[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014030884A1 - Vehicle heat pump system - Google Patents

Vehicle heat pump system Download PDF

Info

Publication number
WO2014030884A1
WO2014030884A1 PCT/KR2013/007395 KR2013007395W WO2014030884A1 WO 2014030884 A1 WO2014030884 A1 WO 2014030884A1 KR 2013007395 W KR2013007395 W KR 2013007395W WO 2014030884 A1 WO2014030884 A1 WO 2014030884A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
valve
pump system
heat pump
Prior art date
Application number
PCT/KR2013/007395
Other languages
French (fr)
Korean (ko)
Inventor
강성호
김학규
이상기
최영호
이정재
Original Assignee
한라비스테온공조 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한라비스테온공조 주식회사 filed Critical 한라비스테온공조 주식회사
Priority to US14/421,340 priority Critical patent/US9855821B2/en
Priority claimed from KR1020130097236A external-priority patent/KR101637968B1/en
Publication of WO2014030884A1 publication Critical patent/WO2014030884A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/22Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an actuating member for each valve, e.g. interconnected to form multiple-way valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/24Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an electromagnetically-operated valve, e.g. for washing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator

Definitions

  • the present invention relates to a vehicle heat pump system, and more particularly, a three-way valve unit connected to an inlet refrigerant circulation line of an outdoor heat exchanger to selectively bypass the outdoor heat exchanger, and an evaporator bypass.
  • An on-off valve portion connected to an inlet side of the line to turn the bypass line on and off; a connecting block connecting the three-way valve portion and the on-off valve portion to the refrigerant circulation line of the outlet side of the outdoor heat exchanger;
  • the present invention relates to a heat pump system for a vehicle provided with a combined valve device integrally configured with expansion means connected to an inlet of a valve portion to selectively expand a refrigerant discharged from an indoor heat exchanger.
  • the vehicle air conditioner generally includes a cooling system for cooling the interior of a vehicle and a heating system for heating the interior of the vehicle.
  • the cooling system is configured to heat the air passing through the outside of the evaporator at the evaporator side of the refrigerant cycle with the refrigerant flowing inside the evaporator to cool the vehicle, thereby cooling the vehicle interior
  • the heating system is configured to heat the heater at the heater core side of the cooling water cycle.
  • the air passing through the outside of the core is exchanged with the coolant flowing through the inside of the heater core to be converted into warmth, and configured to heat the vehicle interior.
  • a heat pump system capable of selectively performing cooling and heating by changing the flow direction of the refrigerant using one refrigerant cycle is applied, for example, two heat exchangers.
  • two heat exchangers I.e., an indoor heat exchanger installed in the air conditioning case for heat exchange with air blown into the vehicle interior, an outdoor heat exchanger for heat exchange from the outside of the air conditioning case
  • a direction control valve for switching the flow direction of the refrigerant.
  • FIG. 1 Various types have been proposed as such a vehicle heat pump system, and a representative example thereof is illustrated in FIG. 1.
  • the vehicle heat pump system shown in FIG. 1 includes a compressor 30 for compressing and discharging a refrigerant, a high pressure side heat exchanger 32 for dissipating the refrigerant discharged from the compressor 30, and a parallel structure.
  • the first expansion valve 34 and the first opening and closing valve 36 for selectively passing the refrigerant passing through the high pressure side heat exchanger 32, and the first expansion valve 34 or the first opening and closing valve 36
  • the outdoor unit 48 for heat-exchanging the refrigerant having passed through the outside, the low pressure side heat exchanger 60 for evaporating the refrigerant passing through the outdoor unit 48, and the refrigerant passing through the low pressure side heat exchanger 60 are separated from the gas phase.
  • a bypass line 58a installed in parallel with the second expansion valve 56 and the low pressure side heat exchanger 60, and connecting the outlet side of the outdoor unit 48 and the inlet side of the accumulator 62.
  • a second opening / closing valve 58 for opening and closing the bypass line 58a.
  • reference numeral 10 denotes an air conditioner case in which the high pressure side heat exchanger 32 and the low pressure side heat exchanger 60 are incorporated
  • reference numeral 12 denotes a temperature control door for controlling a mixing amount of cold and warm air, and Each blower installed at the inlet of the air conditioning case is shown.
  • the heat pump mode heating mode
  • the first opening / closing valve 36 and the second expansion valve 56 are closed and the first expansion valve 34 is closed.
  • the second open / close valve 58 are opened.
  • the temperature control door 12 operates as shown in FIG. Therefore, the refrigerant discharged from the compressor 30 is the high pressure side heat exchanger 32, the first expansion valve 34, the outdoor unit 48, the high pressure part 52 of the internal heat exchanger 50, and the second open / close valve 58.
  • the accumulator 62 and the low pressure part 54 of the internal heat exchanger 50 are sequentially returned to the compressor 30. That is, the high pressure side heat exchanger 32 serves as a heater, and the outdoor unit 48 serves as an evaporator.
  • the temperature control door 12 is to close the passage of the high-pressure side heat exchanger (32).
  • the refrigerant discharged from the compressor 30 may include the high pressure side heat exchanger 32, the first open / close valve 36, the outdoor unit 48, the high pressure unit 52 of the internal heat exchanger 50, and the second expansion valve 56.
  • the low pressure side heat exchanger (60), the accumulator (62), and the low pressure portion (54) of the internal heat exchanger (50) are returned to the compressor (30). That is, the low pressure side heat exchanger 60 serves as an evaporator, and the high pressure side heat exchanger 32 closed by the temperature control door 12 serves as a heater as in the heat pump mode. do.
  • the vehicle heat pump system is provided with not only a bypass line 58a for bypassing the circulating coolant, but also a branch line for branching a predetermined amount of the circulating coolant and supplying it to a specific site, although not shown in the drawing.
  • a three-way valve (not shown) for switching the flow direction of the coolant, on / off valves 36 and 58 for opening and closing the flow of the coolant, and expansion valves 34 and 56 for expanding the coolant are provided.
  • a pipe such as the bypass line 58a and the branch line, the three-way valve, the opening / closing valves 36 and 58 and the expansion valves 34 and 56 have a narrow engine room of the vehicle.
  • the structure of the refrigerant line (pipe) becomes complicated, and a separate engine (not shown) for connecting between the refrigerant lines (pipes) is required, and a narrow engine such that each valve is separately installed and installed.
  • the heat pump system occupies a lot of space and the weight is excessive, there is a problem that the workability and fuel economy drop.
  • An object of the present invention for solving the above problems is a three-way valve portion connected to the inlet side refrigerant circulation line of the outdoor heat exchanger to selectively bypass the outdoor heat exchanger, and the inlet side of the evaporator bypass line.
  • An on-off valve part connected to the on-off valve part to turn the bypass line on and off, a connection block connecting the three-way valve part and the on-off valve part to the outlet-side refrigerant circulation line of the outdoor heat exchanger, and the inlet side of the three-way valve part;
  • the refrigerant circulation line (piping) is simplified because several parts and functions are integrated into one composite valve device.
  • a vehicle heat pump system capable of reducing fuel consumption and also improved workability on the weight.
  • the present invention for achieving the above object, which is connected to the refrigerant circulation line, respectively, comprises an indoor heat exchanger and an evaporator installed inside the air conditioning case, a compressor and an outdoor heat exchanger installed outside the air conditioning case.
  • a refrigerant that is installed in a specific section of the refrigerant circulation line and circulates along the refrigerant circulation line selects the evaporator.
  • a three-way valve portion connected to the bypass line for bypassing the air exchanger, the refrigerant circulation line connected to the inlet side of the outdoor heat exchanger to selectively bypass the outdoor heat exchanger, and a inlet side of the bypass line.
  • An on-off valve portion connected to turn on and off a bypass line, and the three-way valve portion and on-off valve portion And a first composite valve device integrally configured with a connection block for connecting the outlet side refrigerant circulation line of the outdoor heat exchanger.
  • the present invention is connected to the refrigerant circulation line of the inlet side of the outdoor heat exchanger, and the three-way valve portion to selectively bypass the outdoor heat exchanger, and connected to the inlet side of the evaporator bypass line to turn on the bypass line.
  • a connection block connecting the on-off valve unit to be turned off, the three-way valve unit, the on-off valve unit and the refrigerant circulation line of the outlet side of the outdoor heat exchanger in communication, and the inlet side of the three-way valve unit to be discharged from the indoor heat exchanger.
  • first composite valve unit integrally configured with expansion means for selectively expanding the refrigerant
  • expansion means for selectively expanding the refrigerant it is possible to perform all the functions (modes) of the heat pump system through the refrigerant control of the first composite valve device as well as several Components and functions are integrated into one first composite valve device, simplifying the refrigerant circulation line (piping), making the heat pump system more compact.
  • modes functions
  • piping refrigerant circulation line
  • the expansion valve unit having an expansion passage to expand the refrigerant supplied to the evaporator on the refrigerant circulation line inlet of the evaporator and the on-off valve unit for turning on and off the flow of the refrigerant passing through the expansion passage
  • a second composite valve device having a notch for always refrigerant flow on the expansion passage
  • all functions (modes) of the heat pump system are controlled through refrigerant control of the first composite valve device and the second composite valve device.
  • the refrigerant circulation line (piping) is further simplified, making the heat pump system more compact, and in a compact vehicle engine room. Space can be further secured and the weight can be further reduced.
  • the orifice of the first composite valve device on the valve member in the form of a shaft, it is easy to manufacture and can prevent a sudden change in the flow path to prevent the pressure drop.
  • FIG. 1 is a block diagram showing a conventional vehicle heat pump system
  • FIG. 2 is a block diagram showing an air conditioner mode in a vehicle heat pump system according to the present invention.
  • FIG. 3 is a perspective view showing a first composite valve device in FIG.
  • FIG. 4 is a cross-sectional view showing an operating state of the three-way valve unit and expansion means in FIG.
  • FIG. 5 is a cross-sectional view showing an operating state of the second composite valve device of FIG. 2;
  • FIG. 6 is a block diagram showing a maximum heating mode of the heat pump mode in a vehicle heat pump system according to the present invention
  • FIG. 7 is a cross-sectional view showing an operating state of the three-way valve unit and expansion means in FIG.
  • FIG. 8 is a cross-sectional view showing an operating state of the second composite valve device of FIG. 6;
  • FIG. 9 is a block diagram showing a dehumidification mode of the heat pump mode in a vehicle heat pump system according to the present invention.
  • FIG. 10 is a cross-sectional view showing an operating state of the three-way valve unit and expansion means in FIG.
  • FIG. 11 is a cross-sectional view showing an operating state of the second composite valve device of FIG. 9;
  • FIG. 12 is a block diagram showing a defrost mode of the heat pump mode in a vehicle heat pump system according to the present invention
  • FIG. 13 is a cross-sectional view showing an operating state of the three-way valve unit and expansion means in FIG.
  • FIG. 14 is a cross-sectional view showing another embodiment of an orifice of a first composite valve device in a vehicle heat pump system according to the present invention.
  • FIG. 15 is a configuration diagram showing another embodiment of a vehicle heat pump system according to the present invention.
  • the vehicle heat pump system includes a compressor 100, an indoor heat exchanger 110, a first composite valve device 200, an outdoor heat exchanger 130, and a refrigerant on a refrigerant circulation line (R).
  • a compressor 100 As the second composite valve device 300 and the evaporator 160 are connected to each other and the refrigerant is sequentially circulated, it is preferable to be applied to an electric vehicle or a hybrid vehicle.
  • a bypass line R1 for allowing a refrigerant flowing along the refrigerant circulation line R to bypass the second composite valve device 300 and the evaporator 160 in a specific section of the refrigerant circulation line R. ) Is installed.
  • bypass line (R1) is installed in parallel to the refrigerant circulation line (R).
  • the heat pump system is provided with two expansion means, one expansion means 240 is installed on the refrigerant circulation line connecting the indoor heat exchanger 110 and the outdoor heat exchanger 130, the other one
  • the expansion means of the expansion valve unit 310 is installed on the inlet refrigerant circulation line (R) of the evaporator 160, wherein it is installed between the indoor heat exchanger 110 and the outdoor heat exchanger (130)
  • Expansion means 240 is integrated into the first composite valve device 200
  • the expansion valve unit 310 is installed on the inlet refrigerant circulation line (R) of the evaporator 160 is the second composite valve device ( 300).
  • the refrigerant discharged from the compressor 100 is transferred to the indoor heat exchanger 110, the outdoor heat exchanger 130, the first composite valve device 300, and the second composite valve device ( 300, the evaporator 160 and the compressor 100 are sequentially circulated, and in this case, the indoor heat exchanger 110 serves as a condenser (heater).
  • the outdoor heat exchanger 130 serves as a condenser such as the indoor heat exchanger (110).
  • the refrigerant discharged from the compressor 100 is transferred to the indoor heat exchanger 110, the first composite valve device 200, and the outdoor heat exchanger 130.
  • the indoor heat exchanger 110 serves as a condenser (heater) and the outdoor heat exchanger 130 serves as an evaporator.
  • the refrigerant is not supplied to the evaporator 160.
  • the refrigerant circulation direction is the same, and the common section of the refrigerant circulation line R is shared, thereby preventing the congestion of the refrigerant generated when the refrigerant does not flow, and the entire refrigerant circulation line (R). ) Can also be simplified.
  • the heat pump mode is diversified as the maximum heating mode, dehumidification mode, and defrost mode.
  • the dehumidification mode is performed when dehumidification is required in the vehicle interior, and the defrost mode is an outdoor heat exchanger. This is done when the implantation of.
  • the compressor 100 installed on the refrigerant circulation line R receives and compresses the refrigerant while driving by receiving power from an engine (an internal combustion engine or a motor), and discharges the refrigerant in a gas state of high temperature and high pressure.
  • an engine an internal combustion engine or a motor
  • the compressor 100 sucks and compresses the refrigerant discharged from the evaporator 160 side in the air conditioner mode and supplies the refrigerant to the indoor heat exchanger 110 side, and passes through the bypass line R1 in the heat pump mode.
  • the refrigerant is sucked and compressed to be supplied to the indoor heat exchanger 110.
  • the indoor heat exchanger (110) is installed inside the air conditioning case (150) and is connected to the refrigerant circulation line (R) at the outlet of the compressor (100), and the air flowing in the air conditioning case (150) and The refrigerant discharged from the compressor 100 is exchanged.
  • the evaporator 160 is installed inside the air conditioning case 150 and is connected to the refrigerant circulation line R of the inlet side of the compressor 100, and the air flowing in the air conditioning case 150 and The refrigerant supplied to the compressor 100 is heat-exchanged.
  • the indoor heat exchanger 110 serves as a condenser (heater) in both the air conditioning mode and the heat pump mode,
  • the evaporator 160 serves as an evaporator in the air conditioner mode, and stops operating because the refrigerant is not supplied in the heating mode during the heat pump mode.
  • the indoor heat exchanger 110 and the evaporator 160 is installed in the air conditioning case 150 spaced apart from each other by a predetermined interval, the evaporator 160 from the upstream side of the air flow direction in the air conditioning case 150. ) And the indoor heat exchanger 110 are sequentially installed.
  • the low temperature low pressure refrigerant expanded through the expansion valve unit 310 of the second composite valve device 300 is the evaporator ( 160 is supplied to the air, and at this time, air flowing in the air-conditioning case 150 through a blower (not shown) is heat-exchanged with the low-temperature low-pressure refrigerant inside the evaporator 160 in the course of passing through the evaporator 160, cold air After the change, the liquid is discharged into the vehicle interior to cool the vehicle interior.
  • the indoor heat exchanger 110 serves as a condenser (heater)
  • the high temperature and high pressure refrigerant discharged from the compressor 100 is connected to the indoor heat exchanger ( 110 is supplied to the air, in which the air flowing in the interior of the air conditioning case 150 through a blower (not shown) in the process of passing through the indoor heat exchanger 110, the refrigerant of the high temperature and high pressure inside the indoor heat exchanger 110
  • the heat exchange with the hot air is changed to the warm air, and then discharged into the vehicle interior to heat the interior of the vehicle.
  • the size of the evaporator 160 preferably larger than the size of the indoor heat exchanger (110).
  • an electric heating heater (not shown) may be further installed at the downstream side of the indoor heat exchanger 110 inside the air conditioning case 150 to improve heating performance.
  • Temperature control door 151 is installed.
  • the temperature control door 151 adjusts the amount of air bypassing the indoor heat exchanger 110 and the amount of air passing through the indoor heat exchanger 110 to adjust the temperature of the air discharged from the air conditioning case 150. Can be adjusted accordingly.
  • the air conditioner mode when the air conditioner mode completely closes the front side passage of the indoor heat exchanger 110 through the temperature control door 151 as shown in FIG. 2, the cold air passing through the evaporator 160 is indoor heat exchanger 110. Since the bypass is supplied to the vehicle interior, the maximum cooling is performed, and in the heat pump mode (maximum heating mode) to bypass the indoor heat exchanger 110 through the temperature control door 151 as shown in FIG. 6.
  • the passage is completely closed, all the air passes through the indoor heat exchanger 110 serving as a condenser (heater) and is converted into warm air, and the warm air is supplied into the cabin, so that the maximum heating is performed.
  • the position of the temperature control door 151 it is possible to appropriately adjust the temperature of the air discharged into the cabin, for example, in the air conditioning mode, by operating the temperature control door 151 to the indoor heat exchanger ( When both the passage bypassing and the passage passing through 110 are opened, some of the cold air passing through the evaporator 160 bypasses the indoor heat exchanger 110 and some passes through the indoor heat exchanger 110. It is changed to warm air. Thereafter, the cold air and the warm air are mixed to control the interior of the vehicle to an appropriate temperature, and the air passes through the evaporator 160 which serves as the evaporator, so that dehumidification is also performed.
  • the interior of the vehicle is dehumidified as air passes through the evaporator 160 in a mode in which some refrigerant is supplied to the evaporator 160 in the heat pump mode as well as the air conditioner mode.
  • the present invention can operate the interior dehumidification function in the air-conditioning mode as well as the heat pump mode.
  • the outdoor heat exchanger 130 is installed outside the air conditioning case 150 and is connected to the refrigerant circulation line R to exchange heat between the refrigerant circulating through the refrigerant circulation line R and the outdoor air. Let's go.
  • the outdoor heat exchanger 130 is installed on the front side of the vehicle engine room to heat exchange the refrigerant flowing inside with the outdoor air.
  • the outdoor heat exchanger 130 serves as the same condenser as the indoor heat exchanger 110 in the air conditioner mode, where the high temperature refrigerant flowing inside the outdoor heat exchanger 130 is condensed as it exchanges heat with outdoor air. do.
  • the heat pump mode (maximum heating mode) it serves as an evaporator opposite to the indoor heat exchanger 110, in which the low-temperature refrigerant flowing inside the outdoor heat exchanger 130 exchanges heat with outdoor air. Will evaporate.
  • the first multiple valve device 200 and the second composite valve device has a function of a plurality of valves that are conventionally installed on the refrigerant circulation line to control the refrigerant, and a plurality of connection blocks connecting the pipes. Only 300 can be done.
  • the refrigerant circulation line (piping) can be simplified, which makes the heat pump system compact, and can secure a space in a narrow vehicle engine room, and can reduce work weight and improve fuel efficiency.
  • the first composite valve device 200 is connected to an inlet refrigerant circulation line R of the outdoor heat exchanger 130 so that a circulating refrigerant selectively bypasses the outdoor heat exchanger 130.
  • An on-off valve unit 220 connected to the unit 210, an inlet side of the bypass line R1 to turn off the bypass line R1, and the three-way valve unit 210 and the on-off valve unit
  • the connection block 230 which connects the 220 and the outlet side refrigerant circulation line R of the outdoor heat exchanger 130 to communicate with each other is formed integrally.
  • the first composite valve device 200 is configured to include not only the three-way valve unit 210, the on-off valve unit 220, and the connection block 230, but also the expansion means 240.
  • the expansion means 240 is connected to the inlet side of the three-way valve 210 to selectively expand the refrigerant discharged from the indoor heat exchanger (110).
  • the first composite valve device 200 is configured as a single part by integrating the three-way valve part 210, the on-off valve part 220, the connection block 230, and the expansion means 240.
  • the expansion means 240 is installed to connect the inlet 211 side of the three-way valve unit 210 and the refrigerant circulation line (R) of the outlet side of the indoor heat exchanger 110 to turn on and off the refrigerant flow.
  • the on-off valve 241 as shown in Figure 4, the flow path 242 is formed so that the refrigerant flows inside the on-off valve 241, the valve member 243 provided to open and close the flow path 242. It is composed of
  • the orifice 246 is formed on the valve member 243 of the on-off valve 241.
  • the valve member 243 may include a shaft 243a connected to a driving device provided on one side of the on-off valve 241 and a valve plate formed on the shaft 243a to open and close the flow path 242. 243b, the orifice 246 is formed through the valve plate 243b of the valve member 243.
  • Figure 14 is another embodiment of the orifice 246, the valve member 243 shown in Figure 14, the hollow shaft (243a) is connected to the drive device installed on one side of the on-off valve (241) And a valve plate 243b formed on the shaft 243a to open and close the flow path 242, and the orifice 246 is formed inside and outside the hollow shaft 243a of the valve member 243. It is formed to penetrate through.
  • the refrigerant flowing into the flow path 242 of the on-off valve 241 flows into the orifice 246 formed in the hollow shaft 243a and expands while passing through the shaft 243a.
  • valve member 243 by directly forming the orifice 246 on the valve member 243 in the form of a shaft, it is easy to manufacture and has an advantage of preventing a sudden drop in the flow path to prevent a pressure drop.
  • a solenoid 244 that is a driving device for opening and closing the valve member 243 is installed at one side of the on / off valve 241, and the solenoid 244 is provided inside the on / off valve 241.
  • An elastic member 245 is installed to move the valve member 243 to open the flow path 242 when the power is cut off.
  • the valve member 243 of the expansion means 240 opens the flow path 242
  • the refrigerant passing through the expansion means 240 passes in an unexpanded state.
  • the valve member 243 closes the flow path 242
  • the refrigerant passing through the expansion means 240 is expanded after passing through the orifice 246 on the valve member 243 and then passes.
  • the three-way valve part 210 is formed with one inlet 211 and two outlets 212a and 212b, and the one inlet 211 is an on-off valve 241 of the expansion means 240.
  • the two outlets 212a and 212b branch from the one inlet 211 and one outlet 212a is an inlet refrigerant of the outdoor heat exchanger 130. It is connected to the circulation line (R) and the other outlet 212b is to be connected to the connection block 230.
  • valve member 213 for selectively opening the two outlets 212a and 212b is installed in the three-way valve part 210.
  • a solenoid 215 for operating the valve member 213 is installed at one side of the three-way valve part 210, and when the power-off of the solenoid 215 is cut off inside the three-way valve part 210.
  • An elastic member 214 is installed to move the valve member 213 to close the outlet 212a of the outdoor heat exchanger 130.
  • the refrigerant passing through the flow path 242 of the expansion means 240 flows to the outdoor heat exchanger 130 side or to the connection block 230 to bypass the outdoor heat exchanger 130. do.
  • connection block 230 cross to connect the three-way valve 210 and the on-off valve 220 and the outlet refrigerant circulation line (R) of the outdoor heat exchanger 130 in communication.
  • the four-way flow path 231 is formed.
  • the refrigerant discharged from the outdoor heat exchanger 130 may flow to the second composite valve device 300 and the evaporator 160 through the connection block 230 or to the bypass line R1. It can also flow.
  • the second composite valve device 300 is provided through the connection block 230.
  • the evaporator 160 may flow to the bypass line (R1) side.
  • the heating performance can be improved by recovering the heat source through the water-cooled heat exchanger 181 or the evaporator 160.
  • the flow of the refrigerant flowing into the connection block 230 is determined through the control of the on-off valve unit 220 installed on the second composite valve device 300 or the bypass line (R1). . That is, the refrigerant may flow to any one side or at the same time through the control of the second composite valve device 300 and the on-off valve unit 220.
  • the on-off valve unit 220 is installed at the inlet side of the bypass line R1 to connect the connection block 230 and the bypass line R1 to selectively select the bypass line R1. It turns on and off.
  • the structure of the on-off valve part 220 is the same as that of the on-off valve 241 in which only the orifice 246 is omitted from the structure of the expansion means 240.
  • the first composite valve device 200, the on-off valve 241 of the expansion means 240 to open the flow path 242, the three-way valve unit 210 is the outdoor heat exchange
  • the outlet (212a) side (130) is opened, the on-off valve unit 220 closes the bypass line (R1), the second composite valve device 300 is opened, the expansion
  • the refrigerant passing through the on-off valve 241 of the means 240 in an unexpanded state is flowed to the outdoor heat exchanger 130 through the three-way valve portion 210, and passes through the outdoor heat exchanger 130.
  • the refrigerant flows to the second composite valve device 300 and the evaporator 160 through the connection block 230.
  • the on-off valve 241 of the expansion means 240 closes the flow path 242 to expand through the orifice 246, the three-way valve 210 is outdoors
  • the outlet of the heat exchanger 130 is opened, the on-off valve unit 220 opens the bypass line R1, and the second composite valve device 300 is closed, thereby expanding the expansion means
  • the refrigerant passing through the on-off valve 241 in the expanded state 240 is flowed to the outdoor heat exchanger 130 through the three-way valve 210, and the refrigerant passing through the outdoor heat exchanger 130 is It flows to the bypass line (R1) through the connection block 230.
  • the second composite valve device 300 is installed on the inlet refrigerant circulation line R of the evaporator 160 and expands the expansion passage 312a to expand the refrigerant supplied to the evaporator 160.
  • the expansion valve unit 310 having a) and the on-off valve unit 320 for turning on and off the flow of the refrigerant passing through the expansion passage (312a) is formed integrally.
  • a notch portion 312c which will be described later, is formed on an inner side surface of the expansion passage 312a so that a portion of the refrigerant may always flow.
  • the expansion valve unit 310 and the on-off valve unit 320 having the expansion passage 312a and the notch portion 312c are integrally configured in one composite valve device 300, thereby expanding and expanding the valve function.
  • the refrigerant circulation line (piping) (R) can be simplified to make the heat pump system compact and to secure a space in a narrow vehicle engine room. The weight can also be reduced.
  • the expansion valve unit 310 is connected to the refrigerant circulation line (R) and communicate flow paths through which the refrigerant passing through the expansion passage (312a) and the expansion passage (312a) for expanding the refrigerant therein.
  • a main body 311 having a 312b formed therein, and an opening / closing means 315 installed in the main body 311 to open and close the expansion passage 312a.
  • a flow passage 312 is formed in the body 311 through which the refrigerant flowing along the refrigerant circulation line R passes through the refrigerant circulation line R, wherein the flow passage 312 is formed in the body 311.
  • Some sections of the 312 may be configured as the expansion passage 312a having a reduced diameter of the flow passage 312, and some sections downstream of the expansion passage 312a may be configured as the communication passage 312b.
  • the opening and closing means 315 is disposed on one side (lower side) of the expansion passage (312a) and the ball 316 to operate to open and close the expansion passage (312a) and the inside of the main body 311 It is made to include a working shaft 317 that is installed to be lowered to operate the ball 316.
  • the lower portion of the main body 311 is provided with an elastic member 319 is in close contact with the ball 316 toward the expansion passage (312a).
  • a diesel passage 313 is formed in the main body 311 so that the refrigerant discharged from the evaporator 160 passes through the compressor 100 before being introduced into the compressor 100.
  • a diaphragm 318 which is displaced according to the temperature change of the refrigerant flowing in the diesel passage 313 is installed on the upper portion of the main body 311, the diaphragm 318 is the operating shaft 317 and Connected.
  • the diaphragm 318 is displaced according to the temperature change of the refrigerant discharged from the evaporator 160 and flows through the diesel passage 313, and the operating shaft 317 moves up and down according to the displacement.
  • the ball 316 is operated to open and close the expansion passage 312a.
  • the notch part may be provided on the inner surface of the expansion passage 312a so that the refrigerant may partially flow through the expansion passage 312a even when the expansion passage 312a is closed by the opening / closing means 315. 312c is formed.
  • the furnace 316 closes the expansion passage 312a even if the ball 316 is closed.
  • a constant amount of refrigerant is always passed through the expansion passage 312a through the teeth 312c.
  • the on / off valve part 320 of the second multiple valve device 300 may include a driving device 321 coupled to one side of the main body 311 and a reciprocating motion of the driving device 321. It is provided with an operating valve 322 for opening and closing the communication flow path (312b).
  • the drive device 321 is preferably a solenoid for linearly reciprocating the operation valve 322.
  • the operation valve 322 moves to close the communication passage 312b in the main body 311, and when the power is cut off from the solenoid, the elastic valve is installed on the main body 311 side.
  • the communication channel 312b is opened by the member 323 moving the operation valve 322 to an initial position.
  • the expansion valve part 310 opens the expansion passage 312a in the air conditioner mode as shown in FIG. 5, and the on / off valve portion 320 communicates with the communication passage ( By opening 312b), the refrigerant discharged from the outdoor heat exchanger 130 is expanded in the process of passing through the expansion passage 312a after passing through the connection block 230, and then the communication passage 312b is opened. Passed through and supplied to the evaporator 160,
  • the expansion valve 310 closes the expansion passage 312a, and the on / off valve portion 320 closes the communication passage 312b.
  • the refrigerant discharged from the outdoor heat exchanger 130 flows to the bypass line R1 through the connection block 230 and the on-off valve unit 220, and the second composite valve device 300.
  • the evaporator 160 is bypassed.
  • the expansion valve unit 310 closes the expansion passage 312a, and the on / off valve portion 320 opens the communication passage 312b. Even though the ball 316 of the 310 closes the expansion passage 312a, a predetermined amount of refrigerant passes through the notch 312c, thereby being discharged from the outdoor heat exchanger 130 and flowing into the connection block 230. Some of the refrigerant may flow toward the compressor 100 through the on / off valve unit 220 and the bypass line R1, and some of the refrigerant may flow along the notch part 312c and the refrigerant circulation line R. After passing through the communication passage 312b is supplied to the evaporator 160 side and then flows to the compressor 100 side to dehumidify the interior of the vehicle.
  • the coolant circulating on the bypass line R1 and the vehicle electric component 400 on the bypass line R1 installed to bypass the second multiple valve device 300 and the evaporator 160.
  • the water-cooled heat exchanger 181 is installed to exchange heat.
  • the water-cooled heat exchanger 181 is a refrigerant heat exchanger 181a through which the refrigerant flowing through the bypass line R1 flows to supply the waste heat of the vehicle electrical component 400 to the refrigerant flowing through the bypass line R1. ), And a coolant heat exchanger 181b provided with one side of the refrigerant heat exchanger 181a through which coolant flows to circulate the vehicle electronics 400.
  • the heating performance can be improved by recovering the heat source from the waste heat of the vehicle electrical appliance 400 in the heat pump mode.
  • the vehicle electronics 400 is typically a motor, an inverter and the like.
  • the accumulator 170 is installed on the inlet refrigerant circulation line R of the compressor 100.
  • the accumulator 170 separates the liquid refrigerant and the gaseous refrigerant from the refrigerant supplied to the compressor 100 so that only the gaseous refrigerant may be supplied to the compressor 100.
  • the second composite valve device 300 is used as it is, the first composite valve device 200 is omitted.
  • the function of one of the first composite valve devices 200 is separated into a plurality of parts, that is, the expansion means 120, the first three-way valve 191, and the second three-way valve 192.
  • the first three-way valve 191 is installed at the branch point of the auxiliary bypass line R2, and the second three-way valve 192 is installed at the branch point of the expansion line R3.
  • the three-way valve is not installed at the branch point of the bypass line (R1), two on-off valves are installed instead, one on-off valve (195) is installed on the bypass line (R1) , The other on-off valve 320 is integrated into the second composite valve device 300 installed on the inlet refrigerant circulation line (R) of the evaporator 160.
  • the three-way valve has a disadvantage of large size and heavy weight, it is separated into two on-off valves, but when using the two on-off valves there is another disadvantage that increases the number of parts and complicated pipe connection,
  • one of the on-off valve ( 320 is integrated with the expansion valve 310 installed on the inlet side of the evaporator 160.
  • the second composite valve device 300 that integrates an on-off valve (on-off valve portion) and an expansion valve (expansion valve portion) installed on the refrigerant circulation line R facing the evaporator 160. will be.
  • the three-way valve which had to be installed at the branch point of the bypass line R1, is replaced with two on-off valves, and one on-off valve 320 is integrated with the expansion valve 310 to form a second composite valve.
  • the weight, component count reduction, and pipe simplification effect of the device 300 are equally applicable to the heat pump system shown in FIGS. 2 to 13.
  • the first three-way valve 191 installed at the branch point of the auxiliary bypass line R2 in the refrigerant circulation line R has a refrigerant in the outdoor heat exchanger 130 depending on whether an outdoor heat exchanger 130 is formed. Or the flow direction of the refrigerant to flow to the auxiliary bypass line (R2).
  • the refrigerant bypasses the outdoor heat exchanger 130 through the control of the first three-way valve 191 flows to the auxiliary bypass line (R2) side. Is controlled.
  • the refrigerant bypasses the outdoor heat exchanger 130, some of the refrigerant that bypasses the outdoor heat exchanger 130 recovers waste heat of the vehicle electronics 400 through the water-cooled heat exchanger 181. Some of the refrigerant is supplied to the evaporator 160 that exchanges heat with the indoor air through the second composite valve device 300 to recover the heat source of the indoor air, thereby improving heating performance.
  • the expansion means 120 installed in the expansion line R3 selectively expands the refrigerant supplied to the outdoor heat exchanger 130 according to the air conditioner mode or the heat pump mode.
  • the expansion means 120 it is preferable to use an orifice.
  • the refrigerant discharged from the compressor 100 and passed through the indoor heat exchanger 110 bypasses the expansion means 120 by the second three-way valve 192 to the outdoor heat exchanger. 130, and
  • the refrigerant discharged from the compressor 100 and passed through the indoor heat exchanger 110 passes through the expansion means 120 by the second three-way valve 192. After being expanded while being supplied to the outdoor heat exchanger (130).
  • Figure 15 shows only the maximum heating mode of the heat pump mode as an example, in addition to that can perform a variety of modes as shown in Figs.
  • Air conditioner mode (cooling mode)
  • the bypass line R1 is closed through the on / off valve part 220 and the expansion means of the first composite valve device 200 is closed.
  • the 240 opens the flow path 242, and the three-way valve 210 opens the outlet 212a of the outdoor heat exchanger 130.
  • expansion passage 312a and the communication passage 312b of the second composite valve device 300 are opened.
  • the temperature control door 151 in the air conditioning case 150 operates to close a passage through the indoor heat exchanger 110 (condenser), and is blown into the air conditioning case 150 by a blower. After the air is cooled while passing through the evaporator 160, the indoor heat exchanger 110 is bypassed and supplied to the interior of the vehicle, thereby cooling the interior of the vehicle.
  • the high temperature and high pressure gaseous refrigerant discharged after being compressed by the compressor 100 is supplied to the indoor heat exchanger 110 (condenser role) installed in the air conditioning case 150.
  • the refrigerant flowing into the outdoor heat exchanger 130 is condensed as it exchanges heat with outdoor air, thereby converting the gaseous refrigerant into a liquid refrigerant.
  • both the indoor heat exchanger 110 and the outdoor heat exchanger 130 is condenser dynamics, but the refrigerant is mainly condensed in the outdoor heat exchanger 130 that exchanges heat with outdoor air.
  • the refrigerant having passed through the outdoor heat exchanger 130 is expanded under reduced pressure in the course of passing through the expansion passage 312a of the second composite valve device 300 via the connection block 230, thereby at low temperature and low pressure.
  • the liquid refrigerant of the it is introduced into the evaporator 160 via the communication flow path (312b) opened by the on-off valve unit (320).
  • the refrigerant introduced into the evaporator 160 exchanges heat with the air blown into the air conditioning case 150 through a blower to evaporate and simultaneously cools the air by the endothermic action of the evaporative latent heat of the refrigerant. It is supplied to the vehicle interior and cooled.
  • the refrigerant discharged from the evaporator 160 is recycled to the cycle as described above while flowing into the compressor 100.
  • bypass line R1 is opened through the on-off valve unit 220 and the expansion means of the first composite valve device 200 is provided.
  • 240 closes the flow path 242 to perform an expansion function through the orifice 246, and the three-way valve part 210 opens the outlet 212a of the outdoor heat exchanger 130 side.
  • the expansion passage 312a and the communication passage 312b of the second composite valve device 300 are closed, and the refrigerant flowing up to the connection block 230 passes through the second composite valve device 300 and the evaporator ( 160) does not flow to the side.
  • the temperature control door 151 in the air conditioning case 150 operates to close the passage that bypasses the indoor heat exchanger 110 (the condenser role), and is blown into the air conditioning case 150 by the blower. After the blown air passes through the evaporator 160 (operation stop) and passes through the indoor heat exchanger 110, the air is changed into warm air and supplied into the vehicle interior, thereby heating the interior of the vehicle interior.
  • the high temperature and high pressure gaseous refrigerant discharged after being compressed by the compressor 100 is introduced into an indoor heat exchanger 110 (condenser role) installed in the air conditioning case 150.
  • the high temperature and high pressure gaseous refrigerant introduced into the indoor heat exchanger 110 is condensed while exchanging heat with air blown into the air conditioning case 150 through a blower, and the air passing through the indoor heat exchanger 110 is After the warm air, it is supplied to the interior of the car to heat the cabin.
  • the refrigerant discharged from the indoor heat exchanger 110 is expanded under reduced pressure in the process of passing through the orifice 246 in the expansion means 240 of the first composite valve device 200 to become a low temperature low pressure liquid refrigerant.
  • the three-way valve 210 is supplied to the outdoor heat exchanger 130 (evaporator role).
  • the refrigerant supplied to the outdoor heat exchanger 130 is evaporated while exchanging heat with outdoor air, and then flows to the bypass line R1 through the connection block 230 and the on-off valve unit 220.
  • the refrigerant flowing through the bypass line R1 exchanges heat with the cooling water passing through the cooling water heat exchanger 181b in the process of passing through the refrigerant heat exchanger 181a of the water-cooled heat exchanger 181, and thus the vehicle electrical appliance 400 After recovering the waste heat of the, it is introduced into the compressor 100 to recycle the cycle as described above.
  • the dehumidification mode of the heat pump mode is operated when the indoor dehumidification is required during operation in the maximum heating mode of FIG.
  • the expansion passage 312a of the second composite valve device 300 is closed in the maximum heating mode, and the communication passage 312b is opened.
  • the notch portion (312c) formed on the inner surface of the expansion passage (312a) Through the predetermined amount of refrigerant may always pass through the expansion passage (312a).
  • the refrigerant introduced into the connection block 230 of the first composite valve device 200 is bifurcated into two parts, and some flow to the second composite valve device 300 and the evaporator 160, and some It flows to the pass line R1 side.
  • the temperature control door 151 in the air conditioning case 150 operates to close the passage that bypasses the indoor heat exchanger 110 (the condenser role), and the blower enters the air conditioning case 150 by the blower. After the blown air is cooled and dehumidified in the course of passing through the evaporator 160, the air is converted into warm air while being passed through the indoor heat exchanger 110 to be supplied into the vehicle interior, thereby dehumidifying the interior of the vehicle interior.
  • Refrigerant passing through the compressor 100, the indoor heat exchanger 110, the orifice 246 and the three-way valve unit 210, the outdoor heat exchanger 130 in the expansion means 240 of the first composite valve device 200 Is introduced into the connection block 230 and some of the refrigerant introduced into the connection block 230 passes through the refrigerant heat exchange part 181a of the water-cooled heat exchanger 181 of the bypass line R1. Heat exchange with the coolant passing through the coolant heat exchanger 181b to evaporate while recovering the waste heat of the vehicle electrical appliance 400, and a part of the coolant is notched in the expansion passage 312a of the second composite valve device 300. After passing through 312c) it is supplied to the evaporator 160 via the communication flow path 312b to evaporate in the process of heat exchange with the air flowing in the air conditioning case 150.
  • dehumidification of air passing through the evaporator 160 is performed, and the dehumidified air passing through the evaporator 160 is changed into warm air while passing through the indoor heat exchanger 110 (condenser) and then the vehicle. It is supplied to the room and heated by dehumidification.
  • the refrigerant having passed through the water-cooled heat exchanger 181 and the evaporator 160, respectively, is joined, and then flows into the compressor 100 to recycle the cycle as described above.
  • Defrost mode of the heat pump mode is activated when defrosting occurs in the outdoor heat exchanger 130 is required to operate.
  • the refrigerant is defrosted by bypassing the outdoor heat exchanger 130.
  • the expansion means 240 of the first composite valve device 200 closes the flow path 242 to perform an expansion function through the orifice 246 and the three-way valve part. 210 opens the outlet 212b of the connection block 230 so that the refrigerant bypasses the outdoor heat exchanger 130.
  • the second composite valve device 300 as shown in Figure 11, the expansion passage 312a is closed, the communication passage 312b is open, so that a predetermined amount of refrigerant is notched in the expansion passage (312a) ( It is possible to flow through the expansion passage 312a and the communication passage 312b through 312c.
  • the temperature control door 151 in the air conditioning case 150 operates to close a passage that bypasses the indoor heat exchanger 110 (the condenser role), and is blown into the air conditioning case 150 by a blower. After the blown air is cooled in the course of passing through the evaporator 160, the air is converted into warm air while being passed through the indoor heat exchanger 110 and supplied to the interior of the vehicle, thereby heating the interior of the vehicle interior.
  • the high temperature and high pressure gaseous refrigerant discharged after being compressed by the compressor 100 is supplied to the indoor heat exchanger 110 (condenser role) installed in the air conditioning case 150.
  • the high temperature and high pressure gaseous refrigerant introduced into the indoor heat exchanger 110 is condensed while exchanging heat with air blown into the air conditioning case 150 through a blower, and the air passing through the indoor heat exchanger 110 is After the warm air, it is supplied to the interior of the car to heat the cabin.
  • the refrigerant discharged from the indoor heat exchanger 110 is expanded under reduced pressure in the process of passing through the orifice 246 in the expansion means 240 of the first composite valve device 200 to become a low temperature low pressure liquid refrigerant.
  • the three-way valve 210 flows toward the connection block 230 to bypass the outdoor heat exchanger 130.
  • Some of the refrigerant introduced into the connection block 230 passes through the coolant heat exchanger 181b while passing through the refrigerant heat exchanger 181a of the water-cooled heat exchanger 181 of the bypass line R1. Heat exchange with the evaporation while recovering the waste heat of the vehicle electrical equipment 400, some of the refrigerant passes through the notch portion (312c) of the expansion passage (312a) of the second composite valve device 300 and the communication passage (312b) Is supplied to the evaporator 160 through the evaporation in the process of heat exchange with the air flowing in the air conditioning case 150.
  • the refrigerant having passed through the water-cooled heat exchanger 181 and the evaporator 160, respectively, is joined, and then flows into the compressor 100 to recycle the cycle as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The present invention relates to a vehicle heat pump system and, more particularly, to a vehicle heat pump system which includes: a three-way valve section connected to a refrigerant circulation line on the inlet side of an outdoor heat exchanger such that a circulating refrigerant selectively bypasses the outdoor heat exchanger; an on/off valve section connected to the inlet side of an evaporator bypass line such that the bypass line is on or off; a connection block connecting the three-way valve section and the on-off valve section with a refrigerant circulation line on the outlet side of the outdoor heat exchanger such that they communicate with each other; and a compound valve device into which an expansion means is built, said expansion means being connected to the inlet side of the three-way valve section in order to selectively expand the refrigerant discharged from an indoor heat exchanger. According to the present invention, the compound valve device controls the refrigerant such that all functions (modes) of the heat pump system can be performed, and the refrigerant circulation line (piping) has a simplified structure as multiple components and functions are integrated into the single compound valve device so as to render the heat pump system compact. Also, space can be ensured in a narrow vehicle engine compartment and both workability and fuel efficiency can be improved due to reduced weight.

Description

차량용 히트 펌프 시스템Automotive Heat Pump Systems
본 발명은 차량용 히트 펌프 시스템에 관한 것으로써, 더욱 상세하게는 실외열교환기의 입구측 냉매순환라인상에 연결되어 순환 냉매가 상기 실외열교환기를 선택적으로 바이패스하도록 하는 삼방밸브부와, 증발기 바이패스라인의 입구측에 연결되어 바이패스라인을 온오프하는 온오프밸브부와, 상기 삼방밸브부 및 온오프밸브부와 상기 실외열교환기의 출구측 냉매순환라인를 연통되게 연결하는 연결블럭과, 상기 삼방밸브부의 입구측에 연결되어 실내열교환기에서 배출된 냉매를 선택적으로 팽창시키는 팽창수단을 일체로 구성한 복합밸브장치를 설치한 차량용 히트 펌프 시스템에 관한 것이다.The present invention relates to a vehicle heat pump system, and more particularly, a three-way valve unit connected to an inlet refrigerant circulation line of an outdoor heat exchanger to selectively bypass the outdoor heat exchanger, and an evaporator bypass. An on-off valve portion connected to an inlet side of the line to turn the bypass line on and off; a connecting block connecting the three-way valve portion and the on-off valve portion to the refrigerant circulation line of the outlet side of the outdoor heat exchanger; The present invention relates to a heat pump system for a vehicle provided with a combined valve device integrally configured with expansion means connected to an inlet of a valve portion to selectively expand a refrigerant discharged from an indoor heat exchanger.
차량용 공조장치는, 통상적으로 차량의 실내를 냉방하기 위한 냉방시스템과, 차량의 실내를 난방하기 위한 난방시스템을 포함하여 이루어진다. 상기 냉방시스템은, 냉매사이클의 증발기측에서 증발기의 외부를 거치는 공기를 증발기 내부를 흐르는 냉매와 열교환시켜 냉기로 바꾸어, 차량 실내를 냉방하도록 구성되고, 상기 난방시스템은 냉각수 사이클의 히터코어측에서 히터코어 외부를 거치는 공기를 히터코어 내부를 흐르는 냉각수와 열교환시켜 온기로 바꾸어, 차량 실내를 난방하도록 구성된다.The vehicle air conditioner generally includes a cooling system for cooling the interior of a vehicle and a heating system for heating the interior of the vehicle. The cooling system is configured to heat the air passing through the outside of the evaporator at the evaporator side of the refrigerant cycle with the refrigerant flowing inside the evaporator to cool the vehicle, thereby cooling the vehicle interior, and the heating system is configured to heat the heater at the heater core side of the cooling water cycle. The air passing through the outside of the core is exchanged with the coolant flowing through the inside of the heater core to be converted into warmth, and configured to heat the vehicle interior.
한편, 상기한 차량용 공조장치와는 다른 것으로, 하나의 냉매사이클을 이용하여 냉매의 유동방향을 전환함으로써, 냉방과 난방을 선택적으로 수행할 수 있는 히트펌프 시스템이 적용되고 있는데, 예컨대 2개의 열교환기(즉, 공조케이스 내부에 설치되어 차량 실내로 송풍되는 공기와 열교환하기 위한 실내 열교환기와, 공조케이스 외부에서 열교환하기 위한 실외 열교환기)와, 냉매의 유동방향을 전환할 수 있는 방향조절밸브를 구비한다. 따라서, 방향조절밸브에 의한 냉매의 유동방향에 따라 냉방모드가 가동될 경우에는 상기 실내 열교환기가 냉방용 열교환기의 역할을 하게 되며, 난방모드가 가동될 경우에는 상기 실내 열교환기가 난방용 열교환기의 역할을 하게 된다.On the other hand, in addition to the vehicle air conditioner, a heat pump system capable of selectively performing cooling and heating by changing the flow direction of the refrigerant using one refrigerant cycle is applied, for example, two heat exchangers. (I.e., an indoor heat exchanger installed in the air conditioning case for heat exchange with air blown into the vehicle interior, an outdoor heat exchanger for heat exchange from the outside of the air conditioning case), and a direction control valve for switching the flow direction of the refrigerant. do. Therefore, when the cooling mode is operated according to the flow direction of the refrigerant by the direction control valve, the indoor heat exchanger acts as a cooling heat exchanger, and when the heating mode is operated, the indoor heat exchanger acts as a heating heat exchanger. Will be
이러한 차량용 히트펌프 시스템으로 다양한 종류가 제안되고 있는데, 그 대표적인 일예가 도 1에 도시되어 있다.Various types have been proposed as such a vehicle heat pump system, and a representative example thereof is illustrated in FIG. 1.
도 1에 도시된 차량용 히트펌프 시스템은, 냉매를 압축하고 토출하는 압축기(30)와, 상기 압축기(30)로부터 토출되는 냉매를 방열시키는 고압측 열교환기(32)와, 병렬구조로 설치되어 상기 고압측 열교환기(32)를 통과한 냉매를 선택적으로 통과시키는 제1팽창밸브(34) 및 제1개폐 밸브(36)와, 상기 제1팽창밸브(34) 또는 제1개폐 밸브(36)를 통과한 냉매를 실외에서 열교환시키는 실외기(48)와, 상기 실외기(48)를 통과한 냉매를 증발시키는 저압측 열교환기(60)와, 상기 저압측 열교환기(60)를 통과한 냉매를 기상과 액상의 냉매로 분리하는 어큐뮬레이터(Accumulator, 62)와, 상기 저압측 열교환기(60)로 공급되는 냉매와, 압축기(30)로 복귀하는 냉매를 열교환시키는 내부열교환기(50)와, 상기 저압측 열교환기(60)로 공급되는 냉매를 선택적으로 팽창시키는 제2팽창밸브(56)와, 그리고 상기 제2팽창밸브(56) 및 저압측 열교환기(60)에 대해 병렬로 설치됨과 아울러 상기 실외기(48)의 출구측과 상기 어큐뮬레이터(62)의 입구측을 연결하는 바이패스라인(58a) 및 상기 바이패스라인(58a)을 개폐하는 제2개폐 밸브(58)를 포함하여 이루어진다.The vehicle heat pump system shown in FIG. 1 includes a compressor 30 for compressing and discharging a refrigerant, a high pressure side heat exchanger 32 for dissipating the refrigerant discharged from the compressor 30, and a parallel structure. The first expansion valve 34 and the first opening and closing valve 36 for selectively passing the refrigerant passing through the high pressure side heat exchanger 32, and the first expansion valve 34 or the first opening and closing valve 36 The outdoor unit 48 for heat-exchanging the refrigerant having passed through the outside, the low pressure side heat exchanger 60 for evaporating the refrigerant passing through the outdoor unit 48, and the refrigerant passing through the low pressure side heat exchanger 60 are separated from the gas phase. Accumulator (62) for separating liquid phase refrigerant, internal heat exchanger (50) for exchanging refrigerant supplied to the low pressure side heat exchanger (60), refrigerant returned to the compressor (30), and the low pressure side heat exchanger Second expansion valve 56 for selectively expanding the refrigerant supplied to the machine 60 And a bypass line 58a installed in parallel with the second expansion valve 56 and the low pressure side heat exchanger 60, and connecting the outlet side of the outdoor unit 48 and the inlet side of the accumulator 62. And a second opening / closing valve 58 for opening and closing the bypass line 58a.
도 1 중 도면부호 10은 상기 고압측 열교환기(32)와 저압측 열교환기(60)가 내장되는 공조케이스, 도면부호 12는 냉기와 온기의 혼합량을 조절하는 온도조절도어, 도면부호 20은 상기 공조케이스의 입구에 설치되는 송풍기를 각각 나타낸다.In FIG. 1, reference numeral 10 denotes an air conditioner case in which the high pressure side heat exchanger 32 and the low pressure side heat exchanger 60 are incorporated, and reference numeral 12 denotes a temperature control door for controlling a mixing amount of cold and warm air, and Each blower installed at the inlet of the air conditioning case is shown.
상기한 바와 같이 구성된 종래 차량용 히트펌프 시스템에 따르면, 히트펌프 모드(난방모드)가 가동될 경우에는, 제1개폐 밸브(36) 및 제2팽창밸브(56)는 닫히고, 제1팽창밸브(34) 및 제2개폐 밸브(58)는 개방된다. 또한, 온도조절도어(12)는 도 1처럼 동작한다. 따라서, 압축기(30)로부터 토출되는 냉매는 고압측 열교환기(32), 제1팽창밸브(34), 실외기(48), 내부열교환기(50)의 고압부(52), 제2개폐 밸브(58), 어큐뮬레이터(62) 및 상기 내부열교환기(50)의 저압부(54)를 차례로 거쳐 압축기(30)로 복귀한다. 즉, 상기 고압측 열교환기(32)가 난방기의 역할을 하게 되고, 상기 실외기(48)는 증발기의 역할을 하게 된다.According to the conventional vehicle heat pump system configured as described above, when the heat pump mode (heating mode) is operated, the first opening / closing valve 36 and the second expansion valve 56 are closed and the first expansion valve 34 is closed. ) And the second open / close valve 58 are opened. In addition, the temperature control door 12 operates as shown in FIG. Therefore, the refrigerant discharged from the compressor 30 is the high pressure side heat exchanger 32, the first expansion valve 34, the outdoor unit 48, the high pressure part 52 of the internal heat exchanger 50, and the second open / close valve 58. Then, the accumulator 62 and the low pressure part 54 of the internal heat exchanger 50 are sequentially returned to the compressor 30. That is, the high pressure side heat exchanger 32 serves as a heater, and the outdoor unit 48 serves as an evaporator.
에어컨 모드(냉방모드)가 가동될 경우에는, 제1개폐 밸브(36) 및 제2팽창밸브(56)는 개방되고, 제1팽창밸브(34) 및 제2개폐 밸브(58)는 닫히게 된다. 또한, 온도조절도어(12)는 고압측 열교환기(32) 통로를 폐쇄하게 된다. 따라서, 압축기(30)로부터 토출되는 냉매는 고압측 열교환기(32), 제1개폐밸브(36), 실외기(48), 내부열교환기(50)의 고압부(52), 제2팽창밸브(56), 저압측 열교환기(60), 어큐뮬레이터(62) 및 상기 내부열교환기(50)의 저압부(54)를 차례로 거쳐 압축기(30)로 복귀한다. 즉, 상기 저압측 열교환기(60)가 증발기의 역할을 하게 되고, 상기 온도조절도어(12)에 의해 폐쇄된 상기 고압측 열교환기(32)는 히트펌프 모드시와 동일하게 난방기의 역할을 하게 된다.When the air conditioner mode (cooling mode) is activated, the first opening / closing valve 36 and the second expansion valve 56 are opened, and the first expansion valve 34 and the second opening / closing valve 58 are closed. In addition, the temperature control door 12 is to close the passage of the high-pressure side heat exchanger (32). Accordingly, the refrigerant discharged from the compressor 30 may include the high pressure side heat exchanger 32, the first open / close valve 36, the outdoor unit 48, the high pressure unit 52 of the internal heat exchanger 50, and the second expansion valve 56. The low pressure side heat exchanger (60), the accumulator (62), and the low pressure portion (54) of the internal heat exchanger (50) are returned to the compressor (30). That is, the low pressure side heat exchanger 60 serves as an evaporator, and the high pressure side heat exchanger 32 closed by the temperature control door 12 serves as a heater as in the heat pump mode. do.
그리고, 상기한 차량용 히트펌프 시스템에는 순환하는 냉매를 바이패스시키는 바이패스라인(58a) 뿐만아니라, 도면에는 도시하지 않았지만 순환하는 냉매를 일정량 분기하여 특정부위로 공급하는 분기라인이 설치되고, 또한 상기 냉매가 유동하는 라인상에는 냉매의 유동방향을 전환하는 삼방밸브(미도시), 냉매의 유동을 개폐하는 개폐밸브(36,58), 냉매를 팽창시키는 팽창밸브(34,56)가 설치된다.The vehicle heat pump system is provided with not only a bypass line 58a for bypassing the circulating coolant, but also a branch line for branching a predetermined amount of the circulating coolant and supplying it to a specific site, although not shown in the drawing. On the line through which the coolant flows, a three-way valve (not shown) for switching the flow direction of the coolant, on / off valves 36 and 58 for opening and closing the flow of the coolant, and expansion valves 34 and 56 for expanding the coolant are provided.
그러나, 종래의 차량용 히트펌프 시스템은, 상기 바이패스라인(58a), 분기라인과 같은 배관과, 삼방밸브와 개폐밸브(36,58) 및 팽창밸브(34,56)가 차량의 협소한 엔진룸내에 밀집해서 배치됨에 따라 냉매라인(배관)의 구조가 복잡해짐은 물론 냉매라인(배관)간에 연결해주는 별도의 연결블럭(미도시)들이 필요하고 각각의 밸브가 개별적으로 분리 설치되는 등 협소한 엔진룸내에서 히트 펌프 시스템이 많은 공간을 차지하고 중량이 과다하여 작업성 및 연비가 떨어지는 문제가 있었다.However, in the conventional vehicle heat pump system, a pipe such as the bypass line 58a and the branch line, the three-way valve, the opening / closing valves 36 and 58 and the expansion valves 34 and 56 have a narrow engine room of the vehicle. As it is arranged in a compact manner, the structure of the refrigerant line (pipe) becomes complicated, and a separate engine (not shown) for connecting between the refrigerant lines (pipes) is required, and a narrow engine such that each valve is separately installed and installed. In the room, the heat pump system occupies a lot of space and the weight is excessive, there is a problem that the workability and fuel economy drop.
상기한 문제점을 해결하기 위한 본 발명의 목적은 실외열교환기의 입구측 냉매순환라인상에 연결되어 순환 냉매가 상기 실외열교환기를 선택적으로 바이패스하도록 하는 삼방밸브부와, 증발기 바이패스라인의 입구측에 연결되어 바이패스라인을 온오프하는 온오프밸브부와, 상기 삼방밸브부 및 온오프밸브부와 상기 실외열교환기의 출구측 냉매순환라인를 연통되게 연결하는 연결블럭과, 상기 삼방밸브부의 입구측에 연결되어 실내열교환기에서 배출된 냉매를 선택적으로 팽창시키는 팽창수단을 일체로 구성한 복합밸브장치를 구비함으로써, 상기 복합밸브장치의 냉매 제어를 통해 히트 펌프 시스템의 기능(모드)을 모두 수행할 수 있음은 물론 여러개의 부품 및 기능이 복합밸브장치 하나로 일체화 됨에 따라 냉매순환라인(배관)이 간소화되어 히트 펌프 시스템의 컴팩트화가 가능함과 아울러 협소한 차량 엔진룸의 공간을 확보할 수 있으며, 중량을 줄여 작업성 및 연비도 향상할 수 있는 차량용 히트 펌프 시스템을 제공하는데 있다.An object of the present invention for solving the above problems is a three-way valve portion connected to the inlet side refrigerant circulation line of the outdoor heat exchanger to selectively bypass the outdoor heat exchanger, and the inlet side of the evaporator bypass line. An on-off valve part connected to the on-off valve part to turn the bypass line on and off, a connection block connecting the three-way valve part and the on-off valve part to the outlet-side refrigerant circulation line of the outdoor heat exchanger, and the inlet side of the three-way valve part; By having a combined valve device integrally configured with expansion means connected to the expansion means for selectively expanding the refrigerant discharged from the indoor heat exchanger, it is possible to perform all the functions (modes) of the heat pump system through the refrigerant control of the combined valve device. In addition, the refrigerant circulation line (piping) is simplified because several parts and functions are integrated into one composite valve device. Possible to ensure compact mad possible and space as well as in a narrow engine room of the vehicle, and the pump system, there is provided a vehicle heat pump system capable of reducing fuel consumption and also improved workability on the weight.
상기한 목적을 달성하기 위한 본 발명은, 냉매순환라인상에 각각 연결되는 것으로, 공조케이스의 내부에 설치되는 실내열교환기 및 증발기와, 공조케이스의 외부에 설치되는 압축기 및 실외열교환기를 포함하여 이루어져, 냉매가 압축기, 실내열교환기, 실외열교환기, 증발기를 순차적으로 순환하는 차량용 히트 펌프 시스템에 있어서, 상기 냉매순환라인의 특정구간에 설치되어 상기 냉매순환라인을 따라 순환하는 냉매가 상기 증발기를 선택적으로 바이패스하도록 하는 바이패스라인과, 상기 실외열교환기의 입구측 냉매순환라인상에 연결되어 순환 냉매가 상기 실외열교환기를 선택적으로 바이패스하도록 하는 삼방밸브부와, 상기 바이패스라인의 입구측에 연결되어 바이패스라인을 온오프하는 온오프밸브부와, 상기 삼방밸브부 및 온오프밸브부와 상기 실외열교환기의 출구측 냉매순환라인를 연통되게 연결하는 연결블럭을 일체로 구성한 제1복합밸브장치를 구비한 것을 특징으로 한다.The present invention for achieving the above object, which is connected to the refrigerant circulation line, respectively, comprises an indoor heat exchanger and an evaporator installed inside the air conditioning case, a compressor and an outdoor heat exchanger installed outside the air conditioning case. In a heat pump system for a vehicle in which a refrigerant is circulated sequentially in a compressor, an indoor heat exchanger, an outdoor heat exchanger, and an evaporator, a refrigerant that is installed in a specific section of the refrigerant circulation line and circulates along the refrigerant circulation line selects the evaporator. And a three-way valve portion connected to the bypass line for bypassing the air exchanger, the refrigerant circulation line connected to the inlet side of the outdoor heat exchanger to selectively bypass the outdoor heat exchanger, and a inlet side of the bypass line. An on-off valve portion connected to turn on and off a bypass line, and the three-way valve portion and on-off valve portion And a first composite valve device integrally configured with a connection block for connecting the outlet side refrigerant circulation line of the outdoor heat exchanger.
본 발명은, 실외열교환기의 입구측 냉매순환라인상에 연결되어 순환 냉매가 상기 실외열교환기를 선택적으로 바이패스하도록 하는 삼방밸브부와, 증발기 바이패스라인의 입구측에 연결되어 바이패스라인을 온오프하는 온오프밸브부와, 상기 삼방밸브부 및 온오프밸브부와 상기 실외열교환기의 출구측 냉매순환라인를 연통되게 연결하는 연결블럭과, 상기 삼방밸브부의 입구측에 연결되어 실내열교환기에서 배출된 냉매를 선택적으로 팽창시키는 팽창수단을 일체로 구성한 제1복합밸브장치를 구비함으로써, 상기 제1복합밸브장치의 냉매 제어를 통해 히트 펌프 시스템의 기능(모드)을 모두 수행할 수 있음은 물론 여러개의 부품 및 기능이 제1복합밸브장치 하나로 일체화 됨에 따라 냉매순환라인(배관)이 간소화되어 히트 펌프 시스템의 컴팩트화가 가능함과 아울러 협소한 차량 엔진룸의 공간을 확보할 수 있으며, 중량을 줄여 작업성 및 연비도 향상할 수 있다.The present invention is connected to the refrigerant circulation line of the inlet side of the outdoor heat exchanger, and the three-way valve portion to selectively bypass the outdoor heat exchanger, and connected to the inlet side of the evaporator bypass line to turn on the bypass line. A connection block connecting the on-off valve unit to be turned off, the three-way valve unit, the on-off valve unit and the refrigerant circulation line of the outlet side of the outdoor heat exchanger in communication, and the inlet side of the three-way valve unit to be discharged from the indoor heat exchanger. By having a first composite valve unit integrally configured with expansion means for selectively expanding the refrigerant, it is possible to perform all the functions (modes) of the heat pump system through the refrigerant control of the first composite valve device as well as several Components and functions are integrated into one first composite valve device, simplifying the refrigerant circulation line (piping), making the heat pump system more compact. In addition to free up space in a narrow engine room and a vehicle neungham, and can be improved even by reducing the workability and fuel consumption on the weight.
또한, 증발기의 입구측 냉매순환라인상에 증발기로 공급되는 냉매를 팽창시키도록 팽창유로를 갖는 팽창밸브부와, 상기 팽창유로를 통과한 냉매의 유동을 온오프하는 온오프밸브부를 일체로 구성하고 상기 팽창유로상에 항시 냉매 유동을 위해 노치부를 형성한 제2복합밸브장치를 설치함으로써, 상기 제1복합밸브장치 및 제2복합밸브장치의 냉매 제어를 통해 히트 펌프 시스템의 기능(모드)을 모두 수행할 수 있음은 물론 여러개의 부품 및 기능이 제1,2복합밸브장치로 일체화 됨에 따라 냉매순환라인(배관)이 더욱 간소화되어 히트 펌프 시스템을 더욱 컴팩트화 할 수 있음과 아울러 협소한 차량 엔진룸의 공간을 더욱 확보할 수 있으며 중량도 더욱 줄일 수 있다.In addition, the expansion valve unit having an expansion passage to expand the refrigerant supplied to the evaporator on the refrigerant circulation line inlet of the evaporator and the on-off valve unit for turning on and off the flow of the refrigerant passing through the expansion passage By installing a second composite valve device having a notch for always refrigerant flow on the expansion passage, all functions (modes) of the heat pump system are controlled through refrigerant control of the first composite valve device and the second composite valve device. Not only can it be carried out, but as several parts and functions are integrated into the first and second composite valve devices, the refrigerant circulation line (piping) is further simplified, making the heat pump system more compact, and in a compact vehicle engine room. Space can be further secured and the weight can be further reduced.
그리고, 바이패스라인의 분기지점에 설치해야했던 삼방밸브를 두 개의 온오프밸브로 대체하여 삼방밸브 기능을 수행하되, 이중 하나의 온오프밸브를 팽창밸브와 일체화하여 제2복합밸브장치를 구성함으로써, 무게 및 부품수 감소와 배관을 단순화 할 수 있다.In addition, by replacing the three-way valve, which had to be installed at the branch point of the bypass line, with two on-off valves to perform a three-way valve function, by constructing a second composite valve device by integrating one on-off valve with an expansion valve This reduces the weight, component count and simplifies piping.
또한, 제1복합밸브장치의 오리피스를 샤프트 형태인 밸브부재상에 직접 형성함으로써, 제작이 간편함은 물론 유로의 급격한 변화를 방지하여 압력 강하를 방지할 수 있다.In addition, by directly forming the orifice of the first composite valve device on the valve member in the form of a shaft, it is easy to manufacture and can prevent a sudden change in the flow path to prevent the pressure drop.
도 1은 종래의 차량용 히트 펌프 시스템을 나타내는 구성도,1 is a block diagram showing a conventional vehicle heat pump system,
도 2는 본 발명에 따른 차량용 히트 펌프 시스템에서 에어컨 모드를 나타내는 구성도,2 is a block diagram showing an air conditioner mode in a vehicle heat pump system according to the present invention;
도 3은 도 2에서 제1복합밸브장치를 나타내는 사시도,3 is a perspective view showing a first composite valve device in FIG.
도 4는 도 3에서 삼방밸브부 및 팽창수단의 작동상태를 나타내는 단면도,4 is a cross-sectional view showing an operating state of the three-way valve unit and expansion means in FIG.
도 5는 도 2에서 제2복합밸브장치의 작동상태를 나타내는 단면도,5 is a cross-sectional view showing an operating state of the second composite valve device of FIG. 2;
도 6은 본 발명에 따른 차량용 히트 펌프 시스템에서 히트펌프 모드 중 최대난방모드를 나타내는 구성도,6 is a block diagram showing a maximum heating mode of the heat pump mode in a vehicle heat pump system according to the present invention,
도 7은 도 6에서 삼방밸브부 및 팽창수단의 작동상태를 나타내는 단면도,7 is a cross-sectional view showing an operating state of the three-way valve unit and expansion means in FIG.
도 8은 도 6에서 제2복합밸브장치의 작동상태를 나타내는 단면도,8 is a cross-sectional view showing an operating state of the second composite valve device of FIG. 6;
도 9는 본 발명에 따른 차량용 히트 펌프 시스템에서 히트펌프 모드 중 제습모드를 나타내는 구성도,9 is a block diagram showing a dehumidification mode of the heat pump mode in a vehicle heat pump system according to the present invention,
도 10은 도 9에서 삼방밸브부 및 팽창수단의 작동상태를 나타내는 단면도,10 is a cross-sectional view showing an operating state of the three-way valve unit and expansion means in FIG.
도 11은 도 9에서 제2복합밸브장치의 작동상태를 나타내는 단면도,11 is a cross-sectional view showing an operating state of the second composite valve device of FIG. 9;
도 12는 본 발명에 따른 차량용 히트 펌프 시스템에서 히트펌프 모드 중 제상모드를 나타내는 구성도,12 is a block diagram showing a defrost mode of the heat pump mode in a vehicle heat pump system according to the present invention,
도 13은 도 12에서 삼방밸브부 및 팽창수단의 작동상태를 나타내는 단면도,13 is a cross-sectional view showing an operating state of the three-way valve unit and expansion means in FIG.
도 14는 본 발명에 따른 차량용 히트 펌프 시스템에서 제1복합밸브장치의 오리피스의 다른 실시예를 나타내는 단면도,14 is a cross-sectional view showing another embodiment of an orifice of a first composite valve device in a vehicle heat pump system according to the present invention;
도 15는 본 발명에 따른 차량용 히트 펌프 시스템의 다른 실시예를 나타내는 구성도이다.15 is a configuration diagram showing another embodiment of a vehicle heat pump system according to the present invention.
이하, 본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 따른 차량용 히트 펌프 시스템은, 냉매순환라인(R)상에 압축기(100)와, 실내열교환기(110)와, 제1복합밸브장치(200)와, 실외열교환기(130)와, 제2복합밸브장치(300)와, 증발기(160)가 각각 연결 설치되어 냉매가 순차적으로 순환하는 것으로서, 전기자동차 또는 하이브리드 자동차에 적용되는 것이 바람직하다.The vehicle heat pump system according to the present invention includes a compressor 100, an indoor heat exchanger 110, a first composite valve device 200, an outdoor heat exchanger 130, and a refrigerant on a refrigerant circulation line (R). As the second composite valve device 300 and the evaporator 160 are connected to each other and the refrigerant is sequentially circulated, it is preferable to be applied to an electric vehicle or a hybrid vehicle.
또한, 상기 냉매순환라인(R)의 특정구간에는 상기 냉매순환라인(R)을 따라 유동하는 냉매가 상기 제2복합밸브장치(300) 및 증발기(160)를 바이패스하도록 하는 바이패스라인(R1)이 설치된다.In addition, a bypass line R1 for allowing a refrigerant flowing along the refrigerant circulation line R to bypass the second composite valve device 300 and the evaporator 160 in a specific section of the refrigerant circulation line R. ) Is installed.
이때, 상기 바이패스라인(R1)은 상기 냉매순환라인(R)에 대해 병렬로 설치된다.At this time, the bypass line (R1) is installed in parallel to the refrigerant circulation line (R).
또한, 상기 히트 펌프 시스템에는 두 개의 팽창수단이 설치되는데, 하나의 팽창수단(240)은 상기 실내열교환기(110)와 실외열교환기(130)를 연결하는 냉매순환라인상에 설치되고, 다른 하나의 팽창수단은 팽창밸브부(310)로서 상기 증발기(160)의 입구측 냉매순환라인(R)상에 설치되는데, 이때 상기 실내열교환기(110)와 실외열교환기(130)의 사이에 설치되는 팽창수단(240)은 제1복합밸브장치(200)에 일체화 하였고, 상기 증발기(160)의 입구측 냉매순환라인(R)상에 설치되는 팽창밸브부(310)는 상기 제2복합밸브장치(300)에 일체화 하였다.In addition, the heat pump system is provided with two expansion means, one expansion means 240 is installed on the refrigerant circulation line connecting the indoor heat exchanger 110 and the outdoor heat exchanger 130, the other one The expansion means of the expansion valve unit 310 is installed on the inlet refrigerant circulation line (R) of the evaporator 160, wherein it is installed between the indoor heat exchanger 110 and the outdoor heat exchanger (130) Expansion means 240 is integrated into the first composite valve device 200, the expansion valve unit 310 is installed on the inlet refrigerant circulation line (R) of the evaporator 160 is the second composite valve device ( 300).
따라서, 에어컨 모드시에는, 도 2와 같이 상기 압축기(100)에서 배출된 냉매가 실내열교환기(110), 실외열교환기(130), 제1복합밸브장치(300), 제2복합밸브장치(300), 증발기(160), 압축기(100)를 순차적으로 순환하게 되며, 이때, 상기 실내열교환기(110)는 응축기(난방기) 역할을 수행하게 된다.Therefore, in the air conditioner mode, as shown in FIG. 2, the refrigerant discharged from the compressor 100 is transferred to the indoor heat exchanger 110, the outdoor heat exchanger 130, the first composite valve device 300, and the second composite valve device ( 300, the evaporator 160 and the compressor 100 are sequentially circulated, and in this case, the indoor heat exchanger 110 serves as a condenser (heater).
한편, 상기 실외열교환기(130)는 상기 실내열교환기(110)와 같은 응축기 역할을 하게 된다.On the other hand, the outdoor heat exchanger 130 serves as a condenser such as the indoor heat exchanger (110).
또한, 히트펌프 모드시(최대난방모드시)에는, 도 6과 같이 상기 압축기(100)에서 배출된 냉매가 실내열교환기(110), 제1복합밸브장치(200), 실외열교환기(130), 바이패스라인(R1), 압축기(100)를 순차적으로 순환하게 되며, 이때, 상기 실내열교환기(110)는 응축기(난방기) 역할을 수행하고 상기 실외열교환기(130)는 증발기 역할을 수행하며, 상기 증발기(160)로는 냉매 공급이 되지 않는다.In the heat pump mode (maximum heating mode), as shown in FIG. 6, the refrigerant discharged from the compressor 100 is transferred to the indoor heat exchanger 110, the first composite valve device 200, and the outdoor heat exchanger 130. In order to circulate the bypass line R1 and the compressor 100 sequentially, the indoor heat exchanger 110 serves as a condenser (heater) and the outdoor heat exchanger 130 serves as an evaporator. The refrigerant is not supplied to the evaporator 160.
이처럼, 에어컨 모드 및 히트펌프 모드시 냉매 순환방향이 동일함과 아울러 냉매순환라인(R)의 많은 구간을 공용화함으로써, 냉매가 흐르지 않을 때 발생하는 냉매 정체현상을 방지하고, 전체 냉매순환라인(R)도 단순화 할 수 있다.In this way, in the air conditioner mode and the heat pump mode, the refrigerant circulation direction is the same, and the common section of the refrigerant circulation line R is shared, thereby preventing the congestion of the refrigerant generated when the refrigerant does not flow, and the entire refrigerant circulation line (R). ) Can also be simplified.
그리고, 본 발명에서는, 상기 히트펌프 모드를 최대난방모드, 제습모드, 제상모드와 같이 다양화하고 있는데, 상기 제습모드는 차량 실내에 제습이 필요한 경우에 수행하게 되고, 상기 제상모드는 실외열교환기의 착상 발생시 수행하게 된다.In the present invention, the heat pump mode is diversified as the maximum heating mode, dehumidification mode, and defrost mode. The dehumidification mode is performed when dehumidification is required in the vehicle interior, and the defrost mode is an outdoor heat exchanger. This is done when the implantation of.
이하, 본 발명의 각 구성요소들을 상세히 설명하기로 한다.Hereinafter, each component of the present invention will be described in detail.
상기 냉매순환라인(R)상에 설치된 압축기(100)는 엔진(내연기관 또는 모터 등)으로부터 동력을 전달받아 구동하면서 냉매를 흡입하여 압축한 후 고온 고압의 기체 상태로 배출하게 된다.The compressor 100 installed on the refrigerant circulation line R receives and compresses the refrigerant while driving by receiving power from an engine (an internal combustion engine or a motor), and discharges the refrigerant in a gas state of high temperature and high pressure.
상기 압축기(100)는, 에어컨 모드시 상기 증발기(160)측에서 배출된 냉매를 흡입,압축하여 실내열교환기(110)측으로 공급하게 되고, 히트펌프 모드시에는 상기 바이패스라인(R1)을 통과한 냉매를 흡입,압축하여 실내열교환기(110)측으로 공급하게 된다.The compressor 100 sucks and compresses the refrigerant discharged from the evaporator 160 side in the air conditioner mode and supplies the refrigerant to the indoor heat exchanger 110 side, and passes through the bypass line R1 in the heat pump mode. The refrigerant is sucked and compressed to be supplied to the indoor heat exchanger 110.
상기 실내열교환기(110)는, 공조케이스(150)의 내부에 설치됨과 아울러 상기 압축기(100)의 출구측 냉매순환라인(R)과 연결되어, 상기 공조케이스(150)내를 유동하는 공기와 상기 압축기(100)에서 배출된 냉매를 열교환시키게 된다.The indoor heat exchanger (110) is installed inside the air conditioning case (150) and is connected to the refrigerant circulation line (R) at the outlet of the compressor (100), and the air flowing in the air conditioning case (150) and The refrigerant discharged from the compressor 100 is exchanged.
또한, 상기 증발기(160)는, 공조케이스(150)의 내부에 설치됨과 아울러 상기 압축기(100)의 입구측 냉매순환라인(R)과 연결되어, 상기 공조케이스(150)내를 유동하는 공기와 상기 압축기(100)로 공급되는 냉매를 열교환시키게 된다.In addition, the evaporator 160 is installed inside the air conditioning case 150 and is connected to the refrigerant circulation line R of the inlet side of the compressor 100, and the air flowing in the air conditioning case 150 and The refrigerant supplied to the compressor 100 is heat-exchanged.
상기 실내열교환기(110)는, 에어컨 모드 및 히트펌프 모드시 모두 응축기(난방기) 역할을 하게 되고,The indoor heat exchanger 110 serves as a condenser (heater) in both the air conditioning mode and the heat pump mode,
상기 증발기(160)는, 에어컨 모드시 증발기 역할을 하고, 히트펌프 모드 중 난방모드시에는 냉매 공급이 되지 않아 작동 정지된다.The evaporator 160 serves as an evaporator in the air conditioner mode, and stops operating because the refrigerant is not supplied in the heating mode during the heat pump mode.
또한, 상기 실내열교환기(110) 및 증발기(160)는, 상기 공조케이스(150)의 내부에 서로 일정간격 이격되어 설치되되, 상기 공조케이스(150)내의 공기유동방향 상류측에서부터 상기 증발기(160)와 실내열교환기(110)가 순차적으로 설치된다.In addition, the indoor heat exchanger 110 and the evaporator 160 is installed in the air conditioning case 150 spaced apart from each other by a predetermined interval, the evaporator 160 from the upstream side of the air flow direction in the air conditioning case 150. ) And the indoor heat exchanger 110 are sequentially installed.
따라서, 상기 증발기(160)가 증발기 역할을 수행하는 에어컨 모드시에는 도 2와 같이, 상기 제2복합밸브장치(300)의 팽창밸브부(310)를 통해 팽창된 저온 저압의 냉매가 상기 증발기(160)로 공급되고, 이때 블로어(미도시)를 통해 공조케이스(150)의 내부를 유동하는 공기가 상기 증발기(160)를 통과하는 과정에서 증발기(160) 내부의 저온 저압의 냉매와 열교환하여 냉풍으로 바뀐 뒤, 차량 실내로 토출되어 차실내를 냉방하게 된다.Therefore, in the air conditioner mode in which the evaporator 160 serves as the evaporator, as shown in FIG. 2, the low temperature low pressure refrigerant expanded through the expansion valve unit 310 of the second composite valve device 300 is the evaporator ( 160 is supplied to the air, and at this time, air flowing in the air-conditioning case 150 through a blower (not shown) is heat-exchanged with the low-temperature low-pressure refrigerant inside the evaporator 160 in the course of passing through the evaporator 160, cold air After the change, the liquid is discharged into the vehicle interior to cool the vehicle interior.
상기 실내열교환기(110)가 응축기(난방기) 역할을 수행하는 히트펌프 모드시(최대난방모드시)에는 도 6과 같이, 상기 압축기(100)에서 배출된 고온 고압의 냉매가 상기 실내열교환기(110)로 공급되고, 이때 블로어(미도시)를 통해 공조케이스(150)의 내부를 유동하는 공기가 상기 실내열교환기(110)를 통과하는 과정에서 실내열교환기(110) 내부의 고온 고압의 냉매와 열교환하여 온풍으로 바뀐 뒤, 차량 실내로 토출되어 차실내를 난방하게 된다.In the heat pump mode (maximum heating mode) in which the indoor heat exchanger 110 serves as a condenser (heater), as shown in FIG. 6, the high temperature and high pressure refrigerant discharged from the compressor 100 is connected to the indoor heat exchanger ( 110 is supplied to the air, in which the air flowing in the interior of the air conditioning case 150 through a blower (not shown) in the process of passing through the indoor heat exchanger 110, the refrigerant of the high temperature and high pressure inside the indoor heat exchanger 110 The heat exchange with the hot air is changed to the warm air, and then discharged into the vehicle interior to heat the interior of the vehicle.
한편, 상기 증발기(160)의 크기는, 상기 실내열교환기(110)의 크기 보다 더 큰 것이 바람직하다.On the other hand, the size of the evaporator 160, preferably larger than the size of the indoor heat exchanger (110).
또한, 상기 공조케이스(150) 내부의 실내열교환기(110) 하류측에는 난방성능을 향상할 수 있도록 전기 가열식 히터(미도시)가 더 설치될 수도 있다.In addition, an electric heating heater (not shown) may be further installed at the downstream side of the indoor heat exchanger 110 inside the air conditioning case 150 to improve heating performance.
그리고, 상기 공조케이스(150)의 내부에서 상기 증발기(160)와 상기 실내열교환기(110)의 사이에는, 상기 실내열교환기(110)를 바이패스하는 공기의 양과 통과하는 공기의 양을 조절하는 온도조절도어(151)가 설치된다.In addition, between the evaporator 160 and the indoor heat exchanger 110 in the air conditioning case 150, the amount of air bypassing the indoor heat exchanger 110 and the amount of air passing through the air conditioning case 150 are adjusted. Temperature control door 151 is installed.
상기 온도조절도어(151)는, 상기 실내열교환기(110)를 바이패스하는 공기의 양과 실내열교환기(110)를 통과하는 공기의 양을 조절하여 상기 공조케이스(150)에서 토출되는 공기의 온도를 적절하게 조절할 수 있는데,The temperature control door 151 adjusts the amount of air bypassing the indoor heat exchanger 110 and the amount of air passing through the indoor heat exchanger 110 to adjust the temperature of the air discharged from the air conditioning case 150. Can be adjusted accordingly.
이때, 에어컨 모드시 도 2와 같이 상기 온도조절도어(151)를 통해 상기 실내열교환기(110)의 전방측 통로를 완전히 폐쇄하게 되면, 증발기(160)를 통과한 냉풍이 실내열교환기(110)를 바이패스하여 차실내로 공급되므로 최대 냉방이 수행되고, 히트펌프 모드시(최대난방모드시)에는 도 6과 같이 상기 온도조절도어(151)를 통해 상기 실내열교환기(110)를 바이패스하는 통로를 완전히 폐쇄하게 되면, 모든 공기가 응축기(난방기) 역할을 하는 실내열교환기(110)를 통과하면서 온풍으로 바뀌게 되고 이 온풍이 차실내로 공급되므로 최대 난방이 수행된다.In this case, when the air conditioner mode completely closes the front side passage of the indoor heat exchanger 110 through the temperature control door 151 as shown in FIG. 2, the cold air passing through the evaporator 160 is indoor heat exchanger 110. Since the bypass is supplied to the vehicle interior, the maximum cooling is performed, and in the heat pump mode (maximum heating mode) to bypass the indoor heat exchanger 110 through the temperature control door 151 as shown in FIG. 6. When the passage is completely closed, all the air passes through the indoor heat exchanger 110 serving as a condenser (heater) and is converted into warm air, and the warm air is supplied into the cabin, so that the maximum heating is performed.
한편, 상기 온도조절도어(151)의 위치를 조절하면 차실내로 토출되는 공기의 온도를 적절하게 조절할 수 있는데, 일예로 에어컨 모드시, 상기 온도조절도어(151)를 작동시켜 상기 실내열교환기(110)를 바이패스하는 통로와 통과하는 통로를 모두 개방하게 되면, 상기 증발기(160)를 통과한 냉풍 중 일부는 실내열교환기(110)를 바이패스 하고 일부는 실내열교환기(110)를 통과하면서 온풍으로 바뀌게 된다. 이후, 상기 냉풍과 온풍이 혼합되어 차실내를 적절한 온도로 제어하게 되며, 아울러 증발기 역할을 하는 증발기(160)를 공기가 통과하므로 제습도 함께 이루어지게 된다.On the other hand, by adjusting the position of the temperature control door 151, it is possible to appropriately adjust the temperature of the air discharged into the cabin, for example, in the air conditioning mode, by operating the temperature control door 151 to the indoor heat exchanger ( When both the passage bypassing and the passage passing through 110 are opened, some of the cold air passing through the evaporator 160 bypasses the indoor heat exchanger 110 and some passes through the indoor heat exchanger 110. It is changed to warm air. Thereafter, the cold air and the warm air are mixed to control the interior of the vehicle to an appropriate temperature, and the air passes through the evaporator 160 which serves as the evaporator, so that dehumidification is also performed.
아울러, 본 발명에서는 에어컨 모드 뿐만 아니라, 히트펌프 모드 중 상기 증발기(160)에 일부 냉매가 공급되는 모드에서는 공기가 상기 증발기(160)를 통과하게 되면서 차실내가 제습되게 된다.In addition, in the present invention, the interior of the vehicle is dehumidified as air passes through the evaporator 160 in a mode in which some refrigerant is supplied to the evaporator 160 in the heat pump mode as well as the air conditioner mode.
이처럼, 본 발명에서는 에어컨 모드는 물론 히트펌프 모드시에도 차실내 제습기능을 작동할 수 있는 것이다.As such, the present invention can operate the interior dehumidification function in the air-conditioning mode as well as the heat pump mode.
그리고, 상기 실외열교환기(130)는, 상기 공조케이스(150)의 외부에 설치됨과 아울러 상기 냉매순환라인(R)과 연결되어, 상기 냉매순환라인(R)을 순환하는 냉매와 실외공기를 열교환시키게 된다.The outdoor heat exchanger 130 is installed outside the air conditioning case 150 and is connected to the refrigerant circulation line R to exchange heat between the refrigerant circulating through the refrigerant circulation line R and the outdoor air. Let's go.
여기서, 상기 실외열교환기(130)는 차량 엔진룸의 전방측에 설치되어 내부를 유동하는 냉매를 실외공기와 열교환시키게 된다.Here, the outdoor heat exchanger 130 is installed on the front side of the vehicle engine room to heat exchange the refrigerant flowing inside with the outdoor air.
상기 실외열교환기(130)는, 에어컨 모드시 상기 실내열교환기(110)와 동일한 응축기 역할을 하게 되며, 이때 실외열교환기(130)의 내부를 유동하는 고온 냉매가 실외공기와 열교환하게 되면서 응축되게 된다.The outdoor heat exchanger 130 serves as the same condenser as the indoor heat exchanger 110 in the air conditioner mode, where the high temperature refrigerant flowing inside the outdoor heat exchanger 130 is condensed as it exchanges heat with outdoor air. do.
또한, 히트펌프 모드시(최대난방모드시)에는 상기 실내열교환기(110)와 상반되는 증발기 역할을 하게 되는데, 이때 실외열교환기(130)의 내부를 유동하는 저온 냉매가 실외공기와 열교환하게 되면서 증발하게 된다.In addition, in the heat pump mode (maximum heating mode) it serves as an evaporator opposite to the indoor heat exchanger 110, in which the low-temperature refrigerant flowing inside the outdoor heat exchanger 130 exchanges heat with outdoor air. Will evaporate.
그리고, 본 발명은, 기존에 냉매순환라인상에 설치되어 냉매를 제어하는 다수의 밸브들과, 배관들을 연결하는 다수의 연결블럭들의 기능을 제1복합밸브장치(200)와 제2복합밸브장치(300)만으로 수행할 수 있도록 한 것이다.In addition, the present invention, the first multiple valve device 200 and the second composite valve device has a function of a plurality of valves that are conventionally installed on the refrigerant circulation line to control the refrigerant, and a plurality of connection blocks connecting the pipes. Only 300 can be done.
즉, 상기 제1복합밸브장치(200)와 제2복합밸브장치(300)의 냉매 제어를 통해 히트 펌프 시스템의 기능(모드)을 모두 수행할 수 있음은 물론 여러개의 부품 및 기능이 각 복합밸브장치 하나로 일체화 됨에 따라 냉매순환라인(배관)이 간소화되어 히트 펌프 시스템의 컴팩트화가 가능함과 아울러 협소한 차량 엔진룸의 공간을 확보할 수 있으며, 중량을 줄여 작업성 및 연비도 향상할 수 있는 것이다.That is, through the refrigerant control of the first composite valve device 200 and the second composite valve device 300 can perform all the functions (modes) of the heat pump system, as well as several components and functions of each composite valve By integrating one device, the refrigerant circulation line (piping) can be simplified, which makes the heat pump system compact, and can secure a space in a narrow vehicle engine room, and can reduce work weight and improve fuel efficiency.
상기 제1복합밸브장치(200)는, 상기 실외열교환기(130)의 입구측 냉매순환라인(R)상에 연결되어 순환 냉매가 상기 실외열교환기(130)를 선택적으로 바이패스하도록 하는 삼방밸브부(210)와, 상기 바이패스라인(R1)의 입구측에 연결되어 바이패스라인(R1)을 온오프하는 온오프밸브부(220)와, 상기 삼방밸브부(210) 및 온오프밸브부(220)와 상기 실외열교환기(130)의 출구측 냉매순환라인(R)를 연통되게 연결하는 연결블럭(230)을 일체로 구성하여 이루어진다.The first composite valve device 200 is connected to an inlet refrigerant circulation line R of the outdoor heat exchanger 130 so that a circulating refrigerant selectively bypasses the outdoor heat exchanger 130. An on-off valve unit 220 connected to the unit 210, an inlet side of the bypass line R1 to turn off the bypass line R1, and the three-way valve unit 210 and the on-off valve unit The connection block 230 which connects the 220 and the outlet side refrigerant circulation line R of the outdoor heat exchanger 130 to communicate with each other is formed integrally.
또한, 상기 제1복합밸브장치(200)는 상기 삼방밸브부(210)와 온오프밸브부(220) 및 연결블럭(230) 구성 뿐만 아니라 팽창수단(240) 구성까지 일체로 구성하게 되는데, 즉, 상기 팽창수단(240)은 상기 삼방밸브부(210)의 입구측에 연결되어 상기 실내열교환기(110)에서 배출된 냉매를 선택적으로 팽창시키게 된다.In addition, the first composite valve device 200 is configured to include not only the three-way valve unit 210, the on-off valve unit 220, and the connection block 230, but also the expansion means 240. In addition, the expansion means 240 is connected to the inlet side of the three-way valve 210 to selectively expand the refrigerant discharged from the indoor heat exchanger (110).
다시말해, 상기 제1복합밸브장치(200)는, 상기 삼방밸브부(210), 온오프밸브부(220), 연결블럭(230), 팽창수단(240)을 일체화하여 단일 부품으로 구성한 것이다.In other words, the first composite valve device 200 is configured as a single part by integrating the three-way valve part 210, the on-off valve part 220, the connection block 230, and the expansion means 240.
상기 팽창수단(240)은, 상기 삼방밸브부(210)의 입구(211)측과 상기 실내열교환기(110)의 출구측 냉매순환라인(R)을 연결하도록 설치되어 냉매 유동을 온오프하는 온오프 밸브(241)와, 상기 온오프 밸브(241)에 일체로 구비되어 냉매를 팽창시키는 오리피스(246)로 이루어져, 상기 온오프 밸브(241)의 개방시에는 냉매를 미팽창 상태로 유동시키고, 폐쇄시에는 상기 오리피스(246)를 통해 냉매를 팽창시켜 유동시키게 된다.The expansion means 240 is installed to connect the inlet 211 side of the three-way valve unit 210 and the refrigerant circulation line (R) of the outlet side of the indoor heat exchanger 110 to turn on and off the refrigerant flow. An off valve 241 and an orifice 246 integrally provided in the on-off valve 241 to expand the refrigerant, and when the on-off valve 241 is opened, the refrigerant flows in an unexpanded state, In closing, the refrigerant expands and flows through the orifice 246.
상기 온오프 밸브(241)는, 도 4와 같이, 상기 온오프 밸브(241)의 내부에 냉매가 유동하도록 형성되는 유로(242)와, 상기 유로(242)를 개폐하도록 설치되는 밸브부재(243)로 구성된다.The on-off valve 241, as shown in Figure 4, the flow path 242 is formed so that the refrigerant flows inside the on-off valve 241, the valve member 243 provided to open and close the flow path 242. It is composed of
이때, 상기 온오프 밸브(241)의 밸브부재(243)상에 상기 오리피스(246)가 형성되는 것이다.At this time, the orifice 246 is formed on the valve member 243 of the on-off valve 241.
여기서, 상기 밸브부재(243)는, 상기 온오프 밸브(241)의 일측에 설치된 구동장치와 연결되는 샤프트(243a)와, 상기 샤프트(243a)에 형성되어 상기 유로(242)를 개폐하는 밸브판(243b)으로 구성되고, 상기 오리피스(246)는 상기 밸브부재(243)의 밸브판(243b)에 관통 형성되어 이루어진다.The valve member 243 may include a shaft 243a connected to a driving device provided on one side of the on-off valve 241 and a valve plate formed on the shaft 243a to open and close the flow path 242. 243b, the orifice 246 is formed through the valve plate 243b of the valve member 243.
이로인해, 상기 온오프 밸브(241)의 유로(242)로 유입된 냉매가 상기 밸브판(243b)에 형성된 오리피스(246)를 통과하면서 팽창하게 되는 것이다.Thus, the refrigerant flowing into the flow path 242 of the on-off valve 241 is expanded while passing through the orifice 246 formed in the valve plate 243b.
한편, 도 14는 상기 오리피스(246)의 다른 실시예로서, 도 14에 도시된 밸브부재(243)는, 상기 온오프 밸브(241)의 일측에 설치된 구동장치와 연결되는 중공의 샤프트(243a)와, 상기 샤프트(243a)에 형성되어 상기 유로(242)를 개폐하는 밸브판(243b)으로 구성되고, 상기 오리피스(246)는 상기 밸브부재(243)의 중공 샤프트(243a)에 내,외부를 관통하도록 형성되어 이루어진다.On the other hand, Figure 14 is another embodiment of the orifice 246, the valve member 243 shown in Figure 14, the hollow shaft (243a) is connected to the drive device installed on one side of the on-off valve (241) And a valve plate 243b formed on the shaft 243a to open and close the flow path 242, and the orifice 246 is formed inside and outside the hollow shaft 243a of the valve member 243. It is formed to penetrate through.
이로인해, 상기 온오프 밸브(241)의 유로(242)로 유입된 냉매가 상기 중공의 샤프트(243a)에 형성된 오리피스(246)로 유입되어 샤프트(243a) 내부를 통과하면서 팽창하게 되는 것이다.Thus, the refrigerant flowing into the flow path 242 of the on-off valve 241 flows into the orifice 246 formed in the hollow shaft 243a and expands while passing through the shaft 243a.
이처럼, 상기 오리피스(246)를 샤프트 형태인 상기 밸브부재(243)상에 직접 형성함으로써, 제작이 간편함은 물론 유로의 급격한 변화를 방지하여 압력 강하를 방지할 수 있는 장점이 있다.As such, by directly forming the orifice 246 on the valve member 243 in the form of a shaft, it is easy to manufacture and has an advantage of preventing a sudden drop in the flow path to prevent a pressure drop.
만일, 상기 오리피스(246)를 상기 온오프 밸브(241)의 몸체상에 형성할 경우 제작이 어려운 단점이 있다.If the orifice 246 is formed on the body of the on-off valve 241, manufacturing is difficult.
그리고, 상기 온오프 밸브(241)의 일측에는 상기 밸브부재(243)의 개폐작동을 위한 구동장치인 솔레노이드(244)가 설치되며, 상기 온오프 밸브(241)의 내부에는 상기 솔레노이드(244)의 전원차단시 상기 밸브부재(243)를 이동시켜 상기 유로(242)를 개방시키는 탄성부재(245)가 설치된다.In addition, a solenoid 244 that is a driving device for opening and closing the valve member 243 is installed at one side of the on / off valve 241, and the solenoid 244 is provided inside the on / off valve 241. An elastic member 245 is installed to move the valve member 243 to open the flow path 242 when the power is cut off.
이와 같이, 상기 팽창수단(240)의 밸브부재(243)가 유로(242)를 개방할 경우에는 팽창수단(240)을 통과하는 냉매가 팽창되지 않은 상태로 통과하게 되고, 팽창수단(240)의 밸브부재(243)가 유로(242)를 폐쇄할 경우에는 팽창수단(240)을 통과하는 냉매가 밸브부재(243)상의 오리피스(246)를 통과하는 과정에서 팽창된 후 통과하게 되는 것이다.As such, when the valve member 243 of the expansion means 240 opens the flow path 242, the refrigerant passing through the expansion means 240 passes in an unexpanded state. When the valve member 243 closes the flow path 242, the refrigerant passing through the expansion means 240 is expanded after passing through the orifice 246 on the valve member 243 and then passes.
그리고, 상기 삼방밸브부(210)는, 1개의 입구(211)와 2개의 출구(212a,212b)가 형성되며, 상기 1개의 입구(211)는 상기 팽창수단(240)의 온오프밸브(241) 유로(242)와 연결되고, 상기 2개의 출구(212a,212b)는 상기 1개의 입구(211)로부터 분기됨과 아울러 이 중 1개의 출구(212a)는 상기 실외열교환기(130)의 입구측 냉매순환라인(R)과 연결되고 다른 1개의 출구(212b)는 상기 연결블럭(230)과 연결되게 된다.In addition, the three-way valve part 210 is formed with one inlet 211 and two outlets 212a and 212b, and the one inlet 211 is an on-off valve 241 of the expansion means 240. ) And the two outlets 212a and 212b branch from the one inlet 211 and one outlet 212a is an inlet refrigerant of the outdoor heat exchanger 130. It is connected to the circulation line (R) and the other outlet 212b is to be connected to the connection block 230.
또한, 상기 삼방밸브부(210)의 내부에는 상기 2개의 출구(212a,212b)를 선택적으로 개방하는 밸브부재(213)가 설치된다.In addition, a valve member 213 for selectively opening the two outlets 212a and 212b is installed in the three-way valve part 210.
아울러, 상기 삼방밸브부(210)의 일측에는 상기 밸브부재(213)를 작동시키기 위한 솔레노이드(215)가 설치되며, 상기 삼방밸브부(210)의 내부에는 상기 솔레노이드(215)의 전원차단시 상기 밸브부재(213)를 이동시켜 실외열교환기(130)측 출구(212a)를 폐쇄시키는 탄성부재(214)가 설치된다.In addition, a solenoid 215 for operating the valve member 213 is installed at one side of the three-way valve part 210, and when the power-off of the solenoid 215 is cut off inside the three-way valve part 210. An elastic member 214 is installed to move the valve member 213 to close the outlet 212a of the outdoor heat exchanger 130.
따라서, 상기 팽창수단(240)의 유로(242)를 통과한 냉매를 상기 실외열교환기(130)측으로 유동시키거나 또는 상기 연결블럭(230)측으로 유동시켜 실외열교환기(130)를 바이패스하도록 하게 된다.Therefore, the refrigerant passing through the flow path 242 of the expansion means 240 flows to the outdoor heat exchanger 130 side or to the connection block 230 to bypass the outdoor heat exchanger 130. do.
그리고, 상기 연결블럭(230)의 내부에는, 상기 삼방밸브부(210) 및 온오프밸브부(220)와 상기 실외열교환기(130)의 출구측 냉매순환라인(R)를 연통되게 연결하도록 십자형태의 사방유로(231)가 형성된다.In addition, the inside of the connection block 230, cross to connect the three-way valve 210 and the on-off valve 220 and the outlet refrigerant circulation line (R) of the outdoor heat exchanger 130 in communication. The four-way flow path 231 is formed.
따라서, 상기 실외열교환기(130)에서 배출된 냉매의 경우 상기 연결블럭(230)을 통해 상기 제2복합밸브장치(300) 및 증발기(160)측으로 유동할 수도 있고 상기 바이패스라인(R1)측으로 유동할 수도 있다.Therefore, the refrigerant discharged from the outdoor heat exchanger 130 may flow to the second composite valve device 300 and the evaporator 160 through the connection block 230 or to the bypass line R1. It can also flow.
또한, 상기 삼방밸브부(210)에서 상기 실외열교환기(130)를 바이패스하여 연결블럭(230)으로 곧바로 유입되는 냉매의 경우도 상기 연결블럭(230)을 통해 상기 제2복합밸브장치(300) 및 증발기(160)측으로 유동할 수도 있고 상기 바이패스라인(R1)측으로 유동할 수도 있다.In addition, in the case of the refrigerant flowing directly into the connection block 230 by bypassing the outdoor heat exchanger 130 from the three-way valve unit 210, the second composite valve device 300 is provided through the connection block 230. ) And the evaporator 160 may flow to the bypass line (R1) side.
이때, 상기 삼방밸브부(210)를 통해 냉매가 실외열교환기(130)를 바이패스하도록 하는 경우는, 상기 실외열교환기(130)에 착상이 발생한 경우이다.In this case, when the refrigerant is to bypass the outdoor heat exchanger 130 through the three-way valve unit 210, it is a case in which frosting occurs in the outdoor heat exchanger 130.
아울러, 냉매가 상기 실외열교환기(130)를 바이패스하더라도, 수냉식 열교환기(181)나 증발기(160)를 통해 열원을 회수하도록 함으로써, 난방성능을 향상할 수 있는 것이다.In addition, even if the refrigerant bypasses the outdoor heat exchanger 130, the heating performance can be improved by recovering the heat source through the water-cooled heat exchanger 181 or the evaporator 160.
한편, 상기 연결블럭(230)으로 유입된 냉매의 유동 흐름은, 상기 제2복합밸브장치(300)나 상기 바이패스라인(R1)상에 설치된 온오프밸브부(220)의 제어를 통해 결정된다. 즉, 상기 제2복합밸브장치(300)와 온오프밸브부(220)의 제어를 통해 어느 일측으로만 냉매가 유동할 수도 있고 동시에 유동할 수도 있다.On the other hand, the flow of the refrigerant flowing into the connection block 230 is determined through the control of the on-off valve unit 220 installed on the second composite valve device 300 or the bypass line (R1). . That is, the refrigerant may flow to any one side or at the same time through the control of the second composite valve device 300 and the on-off valve unit 220.
그리고, 상기 온오프밸브부(220)는, 상기 바이패스라인(R1)의 입구측에 설치되어 상기 연결블럭(230)과 바이패스라인(R1)을 연결하여 바이패스라인(R1)을 선택적으로 온오프하게 된다.The on-off valve unit 220 is installed at the inlet side of the bypass line R1 to connect the connection block 230 and the bypass line R1 to selectively select the bypass line R1. It turns on and off.
상기 온오프밸브부(220)의 구조는 상기 팽창수단(240)의 구조에서 오리피스(246)만 빠진 온오프밸브(241)의 구조와 동일하다.The structure of the on-off valve part 220 is the same as that of the on-off valve 241 in which only the orifice 246 is omitted from the structure of the expansion means 240.
이러한, 상기 제1복합밸브장치(200)는, 에어컨 모드시, 상기 팽창수단(240)의 온오프밸브(241)는 유로(242)를 개방하게 되고, 상기 삼방밸브부(210)는 실외열교환기(130)측 출구(212a)를 개방하게 되며, 상기 온오프밸브부(220)는 상기 바이패스라인(R1)을 폐쇄하게 되고, 상기 제2복합밸브장치(300)가 개방됨으로써, 상기 팽창수단(240)의 온오프밸브(241)를 미팽창상태로 통과한 냉매를 상기 삼방밸브부(210)를 통해 실외열교환기(130)측으로 유동시키게 되고, 상기 실외열교환기(130)를 통과한 냉매는 상기 연결블럭(230)을 통해 상기 제2복합밸브장치(300) 및 증발기(160)측으로 유동하게 된다.In the air conditioner mode, the first composite valve device 200, the on-off valve 241 of the expansion means 240 to open the flow path 242, the three-way valve unit 210 is the outdoor heat exchange The outlet (212a) side (130) is opened, the on-off valve unit 220 closes the bypass line (R1), the second composite valve device 300 is opened, the expansion The refrigerant passing through the on-off valve 241 of the means 240 in an unexpanded state is flowed to the outdoor heat exchanger 130 through the three-way valve portion 210, and passes through the outdoor heat exchanger 130. The refrigerant flows to the second composite valve device 300 and the evaporator 160 through the connection block 230.
또한, 히트펌프 모드시에는, 상기 팽창수단(240)의 온오프밸브(241)는 유로(242)를 폐쇄하여 오리피스(246)를 통한 팽창기능을 하게 되고, 상기 삼방밸브부(210)는 실외열교환기(130)측 출구를 개방하게 되며, 상기 온오프밸브부(220)는 상기 바이패스라인(R1)을 개방하게되고, 상기 제2복합밸브장치(300)가 폐쇄됨으로써, 상기 팽창수단(240)의 온오프밸브(241)를 팽창상태로 통과한 냉매를 상기 삼방밸브부(210)를 통해 실외열교환기(130)측으로 유동시키게 되고, 상기 실외열교환기(130)를 통과한 냉매는 상기 연결블럭(230)을 통해 상기 바이패스라인(R1)측으로 유동하게 된다.In addition, in the heat pump mode, the on-off valve 241 of the expansion means 240 closes the flow path 242 to expand through the orifice 246, the three-way valve 210 is outdoors The outlet of the heat exchanger 130 is opened, the on-off valve unit 220 opens the bypass line R1, and the second composite valve device 300 is closed, thereby expanding the expansion means ( The refrigerant passing through the on-off valve 241 in the expanded state 240 is flowed to the outdoor heat exchanger 130 through the three-way valve 210, and the refrigerant passing through the outdoor heat exchanger 130 is It flows to the bypass line (R1) through the connection block 230.
그리고, 상기 제2복합밸브장치(300)는, 상기 증발기(160)의 입구측 냉매순환라인(R)상에 설치되는 것으로, 상기 증발기(160)로 공급되는 냉매를 팽창시키도록 팽창유로(312a)를 갖는 팽창밸브부(310)와, 상기 팽창유로(312a)를 통과한 냉매의 유동을 온오프하는 온오프밸브부(320)를 일체로 구성하여 이루어진다.The second composite valve device 300 is installed on the inlet refrigerant circulation line R of the evaporator 160 and expands the expansion passage 312a to expand the refrigerant supplied to the evaporator 160. The expansion valve unit 310 having a) and the on-off valve unit 320 for turning on and off the flow of the refrigerant passing through the expansion passage (312a) is formed integrally.
또한, 상기 팽창유로(312a)의 내측면에는 냉매의 일부가 항시 유동할 수 있도록 후술하는 노치부(312c)가 형성된다.In addition, a notch portion 312c, which will be described later, is formed on an inner side surface of the expansion passage 312a so that a portion of the refrigerant may always flow.
즉, 하나의 복합밸브장치(300)에 팽창유로(312a) 및 노치부(312c)를 갖는 팽창밸브부(310)와 온오프밸브부(320)를 통합 구성한 것으로, 이를 통해 팽창밸브 기능과 온오프밸브 기능 및 냉매 일정량 항시 공급 기능을 모두 수행할 수 있게 됨으로써, 냉매순환라인(배관)(R)이 간소화되어 히트 펌프 시스템의 컴팩트화가 가능함과 아울러 협소한 차량 엔진룸의 공간을 확보할 수 있으며 중량도 줄일 수 있는 것이다.That is, the expansion valve unit 310 and the on-off valve unit 320 having the expansion passage 312a and the notch portion 312c are integrally configured in one composite valve device 300, thereby expanding and expanding the valve function. By being able to perform both the off-valve function and the constant supply of a certain amount of refrigerant, the refrigerant circulation line (piping) (R) can be simplified to make the heat pump system compact and to secure a space in a narrow vehicle engine room. The weight can also be reduced.
그리고, 상기 팽창밸브부(310)는, 상기 냉매순환라인(R)과 연결됨과 아울러 내부에는 냉매를 팽창시키는 상기 팽창유로(312a) 및 상기 팽창유로(312a)를 통과한 냉매가 유동하는 연통유로(312b)가 형성된 본체(311)와, 상기 본체(311)에 설치되어 상기 팽창유로(312a)를 개폐하는 개폐수단(315)으로 이루어진다.In addition, the expansion valve unit 310 is connected to the refrigerant circulation line (R) and communicate flow paths through which the refrigerant passing through the expansion passage (312a) and the expansion passage (312a) for expanding the refrigerant therein. And a main body 311 having a 312b formed therein, and an opening / closing means 315 installed in the main body 311 to open and close the expansion passage 312a.
여기서, 상기 본체(311)의 내부에는 상기 냉매순환라인(R)과 연결되어 냉매순환라인(R)을 따라 유동하는 냉매가 통과하는 유로(312)가 형성되는데, 이때 상기 본체(311)내 유로(312)의 일부 구간에는 유로(312)의 직경을 축소한 상기 팽창유로(312a)로 구성되고, 상기 팽창유로(312a)의 하류측 일부 구간은 상기 연통유로(312b)로 구성된다.Here, a flow passage 312 is formed in the body 311 through which the refrigerant flowing along the refrigerant circulation line R passes through the refrigerant circulation line R, wherein the flow passage 312 is formed in the body 311. Some sections of the 312 may be configured as the expansion passage 312a having a reduced diameter of the flow passage 312, and some sections downstream of the expansion passage 312a may be configured as the communication passage 312b.
또한, 상기 개폐수단(315)은, 상기 팽창유로(312a)의 일측(하측)에 배치되어 상기 팽창유로(312a)를 개폐하도록 작동하는 볼(316)과, 상기 본체(311)의 내부에 승하강 가능하게 설치되어 상기 볼(316)을 작동시키는 작동축(317)을 포함하여 이루어진다.In addition, the opening and closing means 315 is disposed on one side (lower side) of the expansion passage (312a) and the ball 316 to operate to open and close the expansion passage (312a) and the inside of the main body 311 It is made to include a working shaft 317 that is installed to be lowered to operate the ball 316.
한편, 상기 본체(311)의 하부에는 상기 볼(316)을 팽창유로(312a)측으로 밀착시키는 탄성부재(319)가 설치된다.On the other hand, the lower portion of the main body 311 is provided with an elastic member 319 is in close contact with the ball 316 toward the expansion passage (312a).
아울러, 상기 본체(311)의 내부에는 상기 증발기(160)에서 배출된 냉매가 압축기(100)로 유입되기 전에 경유하도록 경유유로(313)가 형성된다.In addition, a diesel passage 313 is formed in the main body 311 so that the refrigerant discharged from the evaporator 160 passes through the compressor 100 before being introduced into the compressor 100.
또한, 상기 본체(311)의 상부에는 상기 경유유로(313)내를 흐르는 냉매의 온도변화에 따라 변위되는 다이아프램(318)이 설치되고, 상기 다이아프램(318)은 상기 작동축(317)과 연결된다.In addition, a diaphragm 318 which is displaced according to the temperature change of the refrigerant flowing in the diesel passage 313 is installed on the upper portion of the main body 311, the diaphragm 318 is the operating shaft 317 and Connected.
따라서, 상기 증발기(160)에서 배출되어 상기 경유유로(313)를 유동하는 냉매의 온도변화에 따라 상기 다이아프램(318)이 변위되고, 이 변위량에 따라 상기 작동축(317)이 승하강하면서 상기 볼(316)을 작동시켜 팽창유로(312a)를 개폐하게 된다.Therefore, the diaphragm 318 is displaced according to the temperature change of the refrigerant discharged from the evaporator 160 and flows through the diesel passage 313, and the operating shaft 317 moves up and down according to the displacement. The ball 316 is operated to open and close the expansion passage 312a.
그리고, 상기 팽창유로(312a)의 내측면에는, 상기 개폐수단(315)에 의해 상기 팽창유로(312a)가 폐쇄 상태일 경우에도 상기 팽창유로(312a)를 통해 냉매가 일부 유동할 수 있도록 노치부(312c)가 형성된다.In addition, the notch part may be provided on the inner surface of the expansion passage 312a so that the refrigerant may partially flow through the expansion passage 312a even when the expansion passage 312a is closed by the opening / closing means 315. 312c is formed.
즉, 상기 볼(316)이 안착되는 상기 팽창유로(312a)의 안착면에 상기 홈형태의 노치부(312c)를 형성함으로써, 상기 볼(316)이 상기 팽창유로(312a)를 폐쇄하더라도 상기 노치부(312c)를 통해 항시 일정량의 냉매가 팽창유로(312a)를 통과하게 된다.That is, by forming the notch portion 312c of the groove shape on the seating surface of the expansion passage 312a on which the ball 316 is seated, the furnace 316 closes the expansion passage 312a even if the ball 316 is closed. A constant amount of refrigerant is always passed through the expansion passage 312a through the teeth 312c.
그리고, 상기 제2복합밸브장치(300)의 온오프밸브부(320)는, 상기 본체(311)의 일측면에 결합되는 구동장치(321)와, 상기 구동장치(321)에 왕복운동 가능하게 설치되어 상기 연통유로(312b)를 개폐하는 작동밸브(322)로 이루어진다.In addition, the on / off valve part 320 of the second multiple valve device 300 may include a driving device 321 coupled to one side of the main body 311 and a reciprocating motion of the driving device 321. It is provided with an operating valve 322 for opening and closing the communication flow path (312b).
상기 구동장치(321)는, 상기 작동밸브(322)를 직선 왕복운동시키는 솔레노이드인 것이 바람직하다.The drive device 321 is preferably a solenoid for linearly reciprocating the operation valve 322.
따라서, 상기 솔레노이드에 전원이 인가되면 상기 작동밸브(322)가 이동하면서 상기 본체(311)내의 연통유로(312b)를 폐쇄하게 되고, 상기 솔레노이드에 전원이 차단되면 상기 본체(311)측에 설치된 탄성부재(323)가 상기 작동밸브(322)를 초기위치로 이동시킴으로서 상기 연통유로(312b)가 개방되게 된다.Therefore, when power is applied to the solenoid, the operation valve 322 moves to close the communication passage 312b in the main body 311, and when the power is cut off from the solenoid, the elastic valve is installed on the main body 311 side. The communication channel 312b is opened by the member 323 moving the operation valve 322 to an initial position.
이러한 상기 제2복합밸브장치(300)는, 에어컨 모드시 도 5와 같이, 상기 팽창밸브부(310)가 팽창유로(312a)를 개방하게 되고, 상기 온오프밸브부(320)는 연통유로(312b)를 개방하게 됨으로써, 상기 실외열교환기(130)에서 배출된 냉매가 상기 연결블럭(230)을 통과한 후 상기 팽창유로(312a)를 통과하는 과정에서 팽창된 후, 연통유로(312b)를 통과하여 상기 증발기(160)측으로 공급되게 되고,In the second combined valve device 300, the expansion valve part 310 opens the expansion passage 312a in the air conditioner mode as shown in FIG. 5, and the on / off valve portion 320 communicates with the communication passage ( By opening 312b), the refrigerant discharged from the outdoor heat exchanger 130 is expanded in the process of passing through the expansion passage 312a after passing through the connection block 230, and then the communication passage 312b is opened. Passed through and supplied to the evaporator 160,
히트펌프 모드(최대난방모드)시에는, 도 8과 같이, 상기 팽창밸브부(310)가 팽창유로(312a)를 폐쇄하게 되고, 상기 온오프밸브부(320)는 연통유로(312b)를 폐쇄하게 됨으로써, 상기 실외열교환기(130)에서 배출된 냉매가 상기 연결블럭(230) 및 온오프밸브부(220)를 통해 상기 바이패스라인(R1)측으로 유동하면서 상기 제2복합밸브장치(300) 및 증발기(160)를 바이패스 하게 된다.In the heat pump mode (maximum heating mode), as shown in FIG. 8, the expansion valve 310 closes the expansion passage 312a, and the on / off valve portion 320 closes the communication passage 312b. By doing so, the refrigerant discharged from the outdoor heat exchanger 130 flows to the bypass line R1 through the connection block 230 and the on-off valve unit 220, and the second composite valve device 300. And the evaporator 160 is bypassed.
한편, 제습모드시에는, 상기 팽창밸브부(310)가 팽창유로(312a)를 폐쇄하게 되고, 상기 온오프밸브부(320)는 연통유로(312b)를 개방하게 되는데, 이때 상기 팽창밸브부(310)의 볼(316)이 팽창유로(312a)를 폐쇄하더라도 상기 노치부(312c)를 통해서 일정량의 냉매가 통과하게 됨으로써, 상기 실외열교환기(130)에서 배출되어 상기 연결블럭(230)으로 유입된 냉매 중 일부는 상기 온오프밸브부(220) 및 바이패스라인(R1)을 통해 압축기(100)측으로 유동하고, 냉매 중 일부는 상기 냉매순환라인(R)을 따라 상기 노치부(312c) 및 연통유로(312b)를 통과 한 후 증발기(160)측으로 공급되고 이후 압축기(100)측으로 유동하게 되어 차실내를 제습하게 된다.In the dehumidification mode, the expansion valve unit 310 closes the expansion passage 312a, and the on / off valve portion 320 opens the communication passage 312b. Even though the ball 316 of the 310 closes the expansion passage 312a, a predetermined amount of refrigerant passes through the notch 312c, thereby being discharged from the outdoor heat exchanger 130 and flowing into the connection block 230. Some of the refrigerant may flow toward the compressor 100 through the on / off valve unit 220 and the bypass line R1, and some of the refrigerant may flow along the notch part 312c and the refrigerant circulation line R. After passing through the communication passage 312b is supplied to the evaporator 160 side and then flows to the compressor 100 side to dehumidify the interior of the vehicle.
그리고, 상기 제2복합밸브장치(300) 및 증발기(160)를 바이패스하도록 설치되는 상기 바이패스라인(R1)상에는 바이패스라인(R1)을 따라 흐르는 냉매와 차량 전장품(400)을 순환하는 냉각수를 열교환하도록 수냉식 열교환기(181)가 설치된다.In addition, the coolant circulating on the bypass line R1 and the vehicle electric component 400 on the bypass line R1 installed to bypass the second multiple valve device 300 and the evaporator 160. The water-cooled heat exchanger 181 is installed to exchange heat.
상기 수냉식 열교환기(181)는, 차량 전장품(400)의 폐열을 상기 바이패스라인(R1)을 흐르는 냉매에 공급할 수 있도록, 상기 바이패스라인(R1)을 흐르는 냉매가 유동하는 냉매 열교환부(181a)와, 상기 냉매 열교환부(181a)의 일측에 열교환 가능하게 구비되어 상기 차량 전장품(400)을 순환하는 냉각수가 유동하는 냉각수 열교환부(181b)로 이루어진다.The water-cooled heat exchanger 181 is a refrigerant heat exchanger 181a through which the refrigerant flowing through the bypass line R1 flows to supply the waste heat of the vehicle electrical component 400 to the refrigerant flowing through the bypass line R1. ), And a coolant heat exchanger 181b provided with one side of the refrigerant heat exchanger 181a through which coolant flows to circulate the vehicle electronics 400.
따라서, 히트펌프 모드시 차량 전장품(400)의 폐열로 부터 열원을 회수함으로써 난방성능을 향상시킬 수 있는 것이다.Therefore, the heating performance can be improved by recovering the heat source from the waste heat of the vehicle electrical appliance 400 in the heat pump mode.
한편, 상기 차량 전장품(400)으로는 대표적으로 모터와, 인버터 등이 있다.On the other hand, the vehicle electronics 400 is typically a motor, an inverter and the like.
그리고, 상기 압축기(100)의 입구측 냉매순환라인(R)상에는 어큐뮬레이터(170)가 설치된다.The accumulator 170 is installed on the inlet refrigerant circulation line R of the compressor 100.
상기 어큐뮬레이터(170)는 상기 압축기(100)로 공급되는 냉매 중에서 액상 냉매와 기상 냉매를 분리하여 압축기(100)로 기상 냉매만 공급될 수 있도록 하게 된다.The accumulator 170 separates the liquid refrigerant and the gaseous refrigerant from the refrigerant supplied to the compressor 100 so that only the gaseous refrigerant may be supplied to the compressor 100.
도 15는 본 발명에 따른 차량용 히트 펌프 시스템의 다른 실시예로서, 앞서 설명한 히트 펌프 시스템과 다른 부분에 대해서만 설명하기로 한다.15 is another embodiment of a vehicle heat pump system according to the present invention, and only a portion different from the above-described heat pump system will be described.
도 15의 실시예에서는, 상기 제2복합밸브장치(300)는 그대로 사용하되, 상기 제1복합밸브장치(200)를 생략한 것이다. 이로인해 상기 제1복합밸브장치(200) 하나가 하던 기능을 각각 여러개의 부품 즉, 팽창수단(120), 제1삼방밸브(191), 제2삼방밸브(192)로 분리하여 설치한 것이다.In the embodiment of Figure 15, the second composite valve device 300 is used as it is, the first composite valve device 200 is omitted. As a result, the function of one of the first composite valve devices 200 is separated into a plurality of parts, that is, the expansion means 120, the first three-way valve 191, and the second three-way valve 192.
다시말해, 상기 제1복합밸브장치(200) 하나가 하던 기능을 여러개 부품으로 분리한 것일 뿐 그 외 냉매흐름제어는 동일하게 수행하게 된다. 물론, 제1복합밸브장치(200)를 사용하는 경우보다는 부품수가 많아지긴 하나 상기 제2복합밸브장치(300) 만으로도 후술하는 효과를 얻을 수 있다.In other words, only the function of one of the first composite valve devices 200 is separated into several components, and the other refrigerant flow control is performed in the same manner. Of course, although the number of parts is larger than the case of using the first composite valve device 200, only the second composite valve device 300 can obtain the effect described later.
또한, 상기와 같이 여러개 부품으로 분리함으로 인해, 상기 냉매순환라인(R)상에는 상기 제2복합밸브장치(300) 및 증발기(160)를 바이패스하는 바이패스라인(R1)외에도 상기 실외열교환기(130)을 바이패스하는 보조 바이패스라인(R2)가 설치되고, 상기 실내열교환기(110)와 실외열교환기(130)를 연결하는 냉매순화라인(R)상에는 팽창라인(R3)이 병렬로 설치된다.In addition, by separating into a plurality of components as described above, in addition to the bypass line (R1) for bypassing the second composite valve device 300 and the evaporator 160 on the refrigerant circulation line (R) the outdoor heat exchanger ( An auxiliary bypass line (R2) for bypassing 130 is installed, and an expansion line (R3) is installed in parallel on the refrigerant purifying line (R) connecting the indoor heat exchanger (110) and the outdoor heat exchanger (130). do.
그리고, 상기 보조 바이패스라인(R2)의 분기지점에는 상기 제1삼방밸브(191)가 설치되고, 상기 팽창라인(R3)의 분기지점에는 상기 제2삼방밸브(192)가 설치된다.The first three-way valve 191 is installed at the branch point of the auxiliary bypass line R2, and the second three-way valve 192 is installed at the branch point of the expansion line R3.
이때, 상기 바이패스라인(R1)의 분기지점에는 삼방밸브가 설치되지 않고, 대신 두 개의 온오프밸브를 설치하여, 하나의 온오프밸브(195)는 상기 바이패스라인(R1)상에 설치하고, 다른 하나의 온오프밸브(320)는 상기 증발기(160)의 입구측 냉매순환라인(R)상에 설치된 상기 제2복합밸브장치(300)에 일체화 하였다.At this time, the three-way valve is not installed at the branch point of the bypass line (R1), two on-off valves are installed instead, one on-off valve (195) is installed on the bypass line (R1) , The other on-off valve 320 is integrated into the second composite valve device 300 installed on the inlet refrigerant circulation line (R) of the evaporator 160.
즉, 삼방밸브는 크기가 크고 무게가 무거운 단점이 있으므로, 이를 두 개의 온오프밸브로 분리 하되, 이때 두 개의 온오프밸브를 사용하면 부품수 증가 및 배관 연결이 복잡해지는 또 다른 단점이 있으므로,That is, the three-way valve has a disadvantage of large size and heavy weight, it is separated into two on-off valves, but when using the two on-off valves there is another disadvantage that increases the number of parts and complicated pipe connection,
본 발명에서는 이러한 단점을 모두 해결할 수 있도록, 상기 바이패스라인(R1)의 분기지점에 설치해야 했던 삼방밸브를 두 개의 온오프밸브로 대체하여 삼방밸브 기능을 수행하되, 이중 하나의 온오프밸브(320)는 상기 증발기(160)의 입구측에 설치되던 팽창밸브(310)와 일체화 한 것이다.In the present invention, to solve all these disadvantages, by replacing the three-way valve that had to be installed at the branch point of the bypass line (R1) with two on-off valve to perform a three-way valve function, one of the on-off valve ( 320 is integrated with the expansion valve 310 installed on the inlet side of the evaporator 160.
즉, 상기 증발기(160)를 향하는 냉매순환라인(R)상에 설치되는 온오프밸브(온오프밸브부)와 팽창밸브(팽창밸브부)를 일체화한 것이 바로 제2복합밸브장치(300)인 것이다.That is, it is the second composite valve device 300 that integrates an on-off valve (on-off valve portion) and an expansion valve (expansion valve portion) installed on the refrigerant circulation line R facing the evaporator 160. will be.
이처럼 상기 바이패스라인(R1)의 분기지점에 설치해야했던 삼방밸브를 두 개의 온오프밸브로 대체하되, 이중 하나의 온오프밸브(320)를 상기 팽창밸브(310)와 일체화하여 제2복합밸브장치(300)를 구성함에 따른 무게 및 부품수 감소와 배관 단순화 효과는 도 2 내지 도 13과 같은 히트 펌프 시스템에도 동일하게 적용된다.In this way, the three-way valve, which had to be installed at the branch point of the bypass line R1, is replaced with two on-off valves, and one on-off valve 320 is integrated with the expansion valve 310 to form a second composite valve. The weight, component count reduction, and pipe simplification effect of the device 300 are equally applicable to the heat pump system shown in FIGS. 2 to 13.
그리고, 상기 냉매순환라인(R)에서 보조 바이패스라인(R2)의 분기지점에 설치된 제1삼방밸브(191)는 실외열교환기(130)의 착상발생 여부에 따라 냉매가 상기 실외열교환기(130) 또는 보조 바이패스라인(R2)으로 흐르도록 냉매의 흐름방향을 전환하게 된다.In addition, the first three-way valve 191 installed at the branch point of the auxiliary bypass line R2 in the refrigerant circulation line R has a refrigerant in the outdoor heat exchanger 130 depending on whether an outdoor heat exchanger 130 is formed. Or the flow direction of the refrigerant to flow to the auxiliary bypass line (R2).
즉, 상기 실외열교환기(130)에 착상이 발생한 경우에는 상기 제1삼방밸브(191)의 제어를 통해 냉매가 상기 실외열교환기(130)를 바이패스하여 상기 보조 바이패스라인(R2)측으로 흐르도록 제어된다.That is, in the case of the occurrence of the frost in the outdoor heat exchanger 130, the refrigerant bypasses the outdoor heat exchanger 130 through the control of the first three-way valve 191 flows to the auxiliary bypass line (R2) side. Is controlled.
이처럼, 냉매가 상기 실외열교환기(130)를 바이패스하더라도, 상기 실외열교환기(130)를 바이패스한 냉매 중 일부는 수냉식 열교환기(181)를 통해 차량 전장품(400)의 폐열을 회수하고, 냉매 중 일부는 제2복합밸브장치(300)를 통해 실내공기와 열교환하는 증발기(160)로 공급되어 실내공기의 열원을 회수하도록 함으로써, 난방성능을 향상할 수 있는 것이다.As such, even if the refrigerant bypasses the outdoor heat exchanger 130, some of the refrigerant that bypasses the outdoor heat exchanger 130 recovers waste heat of the vehicle electronics 400 through the water-cooled heat exchanger 181. Some of the refrigerant is supplied to the evaporator 160 that exchanges heat with the indoor air through the second composite valve device 300 to recover the heat source of the indoor air, thereby improving heating performance.
그리고, 상기 팽창라인(R3)에 설치된 팽창수단(120)은, 에어컨 모드 또는 히트펌프 모드에 따라 상기 실외열교환기(130)로 공급되는 냉매를 선택적으로 팽창시키게 된다.The expansion means 120 installed in the expansion line R3 selectively expands the refrigerant supplied to the outdoor heat exchanger 130 according to the air conditioner mode or the heat pump mode.
상기 팽창수단(120)은, 오리피스를 사용하는 것이 바람직하다.The expansion means 120, it is preferable to use an orifice.
따라서, 에어컨 모드시에는, 상기 압축기(100)에서 배출되어 상기 실내열교환기(110)를 통과한 냉매가 상기 제2삼방밸브(192)에 의해 상기 팽창수단(120)을 바이패스하여 실외열교환기(130)로 공급되고,Therefore, in the air conditioner mode, the refrigerant discharged from the compressor 100 and passed through the indoor heat exchanger 110 bypasses the expansion means 120 by the second three-way valve 192 to the outdoor heat exchanger. 130, and
히트펌프 모드시(최대난방모드시)에는, 상기 압축기(100)에서 배출되어 상기 실내열교환기(110)를 통과한 냉매가 상기 제2삼방밸브(192)에 의해 상기 팽창수단(120)을 통과하면서 팽창된 후 상기 실외열교환기(130)로 공급되게 된다.In the heat pump mode (maximum heating mode), the refrigerant discharged from the compressor 100 and passed through the indoor heat exchanger 110 passes through the expansion means 120 by the second three-way valve 192. After being expanded while being supplied to the outdoor heat exchanger (130).
한편, 도 15는 히트펌프 모드 중 최대난방모드만 일예로 나타낸 것이며, 이 외에도 도 2 내지 도 13과 같은 다양한 모드를 수행할 수 있다.On the other hand, Figure 15 shows only the maximum heating mode of the heat pump mode as an example, in addition to that can perform a variety of modes as shown in Figs.
이하, 본 발명에 따른 차량용 히트 펌프 시스템의 작용을 설명하기로 한다.Hereinafter, the operation of the vehicle heat pump system according to the present invention will be described.
가. 에어컨 모드(냉방 모드)end. Air conditioner mode (cooling mode)
에어컨 모드(냉방 모드)시에는, 도 2 내지 도 5와 같이, 상기 온오프밸브부(220)를 통해 상기 바이패스라인(R1)이 폐쇄됨과 아울러 상기 제1복합밸브장치(200)의 팽창수단(240)은 유로(242)를 개방하고, 삼방밸브부(210)는 실외열교환기(130)측 출구(212a)를 개방하게 된다.In the air conditioner mode (cooling mode), as shown in FIGS. 2 to 5, the bypass line R1 is closed through the on / off valve part 220 and the expansion means of the first composite valve device 200 is closed. The 240 opens the flow path 242, and the three-way valve 210 opens the outlet 212a of the outdoor heat exchanger 130.
또한, 상기 제2복합밸브장치(300)의 팽창유로(312a) 및 연통유로(312b)가 개방되게 된다.In addition, the expansion passage 312a and the communication passage 312b of the second composite valve device 300 are opened.
한편, 최대 냉방시에는 상기 공조케이스(150)내의 온도조절도어(151)가 실내열교환기(110)(응축기)를 통과하는 통로를 폐쇄하도록 작동하여, 블로어에 의해 공조케이스(150)내로 송풍된 공기가 상기 증발기(160)를 통과하면서 냉각된 후 실내열교환기(110)를 바이패스 하여 차실내로 공급됨으로써, 차실내를 냉방하게 된다.On the other hand, during maximum cooling, the temperature control door 151 in the air conditioning case 150 operates to close a passage through the indoor heat exchanger 110 (condenser), and is blown into the air conditioning case 150 by a blower. After the air is cooled while passing through the evaporator 160, the indoor heat exchanger 110 is bypassed and supplied to the interior of the vehicle, thereby cooling the interior of the vehicle.
계속해서, 냉매 순환과정을 설명하면,Continuing to explain the refrigerant circulation process,
상기 압축기(100)에서 압축된 후 배출되는 고온 고압의 기상 냉매는 상기 공조케이스(150)의 내부에 설치된 상기 실내열교환기(110)(응축기 역할)로 공급된다.The high temperature and high pressure gaseous refrigerant discharged after being compressed by the compressor 100 is supplied to the indoor heat exchanger 110 (condenser role) installed in the air conditioning case 150.
상기 실내열교환기(110)로 공급된 냉매는, 도 2와 같이 온도조절도어(151)가 실내열교환기(110)측 통로를 폐쇄하고 있으므로 공기와 열교환하지 않고 곧바로 상기 제1복합밸브장치(200)의 팽창수단(240) 및 삼방밸브부(210)를 통과한 후 상기 실외열교환기(130)(응축기 역할)로 유동하게 된다.The refrigerant supplied to the indoor heat exchanger 110, as shown in Figure 2, because the temperature control door 151 closes the passage of the indoor heat exchanger 110 side immediately without heat exchange with the air, the first composite valve device 200 After passing through the expansion means 240 and the three-way valve portion 210 of the) is to flow to the outdoor heat exchanger (130) (condenser role).
상기 실외열교환기(130)로 유동한 냉매는, 실외공기와 열교환하게 되면서 응축되며, 이로인해 기상 냉매가 액상 냉매로 바뀌게 된다.The refrigerant flowing into the outdoor heat exchanger 130 is condensed as it exchanges heat with outdoor air, thereby converting the gaseous refrigerant into a liquid refrigerant.
한편, 상기 실내열교환기(110)와 실외열교환기(130)는 모두 응축기 역학을 하게 되지만, 실외공기와 열교환하는 상기 실외열교환기(130)에서 주로 냉매가 응축되게 된다.On the other hand, both the indoor heat exchanger 110 and the outdoor heat exchanger 130 is condenser dynamics, but the refrigerant is mainly condensed in the outdoor heat exchanger 130 that exchanges heat with outdoor air.
계속해서, 상기 실외열교환기(130)를 통과한 냉매는, 상기 연결블럭(230)을 경유하여 상기 제2복합밸브장치(300)의 팽창유로(312a)를 통과하는 과정에서 감압 팽창되어 저온 저압의 액상냉매가 된 후, 온오프밸브부(320)에 의해 개방된 연통유로(312b)를 거쳐 상기 증발기(160)로 유입된다.Subsequently, the refrigerant having passed through the outdoor heat exchanger 130 is expanded under reduced pressure in the course of passing through the expansion passage 312a of the second composite valve device 300 via the connection block 230, thereby at low temperature and low pressure. After the liquid refrigerant of the, it is introduced into the evaporator 160 via the communication flow path (312b) opened by the on-off valve unit (320).
상기 증발기(160)로 유입된 냉매는 블로어를 통해 공조케이스(150) 내부로 송풍되는 공기와 열교환하여 증발함과 동시에 냉매의 증발잠열에 의한 흡열작용으로 공기를 냉각하게 되며, 이처럼 냉각된 공기가 차량 실내로 공급되어 냉방하게 된다.The refrigerant introduced into the evaporator 160 exchanges heat with the air blown into the air conditioning case 150 through a blower to evaporate and simultaneously cools the air by the endothermic action of the evaporative latent heat of the refrigerant. It is supplied to the vehicle interior and cooled.
이후, 상기 증발기(160)에서 배출된 냉매는 상기 압축기(100)로 유입되면서 상술한 바와 같은 사이클을 재순환하게 된다.Thereafter, the refrigerant discharged from the evaporator 160 is recycled to the cycle as described above while flowing into the compressor 100.
나. 히트펌프 모드 중 최대난방모드I. Maximum heating mode of heat pump mode
히트펌프 모드 중 최대난방모드는, 도 6 내지 도 8과 같이, 상기 온오프밸브부(220)를 통해 상기 바이패스라인(R1)이 개방됨과 아울러 상기 제1복합밸브장치(200)의 팽창수단(240)은 유로(242)를 폐쇄하여 오리피스(246)를 통한 팽창기능을 수행하고, 삼방밸브부(210)는 실외열교환기(130)측 출구(212a)를 개방하게 된다.In the maximum heating mode of the heat pump mode, as shown in FIGS. 6 to 8, the bypass line R1 is opened through the on-off valve unit 220 and the expansion means of the first composite valve device 200 is provided. 240 closes the flow path 242 to perform an expansion function through the orifice 246, and the three-way valve part 210 opens the outlet 212a of the outdoor heat exchanger 130 side.
또한, 상기 제2복합밸브장치(300)의 팽창유로(312a) 및 연통유로(312b)가 폐쇄되어, 상기 연결블럭(230)까지 유동한 냉매가 상기 제2복합밸브장치(300) 및 증발기(160)측으로 흐르지 않게 된다.In addition, the expansion passage 312a and the communication passage 312b of the second composite valve device 300 are closed, and the refrigerant flowing up to the connection block 230 passes through the second composite valve device 300 and the evaporator ( 160) does not flow to the side.
그리고, 난방모드시에는 상기 공조케이스(150)내의 온도조절도어(151)가 실내열교환기(110)(응축기 역할)를 바이패스하는 통로를 폐쇄하도록 작동하여, 블로어에 의해 공조케이스(150)내로 송풍된 공기가 상기 증발기(160)(작동정지)를 통과한 후 상기 실내열교환기(110)를 통과하면서 온풍으로 바뀌어 차실내로 공급됨으로서, 차실내를 난방하게 된다.In the heating mode, the temperature control door 151 in the air conditioning case 150 operates to close the passage that bypasses the indoor heat exchanger 110 (the condenser role), and is blown into the air conditioning case 150 by the blower. After the blown air passes through the evaporator 160 (operation stop) and passes through the indoor heat exchanger 110, the air is changed into warm air and supplied into the vehicle interior, thereby heating the interior of the vehicle interior.
계속해서, 냉매 순환과정을 설명하면,Continuing to explain the refrigerant circulation process,
상기 압축기(100)에서 압축된 후 배출되는 고온 고압의 기상 냉매는 상기 공조케이스(150)의 내부에 설치된 실내열교환기(110)(응축기 역할)로 유입된다.The high temperature and high pressure gaseous refrigerant discharged after being compressed by the compressor 100 is introduced into an indoor heat exchanger 110 (condenser role) installed in the air conditioning case 150.
상기 실내열교환기(110)로 유입된 고온 고압의 기상 냉매는, 블로어를 통해 공조케이스(150)의 내부로 송풍되는 공기와 열교환하면서 응축되며, 이때 상기 실내열교환기(110)를 통과하는 공기는 온풍으로 바뀐 뒤, 차량 실내로 공급되어 차실내를 난방하게 된다.The high temperature and high pressure gaseous refrigerant introduced into the indoor heat exchanger 110 is condensed while exchanging heat with air blown into the air conditioning case 150 through a blower, and the air passing through the indoor heat exchanger 110 is After the warm air, it is supplied to the interior of the car to heat the cabin.
계속해서, 상기 실내열교환기(110)에서 배출된 냉매는 상기 제1복합밸브장치(200)의 팽창수단(240)내 오리피스(246)를 통과하는 과정에서 감압 팽창되어 저온 저압의 액상냉매가 된 후, 상기 삼방밸브부(210)를 통해 상기 실외열교환기(130)(증발기 역할)로 공급된다.Subsequently, the refrigerant discharged from the indoor heat exchanger 110 is expanded under reduced pressure in the process of passing through the orifice 246 in the expansion means 240 of the first composite valve device 200 to become a low temperature low pressure liquid refrigerant. After that, the three-way valve 210 is supplied to the outdoor heat exchanger 130 (evaporator role).
상기 실외열교환기(130)로 공급된 냉매는, 실외공기와 열교환하면서 증발한 후 상기 연결블럭(230) 및 온오프밸브부(220)를 통해 상기 바이패스라인(R1)측으로 유동하게 되는데, 이때 상기 바이패스라인(R1)을 유동하는 냉매는 상기 수냉식 열교환기(181)의 냉매 열교환부(181a)를 통과하는 과정에서 상기 냉각수 열교환부(181b)를 통과하는 냉각수와 열교환하여 차량 전장품(400)의 폐열을 회수한 후, 상기 압축기(100)로 유입되면서 상술한 바와 같은 사이클을 재순환하게 된다.The refrigerant supplied to the outdoor heat exchanger 130 is evaporated while exchanging heat with outdoor air, and then flows to the bypass line R1 through the connection block 230 and the on-off valve unit 220. The refrigerant flowing through the bypass line R1 exchanges heat with the cooling water passing through the cooling water heat exchanger 181b in the process of passing through the refrigerant heat exchanger 181a of the water-cooled heat exchanger 181, and thus the vehicle electrical appliance 400 After recovering the waste heat of the, it is introduced into the compressor 100 to recycle the cycle as described above.
다. 히트펌프 모드 중 제습모드All. Dehumidification mode of heat pump mode
히트펌프 모드 중 제습모드는, 도 9 내지 도 11과 같이, 도 6의 최대난방모드로 작동 중에 실내 제습이 필요한 경우에 작동하게 된다.The dehumidification mode of the heat pump mode, as shown in Figure 9 to 11, is operated when the indoor dehumidification is required during operation in the maximum heating mode of FIG.
따라서, 도 6의 최대난방모드와 다른 부분에 대해서만 설명하기로 한다.Therefore, only parts different from the maximum heating mode of FIG. 6 will be described.
상기 제습모드시에는, 최대난방모드 상태에서 상기 제2복합밸브장치(300)의 팽창유로(312a)는 폐쇄되고, 연통유로(312b)는 개방되게 된다.In the dehumidification mode, the expansion passage 312a of the second composite valve device 300 is closed in the maximum heating mode, and the communication passage 312b is opened.
이때, 상기 팽창밸브부(310)의 볼(316)이 상기 팽창유로(312a)측에 밀착되어 팽창유로(312a)를 폐쇄하더라도, 상기 팽창유로(312a)의 내측면에 형성된 노치부(312c)를 통해 일정량의 냉매가 항시 팽창유로(312a)를 통과할 수 있다.At this time, even if the ball 316 of the expansion valve 310 is in close contact with the expansion passage (312a) side to close the expansion passage (312a), the notch portion (312c) formed on the inner surface of the expansion passage (312a) Through the predetermined amount of refrigerant may always pass through the expansion passage (312a).
이로인해, 상기 제1복합밸브장치(200)의 연결블럭(230)으로 유입된 냉매가 두 갈래로 분기되어 일부는 제2복합밸브장치(300) 및 증발기(160)측으로 유동하고, 일부는 바이패스라인(R1)측으로 유동하게 된다.Due to this, the refrigerant introduced into the connection block 230 of the first composite valve device 200 is bifurcated into two parts, and some flow to the second composite valve device 300 and the evaporator 160, and some It flows to the pass line R1 side.
그리고, 제습모드시에는 상기 공조케이스(150)내의 온도조절도어(151)가 실내열교환기(110)(응축기 역할)를 바이패스하는 통로를 폐쇄하도록 작동하여, 블로어에 의해 공조케이스(150)내로 송풍된 공기가 상기 증발기(160)를 통과하는 과정에서 냉각 및 제습된 후, 상기 실내열교환기(110)를 통과하면서 온풍으로 바뀌어 차실내로 공급됨으로서, 차실내를 제습 난방하게 된다.In the dehumidification mode, the temperature control door 151 in the air conditioning case 150 operates to close the passage that bypasses the indoor heat exchanger 110 (the condenser role), and the blower enters the air conditioning case 150 by the blower. After the blown air is cooled and dehumidified in the course of passing through the evaporator 160, the air is converted into warm air while being passed through the indoor heat exchanger 110 to be supplied into the vehicle interior, thereby dehumidifying the interior of the vehicle interior.
이때, 상기 증발기(160)로 공급되는 냉매량이 적기 때문에 공기 냉각성능도 낮아 실내온도 변화를 최소화하게 되고, 증발기(160)를 통과하는 공기의 제습은 원활하게 이루어진다.At this time, since the amount of refrigerant supplied to the evaporator 160 is small, the air cooling performance is also low, thereby minimizing the change in room temperature, and dehumidification of air passing through the evaporator 160 is performed smoothly.
계속해서, 냉매 순환과정을 설명하면,Continuing to explain the refrigerant circulation process,
상기 압축기(100), 실내열교환기(110), 제1복합밸브장치(200)의 팽창수단(240)내 오리피스(246) 및 삼방밸브부(210), 실외열교환기(130)를 통과한 냉매가 상기 연결블럭(230)을 유입되고, 상기 연결블럭(230)으로 유입된 냉매 중 일부는 상기 바이패스라인(R1)의 수냉식 열교환기(181)의 냉매 열교환부(181a)를 통과하는 과정에서 상기 냉각수 열교환부(181b)를 통과하는 냉각수와 열교환하여 차량 전장품(400)의 폐열을 회수하면서 증발되고, 냉매 중 일부는 상기 제2복합밸브장치(300)의 팽창유로(312a)의 노치부(312c)를 통과한 후 연통유로(312b)를 거쳐 증발기(160)로 공급되어 공조케이스(150)의 내부를 유동하는 공기와 열교환하는 과정에서 증발하게 된다.Refrigerant passing through the compressor 100, the indoor heat exchanger 110, the orifice 246 and the three-way valve unit 210, the outdoor heat exchanger 130 in the expansion means 240 of the first composite valve device 200. Is introduced into the connection block 230 and some of the refrigerant introduced into the connection block 230 passes through the refrigerant heat exchange part 181a of the water-cooled heat exchanger 181 of the bypass line R1. Heat exchange with the coolant passing through the coolant heat exchanger 181b to evaporate while recovering the waste heat of the vehicle electrical appliance 400, and a part of the coolant is notched in the expansion passage 312a of the second composite valve device 300. After passing through 312c) it is supplied to the evaporator 160 via the communication flow path 312b to evaporate in the process of heat exchange with the air flowing in the air conditioning case 150.
상기 과정에서 상기 증발기(160)를 통과하는 공기의 제습이 이루어지게 되며, 상기 증발기(160)를 통과한 제습된 공기는 상기 실내열교환기(110)(응축기 역할)를 통과하면서 온풍으로 바뀐 후 차량 실내로 공급되어 제습 난방하게 된다.In the process, dehumidification of air passing through the evaporator 160 is performed, and the dehumidified air passing through the evaporator 160 is changed into warm air while passing through the indoor heat exchanger 110 (condenser) and then the vehicle. It is supplied to the room and heated by dehumidification.
이후, 상기 수냉식 열교환기(181)와 증발기(160)를 각각 통과한 냉매는 합류된 후, 상기 압축기(100)로 유입되면서 상술한 바와 같은 사이클을 재순환하게 된다.Thereafter, the refrigerant having passed through the water-cooled heat exchanger 181 and the evaporator 160, respectively, is joined, and then flows into the compressor 100 to recycle the cycle as described above.
라. 히트펌프 모드 중 제상모드la. Defrost mode in heat pump mode
히트펌프 모드 중 제상모드는, 도 12 및 도 13과 같이, 상기 실외열교환기(130)에 착상이 발생하여 제상이 필요한 경우에 작동하게 된다.Defrost mode of the heat pump mode, as shown in Figure 12 and 13, is activated when defrosting occurs in the outdoor heat exchanger 130 is required to operate.
상기 제상모드는, 도 6의 최대난방모드로 작동 중에 상기 실외열교환기(130)의 제상이 필요한 경우, 냉매가 상기 실외열교환기(130)를 바이패스하도록 하여 제상하게 된다. 물론 제상을 위해 에어컨 모드로 전환하여도 가능하다.In the defrost mode, when the outdoor heat exchanger 130 needs to be defrosted while operating in the maximum heating mode of FIG. 6, the refrigerant is defrosted by bypassing the outdoor heat exchanger 130. Of course, it is also possible to switch to the air conditioning mode for defrosting.
아울러, 상기 제습모드시에는, 도 13과 같이 제1복합밸브장치(200)의 팽창수단(240)은 유로(242)를 폐쇄하여 오리피스(246)를 통해 팽창기능을 수행하고, 상기 삼방밸브부(210)는 연결블럭(230)측 출구(212b)를 개방하여 냉매가 실외열교환기(130)를 바이패스하도록 하게 된다.In addition, in the dehumidification mode, as shown in FIG. 13, the expansion means 240 of the first composite valve device 200 closes the flow path 242 to perform an expansion function through the orifice 246 and the three-way valve part. 210 opens the outlet 212b of the connection block 230 so that the refrigerant bypasses the outdoor heat exchanger 130.
한편, 상기 제2복합밸브장치(300)는, 도 11과 같이, 상기 팽창유로(312a)는 폐쇄되고, 연통유로(312b)는 개방되므로, 일정량의 냉매가 팽창유로(312a)의 노치부(312c)를 통해 팽창유로(312a) 및 연통유로(312b)로 유동할 수 있게 된다.On the other hand, the second composite valve device 300, as shown in Figure 11, the expansion passage 312a is closed, the communication passage 312b is open, so that a predetermined amount of refrigerant is notched in the expansion passage (312a) ( It is possible to flow through the expansion passage 312a and the communication passage 312b through 312c.
그리고, 제상모드시에는 상기 공조케이스(150)내의 온도조절도어(151)가 실내열교환기(110)(응축기 역할)를 바이패스하는 통로를 폐쇄하도록 작동하여, 블로어에 의해 공조케이스(150)내로 송풍된 공기가 상기 증발기(160)를 통과하는 과정에서 냉각된 후, 상기 실내열교환기(110)를 통과하면서 온풍으로 바뀌어 차실내로 공급됨으로서, 차실내를 난방하게 된다.In the defrost mode, the temperature control door 151 in the air conditioning case 150 operates to close a passage that bypasses the indoor heat exchanger 110 (the condenser role), and is blown into the air conditioning case 150 by a blower. After the blown air is cooled in the course of passing through the evaporator 160, the air is converted into warm air while being passed through the indoor heat exchanger 110 and supplied to the interior of the vehicle, thereby heating the interior of the vehicle interior.
계속해서, 냉매 순환과정을 설명하면,Continuing to explain the refrigerant circulation process,
상기 압축기(100)에서 압축된 후 배출되는 고온 고압의 기상 냉매는 상기 공조케이스(150)의 내부에 설치된 상기 실내열교환기(110)(응축기 역할)로 공급된다.The high temperature and high pressure gaseous refrigerant discharged after being compressed by the compressor 100 is supplied to the indoor heat exchanger 110 (condenser role) installed in the air conditioning case 150.
상기 실내열교환기(110)로 유입된 고온 고압의 기상 냉매는, 블로어를 통해 공조케이스(150)의 내부로 송풍되는 공기와 열교환하면서 응축되며, 이때 상기 실내열교환기(110)를 통과하는 공기는 온풍으로 바뀐 뒤, 차량 실내로 공급되어 차실내를 난방하게 된다.The high temperature and high pressure gaseous refrigerant introduced into the indoor heat exchanger 110 is condensed while exchanging heat with air blown into the air conditioning case 150 through a blower, and the air passing through the indoor heat exchanger 110 is After the warm air, it is supplied to the interior of the car to heat the cabin.
계속해서, 상기 실내열교환기(110)에서 배출된 냉매는 상기 제1복합밸브장치(200)의 팽창수단(240)내 오리피스(246)를 통과하는 과정에서 감압 팽창되어 저온 저압의 액상냉매가 된 후, 상기 삼방밸브부(210)를 통해 상기 연결블럭(230)측으로 유동하여 상기 실외열교환기(130)를 바이패스하게 된다.Subsequently, the refrigerant discharged from the indoor heat exchanger 110 is expanded under reduced pressure in the process of passing through the orifice 246 in the expansion means 240 of the first composite valve device 200 to become a low temperature low pressure liquid refrigerant. Thereafter, the three-way valve 210 flows toward the connection block 230 to bypass the outdoor heat exchanger 130.
상기 연결블럭(230)으로 유입된 냉매 중 일부는 상기 바이패스라인(R1)의 수냉식 열교환기(181)의 냉매 열교환부(181a)를 통과하는 과정에서 상기 냉각수 열교환부(181b)를 통과하는 냉각수와 열교환하여 차량 전장품(400)의 폐열을 회수하면서 증발되고, 냉매 중 일부는 상기 제2복합밸브장치(300)의 팽창유로(312a)의 노치부(312c)를 통과한 후 연통유로(312b)를 거쳐 증발기(160)로 공급되어 공조케이스(150)의 내부를 유동하는 공기와 열교환하는 과정에서 증발하게 된다.Some of the refrigerant introduced into the connection block 230 passes through the coolant heat exchanger 181b while passing through the refrigerant heat exchanger 181a of the water-cooled heat exchanger 181 of the bypass line R1. Heat exchange with the evaporation while recovering the waste heat of the vehicle electrical equipment 400, some of the refrigerant passes through the notch portion (312c) of the expansion passage (312a) of the second composite valve device 300 and the communication passage (312b) Is supplied to the evaporator 160 through the evaporation in the process of heat exchange with the air flowing in the air conditioning case 150.
이후, 상기 수냉식 열교환기(181)와 증발기(160)를 각각 통과한 냉매는 합류된 후, 상기 압축기(100)로 유입되면서 상술한 바와 같은 사이클을 재순환하게 된다.Thereafter, the refrigerant having passed through the water-cooled heat exchanger 181 and the evaporator 160, respectively, is joined, and then flows into the compressor 100 to recycle the cycle as described above.

Claims (15)

  1. 냉매순환라인상(R)에 각각 연결되는 것으로, 공조케이스(150)의 내부에 설치되는 실내열교환기(110) 및 증발기(160)와, 공조케이스(150)의 외부에 설치되는 압축기(100) 및 실외열교환기(130)를 포함하여 이루어져, 냉매가 압축기(100), 실내열교환기(110), 실외열교환기(130), 증발기(160)를 순차적으로 순환하는 차량용 히트 펌프 시스템에 있어서,Is connected to each of the refrigerant circulation line (R), the indoor heat exchanger 110 and the evaporator 160 installed inside the air conditioning case 150, and the compressor 100 installed outside the air conditioning case 150 And an outdoor heat exchanger (130), in which a refrigerant sequentially circulates through the compressor (100), the indoor heat exchanger (110), the outdoor heat exchanger (130), and the evaporator (160),
    상기 냉매순환라인(R)의 특정구간에 설치되어 상기 냉매순환라인(R)을 따라 순환하는 냉매가 상기 증발기(160)를 선택적으로 바이패스하도록 하는 바이패스라인(R1)과,A bypass line (R1) installed in a specific section of the refrigerant circulation line (R) to allow the refrigerant circulating along the refrigerant circulation line (R) to selectively bypass the evaporator (160);
    상기 실외열교환기(130)의 입구측 냉매순환라인(R)상에 연결되어 순환 냉매가 상기 실외열교환기(130)를 선택적으로 바이패스하도록 하는 삼방밸브부(210)와, 상기 바이패스라인(R1)의 입구측에 연결되어 바이패스라인(R1)을 온오프하는 온오프밸브부(220)와, 상기 삼방밸브부(210) 및 온오프밸브부(220)와 상기 실외열교환기(130)의 출구측 냉매순환라인(R)를 연통되게 연결하는 연결블럭(230)을 일체로 구성한 제1복합밸브장치(200)를 구비한 것을 특징으로 하는 차량용 히트 펌프 시스템.A three-way valve unit 210 connected to an inlet refrigerant circulation line R of the outdoor heat exchanger 130 to selectively bypass the outdoor heat exchanger 130, and the bypass line; An on-off valve unit 220 connected to an inlet side of R1 to turn on and off the bypass line R1, the three-way valve unit 210, an on-off valve unit 220, and the outdoor heat exchanger 130. A first composite valve device (200) integrally configured with a connection block (230) for connecting the outlet refrigerant circulation line (R) of the vehicle is characterized in that it comprises a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1복합밸브장치(200)는, 상기 삼방밸브부(210)의 입구측에 연결되어 상기 실내열교환기(110)에서 배출된 냉매를 선택적으로 팽창시키는 팽창수단(240)을 일체로 구비한 것을 것을 특징으로 하는 차량용 히트 펌프 시스템.The first composite valve device 200 is integrally provided with expansion means 240 connected to the inlet side of the three-way valve unit 210 to selectively expand the refrigerant discharged from the indoor heat exchanger 110. Vehicle heat pump system, characterized in that.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 팽창수단(240)은, 상기 삼방밸브부(210)의 입구측과 상기 실내열교환기(110)의 출구측 냉매순환라인(R)을 연결하도록 설치되어 냉매 유동을 온오프하는 온오프 밸브(241)와, 상기 온오프 밸브(241)에 일체로 구비되어 냉매를 팽창시키는 오리피스(246)로 이루어져,The expansion means 240 is installed to connect the inlet side of the three-way valve unit 210 and the outlet side refrigerant circulation line (R) of the indoor heat exchanger (110) on-off valve for turning on and off the refrigerant flow ( 241 and an orifice 246 integrally provided at the on-off valve 241 to expand the refrigerant,
    상기 온오프 밸브(241)의 개방시에는 냉매를 미팽창 상태로 유동시키고, 폐쇄시에는 상기 오리피스(246)를 통해 냉매를 팽창시켜 유동시키는 것을 특징으로 하는 차량용 히트 펌프 시스템.When the on-off valve (241) is opened, the refrigerant flows in an unexpanded state, and when closed, the vehicle heat pump system characterized in that the refrigerant is expanded through the orifice (246) to flow.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 온오프 밸브(241)는, 상기 온오프 밸브(241)의 내부에 냉매가 유동하도록 형성되는 유로(242)와, 상기 유로(242)를 개폐하도록 설치되는 밸브부재(243)로 구성되고,The on-off valve 241 is composed of a flow path 242 is formed so that the refrigerant flows inside the on-off valve 241, a valve member 243 is installed to open and close the flow path 242,
    상기 오리피스(246)는, 상기 밸브부재(243)상에 형성된 것을 특징으로 하는 차량용 히트 펌프 시스템.The orifice (246) is formed on the valve member (243) characterized in that the vehicle heat pump system.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 밸브부재(243)는, 상기 온오프 밸브(241)의 일측에 설치된 구동장치와 연결되는 샤프트(243a)와, 상기 샤프트(243a)에 형성되어 상기 유로(242)를 개폐하는 밸브판(243b)으로 구성되고,The valve member 243 includes a shaft 243a connected to a driving device provided on one side of the on-off valve 241 and a valve plate 243b formed on the shaft 243a to open and close the flow path 242. ),
    상기 오리피스(246)는, 상기 밸브부재(243)의 밸브판(243b)에 관통 형성되어 이루어진 것을 특징으로 하는 차량용 히트 펌프 시스템.The orifice 246 is formed through the valve plate (243b) of the valve member (243), characterized in that the vehicle heat pump system.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 밸브부재(243)는, 상기 온오프 밸브(241)의 일측에 설치된 구동장치와 연결되는 중공의 샤프트(243a)와, 상기 샤프트(243a)에 형성되어 상기 유로(242)를 개폐하는 밸브판(243b)으로 구성되고,The valve member 243 includes a hollow shaft 243a connected to a driving device provided on one side of the on-off valve 241 and a valve plate formed on the shaft 243a to open and close the flow path 242. 243b,
    상기 오리피스(246)는, 상기 밸브부재(243)의 중공 샤프트(243a)에 내,외부를 관통하도록 형성되어 이루어진 것을 특징으로 하는 차량용 히트 펌프 시스템.The orifice (246) is formed in the hollow shaft (243a) of the valve member (243), the heat pump system for a vehicle, characterized in that formed to pass through.
  7. 제 2 항에 있어서,The method of claim 2,
    상기 삼방밸브부(210)는, 상기 팽창수단(240)과 연결되는 1개의 입구(211)와, 상기 1개의 입구(211)로부터 분기됨과 아울러 상기 실외열교환기(130)의 입구측 냉매순환라인(R) 및 상기 연결블럭(230)과 각각 연결되는 2개의 출구(212a,212b)와, 상기 2개의 출구(212a,212b)를 선택적으로 개폐하는 밸브부재(213)를 구비한 것을 특징으로 하는 차량용 히트 펌프 시스템.The three-way valve part 210 is branched from one inlet 211 and the one inlet 211 connected to the expansion means 240, and the refrigerant circulation line of the inlet side of the outdoor heat exchanger 130 (R) and two outlets 212a and 212b connected to the connection block 230, respectively, and valve members 213 for selectively opening and closing the two outlets 212a and 212b. Automotive heat pump system.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 연결블럭(230)의 내부에는, 상기 삼방밸브부(210) 및 온오프밸브부(220)와 상기 실외열교환기(130)의 출구측 냉매순환라인(R)를 연통되게 연결하도록 사방유로(231)가 형성된 것을 특징으로 하는 차량용 히트 펌프 시스템.Inside the connection block 230, the four-way flow path to connect the three-way valve 210 and the on-off valve 220 and the outlet refrigerant circulation line (R) of the outdoor heat exchanger 130 in communication ( 231, characterized in that the vehicle heat pump system.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 증발기(160)의 입구측 냉매순환라인(R)상에는, 상기 증발기(160)로 공급되는 냉매를 팽창시키도록 팽창유로(312a)를 갖는 팽창밸브부(310)와, 상기 팽창유로(312a)를 통과한 냉매의 유동을 온오프하는 온오프밸브부(320)를 일체로 구성하여 이루어진 제2복합밸브장치(300)가 설치된 것을 특징으로 하는 차량용 히트 펌프 시스템.On the inlet coolant circulation line R of the evaporator 160, an expansion valve unit 310 having an expansion passage 312a to expand the refrigerant supplied to the evaporator 160, and the expansion passage 312a. 2. The vehicle heat pump system, characterized in that a second composite valve device (300) formed by integrally configuring an on / off valve unit (320) for turning on and off the flow of the refrigerant passing through is installed.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 팽창밸브부(310)는, 상기 냉매순환라인(R)과 연결됨과 아울러 내부에는 냉매를 팽창시키는 상기 팽창유로(312a) 및 상기 팽창유로(312a)를 통과한 냉매가 유동하는 연통유로(312b)가 형성된 본체(311)와,The expansion valve part 310 is connected to the refrigerant circulation line R and communicates with the expansion passage 312a through which the refrigerant passes through the expansion passage 312a and the expansion passage 312a to expand the refrigerant therein. The main body 311 is formed,
    상기 본체(311)에 설치되어 상기 팽창유로(312a)를 개폐하는 개폐수단(315)으로 이루어진 것을 특징으로 하는 차량용 히트 펌프 시스템.Vehicle heat pump system, characterized in that made of the opening and closing means (315) for opening and closing the expansion passage (312a) installed in the main body (311).
  11. 제 10 항에 있어서,The method of claim 10,
    상기 팽창유로(312a)의 내측면에는, 상기 개폐수단(315)에 의해 상기 팽창유로(312a)가 폐쇄 상태일 경우에도 상기 팽창유로(312a)를 통해 냉매가 일부 유동할 수 있도록 노치부(312c)가 형성된 것을 특징으로 하는 차량용 히트 펌프 시스템.On the inner side surface of the expansion passage 312a, even when the expansion passage 312a is closed by the opening and closing means 315, the notch part 312c allows the refrigerant to partially flow through the expansion passage 312a. Vehicle heat pump system, characterized in that formed.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 개폐수단(315)은, 상기 팽창유로(312a)의 일측에 배치되어 상기 팽창유로(312a)를 개폐하도록 작동하는 볼(316)과, 상기 본체(311)의 내부에 승하강 가능하게 설치되어 상기 볼(316)을 작동시키는 작동축(317)을 포함하여 이루어진 것을 특징으로 하는 차량용 히트 펌프 시스템.The opening and closing means 315 is disposed on one side of the expansion passage (312a) and the ball 316 to operate to open and close the expansion passage (312a) and is installed to be able to move up and down inside the main body (311) Vehicle shaft comprising a working shaft (317) for operating the ball (316).
  13. 제 10 항에 있어서,The method of claim 10,
    상기 온오프밸브부(320)는, 상기 본체(311)의 일측면에 결합되는 구동장치(321)와, 상기 구동장치(321)에 왕복운동 가능하게 설치되어 상기 연통유로(312b)를 개폐하는 작동밸브(322)로 이루어진 것을 특징으로 하는 차량용 히트 펌프 시스템.The on-off valve part 320 is installed to the driving device 321 coupled to one side of the main body 311 and the driving device 321 so as to reciprocate to open and close the communication passage 312b. Vehicle heat pump system, characterized in that consisting of the operating valve (322).
  14. 제 13 항에 있어서,The method of claim 13,
    상기 구동장치(321)는, 상기 작동밸브(322)를 직선 왕복운동시키는 솔레노이드인 것을 특징으로 하는 차량용 히트 펌프 시스템.The drive device (321) is a vehicle heat pump system, characterized in that the solenoid to linearly reciprocate the operation valve (322).
  15. 제 1 항에 있어서,The method of claim 1,
    상기 바이패스라인(R1)상에는, 상기 바이패스라인(R1)을 흐르는 냉매와 차량 전장품(400)의 폐열을 열교환 할 수 있도록, 상기 바이패스라인(R1)을 흐르는 냉매가 유동하는 냉매 열교환부(181a)와, 상기 냉매 열교환부(181a)의 일측에 열교환 가능하게 구비되어 상기 차량 전장품(400)을 순환하는 냉각수가 유동하는 냉각수 열교환부(181b)로 구성된 수냉식 열교환기(181)가 설치된 것을 특징으로 하는 차량용 히트 펌프 시스템.On the bypass line R1, a refrigerant heat exchanger through which refrigerant flowing through the bypass line R1 flows to exchange heat between the refrigerant flowing through the bypass line R1 and the waste heat of the vehicle electrical equipment 400. 181a and a water-cooled heat exchanger 181 including a coolant heat exchanger 181b provided at one side of the refrigerant heat exchanger 181a and having a coolant circulating in the vehicle electrical component 400 flows therethrough. Automotive heat pump system.
PCT/KR2013/007395 2012-08-20 2013-08-16 Vehicle heat pump system WO2014030884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/421,340 US9855821B2 (en) 2012-08-20 2013-08-16 Heat pump system for vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120090592 2012-08-20
KR10-2012-0090592 2012-08-20
KR10-2013-0097236 2013-08-16
KR1020130097236A KR101637968B1 (en) 2012-08-20 2013-08-16 Heat pump system for vehicle

Publications (1)

Publication Number Publication Date
WO2014030884A1 true WO2014030884A1 (en) 2014-02-27

Family

ID=50150142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007395 WO2014030884A1 (en) 2012-08-20 2013-08-16 Vehicle heat pump system

Country Status (1)

Country Link
WO (1) WO2014030884A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107351624A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
US20170361677A1 (en) * 2016-06-20 2017-12-21 Hyundai Motor Company Heat pump system for vehicle
CN107965942A (en) * 2017-11-21 2018-04-27 上海理工大学 Improve the method and system of the refrigeration heat pump system performance of carbon dioxide trans-critical cycle
US20190135075A1 (en) * 2016-07-11 2019-05-09 Hanon Systems Heat pump system for vehicle
US10744850B2 (en) * 2014-01-21 2020-08-18 Hanon Systems Heat pump system for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0939554A (en) * 1995-08-02 1997-02-10 Matsushita Electric Ind Co Ltd Heat pump heating, cooling and dehumidifying device for electric automobile
JP2000062446A (en) * 1998-08-20 2000-02-29 Zexel Corp Air conditioner for vehicle
JP2006125768A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioner and control method thereof
KR20120024273A (en) * 2010-09-06 2012-03-14 한라공조주식회사 Heat pump system for vehicle
KR20120071018A (en) * 2010-12-22 2012-07-02 한라공조주식회사 Heat pump type cooling and heating system for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0939554A (en) * 1995-08-02 1997-02-10 Matsushita Electric Ind Co Ltd Heat pump heating, cooling and dehumidifying device for electric automobile
JP2000062446A (en) * 1998-08-20 2000-02-29 Zexel Corp Air conditioner for vehicle
JP2006125768A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioner and control method thereof
KR20120024273A (en) * 2010-09-06 2012-03-14 한라공조주식회사 Heat pump system for vehicle
KR20120071018A (en) * 2010-12-22 2012-07-02 한라공조주식회사 Heat pump type cooling and heating system for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10744850B2 (en) * 2014-01-21 2020-08-18 Hanon Systems Heat pump system for vehicle
CN107351624A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
EP3453544A4 (en) * 2016-05-10 2019-05-22 BYD Company Limited Heat pump air conditioning system and electric automobile
CN107351624B (en) * 2016-05-10 2020-08-25 比亚迪股份有限公司 Heat pump air conditioning system and electric automobile
US20170361677A1 (en) * 2016-06-20 2017-12-21 Hyundai Motor Company Heat pump system for vehicle
US10717337B2 (en) * 2016-06-20 2020-07-21 Hyundai Motor Company Heat pump system for vehicle
US20190135075A1 (en) * 2016-07-11 2019-05-09 Hanon Systems Heat pump system for vehicle
CN107965942A (en) * 2017-11-21 2018-04-27 上海理工大学 Improve the method and system of the refrigeration heat pump system performance of carbon dioxide trans-critical cycle

Similar Documents

Publication Publication Date Title
WO2018012818A1 (en) Heat pump system for vehicle
WO2015111847A1 (en) Heat pump system for vehicle
WO2016148476A1 (en) Vehicle heat pump system
WO2021215695A1 (en) Heat pump system for vehicle
WO2020145527A1 (en) Thermal management system
WO2016114448A1 (en) Heat pump system for vehicle
WO2019212275A1 (en) Vehicle heat-management system
WO2020071803A1 (en) Heat management system
WO2020080760A1 (en) Heat management system
WO2020130518A1 (en) Heat management system
WO2016017939A1 (en) Automotive heat pump system
WO2011062348A1 (en) Heat pump
WO2020040418A1 (en) Heat management system
WO2014030884A1 (en) Vehicle heat pump system
WO2016114557A1 (en) Air conditioning system
WO2019208942A1 (en) Heat exchange system for vehicle
WO2021172752A1 (en) Vapor injection module and heat pump system using same
WO2022131660A1 (en) Heat pump assembly with a chiller for battery-powered vehicles and methods of operating the heat pump assembly
WO2018016902A1 (en) Air conditioning system for vehicle and method for controlling same
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2017069472A1 (en) Air conditioner and control method therefor
WO2019160294A1 (en) Vehicle heat management system
WO2020071801A1 (en) Heat management system
WO2022050586A1 (en) Vapor injection module and heat pump system using same
WO2016163771A1 (en) Vehicle air-conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14421340

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831361

Country of ref document: EP

Kind code of ref document: A1