[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014030334A1 - 撮像レンズおよびこれを備えた撮像装置 - Google Patents

撮像レンズおよびこれを備えた撮像装置 Download PDF

Info

Publication number
WO2014030334A1
WO2014030334A1 PCT/JP2013/004894 JP2013004894W WO2014030334A1 WO 2014030334 A1 WO2014030334 A1 WO 2014030334A1 JP 2013004894 W JP2013004894 W JP 2013004894W WO 2014030334 A1 WO2014030334 A1 WO 2014030334A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
imaging lens
object side
conditional expression
Prior art date
Application number
PCT/JP2013/004894
Other languages
English (en)
French (fr)
Inventor
萍 孫
堤 勝久
長 倫生
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2014531498A priority Critical patent/JP5727678B2/ja
Priority to CN201380043881.9A priority patent/CN104583833B/zh
Publication of WO2014030334A1 publication Critical patent/WO2014030334A1/ja
Priority to US14/627,149 priority patent/US9494770B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to an imaging lens and an imaging apparatus including the imaging lens. More specifically, the imaging lens includes an imaging lens that can be suitably used for a digital camera, a broadcast camera, a surveillance camera, an in-vehicle camera, and the like, and the imaging lens.
  • the present invention relates to an imaging device.
  • Imaging lenses used for surveillance cameras, in-vehicle cameras, etc. are required to have a small F number while having a wide angle.
  • the imaging lens is also required to be reduced in size and performance.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an imaging lens having a small F number, a wide angle, and good optical performance while having a compact configuration, and the imaging lens.
  • An imaging device is provided.
  • the imaging lens of the present invention is substantially composed of a front group and a rear group in order from the object side, and the front group is a negative meniscus lens having a convex surface facing the object side in order from the object side, and a negative lens. , A negative lens, and a positive lens.
  • the rear group is composed of a positive lens, a negative lens, a positive lens, and a positive lens in order from the object side. It is characterized by satisfying 1). 0.42 ⁇ f / f2 ⁇ 1.0 (1) However, f: focal length of entire system f2: focal length of rear group
  • conditional expression (1 ′) is satisfied, and it is more preferable that the following conditional expression (1 ′′) is satisfied. 0.45 ⁇ f / f2 ⁇ 1.0 (1 ′) 0.5 ⁇ f / f2 ⁇ 0.8 (1 ′′)
  • a stop is provided between the front group and the rear group.
  • a stop is provided between the front group and the rear group, it is preferable to satisfy the following conditional expression (3), and it is more preferable to satisfy the following conditional expression (3 ′).
  • Dab Distance on the optical axis from the most object side lens surface of the front group to the most object side lens surface of the rear group
  • substantially in the above “substantially composed of” means a lens having substantially no power other than the above-described components, and lenses other than lenses such as a diaphragm, a cover glass, and a filter. It is intended that an optical element, a lens flange, a lens barrel, an image pickup device, a mechanism portion such as a camera shake correction mechanism, and the like may be included.
  • the refractive power sign, surface shape, and radius of curvature of the imaging lens of the present invention described above are considered in the paraxial region when an aspheric surface is included.
  • the imaging apparatus of the present invention is characterized by including the imaging lens of the present invention.
  • the power arrangement of the eight lenses and the shape of the lens on the most object side are preferably set,
  • An imaging lens having a compact F-number, a wide angle, and good optical performance, and an imaging apparatus including the imaging lens are configured so as to satisfy predetermined conditional expressions. can do.
  • FIGS. 7A to 7D are graphs showing aberrations of the imaging lens according to Example 1 of the present invention. 8A to 8D are aberration diagrams of the imaging lens of Example 2 of the present invention. 9A to 9D are aberration diagrams of the imaging lens of Example 3 of the present invention.
  • FIGS. 10A to 10D are graphs showing aberrations of the image pickup lens of Example 4 of the present invention.
  • FIGS. 11A to 11D are graphs showing aberrations of the imaging lens according to Example 5 of the present invention.
  • FIGS. 12A to 12D are graphs showing aberrations of the imaging lens according to Example 6 of the present invention.
  • FIGS. 1 to 6 are cross-sectional views showing the configuration of an imaging lens according to an embodiment of the present invention, and correspond to Examples 1 to 6 described later, respectively.
  • 1 to 6 the left side is the object side, and the right side is the image side. Since the basic configuration and the illustration method of the example shown in FIGS. 1 to 6 are the same, the following description will be given mainly with reference to the configuration example shown in FIG.
  • the imaging lens 1 according to the embodiment of the present invention is a fixed focus optical system, and the lens group includes two lens groups of a front group GF and a rear group GR arranged in order from the object side.
  • FIG. 1 shows an example in which an aperture stop St is disposed between the front group GF and the rear group GR. Note that the aperture stop St shown in FIG. 1 does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
  • FIG. 1 shows an example in which a parallel plate-like optical member PP that assumes these is arranged between the lens surface closest to the image side and the image plane Sim.
  • the position of the optical member PP is not limited to that shown in FIG. 1, and a configuration in which the optical member PP is omitted is also possible.
  • the imaging element 5 arranged on the image plane Sim of the imaging lens 1 is also illustrated in consideration of the case where the imaging lens 1 is applied to the imaging device.
  • the image pickup device 5 is illustrated in a simplified manner, but actually, the image pickup surface of the image pickup device 5 is disposed so as to coincide with the position of the image plane Sim.
  • the image pickup device 5 picks up an optical image formed by the image pickup lens 1 and converts it into an electrical signal.
  • a CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the front group GF may be a lens group having a negative refractive power or a lens group having a positive refractive power.
  • the front group GF includes, in order from the object side, a lens L1 that is a negative meniscus lens having a convex surface facing the object side, a lens L2 that is a negative lens, a lens L3 that is a negative lens, and a lens L4 that is a positive lens.
  • the rear group GR is a lens group having a positive refractive power.
  • a lens L5 that is a positive lens
  • a lens L6 that is a negative lens
  • a lens L7 that is a positive lens
  • the power array in the front group GF is made negative, negative, negative, and positive retrofocus types in order from the object side, which is further advantageous for widening the angle.
  • the rear group GR by arranging two positive lenses on the most image side of the entire system, the positive refractive power of the rear group GR can be shared, which is advantageous for good correction of spherical aberration. Further, by setting the total number of lenses in the entire system to eight, it is possible to realize a wide angle, a small F number, and high performance while having a compact configuration.
  • the lenses L2 and L3 may be negative meniscus lenses having a convex surface facing the object, or biconcave lenses.
  • the lens L4 can be a biconvex lens.
  • the lens L5 can be a biconvex lens.
  • the lens L6 can be a biconcave lens.
  • the lens L7 may be a biconvex lens or a positive meniscus lens having a convex surface facing the image side.
  • the lens L8 may be a biconvex lens or a positive meniscus lens having a convex surface facing the object side. It is preferable that the lens L5 and the lens L6 are cemented. When the lens L5 and the lens L6 are cemented, the axial chromatic aberration can be corrected well without deteriorating various aberrations.
  • the lens L3 and the lens L4 may be cemented, and each may have a single lens configuration.
  • the imaging lens 1 of the present embodiment is configured to satisfy the following conditional expression (1). 0.42 ⁇ f / f2 ⁇ 1.0 (1) However, f: focal length of entire system f2: focal length of rear group
  • conditional expression (1) is advantageous for realizing an optical system having a small F number, a wide angle, and a well-corrected spherical aberration.
  • conditional expression (1 ′) it is preferable to satisfy the following conditional expression (1 ′), and it is more preferable to satisfy the following conditional expression (1 ′′). 0.45 ⁇ f / f2 ⁇ 1.0 (1 ′) 0.5 ⁇ f / f2 ⁇ 0.8 (1 ′′)
  • the imaging lens 1 of this embodiment satisfies the following conditional expression (2). 0.3 ⁇
  • R6a radius of curvature of object side surface of negative lens in rear group f: focal length of entire system
  • conditional expression (2) When the lower limit of conditional expression (2) is not reached, axial chromatic aberration deteriorates. If the upper limit of conditional expression (2) is exceeded, spherical aberration will deteriorate. Satisfying conditional expression (2) is advantageous for good correction of longitudinal chromatic aberration and spherical aberration.
  • an aperture stop St is provided between the front group GF and the rear group GR. If the aperture stop St is disposed on the front group GF side rather than between the front group GF and the rear group GR, it is disadvantageous for widening the angle. If the aperture stop St is disposed on the rear group GR side, the outer diameter of the lens L1 is increased and the size is reduced. Contrary.
  • the aperture stop St when the aperture stop St is disposed between the front group GF and the rear group GR, the aperture stop St is disposed almost in the middle of the lens system, so that the most object-side lens and the most object-side lens are likely to have a high light beam height. It is possible to reduce the lens diameter while suppressing the light ray height in the image side lens. Since the positive lens L5 is positioned immediately after the image side of the aperture stop St, the light flux that tends to spread through the aperture stop St can be converged, which is advantageous for downsizing.
  • conditional expression (3) If the lower limit of conditional expression (3) is not reached, lateral chromatic aberration will deteriorate. If the upper limit of conditional expression (3) is exceeded, the total length of the lens system becomes long, or it becomes difficult to satisfactorily correct spherical aberration. Satisfying conditional expression (3) is advantageous for good correction of lateral chromatic aberration and spherical aberration, or good correction of lateral chromatic aberration and miniaturization.
  • the imaging lens 1 of this embodiment satisfies the following conditional expression (4). -0.065 ⁇ f / f1 ⁇ 0.10 (4)
  • f focal length of the entire system
  • f1 focal length of the front group
  • conditional expression (4) is advantageous in constructing a wide angle while suppressing the overall length.
  • the preferred configurations described above can be arbitrarily combined and are preferably selectively adopted according to the specifications required for the imaging lens.
  • the imaging lens of the present embodiment can be suitably applied to, for example, an optical system having an F number of 1.6 or less and a total angle of view of 95 degrees or more. Can be.
  • Example 1 A lens sectional view of the imaging lens of Example 1 is shown in FIG. Since the method of illustration is as described above, duplicate explanation is omitted here.
  • the schematic configuration of the imaging lens of Example 1 is as follows. That is, in order from the object side, the front group GF having a negative refractive power, an aperture stop St, and a rear group GR having a positive refractive power, the front group GF is convex from the object side to the object side.
  • the four lenses are a biconvex lens L5, a biconcave lens L6, a biconvex lens L7, and a biconvex lens L8.
  • the lens L5 and the lens L6 are cemented, and the other lenses are single lenses that are not cemented. All of the lenses L1 to L8 are spherical lenses.
  • Table 1 shows lens data as a detailed configuration of the imaging lens of Example 1.
  • F shown in the frame of Table 1 is the focal length of the entire system, Bf is the back focus (air equivalent length), FNo. Is the F number, 2 ⁇ is the full angle of view, and both relate to the d-line.
  • the Ri column shows the radius of curvature of the i-th surface. The sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
  • the column of Di indicates the surface interval on the optical axis Z between the i-th surface and the i + 1-th surface.
  • the bottom column of the column of Di is the surface interval between the most image side surface and the image surface Sim shown in Table 1.
  • the column ⁇ dj indicates the Abbe number of the j-th optical element with respect to the d-line.
  • the lens data includes the aperture stop St and the optical member PP, and the surface number and the phrase (St) are described in the surface number column of the surface corresponding to the aperture stop St.
  • FIGS. 7A to 7D show aberration diagrams of spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of the imaging lens of Example 1, respectively.
  • Each aberration diagram shows aberrations with the d-line (587.56 nm) as the reference wavelength, but the spherical aberration diagram also shows aberrations for the C-line (wavelength 656.27 nm) and F-line (wavelength 486.13 nm).
  • FIGS. 7A to 7D are obtained when the object distance is infinity.
  • Example 2 A lens cross-sectional view of the imaging lens of Example 2 is shown in FIG.
  • the schematic configuration of the imaging lens of Example 2 is the same as that of Example 1.
  • Table 2 shows lens data of the imaging lens of Example 2.
  • FIGS. 8A to 8D show aberration diagrams of the imaging lens of Example 2.
  • Example 3 A lens cross-sectional view of the imaging lens of Example 3 is shown in FIG.
  • the schematic configuration of the imaging lens of Example 3 is that Example 1 except that the lens L3 has a negative meniscus shape with a convex surface facing the object side, and the lens L7 has a positive meniscus shape with a convex surface facing the image side.
  • Table 3 shows lens data of the imaging lens of Example 3.
  • FIGS. 9A to 9D show aberration diagrams of the imaging lens of Example 3.
  • Example 4 A lens cross-sectional view of the imaging lens of Example 4 is shown in FIG.
  • the schematic configuration of the imaging lens of Example 4 is that the lens L2 has a biconcave shape, the lens L3 has a negative meniscus shape with a convex surface facing the object side, and a positive meniscus with the lens L8 having a convex surface facing the object side. Except for the shape and the point where the lens L3 and the lens L4 are cemented, this is the same as that of the first embodiment.
  • Table 4 shows lens data of the imaging lens of Example 4.
  • 10A to 10D show aberration diagrams of the image pickup lens of Example 4.
  • Example 5 A lens cross-sectional view of the imaging lens of Example 5 is shown in FIG.
  • the schematic configuration of the imaging lens of Example 5 is the same as that of Example 4 except that the front group GF has a positive refractive power.
  • Table 5 shows lens data of the imaging lens of Example 5.
  • FIGS. 11A to 11D show aberration diagrams of the imaging lens of Example 5.
  • FIGS. 11A to 11D show aberration diagrams of the imaging lens of Example 5.
  • Example 6 A lens cross-sectional view of the imaging lens of Example 6 is shown in FIG.
  • the schematic configuration of the imaging lens of Example 6 is the same as that of Example 4.
  • Table 6 shows lens data of the imaging lens of Example 6.
  • FIGS. 12A to 12D show aberration diagrams of the imaging lens of Example 6.
  • Table 7 shows the corresponding values of conditional expressions (1) to (4) of the imaging lenses of Examples 1 to 6 above. The values shown in Table 7 are based on the d line.
  • the imaging lenses of Examples 1 to 6 are composed of eight lenses and are small-sized, and all the lens surfaces are spherical and can be manufactured at low cost. While achieving a wide angle of view as small as 5 to 1.6 and a total angle of view of 96 ° or more, various aberrations are well corrected and high optical performance is achieved.
  • FIG. 13 shows a state in which an imaging apparatus including the imaging lens of the present embodiment is mounted on the automobile 100.
  • an automobile 100 includes an outside camera 101 for imaging a blind spot range on the side surface on the passenger seat side, an outside camera 102 for imaging a blind spot range on the rear side of the automobile 100, and a rear surface of a rearview mirror.
  • An in-vehicle camera 103 is attached and is used for photographing the same field of view as the driver.
  • the vehicle exterior camera 101, the vehicle exterior camera 102, and the vehicle interior camera 103 are imaging devices according to the embodiment of the present invention.
  • An imaging lens according to the embodiment of the present invention and an optical image formed by the imaging lens are used as electrical signals.
  • the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the values of the radius of curvature, the surface spacing, the refractive index, the Abbe number, etc. of each lens are not limited to the values shown in the above numerical examples, but can take other values.
  • the present invention is not limited to this application.
  • a broadcast camera a surveillance camera
  • the present invention can also be applied to a digital camera or the like, and can be suitably used particularly for an interchangeable lens of a digital camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

【課題】撮像レンズにおいて、コンパクトな構成、小さなFナンバー、広角、良好な光学性能を実現する。 【解決手段】撮像レンズは、物体側から順に、前群(GF)と、後群(GR)とからなる。前群(GF)は、物体側から順に、物体側に凸面を向けた負メニスカス形状のレンズ(L1)と、負のレンズ(L2)と、負のレンズ(L3)と、正のレンズ(L4)とからなる。後群(GR)は、物体側から順に、正のレンズ(L5)と、負のレンズ(L6)と、正のレンズ(L7)と、正のレンズ(L8)とからなる。全系の焦点距離をfとし、後群(GR)の焦点距離をf2としたとき、条件式(1):0.42<f/f2<1.0を満足する。

Description

撮像レンズおよびこれを備えた撮像装置
 本発明は、撮像レンズおよびこれを備えた撮像装置に関し、より詳しくは、デジタルカメラ、放送用カメラ、監視用カメラ、車載用カメラ等に好適に使用可能な撮像レンズ、および該撮像レンズを備えた撮像装置に関するものである。
 従来、上記分野のカメラに適用可能で固体撮像素子と組み合わせて使用可能な広角のレンズ系が多数提案されている。その中で、構成レンズ枚数が8~9枚のレンズ系としては、例えば下記特許文献1~6に記載のものを挙げることができる。
特公平7-3503号公報 特開平7-63986号公報 特開平9-127413号公報 特開2004-102162号公報 特開2004-126522号公報 特開2010-85849号公報
 監視用カメラや車載用カメラ等に用いられる撮像レンズには、広角でありながら、Fナンバーが小さいことが求められる。また、固体撮像素子の小型化および高画素化が進むに伴い、撮像レンズにも小型化および高性能化が要求されるようになってきている。近年では、広角、小さなFナンバー、コンパクト性、高性能を全て同時に満足するレンズ系が求められており、その要求レベルが年々厳しいものとなってきている。
 本発明は、上記事情に鑑みてなされたものであり、その目的は、コンパクトな構成でありながら、Fナンバーが小さく、広角で、良好な光学性能を有する撮像レンズ、および該撮像レンズを備えた撮像装置を提供することにある。
 本発明の撮像レンズは、物体側から順に、前群と、後群とから実質的に構成され、前群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと、負レンズと、負レンズと、正レンズとから実質的に構成され、後群が、物体側から順に、正レンズと、負レンズと、正レンズと、正レンズとから実質的に構成され、下記条件式(1)を満足することを特徴とするものである。
   0.42<f/f2<1.0 … (1)
ただし、
f:全系の焦点距離
f2:後群の焦点距離
 本発明の撮像レンズにおいては、下記条件式(1’)を満足することが好ましく、下記条件式(1’’)を満足することがより好ましい。
   0.45<f/f2<1.0 … (1’)
   0.5<f/f2<0.8 … (1’’)
 また、本発明の撮像レンズにおいては、下記条件式(2)を満足することが好ましく、下記条件式(2’)を満足することがより好ましい。
   0.3<|R6a/f|<1.6 … (2)
   0.8<|R6a/f|<1.5 … (2’)
ただし、
R6a:後群の負レンズの物体側の面の曲率半径
 また、本発明の撮像レンズにおいては、前群と後群の間に絞りが設けられていることが好ましい。前群と後群の間に絞りが設けられている場合は、下記条件式(3)を満足することが好ましく、下記条件式(3’)を満足することがより好ましい。
   1.0<Dab/f<5.1 … (3)
   3.0<Dab/f<4.9 … (3’)
ただし、
Dab:前群の最も物体側のレンズ面から後群の最も物体側のレンズ面までの光軸上の距離
 また、本発明の撮像レンズにおいては、下記条件式(4)を満足することが好ましく、下記条件式(4’)を満足することがより好ましい。
   -0.065<f/f1<0.10 … (4)
   -0.02<f/f1<0.02 … (4’)
ただし、
f1:前群の焦点距離
 なお、上記の「~とから実質的に構成され」の「実質的に」とは、挙げた構成要素以外に、実質的にパワーを有さないレンズ、絞りやカバーガラスやフィルタ等のレンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手ぶれ補正機構等の機構部分、等を含んでもよいことを意図するものである。
 なお、上記の本発明の撮像レンズにおけるレンズの屈折力の符号、面形状、曲率半径は、非球面が含まれているものについては近軸領域で考えるものとする。
 本発明の撮像装置は、本発明の撮像レンズを備えたことを特徴とするものである。
 本発明によれば、物体側から順に、前群、後群が配列されてなる8枚構成のレンズ系において、8枚のレンズのパワー配列および最も物体側のレンズの形状を好適に設定し、所定の条件式を満足するように構成しているため、コンパクトな構成でありながら、Fナンバーが小さく、広角で、良好な光学性能を有する撮像レンズ、および該撮像レンズを備えた撮像装置を提供することができる。
本発明の実施例1の撮像レンズの構成を示す断面図 本発明の実施例2の撮像レンズの構成を示す断面図 本発明の実施例3の撮像レンズの構成を示す断面図 本発明の実施例4の撮像レンズの構成を示す断面図 本発明の実施例5の撮像レンズの構成を示す断面図 本発明の実施例6の撮像レンズの構成を示す断面図 図7(A)~図7(D)は本発明の実施例1の撮像レンズの各収差図 図8(A)~図8(D)は本発明の実施例2の撮像レンズの各収差図 図9(A)~図9(D)は本発明の実施例3の撮像レンズの各収差図 図10(A)~図10(D)は本発明の実施例4の撮像レンズの各収差図 図11(A)~図11(D)は本発明の実施例5の撮像レンズの各収差図 図12(A)~図12(D)は本発明の実施例6の撮像レンズの各収差図 本発明の実施形態にかかる車載用の撮像装置の配置を説明するための図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1~図6は、本発明の実施形態にかかる撮像レンズの構成を示す断面図であり、それぞれ後述の実施例1~6に対応している。図1~図6においては、左側が物体側、右側が像側である。図1~図6に示す例の基本構成や図示方法は同じため、以下では主に、図1に示す構成例を代表的に参照しながら説明する。
 本発明の実施形態にかかる撮像レンズ1は固定焦点光学系であり、レンズ群としては、物体側から順に配列された、前群GFと、後群GRとの2つのレンズ群からなる。図1では、前群GFと後群GRの間に開口絞りStが配置された例を示している。なお、図1に示す開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
 この撮像レンズが撮像装置に搭載される際には、撮像素子を保護するためのカバーガラスや、撮像装置の仕様に応じたローパスフィルタや赤外線カットフィルタ等の各種フィルタを適宜備えるように撮像装置を構成することが考えられるため、図1ではこれらを想定した平行平板状の光学部材PPを最も像側のレンズ面と像面Simとの間に配置した例を示している。しかし、光学部材PPの位置は図1に示すものに限定されないし、光学部材PPを省略した構成も可能である。
 また、図1では、撮像レンズ1が撮像装置に適用される場合を考慮して、撮像レンズ1の像面Simに配置された撮像素子5も図示している。なお、図1では、撮像素子5を簡略的に示しているが、実際には撮像素子5の撮像面が像面Simの位置に一致するように配置される。撮像素子5は、撮像レンズ1により形成される光学像を撮像して電気信号に変換するものであり、例えばCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等を用いることができる。
 前群GFは負の屈折力を有するレンズ群でもよく、正の屈折力を有するレンズ群でもよい。前群GFは、物体側から順に、物体側に凸面を向けた負メニスカスレンズであるレンズL1と、負レンズであるレンズL2と、負レンズであるレンズL3と、正レンズであるレンズL4とからなる。後群GRは、正の屈折力を有するレンズ群であり、物体側から順に、正レンズであるレンズL5と、負レンズであるレンズL6と、正レンズであるレンズL7と、正レンズであるレンズL8とからなる。
 全系の最も物体側に、物体側に凸面を向けた負メニスカスレンズを配置することで広角化に有利となる。また、前群GF内のパワー配列を物体側から順に、負、負、負、正のレトロフォーカス型とすることで、さらに広角化に有利となる。後群GRにおいては、全系の最も像側に2枚の正レンズを配置することで、後群GRの正の屈折力を分担でき、球面収差の良好な補正に有利となる。また、全系の総レンズ枚数を8枚とすることで、コンパクトな構成としながら広角化、小さなFナンバー、高性能を実現することができる。
 レンズL2、レンズL3は、物体側に凸面を向けた負メニスカスレンズでもよく、両凹レンズでもよい。レンズL4は、両凸レンズとすることができる。レンズL5は、両凸レンズとすることができる。レンズL6は、両凹レンズとすることができる。レンズL7は、両凸レンズでもよく、像側に凸面を向けた正メニスカスレンズでもよい。レンズL8は、両凸レンズでもよく、物体側に凸面を向けた正メニスカスレンズでもよい。レンズL5とレンズL6は接合されていることが好ましく、レンズL5とレンズL6を接合した場合は、諸収差を悪化させることなく軸上の色収差を良好に補正することができる。レンズL3とレンズL4は接合されていてもよく、各々単レンズ構成としてもよい。
 本実施形態の撮像レンズ1は、下記条件式(1)を満足するように構成されている。
   0.42<f/f2<1.0 … (1)
ただし、
f:全系の焦点距離
f2:後群の焦点距離
 条件式(1)の下限以下になると、小さなFナンバーの光学系を実現することが困難になる。また、画角を広くすることが困難になる。条件式(1)の上限以上になると、球面収差を良好に補正することが困難になる。条件式(1)を満足することで、Fナンバーが小さく、広角で、球面収差が良好に補正された光学系を実現することに有利となる。
 上記事情から、下記条件式(1’)を満足することが好ましく、下記条件式(1’’)を満足することがより好ましい。
   0.45<f/f2<1.0 … (1’)
   0.5<f/f2<0.8 … (1’’)
 また、本実施形態の撮像レンズ1は、下記条件式(2)を満足することが好ましい。
   0.3<|R6a/f|<1.6 … (2)
ただし、
R6a:後群の負レンズの物体側の面の曲率半径
f:全系の焦点距離
 条件式(2)の下限以下になると、軸上色収差が悪化する。条件式(2)の上限以上になると、球面収差が悪化する。条件式(2)を満足することで、軸上色収差と球面収差の良好な補正に有利となる。
 上記事情から、下記条件式(2’)を満足することがより好ましい。
   0.8<|R6a/f|<1.5 … (2’)
 また、本実施形態の撮像レンズ1は、前群GFと後群GRの間に開口絞りStが設けられていることが好ましい。開口絞りStを前群GFと後群GRの間よりも前群GF側に配置した場合は広角化に不利となり、後群GR側に配置した場合はレンズL1の外径が大きくなり小型化に反する。
 また、前群GFと後群GRの間に開口絞りStを配置した場合には、開口絞りStをレンズ系のほぼ中間に配置することで、光線高が高くなりやすい最も物体側のレンズと最も像側のレンズにおける光線高を抑えてレンズ径を小さくすることができる。そして、開口絞りStの像側直後に正のレンズL5が位置することになるので、開口絞りStを通って広がる傾向にある光束に収束作用を施すことができ、小型化に有利となる。
 開口絞りStを前群GFと後群GRの間に配置した場合は、下記条件式(3)を満足することが好ましい。
   1.0<Dab/f<5.1 … (3)
ただし、
Dab:前群の最も物体側のレンズ面から後群の最も物体側のレンズ面までの光軸上の距離
f:全系の焦点距離
 条件式(3)の下限以下になると、倍率色収差が悪化する。条件式(3)の上限以上になると、レンズ系の全長が長くなるか、または球面収差の良好な補正が困難になる。条件式(3)を満足することで、倍率色収差と球面収差の良好な補正、または倍率色収差の良好な補正と小型化に有利となる。
 上記事情から、下記条件式(3’)を満足することがより好ましい。
   3.0<Dab/f<4.9 … (3’)
 また、本実施形態の撮像レンズ1は、下記条件式(4)を満足することが好ましい。
   -0.065<f/f1<0.10 … (4)
ただし、
f:全系の焦点距離
f1:前群の焦点距離
 条件式(4)の下限以下になると、レンズ系の全長が長くなる。条件式(4)の上限以上になると、画角を広くすることが困難になる。条件式(4)を満足することで、全長の長さを抑えながら広角に構成することに有利となる。
 上記事情から、下記条件式(4’)を満足することがより好ましい。
   -0.02<f/f1<0.02 … (4’)
 上述した好ましい構成は、任意の組合せが可能であり、撮像レンズに要求される仕様に応じて適宜選択的に採用されることが好ましい。本実施形態の撮像レンズは、例えば、Fナンバーが1.6以下、全画角が95度以上の光学系に好適に適用可能であり、好ましい構成を適宜採用することで、光学性能をより良好にすることができる。
 次に、本発明の撮像レンズの数値実施例について説明する。
[実施例1]
 実施例1の撮像レンズのレンズ断面図は図1に示したものである。その図示方法については上述したとおりであるので、ここでは重複説明を省略する。
 実施例1の撮像レンズの概略構成は以下のようになっている。すなわち、物体側から順に、負の屈折力を有する前群GFと、開口絞りStと、正の屈折力を有する後群GRとからなり、前群GFは、物体側から順に、物体側に凸面を向けた負メニスカス形状のレンズL1、物体側に凸面を向けた負メニスカス形状のレンズL2、両凹形状のレンズL3、両凸形状のレンズL4の4枚からなり、後群GRは、物体側から順に、両凸形状のレンズL5、両凹形状のレンズL6、両凸形状のレンズL7、両凸形状のレンズL8の4枚からなる。レンズL5とレンズL6は接合されており、その他のレンズは接合されていない単レンズである。レンズL1~L8全てが球面レンズである。
 実施例1の撮像レンズの詳細構成として、表1にレンズデータを示す。表1の枠上に記載されているfは全系の焦点距離、Bfはバックフォーカス(空気換算長)、FNo.はFナンバー、2ωは全画角であり、いずれもd線に関するものである。
 表1の枠内のSiの欄は最も物体側の構成要素の物体側の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄はi番目の面の曲率半径を示している。曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負としている。また、Diの欄はi番目の面とi+1番目の面との光軸Z上の面間隔を示している。Diの欄の最下欄は、表1に示す最も像側の面と像面Simとの面間隔である。
 表1において、Ndjの欄は最も物体側の構成要素を1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の光学要素のd線(波長587.56nm)に対する屈折率を示し、νdjの欄はj番目の光学要素のd線に対するアッベ数を示している。なお、レンズデータには、開口絞りStと光学部材PPも含めて示しており、開口絞りStに相当する面の面番号の欄には面番号と(St)という語句を記載している。
 以下に示す各表では、角度の単位には度を用い、長さの単位にはmmを用いているが、光学系は比例拡大又は比例縮小しても使用可能なため他の適当な単位を用いることも可能である。また、以下に示す各表では所定の桁でまるめた数値を記載している。
Figure JPOXMLDOC01-appb-T000001
 図7(A)~図7(D)にそれぞれ、実施例1の撮像レンズの球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。球面収差の図のFNo.はFナンバーを意味し、その他の収差図のωは半画角を意味する。各収差図には、d線(587.56nm)を基準波長とした収差を示すが、球面収差図には、C線(波長656.27nm)、F線(波長486.13nm)についての収差も示し、倍率色収差図ではC線、F線についての収差を示している。非点収差図ではサジタル方向については実線で、タンジェンシャル方向については点線で示しており、線種の説明にそれぞれ(S)、(T)という記号を記入している。図7(A)~図7(D)は物体距離が無限遠のときのものである。
 上記の実施例1のものに関する図示方法、各表中の記号、意味、記載方法は、特に断りがない限り以下の実施例のものについても同様であるため、以下では重複説明を省略する。また、以下の実施例のレンズ断面図では、符号1、R6a、Dabの図示を省略している。
[実施例2]
 実施例2の撮像レンズのレンズ断面図は図2に示したものである。実施例2の撮像レンズの概略構成は、実施例1のものと同様である。表2に実施例2の撮像レンズのレンズデータを示す。図8(A)~図8(D)に実施例2の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000002
[実施例3]
 実施例3の撮像レンズのレンズ断面図は図3に示したものである。実施例3の撮像レンズの概略構成は、レンズL3が物体側に凸面を向けた負メニスカス形状である点、レンズL7が像側に凸面を向けた正メニスカス形状である点以外は、実施例1のものと同様である。表3に実施例3の撮像レンズのレンズデータを示す。図9(A)~図9(D)に実施例3の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000003
[実施例4]
 実施例4の撮像レンズのレンズ断面図は図4に示したものである。実施例4の撮像レンズの概略構成は、レンズL2が両凹形状である点、レンズL3が物体側に凸面を向けた負メニスカス形状である点、レンズL8が物体側に凸面を向けた正メニスカス形状である点、レンズL3とレンズL4が接合されている点以外は、実施例1のものと同様である。表4に実施例4の撮像レンズのレンズデータを示す。図10(A)~図10(D)に実施例4の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000004
[実施例5]
 実施例5の撮像レンズのレンズ断面図は図5に示したものである。実施例5の撮像レンズの概略構成は、前群GFが正の屈折力を有する点以外は、実施例4のものと同様である。表5に実施例5の撮像レンズのレンズデータを示す。図11(A)~図11(D)に実施例5の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000005
[実施例6]
 実施例6の撮像レンズのレンズ断面図は図6に示したものである。実施例6の撮像レンズの概略構成は、実施例4のものと同様である。表6に実施例6の撮像レンズのレンズデータを示す。図12(A)~図12(D)に実施例6の撮像レンズの各収差図を示す。
Figure JPOXMLDOC01-appb-T000006
 表7に上記実施例1~6の撮像レンズの条件式(1)~(4)の対応値を示す。表7に示す値はd線を基準とするものである。
Figure JPOXMLDOC01-appb-T000007
 以上のデータからわかるように、実施例1~6の撮像レンズは、8枚のレンズからなり小型に構成され、全てのレンズ面が球面であり安価に作製可能である上、Fナンバーが1.5~1.6と小さく、全画角が96°以上と広い画角を達成しつつ、諸収差が良好に補正されて高い光学性能を有する。
 図13に使用例として、自動車100に本実施形態の撮像レンズを備えた撮像装置を搭載した様子を示す。図13において、自動車100は、その助手席側の側面の死角範囲を撮像するための車外カメラ101と、自動車100の後側の死角範囲を撮像するための車外カメラ102と、ルームミラーの背面に取り付けられ、ドライバーと同じ視野範囲を撮影するための車内カメラ103とを備えている。車外カメラ101と車外カメラ102と車内カメラ103とは、本発明の実施形態にかかる撮像装置であり、本発明の実施形態にかかる撮像レンズと、該撮像レンズにより形成される光学像を電気信号に変換する撮像素子とを備えている。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズの曲率半径、面間隔、屈折率、アッベ数等の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。
 また、撮像装置の実施形態では、本発明を車載用カメラに適用した例について図を示して説明したが、本発明はこの用途に限定されるものではなく、例えば、放送用カメラ、監視用カメラ、デジタルカメラ等にも適用可能であり、特にデジタルカメラの交換レンズに好適に使用可能である。

Claims (11)

  1.  物体側から順に、前群と、後群とから実質的に構成され、
     前記前群が、物体側から順に、物体側に凸面を向けた負メニスカスレンズと、負レンズと、負レンズと、正レンズとから実質的に構成され、
     前記後群が、物体側から順に、正レンズと、負レンズと、正レンズと、正レンズとから実質的に構成され、
     下記条件式(1)を満足することを特徴とする撮像レンズ。
       0.42<f/f2<1.0 … (1)
    ただし、
    f:全系の焦点距離
    f2:前記後群の焦点距離
  2.  下記条件式(1’)を満足することを特徴とする請求項1記載の撮像レンズ。
       0.45<f/f2<1.0 … (1’)
  3.  下記条件式(2)を満足することを特徴とする請求項1または2記載の撮像レンズ。
       0.3<|R6a/f|<1.6 … (2)
    ただし、
    R6a:前記後群の前記負レンズの物体側の面の曲率半径
  4.  前記前群と前記後群の間に絞りが設けられていることを特徴とする請求項1から3のいずれか1項記載の撮像レンズ。
  5.  下記条件式(3)を満足することを特徴とする請求項4記載の撮像レンズ。
       1.0<Dab/f<5.1 … (3)
    ただし、
    Dab:前記前群の最も物体側のレンズ面から前記後群の最も物体側のレンズ面までの光軸上の距離
  6.  下記条件式(4)を満足することを特徴とする請求項1から5のいずれか1項記載の撮像レンズ。
       -0.065<f/f1<0.10 … (4)
    ただし、
    f1:前記前群の焦点距離
  7.  下記条件式(1’’)を満足することを特徴とする請求項1から6のいずれか1項記載の撮像レンズ。
       0.5<f/f2<0.8 … (1’’)
  8.  下記条件式(2’)を満足することを特徴とする請求項1から7のいずれか1項記載の撮像レンズ。
       0.8<|R6a/f|<1.5 … (2’)
    ただし、
    R6a:前記後群の前記負レンズの物体側の面の曲率半径
  9.  下記条件式(3’)を満足することを特徴とする請求項4から7のいずれか1項記載の撮像レンズ。
       3.0<Dab/f<4.9 … (3’)
    ただし、
    Dab:前記前群の最も物体側のレンズ面から前記後群の最も物体側のレンズ面までの光軸上の距離
  10.  下記条件式(4’)を満足することを特徴とする請求項1から9のいずれか1項記載の撮像レンズ。
       -0.02<f/f1<0.02 … (4’)
    ただし、
    f1:前記前群の焦点距離
  11.  請求項1記載の撮像レンズを備えたことを特徴とする撮像装置。
PCT/JP2013/004894 2012-08-24 2013-08-19 撮像レンズおよびこれを備えた撮像装置 WO2014030334A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014531498A JP5727678B2 (ja) 2012-08-24 2013-08-19 撮像レンズおよびこれを備えた撮像装置
CN201380043881.9A CN104583833B (zh) 2012-08-24 2013-08-19 摄像透镜以及具备该摄像透镜的摄像装置
US14/627,149 US9494770B2 (en) 2012-08-24 2015-02-20 Imaging lens and imaging apparatus equipped with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012184980 2012-08-24
JP2012-184980 2012-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/627,149 Continuation US9494770B2 (en) 2012-08-24 2015-02-20 Imaging lens and imaging apparatus equipped with the same

Publications (1)

Publication Number Publication Date
WO2014030334A1 true WO2014030334A1 (ja) 2014-02-27

Family

ID=50149661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004894 WO2014030334A1 (ja) 2012-08-24 2013-08-19 撮像レンズおよびこれを備えた撮像装置

Country Status (4)

Country Link
US (1) US9494770B2 (ja)
JP (1) JP5727678B2 (ja)
CN (1) CN104583833B (ja)
WO (1) WO2014030334A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519660A (zh) * 2018-04-04 2018-09-11 江西联创电子有限公司 超广角镜头

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631366B (zh) * 2014-08-27 2018-08-01 佳能企業股份有限公司 光學鏡頭
TWI586998B (zh) * 2015-08-11 2017-06-11 大立光電股份有限公司 攝像用光學系統、取像裝置及電子裝置
CN105137575B (zh) * 2015-09-21 2017-06-30 中山联合光电科技股份有限公司 一种高低温红外共焦、大光圈、小体积光学系统
RU2628372C1 (ru) * 2016-04-04 2017-08-16 Публичное акционерное общество "Ростовский оптико-механический завод" (ПАО "РОМЗ") Широкоугольный объектив
JP6836211B2 (ja) * 2016-06-06 2021-02-24 コニカミノルタ株式会社 撮像光学系、レンズユニット、及び撮像装置
CN106383400B (zh) * 2016-11-29 2019-01-18 中山联合光电科技股份有限公司 一种水下专用摄影光学成像系统
CN108983400B (zh) * 2017-06-01 2021-11-12 富晋精密工业(晋城)有限公司 超广角镜头
CN109188653B (zh) * 2018-10-26 2020-12-01 常州工学院 一种对称式广角针孔镜头
KR20200084181A (ko) 2019-01-02 2020-07-10 삼성전기주식회사 촬상 광학계
KR102395178B1 (ko) * 2019-12-17 2022-05-06 삼성전기주식회사 촬상 광학계
CN112034594A (zh) * 2020-09-22 2020-12-04 南昌欧菲精密光学制品有限公司 光学成像系统以及具有其的取像装置
RU2767011C1 (ru) * 2021-05-17 2022-03-16 Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет геосистем и технологий» Особоширокоугольный объектив
CN114675405B (zh) * 2022-05-27 2022-10-25 江西联创电子有限公司 光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147426A (en) * 1974-10-21 1976-04-23 Canon Kk Kinkyoriseinoo hoseisururetoro fuookasugatakokakutaibutsurenzu
JPS59216114A (ja) * 1983-05-23 1984-12-06 Canon Inc レトロフオ−カス型広角レンズ
JPS6317421A (ja) * 1986-07-09 1988-01-25 Canon Inc 魚眼レンズ
JPH0996759A (ja) * 1995-09-28 1997-04-08 Fuji Photo Optical Co Ltd レトロフォーカス型レンズ
JP4417959B2 (ja) * 2004-07-09 2010-02-17 パイオニア株式会社 スイッチ機構及びディスク装置
JP2010085849A (ja) * 2008-10-01 2010-04-15 Topcon Corp 撮像装置、車載カメラ及び監視カメラ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4417959Y1 (ja) 1966-08-20 1969-08-04
JPH073503A (ja) 1993-06-10 1995-01-06 Kanebo Ltd パンティストッキング
US5477389A (en) 1993-06-18 1995-12-19 Asahi Kogaku Kogyo Kabushiki Kaisha Fast ultra-wide angle lens system
JP3397447B2 (ja) 1993-06-18 2003-04-14 ペンタックス株式会社 大口径超広角レンズ系
JP3752025B2 (ja) 1995-08-25 2006-03-08 ペンタックス株式会社 大口径超広角レンズ系
US5724195A (en) 1995-08-25 1998-03-03 Asahi Kogaku Kogyo Kabushiki Kaisha Fast super wide-angle lens system
JP4565262B2 (ja) 2002-08-01 2010-10-20 株式会社ニコン 魚眼レンズ
JP4186560B2 (ja) 2002-09-12 2008-11-26 コニカミノルタオプト株式会社 超広角レンズ
JP4596418B2 (ja) * 2004-09-27 2010-12-08 富士フイルム株式会社 変倍光学系
US8780463B2 (en) * 2010-06-24 2014-07-15 Ricoh Company, Ltd. Image-forming lens, and imaging apparatus and information device using the image-forming lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147426A (en) * 1974-10-21 1976-04-23 Canon Kk Kinkyoriseinoo hoseisururetoro fuookasugatakokakutaibutsurenzu
JPS59216114A (ja) * 1983-05-23 1984-12-06 Canon Inc レトロフオ−カス型広角レンズ
JPS6317421A (ja) * 1986-07-09 1988-01-25 Canon Inc 魚眼レンズ
JPH0996759A (ja) * 1995-09-28 1997-04-08 Fuji Photo Optical Co Ltd レトロフォーカス型レンズ
JP4417959B2 (ja) * 2004-07-09 2010-02-17 パイオニア株式会社 スイッチ機構及びディスク装置
JP2010085849A (ja) * 2008-10-01 2010-04-15 Topcon Corp 撮像装置、車載カメラ及び監視カメラ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519660A (zh) * 2018-04-04 2018-09-11 江西联创电子有限公司 超广角镜头

Also Published As

Publication number Publication date
CN104583833A (zh) 2015-04-29
JP5727678B2 (ja) 2015-06-03
CN104583833B (zh) 2016-11-23
US20150168693A1 (en) 2015-06-18
US9494770B2 (en) 2016-11-15
JPWO2014030334A1 (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
JP5620607B2 (ja) 撮像レンズおよびこれを備えた撮像装置
JP5727678B2 (ja) 撮像レンズおよびこれを備えた撮像装置
JP4949871B2 (ja) 撮像レンズ、および該撮像レンズを備えた撮像装置
JP5042767B2 (ja) 撮像レンズおよび撮像装置
JP5065159B2 (ja) 撮像レンズおよび撮像装置
CN201503514U (zh) 摄像透镜及使用该摄像透镜的摄像装置
JP6837194B2 (ja) 単焦点レンズ系、および、カメラ
JP5224455B2 (ja) 撮像レンズおよび撮像装置
JP5438583B2 (ja) 撮像レンズおよび撮像装置
JP2016212134A (ja) 撮像レンズおよび撮像装置
JP5479702B2 (ja) 撮像レンズおよび撮像装置
JP2009092798A (ja) 撮像レンズおよび撮像装置
JP2010014855A (ja) 撮像レンズおよび撮像装置
JP2018105955A (ja) 撮像レンズおよび撮像装置
JP5795692B2 (ja) 撮像レンズおよびこれを備えた撮像装置
CN111045191B (zh) 光学系统、透镜单元以及摄像装置
JP2017134235A (ja) 撮像レンズおよび撮像装置
JP2015172655A (ja) 撮像レンズおよび撮像装置
JP2009098322A (ja) 撮像レンズおよび撮像装置
JP2018116076A (ja) 撮像レンズおよび撮像装置
CN107092083A (zh) 成像透镜及摄像装置
JP5749866B2 (ja) 広角レンズおよび撮像装置
JP2017044733A (ja) 撮像レンズおよび撮像装置
US9423596B2 (en) Retrofocus-type wide angle lens and imaging apparatus
US9128275B2 (en) Variable magnification optical system and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831558

Country of ref document: EP

Kind code of ref document: A1