側壁面30tに当接させられるとともに、間隙CLに入り込んだ研磨砥粒がガラス素板Gの側壁面Gtに押し付けられる。このとき、研磨砥粒の主成分であるジルコニア粒子の表面の一部が非ジルコニア物質で構成されているため、研磨砥粒がガラス素板Gの側壁面Gtに押し付けられたとしても、ジルコニア粒子のガラス表面に対する接触面積が少ないために、押し付けられた場合のガラス表面に対する固着力が弱く、研磨砥粒の表面に存在する非ジルコニア物質を溶解除去することで、研磨砥粒をガラス表面から容易に離脱させることができると考えられる。
During the polishing process, the glass base plate G moves in an unconstrained state in the hole 31 of the carrier 30 in a direction parallel to the main surface while being loaded with a surface plate in the thickness direction. At this time, the side wall surface Gt of the glass base plate G is brought into contact with the side wall surface 30t forming the hole 31, and the abrasive grains that have entered the gap CL are pressed against the side wall surface Gt of the glass base plate G. At this time, since a part of the surface of the zirconia particles which are the main components of the abrasive grains is composed of a non-zirconia substance, even if the abrasive grains are pressed against the side wall surface Gt of the glass base plate G, the zirconia particles Since the contact area with the glass surface is small, the adhesion to the glass surface when pressed is weak, and the abrasive grains can be easily removed from the glass surface by dissolving and removing non-zirconia substances present on the surface of the abrasive grains. It is thought that it can be made to leave.
(6-3)ガラス素板の主表面の表面凹凸
第1研磨工程では、ガラス素板の主表面の表面凹凸について、算術平均粗さ(Ra)を0.5nm以下とし、かつマイクロウェービネス(MW-Rq)を0.5nm以下とするように研磨が行われる。ここで、マイクロウェービネスは、主表面全面の波長帯域100~500μmの粗さとして算出されるRMS(Rq)値で表すことができ、例えば、光学式表面粗さ計を用いて計測できる。
主表面の粗さは、JIS B0601:2001により規定される算術平均粗さRaで表され、例えば、走査型プローブ顕微鏡(原子間力顕微鏡;AFM)で計測できる。本願においては、1μm×1μm角の測定エリアにおいて、512×512ピクセルの解像度で測定したときの算術平均粗さRaを用いることができる。
なお、算術平均粗さRaは、触針式表面粗さ測定機を用いて測定してもよい。 (6-3) Surface irregularities on the main surface of the glass base plate In the first polishing step, the arithmetic average roughness (Ra) of the surface irregularities on the main surface of the glass base plate is set to 0.5 nm or less, and the micro waveness ( Polishing is performed so that (MW-Rq) is 0.5 nm or less. Here, the micro waveness can be represented by an RMS (Rq) value calculated as a roughness of a wavelength band of 100 to 500 μm over the entire main surface, and can be measured using, for example, an optical surface roughness meter.
The roughness of the main surface is represented by an arithmetic average roughness Ra defined by JIS B0601: 2001, and can be measured by, for example, a scanning probe microscope (atomic force microscope; AFM). In the present application, the arithmetic average roughness Ra when measured at a resolution of 512 × 512 pixels in a 1 μm × 1 μm square measurement area can be used.
The arithmetic average roughness Ra may be measured using a stylus type surface roughness measuring machine.
第1研磨工程では、ガラス素板の主表面の表面凹凸について、算術平均粗さ(Ra)を0.5nm以下とし、かつマイクロウェービネス(MW-Rq)を0.5nm以下とするように研磨が行われる。ここで、マイクロウェービネスは、主表面全面の波長帯域100~500μmの粗さとして算出されるRMS(Rq)値で表すことができ、例えば、光学式表面粗さ計を用いて計測できる。
主表面の粗さは、JIS B0601:2001により規定される算術平均粗さRaで表され、例えば、走査型プローブ顕微鏡(原子間力顕微鏡;AFM)で計測できる。本願においては、1μm×1μm角の測定エリアにおいて、512×512ピクセルの解像度で測定したときの算術平均粗さRaを用いることができる。
なお、算術平均粗さRaは、触針式表面粗さ測定機を用いて測定してもよい。 (6-3) Surface irregularities on the main surface of the glass base plate In the first polishing step, the arithmetic average roughness (Ra) of the surface irregularities on the main surface of the glass base plate is set to 0.5 nm or less, and the micro waveness ( Polishing is performed so that (MW-Rq) is 0.5 nm or less. Here, the micro waveness can be represented by an RMS (Rq) value calculated as a roughness of a wavelength band of 100 to 500 μm over the entire main surface, and can be measured using, for example, an optical surface roughness meter.
The roughness of the main surface is represented by an arithmetic average roughness Ra defined by JIS B0601: 2001, and can be measured by, for example, a scanning probe microscope (atomic force microscope; AFM). In the present application, the arithmetic average roughness Ra when measured at a resolution of 512 × 512 pixels in a 1 μm × 1 μm square measurement area can be used.
The arithmetic average roughness Ra may be measured using a stylus type surface roughness measuring machine.
(7)化学強化工程
次に、第1研磨後のガラス素板は化学強化される。
化学強化液として、例えば硝酸カリウム塩と硫酸ナトリウム塩の混合溶融液等を用いることができる。
このように、ガラス素板を化学強化液に浸漬することによって、ガラス素板の表層のリチウムイオン及びナトリウムイオンが、化学強化液中のイオン半径が相対的に大きいナトリウムイオン及びカリウムイオンにそれぞれ置換され、ガラス素板が強化される。 (7) Chemical strengthening process Next, the glass base plate after the first polishing is chemically strengthened.
As the chemical strengthening liquid, for example, a mixed melt of potassium nitrate and sodium sulfate can be used.
In this way, by immersing the glass base plate in the chemical strengthening solution, lithium ions and sodium ions on the surface layer of the glass base plate are replaced with sodium ions and potassium ions having a relatively large ion radius in the chemical strengthening solution, respectively. The glass base plate is strengthened.
次に、第1研磨後のガラス素板は化学強化される。
化学強化液として、例えば硝酸カリウム塩と硫酸ナトリウム塩の混合溶融液等を用いることができる。
このように、ガラス素板を化学強化液に浸漬することによって、ガラス素板の表層のリチウムイオン及びナトリウムイオンが、化学強化液中のイオン半径が相対的に大きいナトリウムイオン及びカリウムイオンにそれぞれ置換され、ガラス素板が強化される。 (7) Chemical strengthening process Next, the glass base plate after the first polishing is chemically strengthened.
As the chemical strengthening liquid, for example, a mixed melt of potassium nitrate and sodium sulfate can be used.
In this way, by immersing the glass base plate in the chemical strengthening solution, lithium ions and sodium ions on the surface layer of the glass base plate are replaced with sodium ions and potassium ions having a relatively large ion radius in the chemical strengthening solution, respectively. The glass base plate is strengthened.
(8)第2研磨工程
次に、化学強化されて十分に洗浄されたガラス素板に最終研磨が施される。最終研磨による取り代は、5μm以下である。最終研磨は、主表面の鏡面研磨を目的とする。最終研磨では例えば、第1研磨で用いた研磨装置を用いる。このとき、第1研磨と異なる点は、遊離砥粒の種類及び粒子サイズが異なることと、樹脂ポリッシャの硬度が異なることである。最終研磨に用いる遊離砥粒として、例えば、スラリーに混濁させたコロイダルシリカ等の微粒子(粒子サイズ:直径10~50nm程度)が用いられる。
研磨されたガラス素板を中性洗剤、純水、IPA等を用いて洗浄することで、磁気ディスク用ガラス基板が得られる。 (8) Second Polishing Step Next, the glass substrate that has been chemically strengthened and sufficiently cleaned is subjected to final polishing. The machining allowance by the final polishing is 5 μm or less. The final polishing aims at mirror polishing of the main surface. In the final polishing, for example, the polishing apparatus used in the first polishing is used. At this time, the difference from the first polishing is that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different. As the free abrasive grains used in the final polishing, for example, fine particles (particle size: diameter of about 10 to 50 nm) such as colloidal silica made turbid in the slurry are used.
A glass substrate for a magnetic disk can be obtained by washing the polished glass base plate with a neutral detergent, pure water, IPA or the like.
次に、化学強化されて十分に洗浄されたガラス素板に最終研磨が施される。最終研磨による取り代は、5μm以下である。最終研磨は、主表面の鏡面研磨を目的とする。最終研磨では例えば、第1研磨で用いた研磨装置を用いる。このとき、第1研磨と異なる点は、遊離砥粒の種類及び粒子サイズが異なることと、樹脂ポリッシャの硬度が異なることである。最終研磨に用いる遊離砥粒として、例えば、スラリーに混濁させたコロイダルシリカ等の微粒子(粒子サイズ:直径10~50nm程度)が用いられる。
研磨されたガラス素板を中性洗剤、純水、IPA等を用いて洗浄することで、磁気ディスク用ガラス基板が得られる。 (8) Second Polishing Step Next, the glass substrate that has been chemically strengthened and sufficiently cleaned is subjected to final polishing. The machining allowance by the final polishing is 5 μm or less. The final polishing aims at mirror polishing of the main surface. In the final polishing, for example, the polishing apparatus used in the first polishing is used. At this time, the difference from the first polishing is that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different. As the free abrasive grains used in the final polishing, for example, fine particles (particle size: diameter of about 10 to 50 nm) such as colloidal silica made turbid in the slurry are used.
A glass substrate for a magnetic disk can be obtained by washing the polished glass base plate with a neutral detergent, pure water, IPA or the like.
以上、本実施形態の磁気ディスク用ガラス基板の製造方法を工程毎に説明したが、工程の順序は、上述した順序に限られない。
なお、第2研磨工程において、ガラス素板とキャリアの孔部との間にコロイダルシリカ等の粒子が供給されるようにして、それによってガラス素板の側壁面を研磨して側壁面に付着しうるジルコニア粒子を除去するようにしてもよい。 As mentioned above, although the manufacturing method of the glass substrate for magnetic discs of this embodiment was demonstrated for every process, the order of a process is not restricted to the order mentioned above.
In the second polishing step, particles such as colloidal silica are supplied between the glass base plate and the hole of the carrier, whereby the side wall surface of the glass base plate is polished and adhered to the side wall surface. The zirconia particles that may be removed may be removed.
なお、第2研磨工程において、ガラス素板とキャリアの孔部との間にコロイダルシリカ等の粒子が供給されるようにして、それによってガラス素板の側壁面を研磨して側壁面に付着しうるジルコニア粒子を除去するようにしてもよい。 As mentioned above, although the manufacturing method of the glass substrate for magnetic discs of this embodiment was demonstrated for every process, the order of a process is not restricted to the order mentioned above.
In the second polishing step, particles such as colloidal silica are supplied between the glass base plate and the hole of the carrier, whereby the side wall surface of the glass base plate is polished and adhered to the side wall surface. The zirconia particles that may be removed may be removed.
[磁気ディスク]
磁気ディスクは、磁気ディスク用ガラス基板を用いて以下のようにして得られる。
磁気ディスクは、例えば磁気ディスク用ガラス基板(以下、単に「基板」という。)の主表面上に、主表面に近いほうから順に、少なくとも付着層、下地層、磁性層(磁気記録層)、保護層、潤滑層が積層された構成になっている。
例えば基板を、真空引きを行った成膜装置内に導入し、DCマグネトロンスパッタリング法にてAr雰囲気中で、基板の主表面上に付着層から磁性層まで順次成膜する。付着層としては例えばCrTi、下地層としては例えばCrRuを用いることができる。磁性層としては、例えばCoPt系合金を用いることができる。また、L10規則構造のCoPt系合金やFePt系合金を形成して熱アシスト磁気記録用の磁性層とすることもできる。上記成膜後、例えばCVD法によりC2H4を用いて保護層を成膜し、続いて表面に窒素を導入する窒化処理を行うことにより、磁気記録媒体を形成することができる。その後、例えばPFPE(パーフルオロポリエーテル)をディップコート法により保護層上に塗布することにより、潤滑層を形成することができる。
また、付着層と磁気記録層との間には、SUL(軟磁性層)、シード層、中間層などを、スパッタ法(DCマグネトロンスパッタ法、RFマグネトロンスパッタ法などを含む)、真空蒸着法などの公知の成膜方法を用いて形成してもよい。
作製された磁気ディスクは、好ましくは、DFH(Dynamic Flying Height)コントロール機構を搭載した磁気ヘッドとともに、磁気記録再生装置としてのHDD(Hard Disk Drive)に組み込まれる。 [Magnetic disk]
A magnetic disk is obtained as follows using a magnetic disk glass substrate.
The magnetic disk is, for example, on the main surface of a glass substrate for magnetic disk (hereinafter simply referred to as “substrate”), in order from the closest to the main surface, at least an adhesion layer, an underlayer, a magnetic layer (magnetic recording layer), and a protection A layer and a lubricating layer are laminated.
For example, the substrate is introduced into a film forming apparatus that has been evacuated, and a film is sequentially formed from an adhesion layer to a magnetic layer on the main surface of the substrate in an Ar atmosphere by a DC magnetron sputtering method. For example, CrTi can be used as the adhesion layer, and CrRu can be used as the underlayer. As the magnetic layer, for example, a CoPt alloy can be used. It is also possible to form a CoPt-based alloy and FePt based alloy L 10 regular structure and magnetic layer for heat-assisted magnetic recording. After the above film formation, a magnetic recording medium can be formed by forming a protective layer using, for example, C 2 H 4 by a CVD method and subsequently performing nitriding treatment for introducing nitrogen into the surface. Thereafter, for example, PFPE (perfluoropolyether) is applied on the protective layer by a dip coating method, whereby a lubricating layer can be formed.
In addition, between the adhesion layer and the magnetic recording layer, a SUL (soft magnetic layer), a seed layer, an intermediate layer, etc., sputtering method (including DC magnetron sputtering method, RF magnetron sputtering method, etc.), vacuum deposition method, etc. You may form using the well-known film-forming method.
The produced magnetic disk is preferably incorporated in an HDD (Hard Disk Drive) as a magnetic recording / reproducing apparatus together with a magnetic head equipped with a DFH (Dynamic Flying Height) control mechanism.
磁気ディスクは、磁気ディスク用ガラス基板を用いて以下のようにして得られる。
磁気ディスクは、例えば磁気ディスク用ガラス基板(以下、単に「基板」という。)の主表面上に、主表面に近いほうから順に、少なくとも付着層、下地層、磁性層(磁気記録層)、保護層、潤滑層が積層された構成になっている。
例えば基板を、真空引きを行った成膜装置内に導入し、DCマグネトロンスパッタリング法にてAr雰囲気中で、基板の主表面上に付着層から磁性層まで順次成膜する。付着層としては例えばCrTi、下地層としては例えばCrRuを用いることができる。磁性層としては、例えばCoPt系合金を用いることができる。また、L10規則構造のCoPt系合金やFePt系合金を形成して熱アシスト磁気記録用の磁性層とすることもできる。上記成膜後、例えばCVD法によりC2H4を用いて保護層を成膜し、続いて表面に窒素を導入する窒化処理を行うことにより、磁気記録媒体を形成することができる。その後、例えばPFPE(パーフルオロポリエーテル)をディップコート法により保護層上に塗布することにより、潤滑層を形成することができる。
また、付着層と磁気記録層との間には、SUL(軟磁性層)、シード層、中間層などを、スパッタ法(DCマグネトロンスパッタ法、RFマグネトロンスパッタ法などを含む)、真空蒸着法などの公知の成膜方法を用いて形成してもよい。
作製された磁気ディスクは、好ましくは、DFH(Dynamic Flying Height)コントロール機構を搭載した磁気ヘッドとともに、磁気記録再生装置としてのHDD(Hard Disk Drive)に組み込まれる。 [Magnetic disk]
A magnetic disk is obtained as follows using a magnetic disk glass substrate.
The magnetic disk is, for example, on the main surface of a glass substrate for magnetic disk (hereinafter simply referred to as “substrate”), in order from the closest to the main surface, at least an adhesion layer, an underlayer, a magnetic layer (magnetic recording layer), and a protection A layer and a lubricating layer are laminated.
For example, the substrate is introduced into a film forming apparatus that has been evacuated, and a film is sequentially formed from an adhesion layer to a magnetic layer on the main surface of the substrate in an Ar atmosphere by a DC magnetron sputtering method. For example, CrTi can be used as the adhesion layer, and CrRu can be used as the underlayer. As the magnetic layer, for example, a CoPt alloy can be used. It is also possible to form a CoPt-based alloy and FePt based alloy L 10 regular structure and magnetic layer for heat-assisted magnetic recording. After the above film formation, a magnetic recording medium can be formed by forming a protective layer using, for example, C 2 H 4 by a CVD method and subsequently performing nitriding treatment for introducing nitrogen into the surface. Thereafter, for example, PFPE (perfluoropolyether) is applied on the protective layer by a dip coating method, whereby a lubricating layer can be formed.
In addition, between the adhesion layer and the magnetic recording layer, a SUL (soft magnetic layer), a seed layer, an intermediate layer, etc., sputtering method (including DC magnetron sputtering method, RF magnetron sputtering method, etc.), vacuum deposition method, etc. You may form using the well-known film-forming method.
The produced magnetic disk is preferably incorporated in an HDD (Hard Disk Drive) as a magnetic recording / reproducing apparatus together with a magnetic head equipped with a DFH (Dynamic Flying Height) control mechanism.
[実施例、比較例]
本実施形態の磁気ディスク用ガラス基板の製造方法の効果を確認するために、以下のガラスの組成からなる磁気ディスク用ガラス基板を作製した。
[ガラスの組成].
質量%表示で、SiO2を65.08%、Al2O3を15.14%、Li2Oを3.61%、Na2Oを10.68%、K2Oを0.35%、MgOを0.99%、CaOを2.07%、ZrO2を1.98%、Fe2O3を0.10%、有する組成からなるアモルファスのアルミノシリケートガラスであり、ガラス転移温度が510℃である。 [Examples and Comparative Examples]
In order to confirm the effect of the manufacturing method of the glass substrate for magnetic disks of this embodiment, the glass substrate for magnetic disks which consists of the following glass compositions was produced.
[Glass composition].
In terms of mass%, SiO 2 is 65.08%, Al 2 O 3 is 15.14%, Li 2 O is 3.61%, Na 2 O is 10.68%, K 2 O is 0.35%, An amorphous aluminosilicate glass having a composition having 0.99% MgO, 2.07% CaO, 1.98% ZrO 2 and 0.10% Fe 2 O 3 , and has a glass transition temperature of 510 ° C. It is.
本実施形態の磁気ディスク用ガラス基板の製造方法の効果を確認するために、以下のガラスの組成からなる磁気ディスク用ガラス基板を作製した。
[ガラスの組成].
質量%表示で、SiO2を65.08%、Al2O3を15.14%、Li2Oを3.61%、Na2Oを10.68%、K2Oを0.35%、MgOを0.99%、CaOを2.07%、ZrO2を1.98%、Fe2O3を0.10%、有する組成からなるアモルファスのアルミノシリケートガラスであり、ガラス転移温度が510℃である。 [Examples and Comparative Examples]
In order to confirm the effect of the manufacturing method of the glass substrate for magnetic disks of this embodiment, the glass substrate for magnetic disks which consists of the following glass compositions was produced.
[Glass composition].
In terms of mass%, SiO 2 is 65.08%, Al 2 O 3 is 15.14%, Li 2 O is 3.61%, Na 2 O is 10.68%, K 2 O is 0.35%, An amorphous aluminosilicate glass having a composition having 0.99% MgO, 2.07% CaO, 1.98% ZrO 2 and 0.10% Fe 2 O 3 , and has a glass transition temperature of 510 ° C. It is.
本実施形態の磁気ディスク用ガラス基板の製造方法の各工程を順序通りに行った。
ここで、
(1)のガラス素板の成形は、プレス成形方法を用いた。ラッピングでは、遊離砥粒を用いた。
(4)の端面研磨では、酸化セリウムを遊離砥粒として用いて、研磨ブラシにより研磨した。
(5)の固定砥粒による研削では、ダイヤモンド砥粒をレジンボンドで固めたシートを定盤に貼り付けた研削装置を用いて研削した。
(6)の第1研磨(主表面研磨)では、図1及び図2の研磨装置を用いて60分間研磨した。研磨条件は、研磨パッド:硬質ウレタンパッド(JIS-A硬度:80~100)、研磨荷重:120g/cm2、定盤回転数:30rpmとした。研磨液と洗浄液については後述する。
(7)の化学強化では、化学強化液として硝酸カリウム塩と硝酸ナトリウム塩の混合溶融液等を用いた。
(8)の第2研磨では、図1及び図2と同様の別の研磨装置を用いて研磨した。このとき、ポリシャを軟質ポリシャ(スウェード)の研磨パッド(アスカーC硬度で75の発泡ポリウレタン)を用い、平均粒径30μmのコロイダルシリカを砥粒とした。最終研磨後のガラス素板は、中性洗浄液及びアルカリ性洗浄液を用いて洗浄された。これにより、磁気ディスク用ガラス基板を得た。 Each process of the manufacturing method of the glass substrate for magnetic disks of this embodiment was performed in order.
here,
For forming the glass base plate of (1), a press molding method was used. In lapping, loose abrasive grains were used.
In the end face polishing of (4), cerium oxide was used as loose abrasive grains and polished with a polishing brush.
In the grinding with the fixed abrasive grains of (5), grinding was performed using a grinding apparatus in which a sheet of diamond abrasive grains hardened with resin bonds was attached to a surface plate.
In the first polishing (main surface polishing) of (6), polishing was performed for 60 minutes using the polishing apparatus of FIGS. The polishing conditions were: polishing pad: hard urethane pad (JIS-A hardness: 80 to 100), polishing load: 120 g / cm 2 , and platen rotation speed: 30 rpm. The polishing liquid and the cleaning liquid will be described later.
In the chemical strengthening of (7), a mixed melt of potassium nitrate salt and sodium nitrate salt or the like was used as the chemical strengthening solution.
In the second polishing of (8), polishing was performed using another polishing apparatus similar to FIGS. 1 and 2. At this time, a polishing pad made of a soft polisher (suede) (a foamed polyurethane having an Asker C hardness of 75) was used as the polisher, and colloidal silica having an average particle size of 30 μm was used as abrasive grains. The glass substrate after the final polishing was cleaned using a neutral cleaning solution and an alkaline cleaning solution. This obtained the glass substrate for magnetic discs.
ここで、
(1)のガラス素板の成形は、プレス成形方法を用いた。ラッピングでは、遊離砥粒を用いた。
(4)の端面研磨では、酸化セリウムを遊離砥粒として用いて、研磨ブラシにより研磨した。
(5)の固定砥粒による研削では、ダイヤモンド砥粒をレジンボンドで固めたシートを定盤に貼り付けた研削装置を用いて研削した。
(6)の第1研磨(主表面研磨)では、図1及び図2の研磨装置を用いて60分間研磨した。研磨条件は、研磨パッド:硬質ウレタンパッド(JIS-A硬度:80~100)、研磨荷重:120g/cm2、定盤回転数:30rpmとした。研磨液と洗浄液については後述する。
(7)の化学強化では、化学強化液として硝酸カリウム塩と硝酸ナトリウム塩の混合溶融液等を用いた。
(8)の第2研磨では、図1及び図2と同様の別の研磨装置を用いて研磨した。このとき、ポリシャを軟質ポリシャ(スウェード)の研磨パッド(アスカーC硬度で75の発泡ポリウレタン)を用い、平均粒径30μmのコロイダルシリカを砥粒とした。最終研磨後のガラス素板は、中性洗浄液及びアルカリ性洗浄液を用いて洗浄された。これにより、磁気ディスク用ガラス基板を得た。 Each process of the manufacturing method of the glass substrate for magnetic disks of this embodiment was performed in order.
here,
For forming the glass base plate of (1), a press molding method was used. In lapping, loose abrasive grains were used.
In the end face polishing of (4), cerium oxide was used as loose abrasive grains and polished with a polishing brush.
In the grinding with the fixed abrasive grains of (5), grinding was performed using a grinding apparatus in which a sheet of diamond abrasive grains hardened with resin bonds was attached to a surface plate.
In the first polishing (main surface polishing) of (6), polishing was performed for 60 minutes using the polishing apparatus of FIGS. The polishing conditions were: polishing pad: hard urethane pad (JIS-A hardness: 80 to 100), polishing load: 120 g / cm 2 , and platen rotation speed: 30 rpm. The polishing liquid and the cleaning liquid will be described later.
In the chemical strengthening of (7), a mixed melt of potassium nitrate salt and sodium nitrate salt or the like was used as the chemical strengthening solution.
In the second polishing of (8), polishing was performed using another polishing apparatus similar to FIGS. 1 and 2. At this time, a polishing pad made of a soft polisher (suede) (a foamed polyurethane having an Asker C hardness of 75) was used as the polisher, and colloidal silica having an average particle size of 30 μm was used as abrasive grains. The glass substrate after the final polishing was cleaned using a neutral cleaning solution and an alkaline cleaning solution. This obtained the glass substrate for magnetic discs.
(A)比較例1、2
比較例1、2では、共に以下の研磨液を使用した。比較例1、2に使用した洗浄液については後述する。
研磨液:研磨砥粒は、湿式法で作製したジルコニア砥粒を10重量%含む。ジルコニア砥粒の1次粒子径は110nm、粒度分布計でのジルコニア砥粒の平均粒子径(D50)は、0.5μmとした。
また、ジルコニア粒子の結晶子径は、CuKα1線(λ=1.5405Å)による粉末X線回折装置(マック・サイエンス製MXP-18)を用いて、シェラーの式により算出した。このとき、ジルコニアの結晶構造に着目して、以下のようにして結晶子径を算出した。単斜晶の結晶構造をもつジルコニア粒子の結晶子径の算出に当たっては、2θ領域28.0~28.3°内に頂点がある第1ピークと、2θ領域31.3~31.6°内に頂点がある第2ピークに関して結晶子径を算出し、その平均値を結晶子径とした。正方晶又は立方晶の結晶構造をもつジルコニア粒子の結晶子径の算出に当たっては、2θ領域29.6~30.3°内に頂点がある第1ピークを用いて、結晶子径を算出した。
なお、粉末X線回折スペクトルの解析にはICDD(International Centre for Diffraction Data)のデータを利用した。 (A) Comparative Examples 1 and 2
In Comparative Examples 1 and 2, the following polishing liquids were used. The cleaning liquid used in Comparative Examples 1 and 2 will be described later.
Polishing liquid: The abrasive grains contain 10% by weight of zirconia abrasive grains prepared by a wet method. The primary particle diameter of the zirconia abrasive grains was 110 nm, and the average particle diameter (D50) of the zirconia abrasive grains in the particle size distribution meter was 0.5 μm.
The crystallite size of the zirconia particles was calculated according to Scherrer's equation using a powder X-ray diffractometer (MXP-18 manufactured by Mac Science) using a CuKα1 line (λ = 1.5405 mm). At this time, paying attention to the crystal structure of zirconia, the crystallite diameter was calculated as follows. In calculating the crystallite size of zirconia particles having a monoclinic crystal structure, the first peak having a vertex in the 2θ region 28.0 to 28.3 ° and the 2θ region 31.3 to 31.6 ° The crystallite diameter was calculated for the second peak having a vertex at, and the average value was taken as the crystallite diameter. In calculating the crystallite diameter of zirconia particles having a tetragonal or cubic crystal structure, the crystallite diameter was calculated using the first peak having a vertex in the 2θ region of 29.6 to 30.3 °.
The powder X-ray diffraction spectrum was analyzed using ICDD (International Center for Diffraction Data) data.
比較例1、2では、共に以下の研磨液を使用した。比較例1、2に使用した洗浄液については後述する。
研磨液:研磨砥粒は、湿式法で作製したジルコニア砥粒を10重量%含む。ジルコニア砥粒の1次粒子径は110nm、粒度分布計でのジルコニア砥粒の平均粒子径(D50)は、0.5μmとした。
また、ジルコニア粒子の結晶子径は、CuKα1線(λ=1.5405Å)による粉末X線回折装置(マック・サイエンス製MXP-18)を用いて、シェラーの式により算出した。このとき、ジルコニアの結晶構造に着目して、以下のようにして結晶子径を算出した。単斜晶の結晶構造をもつジルコニア粒子の結晶子径の算出に当たっては、2θ領域28.0~28.3°内に頂点がある第1ピークと、2θ領域31.3~31.6°内に頂点がある第2ピークに関して結晶子径を算出し、その平均値を結晶子径とした。正方晶又は立方晶の結晶構造をもつジルコニア粒子の結晶子径の算出に当たっては、2θ領域29.6~30.3°内に頂点がある第1ピークを用いて、結晶子径を算出した。
なお、粉末X線回折スペクトルの解析にはICDD(International Centre for Diffraction Data)のデータを利用した。 (A) Comparative Examples 1 and 2
In Comparative Examples 1 and 2, the following polishing liquids were used. The cleaning liquid used in Comparative Examples 1 and 2 will be described later.
Polishing liquid: The abrasive grains contain 10% by weight of zirconia abrasive grains prepared by a wet method. The primary particle diameter of the zirconia abrasive grains was 110 nm, and the average particle diameter (D50) of the zirconia abrasive grains in the particle size distribution meter was 0.5 μm.
The crystallite size of the zirconia particles was calculated according to Scherrer's equation using a powder X-ray diffractometer (MXP-18 manufactured by Mac Science) using a CuKα1 line (λ = 1.5405 mm). At this time, paying attention to the crystal structure of zirconia, the crystallite diameter was calculated as follows. In calculating the crystallite size of zirconia particles having a monoclinic crystal structure, the first peak having a vertex in the 2θ region 28.0 to 28.3 ° and the 2θ region 31.3 to 31.6 ° The crystallite diameter was calculated for the second peak having a vertex at, and the average value was taken as the crystallite diameter. In calculating the crystallite diameter of zirconia particles having a tetragonal or cubic crystal structure, the crystallite diameter was calculated using the first peak having a vertex in the 2θ region of 29.6 to 30.3 °.
The powder X-ray diffraction spectrum was analyzed using ICDD (International Center for Diffraction Data) data.
(B)実施例1~4
実施例1~4は、使用した研磨液が比較例1と異なる。
・研磨液:研磨砥粒は、湿式法で作製したジルコニア砥粒を10重量%含む。ジルコニア砥粒の1次粒子径は110nm、粒度分布計でのジルコニア砥粒の平均粒子径(D50)は
、0.5μmとした。研磨砥粒は、主成分をジルコニア粒子とし、そのジルコニア粒子の表面の一部を酸化セリウムで構成したものである。酸化セリウムの含有量はいずれも15モル%とした。研磨液のpHは10となるように調整した。 (B) Examples 1 to 4
Examples 1 to 4 differ from Comparative Example 1 in the polishing liquid used.
Polishing liquid: The abrasive grains contain 10% by weight of zirconia abrasive grains prepared by a wet method. The primary particle diameter of the zirconia abrasive grains was 110 nm, and the average particle diameter (D50) of the zirconia abrasive grains in the particle size distribution meter was 0.5 μm. The abrasive grains are composed mainly of zirconia particles, and a part of the surface of the zirconia particles is composed of cerium oxide. The content of cerium oxide was 15 mol% in all cases. The pH of the polishing liquid was adjusted to be 10.
実施例1~4は、使用した研磨液が比較例1と異なる。
・研磨液:研磨砥粒は、湿式法で作製したジルコニア砥粒を10重量%含む。ジルコニア砥粒の1次粒子径は110nm、粒度分布計でのジルコニア砥粒の平均粒子径(D50)は
、0.5μmとした。研磨砥粒は、主成分をジルコニア粒子とし、そのジルコニア粒子の表面の一部を酸化セリウムで構成したものである。酸化セリウムの含有量はいずれも15モル%とした。研磨液のpHは10となるように調整した。 (B) Examples 1 to 4
Examples 1 to 4 differ from Comparative Example 1 in the polishing liquid used.
Polishing liquid: The abrasive grains contain 10% by weight of zirconia abrasive grains prepared by a wet method. The primary particle diameter of the zirconia abrasive grains was 110 nm, and the average particle diameter (D50) of the zirconia abrasive grains in the particle size distribution meter was 0.5 μm. The abrasive grains are composed mainly of zirconia particles, and a part of the surface of the zirconia particles is composed of cerium oxide. The content of cerium oxide was 15 mol% in all cases. The pH of the polishing liquid was adjusted to be 10.
具体的には、実施例1~4の研磨砥粒は以下のようにして作製した。なお、以下の説明において、特記しない限り、過酸化水素水及びアンモニア水の濃度は30%である。
先ずRO水500mLに、塩化酸化ジルコニウム八水和物180gを溶解させ、これに過酸化水素水175mLを添加して撹拌し、続いてアンモニア水55mLを添加し、この溶液を還流冷却器付フラスコ内で約40時間、94~100度で加熱し、その後、150mLになるまで加熱濃縮し、水酸化ジルコニウムを含むゾル(S1)を得た。
硝酸セリウム(III)六水和物50gをRO水500mLに溶解させ、これに過酸化水素水175mLを添加して撹拌し、続いてアンモニア水55mLを添加し、この溶液を還流冷却器付フラスコ内で約40時間、94~100度で加熱し、その後、150mLになるまで加熱濃縮し、水酸化セリウムを含むゾル(S2)を得た。
RO水50mLに塩化酸化ジルコニウム八水和物10gを溶解させた水溶液を調整し、水酸化ジルコニウムを含むゾル(S1)150mLに添加して、水酸化ジルコニウムを含むゾル(S3)200mLを得た。
また、RO水50mLに硝酸セリウム(III)六水和物25gを溶解させた水溶液を調整し、水酸化セリウムを含むゾル(S2)150mLに添加し、水酸化セリウムを含むゾル(S4)200mLを得た。
水酸化ジルコニウムを含むゾル(S3)200mLに水酸化セリウムを含むゾル(S4)200mLを徐々に加え、約8時間、40~50℃に保ちながら還流冷却器付フラスコ内で撹拌した。なおこのとき、水酸化ジルコニウムを含むゾル(S3)と水酸化セリウムを含むゾル(S4)の混合比率を変えることで、最終的な研磨砥粒における水酸化セリウムの含有量を調整することができる。
その後、過酸化水素水50mLを徐々に加え、続いてアンモニア水20mLを徐々に添加し、この溶液を還流冷却器付フラスコ内で約30時間、94~100度の範囲で加熱した。その後、150mLになるまで加熱濃縮し、水酸化ジルコニウムと水酸化セリウムを含むゾルを得た。このゾルから塩化物イオン等を除去するために、アンモニア水や水酸化カリウムなどのアルカリ水溶液を添加した。このとき、pHは10~13であればよい。水溶液をアルカリにすることで、容易にゾルを簡易凝集することができ、固液分離が可能となる。この上澄み液を除去し、5回以上RO水でデカンテーションを繰り返した。デカンテーション後の沈殿物をアセトンもしくはエタノールで置換後、ろ過、乾燥させ、焼成温度1000度で約3時間焼成した。
ここで得られた粉末は、ジルコニア-酸化セリウムの複合酸化物であり、図3(c)に示した構造の複合粒子に相当する。粉末X線回折スペクトルによる解析の結果、ジルコニアの結晶構造は単斜晶であり、正方晶や立方晶に相当する結晶構造のジルコニアは得られなかった。ジルコニアの結晶子径は40nmであった。酸化セリウムの結晶構造は立方晶であり、結晶子径は30nmであった。水酸化ジルコニウムを含むゾル(S1)を作製する際の加熱時間、酸化セリウムを含むゾル(S2)を作製する際の加熱時間、焼成温度を調整することで、異なる大きさの結晶子径を備えたジルコニア及び酸化セリウムを作製することができる。
焼成後に得られた粉末は、粒度分布を揃えるために、解砕・粉砕を行い、その後、分級を実施した。解砕・粉砕に関しては市販のボールミルやハンマーミル、ビーズミル等を用いれば良く、分級に関しても市販の分級機を用いればよく、ふるいや気流を用いた乾式の分級機や液体サイクロン等の湿式分級機を用いればよい。 Specifically, the abrasive grains of Examples 1 to 4 were produced as follows. In the following description, unless otherwise specified, the concentration of hydrogen peroxide water and ammonia water is 30%.
First, 180 g of zirconium chloride octahydrate is dissolved in 500 mL of RO water, and 175 mL of hydrogen peroxide water is added thereto and stirred. Subsequently, 55 mL of aqueous ammonia is added, and this solution is added to a flask equipped with a reflux condenser. For about 40 hours at 94 to 100 ° C. and then concentrated to 150 mL by heating to obtain a sol (S1) containing zirconium hydroxide.
Dissolve 50 g of cerium (III) nitrate hexahydrate in 500 mL of RO water, add 175 mL of hydrogen peroxide solution and stir, add 55 mL of aqueous ammonia, and add this solution to the flask with a reflux condenser. And heated at 94 to 100 ° C. for about 40 hours, and then concentrated to 150 mL by heating to obtain a sol (S2) containing cerium hydroxide.
An aqueous solution prepared by dissolving 10 g of zirconium chloride octahydrate in 50 mL of RO water was prepared and added to 150 mL of sol (S1) containing zirconium hydroxide to obtain 200 mL of sol (S3) containing zirconium hydroxide.
In addition, an aqueous solution in which 25 g of cerium (III) nitrate hexahydrate is dissolved in 50 mL of RO water is prepared and added to 150 mL of sol (S2) containing cerium hydroxide, and 200 mL of sol (S4) containing cerium hydroxide is added. Obtained.
200 mL of sol (S4) containing cerium hydroxide was gradually added to 200 mL of sol (S3) containing zirconium hydroxide, and the mixture was stirred for about 8 hours in a flask equipped with a reflux condenser while maintaining at 40 to 50 ° C. At this time, the content of cerium hydroxide in the final abrasive grains can be adjusted by changing the mixing ratio of the sol containing zirconium hydroxide (S3) and the sol containing cerium hydroxide (S4). .
Thereafter, 50 mL of aqueous hydrogen peroxide was gradually added, followed by 20 mL of aqueous ammonia, and this solution was heated in the range of 94 to 100 ° C. for about 30 hours in a flask equipped with a reflux condenser. Thereafter, the mixture was concentrated to 150 mL by heating to obtain a sol containing zirconium hydroxide and cerium hydroxide. In order to remove chloride ions and the like from this sol, an alkaline aqueous solution such as aqueous ammonia or potassium hydroxide was added. At this time, the pH may be 10-13. By making the aqueous solution alkaline, the sol can be easily aggregated easily and solid-liquid separation becomes possible. The supernatant was removed, and decantation was repeated 5 times or more with RO water. The precipitate after decantation was replaced with acetone or ethanol, filtered and dried, and calcined at a calcining temperature of 1000 ° C. for about 3 hours.
The powder obtained here is a composite oxide of zirconia-cerium oxide and corresponds to composite particles having the structure shown in FIG. As a result of analysis by powder X-ray diffraction spectrum, the crystal structure of zirconia was monoclinic, and zirconia having a crystal structure corresponding to tetragonal crystal or cubic crystal was not obtained. The crystallite diameter of zirconia was 40 nm. The crystal structure of cerium oxide was cubic, and the crystallite diameter was 30 nm. By adjusting the heating time when preparing the sol (S1) containing zirconium hydroxide, the heating time when preparing the sol (S2) containing cerium oxide, and the firing temperature, it has different crystallite diameters. Zirconia and cerium oxide can be produced.
The powder obtained after firing was crushed and pulverized in order to make the particle size distribution uniform, and then classified. Commercially available ball mills, hammer mills, bead mills, etc. can be used for crushing and grinding, and commercially available classifiers can also be used for classification. Wet classifiers such as dry classifiers and liquid cyclones using sieves and air currents. May be used.
先ずRO水500mLに、塩化酸化ジルコニウム八水和物180gを溶解させ、これに過酸化水素水175mLを添加して撹拌し、続いてアンモニア水55mLを添加し、この溶液を還流冷却器付フラスコ内で約40時間、94~100度で加熱し、その後、150mLになるまで加熱濃縮し、水酸化ジルコニウムを含むゾル(S1)を得た。
硝酸セリウム(III)六水和物50gをRO水500mLに溶解させ、これに過酸化水素水175mLを添加して撹拌し、続いてアンモニア水55mLを添加し、この溶液を還流冷却器付フラスコ内で約40時間、94~100度で加熱し、その後、150mLになるまで加熱濃縮し、水酸化セリウムを含むゾル(S2)を得た。
RO水50mLに塩化酸化ジルコニウム八水和物10gを溶解させた水溶液を調整し、水酸化ジルコニウムを含むゾル(S1)150mLに添加して、水酸化ジルコニウムを含むゾル(S3)200mLを得た。
また、RO水50mLに硝酸セリウム(III)六水和物25gを溶解させた水溶液を調整し、水酸化セリウムを含むゾル(S2)150mLに添加し、水酸化セリウムを含むゾル(S4)200mLを得た。
水酸化ジルコニウムを含むゾル(S3)200mLに水酸化セリウムを含むゾル(S4)200mLを徐々に加え、約8時間、40~50℃に保ちながら還流冷却器付フラスコ内で撹拌した。なおこのとき、水酸化ジルコニウムを含むゾル(S3)と水酸化セリウムを含むゾル(S4)の混合比率を変えることで、最終的な研磨砥粒における水酸化セリウムの含有量を調整することができる。
その後、過酸化水素水50mLを徐々に加え、続いてアンモニア水20mLを徐々に添加し、この溶液を還流冷却器付フラスコ内で約30時間、94~100度の範囲で加熱した。その後、150mLになるまで加熱濃縮し、水酸化ジルコニウムと水酸化セリウムを含むゾルを得た。このゾルから塩化物イオン等を除去するために、アンモニア水や水酸化カリウムなどのアルカリ水溶液を添加した。このとき、pHは10~13であればよい。水溶液をアルカリにすることで、容易にゾルを簡易凝集することができ、固液分離が可能となる。この上澄み液を除去し、5回以上RO水でデカンテーションを繰り返した。デカンテーション後の沈殿物をアセトンもしくはエタノールで置換後、ろ過、乾燥させ、焼成温度1000度で約3時間焼成した。
ここで得られた粉末は、ジルコニア-酸化セリウムの複合酸化物であり、図3(c)に示した構造の複合粒子に相当する。粉末X線回折スペクトルによる解析の結果、ジルコニアの結晶構造は単斜晶であり、正方晶や立方晶に相当する結晶構造のジルコニアは得られなかった。ジルコニアの結晶子径は40nmであった。酸化セリウムの結晶構造は立方晶であり、結晶子径は30nmであった。水酸化ジルコニウムを含むゾル(S1)を作製する際の加熱時間、酸化セリウムを含むゾル(S2)を作製する際の加熱時間、焼成温度を調整することで、異なる大きさの結晶子径を備えたジルコニア及び酸化セリウムを作製することができる。
焼成後に得られた粉末は、粒度分布を揃えるために、解砕・粉砕を行い、その後、分級を実施した。解砕・粉砕に関しては市販のボールミルやハンマーミル、ビーズミル等を用いれば良く、分級に関しても市販の分級機を用いればよく、ふるいや気流を用いた乾式の分級機や液体サイクロン等の湿式分級機を用いればよい。 Specifically, the abrasive grains of Examples 1 to 4 were produced as follows. In the following description, unless otherwise specified, the concentration of hydrogen peroxide water and ammonia water is 30%.
First, 180 g of zirconium chloride octahydrate is dissolved in 500 mL of RO water, and 175 mL of hydrogen peroxide water is added thereto and stirred. Subsequently, 55 mL of aqueous ammonia is added, and this solution is added to a flask equipped with a reflux condenser. For about 40 hours at 94 to 100 ° C. and then concentrated to 150 mL by heating to obtain a sol (S1) containing zirconium hydroxide.
Dissolve 50 g of cerium (III) nitrate hexahydrate in 500 mL of RO water, add 175 mL of hydrogen peroxide solution and stir, add 55 mL of aqueous ammonia, and add this solution to the flask with a reflux condenser. And heated at 94 to 100 ° C. for about 40 hours, and then concentrated to 150 mL by heating to obtain a sol (S2) containing cerium hydroxide.
An aqueous solution prepared by dissolving 10 g of zirconium chloride octahydrate in 50 mL of RO water was prepared and added to 150 mL of sol (S1) containing zirconium hydroxide to obtain 200 mL of sol (S3) containing zirconium hydroxide.
In addition, an aqueous solution in which 25 g of cerium (III) nitrate hexahydrate is dissolved in 50 mL of RO water is prepared and added to 150 mL of sol (S2) containing cerium hydroxide, and 200 mL of sol (S4) containing cerium hydroxide is added. Obtained.
200 mL of sol (S4) containing cerium hydroxide was gradually added to 200 mL of sol (S3) containing zirconium hydroxide, and the mixture was stirred for about 8 hours in a flask equipped with a reflux condenser while maintaining at 40 to 50 ° C. At this time, the content of cerium hydroxide in the final abrasive grains can be adjusted by changing the mixing ratio of the sol containing zirconium hydroxide (S3) and the sol containing cerium hydroxide (S4). .
Thereafter, 50 mL of aqueous hydrogen peroxide was gradually added, followed by 20 mL of aqueous ammonia, and this solution was heated in the range of 94 to 100 ° C. for about 30 hours in a flask equipped with a reflux condenser. Thereafter, the mixture was concentrated to 150 mL by heating to obtain a sol containing zirconium hydroxide and cerium hydroxide. In order to remove chloride ions and the like from this sol, an alkaline aqueous solution such as aqueous ammonia or potassium hydroxide was added. At this time, the pH may be 10-13. By making the aqueous solution alkaline, the sol can be easily aggregated easily and solid-liquid separation becomes possible. The supernatant was removed, and decantation was repeated 5 times or more with RO water. The precipitate after decantation was replaced with acetone or ethanol, filtered and dried, and calcined at a calcining temperature of 1000 ° C. for about 3 hours.
The powder obtained here is a composite oxide of zirconia-cerium oxide and corresponds to composite particles having the structure shown in FIG. As a result of analysis by powder X-ray diffraction spectrum, the crystal structure of zirconia was monoclinic, and zirconia having a crystal structure corresponding to tetragonal crystal or cubic crystal was not obtained. The crystallite diameter of zirconia was 40 nm. The crystal structure of cerium oxide was cubic, and the crystallite diameter was 30 nm. By adjusting the heating time when preparing the sol (S1) containing zirconium hydroxide, the heating time when preparing the sol (S2) containing cerium oxide, and the firing temperature, it has different crystallite diameters. Zirconia and cerium oxide can be produced.
The powder obtained after firing was crushed and pulverized in order to make the particle size distribution uniform, and then classified. Commercially available ball mills, hammer mills, bead mills, etc. can be used for crushing and grinding, and commercially available classifiers can also be used for classification. Wet classifiers such as dry classifiers and liquid cyclones using sieves and air currents. May be used.
比較例の場合と同様にして研磨砥粒の結晶子径を算出した。このとき、研磨砥粒を構成するジルコニアと酸化セリウムの結晶構造に着目して、以下のようにして結晶子径を算出した。単斜晶のジルコニアと立方晶の酸化セリウムからなる研磨砥粒に関し、単斜晶のジルコニアの結晶子径については、比較例と同様にして算出し、立方晶の酸化セリウムについては、2θ領域28.4~28.7°内に頂点がある第1ピーク、2θ領域32.9~33.2°内に頂点がある第2ピーク、2θ領域47.3~47.6°内に頂点がある第3ピークに関して結晶子径を算出し、その平均値をその立方晶の酸化セリウムの結晶子径とした。比較例と同様、粉末X線回折スペクトルの解析にはICDDのデータを利用した。
表1に示すように、実施例1~4はそれぞれ、酸化セリウム(CeO2)の結晶子径が異なる。
実施例1~4、及び比較例1については、すべて以下の洗浄液とした。
・洗浄液:上述した洗浄液Aであり、硫酸の濃度:0.5mol/L,アスコルビン酸の濃度:0.05mol/L,ケイフッ化水素酸の濃度:0.012mol/Lとした。ガラス表面のエッチング量は片面20nmとした。 The crystallite diameter of the abrasive grains was calculated in the same manner as in the comparative example. At this time, focusing on the crystal structure of zirconia and cerium oxide constituting the abrasive grains, the crystallite diameter was calculated as follows. Regarding the abrasive grains composed of monoclinic zirconia and cubic cerium oxide, the crystallite diameter of monoclinic zirconia was calculated in the same manner as in the comparative example. For cubic cerium oxide, 2θ region 28 First peak with apex within 4 to 28.7 °, second peak with apex within 32.9 to 33.2 ° in 2θ region, apex within 47.3 to 47.6 ° with 2θ region The crystallite diameter was calculated for the third peak, and the average value was taken as the crystallite diameter of the cubic cerium oxide. As in the comparative example, ICDD data was used to analyze the powder X-ray diffraction spectrum.
As shown in Table 1, Examples 1 to 4 have different crystallite diameters of cerium oxide (CeO 2 ).
For Examples 1 to 4 and Comparative Example 1, the following cleaning solutions were used.
Cleaning solution: The above-mentioned cleaning solution A, sulfuric acid concentration: 0.5 mol / L, ascorbic acid concentration: 0.05 mol / L, and fluorosilicic acid concentration: 0.012 mol / L. The etching amount on the glass surface was 20 nm on one side.
表1に示すように、実施例1~4はそれぞれ、酸化セリウム(CeO2)の結晶子径が異なる。
実施例1~4、及び比較例1については、すべて以下の洗浄液とした。
・洗浄液:上述した洗浄液Aであり、硫酸の濃度:0.5mol/L,アスコルビン酸の濃度:0.05mol/L,ケイフッ化水素酸の濃度:0.012mol/Lとした。ガラス表面のエッチング量は片面20nmとした。 The crystallite diameter of the abrasive grains was calculated in the same manner as in the comparative example. At this time, focusing on the crystal structure of zirconia and cerium oxide constituting the abrasive grains, the crystallite diameter was calculated as follows. Regarding the abrasive grains composed of monoclinic zirconia and cubic cerium oxide, the crystallite diameter of monoclinic zirconia was calculated in the same manner as in the comparative example. For cubic cerium oxide, 2θ region 28 First peak with apex within 4 to 28.7 °, second peak with apex within 32.9 to 33.2 ° in 2θ region, apex within 47.3 to 47.6 ° with 2θ region The crystallite diameter was calculated for the third peak, and the average value was taken as the crystallite diameter of the cubic cerium oxide. As in the comparative example, ICDD data was used to analyze the powder X-ray diffraction spectrum.
As shown in Table 1, Examples 1 to 4 have different crystallite diameters of cerium oxide (CeO 2 ).
For Examples 1 to 4 and Comparative Example 1, the following cleaning solutions were used.
Cleaning solution: The above-mentioned cleaning solution A, sulfuric acid concentration: 0.5 mol / L, ascorbic acid concentration: 0.05 mol / L, and fluorosilicic acid concentration: 0.012 mol / L. The etching amount on the glass surface was 20 nm on one side.
(C)実施例5~8
実施例5~8は、使用した研磨液が比較例2と異なる。
・研磨液:研磨砥粒は、湿式法で作製したジルコニア砥粒を10重量%含む。ジルコニア砥粒の1次粒子径は110nm、粒度分布計でのジルコニア砥粒の平均粒子径(D50)は、0.5μmとした。研磨砥粒は、主成分をジルコニア粒子とし、そのジルコニア粒子の表面の一部を酸化第二鉄で構成したものである。酸化第二鉄の含有量はいずれも15モル%とした。研磨液のpHは10となるように調整した。 (C) Examples 5 to 8
In Examples 5 to 8, the polishing liquid used is different from that in Comparative Example 2.
Polishing liquid: The abrasive grains contain 10% by weight of zirconia abrasive grains prepared by a wet method. The primary particle diameter of the zirconia abrasive grains was 110 nm, and the average particle diameter (D50) of the zirconia abrasive grains in the particle size distribution meter was 0.5 μm. The abrasive grains are composed mainly of zirconia particles, and part of the surface of the zirconia particles is made of ferric oxide. The ferric oxide content was 15 mol% in all cases. The pH of the polishing liquid was adjusted to be 10.
実施例5~8は、使用した研磨液が比較例2と異なる。
・研磨液:研磨砥粒は、湿式法で作製したジルコニア砥粒を10重量%含む。ジルコニア砥粒の1次粒子径は110nm、粒度分布計でのジルコニア砥粒の平均粒子径(D50)は、0.5μmとした。研磨砥粒は、主成分をジルコニア粒子とし、そのジルコニア粒子の表面の一部を酸化第二鉄で構成したものである。酸化第二鉄の含有量はいずれも15モル%とした。研磨液のpHは10となるように調整した。 (C) Examples 5 to 8
In Examples 5 to 8, the polishing liquid used is different from that in Comparative Example 2.
Polishing liquid: The abrasive grains contain 10% by weight of zirconia abrasive grains prepared by a wet method. The primary particle diameter of the zirconia abrasive grains was 110 nm, and the average particle diameter (D50) of the zirconia abrasive grains in the particle size distribution meter was 0.5 μm. The abrasive grains are composed mainly of zirconia particles, and part of the surface of the zirconia particles is made of ferric oxide. The ferric oxide content was 15 mol% in all cases. The pH of the polishing liquid was adjusted to be 10.
具体的には、実施例5~8の研磨砥粒は以下のようにして作製した。
先ず上述した実施例の研磨砥粒の作製方法と同様の方法で、水酸化ジルコニウム(S3)を得た。硫酸アンモニウム鉄(II)六水和物45gをRO水500mLに溶解させ、これに過酸化水素水100mLを添加して撹拌し、続いてアンモニア水40mLを添加し、この溶液を還流冷却器付フラスコ内で約26時間、94~100度で加熱し、その後、100mLになるまで加熱濃縮し、水酸化鉄を含むゾル(S5)を得た。続いて、RO水100mLに硫酸アンモニウム鉄(II)六水和物10gを溶解させた水溶液を調整し、水酸化鉄を含むゾル(S5)100mLに添加し、水酸化鉄を含むゾル(S6)200mLを得た。
水酸化ジルコニウムを含むゾル(S3)200mLに水酸化鉄を含むゾル(S6)200mLを徐々に加え、約8時間、40~50℃に保ちながら還流冷却器付フラスコ内で撹拌した。なおこのとき、水酸化ジルコニウムを含むゾル(S3)と水酸化鉄を含むゾル(S6)の混合比率を変えることで、最終的な研磨砥粒における水酸化鉄の含有量を調整することができる。
その後、過酸化水素水60mLを徐々に加え、続いてアンモニア水40mLを徐々に添加し、この溶液を還流冷却器付フラスコ内で約30時間、94~100度の範囲で加熱した。その後、150mLになるまで加熱濃縮し、水酸化ジルコニウムと水酸化鉄を含むゾルを得た。
デカンテーションやアルカリ処理、アセトン処理は、乾燥、焼成、結晶子径の調整、解砕・粉砕、分級は、上述した実施例1~4の研磨砥粒の作製方法と同様である。
ここで得られた粉末は、ジルコニア-酸化鉄の複合酸化物であり、図3(c)に示した構造の複合粒子に相当する。粉末X線回折スペクトルによる解析の結果、ジルコニアの結晶構造は単斜晶であり、正方晶や立方晶に相当する結晶構造のジルコニアは得られなかった。ジルコニアの結晶子径は40nmであった。酸化鉄の結晶構造は菱面体晶であり、結晶子径は20nmであった。
なお、上述した実施例1~4の研磨砥粒の作製方法と同様に、水酸化ジルコニウムを含むゾル(S1)を作製する際の加熱時間、水酸化鉄を含むゾル(S5)を作製する際の加熱時間、焼成温度を調整することで、異なる大きさの結晶子径を備えたジルコニア及び酸化鉄を作製することができる。 Specifically, the abrasive grains of Examples 5 to 8 were produced as follows.
First, zirconium hydroxide (S3) was obtained by a method similar to the method for producing the abrasive grains of the above-described Examples. 45 g of ammonium iron (II) sulfate hexahydrate is dissolved in 500 mL of RO water, 100 mL of hydrogen peroxide solution is added thereto and stirred, and then 40 mL of aqueous ammonia is added, and this solution is placed in a flask equipped with a reflux condenser. And heated at 94-100 ° C. for about 26 hours, and then concentrated to 100 mL by heating to obtain a sol (S5) containing iron hydroxide. Subsequently, an aqueous solution in which 10 g of ammonium iron (II) sulfate hexahydrate was dissolved in 100 mL of RO water was prepared and added to 100 mL of sol (S5) containing iron hydroxide, and 200 mL of sol (S6) containing iron hydroxide. Got.
200 mL of sol (S6) containing iron hydroxide was gradually added to 200 mL of sol (S3) containing zirconium hydroxide, and the mixture was stirred for about 8 hours in a flask equipped with a reflux condenser while maintaining at 40 to 50 ° C. At this time, the content of iron hydroxide in the final abrasive grains can be adjusted by changing the mixing ratio of the sol containing zirconium hydroxide (S3) and the sol containing iron hydroxide (S6). .
Thereafter, 60 mL of hydrogen peroxide solution was gradually added, and subsequently 40 mL of ammonia solution was gradually added, and this solution was heated in a range of 94 to 100 degrees for about 30 hours in a flask equipped with a reflux condenser. Thereafter, the mixture was concentrated to 150 mL by heating to obtain a sol containing zirconium hydroxide and iron hydroxide.
In decantation, alkali treatment, and acetone treatment, drying, firing, adjustment of crystallite diameter, crushing / pulverization, and classification are the same as the methods for producing abrasive grains of Examples 1 to 4 described above.
The powder obtained here is a composite oxide of zirconia-iron oxide and corresponds to composite particles having the structure shown in FIG. As a result of analysis by powder X-ray diffraction spectrum, the crystal structure of zirconia was monoclinic, and zirconia having a crystal structure corresponding to tetragonal crystal or cubic crystal was not obtained. The crystallite diameter of zirconia was 40 nm. The crystal structure of iron oxide was rhombohedral and the crystallite diameter was 20 nm.
As in the above-described methods for producing the abrasive grains of Examples 1 to 4, the heating time for producing the sol (S1) containing zirconium hydroxide and the sol (S5) containing iron hydroxide are produced. By adjusting the heating time and the firing temperature, zirconia and iron oxide having different crystallite sizes can be produced.
先ず上述した実施例の研磨砥粒の作製方法と同様の方法で、水酸化ジルコニウム(S3)を得た。硫酸アンモニウム鉄(II)六水和物45gをRO水500mLに溶解させ、これに過酸化水素水100mLを添加して撹拌し、続いてアンモニア水40mLを添加し、この溶液を還流冷却器付フラスコ内で約26時間、94~100度で加熱し、その後、100mLになるまで加熱濃縮し、水酸化鉄を含むゾル(S5)を得た。続いて、RO水100mLに硫酸アンモニウム鉄(II)六水和物10gを溶解させた水溶液を調整し、水酸化鉄を含むゾル(S5)100mLに添加し、水酸化鉄を含むゾル(S6)200mLを得た。
水酸化ジルコニウムを含むゾル(S3)200mLに水酸化鉄を含むゾル(S6)200mLを徐々に加え、約8時間、40~50℃に保ちながら還流冷却器付フラスコ内で撹拌した。なおこのとき、水酸化ジルコニウムを含むゾル(S3)と水酸化鉄を含むゾル(S6)の混合比率を変えることで、最終的な研磨砥粒における水酸化鉄の含有量を調整することができる。
その後、過酸化水素水60mLを徐々に加え、続いてアンモニア水40mLを徐々に添加し、この溶液を還流冷却器付フラスコ内で約30時間、94~100度の範囲で加熱した。その後、150mLになるまで加熱濃縮し、水酸化ジルコニウムと水酸化鉄を含むゾルを得た。
デカンテーションやアルカリ処理、アセトン処理は、乾燥、焼成、結晶子径の調整、解砕・粉砕、分級は、上述した実施例1~4の研磨砥粒の作製方法と同様である。
ここで得られた粉末は、ジルコニア-酸化鉄の複合酸化物であり、図3(c)に示した構造の複合粒子に相当する。粉末X線回折スペクトルによる解析の結果、ジルコニアの結晶構造は単斜晶であり、正方晶や立方晶に相当する結晶構造のジルコニアは得られなかった。ジルコニアの結晶子径は40nmであった。酸化鉄の結晶構造は菱面体晶であり、結晶子径は20nmであった。
なお、上述した実施例1~4の研磨砥粒の作製方法と同様に、水酸化ジルコニウムを含むゾル(S1)を作製する際の加熱時間、水酸化鉄を含むゾル(S5)を作製する際の加熱時間、焼成温度を調整することで、異なる大きさの結晶子径を備えたジルコニア及び酸化鉄を作製することができる。 Specifically, the abrasive grains of Examples 5 to 8 were produced as follows.
First, zirconium hydroxide (S3) was obtained by a method similar to the method for producing the abrasive grains of the above-described Examples. 45 g of ammonium iron (II) sulfate hexahydrate is dissolved in 500 mL of RO water, 100 mL of hydrogen peroxide solution is added thereto and stirred, and then 40 mL of aqueous ammonia is added, and this solution is placed in a flask equipped with a reflux condenser. And heated at 94-100 ° C. for about 26 hours, and then concentrated to 100 mL by heating to obtain a sol (S5) containing iron hydroxide. Subsequently, an aqueous solution in which 10 g of ammonium iron (II) sulfate hexahydrate was dissolved in 100 mL of RO water was prepared and added to 100 mL of sol (S5) containing iron hydroxide, and 200 mL of sol (S6) containing iron hydroxide. Got.
200 mL of sol (S6) containing iron hydroxide was gradually added to 200 mL of sol (S3) containing zirconium hydroxide, and the mixture was stirred for about 8 hours in a flask equipped with a reflux condenser while maintaining at 40 to 50 ° C. At this time, the content of iron hydroxide in the final abrasive grains can be adjusted by changing the mixing ratio of the sol containing zirconium hydroxide (S3) and the sol containing iron hydroxide (S6). .
Thereafter, 60 mL of hydrogen peroxide solution was gradually added, and subsequently 40 mL of ammonia solution was gradually added, and this solution was heated in a range of 94 to 100 degrees for about 30 hours in a flask equipped with a reflux condenser. Thereafter, the mixture was concentrated to 150 mL by heating to obtain a sol containing zirconium hydroxide and iron hydroxide.
In decantation, alkali treatment, and acetone treatment, drying, firing, adjustment of crystallite diameter, crushing / pulverization, and classification are the same as the methods for producing abrasive grains of Examples 1 to 4 described above.
The powder obtained here is a composite oxide of zirconia-iron oxide and corresponds to composite particles having the structure shown in FIG. As a result of analysis by powder X-ray diffraction spectrum, the crystal structure of zirconia was monoclinic, and zirconia having a crystal structure corresponding to tetragonal crystal or cubic crystal was not obtained. The crystallite diameter of zirconia was 40 nm. The crystal structure of iron oxide was rhombohedral and the crystallite diameter was 20 nm.
As in the above-described methods for producing the abrasive grains of Examples 1 to 4, the heating time for producing the sol (S1) containing zirconium hydroxide and the sol (S5) containing iron hydroxide are produced. By adjusting the heating time and the firing temperature, zirconia and iron oxide having different crystallite sizes can be produced.
比較例の場合と同様にして研磨砥粒の結晶子径を算出した。このとき、研磨砥粒を構成するジルコニアと酸化第二鉄の結晶構造に着目して、以下のようにして結晶子径を算出した。単斜晶のジルコニアと菱面体晶の酸化第二鉄とからなる研磨砥粒に関し、単斜晶のジルコニアの結晶子径については、比較例と同様にして算出し、菱面体晶の酸化第二鉄については、2θ領域33.0~33.3°内に頂点がある第1ピークを用いて計算した値を結晶子径とした。比較例と同様、粉末X線回折スペクトルの解析には、ICDDのデータを利用した。
表2に示すように、実施例5~8はそれぞれ、酸化第二鉄(Fe2O3)の結晶子径が異なる。
実施例5~8、及び比較例2については、すべて以下の洗浄液とした。
・洗浄液:上述した洗浄液Bであり、シュウ酸の濃度:0.022mol/L,リンゴ酸の濃度:0.04mol/L,硫酸アンモニウム鉄(II)の濃度:0.00078mol/L,水酸化カリウムでpH2に調整したものである。洗浄工程と並行して、洗浄液に含まれる2価の鉄イオンの錯体が酸化されて生成した3価の鉄イオンの錯体を紫外線照射により還元した。 The crystallite diameter of the abrasive grains was calculated in the same manner as in the comparative example. At this time, focusing on the crystal structure of zirconia and ferric oxide constituting the abrasive grains, the crystallite diameter was calculated as follows. Regarding the abrasive grains composed of monoclinic zirconia and rhombohedral ferric oxide, the crystallite diameter of monoclinic zirconia was calculated in the same manner as in the comparative example, and rhombohedral oxide second For iron, the value calculated using the first peak having a vertex in the 2θ region of 33.0 to 33.3 ° was taken as the crystallite diameter. As in the comparative example, ICDD data was used for the analysis of the powder X-ray diffraction spectrum.
As shown in Table 2, Examples 5 to 8 have different crystallite diameters of ferric oxide (Fe 2 O 3 ).
In Examples 5 to 8 and Comparative Example 2, the following cleaning solutions were used.
Cleaning liquid: Cleaning liquid B described above, oxalic acid concentration: 0.022 mol / L, malic acid concentration: 0.04 mol / L, ammonium iron (II) sulfate concentration: 0.00078 mol / L, potassium hydroxide The pH is adjusted to 2. In parallel with the washing step, the trivalent iron ion complex produced by oxidation of the divalent iron ion complex contained in the washing solution was reduced by ultraviolet irradiation.
表2に示すように、実施例5~8はそれぞれ、酸化第二鉄(Fe2O3)の結晶子径が異なる。
実施例5~8、及び比較例2については、すべて以下の洗浄液とした。
・洗浄液:上述した洗浄液Bであり、シュウ酸の濃度:0.022mol/L,リンゴ酸の濃度:0.04mol/L,硫酸アンモニウム鉄(II)の濃度:0.00078mol/L,水酸化カリウムでpH2に調整したものである。洗浄工程と並行して、洗浄液に含まれる2価の鉄イオンの錯体が酸化されて生成した3価の鉄イオンの錯体を紫外線照射により還元した。 The crystallite diameter of the abrasive grains was calculated in the same manner as in the comparative example. At this time, focusing on the crystal structure of zirconia and ferric oxide constituting the abrasive grains, the crystallite diameter was calculated as follows. Regarding the abrasive grains composed of monoclinic zirconia and rhombohedral ferric oxide, the crystallite diameter of monoclinic zirconia was calculated in the same manner as in the comparative example, and rhombohedral oxide second For iron, the value calculated using the first peak having a vertex in the 2θ region of 33.0 to 33.3 ° was taken as the crystallite diameter. As in the comparative example, ICDD data was used for the analysis of the powder X-ray diffraction spectrum.
As shown in Table 2, Examples 5 to 8 have different crystallite diameters of ferric oxide (Fe 2 O 3 ).
In Examples 5 to 8 and Comparative Example 2, the following cleaning solutions were used.
Cleaning liquid: Cleaning liquid B described above, oxalic acid concentration: 0.022 mol / L, malic acid concentration: 0.04 mol / L, ammonium iron (II) sulfate concentration: 0.00078 mol / L, potassium hydroxide The pH is adjusted to 2. In parallel with the washing step, the trivalent iron ion complex produced by oxidation of the divalent iron ion complex contained in the washing solution was reduced by ultraviolet irradiation.
比較例1、比較例2、実施例1~8のガラス素板について、第1研磨における洗浄性を評価したところ、表1及び表2に示す結果となった。なお、第一研磨工程後に洗浄及び乾燥を実施したものについて上記評価を行った。
洗浄性の評価に当たって、光学顕微鏡によりガラス素板の表面の欠陥を観察してマーキングを行った。マーキングした欠陥について、走査型電子顕微鏡とエネルギー分散型X線分析装置を用いて、元素分析を行った。研磨材に含まれる金属元素(Zr、CeもしくはFe)が検出されたとき、その欠陥は研磨砥粒に起因する粒子であると判断した。
表1及び表2において、洗浄性の評価は、研磨加工後の基板について、光学顕微鏡で20個マーキングした欠陥の中で、研磨砥粒に起因する粒子の数を測定し、下記の基準に基づいて行った。◎、〇、△が合格である。
◎ (Excellent):2個以下
○ (Good):3個又は4個
△ (Fair):5個又は6個
× (Poor):7個以上 For the glass base plates of Comparative Example 1, Comparative Example 2, and Examples 1 to 8, the cleaning performance in the first polishing was evaluated. The results shown in Tables 1 and 2 were obtained. In addition, the said evaluation was performed about what wash | cleaned and dried after the 1st grinding | polishing process.
In evaluating the cleaning performance, marking was performed by observing defects on the surface of the glass base plate with an optical microscope. The marked defects were subjected to elemental analysis using a scanning electron microscope and an energy dispersive X-ray analyzer. When a metal element (Zr, Ce or Fe) contained in the abrasive was detected, the defect was judged to be a particle due to the abrasive grains.
In Table 1 and Table 2, the evaluation of the cleaning property is based on the following criteria by measuring the number of particles caused by the abrasive grains among the defects marked with 20 optical microscopes on the polished substrate. I went. ◎, ○ and △ are acceptable.
◎ (Excellent): 2 or less ○ (Good): 3 or 4 △ (Fair): 5 or 6 × (Poor): 7 or more
洗浄性の評価に当たって、光学顕微鏡によりガラス素板の表面の欠陥を観察してマーキングを行った。マーキングした欠陥について、走査型電子顕微鏡とエネルギー分散型X線分析装置を用いて、元素分析を行った。研磨材に含まれる金属元素(Zr、CeもしくはFe)が検出されたとき、その欠陥は研磨砥粒に起因する粒子であると判断した。
表1及び表2において、洗浄性の評価は、研磨加工後の基板について、光学顕微鏡で20個マーキングした欠陥の中で、研磨砥粒に起因する粒子の数を測定し、下記の基準に基づいて行った。◎、〇、△が合格である。
◎ (Excellent):2個以下
○ (Good):3個又は4個
△ (Fair):5個又は6個
× (Poor):7個以上 For the glass base plates of Comparative Example 1, Comparative Example 2, and Examples 1 to 8, the cleaning performance in the first polishing was evaluated. The results shown in Tables 1 and 2 were obtained. In addition, the said evaluation was performed about what wash | cleaned and dried after the 1st grinding | polishing process.
In evaluating the cleaning performance, marking was performed by observing defects on the surface of the glass base plate with an optical microscope. The marked defects were subjected to elemental analysis using a scanning electron microscope and an energy dispersive X-ray analyzer. When a metal element (Zr, Ce or Fe) contained in the abrasive was detected, the defect was judged to be a particle due to the abrasive grains.
In Table 1 and Table 2, the evaluation of the cleaning property is based on the following criteria by measuring the number of particles caused by the abrasive grains among the defects marked with 20 optical microscopes on the polished substrate. I went. ◎, ○ and △ are acceptable.
◎ (Excellent): 2 or less ○ (Good): 3 or 4 △ (Fair): 5 or 6 × (Poor): 7 or more
表1又は表2の結果から、表面に非ジルコニア物質が形成されていないジルコニア粒子の場合には、洗浄性の評価が不合格となることが確認された。表面に非ジルコニア物質が形成されているジルコニア粒子の場合には、洗浄性の評価が合格となることが確認された。より具体的には、非ジルコニア物質(酸化セリウム又は酸化第二鉄)の結晶子径が10nm以上であれば好ましく、20nm以上であればさらに好ましく、30nm以上であれば一層好ましいことが確認された。これは、非ジルコニア物質の結晶子径が大きくなると、研磨時においてジルコニアのガラス表面に対する接触面積が相対的に小さくなるため、ジルコニアのガラス表面に対する付着力が弱く、洗浄液による非ジルコニア物質の溶解除去により、ガラス表面からジルコニアが離脱しやすくなったためであると考えられる。
From the results of Table 1 or Table 2, it was confirmed that in the case of zirconia particles in which a non-zirconia substance is not formed on the surface, the cleaning property evaluation is rejected. In the case of zirconia particles having a non-zirconia substance formed on the surface, it was confirmed that the evaluation of detergency passed. More specifically, it was confirmed that the crystallite size of the non-zirconia substance (cerium oxide or ferric oxide) is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 30 nm or more. . This is because, when the crystallite size of the non-zirconia material increases, the contact area of the zirconia with the glass surface becomes relatively small during polishing, so the adhesion of the zirconia to the glass surface is weak, and the non-zirconia material is dissolved and removed by the cleaning liquid. This is considered to be because zirconia easily separated from the glass surface.
なお、非ジルコニア物質が酸化セリウムの場合には、いずれの実施例においても研磨レートが良好であったが、非ジルコニア物質が酸化第二鉄の場合には、結晶子径が40nm以上の場合に、研磨レートの若干の低下が確認された。また、表1において酸化セリウムの結晶子径を5nmとした以外は実施例1と同じ条件で実験したところ、洗浄性は実施例1と同様に△となり合格レベルではあったが、実施例1よりも研磨レートが低下した。同様に表2において酸化鉄の結晶子径を5nmとした以外は実施例5と同じ条件で実験したところ、洗浄性は実施例5と同様に△となり合格レベルではあったが、実施例5よりも研磨レートが低下した。これらの実験より、研磨レートの観点から結晶子径は10nm以上であることが好ましいことがわかる。
In addition, when the non-zirconia material is cerium oxide, the polishing rate was good in any of the examples. However, when the non-zirconia material is ferric oxide, the crystallite diameter is 40 nm or more. A slight decrease in the polishing rate was confirmed. Further, in Table 1, an experiment was performed under the same conditions as in Example 1 except that the crystallite diameter of cerium oxide was set to 5 nm. Also, the polishing rate decreased. Similarly, in Table 2, an experiment was performed under the same conditions as in Example 5 except that the crystallite diameter of the iron oxide was changed to 5 nm. Also, the polishing rate decreased. From these experiments, it is understood that the crystallite diameter is preferably 10 nm or more from the viewpoint of the polishing rate.
さらに、表1において研磨砥粒中の酸化セリウムの含有量をそれぞれ9モル%(実施例4-1)、5モル%(実施例4-2)とした以外は実施例4と同じ条件で実験したところ、実施例4-1の洗浄性は○、実施例4-2の洗浄性は△であった。また、表2において研磨砥粒中の酸化鉄の含有量をそれぞれ9モル%(実施例8-1)、5モル%(実施例8-2)とした以外は実施例8と同じ条件で実験したところ、実施例8-1の洗浄性は○、実施例8-2の洗浄性は△であった。
Further, in Table 1, the experiment was performed under the same conditions as in Example 4 except that the content of cerium oxide in the abrasive grains was 9 mol% (Example 4-1) and 5 mol% (Example 4-2), respectively. As a result, the washability of Example 4-1 was ○, and the washability of Example 4-2 was Δ. In Table 2, the experiment was performed under the same conditions as in Example 8, except that the content of iron oxide in the abrasive grains was 9 mol% (Example 8-1) and 5 mol% (Example 8-2), respectively. As a result, the washability of Example 8-1 was ○, and the washability of Example 8-2 was Δ.
さらに、研磨液のpHを7、4、2とした以外は実施例4及び実施例8の条件でそれぞれ実験したところ(実施例4-3,4-4,4-5、及び、実施例8-3、8-4、8-5)、洗浄性は同等(◎)であったが、いずれの場合もアルカリ性(pH=10)の場合と比べて、スクラッチの数が増加した。実施例4対する増加量は、実施例4-3:5%,4-4:10%,4-5:15%であり、実施例8に対する増加量は、実施例8-3:3%、8-4:9%、8-5:14%であった。このことから、研磨液をアルカリ性とすることでスクラッチの数が低減することがわかる。なお、スクラッチの数は、レーザー式の表面欠陥検査装置を用いてガラス基板の主表面を走査し、散乱光を検出することにより計測した。
さらに、研磨砥粒中におけるジルコニア部分について、結晶子径を5、10、20、60nmとした以外は、実施例4及び実施例8の条件でそれぞれ実験したところ、洗浄性は同等(◎)であったが、ジルコニア部分の結晶子径を5nmの場合に研磨レートに若干低下が見られた。 Further, experiments were performed under the conditions of Example 4 and Example 8 except that the pH of the polishing liquid was changed to 7, 4, and 2 (Examples 4-3, 4-4, 4-5, and Example 8). -3, 8-4, 8-5) and the cleaning properties were the same ()), but in all cases, the number of scratches increased compared to the alkaline case (pH = 10). The increase amount for Example 4 is Example 4-3: 5%, 4-4: 10%, 4-5: 15%, and the increase amount for Example 8 is Example 8-3: 3%, 8-4: 9%, 8-5: 14%. This shows that the number of scratches is reduced by making the polishing liquid alkaline. The number of scratches was measured by scanning the main surface of the glass substrate using a laser type surface defect inspection apparatus and detecting scattered light.
Further, with respect to the zirconia portion in the abrasive grains, experiments were performed under the conditions of Example 4 and Example 8 except that the crystallite diameter was set to 5, 10, 20, and 60 nm. However, when the crystallite size of the zirconia portion was 5 nm, the polishing rate was slightly reduced.
さらに、研磨砥粒中におけるジルコニア部分について、結晶子径を5、10、20、60nmとした以外は、実施例4及び実施例8の条件でそれぞれ実験したところ、洗浄性は同等(◎)であったが、ジルコニア部分の結晶子径を5nmの場合に研磨レートに若干低下が見られた。 Further, experiments were performed under the conditions of Example 4 and Example 8 except that the pH of the polishing liquid was changed to 7, 4, and 2 (Examples 4-3, 4-4, 4-5, and Example 8). -3, 8-4, 8-5) and the cleaning properties were the same ()), but in all cases, the number of scratches increased compared to the alkaline case (pH = 10). The increase amount for Example 4 is Example 4-3: 5%, 4-4: 10%, 4-5: 15%, and the increase amount for Example 8 is Example 8-3: 3%, 8-4: 9%, 8-5: 14%. This shows that the number of scratches is reduced by making the polishing liquid alkaline. The number of scratches was measured by scanning the main surface of the glass substrate using a laser type surface defect inspection apparatus and detecting scattered light.
Further, with respect to the zirconia portion in the abrasive grains, experiments were performed under the conditions of Example 4 and Example 8 except that the crystallite diameter was set to 5, 10, 20, and 60 nm. However, when the crystallite size of the zirconia portion was 5 nm, the polishing rate was slightly reduced.
次に、実施例1~8及び比較例の第1研磨工程を経て作製された磁気ディスク用ガラス基板に、付着層、SUL、シード層、下地層、磁性層(磁気記録層)、保護層、潤滑層を積層させて磁気ディスクを作製し、グライドヘッドの浮上量を7nmに設定してグライド検査を行った。その結果、実施例1~8の第1研磨工程を経て作製された磁気ディスク用ガラス基板について100枚を検査したときの歩留まり(検査合格率)が90%以上となり、すべて合格であった。
他方、比較例1、比較例2の第1研磨工程を経て作製された磁気ディスク用ガラス基板については、歩留まりは90%より低くなり、不合格であった。さらに、グライド検査で検出した不良位置をSEM/EDXによって観察したところ、異物が発見された。発見された異物について組成分析を行ったところ、ジルコニアの研磨剤に由来する異物であることがわかった。すなわち、研磨工程で使用したジルコニア粒子が研磨加工中にガラス素板に付着し、その付着したジルコニア粒子が洗浄によって離脱せずに異物として発見されたと考えられる。
なお、実施例1~8の主表面研磨後のガラス素板の主表面について、AFMを用いて、1μm×1μm角の測定エリアにおいて、512×512ピクセルの解像度で算術平均粗さ(Ra)について測定したところ、いずれも1.5nm以下であった。また、研磨後の端面における算術平均粗さ(Ra)について触針式の表面粗さ測定機を用いて測定したところ、いずれも50nm以下であった。 Next, an adhesion layer, a SUL, a seed layer, an underlayer, a magnetic layer (magnetic recording layer), a protective layer, a magnetic disk glass substrate manufactured through the first polishing process of Examples 1 to 8 and Comparative Example, A magnetic disk was manufactured by laminating a lubricating layer, and a glide test was performed with the flying height of the glide head set to 7 nm. As a result, the yield (inspection pass rate) when 100 pieces of the glass substrates for magnetic disks produced through the first polishing process of Examples 1 to 8 were inspected was 90% or more, and all passed.
On the other hand, for the glass substrate for magnetic disk produced through the first polishing process of Comparative Example 1 and Comparative Example 2, the yield was lower than 90%, which was unacceptable. Furthermore, when the defect position detected by the glide inspection was observed by SEM / EDX, a foreign matter was found. Composition analysis of the found foreign matter revealed that it was a foreign matter derived from a zirconia abrasive. That is, it is considered that the zirconia particles used in the polishing step adhered to the glass base plate during the polishing process, and the attached zirconia particles were found as foreign substances without being detached by washing.
Regarding the main surface of the glass base plate after polishing the main surface of Examples 1 to 8, the arithmetic average roughness (Ra) at a resolution of 512 × 512 pixels in a measurement area of 1 μm × 1 μm square using AFM. As a result of measurement, all were 1.5 nm or less. Further, the arithmetic average roughness (Ra) on the polished end face was measured using a stylus type surface roughness measuring instrument, and all were 50 nm or less.
他方、比較例1、比較例2の第1研磨工程を経て作製された磁気ディスク用ガラス基板については、歩留まりは90%より低くなり、不合格であった。さらに、グライド検査で検出した不良位置をSEM/EDXによって観察したところ、異物が発見された。発見された異物について組成分析を行ったところ、ジルコニアの研磨剤に由来する異物であることがわかった。すなわち、研磨工程で使用したジルコニア粒子が研磨加工中にガラス素板に付着し、その付着したジルコニア粒子が洗浄によって離脱せずに異物として発見されたと考えられる。
なお、実施例1~8の主表面研磨後のガラス素板の主表面について、AFMを用いて、1μm×1μm角の測定エリアにおいて、512×512ピクセルの解像度で算術平均粗さ(Ra)について測定したところ、いずれも1.5nm以下であった。また、研磨後の端面における算術平均粗さ(Ra)について触針式の表面粗さ測定機を用いて測定したところ、いずれも50nm以下であった。 Next, an adhesion layer, a SUL, a seed layer, an underlayer, a magnetic layer (magnetic recording layer), a protective layer, a magnetic disk glass substrate manufactured through the first polishing process of Examples 1 to 8 and Comparative Example, A magnetic disk was manufactured by laminating a lubricating layer, and a glide test was performed with the flying height of the glide head set to 7 nm. As a result, the yield (inspection pass rate) when 100 pieces of the glass substrates for magnetic disks produced through the first polishing process of Examples 1 to 8 were inspected was 90% or more, and all passed.
On the other hand, for the glass substrate for magnetic disk produced through the first polishing process of Comparative Example 1 and Comparative Example 2, the yield was lower than 90%, which was unacceptable. Furthermore, when the defect position detected by the glide inspection was observed by SEM / EDX, a foreign matter was found. Composition analysis of the found foreign matter revealed that it was a foreign matter derived from a zirconia abrasive. That is, it is considered that the zirconia particles used in the polishing step adhered to the glass base plate during the polishing process, and the attached zirconia particles were found as foreign substances without being detached by washing.
Regarding the main surface of the glass base plate after polishing the main surface of Examples 1 to 8, the arithmetic average roughness (Ra) at a resolution of 512 × 512 pixels in a measurement area of 1 μm × 1 μm square using AFM. As a result of measurement, all were 1.5 nm or less. Further, the arithmetic average roughness (Ra) on the polished end face was measured using a stylus type surface roughness measuring instrument, and all were 50 nm or less.
以上、本発明の磁気ディスク用ガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのは勿論である。
例えば、上述した実施形態の第1研磨(主表面研磨)工程では、複数のガラス素板をキャリアに収容させ、遊星歯車機構を用いて両面研磨を行う例を示したが、これに限られない。1枚ずつ研磨を行う枚葉方式で研磨を行ってもよい。
また、実施形態の第1研磨工程で述べた研磨液及び洗浄液を用いた研磨及び洗浄は、端面研磨工程において適用してもよい。その場合、ガラス素板の端面の算術平均粗さRaを50nm以下とすることができ、かつジルコニア粒子のみからなる研磨材を使用した場合と比較して洗浄性を良好にすることができる。 As mentioned above, although the manufacturing method of the glass substrate for magnetic discs of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, even if various improvement and a change are carried out. Of course it is good.
For example, in the first polishing (main surface polishing) step of the above-described embodiment, an example in which a plurality of glass base plates are accommodated in a carrier and double-side polishing is performed using a planetary gear mechanism is shown, but the present invention is not limited thereto. . Polishing may be performed by a single wafer method in which polishing is performed one by one.
The polishing and cleaning using the polishing liquid and the cleaning liquid described in the first polishing process of the embodiment may be applied in the end surface polishing process. In that case, the arithmetic average roughness Ra of the end face of the glass base plate can be set to 50 nm or less, and the detergency can be improved as compared with the case of using an abrasive made only of zirconia particles.
例えば、上述した実施形態の第1研磨(主表面研磨)工程では、複数のガラス素板をキャリアに収容させ、遊星歯車機構を用いて両面研磨を行う例を示したが、これに限られない。1枚ずつ研磨を行う枚葉方式で研磨を行ってもよい。
また、実施形態の第1研磨工程で述べた研磨液及び洗浄液を用いた研磨及び洗浄は、端面研磨工程において適用してもよい。その場合、ガラス素板の端面の算術平均粗さRaを50nm以下とすることができ、かつジルコニア粒子のみからなる研磨材を使用した場合と比較して洗浄性を良好にすることができる。 As mentioned above, although the manufacturing method of the glass substrate for magnetic discs of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, even if various improvement and a change are carried out. Of course it is good.
For example, in the first polishing (main surface polishing) step of the above-described embodiment, an example in which a plurality of glass base plates are accommodated in a carrier and double-side polishing is performed using a planetary gear mechanism is shown, but the present invention is not limited thereto. . Polishing may be performed by a single wafer method in which polishing is performed one by one.
The polishing and cleaning using the polishing liquid and the cleaning liquid described in the first polishing process of the embodiment may be applied in the end surface polishing process. In that case, the arithmetic average roughness Ra of the end face of the glass base plate can be set to 50 nm or less, and the detergency can be improved as compared with the case of using an abrasive made only of zirconia particles.
10 研磨パッド
30 キャリア
40 上定盤
50 下定盤
61 太陽歯車
62 内歯車
71 研磨液供給タンク
72 配管 DESCRIPTION OFSYMBOLS 10 Polishing pad 30 Carrier 40 Upper surface plate 50 Lower surface plate 61 Sun gear 62 Internal gear 71 Polishing liquid supply tank 72 Piping
30 キャリア
40 上定盤
50 下定盤
61 太陽歯車
62 内歯車
71 研磨液供給タンク
72 配管 DESCRIPTION OF
Claims (7)
- ジルコニアを主成分とする砥粒を研磨剤として含む研磨液を用いて、ガラス基板の表面の少なくとも一部を研磨する研磨工程と、前記研磨工程後のガラス基板を洗浄する洗浄工程とを含む磁気ディスク用ガラス基板の製造方法であって、
前記ジルコニアを主成分とする砥粒の表面の一部には、ジルコニア以外の物質である非ジルコニア物質が形成されており、
前記洗浄工程では、前記ガラス基板の研磨された表面を、前記非ジルコニア物質が可溶な洗浄液と接触させることを特徴とする、
磁気ディスク用ガラス基板の製造方法。 A magnetic process comprising a polishing step of polishing at least a part of the surface of the glass substrate using a polishing liquid containing abrasive grains mainly composed of zirconia as an abrasive, and a cleaning step of cleaning the glass substrate after the polishing step. A method for producing a glass substrate for a disk, comprising:
A part of the surface of the abrasive grains mainly composed of zirconia is formed with a non-zirconia substance that is a substance other than zirconia,
In the cleaning step, the polished surface of the glass substrate is brought into contact with a cleaning liquid in which the non-zirconia substance is soluble.
Manufacturing method of glass substrate for magnetic disk. - 前記ジルコニアを主成分とする砥粒において、前記非ジルコニア物質の結晶子径が10nm以上であることを特徴とする、
請求項1に記載された磁気ディスク用ガラス基板の製造方法。 In the abrasive grains mainly composed of zirconia, the crystallite size of the non-zirconia substance is 10 nm or more,
The manufacturing method of the glass substrate for magnetic discs described in Claim 1. - 前記研磨工程では、研磨後の前記ガラス基板の主表面における算術平均粗さ(Ra)が1.5nm以下となるように、前記ガラス基板の主表面を研磨することを特徴とする、
請求項1又は2に記載された磁気ディスク用ガラス基板の製造方法。 In the polishing step, the main surface of the glass substrate is polished so that the arithmetic average roughness (Ra) on the main surface of the glass substrate after polishing is 1.5 nm or less,
A method for producing a glass substrate for a magnetic disk according to claim 1 or 2. - 前記研磨工程では、研磨後の前記ガラス基板の端面における算術平均粗さ(Ra)が50nm以下となるように、前記ガラス基板の端面を研磨することを特徴とする、
請求項1~3のいずれかに記載された磁気ディスク用ガラス基板の製造方法。 In the polishing step, the end surface of the glass substrate is polished so that the arithmetic average roughness (Ra) on the end surface of the glass substrate after polishing is 50 nm or less,
The method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 3. - 前記非ジルコニア物質は、酸化セリウム、酸化鉄、酸化チタン、酸化亜鉛、アルミナ、酸化銅、及び酸化マンガンからなる群の中から選択された少なくともいずれかの物質であることを特徴とする、
請求項1~4のいずれかに記載された磁気ディスク用ガラス基板の製造方法。 The non-zirconia material is at least one selected from the group consisting of cerium oxide, iron oxide, titanium oxide, zinc oxide, alumina, copper oxide, and manganese oxide,
The method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 4. - 前記非ジルコニア物質は、酸化セリウムであって、
前記洗浄液は、フッ素イオンを含有することを特徴とする、
請求項5に記載された磁気ディスク用ガラス基板の製造方法。 The non-zirconia material is cerium oxide,
The cleaning liquid contains fluorine ions,
A method for producing a glass substrate for a magnetic disk according to claim 5. - 前記非ジルコニア物質は、酸化鉄であって、
前記洗浄液は、カルボン酸を含む酸と鉄の2価イオンを含むことを特徴とする、
請求項5に記載された磁気ディスク用ガラス基板の製造方法。 The non-zirconia material is iron oxide,
The cleaning liquid contains an acid containing carboxylic acid and a divalent ion of iron,
A method for producing a glass substrate for a magnetic disk according to claim 5.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014533059A JP6060166B2 (en) | 2012-08-28 | 2013-08-28 | Manufacturing method of glass substrate for magnetic disk |
CN201380038855.7A CN104508741A (en) | 2012-08-28 | 2013-08-28 | Process for producing glass substrate for magnetic disc |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012187964 | 2012-08-28 | ||
JP2012-187964 | 2012-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034746A1 true WO2014034746A1 (en) | 2014-03-06 |
Family
ID=50183551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073061 WO2014034746A1 (en) | 2012-08-28 | 2013-08-28 | Process for producing glass substrate for magnetic disc |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6060166B2 (en) |
CN (1) | CN104508741A (en) |
WO (1) | WO2014034746A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015189806A (en) * | 2014-03-27 | 2015-11-02 | 株式会社フジミインコーポレーテッド | Composition for polishing, usage of the same and substrate production method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113574638A (en) * | 2019-03-27 | 2021-10-29 | Agc株式会社 | Method for producing gallium oxide substrate and polishing slurry for gallium oxide substrate |
CN110610850B (en) * | 2019-09-16 | 2022-01-04 | 西安空间无线电技术研究所 | Cleaning method for glass substrate after laser hole making |
CN111805306B (en) * | 2020-06-19 | 2022-04-22 | 佛山市逸合生物科技有限公司 | Polishing process of medical titanium implant |
US20220380258A1 (en) * | 2020-10-09 | 2022-12-01 | Daiichi Kigenso Kagaku Kogyo Co., Ltd. | Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body |
CN113894687B (en) * | 2021-10-18 | 2023-01-31 | Oppo广东移动通信有限公司 | Polishing method of composite material part and shell |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10237425A (en) * | 1997-02-24 | 1998-09-08 | Toray Ind Inc | Polishing agent |
JP2004155913A (en) * | 2002-11-06 | 2004-06-03 | Yushiro Chem Ind Co Ltd | Abrasive grain for polishing, manufacturing method therefor, and abrasive |
JP2006099847A (en) * | 2004-09-29 | 2006-04-13 | Hoya Corp | Manufacturing methods of glass substrate for magnetic disk and of magnetic disk |
WO2011125894A1 (en) * | 2010-03-31 | 2011-10-13 | Hoya株式会社 | Manufacturing method for glass substrates for magnetic disks |
JP2012135866A (en) * | 2010-12-10 | 2012-07-19 | Admatechs Co Ltd | Composite abrasive grain and method for producing the same and polishing composition using the same |
JP2013111725A (en) * | 2011-11-30 | 2013-06-10 | Admatechs Co Ltd | Abrasive and method of manufacturing the same |
JP2013121649A (en) * | 2011-09-20 | 2013-06-20 | Crystal Kogaku:Kk | Abrasive material |
JP2013129056A (en) * | 2011-11-21 | 2013-07-04 | Tosoh Corp | Zirconia composite powder for polishing and method for producing the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4211952B2 (en) * | 1997-10-15 | 2009-01-21 | 東レ株式会社 | Composite particles for abrasives and slurry abrasives |
JP2002043258A (en) * | 2000-07-24 | 2002-02-08 | Asahi Kasei Corp | Polishing composition for metal films |
JP2006326787A (en) * | 2005-05-27 | 2006-12-07 | Hitachi Maxell Ltd | Grinding/polishing tool with fixed abrasive grains |
JP5403957B2 (en) * | 2008-07-01 | 2014-01-29 | 花王株式会社 | Polishing liquid composition |
JP5177087B2 (en) * | 2009-07-09 | 2013-04-03 | 旭硝子株式会社 | Glass substrate for information recording medium, manufacturing method thereof, and magnetic recording medium |
JP5235916B2 (en) * | 2010-01-18 | 2013-07-10 | Hoya株式会社 | Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and magnetic disk |
WO2013035545A1 (en) * | 2011-09-09 | 2013-03-14 | 旭硝子株式会社 | Abrasive grains, manufacturing process therefor, polishing slurry and process for manufacturing glass products |
JP5860776B2 (en) * | 2012-07-04 | 2016-02-16 | 株式会社ノリタケカンパニーリミテド | Method for producing abrasive and method for adjusting specific surface area of abrasive |
-
2013
- 2013-08-28 JP JP2014533059A patent/JP6060166B2/en not_active Expired - Fee Related
- 2013-08-28 WO PCT/JP2013/073061 patent/WO2014034746A1/en active Application Filing
- 2013-08-28 CN CN201380038855.7A patent/CN104508741A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10237425A (en) * | 1997-02-24 | 1998-09-08 | Toray Ind Inc | Polishing agent |
JP2004155913A (en) * | 2002-11-06 | 2004-06-03 | Yushiro Chem Ind Co Ltd | Abrasive grain for polishing, manufacturing method therefor, and abrasive |
JP2006099847A (en) * | 2004-09-29 | 2006-04-13 | Hoya Corp | Manufacturing methods of glass substrate for magnetic disk and of magnetic disk |
WO2011125894A1 (en) * | 2010-03-31 | 2011-10-13 | Hoya株式会社 | Manufacturing method for glass substrates for magnetic disks |
JP2012135866A (en) * | 2010-12-10 | 2012-07-19 | Admatechs Co Ltd | Composite abrasive grain and method for producing the same and polishing composition using the same |
JP2013121649A (en) * | 2011-09-20 | 2013-06-20 | Crystal Kogaku:Kk | Abrasive material |
JP2013129056A (en) * | 2011-11-21 | 2013-07-04 | Tosoh Corp | Zirconia composite powder for polishing and method for producing the same |
JP2013111725A (en) * | 2011-11-30 | 2013-06-10 | Admatechs Co Ltd | Abrasive and method of manufacturing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015189806A (en) * | 2014-03-27 | 2015-11-02 | 株式会社フジミインコーポレーテッド | Composition for polishing, usage of the same and substrate production method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014034746A1 (en) | 2016-08-08 |
CN104508741A (en) | 2015-04-08 |
JP6060166B2 (en) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101689376B (en) | Glass substrate for magnetic disk, process for producing the glass substrate, and magnetic disk | |
JP6060166B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
US8974561B2 (en) | Manufacturing method of glass substrate for magnetic disk, magnetic disk, and magnetic recording / reproducing device | |
CN102473424B (en) | The manufacture method of glass substrate for disc | |
CN108428460B (en) | Magnetic disk substrate | |
JP5967999B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP6141636B2 (en) | Substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method | |
CN102473423B (en) | The manufacture method of glass substrate for disc | |
JP6099034B2 (en) | Method for manufacturing glass substrate for magnetic disk, magnetic disk, and magnetic recording / reproducing apparatus | |
JP6099033B2 (en) | Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk | |
JP2009087439A (en) | Manufacturing method of glass substrate for magnetic disk | |
WO2013146090A1 (en) | Method for manufacturing glass substrate for magnetic disk | |
JP6298448B2 (en) | Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method for manufacturing magnetic disk | |
JP6480611B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
CN107615380B (en) | Method for polishing glass substrate, polishing liquid, method for producing glass substrate for magnetic disk, and method for producing magnetic disk | |
CN102473425B (en) | The manufacture method of glass substrate for disc | |
JP2011187155A (en) | Glass substrate for information recording medium, and manufacturing method therefor | |
JP6081580B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
JP2015011735A (en) | Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk | |
JP5704777B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP2012142071A (en) | Method for manufacturing glass substrate for magnetic disk | |
WO2012042750A1 (en) | Glass substrate for information recording medium, manufacturing method for same, information recording medium, and hard disk device | |
JP2014194833A (en) | Manufacturing method of magnetic disk glass substrate, manufacturing method of magnetic disk, and polishing liquid | |
SG176884A1 (en) | Manufacturing method of magnetic disk-use glass substrate, and magnetic disk | |
WO2012086256A1 (en) | Method of manufacturing glass substrate for recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13834006 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014533059 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13834006 Country of ref document: EP Kind code of ref document: A1 |