[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014030562A1 - Receptacle and optical transmission module - Google Patents

Receptacle and optical transmission module Download PDF

Info

Publication number
WO2014030562A1
WO2014030562A1 PCT/JP2013/071773 JP2013071773W WO2014030562A1 WO 2014030562 A1 WO2014030562 A1 WO 2014030562A1 JP 2013071773 W JP2013071773 W JP 2013071773W WO 2014030562 A1 WO2014030562 A1 WO 2014030562A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis direction
light emitting
optical
element array
plug
Prior art date
Application number
PCT/JP2013/071773
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 浅井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014531587A priority Critical patent/JP5966201B2/en
Publication of WO2014030562A1 publication Critical patent/WO2014030562A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation

Definitions

  • the present invention relates to a receptacle and an optical transmission module, and more particularly to a receptacle and an optical transmission module that convert an electrical signal into an optical signal and transmit it.
  • FIG. 17 is an exploded perspective view of the optical coupler described in Patent Document 1.
  • the optical coupler 500 includes an optical connector 510A and an optical communication module 510B as shown in FIG.
  • the optical connector 510A includes an optical fiber array 520A composed of a plurality of optical fibers 502A, an optical waveguide 504A, and a lens substrate 530A.
  • the optical communication module 510B includes a lens housing 560 for connecting the optical connector 510A, and a VCSEL 505 which is a vertical cavity surface emitting laser (hereinafter referred to as VCSEL).
  • the optical communication module 510B uses a laser array in which the same number of VCSELs 505 as the number of optical fibers 502A are combined in one element.
  • the VCSEL 505 converts the electrical signal into an optical signal.
  • the converted optical signals are emitted from the plurality of VCSELs 505 and transmitted to the optical fiber array 520A via the lens substrate 530A and the optical waveguide 504A of the optical connector 510A.
  • FIG. 18 is a cross-sectional view of a VCSEL described in Patent Document 2.
  • the schematic structure of the VCSEL 600 includes a first DBR (Multilayer Distributed Bragg Reflector) layer 614 formed on an N-type semiconductor substrate 612 having a cathode electrode 630 formed on the back surface.
  • a first spacer layer 616 is formed on the first DBR layer 614.
  • An active layer 618 having a quantum well is formed on the first spacer layer 616.
  • a second spacer layer 620 is formed on the active layer 618.
  • a second DBR layer 622 is formed on the second spacer layer 620.
  • An anode electrode 628 is formed on the second DBR layer 622. Then, when a drive signal is applied between the anode electrode 628 and the cathode electrode 630, a laser having sharp directivity in a direction perpendicular to the substrate (parallel to the stacking direction) is generated.
  • each drive signal applied to each VCSEL 600 leaks into the N-type semiconductor substrate 612. As a result, crosstalk of drive signals occurs between the VCSELs 600. Therefore, sufficient isolation cannot be obtained between the VCSELs 600.
  • an object of the present invention is to provide a receptacle and an optical transmission module that can ensure isolation between VCSELs.
  • a receptacle is a receptacle to which a plug provided at one end of an optical fiber is connected, and a light emitting element array in which a plurality of vertical cavity surface emitting lasers are integrated;
  • a positioning member that optically couples an optical fiber core and the plurality of vertical cavity surface emitting lasers, and a mounting substrate on which the light emitting element array is mounted, the light emitting element array including a base substrate;
  • a light emitting region multilayer portion including an N-type semiconductor multilayer reflective layer, an active layer having a quantum well and a P-type semiconductor multilayer reflective layer formed on the surface of the base substrate, and connected to the P-type semiconductor multilayer reflective layer
  • the portion is made of a semi-insulating semiconductor, and the cathode electrode is formed on the surface side of the base substrate, and the vertical cavity surface emitting
  • An optical transmission module further includes the receptacle and a plug provided at a tip of the optical fiber, wherein the plug exists on an optical axis of the optical fiber, and A third convex lens facing the positioning member is provided.
  • the receptacle and the optical transmission module according to the present invention it is possible to ensure isolation between the VCSELs.
  • FIG. 1 is an external perspective view of an optical transmission module according to an embodiment of the present invention. It is a disassembled perspective view of the receptacle which concerns on one Embodiment of this invention. It is an external appearance perspective view which removed the metal cap and the positioning member from the receptacle which concerns on one Embodiment of this invention. It is the figure which planarly viewed the light emitting element array which concerns on one Embodiment of this invention from the positive direction side of az axis direction.
  • FIG. 5 is a cross-sectional view taken along the line AA or BB of the light emitting element array illustrated in FIG. 4. It is an external appearance perspective view of the state which removed the metal cap from the receptacle which concerns on one Embodiment of this invention.
  • FIG. 8 is a diagram in which a mounting board and a plug according to an embodiment of the present invention are added to a cross section taken along the line CC or DD of the positioning member illustrated in FIG. 7. It is an external appearance perspective view of the metal cap which concerns on one Embodiment of this invention.
  • 1 is an external perspective view of a plug according to an embodiment of the present invention. It is the figure which planarly viewed the plug which concerns on one Embodiment of this invention from the negative direction side of az axis direction.
  • FIG. 10 is an exploded perspective view of an optical coupler described in Patent Document 1.
  • FIG. It is sectional drawing of VCSEL of patent document 2.
  • FIG. 1 is an external perspective view of an optical transmission module 10 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the receptacle 20 according to the embodiment of the present invention.
  • FIG. 3 is an external perspective view in which the metal cap 30 and the positioning member 200 are removed from the receptacle 20 according to the embodiment of the present invention.
  • the vertical direction of the light transmission module 10 is defined as the z-axis direction
  • the direction along the long side of the light transmission module 10 when viewed in plan from the z-axis direction is defined as the x-axis direction.
  • the direction along the short side of the optical transmission module 10 is defined as the y-axis direction.
  • the x axis, the y axis, and the z axis are orthogonal to each other.
  • the optical transmission module 10 includes a receptacle 20 and a plug 40 as shown in FIG.
  • the plug 40 is connected to the receptacle 20.
  • the receptacle 20 includes a metal cap 30, a light receiving element array 50, a light emitting element array 100, a positioning member 200, a mounting substrate 22, and a sealing resin 24, as shown in FIG.
  • the mounting substrate 22 has a rectangular shape when seen in a plan view from the z-axis direction, as shown in FIG. Further, when the optical transmission module 10 is mounted on the circuit board, the surface of the mounting substrate 22 on the negative side in the z-axis direction (hereinafter, the “surface on the negative direction side in the z-axis direction” is referred to as the back surface).
  • a surface mounting electrode E1 (not shown in FIG. 3) is provided in contact with the land of the circuit board.
  • the side L1 located on the negative direction side in the x-axis direction and the y-axis direction on the surface on the positive direction side in the z-axis direction of the mounting substrate 22 (hereinafter referred to as “surface on the positive direction side in the z-axis direction”)
  • surface on the positive direction side in the z-axis direction In the vicinity of an angle formed by the side L2 located on the negative direction side, a ground conductor exposed portion E2 in which a part of the ground conductor provided in the mounting substrate 22 is exposed is provided.
  • the ground conductor exposed portion E2 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
  • the surface of the mounting substrate 22 is provided in the mounting substrate 22 in the vicinity of an angle formed by the side L ⁇ b> 1 positioned on the negative side in the x-axis direction and the side L ⁇ b> 3 positioned on the positive direction side in the y-axis direction.
  • a ground conductor exposed portion E3 in which a part of the ground conductor is exposed is provided.
  • the ground conductor exposed portion E3 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
  • the light receiving element array 50 and the light emitting element array 100 are provided on the surface of the mounting substrate 22 on the positive side in the x-axis direction.
  • the light receiving element array 50 is an element including a plurality of photodiodes that convert an optical signal into an electric signal.
  • the light emitting element array 100 is an element including a plurality of diodes that convert an electrical signal into an optical signal.
  • the drive circuit 26 is provided on the positive direction side in the x-axis direction with respect to the light receiving element array 50 and the light emitting element array 100 in the positive direction side portion in the x-axis direction on the surface of the mounting substrate 22.
  • the drive circuit 26 is a semiconductor circuit element for driving the light receiving element array 50 and the light emitting element array 100.
  • the drive circuit 26 has a rectangular shape having a long side parallel to the y-axis direction when viewed in plan from the z-axis direction.
  • the drive circuit 26 and the light receiving element array 50 are connected through wire U by wire bonding. Further, the drive circuit 26 and the light emitting element array 100 are connected to each other by wire bonding via the wire U.
  • the electrical signal from the drive circuit 26 is transmitted to the light emitting element array 100 via the wire U, and the electrical signal from the light receiving element array 50 is transmitted to the drive circuit 26 via the wire U.
  • the sealing resin 24 includes a sealing portion 24a and leg portions 24b to 24e, and is made of a transparent resin such as an epoxy resin.
  • the sealing portion 24 a has a substantially rectangular parallelepiped shape, and is provided in a portion on the positive direction side in the x-axis direction on the surface of the mounting substrate 22.
  • the sealing portion 24 a covers the light receiving element array 50, the light emitting element array 100, and the drive circuit 26.
  • the leg portions 24b and 24c are provided at intervals so as to be arranged in this order from the negative direction side in the x-axis direction to the positive direction side.
  • the leg portions 24b and 24c are rectangular parallelepiped members that protrude toward the side L2 of the mounting substrate 22 from the negative side surface in the y-axis direction of the sealing portion 24a. Further, a space H1 into which a convex portion C3 of a metal cap 30 described later is fitted is provided between the leg portion 24b and the leg portion 24c.
  • the leg portions 24d and 24e are provided at intervals so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction.
  • the leg portions 24d and 24e are rectangular parallelepiped members that protrude toward the side L3 of the mounting substrate 22 from the surface on the positive side in the y-axis direction of the sealing portion 24a. Further, a space H2 is provided between the leg portion 24d and the leg portion 24e in which a convex portion C6 of the metal cap 30 described later is fitted.
  • FIG. 4 is a plan view of the light emitting element array 100 according to an embodiment of the present invention as seen from the positive side in the z-axis direction.
  • FIG. 5 is a cross-sectional view taken along line AA or BB of the light emitting element array 100 shown in FIG.
  • the present embodiment only two VCSELs 100A and 100B are described, but the number of VCSELs constituting the light emitting element array 100 of the present invention is not limited to this.
  • the light emitting element array 100 includes two VCSELs 100A and 100B as shown in FIG. That is, the VCSELs 100A and 100B are integrated and arrayed, and the VCSELs 100A and 100B are driven independently. Further, a laser beam B1 is emitted from each VCSEL 100A, 100B toward the positive direction side in the z-axis direction.
  • the two VCSELs 100A and 100B are provided on the surface of a common base substrate 128 as shown in FIG.
  • the base substrate 128 is made of a semi-insulating semiconductor, specifically, a substrate made of GaAs.
  • the base substrate 128 preferably has a resistivity of 1.0 ⁇ 10 7 ⁇ ⁇ cm or more.
  • an N-type semiconductor contact layer 130 is laminated on the surface of the base substrate 128.
  • One N-type semiconductor contact layer 130 is provided for each of the VCSELs 100A and 100B.
  • the N-type semiconductor contact layer 130 of the VCSEL 100A and the N-type semiconductor contact layer 130 of the VCSEL 100B are insulated from each other.
  • the N-type semiconductor contact layer 130 is made of a compound semiconductor having N-type conductivity.
  • an N-type semiconductor multilayer reflective layer (hereinafter referred to as an N-type DBR layer) 132 is laminated. Further, the N-type DBR layer 132 is provided with an arc-shaped groove W when viewed from the positive side in the z-axis direction. The groove W has a half circumference near the center of each of the VCSELs 100A and 100B on the negative direction side in the x-axis direction. The bottom of the trench W reaches the surface of the N-type semiconductor contact layer 130.
  • the N-type DBR layer 132 is made of AlGaAs and is formed by stacking a plurality of layers having different composition ratios of Al to Ga.
  • the N-type DBR layer 132 functions as a first reflector for generating laser light having a predetermined frequency.
  • the N-type DBR layer 132 may also serve as an N-type semiconductor contact layer. That is, the N-type semiconductor contact layer is not essential.
  • an N-type semiconductor clad layer 134 is laminated on the surface of the N-type DBR layer 132.
  • the N-type semiconductor clad layer 134 is provided at the center of the VCSELs 100A and 100B when viewed in plan from the z-axis direction, and has a circular shape.
  • the N-type semiconductor clad layers 134 are insulated from each other.
  • the N-type semiconductor clad layer 134 is made of AlGaAs.
  • an active layer 136 is provided on the surface of the N-type semiconductor clad layer 134.
  • the active layer 136 is made of GaAs and AlGaAs.
  • the GaAs layer is provided between the AlGaAs layers.
  • the energy band gap of AlGaAs is larger than that of GaAs.
  • the refractive index of GaAs is larger than that of AlGaAs.
  • a P-type semiconductor clad layer 138 is provided on the surface of the active layer 136.
  • the P-type semiconductor clad layer 138 is made of AlGaAs.
  • An oxidized constricting layer 150 is provided on the surface of the P-type semiconductor clad layer 138 as shown in FIG. When the oxidized constricting layer 150 is viewed in plan from the z-axis direction, a circular hole 152 is provided in the approximate center of the oxidized constricting layer 150.
  • the oxidized constricting layer 150 is made of AlGaAs.
  • a P-type semiconductor multilayer reflective layer (hereinafter referred to as a P-type DBR layer) 140 is provided on the surface of the oxidized constricting layer 150.
  • a part of the P-type DBR layer 140 is also provided in the hole 152 provided in the oxidized constricting layer, and is in contact with the P-type semiconductor clad layer 138.
  • the P-type DBR layer 140 is made of AlGaAs and is formed by laminating a plurality of layers having different Al composition ratios to Ga. Thereby, the P-type DBR layer 140 functions as a second reflector for generating laser light having a predetermined frequency.
  • the reflectance of the P-type DBR layer 140 is slightly lower than that of the N-type DBR layer 132.
  • the semiconductor clad layer is provided so as to sandwich the active layer, but the present invention is not limited to this configuration.
  • a layer having such a thickness as to generate resonance may be provided in the active layer.
  • a P-type semiconductor contact layer 142 is laminated on the surface of the P-type DBR layer 140.
  • the P-type semiconductor contact layer 142 is made of a compound semiconductor having P-type conductivity. Note that the P-type DBR layer may also serve as a P-type semiconductor contact layer. That is, the P-type semiconductor contact layer is not essential.
  • a light emitting region multilayer section 160 is configured.
  • each layer and the composition ratio of Al to Ga are set so as to have one emission spectrum peak wavelength at the center antinode position of the optical standing wave distribution and to arrange a plurality of quantum wells. Is done.
  • the light emitting region multilayer part 160 functions as the light emitting part of the VCSELs 100A and 100B.
  • the oxide constriction layer 150 by providing the oxide constriction layer 150, current can be efficiently injected into the active layer 136, and the VCSELs 100A and 100B with low power consumption can be realized.
  • an anode ring electrode 921 is provided on the surface of the P-type semiconductor contact layer 142.
  • the anode ring electrode 921 has an annular shape when viewed in plan from the z-axis direction. Note that the anode electrode does not necessarily have to be annular, and may be, for example, a C-shape or a rectangular shape with an annular portion open.
  • a cathode electrode 911 is provided in the groove W of the N-type DBR layer 132 described above.
  • the cathode electrode 911 is in contact with the N-type semiconductor contact layer 130 as shown in FIG. Thereby, the cathode electrode 911 is electrically connected to the N-type semiconductor contact layer 130.
  • the cathode electrode 911 has an arc shape when viewed in plan from the z-axis direction. The arc is substantially concentric with the ring of the annular anode ring electrode 921.
  • the insulating film 162 is provided so as to cover the surface of the light emitting region multilayer 160 of the VCSELs 100A and 100B except for the portion where the cathode electrode 911 and the anode ring electrode 921 are provided.
  • the material of the insulating film 162 is, for example, silicon nitride.
  • an insulating layer 170 is provided on the positive side of the x-axis direction in the VCSELs 100A and 100B. Further, as shown in FIG. 5, the insulating layer 170 is provided on the insulating film 162 covering the N-type DBR layer 132. As shown in FIG. 4, the insulating layer 170 has a rectangular shape having long sides in the y-axis direction when viewed in plan from the z-axis direction. An example of the material of the insulating layer 170 is polyimide.
  • a cathode pad electrode 912 is provided on a portion of the surface of the insulating layer 170 on the negative side in the y-axis direction.
  • the cathode pad electrode 912 is connected to the cathode electrode 911 via the cathode wiring electrode 913.
  • an anode pad electrode 922 is provided on a portion on the positive side in the y-axis direction on the surface of the insulating layer 170.
  • the anode pad electrode 922 and the cathode pad electrode 912 are provided apart from each other by a predetermined distance.
  • the anode pad electrode 922 is connected to the anode ring electrode 921 through the anode wiring electrode 923.
  • the light emitting element array 100 is provided with grooves 180 for dividing the VCSELs 100A and 100B.
  • the grooves 180 are grooves provided in a lattice shape parallel to the x-axis direction and the y-axis direction when viewed in plan from the z-axis direction.
  • the trench 180 penetrates the insulating film 162, the N-type DBR layer 132, and the N-type semiconductor contact layer 130 in the stacking direction. Further, the bottom of the groove 180 reaches a predetermined depth from the surface of the base substrate 128. As a result, the VCSELs 100A and 100B can be prevented from conducting via the N-type semiconductor contact layer 130.
  • stimulated emission occurs in the active layer 136 by flowing a current (drive signal) from the anode pad electrode 922 to the cathode pad electrode 912. .
  • the light emitted from the active layer by stimulated emission is reflected by the N-type DBR layer 132 and the P-type DBR layer 140 and reciprocates through the active layer. During the reciprocation, the light is amplified by stimulated emission and is emitted as a laser beam to the positive side in the z-axis direction.
  • the N-type semiconductor contact layer 130 of the VCSEL 100A and the N-type semiconductor contact layer 130 of the VCSEL 100B are separated, the occurrence of crosstalk between the drive signal of the VCSEL 100A and the drive signal of the VCSEL 100B is suppressed. .
  • FIG. 6 is an external perspective view of the receptacle 20 according to the embodiment of the present invention (the metal cap 30 is not shown).
  • FIG. 7 is an external perspective view of a positioning member 200 according to an embodiment of the present invention.
  • FIG. 8 is a plan view of the positioning member 200 according to one embodiment of the present invention from the negative direction side in the z-axis direction.
  • FIG. 9 is a view in which the mounting substrate 22 and the plug 40 according to the embodiment of the present invention are added to the cross section taken along the line CC or DD of the positioning member 200 shown in FIG.
  • the positioning member 200 is provided across the mounting substrate 22 and the sealing resin 24 so as to cover the surface of the mounting substrate 22 and substantially the entire sealing resin 24.
  • the positioning member 200 includes a positioning member 220 for a light emitting element and a positioning member 240 for a light receiving element.
  • the positioning members 220 and 240 are provided so as to be arranged in this order from the negative direction side in the y-axis direction toward the positive direction side.
  • the positioning member 200 is made of, for example, an epoxy or nylon resin.
  • the light-emitting element positioning member 220 has a rectangular shape when viewed in plan from the z-axis direction. Further, the positioning member 220 includes a plug guide part 222 and an optical coupling part 224.
  • the plug guide portion 222 constitutes a portion of the positioning member 220 on the negative direction side of the x axis. Further, as shown in FIG. 8, the plug guide portion 222 is a plate-like member having a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the end surface S1 on the positive side in the x-axis direction of the plug guide portion 222 faces the surface on the negative direction side in the x-axis direction of the sealing resin 24 as shown in FIG. Accordingly, the plug guide portion 222 is located on the negative side in the x-axis direction with respect to the sealing resin 24 on the mounting substrate 22.
  • a groove G1 for guiding a plug 40 to be described later is provided substantially parallel to the x-axis at the approximate center in the y-axis direction on the surface of the plug guide portion 222.
  • a portion on the negative direction side in the y-axis direction from the groove G1 is referred to as a flat portion F1
  • a portion on the positive direction side in the y-axis direction from the groove G1 is referred to as a flat portion F2.
  • the height h1 of the groove G1 from the mounting substrate 22 in the z-axis direction is lower than the height h2 of the sealing resin 24 in the z-axis direction.
  • the optical coupling portion 224 constitutes a portion on the positive direction side in the x-axis direction of the positioning member 220 and is placed on the sealing resin 24.
  • the optical coupling part 224 has a main body 226 and an abutting part 228 as shown in FIG.
  • the main body 226 has a rectangular parallelepiped shape.
  • the abutting portion 228 protrudes from the end surface S2 on the negative side in the x-axis direction of the main body 226 along the flat portion F1 of the plug guide portion 222 to the approximate center of the flat portion F1 in the x-axis direction.
  • the optical coupling part 224 is L-shaped when viewed in plan from the z-axis direction.
  • the end surface of the abutting portion 228 on the negative side in the x-axis direction is referred to as an end surface S3.
  • the optical coupling portion 224 is provided with a concave portion D1 and a convex lens 230.
  • the recess D1 is provided in the vicinity of the side on the positive side of the optical coupling portion 224 in the y-axis direction.
  • the recess D1 overlaps the light emitting element array 100 when viewed in plan from the z-axis direction.
  • the recess D1 overlaps with the optical axis of the optical fiber 60 connected to the plug 40 described later when viewed in plan from the x-axis direction.
  • the optical axis of the optical fiber 60 is parallel to the x-axis.
  • the recess D1 has a rectangular shape when seen in a plan view from the z-axis direction.
  • the recess D ⁇ b> 1 has a V shape when viewed in plan from the y-axis direction.
  • the inner peripheral surface on the negative side in the x-axis direction of the recess D1 is a total reflection surface R1.
  • the total reflection surface R1 is parallel to the y-axis as shown in FIG. Further, the total reflection surface R1 is inclined 45 ° counterclockwise with respect to the z-axis when viewed in plan from the negative direction side in the y-axis direction. Further, the refractive index of the positioning member 200 is sufficiently larger than that of air.
  • the laser beam B1 emitted from the light emitting element array 100 to the positive z-axis direction is incident on the optical coupling unit 224, and is totally reflected by the total reflection surface R1 to the negative x-axis side, thereby causing the plug 40 To the optical fiber 60 via
  • the angle formed by the optical axis of the laser beam B1 emitted from the light emitting element array 100 and the total reflection surface R1 is 45 °.
  • the angle formed by the optical axis of the laser beam B1 toward the total reflection surface R1 is 45 °. That is, the angle formed by the total reflection surface R1 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R1 and the light emitting element array 100.
  • the convex lens 230 (first convex lens) is provided on the surface on the negative direction side in the z-axis direction of the optical coupling portion 224, as shown in FIGS. Further, the convex lens 230 overlaps each VCSEL of the light emitting element array 100 when viewed in plan from the z-axis direction. Thereby, the convex lens 230 faces the light emitting element array 100 and is positioned on the optical path of the laser beam B1. In addition, the convex lens 230 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Accordingly, the laser beam B1 emitted from the light emitting element array 100 is condensed or collimated by the convex lens 230 and travels toward the total reflection surface R1.
  • the light receiving element positioning member 240 has a rectangular shape when viewed in plan from the z-axis direction. Further, the positioning member 240 includes a plug guide part 242 and an optical coupling part 244.
  • the plug guide portion 242 constitutes a portion of the positioning member 240 on the negative side of the x axis.
  • the plug guide portion 242 is a plate-like member having a rectangular shape when viewed in plan from the z-axis direction.
  • the end surface S4 on the positive direction side in the x-axis direction of the plug guide portion 242 faces the surface on the negative direction side in the x-axis direction of the sealing resin 24 as shown in FIG. Accordingly, the plug guide portion 242 is located on the negative side in the x-axis direction with respect to the sealing resin 24 on the mounting substrate 22.
  • a groove G2 for guiding a plug 40 to be described later is provided substantially parallel to the x-axis at the approximate center in the y-axis direction on the surface of the plug guide portion 242.
  • a portion on the negative side in the y-axis direction from the groove G2 is referred to as a flat portion F3
  • a portion on the positive direction side in the y-axis direction from the groove G2 is referred to as a flat portion F4.
  • the height h3 of the groove G2 in the z-axis direction is lower than the height h2 of the sealing resin 24 in the z-axis direction, as shown in FIG.
  • the optical coupling portion 244 constitutes a portion on the positive direction side in the x-axis direction of the positioning member 240 and is placed on the sealing resin 24.
  • the optical coupling part 244 has a main body 246 and an abutting part 248 as shown in FIG.
  • the main body 246 has a rectangular parallelepiped shape.
  • the abutting portion 248 protrudes from the end surface S5 on the negative side in the x-axis direction of the main body 246 to the approximate center in the x-axis direction of the flat portion F4 along the flat portion F4 of the plug guide portion 242.
  • the optical coupling unit 244 has an L shape when viewed in plan from the z-axis direction.
  • the end surface on the negative direction side in the x-axis direction of the abutting portion 248 is referred to as an end surface S6.
  • the optical coupling portion 244 is provided with a concave portion D2 and a convex lens 250.
  • the recess D2 is provided in the vicinity of the side on the negative direction side in the y-axis direction of the optical coupling portion 244.
  • the concave portion D2 overlaps the light receiving element array 50 when viewed in plan from the z-axis direction.
  • the recess D2 overlaps with the optical axis of the optical fiber 60 connected to the plug 40 described later when viewed in plan from the x-axis direction.
  • the optical axis of the optical fiber 60 is parallel to the x-axis.
  • the concave portion D2 has a rectangular shape when viewed in plan from the z-axis direction.
  • the recess D ⁇ b> 2 has a V shape when viewed in plan from the y-axis direction.
  • the inner peripheral surface on the negative direction side in the x-axis direction of the recess D2 is a total reflection surface R2.
  • the total reflection surface R2 is parallel to the y-axis as shown in FIG. Further, the total reflection surface R2 is inclined 45 ° counterclockwise with respect to the z-axis when viewed in plan from the negative direction side in the y-axis direction. Further, the refractive index of the positioning member 200 is sufficiently larger than that of air. Therefore, the laser beam B2 emitted from the optical fiber 60 to the positive direction side in the x-axis direction enters the optical coupling portion 244, and is totally reflected by the total reflection surface R2 to the negative direction side in the z-axis direction. To the light receiving element array 50.
  • the angle formed by the optical axis of the laser beam B2 emitted from the optical fiber 60 and the total reflection surface R2 is 45 °.
  • the angle formed by the optical axis of the laser beam B2 toward the total reflection surface R2 is 45 °. That is, the angle formed by the total reflection surface R2 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R2 and the light receiving element array 50.
  • the convex lens 250 is provided on the back surface of the optical coupling part 244 as shown in FIGS. Each convex lens 250 overlaps each VCSEL of the light receiving element array 50 when viewed in plan from the z-axis direction. As a result, the convex lens 250 faces the light receiving element array 50 and is positioned on the optical path of the laser beam B2. Further, the convex lens 250 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Accordingly, the laser beam B ⁇ b> 2 emitted from the optical fiber 60 is reflected by the total reflection surface R ⁇ b> 2, then condensed or collimated by the convex lens 250, and travels toward the light receiving element array 50.
  • FIG. 10 is an external perspective view of a metal cap 30 according to an embodiment of the present invention.
  • the metal cap 30 is manufactured by bending a single metal plate (for example, SUS301) into a U-shape. Further, as shown in FIG. 1, the metal cap 30 covers the positioning member 200 from the positive direction side in the z-axis direction, the positive direction side in the y-axis direction, and the negative direction side in the y-axis direction.
  • a single metal plate for example, SUS301
  • the metal cap 30 includes an upper surface 32 and side surfaces 34 and 36 as shown in FIG.
  • the upper surface 32 is a surface orthogonal to the z-axis and has a rectangular shape.
  • the side surface 34 is formed by bending the metal cap 30 from the long side of the upper surface 32 on the negative direction side in the y-axis direction to the negative direction side in the z-axis direction.
  • the side surface 36 is formed by bending the metal cap 30 from the long side of the upper surface 32 on the positive direction side in the y-axis direction to the negative direction side in the z-axis direction.
  • engaging portions 32 a and 32 b for fixing the plug 40 to the receptacle 20 are provided on the negative side portion of the upper surface 32 in the x-axis direction.
  • the engaging portions 32a and 32b are provided in this order from the negative direction side in the y-axis direction toward the positive direction side.
  • the engaging portions 32a and 32b are formed by making a U-shaped cut in the upper surface 32. More specifically, each of the engaging portions 32a and 32b has a U-shaped notch opening on the upper surface 32 in the positive direction of the x-axis direction, and a portion surrounded by the U-shaped notch in the z-axis direction. It is formed by bending so as to be recessed in the negative direction side. Thus, the engaging portions 32a and 32b have a V-shape that protrudes in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • engaging portions 32c and 32d for fixing the plug 40 to the receptacle 20 are provided on the short side of the upper surface 32 on the negative side in the x-axis direction.
  • the engaging portions 32c and 32d are metal pieces protruding from the upper surface 32 toward the negative direction side in the x-axis direction.
  • the engaging portions 32c and 32d are bent so as to be recessed toward the negative direction side in the z-axis direction at a substantially central position in the x-axis direction in the engaging portions 32c and 32d.
  • the engaging portions 32c and 32d have a V-shape protruding in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • convex portions C1 to C3 projecting toward the negative direction side in the z-axis direction are formed from the negative direction side in the x-axis direction. They are arranged in this order toward the positive direction.
  • the convex portions C1 to C3 are each fixed to the mounting substrate 22 with an adhesive.
  • the convex portion C1 is connected to the ground conductor exposed portion E2 of the mounting substrate 22.
  • the convex portion C3 is fitted into a space H1 provided between the leg portion 24b and the leg portion 24c of the sealing resin 24. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
  • convex portions C4 to C6 projecting toward the negative direction side in the z-axis direction are formed from the negative direction side in the x-axis direction. They are arranged in this order toward the positive direction.
  • the convex portions C4 to C6 are each fixed to the mounting substrate 22 with an adhesive.
  • the convex portion C4 is connected to the ground conductor exposed portion E3 of the mounting substrate 22.
  • the convex portion C6 is fitted into a space H2 provided between the leg portion 24d and the leg portion 24e of the sealing resin 24. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
  • the metal cap 30 covers the positioning member 200 from the positive direction side in the z-axis direction and from the positive direction side and the negative direction side in the y-axis direction.
  • An opening A3 into which a plug 40 described later is inserted is formed on the negative side of the receptacle 20 in the x-axis direction, as shown in FIG.
  • FIG. 11 is an external perspective view of a plug according to an embodiment of the present invention.
  • FIG. 12 is a plan view of a plug according to an embodiment of the present invention from the negative side in the z-axis direction.
  • the plug 40 is provided at one end of the optical fiber 60 as shown in FIG.
  • the plug 40 includes a transmission side plug 42 and a reception side plug 46.
  • the plug 40 is made of, for example, an epoxy or nylon resin.
  • the transmitting side plug 42 transmits the laser beam B1 from the light emitting element array 100.
  • the transmission-side plug 42 includes an optical fiber insertion portion 42a and an ear portion 42b.
  • the optical fiber insertion portion 42a constitutes a portion on the positive direction side in the y-axis direction of the transmission-side plug 42, and has a rectangular parallelepiped shape extending in the x-axis direction.
  • An opening A1 for inserting the optical fiber 60 is provided in a portion on the negative side in the x-axis direction of the optical fiber insertion portion 42a.
  • the opening A1 is formed by cutting out the upper surface S7 on the positive direction side in the z-axis direction and the end surface S8 on the negative direction side in the x-axis direction of the optical fiber insertion portion 42a. Further, a hole H7 for guiding the core of the inserted optical fiber 60 to the tip of the transmission side plug 42 is provided on the inner peripheral surface on the positive side in the x-axis direction of the opening A1. Note that the number of holes H7 corresponds to the number of optical fibers 60, and is two in this embodiment.
  • a concave portion D3 for injecting an adhesive for fixing the optical fiber 60 is provided in a portion on the positive side in the x-axis direction of the optical fiber insertion portion 42a.
  • the recess D3 is recessed from the front surface to the back surface of the optical fiber insertion portion 42a.
  • a hole H7 is provided on the inner peripheral surface on the negative direction side in the x-axis direction of the recess D3.
  • the hole H7 is connected to the inner peripheral surface of the opening A1 on the positive direction side in the x-axis direction. Accordingly, the core wire of the optical fiber 60 reaches the recess D3 from the opening A1 through the hole H7.
  • the core wire of the optical fiber 60 that has reached the recess D3 is abutted against the inner peripheral surface (abutment surface) S9 on the positive side in the x-axis direction of the recess D3.
  • the optical fiber 60 is fixed to the transmission side plug 42 by pouring an adhesive made of a transparent resin, for example, an epoxy resin into the opening A1 and the recess D3.
  • a convex lens 44 (third convex lens) is provided on the end surface S10 on the positive side in the x-axis direction of the optical fiber insertion portion 42a.
  • the convex lens 44 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis direction. Accordingly, the laser beam B1 emitted from the light emitting element array 100 and reflected by the total reflection surface R1 is condensed or collimated by the convex lens 44.
  • the convex lens 44 overlaps the optical axis of the optical fiber when viewed in plan from the x-axis direction. Accordingly, the laser beam B1 collected or collimated by the convex lens 44 passes through the resin of the optical fiber insertion portion 42a. The laser beam B1 is transmitted to the core of the core of the optical fiber 60 that is abutted against the abutting surface S9.
  • a protrusion N1 that engages with the engaging portion 32a of the metal cap 30 is provided on the upper surface S7 of the optical fiber insertion portion 42a.
  • the protrusion N1 is provided between the opening A1 and the recess D3 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N1 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • a convex portion C7 is provided on the back surface of the optical fiber insertion portion 42a.
  • the convex portion C7 corresponds to the groove G1 of the plug guide portion 222 of the positioning member 220.
  • the convex portion C7 is provided in parallel to the x-axis from the end surface S8 toward the end surface S10.
  • the ear portion 42b protrudes from the vicinity of the end portion on the negative direction side in the x-axis direction of the optical fiber insertion portion 42a toward the negative direction side in the y-axis direction.
  • the transmission side plug 42 is L-shaped.
  • edge part 42b functions as a holding part in the case of the insertion / extraction operation
  • a substantially rectangular hollow hole is provided in the approximate center of the ear portion 42b when viewed in plan from the z-axis direction.
  • connection work between the transmission side plug 42 and the receptacle 20 is performed by pushing the convex portion C7 along the groove G1 to the positive side in the x-axis direction. At this time, the end surface S11 on the positive side in the x-axis direction of the ear portion 42b abuts against the end surface S3 of the abutting portion 228 of the positioning member 200 shown in FIG.
  • the transmission side plug 42 is placed on the positioning member 220 by the connection work between the transmission side plug 42 and the receptacle 20. Furthermore, as described above, the optical axis of the optical fiber 60 is parallel to the x-axis direction, and the direction in which the transmission side plug 42 is pushed into the receptacle 20 is the positive direction side in the x-axis direction. Therefore, the optical axis of the optical fiber 60 and the insertion direction of the transmission side plug 42 are parallel.
  • the engaging portion 32a of the metal cap 30 is engaged with the protrusion N1, and the engaging portion 32c is formed by the upper surface S7 and the end surface S8 of the transmission side plug 42.
  • the transmission side plug 42 is fixed to the receptacle 20.
  • the receiving side plug 46 transmits the laser beam B2 to the light receiving element array 50.
  • the receiving side plug 46 includes an optical fiber insertion portion 46a and an ear portion 46b.
  • the optical fiber insertion portion 46a constitutes a portion on the negative direction side in the y-axis direction of the reception side plug 46, and has a substantially rectangular parallelepiped shape.
  • An opening A2 for inserting the optical fiber 60 is provided in a portion on the negative direction side in the x-axis direction of the optical fiber insertion portion 46a.
  • the opening A2 is formed by cutting out the upper surface S12 on the positive direction side in the z-axis direction and the end surface S13 on the negative direction side in the x-axis direction of the optical fiber insertion portion 46a.
  • a hole H8 for guiding the core of the inserted optical fiber 60 to the tip of the receiving side plug 46 is provided on the inner peripheral surface on the positive side in the x-axis direction of the opening A2.
  • the number of holes H8 corresponds to the number of the optical fibers 60, and is two in this embodiment.
  • a concave portion D4 for injecting an adhesive for fixing the optical fiber 60 is provided in a portion on the positive side in the x-axis direction of the optical fiber insertion portion 46a.
  • the recess D4 is recessed from the front surface to the back surface of the optical fiber insertion portion 46a.
  • a hole H8 is provided on the inner peripheral surface on the negative direction side in the x-axis direction of the recess D4.
  • the hole H8 is connected to the inner peripheral surface on the positive direction side in the x-axis direction of the opening A2. Accordingly, the core wire of the optical fiber 60 reaches the recess D4 from the opening A2 through the hole H8.
  • the core of the optical fiber 60 that has reached the recess D4 is abutted against the inner peripheral surface (abutment surface) S14 on the positive side in the x-axis direction of the recess D4.
  • the optical fiber 60 is fixed to the receiving side plug 46 by pouring an adhesive made of a transparent resin, for example, an epoxy resin into the opening A2 and the recess D4.
  • a convex lens 48 is provided on the end surface S15 on the positive side in the x-axis direction of the optical fiber insertion portion 46a.
  • the convex lens 48 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis.
  • the convex lens 48 overlaps the optical axis of the optical fiber 60 when viewed in plan from the x-axis direction. Accordingly, the laser beam B2 emitted from the optical fiber 60 is condensed or collimated by the convex lens 48 and proceeds to the total reflection surface R2. The laser beam B ⁇ b> 2 is reflected by the total reflection surface R ⁇ b> 2 and transmitted to the light receiving element array 50.
  • a protrusion N2 that engages with the engaging portion 32b of the metal cap 30 is provided on the upper surface S12 of the optical fiber insertion portion 46a.
  • the protrusion N2 is provided between the opening A2 and the recess D4 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N2 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
  • a convex portion C8 is provided on the back surface of the optical fiber insertion portion 46a.
  • the convex portion C8 corresponds to the groove G2 of the plug guide portion 242 of the positioning member 240.
  • the convex portion C8 is provided in parallel to the x-axis from the end surface S13 toward the end surface S15.
  • the ear 46b protrudes from the end on the negative direction side in the x-axis direction of the optical fiber insertion portion 46a to the positive direction side in the y-axis direction.
  • the receiving side plug 46 is L-shaped.
  • edge part 46b functions as a holding part in the case of the insertion / extraction operation
  • a substantially rectangular hollow hole is provided in the approximate center of the ear 46b when viewed in plan from the z-axis direction.
  • connection work between the receiving side plug 46 and the receptacle 20 is performed by pushing the convex portion C8 along the groove G2 to the positive side in the x-axis direction. At this time, the end surface S16 on the positive side in the x-axis direction of the ear portion 46b abuts against the end surface S6 of the abutting portion 248 of the positioning member 200 shown in FIG.
  • the receiving side plug 46 is placed on the positioning member 240 by the connection work between the receiving side plug 46 and the receptacle 20. Furthermore, as described above, the optical axis of the optical fiber 60 is parallel to the x-axis direction, and the direction in which the receiving-side plug 46 is pushed into the receptacle 20 is the positive direction side in the x-axis direction. Therefore, the optical axis of the optical fiber 60 and the insertion direction of the receiving side plug 46 are parallel.
  • the engaging portion 32b of the metal cap 30 engages with the protrusion N2, and the engaging portion 32d forms the upper surface S12 and the end surface S13 of the receiving side plug 46.
  • the receiving side plug 46 is fixed to the receptacle 20 by engaging with the corner.
  • the laser beam B ⁇ b> 1 emitted from the light emitting element array 100 toward the positive side in the z-axis direction passes through the sealing resin 24 and the positioning member 220. pass. Further, the laser beam B ⁇ b> 1 is reflected by the total reflection surface R ⁇ b> 1 on the negative side in the x-axis direction, passes through the plug 40, and is transmitted to the core of the optical fiber 60. Therefore, the positioning member 220 plays a role of optically coupling the core of the optical fiber 60 and the light emitting element array 100.
  • the laser beam B ⁇ b> 2 emitted from the optical fiber 60 toward the positive direction in the x-axis direction passes through the positioning member 240. Further, the laser beam B ⁇ b> 2 is reflected by the total reflection surface R ⁇ b> 2 to the negative direction side in the z-axis direction, passes through the sealing resin 24, and is transmitted to the light receiving element array 50. Accordingly, the positioning member 240 plays a role of optically coupling the core of the optical fiber 60 and the light receiving element array 50.
  • an N-type semiconductor contact layer 130, an N-type DBR layer 132, an N-type semiconductor clad layer 134, an active layer 136, a P-type semiconductor clad layer 138, a P-type DBR layer 140, and a P-type semiconductor contact are formed on the surface of the base substrate 128.
  • Layer 142 is stacked in this order.
  • the P-type semiconductor contact layer 142, the P-type DBR layer 140, the P-type semiconductor clad layer 138, the active layer 136, and the N-type semiconductor clad layer are excluded except for the portions constituting the light emitting region multilayer portion 160 of each VCSEL 100A, 100B 134 are sequentially etched in a predetermined pattern.
  • etching is performed up to the surface of the N-type DBR layer 132.
  • the N-type semiconductor contact layer 130 is exposed by etching a position in the region where the surface of the N-type DBR layer 132 is exposed and close to the light emitting region multilayer section 160.
  • a cathode electrode 911 is formed in a region where the N-type semiconductor contact layer 130 is exposed.
  • an anode ring electrode 921 is formed on the surface of the P-type semiconductor contact layer 142 of the light emitting region multilayer part 160 that has not been etched.
  • the insulating film 162 is formed on the surface side of the base substrate 128 except for the surfaces of the cathode electrode 911 and the anode ring electrode 921.
  • An insulating layer 170 is formed in a region close to the light emitting region multilayer portion 160 on the surface of the insulating film 162.
  • a cathode pad electrode 912 and an anode pad electrode 922 are formed on the surface of the insulating layer 170.
  • a cathode wiring electrode 913 that connects the cathode electrode 911 and the cathode pad electrode 912 is formed.
  • An anode wiring electrode 923 that connects the anode ring electrode 921 and the anode pad electrode 922 is formed.
  • the light emitting element array 100 is formed by the processes as described above.
  • FIG. 13 is a diagram of a manufacturing process of a receptacle according to an embodiment of the present invention.
  • solder is applied to the surface of a mother substrate 122 (not shown in the drawing) which is an assembly of the mounting substrates 22. More specifically, cream solder is pressed onto the mother substrate 122 on which the metal mask is placed using a squeegee. Then, the solder is printed on the mother substrate 122 by removing the metal mask from the mother substrate 122.
  • the capacitor is placed on the solder of the mother board 122. Thereafter, heat is applied to the mother substrate 122 to solder the capacitor.
  • Ag paste is applied to a predetermined position on the mother substrate 122.
  • the drive circuit 26, the light receiving element array 50, and the light emitting element array 100 are mounted on the coated Ag, and die bonding is performed. Further, the drive circuit 26 and the light receiving element array 50 are connected by wire bonding using Au wires, and the drive circuit 26 and the light emitting element array 100 are connected by wire bonding.
  • the plurality of mounting boards 22 are obtained by cutting the mother board 122 using a dicer.
  • the positioning member 220 is placed on the mounting substrate 22 and the sealing resin 24. More specifically, a UV curable adhesive is applied to the negative region in the x-axis direction on the surface of the sealing portion 24a. After applying the adhesive, as shown in FIG. 13, the position of the center T100 of the light emitting part of the light emitting element array 100 is confirmed by the position recognition camera V1.
  • the mounting machine V2 for placing the positioning member 220 on the sealing resin 24 picks up and picks up the positioning member 220. Then, as shown in FIG. 13, the position of the lens center T230 of the convex lens 230 of the positioning member 220 is confirmed by the position recognition camera V3 in a state where the mounting machine V2 sucks the positioning member 220.
  • the light emitting element array 100 From the position data of the center T100 of the light emitting part of the light emitting element array 100 confirmed by the position recognition camera V1 and the position data of the lens center T230 of the convex lens 230 of the positioning member 220 confirmed by the position recognition camera V3, the light emitting element array 100. The relative position between the light emitting part and the convex lens 230 is calculated. Based on the calculated result, the movement amount of the onboard machine V2 is determined.
  • the positioning member 220 is moved by the determined movement amount by the mounting machine V2. Thereby, the lens center T230 of the convex lens 230 and the optical axis of the light emitting element array 100 coincide.
  • the positioning member 240 is mounted on the mounting substrate 22 and the sealing resin 24. More specifically, after a UV curable adhesive is applied to the negative region in the x-axis direction on the surface of the sealing portion 24a, the center of the light receiving portion of the light receiving element array 50 is applied as shown in FIG. The position T50 is confirmed by the position recognition camera V4.
  • the mounting machine V5 for mounting the positioning member 240 on the sealing resin 24 picks up and picks up the positioning member 240. Then, as shown in FIG. 13, the position of the lens center T250 of the convex lens 250 of the positioning member 240 is confirmed by the position recognition camera V6 in a state where the mounting machine V5 sucks the positioning member 240.
  • the light receiving element array 50 From the position data of the center T50 of the light receiving unit of the light receiving element array 50 confirmed by the position recognition camera V4 and the position data of the lens center T250 of the convex lens 250 of the positioning member 240 confirmed by the position recognition camera V6, the light receiving element array 50. The relative position between the light receiving unit and the convex lens 250 is calculated. Based on the calculated result, the movement amount of the onboard machine V5 is determined.
  • the positioning member 240 is moved by the determined movement amount by the mounting machine V5. Thereby, the lens center T250 of the convex lens 250 and the optical axis of the light receiving element array 50 coincide.
  • the positioning members 220 and 240 are pressed against the mounting substrate 22 and the sealing resin 24 by the mounting machines V2 and V5.
  • the UV curable adhesive between the positioning members 220 and 240 and the sealing resin 24 is cured, the positioning members 220 and 240 are not displaced and the mounting substrate 22 and the sealing resin are sealed. It is fixed to the resin 24.
  • the metal cap 30 is attached to the mounting substrate 22 on which the positioning member 200 is placed. More specifically, on the surface of the mounting substrate 22, a space H ⁇ b> 1 between the legs 24 b and 24 c of the sealing resin 24, a space H ⁇ b> 2 between the legs 24 d and 24 e, and the metal cap 30.
  • a thermosetting adhesive such as epoxy is applied to the portion where the projections C2 and C5 come into contact.
  • a conductive paste such as Ag is applied to the ground conductor exposed portions E2 and E3 of the mounting substrate 22.
  • the convex portion C3 of the metal cap 30 is fitted into a portion sandwiched between the leg portion 24b and the leg portion 24c of the sealing resin 24 on the mounting substrate 22, that is, the space H1. Further, the convex portion C6 is fitted into a portion sandwiched between the leg portion 24d and the leg portion 24e of the sealing resin 24, that is, the space H2. Thereby, the position of the metal cap 30 with respect to the mounting substrate 22 is determined. Simultaneously with the positioning of the metal cap 30, the convex portions C1 to C6 come into contact with the adhesive and the conductive paste on the mounting substrate 22.
  • the metal cap 30 After fitting the metal cap 30, heat is applied to the mounting substrate 22 to cure the adhesive and the conductive paste. Thereby, the metal cap 30 is fixed to the mounting substrate 22. Note that, by attaching the metal cap 30 to the mounting substrate 22, the convex portions C ⁇ b> 1 and C ⁇ b> 4 of the metal cap 30 come into contact with the ground conductor exposed portions E ⁇ b> 2 and E ⁇ b> 3 of the mounting substrate 22. Thereby, the metal cap 30 is connected to the ground conductor in the mounting substrate 22 and is kept at the ground potential.
  • the receptacle 20 is completed by the process as described above.
  • the optical fiber 60 inserted into the plug 40 is cut into a predetermined length.
  • the coating near the tip of the optical fiber 60 is removed using an optical fiber stripper. After removing the coating in the vicinity of the tip, cleaving is performed to bring out the cleavage plane of the core of the optical fiber 60.
  • a transparent adhesive such as an epoxy resin for fixing the optical fiber 60 is injected into the openings A1 and A2 and the recesses D3 and D4 of the plug 40 shown in FIG. Furthermore, it pushes in until the core wire of the optical fiber 60 hits the surfaces S9 and S14 of the plug 40. Then, the optical fiber 60 is fixed to the plug 40 by curing the transparent adhesive.
  • the plug 40 is connected to the receptacle 20. As described above, the plug 40 is connected to the grooves G1 and G2 of the positioning members 220 and 240 along the protrusions C7 and C8 of the plug 40 and the opening provided between the metal cap 30 and the receptacle 20. This is performed by pushing from A3 toward the positive side in the x-axis direction.
  • the optical transmission module 10 is completed through the manufacturing process as described above.
  • the VCSELs 100A and 100B are placed on a base substrate 128 that is one substrate.
  • the base substrate 128 is a semi-insulating semiconductor substrate.
  • the drive signal sent to the VCSEL 100A is not sent to the VCSEL 100B via the base substrate 128, and the drive signal sent to the VCSEL 100B is not sent to the VCSEL 100A via the base substrate 128. Further, the N-type semiconductor contact layer 130 of the VCSEL 100A and the N-type semiconductor contact layer 130 of the VCSEL 100B are separated.
  • the drive signal sent to the VCSEL 100A is not sent to the VCSEL 100B via the N-type semiconductor contact layer 130, and the drive signal sent to the VCSEL 100B is sent to the VCSEL 100A via the N-type semiconductor contact layer 130. It is never sent. That is, according to the optical transmission module 10 and the receptacle 20, sufficient isolation can be obtained between the VCSELs 100A and 100B.
  • the optical loss of the laser beam B1 is reduced as described below. More specifically, the laser beam B1 is refracted when being emitted from a resin having a relatively high refractive index to air having a relatively low refractive index. Therefore, the laser beam B1 traveling in the air propagates while spreading more than the laser beam B1 traveling in the resin. Therefore, in the optical system path of the laser beam B1, the spread of the laser beam B1 can be suppressed by increasing the resin ratio and decreasing the air ratio. Therefore, in the receptacle 20, the laser beam B1 emitted from the light emitting element array 100 passes through the positioning member 200 made of resin.
  • the proportion of resin increases and the proportion of air decreases.
  • the spread of the laser beam B1 is suppressed. Therefore, the intensity of the laser beam B1 incident on the optical fiber 60 is increased, and the optical loss of the laser beam B1 is reduced. For the same reason, the optical loss of the laser beam B2 is also reduced.
  • the optical loss of the laser beam B1 can be further reduced.
  • the laser beam B ⁇ b> 1 emitted from the light emitting element array 100 passes through the sealing resin 24.
  • the proportion occupied by the resin increases and the proportion occupied by the air decreases.
  • the spread of the laser beam B1 is suppressed. Therefore, the intensity of the laser beam B1 incident on the optical fiber 60 is increased, and the optical loss of the laser beam B1 is reduced. For the same reason, the optical loss of the laser beam B2 is also reduced.
  • a total reflection surface R1 is provided on the optical path of the laser beam B1.
  • the angle formed by the total reflection surface R1 and the optical axis of the optical fiber 60 is 45 °, and the angle formed by the total reflection surface R1 and the light emitting element array 100 is 45 °. That is, the angle formed by the total reflection surface R1 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R1 and the light emitting element array 100.
  • the optical fiber 60 and the light emitting element array 100 are optically optical even if the optical axis of the optical fiber 60 is not the same z-axis direction as the emission direction of the laser beam B 1 from the light emitting element array 100. Can be combined.
  • a total reflection surface R2 is provided on the optical path of the laser beam B2.
  • the angle formed by the total reflection surface R2 and the optical axis of the optical fiber 60 is 45 °, and the angle formed by the total reflection surface R2 and the light receiving element array 50 is 45 °. That is, the angle formed by the total reflection surface R2 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R2 and the light receiving element array 50.
  • the optical fiber 60 and the light receiving element array 50 are optically coupled even if the optical axis of the optical fiber 60 is not the same z-axis direction as the light receiving direction of the light receiving element array 50. Can do.
  • the spread of the laser beams B1 and B2 with respect to the optical axis can be suppressed by propagating the light within the resin.
  • the convex lenses 230 and 250 and the total reflection surfaces R1 and R2 provided in the receptacle 20 can be reduced.
  • the optical transmission module 10 and the receptacle 20 can be reduced in size and reduced in height.
  • the insertion direction of the plug 40 into the receptacle 20 is the same x-axis direction as the optical axis of the optical fiber 60.
  • the surface mounting electrode E ⁇ b> 1 is provided on the back surface of the mounting substrate 22.
  • the light transmission module 10 can be surface-mounted without providing a connector for connection to the circuit board on which the light transmission module 10 is mounted. Therefore, the substantial occupied area of the light transmission module 10 on the circuit board on which the light transmission module 10 is mounted can be suppressed.
  • a convex lens 230 is provided on the back surface of the optical coupling portion 224 of the positioning member 200. Accordingly, the laser beam B 1 from the light emitting element array 100 passes through the convex lens 230. At this time, even if the position of the light emitting element array 100 is shifted from the positioning member 220, the laser beam B1 is condensed or collimated by the convex lens 230 and proceeds to the total reflection surface R1. . Therefore, according to the receptacle 20 and the optical transmission module 10, it is possible to suppress optical loss due to the positional deviation of the light emitting element array 100.
  • a convex lens 250 is provided on the back surface of the optical coupling portion 244 of the positioning member 240 as shown in FIG. Accordingly, the laser beam B ⁇ b> 2 emitted from the optical fiber 60 passes through the convex lens 250. At this time, even if the optical axis of the laser beam B 2 reflected by the total reflection surface R 2 is shifted, the laser beam B 2 is condensed or collimated by the convex lens 250 and proceeds to the light receiving element array 50. Therefore, according to the receptacle 20 and the optical transmission module 10, the optical loss due to the optical axis shift of the laser beam B2 can be suppressed.
  • a convex lens 44 is provided on the end surface S ⁇ b> 10 of the transmission side plug 42. Accordingly, the laser beam B1 reflected by the total reflection surface R1 passes through the convex lens 44. At this time, the laser beam B 1 is condensed or collimated by the convex lens 44 and travels to the optical fiber 60. Therefore, according to the optical transmission module 10, it is possible to suppress optical loss due to the optical axis shift of the laser beam B1.
  • a convex lens 48 is provided on the end surface S ⁇ b> 15 of the receiving side plug 46. Therefore, the laser beam B2 emitted from the optical fiber 60 passes through the convex lens 48. At this time, even if the position of the optical fiber 60 is misaligned with respect to the plug 40, the laser beam B2 is condensed or collimated by the convex lens 48 and proceeds to the total reflection surface R2. Therefore, according to the optical transmission module 10, it is possible to suppress optical loss due to the positional deviation of the optical fiber 60.
  • FIG. 14 is a cross-sectional view of a conventional receptacle 400 and plug 41. More specifically, when the entire positioning member 200 is provided on the surface of the sealing resin 25 as in the optical transmission module 400 illustrated in FIG. 14, the thickness of the plug 41 in the z-axis direction is reduced. Therefore, the strength of the plug 41 is reduced. Therefore, in the optical transmission module 10, as shown in FIG. 9, the positioning member 200 is provided across the mounting substrate 22 and the sealing resin 24. Further, the plug 40 is positioned on the plug guide portions 222 and 242 of the positioning member 200.
  • the heights h1 and h3 of the grooves G1 and G2 of the plug guide portions 222 and 242 are lower than the height h2 of the sealing resin 24.
  • the optical axis of the optical fiber 60 is located on the positive side in the z-axis direction with respect to the sealing resin 24.
  • the plug 40 can be enlarged in the z-axis direction, it is easier to grip than the plug 41 of the optical transmission module 400. Therefore, in the optical transmission module 10, it is easy to connect the plug 40 to the receptacle 20.
  • an opening A3 is provided between the metal cap 30 and the mounting substrate 22 in the optical transmission module 10 as shown in FIG.
  • the plug 40 is connected by inserting the plug 40 from the opening A3. Therefore, in the optical transmission module 10, it is not necessary to remove the metal cap 30 when attaching / detaching the plug 40, and the attachment / detachment work of the plug 40 is easy.
  • the metal cap 30 is provided with engaging portions 32a to 32d for fixing the plug 40. Thereby, the position shift with respect to the positioning member 200 of the plug 40 is prevented. As a result, the optical axis shift of the optical fiber 60 is prevented. Therefore, according to the optical transmission module 10, the optical axis shift of the optical fiber 60 can be prevented and the optical loss can be suppressed.
  • the positioning member 200 is attached to the mounting board 22, conventionally, a pin P1 provided on the mounting board 22 as shown in FIG. 15 has been used.
  • the positioning member 200 is fixed to the mounting substrate 22 by inserting the pin P ⁇ b> 1 provided on the mounting substrate 22 into the hole H ⁇ b> 9 provided in the positioning member 200.
  • a positional deviation occurs between the light emitting element array 100 and the convex lens 230 of the positioning member 200 due to a positional deviation when the P1 is manufactured on the mounting substrate 22 or a positional deviation when the light emitting element array 100 is mounted.
  • the positioning member 200 when the positioning member 200 is attached to the mounting substrate 22, the positional relationship between the center T100 of the light emitting part of the light emitting element array 100 and the lens center T230 of the convex lens 230 is confirmed.
  • the positioning member 200 is placed on the mounting substrate 22 while checking with the camera for use. Therefore, the light emitting element array 100 and the convex lens 230 are directly positioned without going through the pin P1.
  • the occurrence of misalignment is suppressed.
  • positional deviation between the light receiving element array 50 and the convex lens 250 is also suppressed.
  • FIG. 16 is a cross-sectional view of an optical transmission module 10 ′ and a receptacle 20 ′ according to a modification.
  • FIG. 1 is used for the external view.
  • the difference between the light transmission module 10 and the light transmission module 10 ′ is that the positioning member 200 is further provided with a convex lens. Since the other points are not different between the optical transmission module 10 and the optical transmission module 10 ', description thereof will be omitted.
  • the same components as those of the light transmission module 10 are denoted by the same reference numerals as those of the light transmission module 10.
  • a convex lens 232 is provided on the total reflection surface R ⁇ b> 1 of the positioning member 220.
  • the laser beam B 1 emitted from the light emitting element array 100 is condensed or collimated by the convex lens 232 and transmitted to the optical fiber 60. Therefore, according to the optical transmission module 10 ′, optical loss can be further suppressed as compared with the optical transmission module 10.
  • a convex lens 234 (second convex lens) is provided on the surface of the positioning member 220 facing the transmission side plug 42 as shown in FIG.
  • the laser beam B 1 reflected by the total reflection surface R 1 is collected or collimated by the convex lens 234 and transmitted to the optical fiber 60. Therefore, according to the optical transmission module 10 ′, optical loss can be further suppressed as compared with the optical transmission module 10.
  • a convex lens 252 is provided on the total reflection surface R2 of the positioning member 240.
  • the laser beam B ⁇ b> 2 emitted from the optical fiber 60 is condensed or collimated by the convex lens 252 and transmitted to the light receiving element array 50. Therefore, according to the optical transmission module 10 ′, optical loss can be further suppressed as compared with the optical transmission module 10.
  • a convex lens 254 is provided on the surface of the positioning member 240 facing the receiving side plug 46 as shown in FIG. Thereby, the laser beam B2 emitted from the optical fiber 60 is condensed or collimated by the convex lens 254 and transmitted to the total reflection surface R2. Therefore, according to the optical transmission module 10 ′, optical loss can be further suppressed as compared with the optical transmission module 10.
  • the receptacle and the optical transmission module according to the present invention are not limited to the optical transmission modules 10 and 10 'according to the above-described embodiment, and can be changed within the scope of the gist thereof.
  • the present invention is useful for receptacles and optical transmission modules, and is particularly excellent in that isolation between VCSELs can be secured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The purpose of the present invention is to provide a receptacle and an optical transmission module using a VCSEL array capable of securing isolation between the VCSELs. A light-emitting element array (100) is formed by integrating VCSELs (100A, 100B). A positioning member optically couples the VCSELs (100A, 100B) and an optical fiber core. The light-emitting element array (100) is provided with: a base substrate (128); a light-emitting region multilayer section (160) which includes an N-type DBR layer (132), an active layer (136) having a quantum well, and a P-type DBR layer (140); an anode electrode (921) connected to the P-type DBR layer (140); and a cathode electrode (911) connected to the N-type DBR layer (132). On the side of the light-emitting region multilayer section (160), the base substrate (128) consists of a semi-insulating semiconductor. Pairs of VCSELs (100A, 100B) are formed on the base substrate (128).

Description

レセプタクル及び光伝送モジュールReceptacle and optical transmission module
 本発明は、レセプタクル及び光伝送モジュールに関し、より特定的には、電気信号を光信号に変換して伝送するレセプタクル及び光伝送モジュールに関する。 The present invention relates to a receptacle and an optical transmission module, and more particularly to a receptacle and an optical transmission module that convert an electrical signal into an optical signal and transmit it.
 従来のレセプタクルとしては、例えば、特許文献1に記載の光結合器が知られている。図17は、特許文献1に記載の光結合器の分解斜視図である。 As a conventional receptacle, for example, an optical coupler described in Patent Document 1 is known. FIG. 17 is an exploded perspective view of the optical coupler described in Patent Document 1. FIG.
 光結合器500は、図17に示すように、光コネクタ510A及び光通信モジュール510Bを備えている。また、光コネクタ510Aは、複数本の光ファイバ502Aからなる光ファイバアレイ520A、光導波路504A、レンズ基板530Aを備えている。さらに、光通信モジュール510Bは、光コネクタ510Aを接続するためのレンズ筐体560、及び垂直共振器面発光レーザ(以下、VCSELと称す)であるVCSEL505を備えている。なお、光通信モジュール510Bでは、光ファイバ502Aの本数と同数のVCSEL505が一つの素子内に組み合わされたレーザアレイが用いられている。 The optical coupler 500 includes an optical connector 510A and an optical communication module 510B as shown in FIG. The optical connector 510A includes an optical fiber array 520A composed of a plurality of optical fibers 502A, an optical waveguide 504A, and a lens substrate 530A. Further, the optical communication module 510B includes a lens housing 560 for connecting the optical connector 510A, and a VCSEL 505 which is a vertical cavity surface emitting laser (hereinafter referred to as VCSEL). The optical communication module 510B uses a laser array in which the same number of VCSELs 505 as the number of optical fibers 502A are combined in one element.
 光通信モジュール510Bでは、VCSEL505により電気信号を光信号に変換する。変換された光信号は、複数のVCSEL505から出射され、光コネクタ510Aのレンズ基板530A及び光導波路504Aを介して光ファイバアレイ520Aに伝えられる。 In the optical communication module 510B, the VCSEL 505 converts the electrical signal into an optical signal. The converted optical signals are emitted from the plurality of VCSELs 505 and transmitted to the optical fiber array 520A via the lens substrate 530A and the optical waveguide 504A of the optical connector 510A.
 しかしながら、光結合器500のようにVCSEL505のレーザアレイを用いた場合、各VCSEL505間で十分にアイソレーションをとることができないという問題がある。これについて、特許文献2に記載のVCSEL600を例に詳細を説明する。図18は、特許文献2に記載のVCSELの断面図である。 However, when a VCSEL 505 laser array such as the optical coupler 500 is used, there is a problem that sufficient isolation cannot be obtained between the VCSELs 505. This will be described in detail using the VCSEL 600 described in Patent Document 2 as an example. FIG. 18 is a cross-sectional view of a VCSEL described in Patent Document 2.
 VCSEL600の概略的な構造は、図18に示すように、裏面にカソード電極630が形成されたN型半導体基板612の上に、第1DBR(多層分布ブラッグ反射器)層614が形成されている。第1DBR層614の上層には第1スペーサ層616が形成されている。第1スペーサ層616の上層には、量子井戸を備える活性層618が形成されている。活性層618の上層には、第2スペーサ層620が形成されている。第2スペーサ層620の上層には、第2DBR層622が形成されている。第2DBR層622の上層には、アノード電極628が形成されている。そして、アノード電極628とカソード電極630との間に駆動信号が印加されることで、基板に垂直な(積層方向に平行な)方向へ鋭い指向性を有するレーザが発生する。 As shown in FIG. 18, the schematic structure of the VCSEL 600 includes a first DBR (Multilayer Distributed Bragg Reflector) layer 614 formed on an N-type semiconductor substrate 612 having a cathode electrode 630 formed on the back surface. A first spacer layer 616 is formed on the first DBR layer 614. An active layer 618 having a quantum well is formed on the first spacer layer 616. A second spacer layer 620 is formed on the active layer 618. A second DBR layer 622 is formed on the second spacer layer 620. An anode electrode 628 is formed on the second DBR layer 622. Then, when a drive signal is applied between the anode electrode 628 and the cathode electrode 630, a laser having sharp directivity in a direction perpendicular to the substrate (parallel to the stacking direction) is generated.
 上述した一つのN型半導体基板612上に複数のVCSEL600を形成(アレイ化)すると、各VCSEL600に与える各駆動信号が、N型半導体基板612内に漏洩する。これにより、各VCSEL600間で駆動信号のクロストークが発生する。従って、各VCSEL600間で十分にアイソレーションをとることができない。 When a plurality of VCSELs 600 are formed (arrayed) on one N-type semiconductor substrate 612 described above, each drive signal applied to each VCSEL 600 leaks into the N-type semiconductor substrate 612. As a result, crosstalk of drive signals occurs between the VCSELs 600. Therefore, sufficient isolation cannot be obtained between the VCSELs 600.
特開2008-158001号公報JP 2008-158001 A 特表2003-508928号公報Special table 2003-508928 gazette
 そこで、本発明の目的は、各VCSEL間のアイソレーションを確保できるレセプタクル及び光伝送モジュールを提供することである。 Therefore, an object of the present invention is to provide a receptacle and an optical transmission module that can ensure isolation between VCSELs.
 本発明の一の形態に係るレセプタクルは、光ファイバーの一端に設けられたプラグが接続されるレセプタクルであって、複数の垂直共振器面発光レーザが一体化されてなる発光素子アレイと、複数の前記光ファイバーのコアと複数の前記垂直共振器面発光レーザとをそれぞれ光学的に結合させる位置決め部材と、前記発光素子アレイが実装される実装基板と、を備え、前記発光素子アレイは、ベース基板と、該ベース基板の表面に形成された、N型半導体多層膜反射層、量子井戸を備える活性層及びP型半導体多層膜反射層を含む発光領域多層部と、前記P型半導体多層膜反射層に接続されるアノード用電極と、前記N型半導体多層膜反射層に接続されるカソード用電極と、を備え、前記ベース基板の少なくとも前記発光領域多層部側の所定部分が、半絶縁性半導体からなり、前記カソード用電極は、前記ベース基板の表面側に形成されており、前記発光領域多層部、前記アノード用電極及び前記カソード用電極からなる垂直共振器面発光レーザの組は、前記ベース基板に複数形成されていること、を特徴とする。 A receptacle according to an aspect of the present invention is a receptacle to which a plug provided at one end of an optical fiber is connected, and a light emitting element array in which a plurality of vertical cavity surface emitting lasers are integrated; A positioning member that optically couples an optical fiber core and the plurality of vertical cavity surface emitting lasers, and a mounting substrate on which the light emitting element array is mounted, the light emitting element array including a base substrate; A light emitting region multilayer portion including an N-type semiconductor multilayer reflective layer, an active layer having a quantum well and a P-type semiconductor multilayer reflective layer formed on the surface of the base substrate, and connected to the P-type semiconductor multilayer reflective layer An anode electrode, and a cathode electrode connected to the N-type semiconductor multilayer film reflective layer, at least on the light emitting region multilayer portion side of the base substrate The portion is made of a semi-insulating semiconductor, and the cathode electrode is formed on the surface side of the base substrate, and the vertical cavity surface emitting device includes the light emitting region multilayer portion, the anode electrode, and the cathode electrode. A plurality of sets of lasers are formed on the base substrate.
 本発明の一の形態に係る光伝送モジュールは、前記レセプタクルと、前記光ファイバーの先端に設けられたプラグと、を更に備え、前記プラグには、前記光ファイバーの光軸上に存在し、かつ、前記位置決め部材と対向する第3の凸レンズが設けられていること、を特徴とする。 An optical transmission module according to an aspect of the present invention further includes the receptacle and a plug provided at a tip of the optical fiber, wherein the plug exists on an optical axis of the optical fiber, and A third convex lens facing the positioning member is provided.
 本発明に係るレセプタクル及び光伝送モジュールによれば、各VCSEL間のアイソレーションを確保できる。 According to the receptacle and the optical transmission module according to the present invention, it is possible to ensure isolation between the VCSELs.
本発明の一実施形態に係る光伝送モジュールの外観斜視図である。1 is an external perspective view of an optical transmission module according to an embodiment of the present invention. 本発明の一実施形態に係るレセプタクルの分解斜視図である。It is a disassembled perspective view of the receptacle which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレセプタクルから金属キャップ及び位置決め部材を除いた外観斜視図である。It is an external appearance perspective view which removed the metal cap and the positioning member from the receptacle which concerns on one Embodiment of this invention. 本発明の一実施形態に係る発光素子アレイをz軸方向の正方向側から平面視した図である。It is the figure which planarly viewed the light emitting element array which concerns on one Embodiment of this invention from the positive direction side of az axis direction. 図4に記載の発光素子アレイのA-A又はB-Bにおける断面図である。FIG. 5 is a cross-sectional view taken along the line AA or BB of the light emitting element array illustrated in FIG. 4. 本発明の一実施形態に係るレセプタクルから金属キャップを除いた状態の外観斜視図である。It is an external appearance perspective view of the state which removed the metal cap from the receptacle which concerns on one Embodiment of this invention. 本発明の一実施形態に係る位置決め部材の外観斜視図である。It is an appearance perspective view of a positioning member concerning one embodiment of the present invention. 本発明の一実施形態に係る位置決め部材をz軸方向の負方向側から平面視した図である。It is the figure which planarly viewed the positioning member which concerns on one Embodiment of this invention from the negative direction side of az axis direction. 図7に記載の位置決め部材のC-C又はD-Dにおける断面に、本発明の一実施形態に係る実装基板及びプラグを追加した図である。FIG. 8 is a diagram in which a mounting board and a plug according to an embodiment of the present invention are added to a cross section taken along the line CC or DD of the positioning member illustrated in FIG. 7. 本発明の一実施形態に係る金属キャップの外観斜視図である。It is an external appearance perspective view of the metal cap which concerns on one Embodiment of this invention. 本発明の一実施形態に係るプラグの外観斜視図である。1 is an external perspective view of a plug according to an embodiment of the present invention. 本発明の一実施形態に係るプラグをz軸方向の負方向側から平面視した図である。It is the figure which planarly viewed the plug which concerns on one Embodiment of this invention from the negative direction side of az axis direction. 本発明の一実施形態に係るレセプタクルの製造工程の図である。It is a figure of the manufacturing process of the receptacle which concerns on one Embodiment of this invention. 従来のレセプタクル及びプラグの断面図である。It is sectional drawing of the conventional receptacle and plug. 従来のレセプタクルの製造工程の図である。It is a figure of the manufacturing process of the conventional receptacle. 本発明の一実施形態の変形例に係る位置決め部材の断面に、本発明の一実施形態に係る実装基板及びプラグを追加した図である。It is the figure which added the mounting substrate and plug which concern on one Embodiment of this invention to the cross section of the positioning member which concerns on the modification of one Embodiment of this invention. 特許文献1に記載の光結合器の分解斜視図である。10 is an exploded perspective view of an optical coupler described in Patent Document 1. FIG. 特許文献2に記載のVCSELの断面図である。It is sectional drawing of VCSEL of patent document 2. FIG.
 以下に、本発明の一実施形態に係るレセプタクル、光伝送モジュール及びその製造方法について説明する。 Hereinafter, a receptacle, an optical transmission module, and a manufacturing method thereof according to an embodiment of the present invention will be described.
(光伝送モジュールの構成)
 以下に、本発明の実施形態に係るレセプタクル及び光伝送モジュールの構成について、図面を参照しながら説明する。図1は、本発明の一実施形態に係る光伝送モジュール10の外観斜視図である。図2は、本発明の一実施形態に係るレセプタクル20の分解斜視図である。図3は、本発明の一実施形態に係るレセプタクル20から金属キャップ30及び位置決め部材200を除いた外観斜視図である。なお、光伝送モジュール10の上下方向をz軸方向と定義し、z軸方向から平面視したときに、光伝送モジュール10の長辺に沿った方向をx軸方向と定義する。さらに、光伝送モジュール10の短辺に沿った方向をy軸方向と定義する。x軸、y軸及びz軸は互いに直交している。
(Configuration of optical transmission module)
Hereinafter, configurations of a receptacle and an optical transmission module according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of an optical transmission module 10 according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the receptacle 20 according to the embodiment of the present invention. FIG. 3 is an external perspective view in which the metal cap 30 and the positioning member 200 are removed from the receptacle 20 according to the embodiment of the present invention. Note that the vertical direction of the light transmission module 10 is defined as the z-axis direction, and the direction along the long side of the light transmission module 10 when viewed in plan from the z-axis direction is defined as the x-axis direction. Furthermore, the direction along the short side of the optical transmission module 10 is defined as the y-axis direction. The x axis, the y axis, and the z axis are orthogonal to each other.
 光伝送モジュール10は、図1に示すように、レセプタクル20及びプラグ40を備えている。なお、プラグ40は、レセプタクル20に接続される。 The optical transmission module 10 includes a receptacle 20 and a plug 40 as shown in FIG. The plug 40 is connected to the receptacle 20.
 レセプタクル20は、図2に示すように、金属キャップ30、受光素子アレイ50、発光素子アレイ100、位置決め部材200、実装基板22及び封止樹脂24を備えている。 The receptacle 20 includes a metal cap 30, a light receiving element array 50, a light emitting element array 100, a positioning member 200, a mounting substrate 22, and a sealing resin 24, as shown in FIG.
 実装基板22は、図3に示すように、z軸方向から平面視したとき、矩形状を成している。また、実装基板22のz軸方向の負方向側の面(以下で「z軸方向の負方向側の面」を、裏面と称す)には、光伝送モジュール10を回路基板に実装する際に、回路基板のランドと接触する表面実装用電極E1(図3には図示せず)が設けられている。 The mounting substrate 22 has a rectangular shape when seen in a plan view from the z-axis direction, as shown in FIG. Further, when the optical transmission module 10 is mounted on the circuit board, the surface of the mounting substrate 22 on the negative side in the z-axis direction (hereinafter, the “surface on the negative direction side in the z-axis direction” is referred to as the back surface). A surface mounting electrode E1 (not shown in FIG. 3) is provided in contact with the land of the circuit board.
 実装基板22のz軸方向の正方向側の面(以下「z軸方向の正方向側の面」を、表面と称す)において、x軸方向の負方向側に位置する辺L1とy軸方向の負方向側に位置する辺L2とが成す角の近傍には、実装基板22内に設けられたグランド導体の一部が露出しているグランド導体露出部E2が設けられている。グランド導体露出部E2は、z軸方向の正方向側から平面視したとき、x軸方向を長辺とする長方形状を成している。 The side L1 located on the negative direction side in the x-axis direction and the y-axis direction on the surface on the positive direction side in the z-axis direction of the mounting substrate 22 (hereinafter referred to as “surface on the positive direction side in the z-axis direction”) In the vicinity of an angle formed by the side L2 located on the negative direction side, a ground conductor exposed portion E2 in which a part of the ground conductor provided in the mounting substrate 22 is exposed is provided. The ground conductor exposed portion E2 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
 さらに、実装基板22の表面において、x軸方向の負方向側に位置する辺L1とy軸方向の正方向側に位置する辺L3とが成す角の近傍には、実装基板22内に設けられたグランド導体の一部が露出しているグランド導体露出部E3が設けられている。グランド導体露出部E3は、z軸方向の正方向側から平面視したとき、x軸方向を長辺とする長方形状を成している。 Further, on the surface of the mounting substrate 22, the surface is provided in the mounting substrate 22 in the vicinity of an angle formed by the side L <b> 1 positioned on the negative side in the x-axis direction and the side L <b> 3 positioned on the positive direction side in the y-axis direction. A ground conductor exposed portion E3 in which a part of the ground conductor is exposed is provided. The ground conductor exposed portion E3 has a rectangular shape having a long side in the x-axis direction when viewed from the positive side in the z-axis direction.
 受光素子アレイ50及び発光素子アレイ100は、実装基板22の表面におけるx軸方向の正方向側の部分に設けられている。受光素子アレイ50は、光信号を電気信号に変換する複数のフォトダイオードを含んだ素子である。発光素子アレイ100は、電気信号を光信号に変換する複数のダイオードを含んだ素子である。 The light receiving element array 50 and the light emitting element array 100 are provided on the surface of the mounting substrate 22 on the positive side in the x-axis direction. The light receiving element array 50 is an element including a plurality of photodiodes that convert an optical signal into an electric signal. The light emitting element array 100 is an element including a plurality of diodes that convert an electrical signal into an optical signal.
 また、駆動回路26は、実装基板22の表面におけるx軸方向の正方向側の部分において、受光素子アレイ50及び発光素子アレイ100よりもx軸方向の正方向側に設けられている。駆動回路26は、受光素子アレイ50及び発光素子アレイ100を駆動するための半導体回路素子である。 Further, the drive circuit 26 is provided on the positive direction side in the x-axis direction with respect to the light receiving element array 50 and the light emitting element array 100 in the positive direction side portion in the x-axis direction on the surface of the mounting substrate 22. The drive circuit 26 is a semiconductor circuit element for driving the light receiving element array 50 and the light emitting element array 100.
 また、駆動回路26は、図3に示すように、z軸方向から平面視したとき、y軸方向に平行な長辺を有する矩形状を成している。駆動回路26と受光素子アレイ50とは、ワイヤーUを介してワイヤーボンディングにより接続されている。また、駆動回路26と発光素子アレイ100とは、ワイヤーUを介してワイヤーボンディングにより接続されている。これにより、駆動回路26からの電気信号が、ワイヤーUを介して発光素子アレイ100に伝送され、受光素子アレイ50からの電気信号が、ワイヤーUを介して駆動回路26に伝送される Further, as shown in FIG. 3, the drive circuit 26 has a rectangular shape having a long side parallel to the y-axis direction when viewed in plan from the z-axis direction. The drive circuit 26 and the light receiving element array 50 are connected through wire U by wire bonding. Further, the drive circuit 26 and the light emitting element array 100 are connected to each other by wire bonding via the wire U. As a result, the electrical signal from the drive circuit 26 is transmitted to the light emitting element array 100 via the wire U, and the electrical signal from the light receiving element array 50 is transmitted to the drive circuit 26 via the wire U.
 封止樹脂24は、図3に示すように、封止部24a及び脚部24b~24eを備えており、エポキシ樹脂などの透明な樹脂からなる。封止部24aは、略直方体状をなしており、実装基板22の表面におけるx軸方向の正方向側の部分に設けられている。封止部24aは、受光素子アレイ50、発光素子アレイ100及び駆動回路26を覆っている。 As shown in FIG. 3, the sealing resin 24 includes a sealing portion 24a and leg portions 24b to 24e, and is made of a transparent resin such as an epoxy resin. The sealing portion 24 a has a substantially rectangular parallelepiped shape, and is provided in a portion on the positive direction side in the x-axis direction on the surface of the mounting substrate 22. The sealing portion 24 a covers the light receiving element array 50, the light emitting element array 100, and the drive circuit 26.
 脚部24b,24cは、x軸方向の負方向側から正方向側にこの順に並ぶように、間隔を空けて設けられている。脚部24b,24cは、封止部24aのy軸方向の負方向側の面から、実装基板22の辺L2に向かって突出する直方体状の部材である。また、脚部24bと脚部24cとの間には、後述する金属キャップ30の凸部C3が嵌め込まれる空間H1が設けられている。 The leg portions 24b and 24c are provided at intervals so as to be arranged in this order from the negative direction side in the x-axis direction to the positive direction side. The leg portions 24b and 24c are rectangular parallelepiped members that protrude toward the side L2 of the mounting substrate 22 from the negative side surface in the y-axis direction of the sealing portion 24a. Further, a space H1 into which a convex portion C3 of a metal cap 30 described later is fitted is provided between the leg portion 24b and the leg portion 24c.
 脚部24d,24eは、x軸方向の負方向側から正方向側にこの順に並ぶように、間隔を空けて設けられている。脚部24d,24eは、封止部24aのy軸方向の正方向側の面から、実装基板22の辺L3に向けて突出する直方体状の部材である。また、脚部24dと脚部24eとの間には、後述する金属キャップ30の凸部C6が嵌めこまれる空間H2が設けられている。 The leg portions 24d and 24e are provided at intervals so as to be arranged in this order from the negative direction side to the positive direction side in the x-axis direction. The leg portions 24d and 24e are rectangular parallelepiped members that protrude toward the side L3 of the mounting substrate 22 from the surface on the positive side in the y-axis direction of the sealing portion 24a. Further, a space H2 is provided between the leg portion 24d and the leg portion 24e in which a convex portion C6 of the metal cap 30 described later is fitted.
(発光素子アレイの構成)
 次に、発光素子アレイ100について、図面を参照しながら説明する。図4は、本発明の一実施形態に係る発光素子アレイ100をz軸方向の正方向側から平面視した図である。図5は、図4に記載の発光素子アレイ100のA-A又はB-Bにおける断面図である。なお、本実施形態では、2つのVCSEL100A,100Bのみが記載されているが、本願発明の発光素子アレイ100を構成するVCSELの個数は、これに限るものではない。
(Configuration of light emitting element array)
Next, the light emitting element array 100 will be described with reference to the drawings. FIG. 4 is a plan view of the light emitting element array 100 according to an embodiment of the present invention as seen from the positive side in the z-axis direction. FIG. 5 is a cross-sectional view taken along line AA or BB of the light emitting element array 100 shown in FIG. In the present embodiment, only two VCSELs 100A and 100B are described, but the number of VCSELs constituting the light emitting element array 100 of the present invention is not limited to this.
 発光素子アレイ100は、図4に示すように、2つのVCSEL100A,100Bを備えている。すなわち、VCSEL100A,100Bが一体化してアレイ化されており、VCSEL100A,100Bはそれぞれ独立に駆動する。また、各VCSEL100A,100Bからは、z軸方向の正方向側に向かって、レーザービームB1が出射される。2つのVCSEL100A,100Bは、図5に示すように、共通のベース基板128の表面に設けられている。 The light emitting element array 100 includes two VCSELs 100A and 100B as shown in FIG. That is, the VCSELs 100A and 100B are integrated and arrayed, and the VCSELs 100A and 100B are driven independently. Further, a laser beam B1 is emitted from each VCSEL 100A, 100B toward the positive direction side in the z-axis direction. The two VCSELs 100A and 100B are provided on the surface of a common base substrate 128 as shown in FIG.
 ベース基板128は、半絶縁性半導体からなり、具体的には、GaAsを材料とする基板からなる。ベース基板128は、抵抗率が1.0×107Ω・cm以上であることが好ましい。このような抵抗率の半絶縁性半導体からなるベース基板128を用いることにより、VCSEL100AとVCSEL100Bとの間のアイソレーションをより高く確保することができる。 The base substrate 128 is made of a semi-insulating semiconductor, specifically, a substrate made of GaAs. The base substrate 128 preferably has a resistivity of 1.0 × 10 7 Ω · cm or more. By using the base substrate 128 made of a semi-insulating semiconductor having such a resistivity, higher isolation can be ensured between the VCSEL 100A and the VCSEL 100B.
 ベース基板128の表面には、図5に示すように、N型半導体コンタクト層130が積層されている。N型半導体コンタクト層130は、VCSEL100A,100Bのそれぞれに一つずつ設けられている。そして、VCSEL100AのN型半導体コンタクト層130とVCSEL100BのN型半導体コンタクト層130とは互いに絶縁されている。なお、N型半導体コンタクト層130は、N型の導電性を有する化合物半導体から成る。 As shown in FIG. 5, an N-type semiconductor contact layer 130 is laminated on the surface of the base substrate 128. One N-type semiconductor contact layer 130 is provided for each of the VCSELs 100A and 100B. The N-type semiconductor contact layer 130 of the VCSEL 100A and the N-type semiconductor contact layer 130 of the VCSEL 100B are insulated from each other. The N-type semiconductor contact layer 130 is made of a compound semiconductor having N-type conductivity.
 N型半導体コンタクト層130の表面には、図5に示すように、N型半導体多層膜反射層(以下で、N型DBR層と称す)132が積層されている。また、N型DBR層132には、z軸方向の正方向側から平面視したとき、円弧状の溝Wが設けられている。溝Wは、VCSEL100A,100Bそれぞれの中央付近x軸方向の負方向側において半周している。溝Wの底部は、N型半導体コンタクト層130の表面まで到達している。N型DBR層132は、AlGaAsからなり、Gaに対するAlの組成比率が異なる層を複数積層して構成されている。これにより、N型DBR層132は、所定周波数のレーザ光を発生するための第1の反射器として機能する。なお、N型DBR層132は、N型半導体コンタクト層を兼ねてもよい。すなわち、N型半導体コンタクト層は必須ではない。 On the surface of the N-type semiconductor contact layer 130, as shown in FIG. 5, an N-type semiconductor multilayer reflective layer (hereinafter referred to as an N-type DBR layer) 132 is laminated. Further, the N-type DBR layer 132 is provided with an arc-shaped groove W when viewed from the positive side in the z-axis direction. The groove W has a half circumference near the center of each of the VCSELs 100A and 100B on the negative direction side in the x-axis direction. The bottom of the trench W reaches the surface of the N-type semiconductor contact layer 130. The N-type DBR layer 132 is made of AlGaAs and is formed by stacking a plurality of layers having different composition ratios of Al to Ga. Thereby, the N-type DBR layer 132 functions as a first reflector for generating laser light having a predetermined frequency. Note that the N-type DBR layer 132 may also serve as an N-type semiconductor contact layer. That is, the N-type semiconductor contact layer is not essential.
 N型DBR層132の表面には、図5に示すように、N型半導体クラッド層134が積層されている。N型半導体クラッド層134は、z軸方向から平面視したときに、VCSEL100A,100Bの中心に設けられており、円形をなしている。各N型半導体クラッド層134同士は、互いに絶縁されている。N型半導体クラッド層134は、AlGaAsからなる。 As shown in FIG. 5, an N-type semiconductor clad layer 134 is laminated on the surface of the N-type DBR layer 132. The N-type semiconductor clad layer 134 is provided at the center of the VCSELs 100A and 100B when viewed in plan from the z-axis direction, and has a circular shape. The N-type semiconductor clad layers 134 are insulated from each other. The N-type semiconductor clad layer 134 is made of AlGaAs.
 N型半導体クラッド層134の表面には、図5に示すように、活性層136が設けられている。また、活性層136は、GaAs及びAlGaAsからなる。また、GaAs層は、AlGaAs層に挟まれて設けられている。なお、AlGaAsのエネルギー禁止帯幅は、GaAsよりも大きい。また、GaAsの屈折率は、AlGaAsよりも大きい。 As shown in FIG. 5, an active layer 136 is provided on the surface of the N-type semiconductor clad layer 134. The active layer 136 is made of GaAs and AlGaAs. The GaAs layer is provided between the AlGaAs layers. Incidentally, the energy band gap of AlGaAs is larger than that of GaAs. Moreover, the refractive index of GaAs is larger than that of AlGaAs.
 活性層136の表面には、図5に示すように、P型半導体クラッド層138が設けられている。P型半導体クラッド層138は、AlGaAsからなる。 As shown in FIG. 5, a P-type semiconductor clad layer 138 is provided on the surface of the active layer 136. The P-type semiconductor clad layer 138 is made of AlGaAs.
 P型半導体クラッド層138の表面には、図5に示すように、酸化狭窄層150が設けられている。酸化狭窄層150をz軸方向から平面視したとき、酸化狭窄層150の略中央には円形の孔152が設けられている。酸化狭窄層150は、AlGaAsからなる。 An oxidized constricting layer 150 is provided on the surface of the P-type semiconductor clad layer 138 as shown in FIG. When the oxidized constricting layer 150 is viewed in plan from the z-axis direction, a circular hole 152 is provided in the approximate center of the oxidized constricting layer 150. The oxidized constricting layer 150 is made of AlGaAs.
 酸化狭窄層150の表面には、図5に示すように、P型半導体多層膜反射層(以下で、P型DBR層と称す)140が設けられている。また、P型DBR層140の一部は、酸化狭窄層に設けられた孔152内にも設けられ、P型半導体クラッド層138と接している。P型DBR層140は、AlGaAsからなり、Gaに対するAlの組成比率が異なる層を複数積層してなる。これにより、P型DBR層140は、所定周波数のレーザ光を発生するための第2の反射器として機能する。なお、P型DBR層140の反射率は、N型DBR層132よりも若干低い。ここでは、活性層を挟むように半導体クラッド層を設けたが、この構成に限るものではない。共振を発生させるような膜厚の層を活性層に設けてもよい。 As shown in FIG. 5, a P-type semiconductor multilayer reflective layer (hereinafter referred to as a P-type DBR layer) 140 is provided on the surface of the oxidized constricting layer 150. A part of the P-type DBR layer 140 is also provided in the hole 152 provided in the oxidized constricting layer, and is in contact with the P-type semiconductor clad layer 138. The P-type DBR layer 140 is made of AlGaAs and is formed by laminating a plurality of layers having different Al composition ratios to Ga. Thereby, the P-type DBR layer 140 functions as a second reflector for generating laser light having a predetermined frequency. Note that the reflectance of the P-type DBR layer 140 is slightly lower than that of the N-type DBR layer 132. Here, the semiconductor clad layer is provided so as to sandwich the active layer, but the present invention is not limited to this configuration. A layer having such a thickness as to generate resonance may be provided in the active layer.
 P型DBR層140の表面には、図5に示すように、P型半導体コンタクト層142が積層されている。P型半導体コンタクト層142は、P型導電性を有する化合物半導体からなる。なお、P型DBR層は、P型半導体コンタクト層を兼ねてもよい。すなわち、P型半導体コンタクト層は必須ではない。 As shown in FIG. 5, a P-type semiconductor contact layer 142 is laminated on the surface of the P-type DBR layer 140. The P-type semiconductor contact layer 142 is made of a compound semiconductor having P-type conductivity. Note that the P-type DBR layer may also serve as a P-type semiconductor contact layer. That is, the P-type semiconductor contact layer is not essential.
 以上で述べた、N型半導体コンタクト層130、N型DBR層132、N型半導体クラッド層134、活性層136、P型半導体クラッド層138、P型DBR層140、P型半導体コンタクト層142によって、発光領域多層部160が構成される。 By the N-type semiconductor contact layer 130, the N-type DBR layer 132, the N-type semiconductor clad layer 134, the active layer 136, the P-type semiconductor clad layer 138, the P-type DBR layer 140, and the P-type semiconductor contact layer 142 described above, A light emitting region multilayer section 160 is configured.
 なお、各層の厚み及びGaに対するAlの組成比率は、光定在波分布の中心の腹の位置に1つの発光スペクトルピーク波長を有し、かつ、複数の量子井戸が配置されるように、設定される。これにより、発光領域多層部160がVCSEL100A,100Bの発光部として機能する。さらに、図5に示すように、酸化狭窄層150を備えることで、電流を活性層136に効率よく注入でき、低消費電力のVCSEL100A,100Bを実現できる。 The thickness of each layer and the composition ratio of Al to Ga are set so as to have one emission spectrum peak wavelength at the center antinode position of the optical standing wave distribution and to arrange a plurality of quantum wells. Is done. Thereby, the light emitting region multilayer part 160 functions as the light emitting part of the VCSELs 100A and 100B. Furthermore, as shown in FIG. 5, by providing the oxide constriction layer 150, current can be efficiently injected into the active layer 136, and the VCSELs 100A and 100B with low power consumption can be realized.
 P型半導体コンタクト層142の表面には、図5に示すように、アノード用リング電極921が設けられている。アノード用リング電極921は、図4に示すように、z軸方向から平面視したとき、環状を成している。なお、アノード用電極は、必ずしも環状である必要はなく、例えば環状の一部が開いたC字状や矩形状であってもよい。 As shown in FIG. 5, an anode ring electrode 921 is provided on the surface of the P-type semiconductor contact layer 142. As shown in FIG. 4, the anode ring electrode 921 has an annular shape when viewed in plan from the z-axis direction. Note that the anode electrode does not necessarily have to be annular, and may be, for example, a C-shape or a rectangular shape with an annular portion open.
 前述のN型DBR層132の溝Wには、図4及び図5に示すように、カソード用電極911が設けられている。なお、カソード用電極911は、図5に示すように、N型半導体コンタクト層130と接している。これにより、カソード用電極911は、N型半導体コンタクト層130と導通している。なお、カソード用電極911は、図4に示すように、z軸方向から平面視したとき、円弧状を成している。また、この円弧は、環状のアノード用リング電極921の環と略同心である。 As shown in FIGS. 4 and 5, a cathode electrode 911 is provided in the groove W of the N-type DBR layer 132 described above. The cathode electrode 911 is in contact with the N-type semiconductor contact layer 130 as shown in FIG. Thereby, the cathode electrode 911 is electrically connected to the N-type semiconductor contact layer 130. As shown in FIG. 4, the cathode electrode 911 has an arc shape when viewed in plan from the z-axis direction. The arc is substantially concentric with the ring of the annular anode ring electrode 921.
 絶縁膜162は、カソード用電極911及びアノード用リング電極921が設けられている部分を除いて、VCSEL100A,100Bの発光領域多層部160の表面を覆うように設けられている。また、絶縁膜162の材料は、例えば窒化ケイ素が挙げられる。 The insulating film 162 is provided so as to cover the surface of the light emitting region multilayer 160 of the VCSELs 100A and 100B except for the portion where the cathode electrode 911 and the anode ring electrode 921 are provided. The material of the insulating film 162 is, for example, silicon nitride.
 VCSEL100A,100Bにおけるx軸方向の正方向側の部分には、図4に示すように、絶縁層170が設けられている。また、絶縁層170は、図5に示すように、N型DBR層132を覆う絶縁膜162上に設けられている。絶縁層170は、図4に示すように、z軸方向から平面視たとき、y軸方向に長辺を有する矩形状を成している。なお、絶縁層170の材料としては、例えばポリイミドが挙げられる。 As shown in FIG. 4, an insulating layer 170 is provided on the positive side of the x-axis direction in the VCSELs 100A and 100B. Further, as shown in FIG. 5, the insulating layer 170 is provided on the insulating film 162 covering the N-type DBR layer 132. As shown in FIG. 4, the insulating layer 170 has a rectangular shape having long sides in the y-axis direction when viewed in plan from the z-axis direction. An example of the material of the insulating layer 170 is polyimide.
 絶縁層170の表面におけるy軸方向の負方向側の部分には、図4に示すように、カソード用パッド電極912が、設けられている。カソード用パッド電極912は、カソード用配線電極913を介して、カソード用電極911に接続されている。 As shown in FIG. 4, a cathode pad electrode 912 is provided on a portion of the surface of the insulating layer 170 on the negative side in the y-axis direction. The cathode pad electrode 912 is connected to the cathode electrode 911 via the cathode wiring electrode 913.
 絶縁層170の表面におけるy軸方向の正方向側の部分には、図4に示すように、アノード用パッド電極922が設けられている。なお、アノード用パッド電極922とカソード用パッド電極912とは、所定の距離だけ離されて設けられている。アノード用パッド電極922は、アノード用配線電極923を介して、アノード用リング電極921に接続されている。 As shown in FIG. 4, an anode pad electrode 922 is provided on a portion on the positive side in the y-axis direction on the surface of the insulating layer 170. The anode pad electrode 922 and the cathode pad electrode 912 are provided apart from each other by a predetermined distance. The anode pad electrode 922 is connected to the anode ring electrode 921 through the anode wiring electrode 923.
 また、発光素子アレイ100には、図4及び図5に示すように、VCSEL100A,100Bを分割するための溝180が設けられている。溝180は、図4に示すように、z軸方向から平面視したとき、x軸方向及びy軸方向に平行な格子状に設けられた溝である。また、溝180は、図5に示すように、絶縁膜162、N型DBR層132及びN型半導体コンタクト層130を積層方向に貫通している。さらに、溝180の底部は、ベース基板128の表面から所定の深さまで達している。これにより、VCSEL100A,100Bが、N型半導体コンタクト層130を介して導通することを防ぐことができる。 Further, as shown in FIGS. 4 and 5, the light emitting element array 100 is provided with grooves 180 for dividing the VCSELs 100A and 100B. As shown in FIG. 4, the grooves 180 are grooves provided in a lattice shape parallel to the x-axis direction and the y-axis direction when viewed in plan from the z-axis direction. Further, as shown in FIG. 5, the trench 180 penetrates the insulating film 162, the N-type DBR layer 132, and the N-type semiconductor contact layer 130 in the stacking direction. Further, the bottom of the groove 180 reaches a predetermined depth from the surface of the base substrate 128. As a result, the VCSELs 100A and 100B can be prevented from conducting via the N-type semiconductor contact layer 130.
 以上のように構成された発光素子アレイ100の各VCSEL100A,100Bでは、アノード用パッド電極922からカソード用パッド電極912に向かって電流(駆動信号)を流すことにより、活性層136で誘導放出が起きる。誘導放出により活性層から放たれた光は、N型DBR層132及びP型DBR層140で反射され、活性層を往復する。往復する間に光は、誘導放出により増幅され、レーザービームとなってz軸方向の正方向側へと放出される。そして、VCSEL100AのN型半導体コンタクト層130とVCSEL100BのN型半導体コンタクト層130とが分離されているので、VCSEL100Aの駆動信号とVCSEL100Bの駆動信号との間でクロストークが発生することが抑制される。 In each VCSEL 100A, 100B of the light emitting element array 100 configured as described above, stimulated emission occurs in the active layer 136 by flowing a current (drive signal) from the anode pad electrode 922 to the cathode pad electrode 912. . The light emitted from the active layer by stimulated emission is reflected by the N-type DBR layer 132 and the P-type DBR layer 140 and reciprocates through the active layer. During the reciprocation, the light is amplified by stimulated emission and is emitted as a laser beam to the positive side in the z-axis direction. Since the N-type semiconductor contact layer 130 of the VCSEL 100A and the N-type semiconductor contact layer 130 of the VCSEL 100B are separated, the occurrence of crosstalk between the drive signal of the VCSEL 100A and the drive signal of the VCSEL 100B is suppressed. .
(位置決め部材の構成)
 次に、レセプタクル20について、図面を参照しながら説明する。図6は、本発明の一実施形態に係るレセプタクル20の外観斜視図である(金属キャップ30は図示せず)。図7は、本発明の一実施形態に係る位置決め部材200の外観斜視図である。図8は、本発明の一実施形態に係る位置決め部材200をz軸方向の負方向側から平面視した図である。図9は、図7に記載の位置決め部材200のC-C又はD-Dにおける断面に、本発明の一実施形態に係る実装基板22及びプラグ40を追加した図である。
(Configuration of positioning member)
Next, the receptacle 20 will be described with reference to the drawings. FIG. 6 is an external perspective view of the receptacle 20 according to the embodiment of the present invention (the metal cap 30 is not shown). FIG. 7 is an external perspective view of a positioning member 200 according to an embodiment of the present invention. FIG. 8 is a plan view of the positioning member 200 according to one embodiment of the present invention from the negative direction side in the z-axis direction. FIG. 9 is a view in which the mounting substrate 22 and the plug 40 according to the embodiment of the present invention are added to the cross section taken along the line CC or DD of the positioning member 200 shown in FIG.
 位置決め部材200は、図6に示すように、実装基板22の表面及び封止樹脂24の略全体を覆うように、実装基板22及び封止樹脂24に跨って設けられている。また、位置決め部材200は、発光素子用の位置決め部材220と受光素子用の位置決め部材240とを備えている。位置決め部材220,240は、y軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。なお、位置決め部材200は、例えばエポキシ系やナイロン系の樹脂により構成されている。 As shown in FIG. 6, the positioning member 200 is provided across the mounting substrate 22 and the sealing resin 24 so as to cover the surface of the mounting substrate 22 and substantially the entire sealing resin 24. The positioning member 200 includes a positioning member 220 for a light emitting element and a positioning member 240 for a light receiving element. The positioning members 220 and 240 are provided so as to be arranged in this order from the negative direction side in the y-axis direction toward the positive direction side. The positioning member 200 is made of, for example, an epoxy or nylon resin.
 発光素子用の位置決め部材220は、図7及び図8に示すように、z軸方向から平面視したとき、矩形状を成している。さらに、位置決め部材220は、プラグガイド部222と光結合部224とを備えている。 As shown in FIGS. 7 and 8, the light-emitting element positioning member 220 has a rectangular shape when viewed in plan from the z-axis direction. Further, the positioning member 220 includes a plug guide part 222 and an optical coupling part 224.
 プラグガイド部222は、図7に示すように、位置決め部材220におけるx軸の負方向側の部分を構成している。また、プラグガイド部222は、図8に示すように、z軸方向から平面視したとき、矩形状を成している板状部材である。さらに、プラグガイド部222のx軸方向の正方向側の端面S1は、図9に示すように、封止樹脂24のx軸方向の負方向側の面と対向している。従って、プラグガイド部222は、実装基板22上において封止樹脂24よりもx軸方向の負方向側に位置している。 As shown in FIG. 7, the plug guide portion 222 constitutes a portion of the positioning member 220 on the negative direction side of the x axis. Further, as shown in FIG. 8, the plug guide portion 222 is a plate-like member having a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the end surface S1 on the positive side in the x-axis direction of the plug guide portion 222 faces the surface on the negative direction side in the x-axis direction of the sealing resin 24 as shown in FIG. Accordingly, the plug guide portion 222 is located on the negative side in the x-axis direction with respect to the sealing resin 24 on the mounting substrate 22.
 また、プラグガイド部222の表面におけるy軸方向の略中央には、図7に示すように、後述するプラグ40をガイドするための溝G1がx軸と略平行に設けられている。なお、プラグガイド部222において、溝G1よりy軸方向の負方向側の部分を平坦部F1と称し、溝G1よりy軸方向の正方向側の部分を平坦部F2と称す。溝G1のz軸方向における実装基板22からの高さh1は、図9に示すように、封止樹脂24のz軸方向の高さh2よりも低い。 Further, as shown in FIG. 7, a groove G1 for guiding a plug 40 to be described later is provided substantially parallel to the x-axis at the approximate center in the y-axis direction on the surface of the plug guide portion 222. In the plug guide portion 222, a portion on the negative direction side in the y-axis direction from the groove G1 is referred to as a flat portion F1, and a portion on the positive direction side in the y-axis direction from the groove G1 is referred to as a flat portion F2. As shown in FIG. 9, the height h1 of the groove G1 from the mounting substrate 22 in the z-axis direction is lower than the height h2 of the sealing resin 24 in the z-axis direction.
 光結合部224は、図7乃至図9に示すように、位置決め部材220におけるx軸方向の正方向側の部分を構成し、封止樹脂24上に載置されている。 As shown in FIGS. 7 to 9, the optical coupling portion 224 constitutes a portion on the positive direction side in the x-axis direction of the positioning member 220 and is placed on the sealing resin 24.
 さらに、光結合部224は、図7に示すように、本体226及び突き当て部228を有している。本体226は直方体状を成している。突き当て部228は、本体226のx軸方向の負方向側の端面S2から、プラグガイド部222の平坦部F1に沿って、平坦部F1のx軸方向の略中央まで突出している。これにより、光結合部224は、z軸方向から平面視したときにL字型を成している。なお、突き当て部228のx軸方向の負方向側の端面を端面S3と称す。また、光結合部224には、凹部D1及び凸レンズ230が設けられている。 Furthermore, the optical coupling part 224 has a main body 226 and an abutting part 228 as shown in FIG. The main body 226 has a rectangular parallelepiped shape. The abutting portion 228 protrudes from the end surface S2 on the negative side in the x-axis direction of the main body 226 along the flat portion F1 of the plug guide portion 222 to the approximate center of the flat portion F1 in the x-axis direction. Thereby, the optical coupling part 224 is L-shaped when viewed in plan from the z-axis direction. Note that the end surface of the abutting portion 228 on the negative side in the x-axis direction is referred to as an end surface S3. The optical coupling portion 224 is provided with a concave portion D1 and a convex lens 230.
 凹部D1は、図7に示すように、光結合部224のy軸方向の正方向側の辺近傍に設けられている。また、凹部D1は、z軸方向から平面視したとき、発光素子アレイ100と重なっている。さらに、凹部D1は、x軸方向から平面視したとき、後述するプラグ40に接続されている光ファイバー60の光軸と重なっている。なお、光ファイバー60の光軸は、x軸と平行である。また、凹部D1は、図7に示すように、z軸方向から平面視したとき、矩形状を成している。さらに、凹部D1は、図9に示すように、y軸方向から平面視したときにV字型をなしている。 As shown in FIG. 7, the recess D1 is provided in the vicinity of the side on the positive side of the optical coupling portion 224 in the y-axis direction. In addition, the recess D1 overlaps the light emitting element array 100 when viewed in plan from the z-axis direction. Further, the recess D1 overlaps with the optical axis of the optical fiber 60 connected to the plug 40 described later when viewed in plan from the x-axis direction. Note that the optical axis of the optical fiber 60 is parallel to the x-axis. Further, as shown in FIG. 7, the recess D1 has a rectangular shape when seen in a plan view from the z-axis direction. Furthermore, as shown in FIG. 9, the recess D <b> 1 has a V shape when viewed in plan from the y-axis direction.
 凹部D1のx軸方向の負方向側の内周面は、全反射面R1である。全反射面R1は、図9に示すように、y軸に平行である。さらに、全反射面R1は、y軸方向の負方向側から平面視したとき、z軸に対して反時計回りに45°傾いている。また、位置決め部材200の屈折率は、空気よりも十分に大きい。従って、発光素子アレイ100からz軸方向の正方向側に出射されたレーザービームB1は、光結合部224に入射し、全反射面R1によりx軸方向の負方向側に全反射され、プラグ40を介して光ファイバー60へと進行する。このとき、レーザービームB1の光跡をy軸方向から平面視すると、発光素子アレイ100から出射されたレーザービームB1の光軸と全反射面R1とが成す角は45°であり、光ファイバー60に向かうレーザービームB1の光軸と全反射面R1とが成す角は45°である。すなわち、全反射面R1と光ファイバー60の光軸とが成す角度と、全反射面R1と発光素子アレイ100とが成す角度は等しい。 The inner peripheral surface on the negative side in the x-axis direction of the recess D1 is a total reflection surface R1. The total reflection surface R1 is parallel to the y-axis as shown in FIG. Further, the total reflection surface R1 is inclined 45 ° counterclockwise with respect to the z-axis when viewed in plan from the negative direction side in the y-axis direction. Further, the refractive index of the positioning member 200 is sufficiently larger than that of air. Therefore, the laser beam B1 emitted from the light emitting element array 100 to the positive z-axis direction is incident on the optical coupling unit 224, and is totally reflected by the total reflection surface R1 to the negative x-axis side, thereby causing the plug 40 To the optical fiber 60 via At this time, when the light trace of the laser beam B1 is viewed in plan from the y-axis direction, the angle formed by the optical axis of the laser beam B1 emitted from the light emitting element array 100 and the total reflection surface R1 is 45 °. The angle formed by the optical axis of the laser beam B1 toward the total reflection surface R1 is 45 °. That is, the angle formed by the total reflection surface R1 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R1 and the light emitting element array 100.
 凸レンズ230(第1の凸レンズ)は、図8及び図9に示すように、光結合部224のz軸方向の負方向側の面に設けられている。また、凸レンズ230は、z軸方向から平面視したとき、発光素子アレイ100の各VCSELと重なっている。これにより、凸レンズ230は、発光素子アレイ100と対向し、レーザービームB1の光路上に位置している。また、凸レンズ230は、z軸と直交する方向から平面視したとき、z軸の負方向側に向かって突出する半円状を成している。従って、発光素子アレイ100から出射されたレーザービームB1は、凸レンズ230によって集光又はコリメートされて、全反射面R1に向かう。 The convex lens 230 (first convex lens) is provided on the surface on the negative direction side in the z-axis direction of the optical coupling portion 224, as shown in FIGS. Further, the convex lens 230 overlaps each VCSEL of the light emitting element array 100 when viewed in plan from the z-axis direction. Thereby, the convex lens 230 faces the light emitting element array 100 and is positioned on the optical path of the laser beam B1. In addition, the convex lens 230 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Accordingly, the laser beam B1 emitted from the light emitting element array 100 is condensed or collimated by the convex lens 230 and travels toward the total reflection surface R1.
 受光素子用の位置決め部材240は、図7及び図8に示すように、z軸方向から平面視したとき、矩形状を成している。さらに、位置決め部材240は、プラグガイド部242と光結合部244とを備えている。 As shown in FIGS. 7 and 8, the light receiving element positioning member 240 has a rectangular shape when viewed in plan from the z-axis direction. Further, the positioning member 240 includes a plug guide part 242 and an optical coupling part 244.
 プラグガイド部242は、図7に示すように、位置決め部材240におけるx軸の負方向側の部分を構成している。また、プラグガイド部242は、図8に示すように、z軸方向から平面視したとき、矩形状を成している板状部材である。さらに、プラグガイド部242のx軸方向の正方向側の端面S4は、図9に示すように、封止樹脂24のx軸方向の負方向側の面と対向している。従って、プラグガイド部242は、実装基板22上において封止樹脂24よりもx軸方向の負方向側に位置している。 As shown in FIG. 7, the plug guide portion 242 constitutes a portion of the positioning member 240 on the negative side of the x axis. Further, as shown in FIG. 8, the plug guide portion 242 is a plate-like member having a rectangular shape when viewed in plan from the z-axis direction. Furthermore, the end surface S4 on the positive direction side in the x-axis direction of the plug guide portion 242 faces the surface on the negative direction side in the x-axis direction of the sealing resin 24 as shown in FIG. Accordingly, the plug guide portion 242 is located on the negative side in the x-axis direction with respect to the sealing resin 24 on the mounting substrate 22.
 また、プラグガイド部242の表面におけるy軸方向の略中央には、図7に示すように、後述するプラグ40をガイドするための溝G2がx軸と略平行に設けられている。なお、プラグガイド部242において、溝G2よりy軸方向の負方向側の部分を平坦部F3と称し、溝G2よりy軸方向の正方向側の部分を平坦部F4と称す。なお、溝G2のz軸方向の高さh3は、図9に示すように、封止樹脂24のz軸方向の高さh2よりも低い。 Further, as shown in FIG. 7, a groove G2 for guiding a plug 40 to be described later is provided substantially parallel to the x-axis at the approximate center in the y-axis direction on the surface of the plug guide portion 242. In the plug guide portion 242, a portion on the negative side in the y-axis direction from the groove G2 is referred to as a flat portion F3, and a portion on the positive direction side in the y-axis direction from the groove G2 is referred to as a flat portion F4. Note that the height h3 of the groove G2 in the z-axis direction is lower than the height h2 of the sealing resin 24 in the z-axis direction, as shown in FIG.
 光結合部244は、図7乃至図9に示すように、位置決め部材240におけるx軸方向の正方向側の部分を構成し、封止樹脂24上に載置されている。 7 to 9, the optical coupling portion 244 constitutes a portion on the positive direction side in the x-axis direction of the positioning member 240 and is placed on the sealing resin 24.
 さらに、光結合部244は、図7に示すように、本体246及び突き当て部248を有している。本体246は直方体状を成している。突き当て部248は、本体246のx軸方向の負方向側の端面S5から、プラグガイド部242の平坦部F4に沿って、平坦部F4のx軸方向の略中央まで突出している。これにより、光結合部244は、z軸方向から平面視したときにL字型を成している。なお、突き当て部248のx軸方向の負方向側の端面を端面S6と称す。また、光結合部244には、凹部D2及び凸レンズ250が設けられている。 Furthermore, the optical coupling part 244 has a main body 246 and an abutting part 248 as shown in FIG. The main body 246 has a rectangular parallelepiped shape. The abutting portion 248 protrudes from the end surface S5 on the negative side in the x-axis direction of the main body 246 to the approximate center in the x-axis direction of the flat portion F4 along the flat portion F4 of the plug guide portion 242. Thereby, the optical coupling unit 244 has an L shape when viewed in plan from the z-axis direction. The end surface on the negative direction side in the x-axis direction of the abutting portion 248 is referred to as an end surface S6. The optical coupling portion 244 is provided with a concave portion D2 and a convex lens 250.
 凹部D2は、図7に示すように、光結合部244のy軸方向の負方向側の辺近傍に設けられている。また、凹部D2は、z軸方向から平面視したとき、受光素子アレイ50と重なっている。さらに、凹部D2は、x軸方向から平面視したとき、後述するプラグ40に接続されている光ファイバー60の光軸と重なっている。なお、光ファイバー60の光軸は、x軸と平行である。また、凹部D2は、図7に示すように、z軸方向から平面視したとき、矩形状を成している。さらに、凹部D2は、図9に示すように、y軸方向から平面視したときにV字型を成している。 As shown in FIG. 7, the recess D2 is provided in the vicinity of the side on the negative direction side in the y-axis direction of the optical coupling portion 244. The concave portion D2 overlaps the light receiving element array 50 when viewed in plan from the z-axis direction. Further, the recess D2 overlaps with the optical axis of the optical fiber 60 connected to the plug 40 described later when viewed in plan from the x-axis direction. Note that the optical axis of the optical fiber 60 is parallel to the x-axis. Further, as shown in FIG. 7, the concave portion D2 has a rectangular shape when viewed in plan from the z-axis direction. Furthermore, as shown in FIG. 9, the recess D <b> 2 has a V shape when viewed in plan from the y-axis direction.
 凹部D2のx軸方向の負方向側の内周面は、全反射面R2である。全反射面R2は、図9に示すように、y軸に平行である。さらに、全反射面R2は、y軸方向の負方向側から平面視したとき、z軸に対して反時計回りに45°傾いている。また、位置決め部材200の屈折率は、空気よりも十分に大きい。従って、光ファイバー60からx軸方向の正方向側に出射されたレーザービームB2は、光結合部244に入射し、全反射面R2によりz軸方向の負方向側に全反射され、封止樹脂24を介して受光素子アレイ50へと進行する。このとき、レーザービームB2の光跡をy軸方向から平面視すると、光ファイバー60から出射されたレーザービームB2の光軸と全反射面R2とが成す角は45°であり、受光素子アレイ50に向かうレーザービームB2の光軸と全反射面R2とが成す角は45°である。すなわち、全反射面R2と光ファイバー60の光軸とが成す角度と、全反射面R2と受光素子アレイ50とが成す角度は等しい。 The inner peripheral surface on the negative direction side in the x-axis direction of the recess D2 is a total reflection surface R2. The total reflection surface R2 is parallel to the y-axis as shown in FIG. Further, the total reflection surface R2 is inclined 45 ° counterclockwise with respect to the z-axis when viewed in plan from the negative direction side in the y-axis direction. Further, the refractive index of the positioning member 200 is sufficiently larger than that of air. Therefore, the laser beam B2 emitted from the optical fiber 60 to the positive direction side in the x-axis direction enters the optical coupling portion 244, and is totally reflected by the total reflection surface R2 to the negative direction side in the z-axis direction. To the light receiving element array 50. At this time, when the light trace of the laser beam B2 is viewed in plan from the y-axis direction, the angle formed by the optical axis of the laser beam B2 emitted from the optical fiber 60 and the total reflection surface R2 is 45 °. The angle formed by the optical axis of the laser beam B2 toward the total reflection surface R2 is 45 °. That is, the angle formed by the total reflection surface R2 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R2 and the light receiving element array 50.
 凸レンズ250は、図8及び図9に示すように、光結合部244の裏面に設けられている。また、各凸レンズ250は、z軸方向から平面視したとき、受光素子アレイ50の各VCSELと重なっている。これにより、凸レンズ250は、受光素子アレイ50と対向し、レーザービームB2の光路上に位置している。また、凸レンズ250は、z軸と直交する方向から平面視したとき、z軸の負方向側に向かって突出する半円状を成している。従って、光ファイバー60から出射されたレーザービームB2は、全反射面R2で反射された後、凸レンズ250によって集光又はコリメートされて、受光素子アレイ50に向かう。 The convex lens 250 is provided on the back surface of the optical coupling part 244 as shown in FIGS. Each convex lens 250 overlaps each VCSEL of the light receiving element array 50 when viewed in plan from the z-axis direction. As a result, the convex lens 250 faces the light receiving element array 50 and is positioned on the optical path of the laser beam B2. Further, the convex lens 250 has a semicircular shape that protrudes toward the negative direction side of the z-axis when viewed from a direction orthogonal to the z-axis. Accordingly, the laser beam B <b> 2 emitted from the optical fiber 60 is reflected by the total reflection surface R <b> 2, then condensed or collimated by the convex lens 250, and travels toward the light receiving element array 50.
(金属キャップの構成)
 次に、金属キャップ30について、図面を参照しながら説明する。図10は、本発明の一実施形態に係る金属キャップ30の外観斜視図である。
(Metal cap configuration)
Next, the metal cap 30 will be described with reference to the drawings. FIG. 10 is an external perspective view of a metal cap 30 according to an embodiment of the present invention.
 金属キャップ30は、一枚の金属板(例えば、SUS301)がコ字型に折り曲げられて作製されている。また、金属キャップ30は、図1に示すように、z軸方向の正方向側、y軸方向の正方向側及びy軸方向の負方向側から位置決め部材200を覆っている。 The metal cap 30 is manufactured by bending a single metal plate (for example, SUS301) into a U-shape. Further, as shown in FIG. 1, the metal cap 30 covers the positioning member 200 from the positive direction side in the z-axis direction, the positive direction side in the y-axis direction, and the negative direction side in the y-axis direction.
 金属キャップ30は、図10に示すように、上面32及び側面34,36を含んでいる。上面32は、z軸に対して直交する面であり、矩形状を成している。側面34は、上面32のy軸方向の負方向側の長辺からz軸方向の負方向側に金属キャップ30が折り曲げられて形成されている。側面36は、上面32のy軸方向の正方向側の長辺からz軸方向の負方向側に金属キャップ30が折り曲げられて形成されている。 The metal cap 30 includes an upper surface 32 and side surfaces 34 and 36 as shown in FIG. The upper surface 32 is a surface orthogonal to the z-axis and has a rectangular shape. The side surface 34 is formed by bending the metal cap 30 from the long side of the upper surface 32 on the negative direction side in the y-axis direction to the negative direction side in the z-axis direction. The side surface 36 is formed by bending the metal cap 30 from the long side of the upper surface 32 on the positive direction side in the y-axis direction to the negative direction side in the z-axis direction.
 上面32のx軸方向の負方向側の部分には、図10に示すように、プラグ40をレセプタクル20に固定するための係合部32a,32bが設けられている。係合部32a,32bは、y軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。 As shown in FIG. 10, engaging portions 32 a and 32 b for fixing the plug 40 to the receptacle 20 are provided on the negative side portion of the upper surface 32 in the x-axis direction. The engaging portions 32a and 32b are provided in this order from the negative direction side in the y-axis direction toward the positive direction side.
 係合部32a,32bは、上面32にコ字型の切り込みを入れることにより形成されている。より具体的には、係合部32a,32bは、上面32にx軸方向の正方向側に開口するコ字型の切り込みを入れ、コ字型の切り込みに囲まれた部分をz軸方向の負方向側に凹ませるように曲げることにより形成されている。これにより、係合部32a,32bは、y軸方向から平面視したとき、z軸方向の負方向側に突出したV字型の形状を成している。 The engaging portions 32a and 32b are formed by making a U-shaped cut in the upper surface 32. More specifically, each of the engaging portions 32a and 32b has a U-shaped notch opening on the upper surface 32 in the positive direction of the x-axis direction, and a portion surrounded by the U-shaped notch in the z-axis direction. It is formed by bending so as to be recessed in the negative direction side. Thus, the engaging portions 32a and 32b have a V-shape that protrudes in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
 また、上面32のx軸方向の負方向側の短辺には、図10に示すように、プラグ40をレセプタクル20に固定するための係合部32c,32dが設けられている。係合部32c,32dは、上面32からx軸方向の負方向側に突出した金属片である。係合部32c,32dは、係合部32c,32dにおけるx軸方向の略中央の位置で、z軸方向の負方向側に凹ませるように曲げられている。これにより、係合部32c,32dは、y軸方向から平面視したとき、z軸方向の負方向側に突出したV字型の形状を成している。 Further, as shown in FIG. 10, engaging portions 32c and 32d for fixing the plug 40 to the receptacle 20 are provided on the short side of the upper surface 32 on the negative side in the x-axis direction. The engaging portions 32c and 32d are metal pieces protruding from the upper surface 32 toward the negative direction side in the x-axis direction. The engaging portions 32c and 32d are bent so as to be recessed toward the negative direction side in the z-axis direction at a substantially central position in the x-axis direction in the engaging portions 32c and 32d. Thus, the engaging portions 32c and 32d have a V-shape protruding in the negative direction side in the z-axis direction when viewed in plan from the y-axis direction.
 側面34のz軸方向の負方向側の長辺には、図10に示すように、z軸方向の負方向側に向かって突出する凸部C1~C3が、x軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。凸部C1~C3はそれぞれ、実装基板22と接着剤により固定される。なお、凸部C1は、実装基板22のグランド導体露出部E2と接続される。また、凸部C3は、封止樹脂24の脚部24bと脚部24cとの間に設けられた空間H1に嵌め込まれる。これにより、金属キャップ30は、実装基板22に対して位置決めされる。 On the long side of the side surface 34 on the negative side in the z-axis direction, as shown in FIG. 10, convex portions C1 to C3 projecting toward the negative direction side in the z-axis direction are formed from the negative direction side in the x-axis direction. They are arranged in this order toward the positive direction. The convex portions C1 to C3 are each fixed to the mounting substrate 22 with an adhesive. The convex portion C1 is connected to the ground conductor exposed portion E2 of the mounting substrate 22. Further, the convex portion C3 is fitted into a space H1 provided between the leg portion 24b and the leg portion 24c of the sealing resin 24. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
 側面36のz軸方向の負方向側の長辺には、図10に示すように、z軸方向の負方向側に向かって突出する凸部C4~C6が、x軸方向の負方向側から正方向側に向かってこの順に並ぶように設けられている。凸部C4~C6はそれぞれ、実装基板22と接着剤により固定される。なお、凸部C4は、実装基板22のグランド導体露出部E3と接続される。また、凸部C6は、封止樹脂24の脚部24dと脚部24eとの間に設けられた空間H2に嵌め込まれる。これにより、金属キャップ30は、実装基板22に対して位置決めされる。 On the long side of the side surface 36 on the negative direction side in the z-axis direction, as shown in FIG. 10, convex portions C4 to C6 projecting toward the negative direction side in the z-axis direction are formed from the negative direction side in the x-axis direction. They are arranged in this order toward the positive direction. The convex portions C4 to C6 are each fixed to the mounting substrate 22 with an adhesive. The convex portion C4 is connected to the ground conductor exposed portion E3 of the mounting substrate 22. Further, the convex portion C6 is fitted into a space H2 provided between the leg portion 24d and the leg portion 24e of the sealing resin 24. Thereby, the metal cap 30 is positioned with respect to the mounting substrate 22.
 また、金属キャップ30は、図1に示すように、位置決め部材200をz軸方向の正方向側並びにy軸方向の正方向側及び負方向側から覆っている。そして、レセプタクル20のx軸方向の負方向側には、図1に示すように、後述するプラグ40が挿入される開口部A3が形成されている。 Further, as shown in FIG. 1, the metal cap 30 covers the positioning member 200 from the positive direction side in the z-axis direction and from the positive direction side and the negative direction side in the y-axis direction. An opening A3 into which a plug 40 described later is inserted is formed on the negative side of the receptacle 20 in the x-axis direction, as shown in FIG.
(プラグの構成)
 本発明の一実施形態に係るプラグ40について、図面を参照しながら説明する。図11は、本発明の一実施形態に係るプラグの外観斜視図である。図12は、本発明の一実施形態に係るプラグをz軸方向の負方向側から平面視した図である。
(Plug configuration)
A plug 40 according to an embodiment of the present invention will be described with reference to the drawings. FIG. 11 is an external perspective view of a plug according to an embodiment of the present invention. FIG. 12 is a plan view of a plug according to an embodiment of the present invention from the negative side in the z-axis direction.
 プラグ40は、図11に示すように、光ファイバー60の一端に設けられている。プラグ40は、送信側プラグ42及び受信側プラグ46を備える。なお、プラグ40は、例えばエポキシ系やナイロン系の樹脂により構成される。 The plug 40 is provided at one end of the optical fiber 60 as shown in FIG. The plug 40 includes a transmission side plug 42 and a reception side plug 46. The plug 40 is made of, for example, an epoxy or nylon resin.
 送信側プラグ42は、発光素子アレイ100からのレーザービームB1を伝送する。送信側プラグ42は、図11に示すように、光ファイバー挿入部42a及び耳部42bを備える。光ファイバー挿入部42aは、送信側プラグ42のy軸方向の正方向側の部分を構成しており、x軸方向に延在する直方体状を成している。光ファイバー挿入部42aのx軸方向の負方向側の部分には、光ファイバー60を挿入するための開口部A1が設けられている。 The transmitting side plug 42 transmits the laser beam B1 from the light emitting element array 100. As shown in FIG. 11, the transmission-side plug 42 includes an optical fiber insertion portion 42a and an ear portion 42b. The optical fiber insertion portion 42a constitutes a portion on the positive direction side in the y-axis direction of the transmission-side plug 42, and has a rectangular parallelepiped shape extending in the x-axis direction. An opening A1 for inserting the optical fiber 60 is provided in a portion on the negative side in the x-axis direction of the optical fiber insertion portion 42a.
 開口部A1は、図11に示すように、光ファイバー挿入部42aのz軸方向の正方向側の上面S7及びx軸方向の負方向側の端面S8を切り抜くことにより形成されている。また、開口部A1のx軸方向の正方向側の内周面には、挿入された光ファイバー60の芯線を送信側プラグ42の先端まで導くための孔H7が設けられている。なお、孔H7は、光ファイバー60の本数に対応し、本実施形態においては2つである。 As shown in FIG. 11, the opening A1 is formed by cutting out the upper surface S7 on the positive direction side in the z-axis direction and the end surface S8 on the negative direction side in the x-axis direction of the optical fiber insertion portion 42a. Further, a hole H7 for guiding the core of the inserted optical fiber 60 to the tip of the transmission side plug 42 is provided on the inner peripheral surface on the positive side in the x-axis direction of the opening A1. Note that the number of holes H7 corresponds to the number of optical fibers 60, and is two in this embodiment.
 さらに、光ファイバー挿入部42aにおけるx軸方向の正方向側の部分には、図11に示すように、光ファイバー60固定用の接着剤を注入するための凹部D3が設けられている。凹部D3は、光ファイバー挿入部42aの表面から裏面に向けて窪んでいる。凹部D3のx軸方向の負方向側の内周面には、孔H7が設けられている。孔H7は、開口部A1のx軸方向の正方向側の内周面と繋がっている。従って、光ファイバー60の芯線は、孔H7を通って、開口部A1から凹部D3に到達する。凹部D3に到達した光ファイバー60の芯線は、凹部D3のx軸方向の正方向側の内周面(突き当て面)S9に突き当てられる。そして、透明樹脂から成る接着剤、例えばエポキシ系の樹脂を開口部A1及び凹部D3に流し込むことにより、光ファイバー60は、送信側プラグ42に固定される。 Furthermore, as shown in FIG. 11, a concave portion D3 for injecting an adhesive for fixing the optical fiber 60 is provided in a portion on the positive side in the x-axis direction of the optical fiber insertion portion 42a. The recess D3 is recessed from the front surface to the back surface of the optical fiber insertion portion 42a. A hole H7 is provided on the inner peripheral surface on the negative direction side in the x-axis direction of the recess D3. The hole H7 is connected to the inner peripheral surface of the opening A1 on the positive direction side in the x-axis direction. Accordingly, the core wire of the optical fiber 60 reaches the recess D3 from the opening A1 through the hole H7. The core wire of the optical fiber 60 that has reached the recess D3 is abutted against the inner peripheral surface (abutment surface) S9 on the positive side in the x-axis direction of the recess D3. The optical fiber 60 is fixed to the transmission side plug 42 by pouring an adhesive made of a transparent resin, for example, an epoxy resin into the opening A1 and the recess D3.
 光ファイバー挿入部42aのx軸方向の正方向側の端面S10には、図9及び図12に示すように、凸レンズ44(第3の凸レンズ)が設けられている。凸レンズ44は、x軸方向と直交する方向から平面視したとき、x軸方向の正方向側に突出する半円状を成している。これにより、発光素子アレイ100から出射され、かつ、全反射面R1により反射されたレーザービームB1は、凸レンズ44により集光又はコリメートされる。 As shown in FIGS. 9 and 12, a convex lens 44 (third convex lens) is provided on the end surface S10 on the positive side in the x-axis direction of the optical fiber insertion portion 42a. The convex lens 44 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis direction. Accordingly, the laser beam B1 emitted from the light emitting element array 100 and reflected by the total reflection surface R1 is condensed or collimated by the convex lens 44.
 また、凸レンズ44は、x軸方向から平面視したとき、光ファイバーの光軸と重なっている。従って、凸レンズ44で集光又はコリメートされたレーザービームB1は、光ファイバー挿入部42aの樹脂を通過する。そして、レーザービームB1は、突き当て面S9に突き当てられた光ファイバー60の芯線のコアに伝送される。 Also, the convex lens 44 overlaps the optical axis of the optical fiber when viewed in plan from the x-axis direction. Accordingly, the laser beam B1 collected or collimated by the convex lens 44 passes through the resin of the optical fiber insertion portion 42a. The laser beam B1 is transmitted to the core of the core of the optical fiber 60 that is abutted against the abutting surface S9.
 光ファイバー挿入部42aの上面S7には、図11に示すように、金属キャップ30の係合部32aと係合する突起N1が設けられている。突起N1は、x軸方向において開口部A1と凹部D3との間に設けられ、y軸方向に延在している。また、突起N1は、y軸方向から平面視したとき、z軸方向の正方向側に突出した三角形状を成している。 As shown in FIG. 11, a protrusion N1 that engages with the engaging portion 32a of the metal cap 30 is provided on the upper surface S7 of the optical fiber insertion portion 42a. The protrusion N1 is provided between the opening A1 and the recess D3 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N1 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
 光ファイバー挿入部42aの裏面には、図11及び図12に示すように、凸部C7が設けられている。凸部C7は、位置決め部材220のプラグガイド部222の溝G1に対応している。凸部C7は、端面S8から端面S10に向かって、x軸に平行に設けられている。 As shown in FIGS. 11 and 12, a convex portion C7 is provided on the back surface of the optical fiber insertion portion 42a. The convex portion C7 corresponds to the groove G1 of the plug guide portion 222 of the positioning member 220. The convex portion C7 is provided in parallel to the x-axis from the end surface S8 toward the end surface S10.
 耳部42bは、図11及び図12に示すように、光ファイバー挿入部42aのx軸方向の負方向側の端部近傍からy軸方向の負方向側に突出している。これにより、送信側プラグ42は、L字型を成している。なお、耳部42bは、送信側プラグ42の挿抜作業の際に、把持部として機能する。また、耳部42bの略中央には、z軸方向から平面視したとき、略矩形状の肉抜き穴が設けられている。 As shown in FIGS. 11 and 12, the ear portion 42b protrudes from the vicinity of the end portion on the negative direction side in the x-axis direction of the optical fiber insertion portion 42a toward the negative direction side in the y-axis direction. Thereby, the transmission side plug 42 is L-shaped. In addition, the ear | edge part 42b functions as a holding part in the case of the insertion / extraction operation | work of the transmission side plug 42. FIG. Further, a substantially rectangular hollow hole is provided in the approximate center of the ear portion 42b when viewed in plan from the z-axis direction.
 なお、送信側プラグ42とレセプタクル20との接続作業は、凸部C7を溝G1に沿わせて、x軸方向の正方向側に押し込むことにより行われる。このとき、耳部42bのx軸方向の正方向側の端面S11は、図7で示される位置決め部材200の突き当て部228の端面S3に突き当たる。 Note that the connection work between the transmission side plug 42 and the receptacle 20 is performed by pushing the convex portion C7 along the groove G1 to the positive side in the x-axis direction. At this time, the end surface S11 on the positive side in the x-axis direction of the ear portion 42b abuts against the end surface S3 of the abutting portion 228 of the positioning member 200 shown in FIG.
 また、送信側プラグ42とレセプタクル20との接続作業により、図9に示すように、送信側プラグ42は、位置決め部材220上に載置される。さらに、前述のとおり光ファイバー60の光軸は、x軸方向と平行であり、送信側プラグ42をレセプタクル20へ押し込む方向は、x軸方向の正方向側である。従って、光ファイバー60の光軸と送信側プラグ42の挿入方向は平行である。 Further, as shown in FIG. 9, the transmission side plug 42 is placed on the positioning member 220 by the connection work between the transmission side plug 42 and the receptacle 20. Furthermore, as described above, the optical axis of the optical fiber 60 is parallel to the x-axis direction, and the direction in which the transmission side plug 42 is pushed into the receptacle 20 is the positive direction side in the x-axis direction. Therefore, the optical axis of the optical fiber 60 and the insertion direction of the transmission side plug 42 are parallel.
 また、送信側プラグ42とレセプタクル20との接続する際、金属キャップ30の係合部32aが突起N1と係合するとともに、係合部32cが送信側プラグ42の上面S7と端面S8とが成す角と係合することにより、送信側プラグ42がレセプタクル20に固定される。 Further, when the transmission side plug 42 and the receptacle 20 are connected, the engaging portion 32a of the metal cap 30 is engaged with the protrusion N1, and the engaging portion 32c is formed by the upper surface S7 and the end surface S8 of the transmission side plug 42. By engaging with the corner, the transmission side plug 42 is fixed to the receptacle 20.
 受信側プラグ46は、受光素子アレイ50へレーザービームB2を伝送する。受信側プラグ46は、図11に示すように、光ファイバー挿入部46a及び耳部46bを備える。光ファイバー挿入部46aは、受信側プラグ46のy軸方向の負方向側の部分を構成しており、略直方体状を成している。光ファイバー挿入部46aのx軸方向の負方向側の部分には、光ファイバー60を挿入するための開口部A2が設けられている。 The receiving side plug 46 transmits the laser beam B2 to the light receiving element array 50. As shown in FIG. 11, the receiving side plug 46 includes an optical fiber insertion portion 46a and an ear portion 46b. The optical fiber insertion portion 46a constitutes a portion on the negative direction side in the y-axis direction of the reception side plug 46, and has a substantially rectangular parallelepiped shape. An opening A2 for inserting the optical fiber 60 is provided in a portion on the negative direction side in the x-axis direction of the optical fiber insertion portion 46a.
 開口部A2は、図11に示すように、光ファイバー挿入部46aのz軸方向の正方向側の上面S12及びx軸方向の負方向側の端面S13を切り抜くことにより形成されている。また、開口部A2のx軸方向の正方向側の内周面には、挿入された光ファイバー60の芯線を受信側プラグ46の先端まで導くための孔H8が設けられている。なお、孔H8は、光ファイバー60の本数に対応し、本実施形態においては2つである。 As shown in FIG. 11, the opening A2 is formed by cutting out the upper surface S12 on the positive direction side in the z-axis direction and the end surface S13 on the negative direction side in the x-axis direction of the optical fiber insertion portion 46a. A hole H8 for guiding the core of the inserted optical fiber 60 to the tip of the receiving side plug 46 is provided on the inner peripheral surface on the positive side in the x-axis direction of the opening A2. The number of holes H8 corresponds to the number of the optical fibers 60, and is two in this embodiment.
 さらに、光ファイバー挿入部46aにおけるx軸方向の正方向側の部分には、図11に示すように、光ファイバー60固定用の接着剤を注入するための凹部D4が設けられている。凹部D4は、光ファイバー挿入部46aの表面から裏面に向けて窪んでいる。凹部D4のx軸方向の負方向側の内周面には、孔H8が設けられている。孔H8は、開口部A2のx軸方向の正方向側の内周面と繋がっている。従って、光ファイバー60の芯線は、孔H8を通って、開口部A2から凹部D4に到達する。凹部D4に到達した光ファイバー60の芯線は、凹部D4のx軸方向の正方向側の内周面(突き当て面)S14に突き当てられる。そして、透明樹脂から成る接着剤、例えばエポキシ系の樹脂を開口部A2及び凹部D4に流し込むことにより、光ファイバー60は、受信側プラグ46に固定される。 Furthermore, as shown in FIG. 11, a concave portion D4 for injecting an adhesive for fixing the optical fiber 60 is provided in a portion on the positive side in the x-axis direction of the optical fiber insertion portion 46a. The recess D4 is recessed from the front surface to the back surface of the optical fiber insertion portion 46a. A hole H8 is provided on the inner peripheral surface on the negative direction side in the x-axis direction of the recess D4. The hole H8 is connected to the inner peripheral surface on the positive direction side in the x-axis direction of the opening A2. Accordingly, the core wire of the optical fiber 60 reaches the recess D4 from the opening A2 through the hole H8. The core of the optical fiber 60 that has reached the recess D4 is abutted against the inner peripheral surface (abutment surface) S14 on the positive side in the x-axis direction of the recess D4. The optical fiber 60 is fixed to the receiving side plug 46 by pouring an adhesive made of a transparent resin, for example, an epoxy resin into the opening A2 and the recess D4.
 光ファイバー挿入部46aのx軸方向の正方向側の端面S15には、図9及び図12に示すように、凸レンズ48が設けられている。凸レンズ48は、x軸と直交する方向から平面視したとき、x軸方向の正方向側に突出する半円状を成している。 As shown in FIGS. 9 and 12, a convex lens 48 is provided on the end surface S15 on the positive side in the x-axis direction of the optical fiber insertion portion 46a. The convex lens 48 has a semicircular shape protruding in the positive direction side in the x-axis direction when seen in a plan view from a direction orthogonal to the x-axis.
 また、凸レンズ48は、x軸方向から平面視したとき、光ファイバー60の光軸と重なっている。従って、光ファイバー60から出射されたレーザービームB2は、凸レンズ48により集光又はコリメートされ、全反射面R2に進行する。そして、レーザービームB2は、全反射面R2で反射されて、受光素子アレイ50に伝送される。 Further, the convex lens 48 overlaps the optical axis of the optical fiber 60 when viewed in plan from the x-axis direction. Accordingly, the laser beam B2 emitted from the optical fiber 60 is condensed or collimated by the convex lens 48 and proceeds to the total reflection surface R2. The laser beam B <b> 2 is reflected by the total reflection surface R <b> 2 and transmitted to the light receiving element array 50.
 光ファイバー挿入部46aの上面S12には、図11に示すように、金属キャップ30の係合部32bと係合する突起N2が設けられている。突起N2は、x軸方向において開口部A2と凹部D4の間に設けられ、y軸方向に延在している。また、突起N2は、y軸方向から平面視したとき、z軸方向の正方向側に突出した三角形状を成している。 As shown in FIG. 11, a protrusion N2 that engages with the engaging portion 32b of the metal cap 30 is provided on the upper surface S12 of the optical fiber insertion portion 46a. The protrusion N2 is provided between the opening A2 and the recess D4 in the x-axis direction, and extends in the y-axis direction. Further, the protrusion N2 has a triangular shape protruding in the positive direction side in the z-axis direction when viewed in plan from the y-axis direction.
 光ファイバー挿入部46aの裏面には、図11及び図12に示すように、凸部C8が設けられている。凸部C8は、位置決め部材240のプラグガイド部242の溝G2に対応している。凸部C8は、端面S13から端面S15に向かって、x軸に平行に設けられている。 As shown in FIGS. 11 and 12, a convex portion C8 is provided on the back surface of the optical fiber insertion portion 46a. The convex portion C8 corresponds to the groove G2 of the plug guide portion 242 of the positioning member 240. The convex portion C8 is provided in parallel to the x-axis from the end surface S13 toward the end surface S15.
 耳部46bは、図11及び図12に示すように、光ファイバー挿入部46aのx軸方向の負方向側の端部からy軸方向の正方向側に突出している。これにより、受信側プラグ46は、L字型を成している。なお、耳部46bは、受信側プラグ46の挿抜作業の際に、把持部として機能する。また、耳部46bの略中央には、z軸方向から平面視したとき、略矩形状の肉抜き穴が設けられている。 As shown in FIGS. 11 and 12, the ear 46b protrudes from the end on the negative direction side in the x-axis direction of the optical fiber insertion portion 46a to the positive direction side in the y-axis direction. Thereby, the receiving side plug 46 is L-shaped. In addition, the ear | edge part 46b functions as a holding part in the case of the insertion / extraction operation | work of the receiving side plug 46. FIG. Further, a substantially rectangular hollow hole is provided in the approximate center of the ear 46b when viewed in plan from the z-axis direction.
 なお、受信側プラグ46とレセプタクル20との接続作業は、凸部C8を溝G2に沿わせて、x軸方向の正方向側に押し込むことにより行われる。このとき、耳部46bのx軸方向の正方向側の端面S16は、図7で示される位置決め部材200の突き当て部248の端面S6に突き当たる。 Note that the connection work between the receiving side plug 46 and the receptacle 20 is performed by pushing the convex portion C8 along the groove G2 to the positive side in the x-axis direction. At this time, the end surface S16 on the positive side in the x-axis direction of the ear portion 46b abuts against the end surface S6 of the abutting portion 248 of the positioning member 200 shown in FIG.
 また、受信側プラグ46とレセプタクル20との接続作業により、図9に示すように、受信側プラグ46は、位置決め部材240上に載置される。さらに、前述のとおり光ファイバー60の光軸は、x軸方向と平行であり、受信側プラグ46をレセプタクル20へ押し込む方向は、x軸方向の正方向側である。従って、光ファイバー60の光軸と受信側プラグ46の挿入方向は平行である。 Further, as shown in FIG. 9, the receiving side plug 46 is placed on the positioning member 240 by the connection work between the receiving side plug 46 and the receptacle 20. Furthermore, as described above, the optical axis of the optical fiber 60 is parallel to the x-axis direction, and the direction in which the receiving-side plug 46 is pushed into the receptacle 20 is the positive direction side in the x-axis direction. Therefore, the optical axis of the optical fiber 60 and the insertion direction of the receiving side plug 46 are parallel.
 また、受信側プラグ46とレセプタクル20とを接続する際、金属キャップ30の係合部32bが突起N2と係合するとともに、係合部32dが受信側プラグ46の上面S12と端面S13とが成す角と係合することにより、受信側プラグ46がレセプタクル20に固定される。 Further, when the receiving side plug 46 and the receptacle 20 are connected, the engaging portion 32b of the metal cap 30 engages with the protrusion N2, and the engaging portion 32d forms the upper surface S12 and the end surface S13 of the receiving side plug 46. The receiving side plug 46 is fixed to the receptacle 20 by engaging with the corner.
 以上のように構成された光伝送モジュール10では、図9に示すように、発光素子アレイ100からz軸方向の正方向側に出射されたレーザービームB1は、封止樹脂24及び位置決め部材220を通過する。さらに、レーザービームB1は、全反射面R1でx軸方向の負方向側に反射されて、プラグ40を通過し光ファイバー60のコアに伝送される。従って、位置決め部材220は、光ファイバー60のコアと発光素子アレイ100とを光学的に結合させる役割を担っている。 In the optical transmission module 10 configured as described above, as shown in FIG. 9, the laser beam B <b> 1 emitted from the light emitting element array 100 toward the positive side in the z-axis direction passes through the sealing resin 24 and the positioning member 220. pass. Further, the laser beam B <b> 1 is reflected by the total reflection surface R <b> 1 on the negative side in the x-axis direction, passes through the plug 40, and is transmitted to the core of the optical fiber 60. Therefore, the positioning member 220 plays a role of optically coupling the core of the optical fiber 60 and the light emitting element array 100.
 また、光伝送モジュール10において、図9に示すように、光ファイバー60からx軸方向の正方向側に出射されたレーザービームB2は、位置決め部材240を通過する。さらに、レーザービームB2は、全反射面R2でz軸方向の負方向側に反射されて、封止樹脂24を通過し受光素子アレイ50に伝送される。従って、位置決め部材240は、光ファイバー60のコアと受光素子アレイ50とを光学的に結合させる役割を担っている。 Further, in the optical transmission module 10, as shown in FIG. 9, the laser beam B <b> 2 emitted from the optical fiber 60 toward the positive direction in the x-axis direction passes through the positioning member 240. Further, the laser beam B <b> 2 is reflected by the total reflection surface R <b> 2 to the negative direction side in the z-axis direction, passes through the sealing resin 24, and is transmitted to the light receiving element array 50. Accordingly, the positioning member 240 plays a role of optically coupling the core of the optical fiber 60 and the light receiving element array 50.
(製造方法)
 以下に、本発明の一実施形態に係る光伝送モジュール10の製造方法を、発光素子アレイ100、レセプタクル20、プラグ40及び光伝送モジュール10の順で説明する。
(Production method)
Below, the manufacturing method of the optical transmission module 10 which concerns on one Embodiment of this invention is demonstrated in order of the light emitting element array 100, the receptacle 20, the plug 40, and the optical transmission module 10. FIG.
(発光素子アレイの製造方法)
 まず、ベース基板128の表面に、N型半導体コンタクト層130、N型DBR層132、N型半導体クラッド層134、活性層136、P型半導体クラッド層138、P型DBR層140及びP型半導体コンタクト層142を、この順に積層する。
(Method for manufacturing light emitting element array)
First, an N-type semiconductor contact layer 130, an N-type DBR layer 132, an N-type semiconductor clad layer 134, an active layer 136, a P-type semiconductor clad layer 138, a P-type DBR layer 140, and a P-type semiconductor contact are formed on the surface of the base substrate 128. Layer 142 is stacked in this order.
 次に、それぞれのVCSEL100A,100Bの発光領域多層部160を構成する部分を除き、P型半導体コンタクト層142、P型DBR層140、P型半導体クラッド層138、活性層136、N型半導体クラッド層134を、順次所定のパターンでエッチングする。この工程では、N型DBR層132の表面まで、エッチングを行う。これにより、N型半導体コンタクト層130、N型DBR層132を除くVCSEL100A,100Bの発光領域多層部160が所定距離だけ離間するように分離される。 Next, the P-type semiconductor contact layer 142, the P-type DBR layer 140, the P-type semiconductor clad layer 138, the active layer 136, and the N-type semiconductor clad layer are excluded except for the portions constituting the light emitting region multilayer portion 160 of each VCSEL 100A, 100B 134 are sequentially etched in a predetermined pattern. In this step, etching is performed up to the surface of the N-type DBR layer 132. Thereby, the light emitting region multilayer portions 160 of the VCSELs 100A and 100B excluding the N-type semiconductor contact layer 130 and the N-type DBR layer 132 are separated so as to be separated by a predetermined distance.
 N型DBR層132の表面が露出した領域における発光領域多層部160に近接する位置をエッチングすることで、N型半導体コンタクト層130を露出させる。このN型半導体コンタクト層130を露出させた領域に、カソード用電極911を形成する。 The N-type semiconductor contact layer 130 is exposed by etching a position in the region where the surface of the N-type DBR layer 132 is exposed and close to the light emitting region multilayer section 160. A cathode electrode 911 is formed in a region where the N-type semiconductor contact layer 130 is exposed.
 また、エッチングしなかった発光領域多層部160のP型半導体コンタクト層142の表面にアノード用リング電極921を形成する。 Further, an anode ring electrode 921 is formed on the surface of the P-type semiconductor contact layer 142 of the light emitting region multilayer part 160 that has not been etched.
 ベース基板128の表面側に、カソード用電極911、アノード用リング電極921の表面を除き、絶縁膜162を形成する。 The insulating film 162 is formed on the surface side of the base substrate 128 except for the surfaces of the cathode electrode 911 and the anode ring electrode 921.
 絶縁膜162の表面の発光領域多層部160に近接する領域に絶縁層170を形成する。 An insulating layer 170 is formed in a region close to the light emitting region multilayer portion 160 on the surface of the insulating film 162.
 絶縁層170の表面に、カソード用パッド電極912とアノード用パッド電極922とを形成する。 A cathode pad electrode 912 and an anode pad electrode 922 are formed on the surface of the insulating layer 170.
 カソード用電極911とカソード用パッド電極912とを接続するカソード用配線電極913を形成する。アノード用リング電極921とアノード用パッド電極922とを接続するアノード用配線電極923を形成する。 A cathode wiring electrode 913 that connects the cathode electrode 911 and the cathode pad electrode 912 is formed. An anode wiring electrode 923 that connects the anode ring electrode 921 and the anode pad electrode 922 is formed.
 隣り合うVCSEL100A,100Bの領域を分割するように、絶縁膜162、N型DBR層132、N型半導体コンタクト層130を貫通し、ベース基板128の表面から内部へ所定の深さまで凹む形状の溝180を形成する。以上のような工程により、発光素子アレイ100が形成される。 A groove 180 having a shape that penetrates the insulating film 162, the N-type DBR layer 132, and the N-type semiconductor contact layer 130 so as to divide the adjacent VCSELs 100A and 100B into a predetermined depth from the surface of the base substrate 128 to the inside. Form. The light emitting element array 100 is formed by the processes as described above.
(レセプタクルの製造方法)
 次に、レセプタクル20の製造方法について、図面を参照しながら説明する。図13は、本発明の一実施形態に係るレセプタクルの製造工程の図である。
(Receptacle manufacturing method)
Next, a method for manufacturing the receptacle 20 will be described with reference to the drawings. FIG. 13 is a diagram of a manufacturing process of a receptacle according to an embodiment of the present invention.
 まず、実装基板22の集合体であるマザー基板122(本図面中には、図示しない)の表面にはんだを塗布する。より具体的には、メタルマスクを載せたマザー基板122上に、スキージを使用してクリームはんだを押し付ける。そして、メタルマスクをマザー基板122から取り除くことにより、はんだをマザー基板122に印刷する。 First, solder is applied to the surface of a mother substrate 122 (not shown in the drawing) which is an assembly of the mounting substrates 22. More specifically, cream solder is pressed onto the mother substrate 122 on which the metal mask is placed using a squeegee. Then, the solder is printed on the mother substrate 122 by removing the metal mask from the mother substrate 122.
 次に、コンデンサーをマザー基板122のはんだ上に載置する。その後、マザー基板122に熱を加えて、コンデンサーをはんだ付けする。 Next, the capacitor is placed on the solder of the mother board 122. Thereafter, heat is applied to the mother substrate 122 to solder the capacitor.
 コンデンサーをはんだ付けした後、マザー基板122上の所定位置にAgペーストを塗布する。塗布されたAg上に駆動回路26、受光素子アレイ50及び発光素子アレイ100を載置して、ダイボンドを行う。さらに、Auワイヤーを用いて、駆動回路26と受光素子アレイ50とをワイヤーボンディングにより接続し、さらに、駆動回路26と発光素子アレイ100とをワイヤーボンディングにより接続する。 After soldering the capacitor, Ag paste is applied to a predetermined position on the mother substrate 122. The drive circuit 26, the light receiving element array 50, and the light emitting element array 100 are mounted on the coated Ag, and die bonding is performed. Further, the drive circuit 26 and the light receiving element array 50 are connected by wire bonding using Au wires, and the drive circuit 26 and the light emitting element array 100 are connected by wire bonding.
 その後、コンデンサー、駆動回路26と、受光素子アレイ50及び発光素子アレイ100に対して樹脂モールドを行う。さらに、ダイサーを用いてマザー基板122をカットすることにより、複数の実装基板22を得る。 Thereafter, resin molding is performed on the capacitor, the drive circuit 26, the light receiving element array 50, and the light emitting element array 100. Furthermore, the plurality of mounting boards 22 are obtained by cutting the mother board 122 using a dicer.
 次に、位置決め部材220を実装基板22及び封止樹脂24上に載置する。より具体的には、封止部24aの表面におけるx軸方向の負方向側の領域にUV硬化型の接着剤を塗布する。接着剤を塗布した後、図13に示すように、発光素子アレイ100の発光部の中心T100の位置を位置認識用カメラV1で確認する。 Next, the positioning member 220 is placed on the mounting substrate 22 and the sealing resin 24. More specifically, a UV curable adhesive is applied to the negative region in the x-axis direction on the surface of the sealing portion 24a. After applying the adhesive, as shown in FIG. 13, the position of the center T100 of the light emitting part of the light emitting element array 100 is confirmed by the position recognition camera V1.
 次に、位置決め部材220を封止樹脂24上に載置するための搭載機V2が位置決め部材220を吸着して取り上げる。そして、図13に示すように、搭載機V2が位置決め部材220を吸着した状態で、位置認識用カメラV3で位置決め部材220の凸レンズ230のレンズ中心T230の位置を確認する。 Next, the mounting machine V2 for placing the positioning member 220 on the sealing resin 24 picks up and picks up the positioning member 220. Then, as shown in FIG. 13, the position of the lens center T230 of the convex lens 230 of the positioning member 220 is confirmed by the position recognition camera V3 in a state where the mounting machine V2 sucks the positioning member 220.
 位置認識用カメラV1で確認した発光素子アレイ100の発光部の中心T100の位置データ及び、位置認識用カメラV3で確認した位置決め部材220の凸レンズ230のレンズ中心T230の位置データから、発光素子アレイ100の発光部と凸レンズ230との相対的な位置を算出する。算出した結果に基づいて、搭載機V2の移動量を決定する。 From the position data of the center T100 of the light emitting part of the light emitting element array 100 confirmed by the position recognition camera V1 and the position data of the lens center T230 of the convex lens 230 of the positioning member 220 confirmed by the position recognition camera V3, the light emitting element array 100. The relative position between the light emitting part and the convex lens 230 is calculated. Based on the calculated result, the movement amount of the onboard machine V2 is determined.
 次に、搭載機V2により、決定した移動量だけ、位置決め部材220を移動させる。これにより、凸レンズ230のレンズ中心T230と発光素子アレイ100の光軸とが一致する。 Next, the positioning member 220 is moved by the determined movement amount by the mounting machine V2. Thereby, the lens center T230 of the convex lens 230 and the optical axis of the light emitting element array 100 coincide.
 位置決め部材220の載置作業と並行して、位置決め部材240を実装基板22及び封止樹脂24上に載置する作業を行う。より具体的には、封止部24aの表面のx軸方向の負方向側の領域にUV硬化型の接着剤を塗布した後、図13に示すように、受光素子アレイ50の受光部の中心T50の位置を位置認識用カメラV4で確認する。 In parallel with the mounting operation of the positioning member 220, the positioning member 240 is mounted on the mounting substrate 22 and the sealing resin 24. More specifically, after a UV curable adhesive is applied to the negative region in the x-axis direction on the surface of the sealing portion 24a, the center of the light receiving portion of the light receiving element array 50 is applied as shown in FIG. The position T50 is confirmed by the position recognition camera V4.
 次に、位置決め部材240を封止樹脂24上に載置するための搭載機V5が位置決め部材240を吸着して取り上げる。そして、図13に示すように、搭載機V5が位置決め部材240を吸着した状態で、位置認識用カメラV6で位置決め部材240の凸レンズ250のレンズ中心T250の位置を確認する。 Next, the mounting machine V5 for mounting the positioning member 240 on the sealing resin 24 picks up and picks up the positioning member 240. Then, as shown in FIG. 13, the position of the lens center T250 of the convex lens 250 of the positioning member 240 is confirmed by the position recognition camera V6 in a state where the mounting machine V5 sucks the positioning member 240.
 位置認識用カメラV4で確認した受光素子アレイ50の受光部の中心T50の位置データ及び、位置認識用カメラV6で確認した位置決め部材240の凸レンズ250のレンズ中心T250の位置データから、受光素子アレイ50の受光部と凸レンズ250との相対的な位置を算出する。算出された結果に基づいて、搭載機V5の移動量を決定する。 From the position data of the center T50 of the light receiving unit of the light receiving element array 50 confirmed by the position recognition camera V4 and the position data of the lens center T250 of the convex lens 250 of the positioning member 240 confirmed by the position recognition camera V6, the light receiving element array 50. The relative position between the light receiving unit and the convex lens 250 is calculated. Based on the calculated result, the movement amount of the onboard machine V5 is determined.
 次に、搭載機V5により、決定した移動量だけ、位置決め部材240を移動させる。これにより、凸レンズ250のレンズ中心T250と受光素子アレイ50の光軸とが一致する。 Next, the positioning member 240 is moved by the determined movement amount by the mounting machine V5. Thereby, the lens center T250 of the convex lens 250 and the optical axis of the light receiving element array 50 coincide.
 配置された位置決め部材220,240に対して、紫外線を照射する。なお、紫外線照射中、位置決め部材220,240は、搭載機V2,V5により、実装基板22及び封止樹脂24に押しつけられた状態である。これにより、位置決め部材220,240と封止樹脂24との間にあるUV硬化型の接着剤が硬化する際に、位置決め部材220,240が、位置ズレを起こすことなく、実装基板22及び封止樹脂24に固定される。 Irradiate ultraviolet rays to the positioning members 220 and 240 arranged. During ultraviolet irradiation, the positioning members 220 and 240 are pressed against the mounting substrate 22 and the sealing resin 24 by the mounting machines V2 and V5. Thus, when the UV curable adhesive between the positioning members 220 and 240 and the sealing resin 24 is cured, the positioning members 220 and 240 are not displaced and the mounting substrate 22 and the sealing resin are sealed. It is fixed to the resin 24.
 次に、位置決め部材200が載置された実装基板22に対して、金属キャップ30を取り付ける。より具体的には、実装基板22の表面上であって、封止樹脂24の脚部24bと24cとの間の空間H1、脚部24dと24eとの間の空間H2、及び、金属キャップ30の凸部C2,C5が接触する部分にエポキシ系などの熱硬化性の接着剤を塗布する。また、実装基板22のグランド導体露出部E2,E3には、Agなどの導電性ペーストを塗布する。 Next, the metal cap 30 is attached to the mounting substrate 22 on which the positioning member 200 is placed. More specifically, on the surface of the mounting substrate 22, a space H <b> 1 between the legs 24 b and 24 c of the sealing resin 24, a space H <b> 2 between the legs 24 d and 24 e, and the metal cap 30. A thermosetting adhesive such as epoxy is applied to the portion where the projections C2 and C5 come into contact. Further, a conductive paste such as Ag is applied to the ground conductor exposed portions E2 and E3 of the mounting substrate 22.
 接着剤及び導電性ペーストを塗布後、金属キャップ30の凸部C3を、実装基板22上の封止樹脂24の脚部24bと脚部24cとに挟まれた部分、すなわち空間H1に嵌め合わせる。さらに、凸部C6を封止樹脂24の脚部24dと脚部24eとに挟まれた部分、すなわち空間H2に嵌め合わせる。これにより、金属キャップ30の実装基板22に対する位置が決まる。また、金属キャップ30の位置決めと同時に、凸部C1~C6が実装基板22上の接着剤及び導電性ペーストと接触する。 After applying the adhesive and the conductive paste, the convex portion C3 of the metal cap 30 is fitted into a portion sandwiched between the leg portion 24b and the leg portion 24c of the sealing resin 24 on the mounting substrate 22, that is, the space H1. Further, the convex portion C6 is fitted into a portion sandwiched between the leg portion 24d and the leg portion 24e of the sealing resin 24, that is, the space H2. Thereby, the position of the metal cap 30 with respect to the mounting substrate 22 is determined. Simultaneously with the positioning of the metal cap 30, the convex portions C1 to C6 come into contact with the adhesive and the conductive paste on the mounting substrate 22.
 金属キャップ30を嵌め合わせた後、実装基板22に熱を加え、接着剤及び導電性ペーストを硬化させる。これにより、金属キャップ30を、実装基板22に固定する。なお、金属キャップ30を実装基板22に取り付けることにより、金属キャップ30の凸部C1,C4が、実装基板22のグランド導体露出部E2,E3と接触する。これにより、金属キャップ30は、実装基板22内のグランド導体に接続され、グランド電位に保たれる。以上のような工程によりレセプタクル20が完成する。 After fitting the metal cap 30, heat is applied to the mounting substrate 22 to cure the adhesive and the conductive paste. Thereby, the metal cap 30 is fixed to the mounting substrate 22. Note that, by attaching the metal cap 30 to the mounting substrate 22, the convex portions C <b> 1 and C <b> 4 of the metal cap 30 come into contact with the ground conductor exposed portions E <b> 2 and E <b> 3 of the mounting substrate 22. Thereby, the metal cap 30 is connected to the ground conductor in the mounting substrate 22 and is kept at the ground potential. The receptacle 20 is completed by the process as described above.
(プラグの製造方法)
 まず、プラグ40に挿入される光ファイバー60を、所定の長さに切断する。
(Plug manufacturing method)
First, the optical fiber 60 inserted into the plug 40 is cut into a predetermined length.
 次に、光ファイバー60の先端付近の被覆を、光ファイバー用ストリッパーを用いて除去する。先端付近の被覆を除去した後、光ファイバー60の芯線の劈開面を出すためにクリーブを行う。 Next, the coating near the tip of the optical fiber 60 is removed using an optical fiber stripper. After removing the coating in the vicinity of the tip, cleaving is performed to bring out the cleavage plane of the core of the optical fiber 60.
 次に、図11に示されるプラグ40の開口部A1,A2及び凹部D3,D4に、光ファイバー60を固定するためのエポキシ樹脂などの透明接着剤を注入する。さらに、光ファイバー60の芯線がプラグ40の面S9,S14に突き当たるまで押し込む。そして、透明接着剤が硬化することにより、光ファイバー60がプラグ40に固定される。 Next, a transparent adhesive such as an epoxy resin for fixing the optical fiber 60 is injected into the openings A1 and A2 and the recesses D3 and D4 of the plug 40 shown in FIG. Furthermore, it pushes in until the core wire of the optical fiber 60 hits the surfaces S9 and S14 of the plug 40. Then, the optical fiber 60 is fixed to the plug 40 by curing the transparent adhesive.
(光伝送モジュールの製造方法)
 レセプタクル20にプラグ40を接続する。プラグ40の接続は、前述したように、位置決め部材220,240の溝G1,G2にプラグ40の凸部C7,C8を沿わせて、金属キャップ30とレセプタクル20との間に設けられた開口部A3から、x軸方向の正方向側に向かって押し込むことにより行われる。以上のような製造工程を経て光伝送モジュール10が完成する。
(Method for manufacturing optical transmission module)
The plug 40 is connected to the receptacle 20. As described above, the plug 40 is connected to the grooves G1 and G2 of the positioning members 220 and 240 along the protrusions C7 and C8 of the plug 40 and the opening provided between the metal cap 30 and the receptacle 20. This is performed by pushing from A3 toward the positive side in the x-axis direction. The optical transmission module 10 is completed through the manufacturing process as described above.
(効果)
 以上にように構成された光伝送モジュール10及びレセプタクル20によれば、VCSEL100A,100B間で十分にアイソレーションをとることができる。より詳細には、VCSEL100A,100Bは、一つの基板であるベース基板128上に載置されている。ベース基板128は、半絶縁性の半導体基板である。これにより、VCSEL100A,100Bでは、アノード用リング電極921から流入した電流(駆動信号)は、P型半導体コンタクト層142、P型DBR層140、P型半導体クラッド層138、活性層136、N型半導体クラッド層134、N型DBR層132、N型半導体コンタクト層130及びカソード用電極911の順に通過するため、ベース基板128を通過することはない。従って、VCSEL100Aに送られた駆動信号が、ベース基板128を介してVCSEL100Bに送られることはなく、また、VCSEL100Bに送られた駆動信号が、ベース基板128を介してVCSEL100Aに送られることもない。更に、VCSEL100AのN型半導体コンタクト層130とVCSEL100BのN型半導体コンタクト層130とは分離されている。したがって、VCSEL100Aに送られた駆動信号が、N型半導体コンタクト層130を介してVCSEL100Bに送られることはなく、また、VCSEL100Bに送られた駆動信号が、N型半導体コンタクト層130を介してVCSEL100Aに送られることもない。すなわち、光伝送モジュール10及びレセプタクル20によれば、VCSEL100A,100B間で十分にアイソレーションをとることができる。
(effect)
According to the optical transmission module 10 and the receptacle 20 configured as described above, sufficient isolation can be obtained between the VCSELs 100A and 100B. More specifically, the VCSELs 100A and 100B are placed on a base substrate 128 that is one substrate. The base substrate 128 is a semi-insulating semiconductor substrate. Thereby, in the VCSELs 100A and 100B, the current (driving signal) flowing from the anode ring electrode 921 causes the P-type semiconductor contact layer 142, the P-type DBR layer 140, the P-type semiconductor clad layer 138, the active layer 136, and the N-type semiconductor. Since the cladding layer 134, the N-type DBR layer 132, the N-type semiconductor contact layer 130, and the cathode electrode 911 pass in this order, they do not pass through the base substrate 128. Therefore, the drive signal sent to the VCSEL 100A is not sent to the VCSEL 100B via the base substrate 128, and the drive signal sent to the VCSEL 100B is not sent to the VCSEL 100A via the base substrate 128. Further, the N-type semiconductor contact layer 130 of the VCSEL 100A and the N-type semiconductor contact layer 130 of the VCSEL 100B are separated. Therefore, the drive signal sent to the VCSEL 100A is not sent to the VCSEL 100B via the N-type semiconductor contact layer 130, and the drive signal sent to the VCSEL 100B is sent to the VCSEL 100A via the N-type semiconductor contact layer 130. It is never sent. That is, according to the optical transmission module 10 and the receptacle 20, sufficient isolation can be obtained between the VCSELs 100A and 100B.
 また、光伝送モジュール10及びレセプタクル20では、以下に説明するように、レーザービームB1の光学的な損失が低減される。より詳細には、レーザービームB1は、相対的に屈折率の大きな樹脂から相対的に屈折率の小さな空気に出射する際に屈折する。そのため、空気中を進行するレーザービームB1は、樹脂中を進行するレーザービームB1よりも広がりながら伝搬する。したがって、レーザービームB1の光学系路において、樹脂の割合を高くし、空気の割合を低くすることにより、レーザービームB1の広がりを抑制することができる。そこで、レセプタクル20では、発光素子アレイ100から発せられたレーザービームB1は、樹脂からなる位置決め部材200内を通過する。これにより、レーザービームB1の光学経路において、樹脂が占める割合が高くなり、空気が占める割合が低くなる。その結果、レーザービームB1の広がりが抑制される。よって、光ファイバー60に入射するレーザービームB1の強度が大きくなり、レーザービームB1の光学的な損失が低減される。なお、同様の理由により、レーザービームB2の光学的な損失も低減される。 In the optical transmission module 10 and the receptacle 20, the optical loss of the laser beam B1 is reduced as described below. More specifically, the laser beam B1 is refracted when being emitted from a resin having a relatively high refractive index to air having a relatively low refractive index. Therefore, the laser beam B1 traveling in the air propagates while spreading more than the laser beam B1 traveling in the resin. Therefore, in the optical system path of the laser beam B1, the spread of the laser beam B1 can be suppressed by increasing the resin ratio and decreasing the air ratio. Therefore, in the receptacle 20, the laser beam B1 emitted from the light emitting element array 100 passes through the positioning member 200 made of resin. As a result, in the optical path of the laser beam B1, the proportion of resin increases and the proportion of air decreases. As a result, the spread of the laser beam B1 is suppressed. Therefore, the intensity of the laser beam B1 incident on the optical fiber 60 is increased, and the optical loss of the laser beam B1 is reduced. For the same reason, the optical loss of the laser beam B2 is also reduced.
 また、光伝送モジュール10及びレセプタクル20では、以下に説明するように、レーザービームB1の光学的な損失をさらに低減することができる。レセプタクル20では、発光素子アレイ100から発せられたレーザービームB1は、封止樹脂24内を通過する。これにより、レーザービームB1の光学経路において、樹脂が占める割合が大きくなり、空気が占める割合が小さくなる。その結果、レーザービームB1の広がりが抑制される。よって、光ファイバー60に入射するレーザービームB1の強度が大きくなり、レーザービームB1の光学的な損失が低減される。なお、同様の理由により、レーザービームB2の光学的な損失も低減される。 Further, in the optical transmission module 10 and the receptacle 20, as described below, the optical loss of the laser beam B1 can be further reduced. In the receptacle 20, the laser beam B <b> 1 emitted from the light emitting element array 100 passes through the sealing resin 24. Thereby, in the optical path of the laser beam B1, the proportion occupied by the resin increases and the proportion occupied by the air decreases. As a result, the spread of the laser beam B1 is suppressed. Therefore, the intensity of the laser beam B1 incident on the optical fiber 60 is increased, and the optical loss of the laser beam B1 is reduced. For the same reason, the optical loss of the laser beam B2 is also reduced.
 光伝送モジュール10及びレセプタクル20では、図9に示すように、レーザービームB1の光路上に全反射面R1が設けられている。また、全反射面R1と光ファイバー60の光軸とが成す角度は45°であり、全反射面R1と発光素子アレイ100とが成す角度は45°である。すなわち、全反射面R1と光ファイバー60の光軸とが成す角度と、全反射面R1と発光素子アレイ100とが成す角度は、等しい。これにより、光伝送モジュール10及びレセプタクル20では、光ファイバー60の光軸が、発光素子アレイ100からのレーザービームB1の出射方向と同じz軸方向でなくても、光ファイバー60と発光素子アレイ100を光学的に結合することができる。 In the optical transmission module 10 and the receptacle 20, as shown in FIG. 9, a total reflection surface R1 is provided on the optical path of the laser beam B1. The angle formed by the total reflection surface R1 and the optical axis of the optical fiber 60 is 45 °, and the angle formed by the total reflection surface R1 and the light emitting element array 100 is 45 °. That is, the angle formed by the total reflection surface R1 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R1 and the light emitting element array 100. Thereby, in the optical transmission module 10 and the receptacle 20, the optical fiber 60 and the light emitting element array 100 are optically optical even if the optical axis of the optical fiber 60 is not the same z-axis direction as the emission direction of the laser beam B 1 from the light emitting element array 100. Can be combined.
 光伝送モジュール10及びレセプタクル20では、図9に示すように、レーザービームB2の光路上に全反射面R2が設けられている。また、全反射面R2と光ファイバー60の光軸とが成す角度は45°であり、全反射面R2と受光素子アレイ50とが成す角度は45°である。すなわち、全反射面R2と光ファイバー60の光軸とが成す角度と、全反射面R2と受光素子アレイ50とが成す角度は、等しい。これにより、光伝送モジュール10及びレセプタクル20では、光ファイバー60の光軸が、受光素子アレイ50の受光方向と同じz軸方向でなくても、光ファイバー60と受光素子アレイ50を光学的に結合することができる。 In the optical transmission module 10 and the receptacle 20, as shown in FIG. 9, a total reflection surface R2 is provided on the optical path of the laser beam B2. The angle formed by the total reflection surface R2 and the optical axis of the optical fiber 60 is 45 °, and the angle formed by the total reflection surface R2 and the light receiving element array 50 is 45 °. That is, the angle formed by the total reflection surface R2 and the optical axis of the optical fiber 60 is equal to the angle formed by the total reflection surface R2 and the light receiving element array 50. Thereby, in the optical transmission module 10 and the receptacle 20, the optical fiber 60 and the light receiving element array 50 are optically coupled even if the optical axis of the optical fiber 60 is not the same z-axis direction as the light receiving direction of the light receiving element array 50. Can do.
 また、光伝送モジュール10及びレセプタクル20では、上述のとおり、光を樹脂内で伝搬させることにより、レーザービームB1,B2の光軸に対する広がりを抑制することができる。これにより、レセプタクル20に設けられた凸レンズ230,250及び全反射面R1,R2を小さくすることができる。その結果として、光伝送モジュール10及びレセプタクル20を小型化でき、低背化が可能となる。 Moreover, in the optical transmission module 10 and the receptacle 20, as described above, the spread of the laser beams B1 and B2 with respect to the optical axis can be suppressed by propagating the light within the resin. Thereby, the convex lenses 230 and 250 and the total reflection surfaces R1 and R2 provided in the receptacle 20 can be reduced. As a result, the optical transmission module 10 and the receptacle 20 can be reduced in size and reduced in height.
 また、図9に示すように、プラグ40のレセプタクル20への挿入方向は、光ファイバー60の光軸と同じx軸方向である。これにより、プラグ40のレセプタクル20に対する装着が不十分であっても、光ファイバー60の先端から受光素子アレイ50又は発光素子アレイ100までの距離が長くなるだけであり、光ファイバー60の光軸にズレは発生しない。従って、光伝送モジュール10によれば、プラグ40の装着不良に伴う、光ファイバー60と受光素子アレイ50又は発光素子アレイ100との光学的な損失を抑制できる。 Also, as shown in FIG. 9, the insertion direction of the plug 40 into the receptacle 20 is the same x-axis direction as the optical axis of the optical fiber 60. Thereby, even if the plug 40 is not sufficiently attached to the receptacle 20, only the distance from the tip of the optical fiber 60 to the light receiving element array 50 or the light emitting element array 100 is increased, and the optical axis of the optical fiber 60 is not displaced. Does not occur. Therefore, according to the optical transmission module 10, it is possible to suppress optical loss between the optical fiber 60 and the light receiving element array 50 or the light emitting element array 100 due to poor mounting of the plug 40.
 光伝送モジュール10及びレセプタクル20では、実装基板22の裏面に表面実装用電極E1が設けられている。これにより、光伝送モジュール10は、光伝送モジュール10が実装される回路基板に接続用のコネクタを設けることなく表面実装を行うことができる。従って、光伝送モジュール10を実装する回路基板上での、光伝送モジュール10の実質的な占有面積を抑えることができる。 In the optical transmission module 10 and the receptacle 20, the surface mounting electrode E <b> 1 is provided on the back surface of the mounting substrate 22. Thereby, the light transmission module 10 can be surface-mounted without providing a connector for connection to the circuit board on which the light transmission module 10 is mounted. Therefore, the substantial occupied area of the light transmission module 10 on the circuit board on which the light transmission module 10 is mounted can be suppressed.
 光伝送モジュール10及びレセプタクル20では、図9に示すように、位置決め部材200の光結合部224の裏面に凸レンズ230が設けられている。従って、発光素子アレイ100からのレーザービームB1は、凸レンズ230を通過する。このとき、発光素子アレイ100の位置が、位置決め部材220に対して位置ズレを起こしていた場合でもあっても、凸レンズ230によりレーザービームB1は、集光又はコリメートされて全反射面R1に進行する。従って、レセプタクル20及び光伝送モジュール10によれば、発光素子アレイ100の位置ズレによる光学的損失を抑制することができる。 In the optical transmission module 10 and the receptacle 20, as shown in FIG. 9, a convex lens 230 is provided on the back surface of the optical coupling portion 224 of the positioning member 200. Accordingly, the laser beam B 1 from the light emitting element array 100 passes through the convex lens 230. At this time, even if the position of the light emitting element array 100 is shifted from the positioning member 220, the laser beam B1 is condensed or collimated by the convex lens 230 and proceeds to the total reflection surface R1. . Therefore, according to the receptacle 20 and the optical transmission module 10, it is possible to suppress optical loss due to the positional deviation of the light emitting element array 100.
 光伝送モジュール10及びレセプタクル20では、図9に示すように、位置決め部材240の光結合部244の裏面に凸レンズ250が設けられている。従って、光ファイバー60から出射されたレーザービームB2は、凸レンズ250を通過する。このとき、全反射面R2で反射されたレーザービームB2の光軸がずれていた場合であっても、凸レンズ250により、レーザービームB2は集光又はコリメートされて受光素子アレイ50に進行する。従って、レセプタクル20及び光伝送モジュール10によれば、レーザービームB2の光軸ズレによる光学的損失を抑制することができる。 In the optical transmission module 10 and the receptacle 20, a convex lens 250 is provided on the back surface of the optical coupling portion 244 of the positioning member 240 as shown in FIG. Accordingly, the laser beam B <b> 2 emitted from the optical fiber 60 passes through the convex lens 250. At this time, even if the optical axis of the laser beam B 2 reflected by the total reflection surface R 2 is shifted, the laser beam B 2 is condensed or collimated by the convex lens 250 and proceeds to the light receiving element array 50. Therefore, according to the receptacle 20 and the optical transmission module 10, the optical loss due to the optical axis shift of the laser beam B2 can be suppressed.
 光伝送モジュール10では、図9に示すように、送信側プラグ42の端面S10に凸レンズ44が設けられている。従って、全反射面R1で反射されたレーザービームB1は、凸レンズ44を通過する。このとき、レーザービームB1が、凸レンズ44により集光又はコリメートされて光ファイバー60に進行する。従って、光伝送モジュール10によれば、レーザービームB1の光軸ズレによる光学的損失を抑制することができる。 In the optical transmission module 10, as shown in FIG. 9, a convex lens 44 is provided on the end surface S <b> 10 of the transmission side plug 42. Accordingly, the laser beam B1 reflected by the total reflection surface R1 passes through the convex lens 44. At this time, the laser beam B 1 is condensed or collimated by the convex lens 44 and travels to the optical fiber 60. Therefore, according to the optical transmission module 10, it is possible to suppress optical loss due to the optical axis shift of the laser beam B1.
 光伝送モジュール10では、図9に示すように、受信側プラグ46の端面S15に凸レンズ48が設けられている。従って、光ファイバー60から出射されたレーザービームB2は、凸レンズ48を通過する。このとき、光ファイバー60の位置が、プラグ40に対して位置ズレを起こしていた場合でもあっても、凸レンズ48によりレーザービームB2は、集光又はコリメートされて全反射面R2に進行する。従って、光伝送モジュール10によれば、光ファイバー60の位置ズレによる光学的損失を抑制することができる。 In the optical transmission module 10, as shown in FIG. 9, a convex lens 48 is provided on the end surface S <b> 15 of the receiving side plug 46. Therefore, the laser beam B2 emitted from the optical fiber 60 passes through the convex lens 48. At this time, even if the position of the optical fiber 60 is misaligned with respect to the plug 40, the laser beam B2 is condensed or collimated by the convex lens 48 and proceeds to the total reflection surface R2. Therefore, according to the optical transmission module 10, it is possible to suppress optical loss due to the positional deviation of the optical fiber 60.
 光伝送モジュール10では、プラグ40の強度の向上を図ることができる。図14は、従来のレセプタクル400及びプラグ41の断面図である。より詳細には、図14に示す光伝送モジュール400のように、位置決め部材200全体が封止樹脂25の表面に設けられていると、プラグ41のz軸方向の厚みが薄くなってしまう。そのため、プラグ41の強度が低下してしまう。そこで、光伝送モジュール10では、図9に示すように、位置決め部材200が、実装基板22及び封止樹脂24に跨って設けられている。また、プラグ40は、位置決め部材200のプラグガイド部222,242上に位置する。さらに、プラグガイド部222,242の溝G1,G2の高さh1,h3は、封止樹脂24の高さh2よりも低い。そして、光ファイバー60の光軸は、封止樹脂24よりもz軸方向の正方向側に位置する。これにより、光伝送モジュール10では、図14に示す光伝送モジュール400と比較して、プラグ40をz軸方向に大きくすることができる。従って、光伝送モジュール10では、強度の向上を図ることができる。 In the optical transmission module 10, the strength of the plug 40 can be improved. FIG. 14 is a cross-sectional view of a conventional receptacle 400 and plug 41. More specifically, when the entire positioning member 200 is provided on the surface of the sealing resin 25 as in the optical transmission module 400 illustrated in FIG. 14, the thickness of the plug 41 in the z-axis direction is reduced. Therefore, the strength of the plug 41 is reduced. Therefore, in the optical transmission module 10, as shown in FIG. 9, the positioning member 200 is provided across the mounting substrate 22 and the sealing resin 24. Further, the plug 40 is positioned on the plug guide portions 222 and 242 of the positioning member 200. Further, the heights h1 and h3 of the grooves G1 and G2 of the plug guide portions 222 and 242 are lower than the height h2 of the sealing resin 24. The optical axis of the optical fiber 60 is located on the positive side in the z-axis direction with respect to the sealing resin 24. Thereby, in the optical transmission module 10, compared with the optical transmission module 400 shown in FIG. 14, the plug 40 can be enlarged in the z-axis direction. Therefore, the optical transmission module 10 can improve the strength.
 また、光伝送モジュール10では、プラグ40をz軸方向に大きくすることが可能となったため、光伝送モジュール400のプラグ41よりも握りやすい。従って、光伝送モジュール10では、プラグ40のレセプタクル20に対する接続作業が容易である。 Further, in the optical transmission module 10, since the plug 40 can be enlarged in the z-axis direction, it is easier to grip than the plug 41 of the optical transmission module 400. Therefore, in the optical transmission module 10, it is easy to connect the plug 40 to the receptacle 20.
 また、光伝送モジュール10における金属キャップ30と実装基板22の間には、図1に示すように、開口部A3が設けられている。プラグ40の接続は、開口部A3からプラグ40を挿入することにより行われる。従って、光伝送モジュール10では、プラグ40を着脱する際に、金属キャップ30を取り外す必要がなく、プラグ40の着脱作業が容易である。 Further, an opening A3 is provided between the metal cap 30 and the mounting substrate 22 in the optical transmission module 10 as shown in FIG. The plug 40 is connected by inserting the plug 40 from the opening A3. Therefore, in the optical transmission module 10, it is not necessary to remove the metal cap 30 when attaching / detaching the plug 40, and the attachment / detachment work of the plug 40 is easy.
 また、金属キャップ30には、プラグ40を固定するための係合部32a~32dが設けられている。これにより、プラグ40の位置決め部材200に対する位置ズレが防止される。結果として、光ファイバー60の光軸ズレが防止される。従って、光伝送モジュール10によれば、光ファイバー60の光軸ズレを防止し、光学的損失を抑制することができる。 Further, the metal cap 30 is provided with engaging portions 32a to 32d for fixing the plug 40. Thereby, the position shift with respect to the positioning member 200 of the plug 40 is prevented. As a result, the optical axis shift of the optical fiber 60 is prevented. Therefore, according to the optical transmission module 10, the optical axis shift of the optical fiber 60 can be prevented and the optical loss can be suppressed.
 光伝送モジュール10及びレセプタクル20の製造方法では、以下に説明するように、発光素子アレイ100と凸レンズ230との間で位置ズレが発生することを抑制できる。より詳細には、位置決め部材200が実装基板22に取り付けられる際には、従来は、図15に示すような、実装基板22に設けられたピンP1を用いていた。実装基板22に設けられたピンP1を位置決め部材200に設けられた孔H9に差し込むことにより、位置決め部材200が実装基板22に固定される。この場合、実装基板22上のP1の製造時の位置ズレや発光素子アレイ100の実装時の位置ズレにより、発光素子アレイ100と位置決め部材200の凸レンズ230との間で位置ズレが生じる。 In the manufacturing method of the optical transmission module 10 and the receptacle 20, it is possible to suppress the occurrence of positional deviation between the light emitting element array 100 and the convex lens 230 as described below. More specifically, when the positioning member 200 is attached to the mounting board 22, conventionally, a pin P1 provided on the mounting board 22 as shown in FIG. 15 has been used. The positioning member 200 is fixed to the mounting substrate 22 by inserting the pin P <b> 1 provided on the mounting substrate 22 into the hole H <b> 9 provided in the positioning member 200. In this case, a positional deviation occurs between the light emitting element array 100 and the convex lens 230 of the positioning member 200 due to a positional deviation when the P1 is manufactured on the mounting substrate 22 or a positional deviation when the light emitting element array 100 is mounted.
 そこで、光伝送モジュール10及びレセプタクル20の製造方法では、位置決め部材200を実装基板22に取り付ける際に、発光素子アレイ100の発光部の中心T100と凸レンズ230のレンズ中心T230との位置関係を位置確認用カメラで確認しつつ、位置決め部材200を実装基板22に載置する。よって、発光素子アレイ100と凸レンズ230とがピンP1を介することなく直接に位置決めされるようになる。その結果、光伝送モジュール10及びレセプタクル20の製造方法では、実装基板22上におけるP1の位置ズレや発光素子アレイ100の位置ズレを考慮する必要がなく、発光素子アレイ100と凸レンズ230との間で位置ズレが生じることが抑制される。なお、同様の理由により、受光素子アレイ50と凸レンズ250との間で位置ズレが生じることも抑制される。 Therefore, in the method for manufacturing the optical transmission module 10 and the receptacle 20, when the positioning member 200 is attached to the mounting substrate 22, the positional relationship between the center T100 of the light emitting part of the light emitting element array 100 and the lens center T230 of the convex lens 230 is confirmed. The positioning member 200 is placed on the mounting substrate 22 while checking with the camera for use. Therefore, the light emitting element array 100 and the convex lens 230 are directly positioned without going through the pin P1. As a result, in the method for manufacturing the optical transmission module 10 and the receptacle 20, it is not necessary to consider the positional deviation of P1 on the mounting substrate 22 or the positional deviation of the light emitting element array 100, and between the light emitting element array 100 and the convex lens 230. The occurrence of misalignment is suppressed. For the same reason, positional deviation between the light receiving element array 50 and the convex lens 250 is also suppressed.
(変形例)
 以下に、変形例に係る光伝送モジュール10’の構成について説明する。図16は、変形例に係る光伝送モジュール10’及びレセプタクル20’の断面図である。外観図については、図1を援用する。
(Modification)
Below, the structure of optical transmission module 10 'which concerns on a modification is demonstrated. FIG. 16 is a cross-sectional view of an optical transmission module 10 ′ and a receptacle 20 ′ according to a modification. FIG. 1 is used for the external view.
 光伝送モジュール10と光伝送モジュール10’との相違点は、位置決め部材200に凸レンズが更に設けられている点である。その他の点については、光伝送モジュール10と光伝送モジュール10’とでは相違しないので、説明を省略する。なお、図16において、光伝送モジュール10と同じ構成については、光伝送モジュール10と同じ符号を付した。 The difference between the light transmission module 10 and the light transmission module 10 ′ is that the positioning member 200 is further provided with a convex lens. Since the other points are not different between the optical transmission module 10 and the optical transmission module 10 ', description thereof will be omitted. In FIG. 16, the same components as those of the light transmission module 10 are denoted by the same reference numerals as those of the light transmission module 10.
 図16に示すように、位置決め部材220の全反射面R1には、凸レンズ232が設けられている。これにより、発光素子アレイ100から出射されたレーザービームB1は、凸レンズ232により集光又はコリメートされて、光ファイバー60に伝送される。従って、光伝送モジュール10’によれば、光伝送モジュール10と比較して、更に光学的損失を抑制することができる。 As shown in FIG. 16, a convex lens 232 is provided on the total reflection surface R <b> 1 of the positioning member 220. Thereby, the laser beam B 1 emitted from the light emitting element array 100 is condensed or collimated by the convex lens 232 and transmitted to the optical fiber 60. Therefore, according to the optical transmission module 10 ′, optical loss can be further suppressed as compared with the optical transmission module 10.
 また、位置決め部材220における送信側プラグ42と対向する面には、図16に示すように、凸レンズ234(第2の凸レンズ)が設けられている。これにより、全反射面R1で反射されたレーザービームB1は、凸レンズ234により集光又はコリメートされて、光ファイバー60に伝送される。従って、光伝送モジュール10’によれば、光伝送モジュール10と比較して、更に光学的損失を抑制することができる。 Further, a convex lens 234 (second convex lens) is provided on the surface of the positioning member 220 facing the transmission side plug 42 as shown in FIG. As a result, the laser beam B 1 reflected by the total reflection surface R 1 is collected or collimated by the convex lens 234 and transmitted to the optical fiber 60. Therefore, according to the optical transmission module 10 ′, optical loss can be further suppressed as compared with the optical transmission module 10.
 位置決め部材240の全反射面R2には、凸レンズ252が設けられている。これにより、光ファイバー60から出射されたレーザービームB2は、凸レンズ252により集光又はコリメートされて、受光素子アレイ50に伝送される。従って、光伝送モジュール10’によれば、光伝送モジュール10と比較して、更に光学的損失を抑制することができる。 A convex lens 252 is provided on the total reflection surface R2 of the positioning member 240. As a result, the laser beam B <b> 2 emitted from the optical fiber 60 is condensed or collimated by the convex lens 252 and transmitted to the light receiving element array 50. Therefore, according to the optical transmission module 10 ′, optical loss can be further suppressed as compared with the optical transmission module 10.
 また、位置決め部材240における受信側プラグ46と対向する面には、図16に示すように、凸レンズ254が設けられている。これにより、光ファイバー60から出射されたレーザービームB2は、凸レンズ254により集光又はコリメートされて、全反射面R2に伝送される。従って、光伝送モジュール10’によれば、光伝送モジュール10と比較して、更に光学的損失を抑制することができる。 Further, a convex lens 254 is provided on the surface of the positioning member 240 facing the receiving side plug 46 as shown in FIG. Thereby, the laser beam B2 emitted from the optical fiber 60 is condensed or collimated by the convex lens 254 and transmitted to the total reflection surface R2. Therefore, according to the optical transmission module 10 ′, optical loss can be further suppressed as compared with the optical transmission module 10.
(その他の実施形態)
 本発明に係るレセプタクル及び光伝送モジュールは、前記実施形態に係る光伝送モジュール10,10’に限らずその要旨の範囲内において変更可能である。
(Other embodiments)
The receptacle and the optical transmission module according to the present invention are not limited to the optical transmission modules 10 and 10 'according to the above-described embodiment, and can be changed within the scope of the gist thereof.
 以上のように、本発明は、レセプタクル及び光伝送モジュールに対して有用であり、特に各VCSEL間のアイソレーションを確保できる点において優れている。 As described above, the present invention is useful for receptacles and optical transmission modules, and is particularly excellent in that isolation between VCSELs can be secured.
 E1 表面実装用電極
 R1,R2 全反射面
 10 光伝送モジュール
 20 レセプタクル
 22 実装基板
 24 封止樹脂
 30 金属キャップ
 32a~32d 係合部
 40 プラグ
 50 受光素子アレイ
 60 光ファイバー
 100 発光素子アレイ
 100A,100B VCSEL(垂直共振器面発光レーザ)
 128 ベース基板
 160 発光領域多層部
 200 位置決め部材
 230,232,234,250,252,254 凸レンズ
 911 カソード用電極
 921 アノード用リング電極
E1 Surface mounting electrode R1, R2 Total reflection surface 10 Optical transmission module 20 Receptacle 22 Mounting substrate 24 Sealing resin 30 Metal cap 32a-32d Engagement part 40 Plug 50 Light receiving element array 60 Optical fiber 100 Light emitting element array 100A, 100B VCSEL ( Vertical cavity surface emitting laser)
128 Base substrate 160 Light emitting region multilayer portion 200 Positioning member 230, 232, 234, 250, 252 and 254 Convex lens 911 Cathode electrode 921 Anode ring electrode

Claims (8)

  1.  光ファイバーの一端に設けられたプラグが接続されるレセプタクルであって、
     複数の垂直共振器面発光レーザが一体化されてなる発光素子アレイと、
     複数の前記光ファイバーのコアと複数の前記垂直共振器面発光レーザとをそれぞれ光学的に結合させる位置決め部材と、
     前記発光素子アレイが実装される実装基板と、
     を備え、
     前記発光素子アレイは、
      ベース基板と、
      該ベース基板の表面に形成された、N型半導体多層膜反射層、量子井戸を備える活性層及びP型半導体多層膜反射層を含む発光領域多層部と、
      前記P型半導体多層膜反射層に接続されるアノード用電極と、
      前記N型半導体多層膜反射層に接続されるカソード用電極と、
      を備え、
     前記ベース基板の少なくとも前記発光領域多層部側の所定部分が、半絶縁性半導体からなり、
     前記カソード用電極は、前記ベース基板の表面側に形成されており、
     前記発光領域多層部、前記アノード用電極及び前記カソード用電極からなる垂直共振器面発光レーザの組は、前記ベース基板に複数形成されていること、
     を特徴とするレセプタクル。
    A receptacle to which a plug provided at one end of an optical fiber is connected,
    A light emitting element array in which a plurality of vertical cavity surface emitting lasers are integrated;
    A positioning member for optically coupling the plurality of optical fiber cores and the plurality of vertical cavity surface emitting lasers;
    A mounting substrate on which the light emitting element array is mounted;
    With
    The light emitting element array is:
    A base substrate;
    A light emitting region multilayer portion including an N-type semiconductor multilayer reflective layer, an active layer having a quantum well, and a P-type semiconductor multilayer reflective layer formed on the surface of the base substrate;
    An anode electrode connected to the P-type semiconductor multilayer reflective layer;
    A cathode electrode connected to the N-type semiconductor multilayer reflective layer;
    With
    A predetermined portion on at least the light emitting region multilayer portion side of the base substrate is made of a semi-insulating semiconductor,
    The cathode electrode is formed on the surface side of the base substrate,
    A plurality of sets of vertical cavity surface emitting lasers composed of the light emitting region multilayer part, the anode electrode and the cathode electrode are formed on the base substrate;
    A receptacle characterized by.
  2.  前記発光素子アレイを覆う封止樹脂
     を更に備え、
     前記光ファイバーと前記発光素子アレイとを結ぶ光路は、前記封止樹脂を通過すること、
     を特徴とする請求項1に記載のレセプタクル。
    A sealing resin covering the light emitting element array;
    An optical path connecting the optical fiber and the light emitting element array passes through the sealing resin;
    The receptacle according to claim 1.
  3.  前記位置決め部材における前記発光素子アレイと対向し、かつ、前記発光素子アレイから出射されるレーザービームを集光又はコリメートする第1の凸レンズが設けられていること、
     を特徴とする請求項1又は請求項2に記載のレセプタクル。
    A first convex lens facing the light emitting element array in the positioning member and condensing or collimating a laser beam emitted from the light emitting element array;
    The receptacle according to claim 1 or 2, characterized by the above-mentioned.
  4.  前記位置決め部材には、前記発光素子アレイから出射されるレーザービームを集光又はコリメートする第2の凸レンズが設けられ、
     前記第2の凸レンズは、前記位置決め部材における前記光ファイバーの光軸上に存在し、前記プラグと対向すること、
     を特徴とする請求項1乃至請求項3のいずれかに記載のレセプタクル。
    The positioning member is provided with a second convex lens that condenses or collimates the laser beam emitted from the light emitting element array,
    The second convex lens is present on the optical axis of the optical fiber in the positioning member and is opposed to the plug;
    The receptacle according to any one of claims 1 to 3.
  5.  前記基板の裏面には表面実装用電極が設けられていること、
     を特徴とする請求項1乃至請求項4のいずれかに記載のレセプタクル。
    Surface mounting electrodes are provided on the back surface of the substrate,
    The receptacle according to any one of claims 1 to 4, wherein:
  6.  請求項1乃至請求項5のいずれかに記載のレセプタクルと、
     前記光ファイバーの一端に設けられたプラグと、
     を備え、
     前記プラグには、前記光ファイバーの光軸上に存在し、かつ、前記位置決め部材と対向する第3の凸レンズが設けられていること、
     を特徴とする光伝送モジュール。
    A receptacle according to any one of claims 1 to 5;
    A plug provided at one end of the optical fiber;
    With
    The plug is provided with a third convex lens that exists on the optical axis of the optical fiber and faces the positioning member;
    An optical transmission module characterized by the above.
  7.  請求項1乃至請求項5のいずれかに記載のレセプタクルと、
     前記光ファイバーの一端に設けられたプラグと、
     を備え、
     前記光ファイバーの光軸と前記プラグの挿入方向が平行であること、
     を特徴とする光伝送モジュール。
    A receptacle according to any one of claims 1 to 5;
    A plug provided at one end of the optical fiber;
    With
    The optical axis of the optical fiber and the insertion direction of the plug are parallel,
    An optical transmission module characterized by the above.
  8.  請求項1乃至請求項5のいずれかに記載のレセプタクルと、
     前記光ファイバーの先端に設けられたプラグと、
     を更に備え、
     前記レセプタクルは、前記プラグ、前記位置決め部材及び前記発光素子アレイを覆うキャップを更に備え、
     前記プラグ及び前記キャップには、係合手段が設けられていること、
     を特徴とする光伝送モジュール。
    A receptacle according to any one of claims 1 to 5;
    A plug provided at the tip of the optical fiber;
    Further comprising
    The receptacle further includes a cap that covers the plug, the positioning member, and the light emitting element array,
    The plug and the cap are provided with engagement means,
    An optical transmission module characterized by the above.
PCT/JP2013/071773 2012-08-23 2013-08-12 Receptacle and optical transmission module WO2014030562A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014531587A JP5966201B2 (en) 2012-08-23 2013-08-12 Optical transmission module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-184391 2012-08-23
JP2012184391 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030562A1 true WO2014030562A1 (en) 2014-02-27

Family

ID=50149871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071773 WO2014030562A1 (en) 2012-08-23 2013-08-12 Receptacle and optical transmission module

Country Status (3)

Country Link
JP (1) JP5966201B2 (en)
TW (1) TWI483019B (en)
WO (1) WO2014030562A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169934A1 (en) * 2016-03-29 2017-10-05 株式会社村田製作所 Receptacle
CN108957646A (en) * 2018-08-17 2018-12-07 青岛海信宽带多媒体技术有限公司 Optical module and communication equipment
JP2020184586A (en) * 2019-05-08 2020-11-12 住友電気工業株式会社 Surface emitting laser, electronic device, manufacturing method of surface emitting laser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315226B (en) * 2017-07-28 2023-08-04 中国电子科技集团公司第八研究所 High-density optical fiber connector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217491A (en) * 2001-01-17 2002-08-02 Canon Inc Surface-emitting laser, and its manufacturing method and its drive method
JP2007258657A (en) * 2005-09-13 2007-10-04 Matsushita Electric Ind Co Ltd Surface emitting laser equipment, light receiver and optical communication system built therewith
JP2008256870A (en) * 2007-04-03 2008-10-23 Omron Corp Optical cable module and electronic device incorporating it
WO2011056733A2 (en) * 2009-11-03 2011-05-12 Rbd Solutions Llc Fiber optic devices and methods of manufacturing fiber optic devices
JP2012018363A (en) * 2010-07-09 2012-01-26 Enplas Corp Lens array and optical module comprising the same
US20120183256A1 (en) * 2011-01-18 2012-07-19 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Optical connection system with plug having optical turn

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246279A (en) * 2003-02-17 2004-09-02 Seiko Epson Corp Optical module and its manufacturing method, optical communication device, optical and electric mixed integrated circuit, circuit board, electronic equipment
US7873090B2 (en) * 2005-09-13 2011-01-18 Panasonic Corporation Surface emitting laser, photodetector and optical communication system using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217491A (en) * 2001-01-17 2002-08-02 Canon Inc Surface-emitting laser, and its manufacturing method and its drive method
JP2007258657A (en) * 2005-09-13 2007-10-04 Matsushita Electric Ind Co Ltd Surface emitting laser equipment, light receiver and optical communication system built therewith
JP2008256870A (en) * 2007-04-03 2008-10-23 Omron Corp Optical cable module and electronic device incorporating it
WO2011056733A2 (en) * 2009-11-03 2011-05-12 Rbd Solutions Llc Fiber optic devices and methods of manufacturing fiber optic devices
JP2012018363A (en) * 2010-07-09 2012-01-26 Enplas Corp Lens array and optical module comprising the same
US20120183256A1 (en) * 2011-01-18 2012-07-19 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Optical connection system with plug having optical turn

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169934A1 (en) * 2016-03-29 2017-10-05 株式会社村田製作所 Receptacle
JPWO2017169934A1 (en) * 2016-03-29 2018-11-22 株式会社村田製作所 Receptacle
CN108957646A (en) * 2018-08-17 2018-12-07 青岛海信宽带多媒体技术有限公司 Optical module and communication equipment
CN108957646B (en) * 2018-08-17 2019-09-17 青岛海信宽带多媒体技术有限公司 Optical module and communication equipment
JP2020184586A (en) * 2019-05-08 2020-11-12 住友電気工業株式会社 Surface emitting laser, electronic device, manufacturing method of surface emitting laser
JP7259530B2 (en) 2019-05-08 2023-04-18 住友電気工業株式会社 Surface emitting laser, electronic device, manufacturing method of surface emitting laser

Also Published As

Publication number Publication date
JPWO2014030562A1 (en) 2016-07-28
TWI483019B (en) 2015-05-01
JP5966201B2 (en) 2016-08-10
TW201423185A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
JP6070709B2 (en) Optical transmission module
US9477038B2 (en) Photoelectric composite wiring module
JP5958364B2 (en) Optical module
US9134490B2 (en) Passive alignment multichannel parallel optical system
JP5246136B2 (en) Optical transceiver
JP5966201B2 (en) Optical transmission module
JP2009260227A (en) Photoelectric conversion device
TW200925690A (en) Optical interconnection device
CN107153235B (en) Optical network unit
CN113093350A (en) Monitoring photodiode submount for vertical mounting and alignment of monitoring photodiodes
US9071353B2 (en) Optical module, optical transmission device and method of manufacturing optical transmission device
US7901146B2 (en) Optical module, optical transmission device, and surface optical device
WO2019012607A1 (en) Optical module
JP5277389B2 (en) Optical module
CN107658691B (en) Optical semiconductor device
US20190011650A1 (en) Optical coupling member and optical module
WO2014030564A1 (en) Method of manufacturing receptacle
CN113093351B (en) Substrate with stepped profile for mounting a light emitting sub-assembly and light emitter or light transceiver implementing same
JP2016200623A (en) Optical wiring base plate, optical module, and optical active cable
JP6083437B2 (en) Positioning member, receptacle, and optical transmission module
JP6690131B2 (en) Optical wiring board, optical module, and optical active cable
JP2005284167A (en) Optical communication module
JP6776507B2 (en) Optical module and optical active cable
US20200285003A1 (en) Photoelectric conversion module and active optical cable
JP2005222003A (en) Mount, optical component, optical transmission/reception module, and bidirectional optical communication module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830868

Country of ref document: EP

Kind code of ref document: A1