WO2014030316A1 - Piping joint, piping joint structure, leak prevention method using piping joints, flanged tubes, and tube joint structures - Google Patents
Piping joint, piping joint structure, leak prevention method using piping joints, flanged tubes, and tube joint structures Download PDFInfo
- Publication number
- WO2014030316A1 WO2014030316A1 PCT/JP2013/004801 JP2013004801W WO2014030316A1 WO 2014030316 A1 WO2014030316 A1 WO 2014030316A1 JP 2013004801 W JP2013004801 W JP 2013004801W WO 2014030316 A1 WO2014030316 A1 WO 2014030316A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- pipe joint
- tube
- tubular body
- flange
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000002265 prevention Effects 0.000 title claims abstract description 23
- 229920005989 resin Polymers 0.000 claims abstract description 126
- 239000011347 resin Substances 0.000 claims abstract description 126
- 229910052751 metal Inorganic materials 0.000 claims abstract description 94
- 239000002184 metal Substances 0.000 claims abstract description 94
- 239000012530 fluid Substances 0.000 claims abstract description 69
- 230000002093 peripheral effect Effects 0.000 claims description 100
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 50
- 238000010276 construction Methods 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 4
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 22
- 238000010586 diagram Methods 0.000 description 22
- 239000011151 fibre-reinforced plastic Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 22
- 239000002131 composite material Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 229910001369 Brass Inorganic materials 0.000 description 9
- 239000010951 brass Substances 0.000 description 9
- 238000005266 casting Methods 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 239000011162 core material Substances 0.000 description 8
- 239000004800 polyvinyl chloride Substances 0.000 description 8
- 229920000915 polyvinyl chloride Polymers 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 230000003014 reinforcing effect Effects 0.000 description 7
- 229910000881 Cu alloy Inorganic materials 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000004512 die casting Methods 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 229920005668 polycarbonate resin Polymers 0.000 description 6
- 239000004431 polycarbonate resin Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 229920013716 polyethylene resin Polymers 0.000 description 6
- 229920006324 polyoxymethylene Polymers 0.000 description 6
- 229920005990 polystyrene resin Polymers 0.000 description 6
- 229920005749 polyurethane resin Polymers 0.000 description 6
- 229920002689 polyvinyl acetate Polymers 0.000 description 6
- 229920003002 synthetic resin Polymers 0.000 description 6
- 239000000057 synthetic resin Substances 0.000 description 6
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002352 surface water Substances 0.000 description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 4
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 4
- 239000004567 concrete Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical compound FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910001141 Ductile iron Inorganic materials 0.000 description 3
- 229910001296 Malleable iron Inorganic materials 0.000 description 3
- 239000004640 Melamine resin Substances 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910001315 Tool steel Inorganic materials 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 239000011354 acetal resin Substances 0.000 description 3
- 239000010974 bronze Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000000113 methacrylic resin Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- 239000011150 reinforced concrete Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910001060 Gray iron Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000009730 filament winding Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000009787 hand lay-up Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 239000011513 prestressed concrete Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L23/00—Flanged joints
- F16L23/02—Flanged joints the flanges being connected by members tensioned axially
- F16L23/024—Flanged joints the flanges being connected by members tensioned axially characterised by how the flanges are joined to, or form an extension of, the pipes
- F16L23/028—Flanged joints the flanges being connected by members tensioned axially characterised by how the flanges are joined to, or form an extension of, the pipes the flanges being held against a shoulder
- F16L23/0283—Flanged joints the flanges being connected by members tensioned axially characterised by how the flanges are joined to, or form an extension of, the pipes the flanges being held against a shoulder the collar being integral with the pipe
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L23/00—Flanged joints
- F16L23/02—Flanged joints the flanges being connected by members tensioned axially
- F16L23/032—Flanged joints the flanges being connected by members tensioned axially characterised by the shape or composition of the flanges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L23/00—Flanged joints
- F16L23/16—Flanged joints characterised by the sealing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L25/00—Construction or details of pipe joints not provided for in, or of interest apart from, groups F16L13/00 - F16L23/00
- F16L25/14—Joints for pipes of different diameters or cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L47/00—Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
- F16L47/20—Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics based principally on specific properties of plastics
- F16L47/24—Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics based principally on specific properties of plastics for joints between metal and plastics pipes
Definitions
- the present invention relates to a pipe joint for connecting pipes through which a high-pressure fluid flows, a pipe joint structure, and a water leakage prevention method using the pipe joint.
- the present invention also relates to a flanged tubular body in which a flange joint is connected to an end of the tubular body and a tubular joint structure.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2002-295781 discloses a flange joint for a composite pipe having excellent internal pressure resistance.
- a flange adapter is abutted and fused to the tip of the short pipe of the composite pipe, and a reinforcing member is attached to the outer peripheral surface of the butt fused part.
- Patent Document 2 Japanese Patent Laid-Open No. 2006-10041 discloses a flange that is used when the underground pipe line is lined with a resin-made rehabilitation pipe, and when the sleeve of the water stop pad is expanded at the attachment pipe port.
- the water stop pad which can prevent a part from deform
- a cylindrical sleeve having an outer shape smaller than the inner diameter of the attachment tube and a flange projecting in a bowl shape from one end edge portion of the cylindrical sleeve are integrally formed, A synthetic rubber adhesive is applied to the surface of the flange, and a protective ring capable of preventing deformation of the cylindrical sleeve is disposed on the outer periphery of the cylindrical sleeve.
- Patent Document 3 Japanese Patent Laid-Open No. 2012-319875 discloses a connection structure for resin pipes that can be easily connected and disconnected and has excellent bonding strength.
- connection structure of the resin pipes described in Patent Document 3 a fitting part that surrounds and sandwiches both flange parts from the outer peripheral side in a state in which the flange parts of two resin pipes having flange parts at one end face each other.
- a resin pipe joining structure in which two resin pipes are joined by a joining member comprising a pair of split bodies, the split body extending from the fitting portion along the outer wall of the resin pipe, and the other split body And a resin tube reinforcing portion that surrounds the outer wall of the resin tube and reinforces the resin tube, and the axial length of the resin tube reinforcing portion is 1/3 of the outer diameter of the resin tube. It is set above.
- multi-layer pipes that are reinforced with a fiber-reinforced plastic (hereinafter referred to as FRP) layer on the outer peripheral surface of a rigid polyvinyl chloride pipe to improve pressure resistance and heat resistance are lightweight and have extremely high chemical resistance. Therefore, it is widely used as industrial pipes.
- FRP fiber-reinforced plastic
- Patent Document 4 Japanese Patent Application Laid-Open No. 2012-132502 discloses a novel flanged tube structure that can be connected to another tube by a simple operation, and the flanged tube connected to another tube. A pipeline structure is disclosed.
- the flanged tube structure disclosed in Patent Document 4 is a flanged tube structure in which a flange joint is locked to the tube, and this flanged tube structure is formed on the outer peripheral surface of the short tube with another tube.
- a flange joint provided with a flange portion to be connected to the opening of the body, a tubular body inserted into a short pipe in the flange joint, and a cylindrical divided member sheathed on the tubular body.
- a tapered portion is provided that expands the inner diameter from one opening end side toward the other opening end side, and the tube body is connected at one end to the opening portion of another tube body.
- the split member has a cylindrical body provided with a single slit portion that cuts a cylindrical wall from one cylindrical port to another cylindrical port, or a plurality of slit portions that cut the cylindrical wall from one cylindrical port to another cylindrical port.
- Multiple divided minutes A short tube abutting portion having a shape along the taper portion, the outer diameter of which extends along the outer peripheral surface from one tube port side toward the other tube port side.
- the split member is externally attached to the pipe body, and an elastic filler is interposed in the slit portion, and the flange joint is moved toward the split member along the pipe body so that the taper portion and the short pipe contact portion are slid.
- an elastic filler is interposed in the slit portion, and the flange joint is moved toward the split member along the pipe body so that the taper portion and the short pipe contact portion are slid.
- metal pipes have been mainly used as high-pressure pipes for circulating a high-pressure fluid.
- high-pressure pipes ie, metal pipes and metal pipes
- metal pipes and metal pipes are connected by welding.
- connection of a high-pressure pipe and removal of the high-pressure pipe for cleaning and maintenance of the high-pressure pipe Therefore, development of a pipe joint for high-pressure pipes is desired.
- a high-pressure resin pipe for circulating a high-pressure fluid has been developed.
- the flanged tube structure described in Patent Document 4 it can be connected to another tube by a simple operation.
- the flange portion is water-stopped by an O-ring or a gasket, which is not suitable for circulating a high-pressure fluid.
- An object of the present invention is to provide a pipe joint, a pipe joint structure, and a water leakage prevention method using a pipe joint that allow a high-pressure fluid to flow and prevent fluid leakage.
- Another object of the present invention is to provide a pipe joint structure that circulates a high-pressure fluid, prevents fluid leakage, and improves transport efficiency.
- another object of the present invention is to provide a flanged tube body and a tube joint structure capable of circulating a high-pressure fluid.
- another object of the present invention is to provide a flanged tubular body and a tubular joint structure that can increase the efficiency of transportation of the tubular body and allow high-pressure fluid to flow.
- a pipe joint is a pipe joint that connects one pipe and another pipe, and is connected to the inside of the pipe of the one pipe, communicates with the first cylinder part, and other pipes
- the second cylinder part fitted inside the pipe, the flange part provided between the first cylinder part and the second cylinder part, and the outer periphery of the cylinder part of the first cylinder part and the second cylinder part And a water leakage preventing member.
- a flange portion is provided between the first tube portion and the second tube portion communicating with the first tube portion.
- a water leakage preventing member is provided on the outer periphery of the cylindrical portion of the first cylindrical portion and the second cylindrical portion.
- the first tube portion is fitted to the inner peripheral surface of one pipe
- the second tube portion is fitted to the inner peripheral surface of another pipe.
- An inner surface water stop (water leakage prevention) on the inner peripheral surface of one pipe can be realized by the water leakage preventing member provided on the outer periphery of the first cylindrical portion.
- the inner surface water stop (leakage prevention) in other piping is realizable by the water leakage prevention member provided in the cylinder part outer periphery of the 2nd cylinder part.
- the high pressure of said high pressure fluid shows the range of 1 Mpa or more and 50 Mpa or less.
- examples of the water leakage prevention member include other water leakage prevention members such as an O-ring and a gasket.
- a pipe joint according to a second invention is a pipe joint according to one aspect, wherein at least one of the first cylinder part and the second cylinder part has a cylinder part outer peripheral recess, and the water leakage preventing member is a cylinder part outer peripheral recess. It may be attached to.
- a cylindrical outer peripheral concave portion is formed in at least one of the first cylindrical portion and the second cylindrical portion. Moreover, since the leakage preventing member is attached to the outer peripheral concave portion of the cylindrical portion, it is possible to prevent the leakage preventing member from being displaced and to reliably prevent leakage.
- the pipe joint according to the third invention is a pipe joint according to one aspect or a pipe joint according to the second invention, wherein the outer diameter of the first cylinder part and the outer diameter of the second cylinder part are different. It may consist of.
- the pipe joint according to the fourth invention is a pipe joint according to one aspect, or a pipe joint according to the second invention, wherein the outer diameter of the first cylinder part and the outer diameter of the second cylinder part are the same diameter. It may consist of.
- a pipe joint according to a fifth invention is a pipe joint according to one aspect, a pipe joint according to the second to fourth inventions, wherein the inner diameter communicating with the inner diameter of the first cylinder part and the inner diameter of the second cylinder part is continuous.
- An inclined curved surface may be included.
- the flow of fluid that communicates the inner diameter of the first cylinder part and the inner diameter of the second cylinder part can be adjusted. That is, since a sudden change is not caused, the generation of a large turbulent flow can be prevented.
- a pipe joint according to a sixth invention is a pipe joint according to one aspect, a pipe joint according to the second to fifth inventions, wherein the communication direction lengths of the first cylinder part and the second cylinder part are different. Good.
- the communication direction length of the first tube portion and the second tube portion is different, so that when the high-pressure fluid flows in the upstream pipe, the communication direction length can be increased.
- a pipe joint according to a seventh invention is a pipe joint according to one aspect, a pipe joint according to the second to sixth inventions, and an inner periphery and an end of at least one of the first cylinder part and the second cylinder part Further, a taper shape may be formed.
- the pipe joint according to the eighth invention is a pipe joint according to one aspect, a pipe joint according to the second to seventh inventions, wherein at least the flange portion may be made of metal.
- the flange portion is made of metal, it is possible to easily insert the pipe joint into one pipe and another pipe using an instrument (jig) such as a vise.
- the entire pipe joint may be made of metal, and the first tube portion and the second tube portion of the pipe joint may be made of resin, and only the flange portion may be made of metal.
- a pipe joint according to a ninth invention is a pipe joint according to one aspect, a pipe joint according to the second to eighth inventions, wherein at least one of the first cylinder part and the second cylinder part is made of resin. Good.
- At least one of the first tube portion and the second tube portion is made of resin, so that molding or processing becomes easy, and the cost and weight are reduced compared to the case where the entire pipe joint is made of metal.
- the entire pipe joint may be made of resin
- the first tube portion and the second tube portion of the pipe joint may be made of resin
- only the flange portion may be made of metal.
- a pipe joint according to a tenth invention is a pipe joint according to one aspect, a pipe joint according to any one of the second to ninth inventions, wherein the flange part is a flange part of one pipe and another pipe. You may have a through-hole corresponding to the fixed hole formed in the flange part.
- the flange portion of the pipe joint has a through hole corresponding to the fixed hole formed in the flange portion of one pipe and the flange portion of the other pipe, either one of the one pipe or the other pipe is Even if it is resin piping, positioning of a pipe joint can be performed reliably.
- a tap groove may be attached to the through hole, a hole that is not allowed to penetrate, or a tap groove that is not allowed to penetrate may be provided.
- a pipe joint according to an eleventh invention is a pipe joint according to one aspect, a pipe joint according to any one of the second to ninth inventions, wherein the flange portion is a fixed portion formed on the flange portion of one pipe. You may have the hole with a tap groove formed corresponding to the hole, and the hole with a tap groove formed corresponding to the fixed hole formed in the flange part of other piping.
- a pipe joint structure is a pipe joint structure including the pipe joint according to any one of claims 1 to 11, one pipe, and another pipe.
- At least one of the pipes is a flange joint in which a pipe body having a first diameter expanding toward the end of the pipe, and a flange portion for connecting to another pipe on the outer peripheral surface of the short pipe And a semi-cylindrical core member inserted between the outer peripheral surface of the tubular body having the first diameter shape and the inner peripheral surface of the short pipe of the flange joint.
- the tubular body having the first diameter shape expands toward the end of the pipe.
- the flange part for connecting to other piping is provided in the outer peripheral surface of the short pipe.
- the semi-cylindrical core member is inserted between the outer peripheral surface of the tubular body having the first diameter shape and the inner peripheral surface of the short pipe of the flange joint.
- a water leakage prevention method using a pipe joint includes a first tube portion, a second tube portion communicating with the first tube portion, and a flange provided between the first tube portion and the second tube portion. And a pipe joint that connects one pipe through which a high-pressure fluid flows and another pipe using a pipe joint that includes a water leak prevention member provided on the outer circumference of the cylinder section of the first cylinder section and the second cylinder section.
- a method for preventing water leakage by inserting a first cylindrical portion into one pipe and compressing and deforming a water leakage preventing member on the inner surface of the pipe and the outer surface of the first cylindrical portion.
- a 1st cylinder part is inserted in the inside of one piping, and a 2nd cylinder part is inserted in the inside of other piping.
- An inner surface water stop (prevention of water leakage from the inner surface) on the inner peripheral surface of one pipe can be realized by the water leakage preventing member provided on the outer periphery of the first cylindrical portion.
- the inner surface water stop (leakage prevention from an inner surface) in other piping is realizable by the water leakage prevention member provided in the cylinder part outer periphery of the 2nd cylinder part.
- the high pressure of said high pressure fluid shows the range of 1 Mpa or more and 50 Mpa or less.
- a pipe joint according to the present invention is a pipe joint according to any one of the pipe joint according to one aspect to the eleventh invention, wherein the pipe joint is inserted into at least one of the one pipe or the other pipe.
- a guide shape may be formed at the end of the inner peripheral surface.
- derivation shape shows the curved surface or inclined surface provided in a part or whole periphery of the inner periphery in an edge part.
- a flanged tubular body is a flanged tubular body that is locked to at least one end of a tubular body, and has a first diameter shape that expands toward the end of the tubular body.
- a body, an inner surface corresponding to the first radial shape, a second radial shape that expands toward the end of the tubular body, and a dividing member that divides the circumference, and an inner surface corresponding to the second radial shape And an annular flange portion for connection to an opening of another tubular body.
- the tube having the first diameter shape expands toward the end of the tube.
- the dividing member that divides the circumference has an inner surface corresponding to the first diameter shape and a second diameter shape that expands toward the end of the tubular body.
- the annular flange portion has an inner surface corresponding to the second diameter shape. Therefore, the dividing member is attached to the outer periphery of the tubular body having the first diameter shape, and the annular flange portion is attached to the outer periphery of the dividing member.
- the annular flange portion can be removed, the efficiency at the time of transporting the tubular body can be increased. That is, since the useless space at the time of transferring the tubular body by the flange can be eliminated, the efficiency at the time of conveyance can be improved.
- the flanged tube can be formed by a simple operation in a short time and can be efficiently connected to another tube.
- the annular flange portion may be made of any other material such as metal, wood, resin, etc., and is preferably made of a material suitable for high pressure fluid. As a result, the flanged tube can circulate high-pressure fluid.
- the first diameter shape is a shape that gradually expands toward an end portion, and the inner peripheral surface of the divided member is in accordance with the first diameter shape.
- the first taper surface is formed
- the second diameter shape is a shape that gradually expands toward the end portion, and a second taper corresponding to the second diameter shape is formed on the inner peripheral surface of the annular flange portion.
- a surface may be formed.
- the first taper surface is in sliding contact with the first diameter shape
- the second taper surface is in sliding contact with the second diameter shape. Therefore, the annular flange portion can be easily attached to the pipe body. As a result, it is possible to form a flanged tube body with a simple operation in a short time, and to efficiently connect it to another tube body, and to firmly attach the annular flange portion toward the end portion of the tube body.
- the taper angle based on the extending direction (longitudinal direction) of the tubular body may be different between the first tapered surface and the second tapered surface.
- the force applied to the annular flange portion and the tubular body can be dispersed, and the annular flange portion and the tubular body can be prevented from being damaged. it can.
- the first tapered surface may have a smaller taper angle with respect to the extending direction (longitudinal direction) of the tubular body than the second tapered surface.
- the first taper surface has a smaller taper angle with respect to the extending direction (longitudinal direction) of the tube than the second taper surface, so that the force applied to the annular flange portion and the tube is gradually dispersed. be able to.
- a hole for connecting to an opening of another tubular body may be formed in the annular flange portion.
- connecting jigs and holes may be alternately formed in the annular flange portion.
- a plurality of bolts are used for fastening the annular flange portion, and it is necessary to uniformly tighten the plurality of bolts in order to prevent leakage. Therefore, in order to prevent flange rotation, a method of increasing the tightening torque diagonally or stepwise is employed. In this case, when the connection jig is finally tightened, temporary fixing can be performed with a bolt and a nut using the hole.
- the first radial shape, the second radial shape, the first taper surface, or the second taper surface has a linear shape including a tapered portion when cut in the longitudinal direction of the tubular body. It may be a curved shape. Furthermore, when it is a linear shape, the shape in which a taper angle changes in the middle of a taper surface may be sufficient.
- the angle formed by the tangent of the curved shape of the outer shape of the tapered portion on the base end side (the side having the smallest diameter shape) of the tapered portion and the longitudinal direction of the tubular body is set. Called the taper angle. Further, when the taper angle changes in the middle of the taper surface, the angle formed by the straight line of the outer shape of the taper portion on the proximal end side (the side having the smallest diameter shape) of the taper portion and the longitudinal direction of the tubular body is tapered. Called the corner.
- a pipe joint structure is a pipe joint structure that connects one pipe body through which a high-pressure fluid flows and another pipe body, and forms at least one of the one pipe body and the other pipe body.
- a flanged tubular body according to any one of claims 14 to 17, and a tubular joint provided between one tubular body and another tubular body.
- a high-pressure fluid can be circulated and fluid leakage can be prevented.
- the annular flange portion can be removed, the efficiency at the time of transporting the tubular body can be increased, and the flanged tubular body can be efficiently formed by a simple operation in a short time. Can be connected to the tube.
- FIG. 2 is a schematic cross-sectional view showing an example of a cross section taken along line AA in FIG. 1. It is a partially expanded sectional view for demonstrating the cross section of a piping joint. It is typical sectional drawing which shows an example which attaches a piping joint between resin piping and metal piping. It is typical sectional drawing for demonstrating the effect at the time of attaching a pipe joint between resin piping and metal piping. It is typical sectional drawing which shows the other example which attaches a pipe joint between the resin piping shown in FIG. 5, and metal piping.
- FIG. It is a typical side view of the piping joint shown in FIG. It is typical sectional drawing of the piping joint shown in FIG. It is typical sectional drawing which shows the state by which the O-ring which is a water leak prevention member was attached to the recessed part.
- FIG. It is a schematic diagram which shows an example which attaches a pipe joint between a pipe body with a flange, and a metal pipe body.
- FIG. 29 is a schematic diagram illustrating another example in which a plurality of flanged pipe bodies illustrated in FIG. 28 are used and a pipe joint is attached therebetween. It is a schematic diagram which shows the other example of the pipe body with a flange shown to FIG. 27 and FIG. It is a typical perspective view which shows the other example of an annular flange part. It is a typical perspective view which shows the other example of an annular flange part. It is a schematic diagram for demonstrating the time of use of an annular flange part.
- FIG. 1 is a schematic plan view showing an example of a pipe joint 100 according to the present embodiment
- FIG. 2 is a schematic side view of the pipe joint 100 shown in FIG. 1
- FIG. It is a typical sectional view showing an example of an AA line section.
- the pipe joint 100 includes a flange plate 140 between the cylindrical portion 120 and the cylindrical portion 130.
- the flange plate 140 is provided with a plurality of holes 150 whose centers are located on concentric circles in a radial pattern.
- the hole 150 is used to fix the pipe joint 100 to the resin pipe 500 and the metal pipe 600 or to align the axis of the resin pipe 500 and the metal pipe 600 with the axis of the pipe joint 100.
- the cylindrical portion 120 and the cylindrical portion 130 are formed in a cylindrical shape.
- a concave portion 121 is provided on the outer peripheral surface of the cylindrical portion 120.
- a concave portion 131 is provided on the outer peripheral surface of the cylindrical portion 130.
- the concave portion 121 is provided so as to be connected around the outer periphery of the cylindrical portion 120.
- the recess 131 is provided so as to be connected around the outer periphery of the cylindrical portion 130.
- a hole 125 penetrating the cylindrical portion 120, the flange plate 140, and the cylindrical portion 130 is formed inside the pipe joint 100.
- An inclined surface C is provided on the inner peripheral surface of the end of the hole 125 on the cylindrical portion 120 side.
- an inclined surface C is also provided on the inner peripheral surface of the end portion of the hole 125 on the cylindrical portion 130 side.
- FIG. 4 is a partially enlarged cross-sectional view showing a state in which an O-ring 180 that is a water leakage prevention member is attached to the recess 121 and the recess 131.
- the cylinder outer diameter L1 of 130 is 76.5 mm
- the groove diameter L2 is 68.5 mm
- the outer diameter L3 of the flange plate 140 is 185 mm.
- the O-ring 180 When the nominal diameter is 75A (name A), the O-ring 180 has an inner diameter of 64.6 mm and a cross-sectional diameter of 5.7 ⁇ 0.15 mm (reference number: P65, JIS B2401). As shown in the enlarged view of FIG. 4, the crushing margin (L12 / L13) of the 0 ring 180 is preferably in the range of 20% to 30%. In the present embodiment, as a result of actual measurement, when the nominal diameter is 75A (name A), the range of the crushing margin of the O-ring 180 is a range from 23.9% to 24.6%.
- the nominal diameter of the pipes 500 and 600 (see FIGS. 5 and 6) connected to the pipe joint 100 in the present embodiment is 200 A (name A)
- the diameter L1 is 192 mm
- the groove diameter L2 is 181.5 mm
- the outer diameter L3 of the flange plate 140 is 412 mm.
- the size of the O-ring 180 is the inner diameter. 179.5 mm, and the cross-sectional diameter is 8.4 ⁇ 0.15 mm (nominal number: P180, JIS B2401). Even if the nominal diameter changes, as shown in the enlarged view of FIG. 4, it is preferable that the crushing distance (L12 / L13) of the 0-ring 180 is in the range of 20% to 30%. In the present embodiment, as a result of actual measurement, when the nominal diameter is 200 A (name A), the crushing range of the O-ring 180 is a range from 21.7% to 27.0%.
- two O-rings 180 are attached to both sides of the flange plate 140, but the number of O-rings 180 attached is not limited to this, the length of the cylindrical portions 120 and 130, It may be appropriately determined in consideration of the type and pressure of the high-pressure fluid to be circulated, the configuration and constituent materials of the pipe joint 100, the mounting workability of the O-ring 180, and the like. Different numbers may be attached to the cylindrical portion 120 side and the cylindrical portion 130 side from the flange plate 140. For example, two O-rings 180 on the cylindrical portion 120 side from the flange plate 140 and one on the cylindrical portion 130 side. The book may be attached.
- FIG. 6 shows the pipe joint 100 between the resin pipe 500 and the metal pipe 600. It is typical sectional drawing for demonstrating the effect at the time of attaching.
- the entire piping joint 100 is made of metal
- the tubular portion 130 of the pipe joint 100 is inserted into the pipe interior 515 of the resin pipe 500 as shown in FIG.
- the cylindrical part 130 of the pipe joint 100 can be easily inserted into the pipe interior 515 of the resin pipe 500 by sandwiching the flange plate 140 and the flange part 510 of the resin pipe 500 with an instrument such as a vise. .
- the outer shape of the resin pipe 500 is formed with a specified value, but the inner diameter L500 of the resin pipe 500 is less than the reference value.
- the pipe joint 100 is made of metal, the pipe joint 100 can be easily inserted into the pipe interior 515 of the resin pipe 500.
- the cylinder part 120 of the pipe joint 100 is inserted into the pipe interior 615 of the metal pipe 600.
- the flange portion 510 of the resin pipe 500 and the flange plate 140 of the pipe joint 100 are already integrated, the flange portion 610 of the metal pipe 600 and the flange plate 140 are sandwiched by a device such as a vise.
- the pipe joint 100 can be easily inserted into the pipe interior 615 of the metal pipe 600 and attached.
- the bolt B is passed through the fixing hole of the flange portion 510 of the resin pipe 500, the hole 150 of the flange plate 140, and the fixing hole of the flange portion 610 of the metal pipe 600 and fixed with the nut N.
- fixing is performed with eight bolts B and nuts N.
- the metal described in the above embodiment is, for example, bronze casting (BC6, BC6C), brass casting (YBsC3), modified brass drawing rod (extruded rod) (C3604BD (BE)), for casting Brass drawn rod (extruded rod) (C3771BD (BE)), phosphorous deoxidized copper tube (C1220T), chromium plating on copper alloy substrate (BCrM), nickel plating on copper alloy substrate (BNM), gray cast iron product (FC) ), Ductile cast iron (FCD), malleable cast iron (FCMB), carbon tool steel (SK), stainless steel (18Cr-8Ni) (SUS304), stainless steel (18Cr-12Ni-MO) (SUS316), stainless steel (18Cr-12Ni-) MO ultra low C) (SUS316L), aluminum alloy die casting (ADC), zinc alloy die casting (ZDC), etc. Laminated tube, it is possible to select the configuration and
- the inclined surface C of the pipe joint 100 causes the state of the high-pressure fluid FL passing through the pipe joint 100 to be a laminar flow. Has the function of maintaining the state.
- the thickness of the cylinder parts 120 and 130 is preferably in the range of 3 mm to 15 mm from the viewpoint of pressure resistance, and is in the range of 3 mm to 10 mm. More desirable. If the thickness is less than 3 mm, the strength and rigidity are insufficient, and the cylindrical portions 120 and 130 may be destroyed. Further, if the thickness is greater than 15 mm, when the cylinder part 130 is inserted into the pipe inside 515 of the resin pipe 500 or when the cylinder part 120 is inserted into the pipe inside 615 of the metal pipe 600, the reduced diameter inside the pipe is reduced.
- the O-ring 180 is pressed against the pipe inside 515 of the resin pipe 500 and the pipe inside 615 of the metal pipe 600 by the force FV. As a result, even when a high-pressure high-pressure fluid FL is flowed, it is possible to prevent water from leaking from the vicinity where the pipe joint 100 is joined.
- the thickness of the cylindrical portions 120 and 130 is desirably in the range of 5 mm to 15 mm from the viewpoint of pressure resistance, and the thickness of the flange plate 140 is from the pressure resistant surface. A range of 5 mm or more and 20 mm or less is desirable. If the thickness of the cylindrical portions 120 and 130 is smaller than 5 mm, the strength and rigidity are insufficient, and the piping joint 100 made entirely of resin may be destroyed.
- the pipe portion 130 is inserted when the cylinder portion 130 is inserted into the pipe inside 515 of the resin pipe 500 or when the cylinder portion 120 is inserted into the pipe inside 615 of the metal pipe 600.
- the internal diameter is significantly reduced, and the flow resistance of the high-pressure fluid FL is increased to hinder the flow.
- the thickness of the flange plate 140 is smaller than 5 mm, the strength and rigidity are insufficient, and the flange plate 140 may be destroyed. If the thickness of the flange plate 140 is greater than 20 mm, the thickness of the resin increases, and there is a risk that dimensional deviation is likely to occur due to shrinkage or the like.
- the O-ring 180 is pressed against the pipe inside 515 of the resin pipe 500 and the pipe inside 615 of the metal pipe 600 by the force FV. As a result, even when a high-pressure high-pressure fluid FL is flowed, it is possible to prevent water from leaking from the vicinity where the pipe joint 100 is joined.
- Examples of the resin described in the above embodiment include hard vinyl chloride resin (polyvinyl chloride: PVC), acrylonitrile / butadiene / styrene resin (ABS), acrylonitrile / styrene resin (AS), and epoxy resin.
- PVC polyvinyl chloride
- ABS acrylonitrile / butadiene / styrene resin
- AS acrylonitrile / styrene resin
- epoxy resin epoxy resin
- EP melamine resin
- PC polycarbonate resin
- PCTFE ethylene trifluoride resin
- PE polyethylene resin
- PMMA methacrylic resin
- POM polypropylene resin
- PS Polystyrene resin
- PTFE polyurethane resin
- PUR polyurethane resin
- PVAC polyvinyl acetate resin
- FRP fiber reinforced plastic
- FIG. 7 is a schematic cross-sectional view showing another example in which the pipe joint 100 is attached between the resin pipe 500 and the metal pipe 600 shown in FIG.
- a resin pipe 500a is used instead of the resin pipe 500 shown in FIG. Others are the same as FIG.
- the resin pipe 500 a is provided with a guide portion 550 so that the pipe joint 100 can be easily inserted.
- the guide portion 550 has an inclined surface D formed at the inner peripheral end of the resin pipe 500a so that the pipe joint 100 can be easily inserted.
- the pipe joint 100 can be easily inserted because the inclined surface D is formed at the end of the inner peripheral surface of the resin pipe 500a. it can.
- guide part 550 demonstrated the inclined surface D by the example, it is not limited to this, Any of R shape, a curved surface, and another induction
- FIG. 8 is a schematic cross-sectional view showing a pipe joint structure using a resin pipe of another example.
- a resin pipe 500b may be used instead of the resin pipes 500 and 500a.
- the resin pipe 500b includes a pipe body 511, a core member 560, and a flange joint 570. Further, a large-diameter portion 511 b where the outer diameter of the tube body 511 gradually increases is formed at the end of the tube body 511.
- the outer periphery of the large diameter portion 511b is a tapered surface.
- a core member 560 is provided so as to circumscribe the tapered surface.
- the core member 560 has the same shape of a plurality of members.
- the flange joint 570 has a shape in which an annular flange portion is integrally provided on the outer peripheral surface of a cylindrical short pipe. A tapered surface having an inner peripheral surface shape corresponding to the tapered surface having the outer peripheral surface shape of the core member 560 is formed on the inner peripheral surface of the short pipe.
- the flange joint 570 which is a flange part can be removed by using the resin piping 500b, transportation efficiency can be improved. That is, since the protruding portion of the flange can be removed, the resin piping 500b can be densely loaded. Furthermore, the use of the pipe joint 100 can prevent water leakage of the high-pressure fluid FL.
- FIG. 9 and 10 are schematic plan views showing other examples of the pipe joint 100
- FIG. 11 is a schematic side view showing another example of the pipe joint 100
- FIG. 6 is a schematic cross-sectional view showing another example of the pipe joint 100.
- FIG. 9 shows a plane viewed from one side of the pipe joint 100
- FIG. 10 shows a plane viewed from the back side of one side of the pipe joint 100
- FIG. 11 shows a schematic side view of FIGS. 9 and 10
- FIG. 12 shows a cross section taken along the line BB of FIGS.
- the pipe joint 100a includes a flange plate 140a between the cylindrical portion 120a and the cylindrical portion 130a.
- a plurality of holes 151 whose centers are located concentrically are provided radially on the surface side of the flange plate 140a.
- the hole 151 includes a hole provided with a tap to fix the pipe joint 100 to the pipe 500 and the pipe 600.
- a plurality of holes 152 whose centers are located concentrically are provided radially on the back side of the flange plate 140a.
- the hole 152 is formed so as to have a relative position different from that of the hole 151.
- the holes 151 and 152 have a positioning function for aligning the axis of the pipe 500 and the pipe 600 with the axis of the pipe joint 100a.
- the cylinder part 120a and the cylinder part 130a consist of a cylindrical shape.
- a concave portion 121a is provided on the outer peripheral surface of the cylindrical portion 120a.
- a concave portion 131a is provided on the outer peripheral surface of the cylindrical portion 130a.
- the concave portion 121a is provided so as to be connected around the outer periphery of the cylindrical portion 120a.
- the recessed part 131a is provided so that one round may be connected along the outer periphery of the cylinder part 130a.
- the pipe joint 100a in another example is different from the pipe joint 100 in that the outer diameters of the cylinder part 120a and the cylinder part 130a are different.
- the cylinder part 120a is made of a diameter L22
- the cylinder part 130a is made of a diameter L33 (L22 ⁇ L33).
- FIG. 12 is a schematic cross-sectional view showing a cross section taken along line BB of the pipe joint 100a.
- the pipe joint 100a has a cylindrical portion 120a, a flange plate 140a, and a hole 125a penetrating the cylindrical portion 130a.
- An inclined surface C is provided on the inner peripheral surface of the end portion of the hole 125a on the cylindrical portion 120a side and the inner peripheral surface of the end portion of the hole 125a on the cylindrical portion 130a side.
- the hole 125a of the pipe joint 100a has a cylindrical shape whose inner diameter decreases from the cylinder part 130a side to the cylinder part 120a side.
- the hole 125a on the cylinder part 130a side of the pipe joint 100a is made of a diameter L33a
- the hole 125a on the cylinder part 120a side is made of an inner diameter L22a (L22a ⁇ L33a).
- a groove formed by a tap is provided on the inner surface of the hole 151, and a groove formed by a tap is also provided on the inner surface of the hole 152.
- the holes 151 and 152 are formed without penetrating the flange plate 140a.
- the holes 151 and 152 may be provided as through holes as long as there is no problem in mounting the resin pipe 500 and the metal pipe 600.
- FIG. 13 is a schematic cross-sectional view showing an example of attaching the pipe joint 100a between the resin pipe 500a and the metal pipe 600.
- FIG. 14 shows the pipe joint 100a between the resin pipe 500a and the metal pipe 600. It is typical sectional drawing for demonstrating the attached state.
- the metal pipe 600 has an inner diameter corresponding to the outer diameter L22a of the cylindrical portion 120a of the pipe joint 100a.
- Bolts B are passed through holes formed in the flange portion 610 provided in the metal pipe 600, and the end portions of the bolts B are formed into holes 151 in which grooves are formed by taps formed on the flange plate 140a of the pipe joint 100a.
- the resin pipe 500a has an inner diameter corresponding to the outer diameter L33a of the tubular portion 130a of the pipe joint 100a.
- Bolts B are passed through holes formed in the flange portion 510 provided in the resin pipe 500a, and the ends of the bolts B are formed into holes 152 in which grooves are formed by taps formed on the flange plate 140a of the pipe joint 100a. Fixed.
- the pipe joint 100 a is attached to the resin pipe 500 a and the metal pipe 600.
- the resin pipe 500a and the metal pipe 600 have different inner diameters, they can be easily connected and a high-pressure fluid can be circulated.
- the holes 151 and 152 in which grooves are formed by taps nuts are not necessary, so that work efficiency can be improved.
- FIG. 15 is a schematic cross-sectional view for explaining a state in which the pipe joint 100a is attached between the resin pipe 500a and the resin pipe 500b.
- the pipe joint 100a can be easily attached between the resin pipes 500a and 500b.
- a pipe joint 100a may be provided between the metal pipe 600 and the metal pipe 600 instead of the resin pipes 500a and 500b.
- FIGS. 16 and 17 are schematic cross-sectional views for explaining still another example of the pipe joint 100a.
- a pipe joint 100b shown in FIG. 16 is provided with a cylinder part 130b instead of the cylinder part 130a of the pipe joint 100a.
- the length from the flange plate 140a to the end of the cylinder part 120a and the cylinder part 130a is the same, but the pipe joint 100b shown in FIG. 16 is different from the length LL2 of the cylinder part 120a.
- the cylindrical portion 130b is provided so that the length LL3 (LL2 ⁇ LL3) becomes longer. As a result, the pipe joint 100b can be more firmly attached to the pipe.
- a pipe joint 100c shown in FIG. 17 includes holes 125c and 126c of the pipe joint 100c. That is, it consists of a hole 125c and a hole 126c with respect to the hole 125a in the pipe joint 100a.
- the wall thickness t in the cylindrical portion 120a can be increased. As a result, the pipe joint 100c can be formed more robustly.
- Example 2 An experiment was performed using the pipe joint 100 described in the present embodiment. In the experiment, a pipe having a nominal diameter of 75A was used. In consideration of the safety factor of the product, a water pressure of 10.5 MPa was applied and maintained for 1 hour, but no water leakage from the joint portion of the pipe joint 100 was observed.
- the cylinder portion 120 is fitted into the pipe interior 615 of the metal pipe 600, and the cylinder portion 130 is fitted into the pipe interior 515 of the resin pipe 500, so that O provided on the outer periphery of the cylinder portion 120 is obtained.
- the ring 180 can realize inner surface water stop (water leakage prevention) on the inner peripheral surface of the metal pipe 600, and the inner ring water stop (water leakage prevention) in the resin pipe 500 can be achieved by the O ring 180 provided on the outer periphery of the cylindrical portion 130. Can be realized. As a result, even when the high-pressure fluid FL flows from the resin pipe 500 to the metal pipe 600 side, water leakage of the high-pressure fluid FL can be prevented.
- the inclined surface C is formed at the inner periphery and at the end of at least one of the cylinder part 120 and the cylinder part 130 of the pipe joint 100, the high-pressure fluid FL passes through the pipe joint 100. FL turbulence can be prevented and laminar flow can be maintained.
- the pipe joint 100 since the flange plate 140 of the pipe joint 100 has the hole 150 corresponding to the fixing hole formed in the flange part 510 of the resin pipe 500 and the flange part 610 of the metal pipe 600, the pipe joint 100 is positioned reliably. be able to.
- the recessed parts 121 and 131 are formed in at least one of the cylinder parts 120 and 130, and the O-ring 180 is attached to the recessed parts 121 and 131, the O-ring 180 is prevented from being displaced and the prevention of water leakage is ensured. be able to.
- the fluid flow can be adjusted by the holes 125 having a continuous inclined curved surface. That is, since a sudden change is not caused, the generation of a large turbulent flow can be prevented.
- the high-pressure fluid FL corresponds to a high-pressure fluid
- the resin pipe 500 and the metal pipe 600 correspond to one pipe or another pipe
- the pipe joints 100, 100a, 100b, and 100c are pipe joints.
- the cylindrical portions 120 and 120a correspond to the first cylindrical portion
- the cylindrical portions 130, 130a and 130b correspond to the second cylindrical portion
- the flange plates 140 and 140a correspond to the flange portion
- 125c corresponds to a continuous inclined curved surface
- the O-ring 180 corresponds to a water leakage prevention member
- the inclined surface C corresponds to a tapered shape
- the pipe joint 100 and the pipe 500b in FIG. 8 have a pipe joint structure.
- the tube body 511 corresponds to the tube body
- the holes 151 and 152 in which grooves are formed by taps correspond to holes with tapped grooves
- the flange joint 570 corresponds to a flange joint
- Member 560 corresponds to the core member
- holes 150 correspond to the through hole.
- FIG. 18 is a schematic partially cutaway perspective view of the flanged tube body 1100 according to the present embodiment.
- the flanged tube body 1100 mainly includes a tube body 1200, a split member 1300, and an annular flange portion 1400.
- tube body 1200 is a cylindrical multilayer tube formed by reinforcing the outer peripheral surface of a rigid polyvinyl chloride tube with a fiber reinforced plastic (hereinafter referred to as FRP) layer. Further, a large-diameter portion 1210 where the outer diameter of the tubular body 1200 gradually increases is formed at the end of the tubular body 1200.
- the large-diameter portion 1210 includes a tapered surface TL1.
- the tapered surface TL1 is formed in the entire circumferential area of the tubular body 1200.
- Method for producing large diameter portion 1210 As a manufacturing method of the large diameter portion 1210, there are a method of forming at a construction site and a method of forming at a production factory (prefab).
- Method of molding at construction site As a method of molding at the construction site, a method of molding the large diameter portion 1210 by a hand lay-up method, a filament winding (FW) method, a resin transfer molding method (RTM) or a vacuum resin transfer molding method (VaRTM), optical A method of molding the large-diameter portion 1210 with a curable resin or the like, or a method in which only a portion of the large-diameter portion 1210 is molded separately in advance to the tube body 1200 by a hand lay-up method or an adhesive, Other arbitrary methods such as a method in which a large diameter portion 1210 is formed by mechanically fixing a nut (insert nut) embedded in the FRP reinforcing layer of the tube body 1200 using a bolt or the like.
- the large diameter portion 1210 is also combined.
- examples include a method in which glass fiber is wound thickly at a position, and after the FRP layer is formed, grinding and / or polishing is performed so as to obtain a first diameter shape.
- the material of the tube body 1200 in the present embodiment is made of a fiber reinforced plastic (FRP) and a hard vinyl chloride resin that is a core material.
- FRP fiber reinforced plastic
- the material of the pipe body 1200 is not limited to the present embodiment, but is a hard vinyl chloride resin (polyvinyl chloride: PVC), acrylonitrile-butadiene-styrene resin (ABS), acrylonitrile-styrene resin (AS).
- tubular body 1200 is not limited to a cylindrical body having a cylindrical shape, that is, a horizontal sectional shape cut by a horizontal plane perpendicular to the axial center.
- the horizontal sectional shape has an egg shape (oval tube). )
- the dividing member 1300 in the present embodiment includes a first dividing member 1301 and a second dividing member 1302.
- the first divided member 1301 and the second divided member 1302 have the same shape.
- the 1st division member 1301 and the 2nd division member 1302 form a cylinder shape by putting together both. That is, by dividing the dividing member 1300 vertically with a plane passing through the axis of the dividing member 1300, the shapes of the first dividing member 1301 and the second dividing member 1302 are obtained.
- first divided member 1301 and the second divided member 1302 are each formed in a curved shape so as to sandwich the outer peripheral surface of the tubular body 1200 and the large diameter portion 1210 on the inner peripheral surface. That is, the first divided member 1301 and the second divided member 1302 are formed with a curved surface TL3 corresponding to the outer peripheral surface of the tubular body 1200, and according to the tapered surface TL1 of the outer peripheral surface of the large diameter portion 1210. A tapered surface TL2 having a curved inner peripheral surface shape is formed. Further, the first divided member 1301 and the second divided member 1302 are formed with a curved outer peripheral surface tapered surface TL4 corresponding to an inner peripheral surface of an annular flange portion 1400 described later.
- the curved inner peripheral surface shape tapered surface TL2 and the curved outer peripheral surface shape tapered surface TL4 are formed on the inner peripheral surface or the entire outer peripheral surface of the first divided member 1301 and the second divided member 1302.
- the present invention is not limited to this, and the first divided member 1301 and the second divided member 1302 may be divided into a part or a plurality of inner peripheral surfaces or outer peripheral surfaces.
- the shape of the tapered surface TL2 having a curved inner peripheral surface shape corresponding to the tapered surface TL1 of the outer peripheral surface of the large-diameter portion 1210 may be removed by removing the formation portion of the surface TL3.
- the divided member 1300 is composed of the first divided member 1301 and the second divided member 1302, but is not limited thereto, and may be composed of one cylindrical member or three or more divided members.
- the material of the dividing member 1300 in the present embodiment is made of fiber reinforced plastic (FRP).
- FRP fiber reinforced plastic
- the material of the dividing member 1300 may be the same as or different from that of the tube body 1200.
- the material of the dividing member 1300 may be a synthetic resin tube or a fiber reinforced plastic (FRP) of various materials as well as the material of the tube body 1200, and other various materials such as a metal tube, a reinforced concrete tube or a prestressed tube.
- Arbitrary materials and structures, such as concrete pipes, such as concrete pipes, wood, ceramic pipes, these laminated pipes, and composite pipes, can be selected.
- the dividing member 1300 has a shape corresponding to the outer surface of the tubular body 1200 and the large diameter portion 1210 of the tubular body 1200, a cylindrical shape, an elliptical cylinder, a square cylinder, a polygonal cylinder, or the like may be used.
- the dividing member 1300 may be configured by a member having a holdability such as a resin or a metal. In this case, the dividing member 1300 may be deformed into a shape that is in sliding contact with the outer peripheral surface of the tubular body 1200 and the large diameter portion 1210 and the inner peripheral surface of the annular flange portion 1400.
- annular flange portion 1400 As shown in FIG. 18, the annular flange portion 1400 is formed of an annular flange. On the inner peripheral surface of the annular flange portion 1400, a curved inner peripheral surface tapered surface TL5 corresponding to the curved outer peripheral surface tapered surface TL4 of the dividing member 1300 is formed.
- the curved inner peripheral surface shape tapered surface TL5 is formed in the entire peripheral area of the inner peripheral surface of the split member 1300, but is not limited to this, and a part or a plurality of inner peripheral surfaces of the annular flange portion 1400 are formed. It may be divided into two.
- the annular flange portion 1400 is made of a fiber reinforced resin obtained by impregnating a glass reinforced fiber with a thermosetting resin.
- the material of the annular flange portion 1400 may be the same as or different from that of the tube body 1200.
- the material of the annular flange portion 1400 may be made of various materials such as synthetic resin tubes and fiber reinforced plastics (FRP), similar to the material of the tube body 1200.
- FRP fiber reinforced plastics
- the annular flange portion 1400 has been described.
- the present invention is not limited to this, and the inner peripheral surface of the annular flange portion 1400 has a horizontal cross-sectional shape that is an ellipse, a quadrangle, or a polygon.
- the inner peripheral surface may have a tapered surface TL5 in part.
- the annular flange portion 1400 only needs to have an inner diameter into which the tubular body 1200 can be inserted.
- the outer peripheral shape of the dividing member 1300 is an ellipse, a rectangle, or a polygon
- the annular flange portion 1400 is divided. What is necessary is just to have the taper surface TL5 in the inner peripheral surface in at least one part by the shape according to each outer peripheral shape of the member 1300.
- the annular flange portion 1400 is provided with a plurality of through holes 1450 that penetrate from the front surface to the back surface.
- the through-hole 1450 serves as a portion into which a fastening member such as a bolt B (see FIG. 27) used when connecting to another flanged tube body 1100 and a metal tube body 1110 described later is inserted.
- FIGS. 19, 20, and 21 are schematic side views for explaining the assembly process of the flanged tube 1100.
- the annular flange portion 1400 is inserted in the direction of the arrow -Y1 from the end portion side of the tube body 1200.
- the inner diameter L2 of the annular flange portion 1400 is provided larger than the outer diameter L1 of the large diameter portion 1210 of the tube body 1200 (see FIGS. 19 and 22).
- the dividing member 1300 is attached to the large diameter portion 1210 of the tube body 1200.
- the first divided member 1301 and the second divided member 1302 are attached to the large diameter portion 1210 from the outside (see FIG. 18).
- the surface TL3 of the first divided member 1301 and the second divided member 1302 is in sliding contact with the outer peripheral surface of the tubular body 1200 on the peripheral surface, and the first divided member 1301 and the tapered surface TL1 of the large diameter portion 1210 of the tubular body 1200 are contacted.
- the tapered surface TL2 of the second divided member 1302 is in sliding contact with the peripheral surface.
- part or all of the sliding contact portion with the tapered surface TL2 of the second divided member 1302 may be bonded or welded.
- heating wires are embedded in the inner surfaces of the first divided member 1301 and the second divided member 1302 in advance, the divided member 1300 is attached to the large diameter portion 1210 of the tube body 1200, and then the controller is energized.
- Electrofusion EF: electrofusion
- Heating wire is heated and the inner peripheral surface of the dividing member 1300, the outer peripheral surface of the tube body 1200, and the resin on the tapered surface TL1 of the large diameter portion 1210 are heated and melted and systematically integrated.
- At least a part of the sliding contact portion may be melt bonded by bonding.
- a heating wire may be embedded in the large diameter portion 1210 of the tube body 1200 in advance.
- the annular flange portion 1400 attached to the tube body 1200 in FIG. 19 is in sliding contact with the outer peripheral surface of the split member 1300 attached to the tube body 1200 including the large diameter portion 1210.
- the tapered surface TL5 on the inner circumferential surface of the annular flange portion 1400 and the tapered surface TL4 on the outer circumferential surface of the split member 1300 are in sliding contact, and the annular flange portion 1400 is attached.
- the flanged tube 1100 is easily formed.
- a part or all of the sliding contact portion between the tapered surface TL5 on the inner peripheral surface of the annular flange portion 1400 and the tapered surface TL4 on the outer peripheral surface of the dividing member 1300 may be bonded or welded.
- a heating wire is embedded in the inner peripheral surface of the annular flange portion 1400 in advance, and after the split member 1300 is attached, the heater wire is energized to generate heat, and the outer surface of the split member 1300 and the annular flange portion 1400 are energized.
- At least a part of the sliding contact portion may be melt-bonded by electrofusion (EF: electrofusion) bonding in which the resin on the taper surface TL5 on the inner peripheral surface is melted by heating and systematically integrated.
- EF electrofusion
- FIG. 22 is an explanatory diagram showing the relationship between the angles of the tapered surfaces.
- the tapered surface TL1 and the tapered surface TL2 are provided at an angle ⁇ 1 with respect to the extending direction (longitudinal direction) of the tubular body 1200.
- the surface TL3 is formed by a surface in the same direction as the extending direction (longitudinal direction) of the tube body 1200.
- the tapered surface TL4 and the tapered surface TL5 are provided at an angle ⁇ 2 with reference to the extending direction (longitudinal direction) of the tubular body 1200.
- the angle ⁇ 1 and the angle ⁇ 2 are different from each other.
- the present invention is not limited to this, and the angles may be the same or partially the same.
- the taper surface TL1 and the taper surface TL2 and the taper surface TL4 and the taper surface TL5 each have a certain angle.
- FIG. 23 is a schematic plan view showing an example of the pipe joint 1500 according to the present embodiment
- FIG. 24 is a schematic side view of the pipe joint 1500 shown in FIG.
- the pipe joint 1500 includes a flange plate 1540 between the tube portion 1520 and the tube portion 1530.
- the flange plate 1540 is provided with a plurality of holes 1550 that are radially centered on concentric circles.
- the hole 1550 is used to fix the pipe joint 1500 to either or both of the flanged tube 1100 and the metal tube 1110, or the axial centers of the flanged tube 1100 and the metal tube 1110, It has a positioning function for matching the axis of the pipe joint 1500.
- the cylindrical portion 1520 and the cylindrical portion 1530 are formed in a cylindrical shape.
- a concave portion 1521 is provided on the outer peripheral surface of the cylindrical portion 1520.
- a concave portion 1531 is provided on the outer peripheral surface of the cylindrical portion 1530.
- the concave portion 1521 is provided so as to be connected around the outer periphery of the cylindrical portion 1520.
- the concave portion 1531 is provided so as to be connected around the outer periphery of the cylindrical portion 1530.
- FIG. 25 is a schematic cross-sectional view of the pipe joint 1500 shown in FIG.
- the pipe joint 1500 has a cylindrical portion 1520, a flange plate 1540, and a hole 1525 that penetrates the cylindrical portion 1530.
- An inclined surface C is provided on the inner peripheral surface of the end portion of the hole 1525 on the cylindrical portion 1520 side.
- an inclined surface C is also provided on the inner peripheral surface of the end portion of the hole 1525 on the cylindrical portion 1530 side.
- FIG. 26 is a schematic cross-sectional view showing a state where an O-ring 1580 that is a water leakage preventing member is attached to the recess 1521.
- the cylinder outer diameter L51 of the portions 1520 and 1530 is 76.5 mm
- the groove diameter L52 is 68.5 mm
- the outer diameter L53 of the flange plate 1540 is 185 mm.
- the O-ring 1580 When the nominal diameter is 75A (name A), the O-ring 1580 has an inner diameter of 64.6 mm and a cross-sectional diameter of 5.7 ⁇ 0.15 mm (call number: P65, JIS B2401). As shown in the enlarged view of FIG. 26, the crushing margin (L12 / L13) of the O-ring 1580 is preferably in the range of 20% to 30%. In the present embodiment, as a result of actual measurement, when the nominal diameter is 75A (name A), the crushing range of the O-ring 1580 is a range from 23.9% to 24.6%.
- the nominal diameter of the flanged tube body 1100 or the metal tube body 1110 (see FIGS. 27 and 28) connected to the pipe joint 1500 in the present embodiment is 200 A (name A)
- the cylinder outer diameter L51 of 1520 and 1530 is 192 mm
- the groove diameter L52 is 181.5 mm
- the outer diameter L53 of the flange plate 1540 is 412 mm.
- an O-ring The size of 1580 is an inner diameter of 179.5 mm, and the cross-sectional diameter is 8.4 ⁇ 0.15 mm (reference number: P180, JIS B2401). Further, even if the nominal diameter changes, as shown in the enlarged view of FIG. 26, the crushing margin (L12 / L13) of the O-ring 1580 is preferably in the range of 20% to 30%. In the present embodiment, as a result of actual measurement, when the nominal diameter was 200 A (name A), the range of the crushing margin of the O-ring 1580 was a range from 21.7% to 27.0%.
- FIG. 27 is a schematic diagram showing an example of attaching a pipe joint 1500 between the flanged tube 1100 and the metal tube 1110
- FIG. 28 is a diagram between the flanged tube 1100 and the metal tube 1110. It is a schematic diagram for demonstrating the effect at the time of attaching the piping coupling 1500.
- the manufacturing process is generally formed by extrusion molding in the flanged tube body 1100, the outer shape of the flanged tube body 1100 is formed with a specified value, but the inner diameter L100 of the flanged tube body 1100 is formed. Have a large variation with respect to the reference value. Even in this case, since the pipe joint 1500 is made of metal, the pipe joint 1500 can be easily inserted into the pipe body 1105 of the flanged pipe body 1100.
- the tube portion 1520 of the pipe joint 1500 is inserted into the tube body inside 1115 of the metal tube body 1110.
- the flange portion 1400 of the flanged tube body 1100 and the flange plate 1540 of the pipe joint 1500 are already integrated, the flange portion 1140 of the metal tube body 1110 and the flange plate 1540 are sandwiched by a tool such as a vise. By doing so, the pipe joint 1500 can be easily inserted into the pipe interior 1115 of the metal pipe 1110 and attached.
- the bolt B is connected to the through hole 1450 of the flange portion 1400 of the flanged tube body 1100, the hole 1550 of the flange plate 1540 (see FIG. 23), and the fixing hole of the flange portion 1140 of the metal tube body 1110. And is fixed with a nut N.
- fixing is performed with eight bolts B and nuts N.
- the pipe joint 1500 is accurately attached between the flanged pipe body 1100 and the metal pipe body 1110.
- the metal described in the above embodiment includes, for example, bronze casting (BC6, BC6C), brass casting (YBsC3), modified brass drawn rod (extruded rod) (C3604BD (BE)), and brass for casting.
- Drawing rod extentrusion rod
- C3771BD phosphorous deoxidized copper tube
- BCrM chromium plating on the base of copper alloy
- BNM nickel plating on the base of copper alloy
- FC Ductile cast iron
- FCMB malleable cast iron
- carbon tool steel SK
- stainless steel (18Cr-8Ni)
- SUS304 stainless steel
- 18Cr-12Ni-MO stainless steel
- SUS316L aluminum alloy die casting
- ZDC zinc alloy die casting
- Laminate tube it is possible to select the configuration and any material such as a composite tube. Furthermore, these metals may be subjected to rust prevention treatment such as plating or painting.
- the inclined surface C of the pipe joint 1500 is in a state of the high-pressure fluid FL passing through the pipe joint 1500. In a laminar flow state.
- FIG. 29 is a schematic diagram for explaining an effect when a pipe joint 1500 is attached between the flanged pipe body 1100 and the metal pipe body 1110.
- the thickness of the cylinder parts 1520 and 1530 of the pipe joint 1500 is preferably in the range of 3 mm to 15 mm from the viewpoint of pressure resistance, and is in the range of 3 mm to 10 mm. More desirable. If the thickness is smaller than 3 mm, the strength and rigidity are insufficient, and the cylindrical portions 1520 and 1530 may be destroyed. If the thickness is greater than 15 mm, the tube 1530 is inserted into the tube interior 1105 of the flanged tube 1100 or the tube portion 1520 is inserted into the tube interior 1115 of the metal tube 1110.
- the O-ring 1580 is pressed against the tube interior 1105 of the flanged tube 1100 and the tube interior 1115 of the metal tube 1110 by the force FV.
- the force FV As a result, even when a high-pressure high-pressure fluid FL is flowed, it is possible to prevent water from leaking from the vicinity where the pipe joint 1500 is joined.
- the tube portion 1520 and 1530 is larger than 15 mm, the tube portion 1520 is inserted into the tube interior 1105 of the tube body 1100 of the flanged tube body 1100 or into the tube body interior 1115 of the metal tube body 1110. In such a case, the diameters of the tube interiors 1105 and 1115 are remarkably reduced, and the flow resistance of the high-pressure fluid FL is increased, which may hinder the flow. Further, if the thickness of the flange plate 1540 is smaller than 5 mm, the strength and rigidity are insufficient, and the flange plate 1540 may be destroyed. If the thickness of the flange plate 1540 is larger than 20 mm, the thickness of the resin is increased, and there is a possibility that a dimensional error is likely to occur due to shrinkage or the like.
- Examples of the resin described in the above embodiment include hard vinyl chloride resin (polyvinyl chloride: PVC), acrylonitrile / butadiene / styrene resin (ABS), acrylonitrile / styrene resin (AS), and epoxy resin.
- PVC polyvinyl chloride
- ABS acrylonitrile / butadiene / styrene resin
- AS acrylonitrile / styrene resin
- epoxy resin epoxy resin
- EP melamine resin
- PC polycarbonate resin
- PCTFE ethylene trifluoride resin
- PE polyethylene resin
- PMMA methacrylic resin
- POM polypropylene resin
- PS Polystyrene resin
- PTFE polyurethane resin
- PUR polyurethane resin
- PVAC polyvinyl acetate resin
- FRP fiber reinforced plastic
- the flanged tube body 1100 and the metal tube body 1110 are straight pipes.
- the present invention is not limited to this.
- a curved pipe, socket, sleeve, cheese, reducer, and incrementer any other things such as a header and a cap may be used.
- the flanged tube bodies 1100 may be joined to each other using the flanged tube body 1100 instead of the metal tube body 1110.
- FIG. 30 is an explanatory view for explaining another example in which the pipe joint 1500 is attached to the flanged pipe body 1100a and the metal pipe body 1110 is connected.
- FIG. 30 differences between the case where the pipe joint 1500 is connected to the flanged pipe body 1100a in FIG. 30 and the case where the pipe joint 1500 is connected to the flanged pipe body 1100 in FIG. 28 will be described.
- bolts Ba are embedded in the annular flange portion 1400 instead of the plurality of through holes in the flanged tube body 1100.
- the bolt Ba passes through the hole 1550 of the pipe joint 1500 and further passes through the through hole of the flange portion of the metal pipe body 1110 and is fastened using the nut N.
- the flange portion of the annular flange portion 1400 becomes small.
- a washer or a washer for fixing with the bolt B may not be used.
- the bolt Ba is embedded in the annular flange portion 1400 in the flanged tube 1100a, it can be easily connected.
- FIG. 31 is a schematic diagram showing another example in which a plurality of flanged pipe bodies 1100 shown in FIG. 28 are used and a pipe joint 1500 is attached therebetween.
- a flanged tube 1100 is used instead of the metal tube 1110. Others are the same as FIG.
- FIG. 32 is a schematic diagram showing another example of the flanged tube 1100 shown in FIGS. 27 and 28.
- the flanged pipe body 1100b is provided with a guide portion so that the pipe joint 1500 can be easily inserted.
- an inclined surface D is formed at the inner peripheral end of the flanged tube body 1100b so that the pipe joint 1500 can be easily inserted.
- the inclined surface D is formed at the end portion of the inner peripheral surface of the flanged tube body 1100b, so that the pipe joint 1500 can be easily inserted. be able to.
- the inclined surface D was demonstrated by way of example as the guide portion, it is not limited to this, and any of an R shape, a curved surface, and other guide shapes may be used. Or you may provide in a part of inner peripheral edge part.
- FIG. 33 is a schematic perspective view showing still another example of the annular flange portion.
- the annular flange portion 1400a includes flange portions 1401 and 1402.
- the flange portions 1401 and 1402 have a plurality of holes 1450.
- the flange portions 1401 and 1402 have the same shape, and an annular flange portion 1400a is formed by abutting the flange portion 1401 and the flange portion 1402 together.
- FIG. 34 is a schematic perspective view showing still another example of the annular flange portion.
- the annular flange portion 1400b includes flange portions 1401b and 1402b.
- the flange portions 1401b and 1402b have a plurality of holes 1450.
- the flange portions 1401b and 1402b have the same shape.
- flange portions 1401b and 1402b are formed with flange-shaped concave portions 1411 and 1422 and flange-shaped convex portions 1412 and 1421 at the abutting positions of the flange portions 1401 and 1402, respectively.
- the flange-shaped concave portion 1411 of the flange portion 1401b is fitted into the flange-shaped convex portion 1421 of the flange portion 1402b, and the flange-shaped convex portion 1412 of the flange portion 1401b is fitted to the flange-shaped concave portion 1422 of the flange portion 1402b.
- the annular flange portion 1400b can maintain the annular shape with the annular flange portion 1400b alone.
- the bowl-shaped recessed parts 1411 and 1422 and the bowl-shaped convex parts 1412 and 1421 have been described, the present invention is not limited to this, and any other bowl shape or any other shape may be used.
- annular flange portions 1400a and 1400b described in other examples will be described.
- annular flange portion 1400a of the annular flange portions 1400a and 1400b will be described as an example.
- 35 and 36 are schematic diagrams for explaining the use of the annular flange portion 1400a.
- the flange plate 1610 may be used so that the butts of the flange portions 1401 and 1402 of the annular flange portion 1400a are not separated.
- the flange plate 1610 is used side by side in the direction of the arrow FF with respect to the flange portions 1401 and 1402. Accordingly, the bolt B is passed through the hole 1650 of the flange plate 1610 and the hole 1450 of the flange portions 1401 and 1402, thereby preventing the butt separation of the flange portions 1401 and 1402 of the annular flange portion 1400 a.
- FIGS. 37 and 38 are schematic diagrams for explaining the use of the annular flange portion 1400a. As shown in FIGS. 37 and 38, when the annular flange portion 1400a is used, a ring 1620 may be used so that the butts of the flange portions 1401 and 1402 of the annular flange portion 1400a are not separated from each other.
- the outer periphery of the annular flange portion 1400a can be held by attaching the ring 1620 to the outer periphery of the flange portions 1401 and 1402 in the direction of the arrow FF. As a result, it is possible to prevent separation of the flange portions 1401 and 1402 of the annular flange portion 1400a.
- FIGS. 39 and 40 are schematic diagrams for explaining the use of the annular flange portion 1400a.
- a flange 1630 with a ring may be used so that the butts of the flange portions 1401 and 1402 of the annular flange portion 1400a are not separated from each other.
- the flange with ring 1630 is a combination of the flange plate 1610 and the ring 1620.
- a pipe joint 1500a having the function of the flange with ring 1630 may be used by providing a ring 1590 at the end of the flange plate 1540 of the pipe joint 1500. .
- annular flange part 1400b instead of the annular flange part 1400a demonstrated in FIGS. 35-41.
- the annular flange portions 1400a and 1400b cannot be inserted from the large diameter portion 1210 side of the tubular body 1200.
- the annular flange portions 1400a and 1400b can be easily mounted. As a result, it is not necessary to previously attach the annular flange portions 1400a and 1400b to the tube body 1200, and the annular flange portions 1400a and 1400b can be attached to the tube body 1200 later, so that work efficiency can be improved.
- the annular flange portions 1400a and 1400b can be reliably held.
- the annular flange portion 1400 can be attached to the tubular body 1200 with a simple operation, and other metal tubular bodies 1110 or flanges can be easily attached. It can be connected to the attached tubes 1100, 1100a, 1100b.
- the force applied to the annular flange portion 1400 can be dispersed. Furthermore, since the taper angle ⁇ 1 of the taper surface TL2 is smaller than the taper angle ⁇ 2 with the taper surface TL4, the force applied to the annular flange portion 1400 can be gradually dispersed.
- a high-pressure fluid can be circulated inside the pipe by the pipe joint structure 1900 in which the pipe joint 1500 is inserted into the pipe body 1100 with the flange. Moreover, since the annular flange portion 1400 of the flanged tubular body 1100 can be removed, the efficiency during conveyance can be increased.
- flanged tubular bodies 1100, 1100a, 1100b correspond to flanged tubular bodies
- annular flange portions 1400, 1400a, 1400b correspond to annular flange portions
- tubular body 1200 corresponds to the tubular body, and diameter.
- the large portion 1210 corresponds to the first diameter shape
- the flange plate 1540 corresponds to the flange portion
- the first divided member 1301 and the second divided member 1302 correspond to the divided member
- the tapered surface TL2 becomes the first tapered surface.
- the bolts B and Ba correspond to the connecting jig
- the tapered surface TL4 corresponds to the second tapered surface
- the tapered surface TL5 corresponds to the third tapered surface
- the cylindrical portion 1520 corresponds to the first cylindrical portion.
- the cylinder 1530 corresponds to the second cylinder
- the O-ring 1580 corresponds to the water leakage preventing member
- the pipe joints 1500 and 1500a correspond to the pipe joint.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Flanged Joints, Insulating Joints, And Other Joints (AREA)
Abstract
Provided are a piping joint, a piping joint structure, and a leak prevention method using piping joints capable of circulating a high pressure fluid and of preventing fluid leaks. This piping joint (100) joins a resin piping (500) for circulating a high pressure fluid (FL) and a metal piping (600), and comprises a cylindrical section (120) fitting inside the metal piping (600), a cylindrical section (130) fitting inside the resin piping (500) and linking with the cylindrical section (120), a flange plate (140) provided between cylindrical section (120) and cylindrical section (130), and an O-ring (180) provided on the outer circumference of cylindrical section (120) and cylindrical section (130).
Description
本発明は、高圧な流体を流通させる配管同士を接続する配管継手、配管継手構造および配管継手による漏水防止方法に関する。また、管体の端部にフランジ継手が接続されてなるフランジ付管体および管体継手構造に関する。
The present invention relates to a pipe joint for connecting pipes through which a high-pressure fluid flows, a pipe joint structure, and a water leakage prevention method using the pipe joint. The present invention also relates to a flanged tubular body in which a flange joint is connected to an end of the tubular body and a tubular joint structure.
従来から、流体を流通させる配管を接続する方法として、種々の継手が開発されている。
例えば、特許文献1(特開2002-295781号公報)には、内耐圧性に優れている複合管用のフランジ継手について開示されている。 Conventionally, various joints have been developed as methods for connecting pipes through which fluid flows.
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-295781) discloses a flange joint for a composite pipe having excellent internal pressure resistance.
例えば、特許文献1(特開2002-295781号公報)には、内耐圧性に優れている複合管用のフランジ継手について開示されている。 Conventionally, various joints have been developed as methods for connecting pipes through which fluid flows.
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-295781) discloses a flange joint for a composite pipe having excellent internal pressure resistance.
特許文献1記載のフランジ継手においては、管状に成形された合成樹脂製の内層と、この内層の外周面に延伸ポリオレフィン系樹脂シートを螺旋状に巻回することにより形成された補強層と、この補強層に積層された合成樹脂製の外層とを有する複合管の短管と、単一の合成樹脂で成形された管状の部材で肉厚が複合管の短管よりも厚く成形されたフランジアダプタを有するフランジとからなり、複合管の短管の先端に、フランジアダプタが突き合わせ融着されているとともに、その突き合わせ融着部の外周面に補強部材が装着されてなるものである。
In the flange joint described in Patent Document 1, an inner layer made of synthetic resin formed into a tubular shape, a reinforcing layer formed by spirally winding a stretched polyolefin resin sheet on the outer peripheral surface of the inner layer, and this Flange adapter formed of a composite pipe short tube having a synthetic resin outer layer laminated on a reinforcing layer and a tubular member formed of a single synthetic resin and having a wall thickness greater than that of the composite pipe short tube A flange adapter is abutted and fused to the tip of the short pipe of the composite pipe, and a reinforcing member is attached to the outer peripheral surface of the butt fused part.
また、特許文献2(特開2006-10041号公報)には、地中管路を樹脂製の更生管によってライニングするに際し、取り付け管口において、止水パッドのスリーブを拡径する際に、フランジ部が変形することを防止し、十分な止水性を発揮し得る止水パッド及び取り付け管口の止水方法について開示されている。
Further, Patent Document 2 (Japanese Patent Laid-Open No. 2006-10041) discloses a flange that is used when the underground pipe line is lined with a resin-made rehabilitation pipe, and when the sleeve of the water stop pad is expanded at the attachment pipe port. The water stop pad which can prevent a part from deform | transforming and can exhibit sufficient water stop and the water stop method of an attachment pipe port are disclosed.
特許文献2記載の止水パッドにおいては、取り付け管の内径よりも小さい外形を有する筒状スリーブと、この筒状スリーブの一方の端縁部から鍔状に張り出したフランジとが一体に成形され、フランジの表面に合成ゴム系の粘着剤が塗布されるとともに、筒状スリーブの外周に、筒状スリーブの変形を防止可能な保護リングが配設されたものである。
In the water stop pad described in Patent Document 2, a cylindrical sleeve having an outer shape smaller than the inner diameter of the attachment tube and a flange projecting in a bowl shape from one end edge portion of the cylindrical sleeve are integrally formed, A synthetic rubber adhesive is applied to the surface of the flange, and a protective ring capable of preventing deformation of the cylindrical sleeve is disposed on the outer periphery of the cylindrical sleeve.
さらに、特許文献3(特開2012-31985号公報)には、接続及び接続解除を容易にできるとともに、接合強度に優れた樹脂管の接続構造について開示されている。
Furthermore, Patent Document 3 (Japanese Patent Laid-Open No. 2012-31985) discloses a connection structure for resin pipes that can be easily connected and disconnected and has excellent bonding strength.
特許文献3記載の樹脂管の接続構造においては、一端にフランジ部を有する2つの樹脂管の各フランジ部を突き合わせた状態で、両フランジ部を外周側から包囲しかつ狭持する嵌合部を有する一対の分割体からなる接合部材により2つの樹脂管を接合する樹脂管の接合構造であって、分割体は、樹脂管の外壁に沿うように嵌合部から延設され、他方の分割体の樹脂管補強部とともに、樹脂管の外壁を囲繞して樹脂管を補強する樹脂管補強部を有し、かつ、樹脂管補強部の軸方向長さが、樹脂管の外径の1/3以上に設定されているものである。
In the connection structure of the resin pipes described in Patent Document 3, a fitting part that surrounds and sandwiches both flange parts from the outer peripheral side in a state in which the flange parts of two resin pipes having flange parts at one end face each other. A resin pipe joining structure in which two resin pipes are joined by a joining member comprising a pair of split bodies, the split body extending from the fitting portion along the outer wall of the resin pipe, and the other split body And a resin tube reinforcing portion that surrounds the outer wall of the resin tube and reinforces the resin tube, and the axial length of the resin tube reinforcing portion is 1/3 of the outer diameter of the resin tube. It is set above.
一般に、硬質塩化ビニル管の外周面を繊維強化プラスチック(以下、FRPと呼ぶ。)層で補強し、耐圧性および耐熱性を高めた複層管は、軽量で、耐薬品性も非常に高いことから、工業用管体等として多岐にわたって使用されている。
In general, multi-layer pipes that are reinforced with a fiber-reinforced plastic (hereinafter referred to as FRP) layer on the outer peripheral surface of a rigid polyvinyl chloride pipe to improve pressure resistance and heat resistance are lightweight and have extremely high chemical resistance. Therefore, it is widely used as industrial pipes.
特許文献4(特開2012-132502号)には、簡単な作業にて他の管体に接続することができる新規なフランジ付管体構造、及びこのフランジ付管体が他の管体に接続されてなる管路構造について開示されている。
Patent Document 4 (Japanese Patent Application Laid-Open No. 2012-132502) discloses a novel flanged tube structure that can be connected to another tube by a simple operation, and the flanged tube connected to another tube. A pipeline structure is disclosed.
特許文献4のフランジ付管体構造においては、フランジ継手が管体に係止されてなるフランジ付管体構造であって、このフランジ付管体構造は、短管の外周面に、別の管体の開口部に接続させるフランジ部が設けられたフランジ継手と、フランジ継手における短管に挿入される管体と、管体に外装される筒状の分割部材とからなり、フランジ継手は、短管の内周面において一開口端側から他開口端側に向かって内径を拡大するテーパ部が設けられてなり、管体は、その一端に別の管体の開口部と対向させる接続開口部を有し、分割部材は、一の筒口から他の筒口にわたって筒壁を切り分ける一条のスリット部が設けられた筒体、若しくは一の筒口から他の筒口にわたって筒壁を切り分ける複数条のスリット部によって分割された複数個の分割体の集合体であり、更に、その外周面において一の筒口側から他の筒口側に向かって外径を拡大する前記テーパ部に沿う形状の短管当接部が設けられてなり、フランジ継手における短管の他開口端が管体の接続開口部に向けられた状態で、管体を短管に挿入させ、一の筒口がフランジ継手における短管の他開口端に向けられた状態で、分割部材を管体に外装させると共に、スリット部に弾性を有する充填材を介在させ、管体に沿ってフランジ継手を分割部材に向けて移動させて、テーパ部と短管当接部とを摺接させながら、管体の外周面とテーパ部との間に存する環状の間隙に分割部材を圧入させることによって、分割部材において管体に向かう締め付け力を生じさせ、もって、管体にフランジ継手を係止させるものであることを特徴とするものである。
The flanged tube structure disclosed in Patent Document 4 is a flanged tube structure in which a flange joint is locked to the tube, and this flanged tube structure is formed on the outer peripheral surface of the short tube with another tube. A flange joint provided with a flange portion to be connected to the opening of the body, a tubular body inserted into a short pipe in the flange joint, and a cylindrical divided member sheathed on the tubular body. On the inner peripheral surface of the tube, a tapered portion is provided that expands the inner diameter from one opening end side toward the other opening end side, and the tube body is connected at one end to the opening portion of another tube body. The split member has a cylindrical body provided with a single slit portion that cuts a cylindrical wall from one cylindrical port to another cylindrical port, or a plurality of slit portions that cut the cylindrical wall from one cylindrical port to another cylindrical port. Multiple divided minutes A short tube abutting portion having a shape along the taper portion, the outer diameter of which extends along the outer peripheral surface from one tube port side toward the other tube port side. In a state where the other open end of the short pipe is directed to the connection opening of the pipe body, the pipe body is inserted into the short pipe, and one tube port is directed to the other open end of the short pipe in the flange joint. The split member is externally attached to the pipe body, and an elastic filler is interposed in the slit portion, and the flange joint is moved toward the split member along the pipe body so that the taper portion and the short pipe contact portion are slid. By pressing the split member into an annular gap existing between the outer peripheral surface of the pipe body and the tapered portion while being in contact with each other, a clamping force toward the pipe body is generated in the split member, so that a flange joint is attached to the pipe body. It is characterized by being locked It is intended.
また、従来から高圧の流体を流通する高圧配管として、主に金属配管が用いられていた。これらの高圧配管である金属配管と金属配管とを接続する場合、溶接による接続が主流となっていた。
しかしながら、近年においては、当該高圧配管の清掃、メンテナンス等のため、高圧配管の接続および高圧配管の取外しが要望されつつある。そのため、高圧配管に対する配管継手の開発が望まれている。
さらに、近年においては、高圧流体を流通させるための高圧用樹脂配管も開発されつつある。 Conventionally, metal pipes have been mainly used as high-pressure pipes for circulating a high-pressure fluid. When these high-pressure pipes, ie, metal pipes and metal pipes, are connected by welding.
However, in recent years, there has been a demand for connection of a high-pressure pipe and removal of the high-pressure pipe for cleaning and maintenance of the high-pressure pipe. Therefore, development of a pipe joint for high-pressure pipes is desired.
Furthermore, in recent years, a high-pressure resin pipe for circulating a high-pressure fluid has been developed.
しかしながら、近年においては、当該高圧配管の清掃、メンテナンス等のため、高圧配管の接続および高圧配管の取外しが要望されつつある。そのため、高圧配管に対する配管継手の開発が望まれている。
さらに、近年においては、高圧流体を流通させるための高圧用樹脂配管も開発されつつある。 Conventionally, metal pipes have been mainly used as high-pressure pipes for circulating a high-pressure fluid. When these high-pressure pipes, ie, metal pipes and metal pipes, are connected by welding.
However, in recent years, there has been a demand for connection of a high-pressure pipe and removal of the high-pressure pipe for cleaning and maintenance of the high-pressure pipe. Therefore, development of a pipe joint for high-pressure pipes is desired.
Furthermore, in recent years, a high-pressure resin pipe for circulating a high-pressure fluid has been developed.
また、特許文献4記載のフランジ付管体構造においては、簡単な作業にて他の管体に接続することができる。
しかしながら、特許文献4記載のフランジ付管体構造においては、フランジ部をOリングまたはガスケット等で止水するものであり、高圧流体を流通させるのには、適さない。 In the flanged tube structure described in Patent Document 4, it can be connected to another tube by a simple operation.
However, in the flanged tube structure described in Patent Document 4, the flange portion is water-stopped by an O-ring or a gasket, which is not suitable for circulating a high-pressure fluid.
しかしながら、特許文献4記載のフランジ付管体構造においては、フランジ部をOリングまたはガスケット等で止水するものであり、高圧流体を流通させるのには、適さない。 In the flanged tube structure described in Patent Document 4, it can be connected to another tube by a simple operation.
However, in the flanged tube structure described in Patent Document 4, the flange portion is water-stopped by an O-ring or a gasket, which is not suitable for circulating a high-pressure fluid.
本発明の目的は、高圧流体を流通し、かつ流体の漏水を防止できる配管継手、配管継手構造および配管継手による漏水防止方法を提供することである。
また、本発明の他の目的は、高圧流体を流通し、かつ流体の漏水を防止し、運搬効率を高めた配管継手構造を提供することである。
さらに、本発明の他の目的は、高圧流体を流通させることができるフランジ付管体および管体継手構造を提供することである。
最後に、本発明の他の目的は、管体の搬送時効率を高めることができ、高圧流体を流通させることができるフランジ付管体および管体継手構造を提供することである。 An object of the present invention is to provide a pipe joint, a pipe joint structure, and a water leakage prevention method using a pipe joint that allow a high-pressure fluid to flow and prevent fluid leakage.
Another object of the present invention is to provide a pipe joint structure that circulates a high-pressure fluid, prevents fluid leakage, and improves transport efficiency.
Furthermore, another object of the present invention is to provide a flanged tube body and a tube joint structure capable of circulating a high-pressure fluid.
Finally, another object of the present invention is to provide a flanged tubular body and a tubular joint structure that can increase the efficiency of transportation of the tubular body and allow high-pressure fluid to flow.
また、本発明の他の目的は、高圧流体を流通し、かつ流体の漏水を防止し、運搬効率を高めた配管継手構造を提供することである。
さらに、本発明の他の目的は、高圧流体を流通させることができるフランジ付管体および管体継手構造を提供することである。
最後に、本発明の他の目的は、管体の搬送時効率を高めることができ、高圧流体を流通させることができるフランジ付管体および管体継手構造を提供することである。 An object of the present invention is to provide a pipe joint, a pipe joint structure, and a water leakage prevention method using a pipe joint that allow a high-pressure fluid to flow and prevent fluid leakage.
Another object of the present invention is to provide a pipe joint structure that circulates a high-pressure fluid, prevents fluid leakage, and improves transport efficiency.
Furthermore, another object of the present invention is to provide a flanged tube body and a tube joint structure capable of circulating a high-pressure fluid.
Finally, another object of the present invention is to provide a flanged tubular body and a tubular joint structure that can increase the efficiency of transportation of the tubular body and allow high-pressure fluid to flow.
(1)
一局面に従う配管継手は、一の配管と他の配管を継ぐ配管継手であって、一の配管の配管内部に嵌合する第1筒部と、第1筒部と連通し、かつ他の配管の配管内部に嵌合する第2筒部と、第1筒部と第2筒部との間に設けられたフランジ部と、第1筒部および第2筒部の筒部外周に設けられた漏水防止部材と、を含むものである。 (1)
A pipe joint according to one aspect is a pipe joint that connects one pipe and another pipe, and is connected to the inside of the pipe of the one pipe, communicates with the first cylinder part, and other pipes The second cylinder part fitted inside the pipe, the flange part provided between the first cylinder part and the second cylinder part, and the outer periphery of the cylinder part of the first cylinder part and the second cylinder part And a water leakage preventing member.
一局面に従う配管継手は、一の配管と他の配管を継ぐ配管継手であって、一の配管の配管内部に嵌合する第1筒部と、第1筒部と連通し、かつ他の配管の配管内部に嵌合する第2筒部と、第1筒部と第2筒部との間に設けられたフランジ部と、第1筒部および第2筒部の筒部外周に設けられた漏水防止部材と、を含むものである。 (1)
A pipe joint according to one aspect is a pipe joint that connects one pipe and another pipe, and is connected to the inside of the pipe of the one pipe, communicates with the first cylinder part, and other pipes The second cylinder part fitted inside the pipe, the flange part provided between the first cylinder part and the second cylinder part, and the outer periphery of the cylinder part of the first cylinder part and the second cylinder part And a water leakage preventing member.
本発明に係る配管継手は、第1筒部と、第1筒部と連通する第2筒部との間にフランジ部が設けられる。また、第1筒部および第2筒部の筒部外周に漏水防止部材が設けられる。
In the pipe joint according to the present invention, a flange portion is provided between the first tube portion and the second tube portion communicating with the first tube portion. In addition, a water leakage preventing member is provided on the outer periphery of the cylindrical portion of the first cylindrical portion and the second cylindrical portion.
この場合、第1筒部が一の配管の内周面に嵌合され、第2筒部が他の配管の内周面に嵌合される。第1筒部の筒部外周に設けられた漏水防止部材により一の配管の内周面における内面止水(漏水防止)を実現することができる。また、第2筒部の筒部外周に設けられた漏水防止部材により他の配管における内面止水(漏水防止)を実現することができる。
その結果、一の配管から他の配管側に高圧流体を流した場合であっても、流体の漏水を防止することができる。なお、上記の高圧流体の高圧とは、1MPa以上50MPa以下の範囲を示す。
また、漏水防止部材としては、Oリング、ガスケット等、その他任意の漏水防止部材があげられる。 In this case, the first tube portion is fitted to the inner peripheral surface of one pipe, and the second tube portion is fitted to the inner peripheral surface of another pipe. An inner surface water stop (water leakage prevention) on the inner peripheral surface of one pipe can be realized by the water leakage preventing member provided on the outer periphery of the first cylindrical portion. Moreover, the inner surface water stop (leakage prevention) in other piping is realizable by the water leakage prevention member provided in the cylinder part outer periphery of the 2nd cylinder part.
As a result, even when a high-pressure fluid is flowed from one pipe to the other pipe side, fluid leakage can be prevented. In addition, the high pressure of said high pressure fluid shows the range of 1 Mpa or more and 50 Mpa or less.
Further, examples of the water leakage prevention member include other water leakage prevention members such as an O-ring and a gasket.
その結果、一の配管から他の配管側に高圧流体を流した場合であっても、流体の漏水を防止することができる。なお、上記の高圧流体の高圧とは、1MPa以上50MPa以下の範囲を示す。
また、漏水防止部材としては、Oリング、ガスケット等、その他任意の漏水防止部材があげられる。 In this case, the first tube portion is fitted to the inner peripheral surface of one pipe, and the second tube portion is fitted to the inner peripheral surface of another pipe. An inner surface water stop (water leakage prevention) on the inner peripheral surface of one pipe can be realized by the water leakage preventing member provided on the outer periphery of the first cylindrical portion. Moreover, the inner surface water stop (leakage prevention) in other piping is realizable by the water leakage prevention member provided in the cylinder part outer periphery of the 2nd cylinder part.
As a result, even when a high-pressure fluid is flowed from one pipe to the other pipe side, fluid leakage can be prevented. In addition, the high pressure of said high pressure fluid shows the range of 1 Mpa or more and 50 Mpa or less.
Further, examples of the water leakage prevention member include other water leakage prevention members such as an O-ring and a gasket.
(2)
第2の発明に係る配管継手は、一局面に従う配管継手であって、第1筒部および第2筒部の少なくとも一方は、筒部外周凹部を有し、漏水防止部材は、筒部外周凹部に取り付けられてもよい。 (2)
A pipe joint according to a second invention is a pipe joint according to one aspect, wherein at least one of the first cylinder part and the second cylinder part has a cylinder part outer peripheral recess, and the water leakage preventing member is a cylinder part outer peripheral recess. It may be attached to.
第2の発明に係る配管継手は、一局面に従う配管継手であって、第1筒部および第2筒部の少なくとも一方は、筒部外周凹部を有し、漏水防止部材は、筒部外周凹部に取り付けられてもよい。 (2)
A pipe joint according to a second invention is a pipe joint according to one aspect, wherein at least one of the first cylinder part and the second cylinder part has a cylinder part outer peripheral recess, and the water leakage preventing member is a cylinder part outer peripheral recess. It may be attached to.
この場合、第1筒部および第2筒部の少なくとも一方に、筒部外周凹部が形成される。また、漏洩防止部材は、筒部外周凹部に取り付けられるので、漏洩防止部材のずれを防止することができ、確実に漏洩を防止できる。
In this case, a cylindrical outer peripheral concave portion is formed in at least one of the first cylindrical portion and the second cylindrical portion. Moreover, since the leakage preventing member is attached to the outer peripheral concave portion of the cylindrical portion, it is possible to prevent the leakage preventing member from being displaced and to reliably prevent leakage.
(3)
第3の発明に係る配管継手は、一局面に従う配管継手、または第2の発明にかかる配管継手であって、第1筒部の外径と、第2筒部の外径とが、異なる径からなってもよい。 (3)
The pipe joint according to the third invention is a pipe joint according to one aspect or a pipe joint according to the second invention, wherein the outer diameter of the first cylinder part and the outer diameter of the second cylinder part are different. It may consist of.
第3の発明に係る配管継手は、一局面に従う配管継手、または第2の発明にかかる配管継手であって、第1筒部の外径と、第2筒部の外径とが、異なる径からなってもよい。 (3)
The pipe joint according to the third invention is a pipe joint according to one aspect or a pipe joint according to the second invention, wherein the outer diameter of the first cylinder part and the outer diameter of the second cylinder part are different. It may consist of.
この場合、第1筒部の外径と、第2筒部の外径とが、異なる径からなるので、高圧流体を流通する一の配管と他の配管とが異なる径の配管であっても、接続対応することができる。
In this case, since the outer diameter of the first cylinder part and the outer diameter of the second cylinder part are different from each other, even if the one pipe that circulates the high-pressure fluid and the other pipe are different in diameter. Can support connection.
(4)
第4の発明に係る配管継手は、一局面に従う配管継手、または第2の発明にかかる配管継手であって、第1筒部の外径と、第2筒部の外径とが、同一径からなってもよい。 (4)
The pipe joint according to the fourth invention is a pipe joint according to one aspect, or a pipe joint according to the second invention, wherein the outer diameter of the first cylinder part and the outer diameter of the second cylinder part are the same diameter. It may consist of.
第4の発明に係る配管継手は、一局面に従う配管継手、または第2の発明にかかる配管継手であって、第1筒部の外径と、第2筒部の外径とが、同一径からなってもよい。 (4)
The pipe joint according to the fourth invention is a pipe joint according to one aspect, or a pipe joint according to the second invention, wherein the outer diameter of the first cylinder part and the outer diameter of the second cylinder part are the same diameter. It may consist of.
この場合、第1筒部の外径と、第2筒部の外径とが、同一径からなるので、高圧流体を流通する一の配管と他の配管とが同一径の配管であっても、対応することができる。
In this case, since the outer diameter of the first cylinder part and the outer diameter of the second cylinder part are the same diameter, even if one pipe that circulates the high-pressure fluid and the other pipe are pipes having the same diameter. Can respond.
(5)
第5の発明に係る配管継手は、一局面に従う配管継手、第2から第4の発明にかかる配管継手であって、第1筒部の内径と第2筒部の内径と連通する内径が連続した傾斜曲面を含んでもよい。 (5)
A pipe joint according to a fifth invention is a pipe joint according to one aspect, a pipe joint according to the second to fourth inventions, wherein the inner diameter communicating with the inner diameter of the first cylinder part and the inner diameter of the second cylinder part is continuous. An inclined curved surface may be included.
第5の発明に係る配管継手は、一局面に従う配管継手、第2から第4の発明にかかる配管継手であって、第1筒部の内径と第2筒部の内径と連通する内径が連続した傾斜曲面を含んでもよい。 (5)
A pipe joint according to a fifth invention is a pipe joint according to one aspect, a pipe joint according to the second to fourth inventions, wherein the inner diameter communicating with the inner diameter of the first cylinder part and the inner diameter of the second cylinder part is continuous. An inclined curved surface may be included.
この場合、第1筒部の内径と第2筒部の内径とを連通する流体の流れを整えることができる。すなわち、急激な変化を生じさせないため、大きな乱流の発生等を防止することができる。
In this case, the flow of fluid that communicates the inner diameter of the first cylinder part and the inner diameter of the second cylinder part can be adjusted. That is, since a sudden change is not caused, the generation of a large turbulent flow can be prevented.
(6)
第6の発明に係る配管継手は、一局面に従う配管継手、第2から第5の発明にかかる配管継手であって、第1筒部および第2筒部の連通方向長さが、異なってもよい。 (6)
A pipe joint according to a sixth invention is a pipe joint according to one aspect, a pipe joint according to the second to fifth inventions, wherein the communication direction lengths of the first cylinder part and the second cylinder part are different. Good.
第6の発明に係る配管継手は、一局面に従う配管継手、第2から第5の発明にかかる配管継手であって、第1筒部および第2筒部の連通方向長さが、異なってもよい。 (6)
A pipe joint according to a sixth invention is a pipe joint according to one aspect, a pipe joint according to the second to fifth inventions, wherein the communication direction lengths of the first cylinder part and the second cylinder part are different. Good.
この場合、第1筒部および第2筒部の連通方向長さが異なることにより、上流側の配管において高圧流体が流れる場合に、連通方向長さを長くすることができる。
In this case, the communication direction length of the first tube portion and the second tube portion is different, so that when the high-pressure fluid flows in the upstream pipe, the communication direction length can be increased.
(7)
第7の発明に係る配管継手は、一局面に従う配管継手、第2から第6の発明にかかる配管継手であって、第1筒部および第2筒部の少なくとも一方の内周、かつ端部に、テーパー形状が形成されたものであってもよい。 (7)
A pipe joint according to a seventh invention is a pipe joint according to one aspect, a pipe joint according to the second to sixth inventions, and an inner periphery and an end of at least one of the first cylinder part and the second cylinder part Further, a taper shape may be formed.
第7の発明に係る配管継手は、一局面に従う配管継手、第2から第6の発明にかかる配管継手であって、第1筒部および第2筒部の少なくとも一方の内周、かつ端部に、テーパー形状が形成されたものであってもよい。 (7)
A pipe joint according to a seventh invention is a pipe joint according to one aspect, a pipe joint according to the second to sixth inventions, and an inner periphery and an end of at least one of the first cylinder part and the second cylinder part Further, a taper shape may be formed.
この場合、第1筒部および第2筒部の少なくとも一方の内周、かつ端部に、テーパー形状が形成されているので、高圧流体が配管継手を通過する際に、流体の乱流を防止して、層流を維持させることができる。
In this case, since the tapered shape is formed at the inner periphery and at the end of at least one of the first tube portion and the second tube portion, turbulent fluid flow is prevented when the high-pressure fluid passes through the pipe joint. Thus, laminar flow can be maintained.
(8)
第8の発明に係る配管継手は、一局面に従う配管継手、第2から第7の発明にかかる配管継手であって、少なくともフランジ部は、金属からなってもよい。 (8)
The pipe joint according to the eighth invention is a pipe joint according to one aspect, a pipe joint according to the second to seventh inventions, wherein at least the flange portion may be made of metal.
第8の発明に係る配管継手は、一局面に従う配管継手、第2から第7の発明にかかる配管継手であって、少なくともフランジ部は、金属からなってもよい。 (8)
The pipe joint according to the eighth invention is a pipe joint according to one aspect, a pipe joint according to the second to seventh inventions, wherein at least the flange portion may be made of metal.
この場合、少なくともフランジ部は、金属からなるので、万力等の器具(治具)を用いて配管継手を一の配管および他の配管に容易に挿入させることができる。また、配管継手の全体が金属からなってもよく、配管継手の第1筒部および第2筒部が樹脂からなり、フランジ部のみ金属からなってもよい。
In this case, since at least the flange portion is made of metal, it is possible to easily insert the pipe joint into one pipe and another pipe using an instrument (jig) such as a vise. Further, the entire pipe joint may be made of metal, and the first tube portion and the second tube portion of the pipe joint may be made of resin, and only the flange portion may be made of metal.
(9)
第9の発明に係る配管継手は、一局面に従う配管継手、第2から第8の発明にかかる配管継手であって、少なくとも第1筒部および第2筒部の一方は、樹脂からなってもよい。 (9)
A pipe joint according to a ninth invention is a pipe joint according to one aspect, a pipe joint according to the second to eighth inventions, wherein at least one of the first cylinder part and the second cylinder part is made of resin. Good.
第9の発明に係る配管継手は、一局面に従う配管継手、第2から第8の発明にかかる配管継手であって、少なくとも第1筒部および第2筒部の一方は、樹脂からなってもよい。 (9)
A pipe joint according to a ninth invention is a pipe joint according to one aspect, a pipe joint according to the second to eighth inventions, wherein at least one of the first cylinder part and the second cylinder part is made of resin. Good.
この場合、少なくとも第1筒部および第2筒部の一方は、樹脂からなるので、成形または加工等が容易となり、配管継手の全部を金属で製作する場合と比較して、コストおよび重量面でメリットがある。また、配管継手の全体が樹脂からなってもよく、配管継手の第1筒部および第2筒部が樹脂からなり、フランジ部のみ金属からなってもよい。
In this case, at least one of the first tube portion and the second tube portion is made of resin, so that molding or processing becomes easy, and the cost and weight are reduced compared to the case where the entire pipe joint is made of metal. There are benefits. Further, the entire pipe joint may be made of resin, and the first tube portion and the second tube portion of the pipe joint may be made of resin, and only the flange portion may be made of metal.
(10)
第10の発明に係る配管継手は、一局面に従う配管継手、第2から第9のいずれか1つの発明に係る配管継手であって、フランジ部は、一の配管のフランジ部および他の配管のフランジ部に形成された固定孔に対応する貫通孔を有してもよい。 (10)
A pipe joint according to a tenth invention is a pipe joint according to one aspect, a pipe joint according to any one of the second to ninth inventions, wherein the flange part is a flange part of one pipe and another pipe. You may have a through-hole corresponding to the fixed hole formed in the flange part.
第10の発明に係る配管継手は、一局面に従う配管継手、第2から第9のいずれか1つの発明に係る配管継手であって、フランジ部は、一の配管のフランジ部および他の配管のフランジ部に形成された固定孔に対応する貫通孔を有してもよい。 (10)
A pipe joint according to a tenth invention is a pipe joint according to one aspect, a pipe joint according to any one of the second to ninth inventions, wherein the flange part is a flange part of one pipe and another pipe. You may have a through-hole corresponding to the fixed hole formed in the flange part.
この場合、配管継手のフランジ部が、一の配管のフランジ部および他の配管のフランジ部に形成された固定孔に対応する貫通孔を有するので、一の配管または他の配管のいずれか一方が樹脂配管であっても、配管継手の位置決めを確実におこなうことができる。
また、貫通孔にタップ溝を付けてもよく、貫通させない孔にしてもよく、貫通させない孔にタップ溝を付けてもよい。 In this case, since the flange portion of the pipe joint has a through hole corresponding to the fixed hole formed in the flange portion of one pipe and the flange portion of the other pipe, either one of the one pipe or the other pipe is Even if it is resin piping, positioning of a pipe joint can be performed reliably.
Moreover, a tap groove may be attached to the through hole, a hole that is not allowed to penetrate, or a tap groove that is not allowed to penetrate may be provided.
また、貫通孔にタップ溝を付けてもよく、貫通させない孔にしてもよく、貫通させない孔にタップ溝を付けてもよい。 In this case, since the flange portion of the pipe joint has a through hole corresponding to the fixed hole formed in the flange portion of one pipe and the flange portion of the other pipe, either one of the one pipe or the other pipe is Even if it is resin piping, positioning of a pipe joint can be performed reliably.
Moreover, a tap groove may be attached to the through hole, a hole that is not allowed to penetrate, or a tap groove that is not allowed to penetrate may be provided.
(11)
第11の発明に係る配管継手は、一局面に従う配管継手、第2から第9のいずれか1つの発明に係る配管継手であって、フランジ部は、一の配管のフランジ部に形成された固定孔に対応して形成されたタップ溝付の穴と、他の配管のフランジ部に形成された固定孔に対応して形成されたタップ溝付の穴と、を有してもよい。 (11)
A pipe joint according to an eleventh invention is a pipe joint according to one aspect, a pipe joint according to any one of the second to ninth inventions, wherein the flange portion is a fixed portion formed on the flange portion of one pipe. You may have the hole with a tap groove formed corresponding to the hole, and the hole with a tap groove formed corresponding to the fixed hole formed in the flange part of other piping.
第11の発明に係る配管継手は、一局面に従う配管継手、第2から第9のいずれか1つの発明に係る配管継手であって、フランジ部は、一の配管のフランジ部に形成された固定孔に対応して形成されたタップ溝付の穴と、他の配管のフランジ部に形成された固定孔に対応して形成されたタップ溝付の穴と、を有してもよい。 (11)
A pipe joint according to an eleventh invention is a pipe joint according to one aspect, a pipe joint according to any one of the second to ninth inventions, wherein the flange portion is a fixed portion formed on the flange portion of one pipe. You may have the hole with a tap groove formed corresponding to the hole, and the hole with a tap groove formed corresponding to the fixed hole formed in the flange part of other piping.
この場合、タップ溝付の穴を、配管毎に設けるので、容易に配管継手を配管に取り付けることができる。また、一方の配管を取り付けてから、他方の配管を取り付けることができるので、作業効率を高めることができる。
In this case, since a hole with a tap groove is provided for each pipe, the pipe joint can be easily attached to the pipe. Moreover, since one piping can be attached after the other piping is attached, working efficiency can be improved.
(12)
第12の発明に係る配管継手構造は、請求項1から11のいずれか1項に記載の配管継手と、一の配管と他の配管とを含む配管継手構造であって、一の配管および他の配管の少なくとも一方は、配管の端部に向かって拡大する第1の径形状を有する管体と、短管の外周面に、他の配管に接続させるためのフランジ部が設けられたフランジ継手と、第1の径形状を有する管体の外周面、およびフランジ継手の短管の内周面の間に挿入される半筒状の中子部材と、を含むものである。 (12)
A pipe joint structure according to a twelfth aspect of the present invention is a pipe joint structure including the pipe joint according to any one of claims 1 to 11, one pipe, and another pipe. At least one of the pipes is a flange joint in which a pipe body having a first diameter expanding toward the end of the pipe, and a flange portion for connecting to another pipe on the outer peripheral surface of the short pipe And a semi-cylindrical core member inserted between the outer peripheral surface of the tubular body having the first diameter shape and the inner peripheral surface of the short pipe of the flange joint.
第12の発明に係る配管継手構造は、請求項1から11のいずれか1項に記載の配管継手と、一の配管と他の配管とを含む配管継手構造であって、一の配管および他の配管の少なくとも一方は、配管の端部に向かって拡大する第1の径形状を有する管体と、短管の外周面に、他の配管に接続させるためのフランジ部が設けられたフランジ継手と、第1の径形状を有する管体の外周面、およびフランジ継手の短管の内周面の間に挿入される半筒状の中子部材と、を含むものである。 (12)
A pipe joint structure according to a twelfth aspect of the present invention is a pipe joint structure including the pipe joint according to any one of claims 1 to 11, one pipe, and another pipe. At least one of the pipes is a flange joint in which a pipe body having a first diameter expanding toward the end of the pipe, and a flange portion for connecting to another pipe on the outer peripheral surface of the short pipe And a semi-cylindrical core member inserted between the outer peripheral surface of the tubular body having the first diameter shape and the inner peripheral surface of the short pipe of the flange joint.
この場合、第1の径形状を有する管体は、配管の端部に向かって拡大する。フランジ継手は、短管の外周面に、他の配管に接続するためのフランジ部が設けられている。半筒状の中子部材は、第1の径形状を有する管体の外周面、およびフランジ継手の短管の内周面の間に挿入される。
In this case, the tubular body having the first diameter shape expands toward the end of the pipe. As for the flange joint, the flange part for connecting to other piping is provided in the outer peripheral surface of the short pipe. The semi-cylindrical core member is inserted between the outer peripheral surface of the tubular body having the first diameter shape and the inner peripheral surface of the short pipe of the flange joint.
この場合、一の配管から他の配管側に高圧流体を流した場合であっても、流体の漏水を防止することができる。
また、フランジ継手を取り外すことができるので、輸送等の際に、フランジ部がスペースをとらず、輸送効率を高めることができる。 In this case, even when a high-pressure fluid is flowed from one pipe to the other pipe side, fluid leakage can be prevented.
Further, since the flange joint can be removed, the flange portion does not take up space during transportation or the like, and transportation efficiency can be improved.
また、フランジ継手を取り外すことができるので、輸送等の際に、フランジ部がスペースをとらず、輸送効率を高めることができる。 In this case, even when a high-pressure fluid is flowed from one pipe to the other pipe side, fluid leakage can be prevented.
Further, since the flange joint can be removed, the flange portion does not take up space during transportation or the like, and transportation efficiency can be improved.
(13)
他の局面に従う配管継手を用いた漏水防止方法は、第1筒部と、第1筒部と連通する第2筒部と、第1筒部と第2筒部との間に設けられたフランジ部と、第1筒部および第2筒部の筒部外周に設けられた漏水防止部材と、を含む配管継手を用いて、高圧流体を流通させる一の配管と他の配管とを継ぐ配管継手を用いた漏水防止方法であって、一の配管の内部に第1筒部を挿入し、漏水防止部材を一の配管の配管内面および第1筒部の外面とで圧縮変形させて漏水防止する第1ステップと、他の配管の内部に第2筒部を挿入し、漏水防止部材を他の配管の配管内面および第2筒部の外面とで圧縮変形させて漏水防止する第2ステップとを含むものである。 (13)
A water leakage prevention method using a pipe joint according to another aspect includes a first tube portion, a second tube portion communicating with the first tube portion, and a flange provided between the first tube portion and the second tube portion. And a pipe joint that connects one pipe through which a high-pressure fluid flows and another pipe using a pipe joint that includes a water leak prevention member provided on the outer circumference of the cylinder section of the first cylinder section and the second cylinder section A method for preventing water leakage by inserting a first cylindrical portion into one pipe and compressing and deforming a water leakage preventing member on the inner surface of the pipe and the outer surface of the first cylindrical portion. A first step and a second step of inserting a second tube portion into another pipe and compressing and deforming the water leakage preventing member between the inner surface of the other pipe and the outer surface of the second tube portion to prevent water leakage. Is included.
他の局面に従う配管継手を用いた漏水防止方法は、第1筒部と、第1筒部と連通する第2筒部と、第1筒部と第2筒部との間に設けられたフランジ部と、第1筒部および第2筒部の筒部外周に設けられた漏水防止部材と、を含む配管継手を用いて、高圧流体を流通させる一の配管と他の配管とを継ぐ配管継手を用いた漏水防止方法であって、一の配管の内部に第1筒部を挿入し、漏水防止部材を一の配管の配管内面および第1筒部の外面とで圧縮変形させて漏水防止する第1ステップと、他の配管の内部に第2筒部を挿入し、漏水防止部材を他の配管の配管内面および第2筒部の外面とで圧縮変形させて漏水防止する第2ステップとを含むものである。 (13)
A water leakage prevention method using a pipe joint according to another aspect includes a first tube portion, a second tube portion communicating with the first tube portion, and a flange provided between the first tube portion and the second tube portion. And a pipe joint that connects one pipe through which a high-pressure fluid flows and another pipe using a pipe joint that includes a water leak prevention member provided on the outer circumference of the cylinder section of the first cylinder section and the second cylinder section A method for preventing water leakage by inserting a first cylindrical portion into one pipe and compressing and deforming a water leakage preventing member on the inner surface of the pipe and the outer surface of the first cylindrical portion. A first step and a second step of inserting a second tube portion into another pipe and compressing and deforming the water leakage preventing member between the inner surface of the other pipe and the outer surface of the second tube portion to prevent water leakage. Is included.
この場合、第1筒部が一の配管の内部に挿入され、第2筒部が他の配管の内部に挿入される。第1筒部の筒部外周に設けられた漏水防止部材により一の配管の内周面における内面止水(内面からの漏水防止)を実現することができる。また、第2筒部の筒部外周に設けられた漏水防止部材により他の配管における内面止水(内面からの漏水防止)を実現することができる。
その結果、一の配管から他の配管に高圧流体を流した場合であっても、流体の漏水を防止することができる。なお、上記の高圧流体の高圧とは、1MPa以上50MPa以下の範囲を示す。 In this case, a 1st cylinder part is inserted in the inside of one piping, and a 2nd cylinder part is inserted in the inside of other piping. An inner surface water stop (prevention of water leakage from the inner surface) on the inner peripheral surface of one pipe can be realized by the water leakage preventing member provided on the outer periphery of the first cylindrical portion. Moreover, the inner surface water stop (leakage prevention from an inner surface) in other piping is realizable by the water leakage prevention member provided in the cylinder part outer periphery of the 2nd cylinder part.
As a result, fluid leakage can be prevented even when a high-pressure fluid flows from one pipe to another pipe. In addition, the high pressure of said high pressure fluid shows the range of 1 Mpa or more and 50 Mpa or less.
その結果、一の配管から他の配管に高圧流体を流した場合であっても、流体の漏水を防止することができる。なお、上記の高圧流体の高圧とは、1MPa以上50MPa以下の範囲を示す。 In this case, a 1st cylinder part is inserted in the inside of one piping, and a 2nd cylinder part is inserted in the inside of other piping. An inner surface water stop (prevention of water leakage from the inner surface) on the inner peripheral surface of one pipe can be realized by the water leakage preventing member provided on the outer periphery of the first cylindrical portion. Moreover, the inner surface water stop (leakage prevention from an inner surface) in other piping is realizable by the water leakage prevention member provided in the cylinder part outer periphery of the 2nd cylinder part.
As a result, fluid leakage can be prevented even when a high-pressure fluid flows from one pipe to another pipe. In addition, the high pressure of said high pressure fluid shows the range of 1 Mpa or more and 50 Mpa or less.
(A)
本発明に係る配管継手は、一局面に従う配管継手から第11の発明のいずれかに係る配管継手であって、一の配管または他の配管の少なくとも一方において、配管継手が挿入される樹脂配管の内周面の端部に、誘導形状が形成されたものであってもよい。 (A)
A pipe joint according to the present invention is a pipe joint according to any one of the pipe joint according to one aspect to the eleventh invention, wherein the pipe joint is inserted into at least one of the one pipe or the other pipe. A guide shape may be formed at the end of the inner peripheral surface.
本発明に係る配管継手は、一局面に従う配管継手から第11の発明のいずれかに係る配管継手であって、一の配管または他の配管の少なくとも一方において、配管継手が挿入される樹脂配管の内周面の端部に、誘導形状が形成されたものであってもよい。 (A)
A pipe joint according to the present invention is a pipe joint according to any one of the pipe joint according to one aspect to the eleventh invention, wherein the pipe joint is inserted into at least one of the one pipe or the other pipe. A guide shape may be formed at the end of the inner peripheral surface.
ここで、樹脂配管は、主に押出成形により成形されるため、内径のばらつきが大きい。したがって、配管継手が挿入される樹脂配管の内周面の端部に、誘導形状が形成されていることにより、スムーズに配管継手を挿入することができる。
なお、上記の誘導形状とは、端部における内周の一部または全周において設けられた曲面または傾斜面を示す。 Here, since resin piping is mainly formed by extrusion molding, variation in inner diameter is large. Therefore, the pipe joint can be smoothly inserted by forming the guide shape at the end of the inner peripheral surface of the resin pipe into which the pipe joint is inserted.
In addition, said induction | guidance | derivation shape shows the curved surface or inclined surface provided in a part or whole periphery of the inner periphery in an edge part.
なお、上記の誘導形状とは、端部における内周の一部または全周において設けられた曲面または傾斜面を示す。 Here, since resin piping is mainly formed by extrusion molding, variation in inner diameter is large. Therefore, the pipe joint can be smoothly inserted by forming the guide shape at the end of the inner peripheral surface of the resin pipe into which the pipe joint is inserted.
In addition, said induction | guidance | derivation shape shows the curved surface or inclined surface provided in a part or whole periphery of the inner periphery in an edge part.
(14)
他の局面に従うフランジ付管体は、管体の少なくとも一方の端部に係止されてなるフランジ付管体であって、管体の端部に向かって拡大する第1の径形状を有する管体と、第1の径形状に対応する内面および、管体の端部に向かって拡大する第2の径形状を有し、周を分割する分割部材と、第2の径形状に対応する内面を有し、かつ別の管体の開口部に接続させるための環状フランジ部と、を含むものである。 (14)
A flanged tubular body according to another aspect is a flanged tubular body that is locked to at least one end of a tubular body, and has a first diameter shape that expands toward the end of the tubular body. A body, an inner surface corresponding to the first radial shape, a second radial shape that expands toward the end of the tubular body, and a dividing member that divides the circumference, and an inner surface corresponding to the second radial shape And an annular flange portion for connection to an opening of another tubular body.
他の局面に従うフランジ付管体は、管体の少なくとも一方の端部に係止されてなるフランジ付管体であって、管体の端部に向かって拡大する第1の径形状を有する管体と、第1の径形状に対応する内面および、管体の端部に向かって拡大する第2の径形状を有し、周を分割する分割部材と、第2の径形状に対応する内面を有し、かつ別の管体の開口部に接続させるための環状フランジ部と、を含むものである。 (14)
A flanged tubular body according to another aspect is a flanged tubular body that is locked to at least one end of a tubular body, and has a first diameter shape that expands toward the end of the tubular body. A body, an inner surface corresponding to the first radial shape, a second radial shape that expands toward the end of the tubular body, and a dividing member that divides the circumference, and an inner surface corresponding to the second radial shape And an annular flange portion for connection to an opening of another tubular body.
第1の径形状を有する管体は、管体の端部に向かって拡大する。周を分割する分割部材は、第1の径形状に対応する内面および、管体の端部に向かって拡大する第2の径形状を有する。環状フランジ部は、第2の径形状に対応する内面を有する。したがって、第1の径形状を有する管体の外周に分割部材が取り付けられ、分割部材の外周に環状フランジ部が取り付けられる。
The tube having the first diameter shape expands toward the end of the tube. The dividing member that divides the circumference has an inner surface corresponding to the first diameter shape and a second diameter shape that expands toward the end of the tubular body. The annular flange portion has an inner surface corresponding to the second diameter shape. Therefore, the dividing member is attached to the outer periphery of the tubular body having the first diameter shape, and the annular flange portion is attached to the outer periphery of the dividing member.
この場合、環状フランジ部を取り外すことができるので、管体の搬送時効率を高めることができる。すなわち、フランジによる管体移送時の無駄空間を排除できるので、搬送時効率を高めることができる。また、短時間の簡単な作業でフランジ付管体を形成して、効率よく他の管体に接続できる。
また、環状フランジ部は、金属、木材、樹脂など、その他任意の材質からなってもよく、さらに、高圧流体に適した材質であることが好ましい。その結果、フランジ付管体は、高圧流体を流通させることができる。 In this case, since the annular flange portion can be removed, the efficiency at the time of transporting the tubular body can be increased. That is, since the useless space at the time of transferring the tubular body by the flange can be eliminated, the efficiency at the time of conveyance can be improved. In addition, the flanged tube can be formed by a simple operation in a short time and can be efficiently connected to another tube.
Further, the annular flange portion may be made of any other material such as metal, wood, resin, etc., and is preferably made of a material suitable for high pressure fluid. As a result, the flanged tube can circulate high-pressure fluid.
また、環状フランジ部は、金属、木材、樹脂など、その他任意の材質からなってもよく、さらに、高圧流体に適した材質であることが好ましい。その結果、フランジ付管体は、高圧流体を流通させることができる。 In this case, since the annular flange portion can be removed, the efficiency at the time of transporting the tubular body can be increased. That is, since the useless space at the time of transferring the tubular body by the flange can be eliminated, the efficiency at the time of conveyance can be improved. In addition, the flanged tube can be formed by a simple operation in a short time and can be efficiently connected to another tube.
Further, the annular flange portion may be made of any other material such as metal, wood, resin, etc., and is preferably made of a material suitable for high pressure fluid. As a result, the flanged tube can circulate high-pressure fluid.
(15)
第15の発明は、上記のフランジ付管体において、第1の径形状は、端部に向かって徐々に拡大する形状からなり、分割部材の内周面には、第1の径形状に応じた第1テーパ面が形成され、第2の径形状は、端部に向かって徐々に拡大する形状からなり、環状フランジ部の内周面には、第2の径形状に応じた第2テーパ面が形成されてもよい。 (15)
In a fifteenth aspect of the present invention, in the tubular body with a flange, the first diameter shape is a shape that gradually expands toward an end portion, and the inner peripheral surface of the divided member is in accordance with the first diameter shape. The first taper surface is formed, and the second diameter shape is a shape that gradually expands toward the end portion, and a second taper corresponding to the second diameter shape is formed on the inner peripheral surface of the annular flange portion. A surface may be formed.
第15の発明は、上記のフランジ付管体において、第1の径形状は、端部に向かって徐々に拡大する形状からなり、分割部材の内周面には、第1の径形状に応じた第1テーパ面が形成され、第2の径形状は、端部に向かって徐々に拡大する形状からなり、環状フランジ部の内周面には、第2の径形状に応じた第2テーパ面が形成されてもよい。 (15)
In a fifteenth aspect of the present invention, in the tubular body with a flange, the first diameter shape is a shape that gradually expands toward an end portion, and the inner peripheral surface of the divided member is in accordance with the first diameter shape. The first taper surface is formed, and the second diameter shape is a shape that gradually expands toward the end portion, and a second taper corresponding to the second diameter shape is formed on the inner peripheral surface of the annular flange portion. A surface may be formed.
この場合、第1テーパ面が第1の径形状に摺接し、第2テーパ面が第2の径形状に摺接する。したがって、環状フランジ部を管体に容易に取り付けることができる。その結果、短時間の簡単な作業でフランジ付管体を形成して、効率よく他の管体に接続でき、さらに、管体の端部に向かって環状フランジ部を堅固に取り付けることができる。
In this case, the first taper surface is in sliding contact with the first diameter shape, and the second taper surface is in sliding contact with the second diameter shape. Therefore, the annular flange portion can be easily attached to the pipe body. As a result, it is possible to form a flanged tube body with a simple operation in a short time, and to efficiently connect it to another tube body, and to firmly attach the annular flange portion toward the end portion of the tube body.
(16)
第16の発明は、上記のフランジ付管体において、管体の延在方向(長手方向)を基準としたテーパ角度が第1テーパ面と第2テーパ面とで異なってもよい。 (16)
In a sixteenth aspect of the present invention, in the above-described flanged tubular body, the taper angle based on the extending direction (longitudinal direction) of the tubular body may be different between the first tapered surface and the second tapered surface.
第16の発明は、上記のフランジ付管体において、管体の延在方向(長手方向)を基準としたテーパ角度が第1テーパ面と第2テーパ面とで異なってもよい。 (16)
In a sixteenth aspect of the present invention, in the above-described flanged tubular body, the taper angle based on the extending direction (longitudinal direction) of the tubular body may be different between the first tapered surface and the second tapered surface.
この場合、第1テーパ面と第2テーパ面とのテーパ角度が異なるので、環状フランジ部、および管体にかかる力を分散することができ、環状フランジ部、および管体の破損を防ぐことができる。
In this case, since the taper angles of the first taper surface and the second taper surface are different, the force applied to the annular flange portion and the tubular body can be dispersed, and the annular flange portion and the tubular body can be prevented from being damaged. it can.
(17)
第17の発明は、上記のフランジ付管体において、第1テーパ面は、第2テーパ面よりも管体の延在方向(長手方向)を基準としたテーパ角が小さくてもよい。 (17)
In a seventeenth aspect of the present invention, in the above-described flanged tubular body, the first tapered surface may have a smaller taper angle with respect to the extending direction (longitudinal direction) of the tubular body than the second tapered surface.
第17の発明は、上記のフランジ付管体において、第1テーパ面は、第2テーパ面よりも管体の延在方向(長手方向)を基準としたテーパ角が小さくてもよい。 (17)
In a seventeenth aspect of the present invention, in the above-described flanged tubular body, the first tapered surface may have a smaller taper angle with respect to the extending direction (longitudinal direction) of the tubular body than the second tapered surface.
この場合、第1テーパ面は、第2テーパ面よりも管体の延在方向(長手方向)を基準としたテーパ角が小さいので、環状フランジ部、および管体にかかる力を徐々に分散することができる。
In this case, the first taper surface has a smaller taper angle with respect to the extending direction (longitudinal direction) of the tube than the second taper surface, so that the force applied to the annular flange portion and the tube is gradually dispersed. be able to.
(18)
第18の発明は、上記のフランジ付管体において、環状フランジ部には、別の管体の開口部に接続するための孔部が形成されていてもよい。 (18)
According to an eighteenth aspect of the present invention, in the tubular body with a flange, a hole for connecting to an opening of another tubular body may be formed in the annular flange portion.
第18の発明は、上記のフランジ付管体において、環状フランジ部には、別の管体の開口部に接続するための孔部が形成されていてもよい。 (18)
According to an eighteenth aspect of the present invention, in the tubular body with a flange, a hole for connecting to an opening of another tubular body may be formed in the annular flange portion.
この場合、環状フランジ部には、別の管体の開口部に接続するための孔部が形成されているので、環状フランジ部の孔部と別の管体の開口部とを連通するボルトを用いてフランジ付管体と別の管体とを接続することができる。
In this case, since the hole for connecting to the opening of another tubular body is formed in the annular flange, a bolt that communicates the hole of the annular flange and the opening of another tubular body is provided. It is possible to connect the flanged tube and another tube.
例えば、環状フランジ部に接続治具および孔部が交互に形成されもよい。一般に環状フランジ部の締結には、複数のボルトが使用され、漏洩防止のため、当該複数のボルトを均一に締め付ける必要がある。そこで、フランジローテーションを防止するため、フランジを対角上に、または段階的に締め付けトルクを上げる方法が採用されている。この場合、接続治具を本締めする際に、孔部を用いてボルトおよびナットにより仮固定を行うことができる。
For example, connecting jigs and holes may be alternately formed in the annular flange portion. Generally, a plurality of bolts are used for fastening the annular flange portion, and it is necessary to uniformly tighten the plurality of bolts in order to prevent leakage. Therefore, in order to prevent flange rotation, a method of increasing the tightening torque diagonally or stepwise is employed. In this case, when the connection jig is finally tightened, temporary fixing can be performed with a bolt and a nut using the hole.
なお、上記の第1の径形状、第2の径形状、第1テーパ面、または第2テーパ面は、管体の長手方向に切断した時のテーパ部を含む外形形状が直線形状であってもよく、曲線形状であってもよい。さらに、直線形状である場合は、テーパ面の途中でテーパ角度が変化する形状であってもよい。
The first radial shape, the second radial shape, the first taper surface, or the second taper surface has a linear shape including a tapered portion when cut in the longitudinal direction of the tubular body. It may be a curved shape. Furthermore, when it is a linear shape, the shape in which a taper angle changes in the middle of a taper surface may be sufficient.
また、テーパ部を含む外形形状が曲線形状である場合、テーパ部の基端側(最も径形状が小さい側)におけるテーパ部の外形形状の曲線の接線と管体の長手方向とのなす角度をテーパ角と呼ぶ。
さらに、上記のテーパ面の途中でテーパ角度が変化する場合、テーパ部の基端側(最も径形状が小さい側)におけるテーパ部の外形形状の直線と管体の長手方向とのなす角度をテーパ角と呼ぶ。 Further, when the outer shape including the tapered portion is a curved shape, the angle formed by the tangent of the curved shape of the outer shape of the tapered portion on the base end side (the side having the smallest diameter shape) of the tapered portion and the longitudinal direction of the tubular body is set. Called the taper angle.
Further, when the taper angle changes in the middle of the taper surface, the angle formed by the straight line of the outer shape of the taper portion on the proximal end side (the side having the smallest diameter shape) of the taper portion and the longitudinal direction of the tubular body is tapered. Called the corner.
さらに、上記のテーパ面の途中でテーパ角度が変化する場合、テーパ部の基端側(最も径形状が小さい側)におけるテーパ部の外形形状の直線と管体の長手方向とのなす角度をテーパ角と呼ぶ。 Further, when the outer shape including the tapered portion is a curved shape, the angle formed by the tangent of the curved shape of the outer shape of the tapered portion on the base end side (the side having the smallest diameter shape) of the tapered portion and the longitudinal direction of the tubular body is set. Called the taper angle.
Further, when the taper angle changes in the middle of the taper surface, the angle formed by the straight line of the outer shape of the taper portion on the proximal end side (the side having the smallest diameter shape) of the taper portion and the longitudinal direction of the tubular body is tapered. Called the corner.
(19)
他の局面に従う管体継手構造は、高圧流体を流通させる一の管体と他の管体とを継ぐ管体継手構造であって、一の管体および他の管体の少なくとも一方を形成する請求項14から請求項17のいずれか1項に記載のフランジ付管体と、一の管体と他の管体との間に設けられる管体継手と、を含み、管体継手は、一の管体の管体内部に嵌合される第1筒部と、第1筒部と連通し、かつ他の管体の管体内部に嵌合される第2筒部と、第1筒部と前記第2筒部との間に設けられたフランジ部と、第1筒部および第2筒部の筒部外周に設けられた漏水防止部材と、を有するものである。 (19)
A pipe joint structure according to another aspect is a pipe joint structure that connects one pipe body through which a high-pressure fluid flows and another pipe body, and forms at least one of the one pipe body and the other pipe body. A flanged tubular body according to any one of claims 14 to 17, and a tubular joint provided between one tubular body and another tubular body. A first tube portion fitted inside the tube body of the tube body, a second tube portion communicating with the first tube portion and fitted inside the tube body of another tube body, and the first tube portion And a flange portion provided between the first tube portion and the second tube portion, and a water leakage preventing member provided on the outer periphery of the tube portion of the first tube portion and the second tube portion.
他の局面に従う管体継手構造は、高圧流体を流通させる一の管体と他の管体とを継ぐ管体継手構造であって、一の管体および他の管体の少なくとも一方を形成する請求項14から請求項17のいずれか1項に記載のフランジ付管体と、一の管体と他の管体との間に設けられる管体継手と、を含み、管体継手は、一の管体の管体内部に嵌合される第1筒部と、第1筒部と連通し、かつ他の管体の管体内部に嵌合される第2筒部と、第1筒部と前記第2筒部との間に設けられたフランジ部と、第1筒部および第2筒部の筒部外周に設けられた漏水防止部材と、を有するものである。 (19)
A pipe joint structure according to another aspect is a pipe joint structure that connects one pipe body through which a high-pressure fluid flows and another pipe body, and forms at least one of the one pipe body and the other pipe body. A flanged tubular body according to any one of claims 14 to 17, and a tubular joint provided between one tubular body and another tubular body. A first tube portion fitted inside the tube body of the tube body, a second tube portion communicating with the first tube portion and fitted inside the tube body of another tube body, and the first tube portion And a flange portion provided between the first tube portion and the second tube portion, and a water leakage preventing member provided on the outer periphery of the tube portion of the first tube portion and the second tube portion.
この場合、一の配管から他の配管側に高圧流体を流した場合であっても、流体の漏水を防止することができる。また、環状フランジ部を取り外すことができるので、搬送等の際に、フランジ部がスペースをとらず、搬送時効率を高めることができる。
In this case, fluid leakage can be prevented even when a high-pressure fluid flows from one pipe to the other. Moreover, since an annular flange part can be removed, in the case of conveyance etc., a flange part does not take a space and can improve the efficiency at the time of conveyance.
以上のように、本発明によって、高圧流体を流通し、かつ流体の漏水を防止することができる。
As described above, according to the present invention, a high-pressure fluid can be circulated and fluid leakage can be prevented.
また、本発明によれば、環状フランジ部を取り外すことができるので、管体の搬送時効率を高めることができ、短時間の簡単な作業にて効率よくフランジ付管体を形成して、他の管体に接続することができる。
In addition, according to the present invention, since the annular flange portion can be removed, the efficiency at the time of transporting the tubular body can be increased, and the flanged tubular body can be efficiently formed by a simple operation in a short time. Can be connected to the tube.
100,100a,100b,100c 配管継手
120,130 筒部
140 フランジ板
150 孔
180 Oリング
500 樹脂配管
600 金属配管
C 傾斜面
FL 高圧流体
1100,1100a,1100b フランジ付管体
1400,1400a,1400b 環状フランジ部
1200 管体
1210 径大部
1300 分割部材
1301 第1分割部材
1302 第2分割部材
1500,1500a 配管継手
1520,1530 筒部
1540 フランジ板
1580 Oリング
TL1,TL2,TL4,TL5 テーパ面 100, 100a, 100b, 100c Piping joint 120, 130Tube portion 140 Flange plate 150 Hole 180 O-ring 500 Resin piping 600 Metal piping C Inclined surface FL High pressure fluid 1100, 1100a, 1100b Flange tube 1400, 1400a, 1400b Annular flange Part 1200 Tubing body 1210 Large diameter part 1300 Divided member 1301 First divided member 1302 Second divided member 1500, 1500a Pipe joint 1520, 1530 Tubular part 1540 Flange plate 1580 O-ring TL1, TL2, TL4, TL5 Tapered surface
120,130 筒部
140 フランジ板
150 孔
180 Oリング
500 樹脂配管
600 金属配管
C 傾斜面
FL 高圧流体
1100,1100a,1100b フランジ付管体
1400,1400a,1400b 環状フランジ部
1200 管体
1210 径大部
1300 分割部材
1301 第1分割部材
1302 第2分割部材
1500,1500a 配管継手
1520,1530 筒部
1540 フランジ板
1580 Oリング
TL1,TL2,TL4,TL5 テーパ面 100, 100a, 100b, 100c Piping joint 120, 130
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
<配管継手の全体概略>
図1は、本実施の形態に係る配管継手100の一例を示す模式的平面図であり、図2は、図1に示す配管継手100の模式的側面図であり、図3は、図1のA-A線断面の一例を示す模式的断面図である。 <Overall outline of piping joint>
FIG. 1 is a schematic plan view showing an example of a pipe joint 100 according to the present embodiment, FIG. 2 is a schematic side view of the pipe joint 100 shown in FIG. 1, and FIG. It is a typical sectional view showing an example of an AA line section.
図1は、本実施の形態に係る配管継手100の一例を示す模式的平面図であり、図2は、図1に示す配管継手100の模式的側面図であり、図3は、図1のA-A線断面の一例を示す模式的断面図である。 <Overall outline of piping joint>
FIG. 1 is a schematic plan view showing an example of a pipe joint 100 according to the present embodiment, FIG. 2 is a schematic side view of the pipe joint 100 shown in FIG. 1, and FIG. It is a typical sectional view showing an example of an AA line section.
図1および図2に示すように、配管継手100は、筒部120および筒部130の間に、フランジ板140を備える。
図1に示すように、フランジ板140には、放射状に、中心が同心円上に位置される孔150が複数設けられている。この孔150は、後述するように、樹脂配管500および金属配管600に配管継手100を固定するため、または樹脂配管500および金属配管600の軸心と配管継手100の軸心とを一致させるための位置決めの機能を有する。 As shown in FIGS. 1 and 2, the pipe joint 100 includes aflange plate 140 between the cylindrical portion 120 and the cylindrical portion 130.
As shown in FIG. 1, theflange plate 140 is provided with a plurality of holes 150 whose centers are located on concentric circles in a radial pattern. As will be described later, the hole 150 is used to fix the pipe joint 100 to the resin pipe 500 and the metal pipe 600 or to align the axis of the resin pipe 500 and the metal pipe 600 with the axis of the pipe joint 100. Has a positioning function.
図1に示すように、フランジ板140には、放射状に、中心が同心円上に位置される孔150が複数設けられている。この孔150は、後述するように、樹脂配管500および金属配管600に配管継手100を固定するため、または樹脂配管500および金属配管600の軸心と配管継手100の軸心とを一致させるための位置決めの機能を有する。 As shown in FIGS. 1 and 2, the pipe joint 100 includes a
As shown in FIG. 1, the
また、図1および図2に示すように、筒部120および筒部130は、円筒状からなる。筒部120の外周面には、凹部121が設けられる。筒部130の外周面には、凹部131が設けられる。凹部121は、筒部120の外周に沿って一周つながるように設けられる。また、凹部131は、筒部130の外周に沿って一周つながるように設けられる。
Further, as shown in FIGS. 1 and 2, the cylindrical portion 120 and the cylindrical portion 130 are formed in a cylindrical shape. A concave portion 121 is provided on the outer peripheral surface of the cylindrical portion 120. A concave portion 131 is provided on the outer peripheral surface of the cylindrical portion 130. The concave portion 121 is provided so as to be connected around the outer periphery of the cylindrical portion 120. Further, the recess 131 is provided so as to be connected around the outer periphery of the cylindrical portion 130.
<配管継手の断面>
次いで、図3に示すように、配管継手100の内部は、筒部120、フランジ板140および筒部130を貫通する孔125が形成されている。筒部120側における孔125の端部の内周面には、傾斜面Cが設けられている。
同様に、筒部130側における孔125の端部の内周面にも、傾斜面Cが設けられている。 <Cross section of piping joint>
Next, as shown in FIG. 3, ahole 125 penetrating the cylindrical portion 120, the flange plate 140, and the cylindrical portion 130 is formed inside the pipe joint 100. An inclined surface C is provided on the inner peripheral surface of the end of the hole 125 on the cylindrical portion 120 side.
Similarly, an inclined surface C is also provided on the inner peripheral surface of the end portion of thehole 125 on the cylindrical portion 130 side.
次いで、図3に示すように、配管継手100の内部は、筒部120、フランジ板140および筒部130を貫通する孔125が形成されている。筒部120側における孔125の端部の内周面には、傾斜面Cが設けられている。
同様に、筒部130側における孔125の端部の内周面にも、傾斜面Cが設けられている。 <Cross section of piping joint>
Next, as shown in FIG. 3, a
Similarly, an inclined surface C is also provided on the inner peripheral surface of the end portion of the
<Oリング取り付け>
続いて、図4は、凹部121および凹部131に、漏水防止部材であるOリング180が取り付けられた状態を示す一部拡大断面図である。 <O-ring installation>
Next, FIG. 4 is a partially enlarged cross-sectional view showing a state in which an O-ring 180 that is a water leakage prevention member is attached to the recess 121 and the recess 131.
続いて、図4は、凹部121および凹部131に、漏水防止部材であるOリング180が取り付けられた状態を示す一部拡大断面図である。 <O-ring installation>
Next, FIG. 4 is a partially enlarged cross-sectional view showing a state in which an O-
ここで、本実施の形態における配管継手100に接続される樹脂配管500および金属配管600(図5、図6参照)の呼び径が75A(A呼称)の場合、図4に示す筒部120,130の筒外径L1は、76.5mmであり、溝径L2は、68.5mmである。また、フランジ板140の外径L3は、185mmである。
Here, when the nominal diameter of the resin pipe 500 and the metal pipe 600 (see FIGS. 5 and 6) connected to the pipe joint 100 in the present embodiment is 75A (name A), the cylinder portion 120 shown in FIG. The cylinder outer diameter L1 of 130 is 76.5 mm, and the groove diameter L2 is 68.5 mm. The outer diameter L3 of the flange plate 140 is 185 mm.
また、呼び径が75A(A呼称)の場合、Oリング180のサイズは、内径64.6mmであり、断面径は5.7±0.15mm(呼び番号:P65,JIS B2401)である。図4の拡大図に示すように、0リング180のつぶししろ(L12/L13)は、20%以上30%以下の範囲であることが好ましい。
なお、本実施の形態において、実測したところ、呼び径が75A(A呼称)の場合、Oリング180のつぶししろの範囲は、23.9%から24.6%までの範囲であった。 When the nominal diameter is 75A (name A), the O-ring 180 has an inner diameter of 64.6 mm and a cross-sectional diameter of 5.7 ± 0.15 mm (reference number: P65, JIS B2401). As shown in the enlarged view of FIG. 4, the crushing margin (L12 / L13) of the 0 ring 180 is preferably in the range of 20% to 30%.
In the present embodiment, as a result of actual measurement, when the nominal diameter is 75A (name A), the range of the crushing margin of the O-ring 180 is a range from 23.9% to 24.6%.
なお、本実施の形態において、実測したところ、呼び径が75A(A呼称)の場合、Oリング180のつぶししろの範囲は、23.9%から24.6%までの範囲であった。 When the nominal diameter is 75A (name A), the O-
In the present embodiment, as a result of actual measurement, when the nominal diameter is 75A (name A), the range of the crushing margin of the O-
一方、本実施の形態における配管継手100に接続される配管500,600(図5、図6参照)の呼び径が200A(A呼称)の場合、図4に示す筒部120,130の筒外径L1は、192mmであり、溝径L2は、181.5mmである。また、フランジ板140の外径L3は、412mmである。
On the other hand, when the nominal diameter of the pipes 500 and 600 (see FIGS. 5 and 6) connected to the pipe joint 100 in the present embodiment is 200 A (name A), the cylinder portions 120 and 130 shown in FIG. The diameter L1 is 192 mm, and the groove diameter L2 is 181.5 mm. The outer diameter L3 of the flange plate 140 is 412 mm.
本実施の形態において、本実施の形態における配管継手100に接続される配管500,600(図5、図6参照)の呼び径が200A(A呼称)の場合、Oリング180のサイズは、内径179.5mmであり、断面径は8.4±0.15mm(呼び番号:P180,JIS B2401)である。また、呼び径が変化しても、図4の拡大図に示すように、0リング180のつぶししろ(L12/L13)は、20%以上30%以下の範囲であることが好ましい。
なお、本実施の形態において、実測したところ、呼び径が200A(A呼称)の場合、Oリング180のつぶししろの範囲は、21.7%から27.0%までの範囲であった。 In the present embodiment, when the nominal diameter of thepipes 500 and 600 (see FIGS. 5 and 6) connected to the pipe joint 100 in the present embodiment is 200 A (name A), the size of the O-ring 180 is the inner diameter. 179.5 mm, and the cross-sectional diameter is 8.4 ± 0.15 mm (nominal number: P180, JIS B2401). Even if the nominal diameter changes, as shown in the enlarged view of FIG. 4, it is preferable that the crushing distance (L12 / L13) of the 0-ring 180 is in the range of 20% to 30%.
In the present embodiment, as a result of actual measurement, when the nominal diameter is 200 A (name A), the crushing range of the O-ring 180 is a range from 21.7% to 27.0%.
なお、本実施の形態において、実測したところ、呼び径が200A(A呼称)の場合、Oリング180のつぶししろの範囲は、21.7%から27.0%までの範囲であった。 In the present embodiment, when the nominal diameter of the
In the present embodiment, as a result of actual measurement, when the nominal diameter is 200 A (name A), the crushing range of the O-
本実施の形態において、Oリング180は、フランジ板140の両側に2本ずつ取り付けられたが、Oリング180が取り付けられる本数はこれに限定されることなく、筒部120,130の長さ、流通する高圧流体の種類および圧力、配管継手100の構成および構成材料、Oリング180の取り付け作業性などを考慮して適宜決定されればよい。
また、フランジ板140より筒部120側および筒部130側に異なる本数が取り付けられていてもよく、例えば、Oリング180がフランジ板140より筒部120側に2本、筒部130側に1本取り付けられていてもよい。 In the present embodiment, two O-rings 180 are attached to both sides of the flange plate 140, but the number of O-rings 180 attached is not limited to this, the length of the cylindrical portions 120 and 130, It may be appropriately determined in consideration of the type and pressure of the high-pressure fluid to be circulated, the configuration and constituent materials of the pipe joint 100, the mounting workability of the O-ring 180, and the like.
Different numbers may be attached to thecylindrical portion 120 side and the cylindrical portion 130 side from the flange plate 140. For example, two O-rings 180 on the cylindrical portion 120 side from the flange plate 140 and one on the cylindrical portion 130 side. The book may be attached.
また、フランジ板140より筒部120側および筒部130側に異なる本数が取り付けられていてもよく、例えば、Oリング180がフランジ板140より筒部120側に2本、筒部130側に1本取り付けられていてもよい。 In the present embodiment, two O-
Different numbers may be attached to the
<樹脂配管500および金属配管600の取り付け>
続いて、図5は、樹脂配管500および金属配管600の間に配管継手100を取り付ける一例を示す模式的断面図であり、図6は、樹脂配管500および金属配管600の間に配管継手100を取り付けた場合の効果を説明するための模式的断面図である。 <Attachment ofresin piping 500 and metal piping 600>
5 is a schematic cross-sectional view showing an example of attaching the pipe joint 100 between theresin pipe 500 and the metal pipe 600. FIG. 6 shows the pipe joint 100 between the resin pipe 500 and the metal pipe 600. It is typical sectional drawing for demonstrating the effect at the time of attaching.
続いて、図5は、樹脂配管500および金属配管600の間に配管継手100を取り付ける一例を示す模式的断面図であり、図6は、樹脂配管500および金属配管600の間に配管継手100を取り付けた場合の効果を説明するための模式的断面図である。 <Attachment of
5 is a schematic cross-sectional view showing an example of attaching the pipe joint 100 between the
<配管継手100の全体が金属からなる場合>
例えば、配管継手100の全体が金属からなる場合、図5に示すように、配管継手100の筒部130を樹脂配管500の配管内部515に挿入する。この場合、フランジ板140と樹脂配管500のフランジ部510とを万力等の器具により挟持させることで、配管継手100の筒部130を樹脂配管500の配管内部515に容易に挿入することができる。 <When the entire piping joint 100 is made of metal>
For example, when the entire pipe joint 100 is made of metal, thetubular portion 130 of the pipe joint 100 is inserted into the pipe interior 515 of the resin pipe 500 as shown in FIG. In this case, the cylindrical part 130 of the pipe joint 100 can be easily inserted into the pipe interior 515 of the resin pipe 500 by sandwiching the flange plate 140 and the flange part 510 of the resin pipe 500 with an instrument such as a vise. .
例えば、配管継手100の全体が金属からなる場合、図5に示すように、配管継手100の筒部130を樹脂配管500の配管内部515に挿入する。この場合、フランジ板140と樹脂配管500のフランジ部510とを万力等の器具により挟持させることで、配管継手100の筒部130を樹脂配管500の配管内部515に容易に挿入することができる。 <When the entire piping joint 100 is made of metal>
For example, when the entire pipe joint 100 is made of metal, the
なお、樹脂配管500においては、製造工程が、一般的に押出成形で形成されるため、樹脂配管500の外形は規定の値で形成されるが、樹脂配管500の内径L500は、基準値に対してばらつきが多い。この場合においても、配管継手100が金属から形成されているので、容易に配管継手100を樹脂配管500の配管内部515に挿入することができる。
In the resin pipe 500, since the manufacturing process is generally formed by extrusion molding, the outer shape of the resin pipe 500 is formed with a specified value, but the inner diameter L500 of the resin pipe 500 is less than the reference value. There are many variations. Even in this case, since the pipe joint 100 is made of metal, the pipe joint 100 can be easily inserted into the pipe interior 515 of the resin pipe 500.
一方、配管継手100の筒部120を金属配管600の配管内部615に挿入する。この場合、既に樹脂配管500のフランジ部510および配管継手100のフランジ板140が一体になっているので、金属配管600のフランジ部610とフランジ板140とを万力等の器具により挟持することで、容易に配管継手100を金属配管600の配管内部615に挿入し、取り付けることができる。
On the other hand, the cylinder part 120 of the pipe joint 100 is inserted into the pipe interior 615 of the metal pipe 600. In this case, since the flange portion 510 of the resin pipe 500 and the flange plate 140 of the pipe joint 100 are already integrated, the flange portion 610 of the metal pipe 600 and the flange plate 140 are sandwiched by a device such as a vise. The pipe joint 100 can be easily inserted into the pipe interior 615 of the metal pipe 600 and attached.
続いて、図5に示すように、ボルトBを樹脂配管500のフランジ部510の固定孔、フランジ板140の孔150、金属配管600のフランジ部610の固定孔を貫通させ、ナットNで固定する。本実施の形態においては、8本のボルトBおよびナットNにより固定を行う。
Subsequently, as shown in FIG. 5, the bolt B is passed through the fixing hole of the flange portion 510 of the resin pipe 500, the hole 150 of the flange plate 140, and the fixing hole of the flange portion 610 of the metal pipe 600 and fixed with the nut N. . In the present embodiment, fixing is performed with eight bolts B and nuts N.
その結果、図6に示すように、配管継手100は、樹脂配管500および金属配管600の間に的確に取り付けられる。
また、上記の実施の形態において説明を行った金属とは、例えば、青銅鋳物(BC6,BC6C)、黄銅鋳物(YBsC3)、改削黄銅引抜棒(押出棒)(C3604BD(BE))、鋳造用黄銅引抜棒(押出棒)(C3771BD(BE))、りん脱酸銅管(C1220T)、銅合金素地上のクロムメッキ(BCrM)、銅合金素地上のニッケルメッキ(BNM)、ネズミ鋳鉄品(FC)、ダクタイル鋳鉄(FCD)、可鍛鋳鉄(FCMB)、炭素工具鋼(SK)、ステンレス(18Cr-8Ni)(SUS304)、ステンレス(18Cr-12Ni-MO)(SUS316)、ステンレス(18Cr-12Ni-MO極低C)(SUS316L)、アルミニウム合金ダイカスト(ADC)または亜鉛合金ダイカスト(ZDC)等、これらの積層管、複合管など任意の材質と構成を選択することができる。さらに、これらの金属にはメッキ等の防錆処理、塗装を行ってもよい。 As a result, as shown in FIG. 6, the pipe joint 100 is accurately attached between theresin pipe 500 and the metal pipe 600.
The metal described in the above embodiment is, for example, bronze casting (BC6, BC6C), brass casting (YBsC3), modified brass drawing rod (extruded rod) (C3604BD (BE)), for casting Brass drawn rod (extruded rod) (C3771BD (BE)), phosphorous deoxidized copper tube (C1220T), chromium plating on copper alloy substrate (BCrM), nickel plating on copper alloy substrate (BNM), gray cast iron product (FC) ), Ductile cast iron (FCD), malleable cast iron (FCMB), carbon tool steel (SK), stainless steel (18Cr-8Ni) (SUS304), stainless steel (18Cr-12Ni-MO) (SUS316), stainless steel (18Cr-12Ni-) MO ultra low C) (SUS316L), aluminum alloy die casting (ADC), zinc alloy die casting (ZDC), etc. Laminated tube, it is possible to select the configuration and any material such as a composite tube. Furthermore, these metals may be subjected to rust prevention treatment such as plating or painting.
また、上記の実施の形態において説明を行った金属とは、例えば、青銅鋳物(BC6,BC6C)、黄銅鋳物(YBsC3)、改削黄銅引抜棒(押出棒)(C3604BD(BE))、鋳造用黄銅引抜棒(押出棒)(C3771BD(BE))、りん脱酸銅管(C1220T)、銅合金素地上のクロムメッキ(BCrM)、銅合金素地上のニッケルメッキ(BNM)、ネズミ鋳鉄品(FC)、ダクタイル鋳鉄(FCD)、可鍛鋳鉄(FCMB)、炭素工具鋼(SK)、ステンレス(18Cr-8Ni)(SUS304)、ステンレス(18Cr-12Ni-MO)(SUS316)、ステンレス(18Cr-12Ni-MO極低C)(SUS316L)、アルミニウム合金ダイカスト(ADC)または亜鉛合金ダイカスト(ZDC)等、これらの積層管、複合管など任意の材質と構成を選択することができる。さらに、これらの金属にはメッキ等の防錆処理、塗装を行ってもよい。 As a result, as shown in FIG. 6, the pipe joint 100 is accurately attached between the
The metal described in the above embodiment is, for example, bronze casting (BC6, BC6C), brass casting (YBsC3), modified brass drawing rod (extruded rod) (C3604BD (BE)), for casting Brass drawn rod (extruded rod) (C3771BD (BE)), phosphorous deoxidized copper tube (C1220T), chromium plating on copper alloy substrate (BCrM), nickel plating on copper alloy substrate (BNM), gray cast iron product (FC) ), Ductile cast iron (FCD), malleable cast iron (FCMB), carbon tool steel (SK), stainless steel (18Cr-8Ni) (SUS304), stainless steel (18Cr-12Ni-MO) (SUS316), stainless steel (18Cr-12Ni-) MO ultra low C) (SUS316L), aluminum alloy die casting (ADC), zinc alloy die casting (ZDC), etc. Laminated tube, it is possible to select the configuration and any material such as a composite tube. Furthermore, these metals may be subjected to rust prevention treatment such as plating or painting.
図6に示すように、例えば、樹脂配管500から金属配管600の方向に高圧流体FLが流される場合、配管継手100の傾斜面Cは、配管継手100を通過する高圧流体FLの状態を層流状態に維持する働きを有する。
As shown in FIG. 6, for example, when the high-pressure fluid FL is caused to flow from the resin pipe 500 to the metal pipe 600, the inclined surface C of the pipe joint 100 causes the state of the high-pressure fluid FL passing through the pipe joint 100 to be a laminar flow. Has the function of maintaining the state.
<配管継手の筒部120,130のみが樹脂からなる場合>
また、配管継手100の筒部120,130が樹脂からなる場合、筒部120,130の厚みは、耐圧の観点から3mm以上15mm以下の範囲であることが望ましく、3mm以上10mm以下の範囲であることがさらに望ましい。
厚みが3mmより小さければ、強度及び剛性が不足し、筒部120,130が破壊してしまう虞がある。また、厚みが、15mmより大きければ、樹脂配管500の配管内部515に筒部130を挿入した場合、または金属配管600の配管内部615に筒部120を挿入した場合に、配管内部の縮径が著しくなり、高圧流体FLの流動抵抗が増大して流れを阻害する虞がある。
また、図6の拡大図に示すように、筒部120,130の高圧流体FLの圧力が高圧力の場合、高圧流体FLが傾斜面Cに対して力FSを発生させるとともに、配管継手100の孔125を外周方向へ押す力FVを発生させる。 <When only the pipe joints 120 and 130 are made of resin>
Moreover, when the cylinder parts 120 and 130 of the pipe joint 100 are made of resin, the thickness of the cylinder parts 120 and 130 is preferably in the range of 3 mm to 15 mm from the viewpoint of pressure resistance, and is in the range of 3 mm to 10 mm. More desirable.
If the thickness is less than 3 mm, the strength and rigidity are insufficient, and the cylindrical portions 120 and 130 may be destroyed. Further, if the thickness is greater than 15 mm, when the cylinder part 130 is inserted into the pipe inside 515 of the resin pipe 500 or when the cylinder part 120 is inserted into the pipe inside 615 of the metal pipe 600, the reduced diameter inside the pipe is reduced. There is a risk that the flow resistance of the high-pressure fluid FL increases and the flow is hindered.
As shown in the enlarged view of FIG. 6, when the pressure of the high-pressure fluid FL in the cylindrical portions 120 and 130 is high, the high-pressure fluid FL generates a force FS against the inclined surface C and the pipe joint 100 A force FV that pushes the hole 125 in the outer circumferential direction is generated.
また、配管継手100の筒部120,130が樹脂からなる場合、筒部120,130の厚みは、耐圧の観点から3mm以上15mm以下の範囲であることが望ましく、3mm以上10mm以下の範囲であることがさらに望ましい。
厚みが3mmより小さければ、強度及び剛性が不足し、筒部120,130が破壊してしまう虞がある。また、厚みが、15mmより大きければ、樹脂配管500の配管内部515に筒部130を挿入した場合、または金属配管600の配管内部615に筒部120を挿入した場合に、配管内部の縮径が著しくなり、高圧流体FLの流動抵抗が増大して流れを阻害する虞がある。
また、図6の拡大図に示すように、筒部120,130の高圧流体FLの圧力が高圧力の場合、高圧流体FLが傾斜面Cに対して力FSを発生させるとともに、配管継手100の孔125を外周方向へ押す力FVを発生させる。 <When only the pipe joints 120 and 130 are made of resin>
Moreover, when the
If the thickness is less than 3 mm, the strength and rigidity are insufficient, and the
As shown in the enlarged view of FIG. 6, when the pressure of the high-pressure fluid FL in the
その結果、力FVによりOリング180が樹脂配管500の配管内部515および金属配管600の配管内部615に押し付けられる。その結果、高圧の高圧流体FLを流す場合であっても、配管継手100の継ぐ近傍から漏水することを防止できる。
As a result, the O-ring 180 is pressed against the pipe inside 515 of the resin pipe 500 and the pipe inside 615 of the metal pipe 600 by the force FV. As a result, even when a high-pressure high-pressure fluid FL is flowed, it is possible to prevent water from leaking from the vicinity where the pipe joint 100 is joined.
<配管継手が樹脂の場合>
また、配管継手100の全体が樹脂からなる場合には、筒部120,130の厚みは、耐圧の観点から5mm以上15mm以下の範囲であることが望ましく、フランジ板140の厚みは、耐圧面から5mm以上20mm以下の範囲であることが望ましい。筒部120,130の厚みが5mmより小さければ、強度及び剛性が不足し、全体が樹脂からなる配管継手100が破壊してしまう虞がある。 <When piping joint is resin>
When the entire pipe joint 100 is made of resin, the thickness of the cylindrical portions 120 and 130 is desirably in the range of 5 mm to 15 mm from the viewpoint of pressure resistance, and the thickness of the flange plate 140 is from the pressure resistant surface. A range of 5 mm or more and 20 mm or less is desirable. If the thickness of the cylindrical portions 120 and 130 is smaller than 5 mm, the strength and rigidity are insufficient, and the piping joint 100 made entirely of resin may be destroyed.
また、配管継手100の全体が樹脂からなる場合には、筒部120,130の厚みは、耐圧の観点から5mm以上15mm以下の範囲であることが望ましく、フランジ板140の厚みは、耐圧面から5mm以上20mm以下の範囲であることが望ましい。筒部120,130の厚みが5mmより小さければ、強度及び剛性が不足し、全体が樹脂からなる配管継手100が破壊してしまう虞がある。 <When piping joint is resin>
When the entire pipe joint 100 is made of resin, the thickness of the
また、筒部120,130の厚みが15mmより大きければ、樹脂配管500の配管内部515に筒部130を挿入した場合、または金属配管600の配管内部615に筒部120を挿入した場合に、配管内部の縮径が著しくなり、高圧流体FLの流動抵抗が増大して流れを阻害する虞がある。
また、フランジ板140の厚みが5mmより小さければ、強度及び剛性が不足し、フランジ板140が破壊してしまう虞がある。
フランジ板140の厚みが20mmより大きければ、樹脂の厚みが大きくなり、収縮などにより寸法狂いが生じやすくなる虞がある。 In addition, if the thickness of the cylinder portions 120 and 130 is greater than 15 mm, the pipe portion 130 is inserted when the cylinder portion 130 is inserted into the pipe inside 515 of the resin pipe 500 or when the cylinder portion 120 is inserted into the pipe inside 615 of the metal pipe 600. There is a possibility that the internal diameter is significantly reduced, and the flow resistance of the high-pressure fluid FL is increased to hinder the flow.
Further, if the thickness of theflange plate 140 is smaller than 5 mm, the strength and rigidity are insufficient, and the flange plate 140 may be destroyed.
If the thickness of theflange plate 140 is greater than 20 mm, the thickness of the resin increases, and there is a risk that dimensional deviation is likely to occur due to shrinkage or the like.
また、フランジ板140の厚みが5mmより小さければ、強度及び剛性が不足し、フランジ板140が破壊してしまう虞がある。
フランジ板140の厚みが20mmより大きければ、樹脂の厚みが大きくなり、収縮などにより寸法狂いが生じやすくなる虞がある。 In addition, if the thickness of the
Further, if the thickness of the
If the thickness of the
また、図6の拡大図に示すように、筒部120,130の高圧流体FLの圧力が高圧力の場合、高圧流体FLが傾斜面Cに対して力FSを発生させるとともに、配管継手100の孔125を外周方向へ押す力FVを発生させる。
As shown in the enlarged view of FIG. 6, when the pressure of the high-pressure fluid FL in the cylindrical portions 120 and 130 is high, the high-pressure fluid FL generates a force FS against the inclined surface C and the pipe joint 100 A force FV that pushes the hole 125 in the outer circumferential direction is generated.
その結果、力FVによりOリング180が樹脂配管500の配管内部515および金属配管600の配管内部615に押し付けられる。その結果、高圧の高圧流体FLを流す場合であっても、配管継手100の継ぐ近傍から漏水することを防止できる。
As a result, the O-ring 180 is pressed against the pipe inside 515 of the resin pipe 500 and the pipe inside 615 of the metal pipe 600 by the force FV. As a result, even when a high-pressure high-pressure fluid FL is flowed, it is possible to prevent water from leaking from the vicinity where the pipe joint 100 is joined.
なお、上記の実施の形態において説明を行った樹脂としては、例えば、硬質塩化ビニル樹脂(ポリ塩化ビニル:PVC)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、アクリロニトリル・スチレン樹脂(AS)、エポキシ樹脂(EP)、メラミン樹脂(MF)、ポリカーボネート樹脂(PC)、三弗化エチレン樹脂(PCTFE)、ポリエチレン樹脂(PE)、メタクリル樹脂(アクリル樹脂:PMMA)、アセタール樹脂(POM)、ポリプロピレン樹脂(PP)、ポリスチレン樹脂(PS)、四弗化エチレン樹脂(PTFE)、ポリウレタン樹脂(PUR)またはポリ酢酸ビニル樹脂(PVAC)等の合成樹脂管、繊維強化プラスチック(FRP)、これらの積層管、複合管など任意の材質と構成を選択することができる。
Examples of the resin described in the above embodiment include hard vinyl chloride resin (polyvinyl chloride: PVC), acrylonitrile / butadiene / styrene resin (ABS), acrylonitrile / styrene resin (AS), and epoxy resin. (EP), melamine resin (MF), polycarbonate resin (PC), ethylene trifluoride resin (PCTFE), polyethylene resin (PE), methacrylic resin (acrylic resin: PMMA), acetal resin (POM), polypropylene resin (PP ), Polystyrene resin (PS), tetrafluoroethylene resin (PTFE), polyurethane resin (PUR) or polyvinyl acetate resin (PVAC), etc., fiber reinforced plastic (FRP), laminated tubes of these, composite tubes Any material and configuration can be selected .
(他の例)
また、図7は、図5に示した樹脂配管500および金属配管600の間に配管継手100を取り付ける他の例を示す模式的断面図である。他の例においては、図5に示した樹脂配管500の代わりに樹脂配管500aを用いる。その他は、図5と同じである。 (Other examples)
FIG. 7 is a schematic cross-sectional view showing another example in which the pipe joint 100 is attached between theresin pipe 500 and the metal pipe 600 shown in FIG. In another example, a resin pipe 500a is used instead of the resin pipe 500 shown in FIG. Others are the same as FIG.
また、図7は、図5に示した樹脂配管500および金属配管600の間に配管継手100を取り付ける他の例を示す模式的断面図である。他の例においては、図5に示した樹脂配管500の代わりに樹脂配管500aを用いる。その他は、図5と同じである。 (Other examples)
FIG. 7 is a schematic cross-sectional view showing another example in which the pipe joint 100 is attached between the
図7に示すように、樹脂配管500aは、配管継手100が挿入し易いように、誘導部550が設けられている。誘導部550は、配管継手100が挿入し易いように、樹脂配管500aの内周端部に傾斜面Dが形成されている。
その結果、押出成形による内径L500のばらつきが生じた場合であっても、樹脂配管500aの内周面の端部に傾斜面Dが形成されているので、配管継手100を容易に挿入することができる。
なお、誘導部550は、傾斜面Dを例示で説明したが、これに限定されず、R形状、曲面、その他の誘導形状のいずれであってもよく、配管内部515の内周端部全体、または内周端部の一部に設けられていてもよい。 As shown in FIG. 7, theresin pipe 500 a is provided with a guide portion 550 so that the pipe joint 100 can be easily inserted. The guide portion 550 has an inclined surface D formed at the inner peripheral end of the resin pipe 500a so that the pipe joint 100 can be easily inserted.
As a result, even when the inner diameter L500 varies due to extrusion, the pipe joint 100 can be easily inserted because the inclined surface D is formed at the end of the inner peripheral surface of theresin pipe 500a. it can.
In addition, although theguide part 550 demonstrated the inclined surface D by the example, it is not limited to this, Any of R shape, a curved surface, and another induction | guidance | derivation shape may be sufficient, The inner peripheral edge part whole piping inside 515, Or you may provide in a part of inner peripheral edge part.
その結果、押出成形による内径L500のばらつきが生じた場合であっても、樹脂配管500aの内周面の端部に傾斜面Dが形成されているので、配管継手100を容易に挿入することができる。
なお、誘導部550は、傾斜面Dを例示で説明したが、これに限定されず、R形状、曲面、その他の誘導形状のいずれであってもよく、配管内部515の内周端部全体、または内周端部の一部に設けられていてもよい。 As shown in FIG. 7, the
As a result, even when the inner diameter L500 varies due to extrusion, the pipe joint 100 can be easily inserted because the inclined surface D is formed at the end of the inner peripheral surface of the
In addition, although the
(配管継手構造)
図8は、他の例の樹脂配管を用いた配管継手構造を示す模式的断面図である。 (Piping joint structure)
FIG. 8 is a schematic cross-sectional view showing a pipe joint structure using a resin pipe of another example.
図8は、他の例の樹脂配管を用いた配管継手構造を示す模式的断面図である。 (Piping joint structure)
FIG. 8 is a schematic cross-sectional view showing a pipe joint structure using a resin pipe of another example.
図8に示すように、樹脂配管500,500aの代わりに、樹脂配管500bを用いてもよい。樹脂配管500bは、管体511、中子部材560およびフランジ継手570とからなる。
また、管体511の端部には、管体511の外径が徐々に大きくなる径大部511bが形成されている。径大部511bの外周は、テーパー面からなる。また、当該テーパー面に外接して、中子部材560が設けられる。中子部材560は、複数の部材の同じ形状からなる。フランジ継手570は、円筒状の短管の外周面に環状のフランジ部が一体に設けられた形状を有する。短管の内周面には、中子部材560の外周面形状のテーパー面に応じた内周面形状のテーパー面が形成される。 As shown in FIG. 8, aresin pipe 500b may be used instead of the resin pipes 500 and 500a. The resin pipe 500b includes a pipe body 511, a core member 560, and a flange joint 570.
Further, a large-diameter portion 511 b where the outer diameter of the tube body 511 gradually increases is formed at the end of the tube body 511. The outer periphery of the large diameter portion 511b is a tapered surface. Further, acore member 560 is provided so as to circumscribe the tapered surface. The core member 560 has the same shape of a plurality of members. The flange joint 570 has a shape in which an annular flange portion is integrally provided on the outer peripheral surface of a cylindrical short pipe. A tapered surface having an inner peripheral surface shape corresponding to the tapered surface having the outer peripheral surface shape of the core member 560 is formed on the inner peripheral surface of the short pipe.
また、管体511の端部には、管体511の外径が徐々に大きくなる径大部511bが形成されている。径大部511bの外周は、テーパー面からなる。また、当該テーパー面に外接して、中子部材560が設けられる。中子部材560は、複数の部材の同じ形状からなる。フランジ継手570は、円筒状の短管の外周面に環状のフランジ部が一体に設けられた形状を有する。短管の内周面には、中子部材560の外周面形状のテーパー面に応じた内周面形状のテーパー面が形成される。 As shown in FIG. 8, a
Further, a large-diameter portion 511 b where the outer diameter of the tube body 511 gradually increases is formed at the end of the tube body 511. The outer periphery of the large diameter portion 511b is a tapered surface. Further, a
樹脂配管500bを用いることにより、フランジ部であるフランジ継手570を取り外すことができるので、輸送効率を高めることができる。すなわち、フランジの突出部分が取り外せるので、樹脂配管500bを密に積載することができる。さらに、配管継手100を用いることで、高圧流体FLの漏水を防止することができる。
Since the flange joint 570 which is a flange part can be removed by using the resin piping 500b, transportation efficiency can be improved. That is, since the protruding portion of the flange can be removed, the resin piping 500b can be densely loaded. Furthermore, the use of the pipe joint 100 can prevent water leakage of the high-pressure fluid FL.
(さらに他の例)
続いて、図9および図10は、配管継手100の他の例を示す模式的平面図であり、図11は、配管継手100の他の例を示す模式的側面図であり、図12は、配管継手100の他の例を示す模式的断面図である。 (Still other examples)
9 and 10 are schematic plan views showing other examples of the pipe joint 100, FIG. 11 is a schematic side view showing another example of the pipe joint 100, and FIG. 6 is a schematic cross-sectional view showing another example of thepipe joint 100. FIG.
続いて、図9および図10は、配管継手100の他の例を示す模式的平面図であり、図11は、配管継手100の他の例を示す模式的側面図であり、図12は、配管継手100の他の例を示す模式的断面図である。 (Still other examples)
9 and 10 are schematic plan views showing other examples of the pipe joint 100, FIG. 11 is a schematic side view showing another example of the pipe joint 100, and FIG. 6 is a schematic cross-sectional view showing another example of the
図9は配管継手100の一方から視認した平面を示し、図10は配管継手100の一方の面の裏面側から視認した平面を示す。また、図11は、図9および図10の模式的側面を示し、図12は、図9および図10のB-B線断面を示す。
9 shows a plane viewed from one side of the pipe joint 100, and FIG. 10 shows a plane viewed from the back side of one side of the pipe joint 100. FIG. 11 shows a schematic side view of FIGS. 9 and 10, and FIG. 12 shows a cross section taken along the line BB of FIGS.
まず、図9,10,11に示すように、配管継手100aは、筒部120aおよび筒部130aの間にフランジ板140aを備える。
図9に示すように、フランジ板140aの表面側には、放射状に、中心が同心円上に位置される穴151が複数設けられている。この穴151は、後述するように、配管500および配管600に配管継手100を固定するため、タップにより溝が設けられた穴からなる。
また、図10に示すように、フランジ板140aの裏面側には、放射状に、中心が同心円上に位置される穴152が複数設けられている。穴152は、穴151と相対位置が異なるように、形成されている。
なお、配管継手100と同様に、穴151,152は、配管500および配管600の軸心と配管継手100aの軸心とを一致させるための位置決めの機能を有する。 First, as shown in FIGS. 9, 10, and 11, the pipe joint 100a includes aflange plate 140a between the cylindrical portion 120a and the cylindrical portion 130a.
As shown in FIG. 9, a plurality ofholes 151 whose centers are located concentrically are provided radially on the surface side of the flange plate 140a. As will be described later, the hole 151 includes a hole provided with a tap to fix the pipe joint 100 to the pipe 500 and the pipe 600.
As shown in FIG. 10, a plurality ofholes 152 whose centers are located concentrically are provided radially on the back side of the flange plate 140a. The hole 152 is formed so as to have a relative position different from that of the hole 151.
As with the pipe joint 100, the holes 151 and 152 have a positioning function for aligning the axis of the pipe 500 and the pipe 600 with the axis of the pipe joint 100a.
図9に示すように、フランジ板140aの表面側には、放射状に、中心が同心円上に位置される穴151が複数設けられている。この穴151は、後述するように、配管500および配管600に配管継手100を固定するため、タップにより溝が設けられた穴からなる。
また、図10に示すように、フランジ板140aの裏面側には、放射状に、中心が同心円上に位置される穴152が複数設けられている。穴152は、穴151と相対位置が異なるように、形成されている。
なお、配管継手100と同様に、穴151,152は、配管500および配管600の軸心と配管継手100aの軸心とを一致させるための位置決めの機能を有する。 First, as shown in FIGS. 9, 10, and 11, the pipe joint 100a includes a
As shown in FIG. 9, a plurality of
As shown in FIG. 10, a plurality of
As with the pipe joint 100, the
また、図11に示すように、筒部120aおよび筒部130aは、円筒状からなる。筒部120aの外周面には、凹部121aが設けられる。筒部130aの外周面には、凹部131aが設けられる。凹部121aは、筒部120aの外周に沿って一周つながるように設けられる。また、凹部131aは、筒部130aの外周に沿って一周つながるように設けられる。
Moreover, as shown in FIG. 11, the cylinder part 120a and the cylinder part 130a consist of a cylindrical shape. A concave portion 121a is provided on the outer peripheral surface of the cylindrical portion 120a. A concave portion 131a is provided on the outer peripheral surface of the cylindrical portion 130a. The concave portion 121a is provided so as to be connected around the outer periphery of the cylindrical portion 120a. Moreover, the recessed part 131a is provided so that one round may be connected along the outer periphery of the cylinder part 130a.
さらに、他の例における配管継手100aは、配管継手100と異なり、筒部120aおよび筒部130aの外径が異なる。筒部120aは、直径L22からなり、筒部130aは、直径L33(L22<L33)からなる。
Further, the pipe joint 100a in another example is different from the pipe joint 100 in that the outer diameters of the cylinder part 120a and the cylinder part 130a are different. The cylinder part 120a is made of a diameter L22, and the cylinder part 130a is made of a diameter L33 (L22 <L33).
<配管継手の断面>
次いで、図12は、配管継手100aのB-B線断面を示す模式的断面図である。
図12に示すように、配管継手100aの内部は、筒部120a、フランジ板140aおよび筒部130aを貫通する孔125aが形成されている。 <Cross section of piping joint>
Next, FIG. 12 is a schematic cross-sectional view showing a cross section taken along line BB of the pipe joint 100a.
As shown in FIG. 12, the pipe joint 100a has acylindrical portion 120a, a flange plate 140a, and a hole 125a penetrating the cylindrical portion 130a.
次いで、図12は、配管継手100aのB-B線断面を示す模式的断面図である。
図12に示すように、配管継手100aの内部は、筒部120a、フランジ板140aおよび筒部130aを貫通する孔125aが形成されている。 <Cross section of piping joint>
Next, FIG. 12 is a schematic cross-sectional view showing a cross section taken along line BB of the pipe joint 100a.
As shown in FIG. 12, the pipe joint 100a has a
筒部120a側における孔125aの端部の内周面、および筒部130a側における孔125aの端部の内周面には、傾斜面Cが設けられている。
また、配管継手100と異なり、配管継手100aの孔125aは、筒部130a側から筒部120a側へ内径が小さくなる筒形状からなる。
図12に示すように、配管継手100aの筒部130a側の孔125aは、直径L33aからなり、筒部120a側の孔125aは、内径L22a(L22a<L33a)からなる。 An inclined surface C is provided on the inner peripheral surface of the end portion of thehole 125a on the cylindrical portion 120a side and the inner peripheral surface of the end portion of the hole 125a on the cylindrical portion 130a side.
Further, unlike the pipe joint 100, thehole 125a of the pipe joint 100a has a cylindrical shape whose inner diameter decreases from the cylinder part 130a side to the cylinder part 120a side.
As shown in FIG. 12, thehole 125a on the cylinder part 130a side of the pipe joint 100a is made of a diameter L33a, and the hole 125a on the cylinder part 120a side is made of an inner diameter L22a (L22a <L33a).
また、配管継手100と異なり、配管継手100aの孔125aは、筒部130a側から筒部120a側へ内径が小さくなる筒形状からなる。
図12に示すように、配管継手100aの筒部130a側の孔125aは、直径L33aからなり、筒部120a側の孔125aは、内径L22a(L22a<L33a)からなる。 An inclined surface C is provided on the inner peripheral surface of the end portion of the
Further, unlike the pipe joint 100, the
As shown in FIG. 12, the
また、穴151の内面には、タップにより形成された溝が設けられており、穴152の内面にもタップにより形成された溝が設けられている。
また、本例においては、穴151,152は、フランジ板140aを貫通することなく形成される。
なお、穴151,152は、樹脂配管500,金属配管600の取り付けに問題がなければ、穴151,152を貫通孔として設けてもよい。 A groove formed by a tap is provided on the inner surface of thehole 151, and a groove formed by a tap is also provided on the inner surface of the hole 152.
Moreover, in this example, the holes 151 and 152 are formed without penetrating the flange plate 140a.
The holes 151 and 152 may be provided as through holes as long as there is no problem in mounting the resin pipe 500 and the metal pipe 600.
また、本例においては、穴151,152は、フランジ板140aを貫通することなく形成される。
なお、穴151,152は、樹脂配管500,金属配管600の取り付けに問題がなければ、穴151,152を貫通孔として設けてもよい。 A groove formed by a tap is provided on the inner surface of the
Moreover, in this example, the
The
<樹脂配管500aおよび金属配管600の取り付け>
続いて、図13は、樹脂配管500aおよび金属配管600の間に配管継手100aを取り付ける一例を示す模式的断面図であり、図14は、樹脂配管500aおよび金属配管600の間に配管継手100aを取り付けた状態を説明するための模式的断面図である。 <Installation ofresin piping 500a and metal piping 600>
Next, FIG. 13 is a schematic cross-sectional view showing an example of attaching the pipe joint 100a between theresin pipe 500a and the metal pipe 600. FIG. 14 shows the pipe joint 100a between the resin pipe 500a and the metal pipe 600. It is typical sectional drawing for demonstrating the attached state.
続いて、図13は、樹脂配管500aおよび金属配管600の間に配管継手100aを取り付ける一例を示す模式的断面図であり、図14は、樹脂配管500aおよび金属配管600の間に配管継手100aを取り付けた状態を説明するための模式的断面図である。 <Installation of
Next, FIG. 13 is a schematic cross-sectional view showing an example of attaching the pipe joint 100a between the
図13に示すように、金属配管600は、配管継手100aの筒部120aの外径L22aに対応した内径からなる。
金属配管600に設けられたフランジ部610に形成された孔にボルトBを貫通させ、ボルトBの端部が、配管継手100aのフランジ板140aに形成されたタップにより溝が形成された穴151に固定される。
また、樹脂配管500aは、配管継手100aの筒部130aの外径L33aに対応した内径からなる。
樹脂配管500aに設けられたフランジ部510に形成された孔にボルトBを貫通させ、ボルトBの端部が、配管継手100aのフランジ板140aに形成されたタップにより溝が形成された穴152に固定される。 As shown in FIG. 13, themetal pipe 600 has an inner diameter corresponding to the outer diameter L22a of the cylindrical portion 120a of the pipe joint 100a.
Bolts B are passed through holes formed in theflange portion 610 provided in the metal pipe 600, and the end portions of the bolts B are formed into holes 151 in which grooves are formed by taps formed on the flange plate 140a of the pipe joint 100a. Fixed.
Theresin pipe 500a has an inner diameter corresponding to the outer diameter L33a of the tubular portion 130a of the pipe joint 100a.
Bolts B are passed through holes formed in theflange portion 510 provided in the resin pipe 500a, and the ends of the bolts B are formed into holes 152 in which grooves are formed by taps formed on the flange plate 140a of the pipe joint 100a. Fixed.
金属配管600に設けられたフランジ部610に形成された孔にボルトBを貫通させ、ボルトBの端部が、配管継手100aのフランジ板140aに形成されたタップにより溝が形成された穴151に固定される。
また、樹脂配管500aは、配管継手100aの筒部130aの外径L33aに対応した内径からなる。
樹脂配管500aに設けられたフランジ部510に形成された孔にボルトBを貫通させ、ボルトBの端部が、配管継手100aのフランジ板140aに形成されたタップにより溝が形成された穴152に固定される。 As shown in FIG. 13, the
Bolts B are passed through holes formed in the
The
Bolts B are passed through holes formed in the
その結果、図14に示すように、樹脂配管500aおよび金属配管600に配管継手100aが取り付けられる。この場合、樹脂配管500aおよび金属配管600の内径が異なる場合であっても、容易に接続でき、高圧流体を流通させることができる。
また、タップにより溝が形成された穴151,152を設けることにより、ナットが不要となるので、作業効率を高めることができる。 As a result, as shown in FIG. 14, the pipe joint 100 a is attached to theresin pipe 500 a and the metal pipe 600. In this case, even if the resin pipe 500a and the metal pipe 600 have different inner diameters, they can be easily connected and a high-pressure fluid can be circulated.
Further, by providing the holes 151 and 152 in which grooves are formed by taps, nuts are not necessary, so that work efficiency can be improved.
また、タップにより溝が形成された穴151,152を設けることにより、ナットが不要となるので、作業効率を高めることができる。 As a result, as shown in FIG. 14, the pipe joint 100 a is attached to the
Further, by providing the
次に、図15は、樹脂配管500aおよび樹脂配管500bの間に配管継手100aを取り付けた状態を説明するための模式的断面図である。
図15に示すように、樹脂配管500a,500bの間に配管継手100aを容易に取り付けることができる。また、図示していないが、樹脂配管500a,500bの代わりに、金属配管600と金属配管600との間に配管継手100aを設けてもよい。 Next, FIG. 15 is a schematic cross-sectional view for explaining a state in which the pipe joint 100a is attached between theresin pipe 500a and the resin pipe 500b.
As shown in FIG. 15, the pipe joint 100a can be easily attached between the resin pipes 500a and 500b. Although not shown, a pipe joint 100a may be provided between the metal pipe 600 and the metal pipe 600 instead of the resin pipes 500a and 500b.
図15に示すように、樹脂配管500a,500bの間に配管継手100aを容易に取り付けることができる。また、図示していないが、樹脂配管500a,500bの代わりに、金属配管600と金属配管600との間に配管継手100aを設けてもよい。 Next, FIG. 15 is a schematic cross-sectional view for explaining a state in which the pipe joint 100a is attached between the
As shown in FIG. 15, the pipe joint 100a can be easily attached between the
(さらに他の例)
次に、配管継手100aの他の例について説明を行う。図16および図17は、配管継手100aのさらに他の例を説明するための模式的断面図である。 (Still other examples)
Next, another example of the pipe joint 100a will be described. 16 and 17 are schematic cross-sectional views for explaining still another example of the pipe joint 100a.
次に、配管継手100aの他の例について説明を行う。図16および図17は、配管継手100aのさらに他の例を説明するための模式的断面図である。 (Still other examples)
Next, another example of the pipe joint 100a will be described. 16 and 17 are schematic cross-sectional views for explaining still another example of the pipe joint 100a.
図16に示す配管継手100bは、配管継手100aの筒部130aの代わりに筒部130bを設けたものである。配管継手100aにおいては、筒部120aと筒部130aとのフランジ板140aから端部までの長さが同じであったが、図16に示す配管継手100bは、筒部120aの長さLL2に対して筒部130bの長さLL3(LL2<LL3)が長くなるように設けられている。
その結果、配管継手100bをより堅固に配管に取り付けることができる。 A pipe joint 100b shown in FIG. 16 is provided with acylinder part 130b instead of the cylinder part 130a of the pipe joint 100a. In the pipe joint 100a, the length from the flange plate 140a to the end of the cylinder part 120a and the cylinder part 130a is the same, but the pipe joint 100b shown in FIG. 16 is different from the length LL2 of the cylinder part 120a. The cylindrical portion 130b is provided so that the length LL3 (LL2 <LL3) becomes longer.
As a result, the pipe joint 100b can be more firmly attached to the pipe.
その結果、配管継手100bをより堅固に配管に取り付けることができる。 A pipe joint 100b shown in FIG. 16 is provided with a
As a result, the pipe joint 100b can be more firmly attached to the pipe.
また、図17に示す配管継手100cは、配管継手100cの孔125c,126cからなる。すなわち、配管継手100aにおける孔125aに対して、孔125cおよび孔126cからなる。
孔125cと孔126cとの傾斜角度を異なるように形成することで、筒部120aにおける肉厚tを増加させることができる。
その結果、配管継手100cをより頑丈に形成することができる。 A pipe joint 100c shown in FIG. 17 includes holes 125c and 126c of the pipe joint 100c. That is, it consists of a hole 125c and a hole 126c with respect to the hole 125a in the pipe joint 100a.
By forming thehole 125c and the hole 126c to have different inclination angles, the wall thickness t in the cylindrical portion 120a can be increased.
As a result, the pipe joint 100c can be formed more robustly.
孔125cと孔126cとの傾斜角度を異なるように形成することで、筒部120aにおける肉厚tを増加させることができる。
その結果、配管継手100cをより頑丈に形成することができる。 A pipe joint 100c shown in FIG. 17 includes
By forming the
As a result, the pipe joint 100c can be formed more robustly.
(実施例)
本実施の形態において説明した配管継手100を用いて実験を行った。実験においては、呼び径が75Aの配管を用いた。製品の安全率を考慮して10.5MPaの水圧をかけて、1時間保持したが、配管継手100の継ぎ部分からの漏水は、認められなかった。 (Example)
An experiment was performed using the pipe joint 100 described in the present embodiment. In the experiment, a pipe having a nominal diameter of 75A was used. In consideration of the safety factor of the product, a water pressure of 10.5 MPa was applied and maintained for 1 hour, but no water leakage from the joint portion of the pipe joint 100 was observed.
本実施の形態において説明した配管継手100を用いて実験を行った。実験においては、呼び径が75Aの配管を用いた。製品の安全率を考慮して10.5MPaの水圧をかけて、1時間保持したが、配管継手100の継ぎ部分からの漏水は、認められなかった。 (Example)
An experiment was performed using the pipe joint 100 described in the present embodiment. In the experiment, a pipe having a nominal diameter of 75A was used. In consideration of the safety factor of the product, a water pressure of 10.5 MPa was applied and maintained for 1 hour, but no water leakage from the joint portion of the pipe joint 100 was observed.
以上のように、筒部120が金属配管600の配管内部615に嵌合され、筒部130が樹脂配管500の配管内部515に嵌合されることにより、筒部120の外周に設けられたOリング180により金属配管600の内周面における内面止水(漏水防止)を実現することができ、筒部130の外周に設けられたOリング180により樹脂配管500における内面止水(漏水防止)を実現することができる。
その結果、樹脂配管500から金属配管600側に高圧流体FLを流した場合であっても、高圧流体FLの漏水を防止することができる。 As described above, thecylinder portion 120 is fitted into the pipe interior 615 of the metal pipe 600, and the cylinder portion 130 is fitted into the pipe interior 515 of the resin pipe 500, so that O provided on the outer periphery of the cylinder portion 120 is obtained. The ring 180 can realize inner surface water stop (water leakage prevention) on the inner peripheral surface of the metal pipe 600, and the inner ring water stop (water leakage prevention) in the resin pipe 500 can be achieved by the O ring 180 provided on the outer periphery of the cylindrical portion 130. Can be realized.
As a result, even when the high-pressure fluid FL flows from theresin pipe 500 to the metal pipe 600 side, water leakage of the high-pressure fluid FL can be prevented.
その結果、樹脂配管500から金属配管600側に高圧流体FLを流した場合であっても、高圧流体FLの漏水を防止することができる。 As described above, the
As a result, even when the high-pressure fluid FL flows from the
また、配管継手100の筒部120および筒部130の少なくとも一方の内周、かつ端部に、傾斜面Cが形成されているので、高圧流体FLが配管継手100を通過する際に、高圧流体FLの乱流を防止して、層流を維持させることができる。
In addition, since the inclined surface C is formed at the inner periphery and at the end of at least one of the cylinder part 120 and the cylinder part 130 of the pipe joint 100, the high-pressure fluid FL passes through the pipe joint 100. FL turbulence can be prevented and laminar flow can be maintained.
また、配管継手100のフランジ板140が、樹脂配管500のフランジ部510および金属配管600のフランジ部610に形成された固定孔に対応する孔150を有するので、配管継手100の位置決めを確実におこなうことができる。
Moreover, since the flange plate 140 of the pipe joint 100 has the hole 150 corresponding to the fixing hole formed in the flange part 510 of the resin pipe 500 and the flange part 610 of the metal pipe 600, the pipe joint 100 is positioned reliably. be able to.
また、筒部120,130の少なくとも一方に、凹部121,131が形成され、Oリング180が、凹部121,131に取り付けられるので、Oリング180のずれを防止するとともに、漏水防止を確実にすることができる。
Moreover, since the recessed parts 121 and 131 are formed in at least one of the cylinder parts 120 and 130, and the O-ring 180 is attached to the recessed parts 121 and 131, the O-ring 180 is prevented from being displaced and the prevention of water leakage is ensured. be able to.
さらに、高圧流体を流通する一の配管と他の配管とが異なる径の配管であっても、同じ径の配管であっても、筒部の径をあわせることで対応することができる。
Furthermore, even if one pipe that circulates the high-pressure fluid and the other pipe have different diameters or pipes having the same diameter, it can be dealt with by matching the diameters of the cylindrical portions.
また、連続した傾斜曲面を有する孔125により流体の流れを整えることができる。すなわち、急激な変化を生じさせないため、大きな乱流の発生等を防止することができる。
Also, the fluid flow can be adjusted by the holes 125 having a continuous inclined curved surface. That is, since a sudden change is not caused, the generation of a large turbulent flow can be prevented.
本実施の形態においては、高圧流体FLは、高圧流体に相当し、樹脂配管500および金属配管600が、一の配管または他の配管に相当し、配管継手100,100a,100b,100cが配管継手に相当し、筒部120,120aが第1筒部に相当し、筒部130,130a,130bが第2筒部に相当し、フランジ板140,140aがフランジ部に相当し、孔125,125a,125cの内周面が連続した傾斜曲面に相当し、Oリング180が漏水防止部材に相当し、傾斜面Cがテーパー形状に相当し、図8の配管継手100および配管500bが配管継手構造に相当し、管体511が管体に相当し、タップにより溝が形成された穴151,152がタップ溝付の穴に相当し、フランジ継手570がフランジ継手に相当し、中子部材560が中子部材に相当し、孔150は、貫通孔に相当する。
In the present embodiment, the high-pressure fluid FL corresponds to a high-pressure fluid, the resin pipe 500 and the metal pipe 600 correspond to one pipe or another pipe, and the pipe joints 100, 100a, 100b, and 100c are pipe joints. The cylindrical portions 120 and 120a correspond to the first cylindrical portion, the cylindrical portions 130, 130a and 130b correspond to the second cylindrical portion, the flange plates 140 and 140a correspond to the flange portion, and the holes 125 and 125a. , 125c corresponds to a continuous inclined curved surface, the O-ring 180 corresponds to a water leakage prevention member, the inclined surface C corresponds to a tapered shape, and the pipe joint 100 and the pipe 500b in FIG. 8 have a pipe joint structure. The tube body 511 corresponds to the tube body, the holes 151 and 152 in which grooves are formed by taps correspond to holes with tapped grooves, the flange joint 570 corresponds to a flange joint, Member 560 corresponds to the core member, holes 150 correspond to the through hole.
<フランジ付管体1100の概略構造>
図18は、本実施の形態にかかるフランジ付管体1100の模式的一部切り欠き斜視図である。
図18に示すように、フランジ付管体1100は、主に管体1200、分割部材1300および環状フランジ部1400とからなる。 <Schematic structure offlanged tube 1100>
FIG. 18 is a schematic partially cutaway perspective view of theflanged tube body 1100 according to the present embodiment.
As shown in FIG. 18, theflanged tube body 1100 mainly includes a tube body 1200, a split member 1300, and an annular flange portion 1400.
図18は、本実施の形態にかかるフランジ付管体1100の模式的一部切り欠き斜視図である。
図18に示すように、フランジ付管体1100は、主に管体1200、分割部材1300および環状フランジ部1400とからなる。 <Schematic structure of
FIG. 18 is a schematic partially cutaway perspective view of the
As shown in FIG. 18, the
(管体1200)
本実施の形態において、管体1200は、硬質塩化ビニル管の外周面を繊維強化プラスチック(以下、FRPと呼ぶ。)層で補強してなる円筒状の複層管である。
また、管体1200の端部には、管体1200の外径が徐々に大きくなる径大部1210が形成されている。本実施の形態において図18に示すように、径大部1210は、テーパ面TL1からなる。本実施の形態において、テーパ面TL1は、管体1200の全周域に形成されている。 (Tube 1200)
In the present embodiment,tube body 1200 is a cylindrical multilayer tube formed by reinforcing the outer peripheral surface of a rigid polyvinyl chloride tube with a fiber reinforced plastic (hereinafter referred to as FRP) layer.
Further, a large-diameter portion 1210 where the outer diameter of the tubular body 1200 gradually increases is formed at the end of the tubular body 1200. In the present embodiment, as shown in FIG. 18, the large-diameter portion 1210 includes a tapered surface TL1. In the present embodiment, the tapered surface TL1 is formed in the entire circumferential area of the tubular body 1200.
本実施の形態において、管体1200は、硬質塩化ビニル管の外周面を繊維強化プラスチック(以下、FRPと呼ぶ。)層で補強してなる円筒状の複層管である。
また、管体1200の端部には、管体1200の外径が徐々に大きくなる径大部1210が形成されている。本実施の形態において図18に示すように、径大部1210は、テーパ面TL1からなる。本実施の形態において、テーパ面TL1は、管体1200の全周域に形成されている。 (Tube 1200)
In the present embodiment,
Further, a large-
(径大部1210の製造方法)
径大部1210の製造方法としては、施工現場で成形する方法と、生産工場で成形する方法(プレハブ)とがある。 (Method for producing large diameter portion 1210)
As a manufacturing method of thelarge diameter portion 1210, there are a method of forming at a construction site and a method of forming at a production factory (prefab).
径大部1210の製造方法としては、施工現場で成形する方法と、生産工場で成形する方法(プレハブ)とがある。 (Method for producing large diameter portion 1210)
As a manufacturing method of the
(施工現場で成形する方法)
施工現場で成形する方法としては、ハンドレイアップ法、フィラメント・ワインディング(FW)法、樹脂トランスファー成形法(RTM)またはバキューム樹脂トランスファー成形法(VaRTM)等により径大部1210を成形する方法、光硬化性樹脂等により径大部1210を成形する方法、または、予め径大部1210の部位のみを別成形しておいたものを管体1200にハンドレイアップ法または接着剤等により接着する方法、管体1200のFRP補強層に予め埋め込んだナット(インサートナット)にボルト等を用いて機械的に固定して径大部1210を形成する方法など、その他任意の方法が挙げられる。 (Method of molding at construction site)
As a method of molding at the construction site, a method of molding thelarge diameter portion 1210 by a hand lay-up method, a filament winding (FW) method, a resin transfer molding method (RTM) or a vacuum resin transfer molding method (VaRTM), optical A method of molding the large-diameter portion 1210 with a curable resin or the like, or a method in which only a portion of the large-diameter portion 1210 is molded separately in advance to the tube body 1200 by a hand lay-up method or an adhesive, Other arbitrary methods such as a method in which a large diameter portion 1210 is formed by mechanically fixing a nut (insert nut) embedded in the FRP reinforcing layer of the tube body 1200 using a bolt or the like.
施工現場で成形する方法としては、ハンドレイアップ法、フィラメント・ワインディング(FW)法、樹脂トランスファー成形法(RTM)またはバキューム樹脂トランスファー成形法(VaRTM)等により径大部1210を成形する方法、光硬化性樹脂等により径大部1210を成形する方法、または、予め径大部1210の部位のみを別成形しておいたものを管体1200にハンドレイアップ法または接着剤等により接着する方法、管体1200のFRP補強層に予め埋め込んだナット(インサートナット)にボルト等を用いて機械的に固定して径大部1210を形成する方法など、その他任意の方法が挙げられる。 (Method of molding at construction site)
As a method of molding at the construction site, a method of molding the
(生産工場で成形する方法)
また、生産工場で成形する方法としては、上記施工現場で成形する方法に加えて、硬質塩化ビニル管の外周面を繊維強化プラスチック(FRP)層で補強する際に、併せて径大部1210の位置で、厚めにガラス繊維をワインディングしておき、FRP層成形後に、第1の径形状となるように研削および/または研磨加工する方法などが挙げられる。 (Method of molding in production factory)
Moreover, as a method of forming at the production factory, in addition to the method of forming at the construction site, when the outer peripheral surface of the hard vinyl chloride pipe is reinforced with a fiber reinforced plastic (FRP) layer, thelarge diameter portion 1210 is also combined. Examples include a method in which glass fiber is wound thickly at a position, and after the FRP layer is formed, grinding and / or polishing is performed so as to obtain a first diameter shape.
また、生産工場で成形する方法としては、上記施工現場で成形する方法に加えて、硬質塩化ビニル管の外周面を繊維強化プラスチック(FRP)層で補強する際に、併せて径大部1210の位置で、厚めにガラス繊維をワインディングしておき、FRP層成形後に、第1の径形状となるように研削および/または研磨加工する方法などが挙げられる。 (Method of molding in production factory)
Moreover, as a method of forming at the production factory, in addition to the method of forming at the construction site, when the outer peripheral surface of the hard vinyl chloride pipe is reinforced with a fiber reinforced plastic (FRP) layer, the
本実施の形態における管体1200の材質は、繊維強化プラスチック(FRP)および芯材である硬質塩化ビニル樹脂からなる。
ここで、管体1200の材質は、本実施の形態に限定されることなく、硬質塩化ビニル樹脂(ポリ塩化ビニル:PVC)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、アクリロニトリル・スチレン樹脂(AS)、エポキシ樹脂(EP)、メラミン樹脂(MF)、ポリカーボネート樹脂(PC)、三弗化エチレン樹脂(PCTFE)、ポリエチレン樹脂(PE)、メタクリル樹脂(アクリル樹脂:PMMA)、アセタール樹脂(POM)、ポリプロピレン樹脂(PP)、ポリスチレン樹脂(PS)、四弗化エチレン樹脂(PTFE)、ポリウレタン樹脂(PUR)またはポリ酢酸ビニル樹脂(PVAC)等の合成樹脂管、繊維強化プラスチック(FRP)、青銅鋳物(BC6,BC6C)、黄銅鋳物(YBsC3)、改削黄銅引抜棒(押出棒)(C3604BD(BE))、鋳造用黄銅引抜棒(押出棒)(C3771BD(BE))、りん脱酸銅管(C1220T)、銅合金素地上のクロムメッキ(BCrM)、銅合金素地上のニッケルメッキ(BNM)、ネズミ鋳鉄品(FC)、ダクタイル鋳鉄(FCD)、可鍛鋳鉄(FCMB)、炭素工具鋼(SK)、ステンレス(18Cr-8Ni)(SUS304)、ステンレス(18Cr-12Ni-MO)(SUS316)、ステンレス(18Cr-12Ni-MO極低C)(SUS316L)、アルミニウム合金ダイカスト(ADC)または亜鉛合金ダイカスト(ZDC)等の金属管、鉄筋コンクリート管またはプレストレストコンクリート管等のコンクリート管、陶管、これらの積層管、複合管など任意の材質と構成を選択することができる。 The material of thetube body 1200 in the present embodiment is made of a fiber reinforced plastic (FRP) and a hard vinyl chloride resin that is a core material.
Here, the material of thepipe body 1200 is not limited to the present embodiment, but is a hard vinyl chloride resin (polyvinyl chloride: PVC), acrylonitrile-butadiene-styrene resin (ABS), acrylonitrile-styrene resin (AS). , Epoxy resin (EP), melamine resin (MF), polycarbonate resin (PC), ethylene trifluoride resin (PCTFE), polyethylene resin (PE), methacrylic resin (acrylic resin: PMMA), acetal resin (POM), polypropylene Synthetic resin pipes such as resin (PP), polystyrene resin (PS), tetrafluoroethylene resin (PTFE), polyurethane resin (PUR) or polyvinyl acetate resin (PVAC), fiber reinforced plastic (FRP), bronze casting (BC6 , BC6C), brass casting (YBsC3), modified brass drawing Rod (extruded rod) (C3604BD (BE)), brass drawing rod for casting (extruded rod) (C3771BD (BE)), phosphorous deoxidized copper tube (C1220T), copper alloy base chromium plating (BCrM), copper alloy Nickel plated (BNM), gray cast iron (FC), ductile cast iron (FCD), malleable cast iron (FCMB), carbon tool steel (SK), stainless steel (18Cr-8Ni) (SUS304), stainless steel (18Cr- 12Ni-MO) (SUS316), stainless steel (18Cr-12Ni-MO extra low C) (SUS316L), aluminum alloy die-casting (ADC) or zinc alloy die-casting (ZDC), etc., concrete tubes such as reinforced concrete tubes or prestressed concrete tubes Arbitrary materials and configurations such as pipes, ceramic pipes, laminated pipes and composite pipes It can be selected.
ここで、管体1200の材質は、本実施の形態に限定されることなく、硬質塩化ビニル樹脂(ポリ塩化ビニル:PVC)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、アクリロニトリル・スチレン樹脂(AS)、エポキシ樹脂(EP)、メラミン樹脂(MF)、ポリカーボネート樹脂(PC)、三弗化エチレン樹脂(PCTFE)、ポリエチレン樹脂(PE)、メタクリル樹脂(アクリル樹脂:PMMA)、アセタール樹脂(POM)、ポリプロピレン樹脂(PP)、ポリスチレン樹脂(PS)、四弗化エチレン樹脂(PTFE)、ポリウレタン樹脂(PUR)またはポリ酢酸ビニル樹脂(PVAC)等の合成樹脂管、繊維強化プラスチック(FRP)、青銅鋳物(BC6,BC6C)、黄銅鋳物(YBsC3)、改削黄銅引抜棒(押出棒)(C3604BD(BE))、鋳造用黄銅引抜棒(押出棒)(C3771BD(BE))、りん脱酸銅管(C1220T)、銅合金素地上のクロムメッキ(BCrM)、銅合金素地上のニッケルメッキ(BNM)、ネズミ鋳鉄品(FC)、ダクタイル鋳鉄(FCD)、可鍛鋳鉄(FCMB)、炭素工具鋼(SK)、ステンレス(18Cr-8Ni)(SUS304)、ステンレス(18Cr-12Ni-MO)(SUS316)、ステンレス(18Cr-12Ni-MO極低C)(SUS316L)、アルミニウム合金ダイカスト(ADC)または亜鉛合金ダイカスト(ZDC)等の金属管、鉄筋コンクリート管またはプレストレストコンクリート管等のコンクリート管、陶管、これらの積層管、複合管など任意の材質と構成を選択することができる。 The material of the
Here, the material of the
また、管体1200としては円筒形状、即ち軸心に対して垂直となる水平面にて切断された水平断面形状が円形の筒体に限られず、例えば、水平断面形状が、卵形(卵形管)、馬蹄形、四角形或いは更なる多角形状となっている筒体を用いてもよい。
Further, the tubular body 1200 is not limited to a cylindrical body having a cylindrical shape, that is, a horizontal sectional shape cut by a horizontal plane perpendicular to the axial center. For example, the horizontal sectional shape has an egg shape (oval tube). ), A cylindrical body having a horseshoe shape, a square shape, or a further polygonal shape.
(分割部材1300)
図18に示すように、本実施の形態における分割部材1300は、第1分割部材1301および第2分割部材1302からなる。
第1分割部材1301および第2分割部材1302は、同じ形状からなる。図18に示すように、第1分割部材1301および第2分割部材1302は、両者をつきあわせることで、筒状を形成する。すなわち、分割部材1300の軸心を通過する面で分割部材1300を縦割りすることにより、第1分割部材1301および第2分割部材1302のそれぞれの形状が得られる。 (Divided member 1300)
As shown in FIG. 18, the dividingmember 1300 in the present embodiment includes a first dividing member 1301 and a second dividing member 1302.
The first dividedmember 1301 and the second divided member 1302 have the same shape. As shown in FIG. 18, the 1st division member 1301 and the 2nd division member 1302 form a cylinder shape by putting together both. That is, by dividing the dividing member 1300 vertically with a plane passing through the axis of the dividing member 1300, the shapes of the first dividing member 1301 and the second dividing member 1302 are obtained.
図18に示すように、本実施の形態における分割部材1300は、第1分割部材1301および第2分割部材1302からなる。
第1分割部材1301および第2分割部材1302は、同じ形状からなる。図18に示すように、第1分割部材1301および第2分割部材1302は、両者をつきあわせることで、筒状を形成する。すなわち、分割部材1300の軸心を通過する面で分割部材1300を縦割りすることにより、第1分割部材1301および第2分割部材1302のそれぞれの形状が得られる。 (Divided member 1300)
As shown in FIG. 18, the dividing
The first divided
また、第1分割部材1301および第2分割部材1302は、内周面に管体1200および径大部1210の外周面を挟持するようにそれぞれ湾曲形状が形成されている。
すなわち、第1分割部材1301および第2分割部材1302には、管体1200の外周面に応じた湾曲形状の面TL3が形成されるとともに、径大部1210の外周面のテーパ面TL1に応じた湾曲内周面形状のテーパ面TL2が形成されている。
また、第1分割部材1301および第2分割部材1302には、後述する環状フランジ部1400の内周面に応じた湾曲外周面形状のテーパ面TL4が形成されている。 Further, the first dividedmember 1301 and the second divided member 1302 are each formed in a curved shape so as to sandwich the outer peripheral surface of the tubular body 1200 and the large diameter portion 1210 on the inner peripheral surface.
That is, the first dividedmember 1301 and the second divided member 1302 are formed with a curved surface TL3 corresponding to the outer peripheral surface of the tubular body 1200, and according to the tapered surface TL1 of the outer peripheral surface of the large diameter portion 1210. A tapered surface TL2 having a curved inner peripheral surface shape is formed.
Further, the first dividedmember 1301 and the second divided member 1302 are formed with a curved outer peripheral surface tapered surface TL4 corresponding to an inner peripheral surface of an annular flange portion 1400 described later.
すなわち、第1分割部材1301および第2分割部材1302には、管体1200の外周面に応じた湾曲形状の面TL3が形成されるとともに、径大部1210の外周面のテーパ面TL1に応じた湾曲内周面形状のテーパ面TL2が形成されている。
また、第1分割部材1301および第2分割部材1302には、後述する環状フランジ部1400の内周面に応じた湾曲外周面形状のテーパ面TL4が形成されている。 Further, the first divided
That is, the first divided
Further, the first divided
なお、湾曲内周面形状のテーパ面TL2、湾曲外周面形状のテーパ面TL4は、第1分割部材1301および第2分割部材1302の内周面または外周面の全周域に形成されているが、これに限定されず、第1分割部材1301および第2分割部材1302の内周面または外周面の一部または複数に区分けして形成されてもよい。
また、面TL3の形成部分を除去し、径大部1210の外周面のテーパ面TL1に応じた湾曲内周面形状のテーパ面TL2のみの形状であってもよい。 The curved inner peripheral surface shape tapered surface TL2 and the curved outer peripheral surface shape tapered surface TL4 are formed on the inner peripheral surface or the entire outer peripheral surface of the first dividedmember 1301 and the second divided member 1302. However, the present invention is not limited to this, and the first divided member 1301 and the second divided member 1302 may be divided into a part or a plurality of inner peripheral surfaces or outer peripheral surfaces.
Alternatively, the shape of the tapered surface TL2 having a curved inner peripheral surface shape corresponding to the tapered surface TL1 of the outer peripheral surface of the large-diameter portion 1210 may be removed by removing the formation portion of the surface TL3.
また、面TL3の形成部分を除去し、径大部1210の外周面のテーパ面TL1に応じた湾曲内周面形状のテーパ面TL2のみの形状であってもよい。 The curved inner peripheral surface shape tapered surface TL2 and the curved outer peripheral surface shape tapered surface TL4 are formed on the inner peripheral surface or the entire outer peripheral surface of the first divided
Alternatively, the shape of the tapered surface TL2 having a curved inner peripheral surface shape corresponding to the tapered surface TL1 of the outer peripheral surface of the large-
また、分割部材1300は、第1分割部材1301および第2分割部材1302からなることとしたが、これに限定されず、一の筒部材、または3以上の分割部材からなってもよい。
In addition, the divided member 1300 is composed of the first divided member 1301 and the second divided member 1302, but is not limited thereto, and may be composed of one cylindrical member or three or more divided members.
本実施の形態における分割部材1300の材質は、繊維強化プラスチック(FRP)からなる。
ここで、分割部材1300の材質は、管体1200と同じであってもよく、異なっていてもよい。
また、分割部材1300の材質は、管体1200の材質と同様に、様々な材質の合成樹脂管、繊維強化プラスチック(FRP)であってもよく、その他様々な材質の金属管、鉄筋コンクリート管またはプレストレストコンクリート管等のコンクリート管、木材、陶管、これらの積層管、複合管など任意の材質と構成を選択することができる。
さらに、分割部材1300は、管体1200および管体1200の径大部1210の外周面に応じた形状であれば、円筒形状、楕円筒、四角筒または多角形筒などを用いてもよい。 The material of the dividingmember 1300 in the present embodiment is made of fiber reinforced plastic (FRP).
Here, the material of the dividingmember 1300 may be the same as or different from that of the tube body 1200.
Further, the material of the dividingmember 1300 may be a synthetic resin tube or a fiber reinforced plastic (FRP) of various materials as well as the material of the tube body 1200, and other various materials such as a metal tube, a reinforced concrete tube or a prestressed tube. Arbitrary materials and structures, such as concrete pipes, such as concrete pipes, wood, ceramic pipes, these laminated pipes, and composite pipes, can be selected.
Furthermore, as long as the dividingmember 1300 has a shape corresponding to the outer surface of the tubular body 1200 and the large diameter portion 1210 of the tubular body 1200, a cylindrical shape, an elliptical cylinder, a square cylinder, a polygonal cylinder, or the like may be used.
ここで、分割部材1300の材質は、管体1200と同じであってもよく、異なっていてもよい。
また、分割部材1300の材質は、管体1200の材質と同様に、様々な材質の合成樹脂管、繊維強化プラスチック(FRP)であってもよく、その他様々な材質の金属管、鉄筋コンクリート管またはプレストレストコンクリート管等のコンクリート管、木材、陶管、これらの積層管、複合管など任意の材質と構成を選択することができる。
さらに、分割部材1300は、管体1200および管体1200の径大部1210の外周面に応じた形状であれば、円筒形状、楕円筒、四角筒または多角形筒などを用いてもよい。 The material of the dividing
Here, the material of the dividing
Further, the material of the dividing
Furthermore, as long as the dividing
なお、分割部材1300は、樹脂または金属などの可擁性を有する部材で構成してもよい。この場合、分割部材1300が、それぞれ管体1200および径大部1210の外周面と、環状フランジ部1400の内周面とに摺接する形状に変形するものであってもよい。
In addition, the dividing member 1300 may be configured by a member having a holdability such as a resin or a metal. In this case, the dividing member 1300 may be deformed into a shape that is in sliding contact with the outer peripheral surface of the tubular body 1200 and the large diameter portion 1210 and the inner peripheral surface of the annular flange portion 1400.
(環状フランジ部1400)
図18に示すように、環状フランジ部1400は、環状のフランジからなる。環状フランジ部1400の内周面には、分割部材1300の湾曲外周面形状のテーパ面TL4に応じた湾曲内周面形状のテーパ面TL5が形成される。 (Annular flange 1400)
As shown in FIG. 18, theannular flange portion 1400 is formed of an annular flange. On the inner peripheral surface of the annular flange portion 1400, a curved inner peripheral surface tapered surface TL5 corresponding to the curved outer peripheral surface tapered surface TL4 of the dividing member 1300 is formed.
図18に示すように、環状フランジ部1400は、環状のフランジからなる。環状フランジ部1400の内周面には、分割部材1300の湾曲外周面形状のテーパ面TL4に応じた湾曲内周面形状のテーパ面TL5が形成される。 (Annular flange 1400)
As shown in FIG. 18, the
なお、湾曲内周面形状のテーパ面TL5は、分割部材1300の内周面の全周域に形成されているが、これに限定されず、環状フランジ部1400の内周面の一部または複数に区分けして形成されてもよい。
The curved inner peripheral surface shape tapered surface TL5 is formed in the entire peripheral area of the inner peripheral surface of the split member 1300, but is not limited to this, and a part or a plurality of inner peripheral surfaces of the annular flange portion 1400 are formed. It may be divided into two.
環状フランジ部1400は、ガラス強化繊維に熱硬化性樹脂を含浸させた繊維強化樹脂からなる。
ここで、環状フランジ部1400の材質は、管体1200と同じであってもよく、異なっていてもよい。また、環状フランジ部1400の材質は、管体1200の材質と同様に、様々な材質の合成樹脂管、繊維強化プラスチック(FRP)からなってもよく、その他、様々な材質の金属管、木材、鉄筋コンクリート管またはプレストレストコンクリート管等のコンクリート管、陶管、これらの積層管、複合管など任意の材質と構成を選択することができる。 Theannular flange portion 1400 is made of a fiber reinforced resin obtained by impregnating a glass reinforced fiber with a thermosetting resin.
Here, the material of theannular flange portion 1400 may be the same as or different from that of the tube body 1200. The material of the annular flange portion 1400 may be made of various materials such as synthetic resin tubes and fiber reinforced plastics (FRP), similar to the material of the tube body 1200. Arbitrary materials and structures, such as concrete pipes, such as a reinforced concrete pipe or a prestressed concrete pipe, a ceramic pipe, these laminated pipes, and a composite pipe, can be selected.
ここで、環状フランジ部1400の材質は、管体1200と同じであってもよく、異なっていてもよい。また、環状フランジ部1400の材質は、管体1200の材質と同様に、様々な材質の合成樹脂管、繊維強化プラスチック(FRP)からなってもよく、その他、様々な材質の金属管、木材、鉄筋コンクリート管またはプレストレストコンクリート管等のコンクリート管、陶管、これらの積層管、複合管など任意の材質と構成を選択することができる。 The
Here, the material of the
また、本実施の形態において、環状フランジ部1400について説明したが、これに限定されず、環状フランジ部1400の内周面は、水平断面形状が、楕円、四角形、多角形状となっている筒体で内周面にテーパ面TL5を一部に有してもよい。
さらに、環状フランジ部1400は、管体1200を挿入し得る内径を有するものであればよく、例えば、分割部材1300の外周形状が楕円、四角形、多角形状の場合に、環状フランジ部1400は、分割部材1300のそれぞれの外周形状に応じた形状で内周面にテーパ面TL5を少なくとも一部に有していればよい。 Further, in the present embodiment, theannular flange portion 1400 has been described. However, the present invention is not limited to this, and the inner peripheral surface of the annular flange portion 1400 has a horizontal cross-sectional shape that is an ellipse, a quadrangle, or a polygon. The inner peripheral surface may have a tapered surface TL5 in part.
Furthermore, theannular flange portion 1400 only needs to have an inner diameter into which the tubular body 1200 can be inserted. For example, when the outer peripheral shape of the dividing member 1300 is an ellipse, a rectangle, or a polygon, the annular flange portion 1400 is divided. What is necessary is just to have the taper surface TL5 in the inner peripheral surface in at least one part by the shape according to each outer peripheral shape of the member 1300. FIG.
さらに、環状フランジ部1400は、管体1200を挿入し得る内径を有するものであればよく、例えば、分割部材1300の外周形状が楕円、四角形、多角形状の場合に、環状フランジ部1400は、分割部材1300のそれぞれの外周形状に応じた形状で内周面にテーパ面TL5を少なくとも一部に有していればよい。 Further, in the present embodiment, the
Furthermore, the
また、環状フランジ部1400には、表面から裏面にわたって貫通する複数の貫通孔1450が設けられている。貫通孔1450は、後述する他のフランジ付管体1100および金属管体1110との接続の際に用いられるボルトB(図27参照)等の締結部材が挿入される部位となる。
Also, the annular flange portion 1400 is provided with a plurality of through holes 1450 that penetrate from the front surface to the back surface. The through-hole 1450 serves as a portion into which a fastening member such as a bolt B (see FIG. 27) used when connecting to another flanged tube body 1100 and a metal tube body 1110 described later is inserted.
(フランジ付管体1100の組立工程)
次に、図19、図20および図21は、フランジ付管体1100の組立工程を説明するための模式的側面図である。 (Assembly process of flanged tube 1100)
Next, FIGS. 19, 20, and 21 are schematic side views for explaining the assembly process of theflanged tube 1100.
次に、図19、図20および図21は、フランジ付管体1100の組立工程を説明するための模式的側面図である。 (Assembly process of flanged tube 1100)
Next, FIGS. 19, 20, and 21 are schematic side views for explaining the assembly process of the
まず、図19に示すように、管体1200の端部側から、環状フランジ部1400を矢印-Y1の方向に挿入する。なお、環状フランジ部1400の内径L2は、管体1200の径大部1210の外径L1よりも大きく設けられる(図19、図22参照)。
First, as shown in FIG. 19, the annular flange portion 1400 is inserted in the direction of the arrow -Y1 from the end portion side of the tube body 1200. The inner diameter L2 of the annular flange portion 1400 is provided larger than the outer diameter L1 of the large diameter portion 1210 of the tube body 1200 (see FIGS. 19 and 22).
次に、図20に示すように、管体1200の径大部1210に分割部材1300を取り付ける。具体的には、径大部1210に対して第1分割部材1301および第2分割部材1302を外側から装着する(図18参照)。この場合、管体1200の外周面に第1分割部材1301および第2分割部材1302の面TL3が周面で摺接し、管体1200の径大部1210のテーパ面TL1に第1分割部材1301および第2分割部材1302のテーパ面TL2が周面で摺接する。
なお、管体1200の外周面と、第1分割部材1301および第2分割部材1302の面TL3との摺接部、または管体1200の径大部1210のテーパ面TL1と、第1分割部材1301および第2分割部材1302のテーパ面TL2との摺接部の一部または全部を接着または溶着してもよい。 Next, as shown in FIG. 20, the dividingmember 1300 is attached to the large diameter portion 1210 of the tube body 1200. Specifically, the first divided member 1301 and the second divided member 1302 are attached to the large diameter portion 1210 from the outside (see FIG. 18). In this case, the surface TL3 of the first divided member 1301 and the second divided member 1302 is in sliding contact with the outer peripheral surface of the tubular body 1200 on the peripheral surface, and the first divided member 1301 and the tapered surface TL1 of the large diameter portion 1210 of the tubular body 1200 are contacted. The tapered surface TL2 of the second divided member 1302 is in sliding contact with the peripheral surface.
It should be noted that the sliding contact portion between the outer peripheral surface of thetubular body 1200 and the surface TL3 of the first divided member 1301 and the second divided member 1302, or the tapered surface TL1 of the large diameter portion 1210 of the tubular body 1200, and the first divided member 1301. In addition, part or all of the sliding contact portion with the tapered surface TL2 of the second divided member 1302 may be bonded or welded.
なお、管体1200の外周面と、第1分割部材1301および第2分割部材1302の面TL3との摺接部、または管体1200の径大部1210のテーパ面TL1と、第1分割部材1301および第2分割部材1302のテーパ面TL2との摺接部の一部または全部を接着または溶着してもよい。 Next, as shown in FIG. 20, the dividing
It should be noted that the sliding contact portion between the outer peripheral surface of the
例えば、溶着の場合、第1分割部材1301および第2分割部材1302の内面に予め電熱線を埋め込んでおき、管体1200の径大部1210に分割部材1300を取り付けた後、コントローラーから通電して電熱線を発熱させ、分割部材1300内周面と管体1200の外周面および径大部1210のテーパ面TL1の樹脂とを加熱溶融し、組織的に一体化させるエレクトロフュージョン(EF:電気融着)接合により上記摺接部の少なくとも一部を溶融接合してもよい。なお、管体1200の径大部1210内に予め電熱線を埋め込んでもよい。
For example, in the case of welding, heating wires are embedded in the inner surfaces of the first divided member 1301 and the second divided member 1302 in advance, the divided member 1300 is attached to the large diameter portion 1210 of the tube body 1200, and then the controller is energized. Electrofusion (EF: electrofusion) in which heating wire is heated and the inner peripheral surface of the dividing member 1300, the outer peripheral surface of the tube body 1200, and the resin on the tapered surface TL1 of the large diameter portion 1210 are heated and melted and systematically integrated. ) At least a part of the sliding contact portion may be melt bonded by bonding. Note that a heating wire may be embedded in the large diameter portion 1210 of the tube body 1200 in advance.
続いて、図19において管体1200に取り付けられた環状フランジ部1400は、図21に示すように、径大部1210を含む管体1200に取り付けられた分割部材1300の外周面と摺接するように、矢印Y1の方向に嵌合される。
この場合、環状フランジ部1400の内周面のテーパ面TL5と分割部材1300の外周面のテーパ面TL4とが摺接して、環状フランジ部1400が取り付けられる。その結果、フランジ付管体1100が容易に形成される。
なお、環状フランジ部1400の内周面のテーパ面TL5と、分割部材1300の外周面のテーパ面TL4との摺接部の一部または全部を接着または溶着してもよい。 Subsequently, as shown in FIG. 21, theannular flange portion 1400 attached to the tube body 1200 in FIG. 19 is in sliding contact with the outer peripheral surface of the split member 1300 attached to the tube body 1200 including the large diameter portion 1210. Are fitted in the direction of the arrow Y1.
In this case, the tapered surface TL5 on the inner circumferential surface of theannular flange portion 1400 and the tapered surface TL4 on the outer circumferential surface of the split member 1300 are in sliding contact, and the annular flange portion 1400 is attached. As a result, the flanged tube 1100 is easily formed.
A part or all of the sliding contact portion between the tapered surface TL5 on the inner peripheral surface of theannular flange portion 1400 and the tapered surface TL4 on the outer peripheral surface of the dividing member 1300 may be bonded or welded.
この場合、環状フランジ部1400の内周面のテーパ面TL5と分割部材1300の外周面のテーパ面TL4とが摺接して、環状フランジ部1400が取り付けられる。その結果、フランジ付管体1100が容易に形成される。
なお、環状フランジ部1400の内周面のテーパ面TL5と、分割部材1300の外周面のテーパ面TL4との摺接部の一部または全部を接着または溶着してもよい。 Subsequently, as shown in FIG. 21, the
In this case, the tapered surface TL5 on the inner circumferential surface of the
A part or all of the sliding contact portion between the tapered surface TL5 on the inner peripheral surface of the
溶着の場合、環状フランジ部1400の内周面に予め電熱線を埋め込んでおき、分割部材1300を取り付けた後、コントローラーから通電して電熱線を発熱させ、分割部材1300の外面と環状フランジ部1400の内周面のテーパ面TL5の樹脂とを加熱溶融し、組織的に一体化させるエレクトロフュージョン(EF:電気融着)接合により上記摺接部の少なくとも一部を溶融接合してもよい。なお、第1分割部材1301および第2分割部材1302の内周面および/または外周面に予め電熱線を埋め込んでおいてもよい。
In the case of welding, a heating wire is embedded in the inner peripheral surface of the annular flange portion 1400 in advance, and after the split member 1300 is attached, the heater wire is energized to generate heat, and the outer surface of the split member 1300 and the annular flange portion 1400 are energized. At least a part of the sliding contact portion may be melt-bonded by electrofusion (EF: electrofusion) bonding in which the resin on the taper surface TL5 on the inner peripheral surface is melted by heating and systematically integrated. In addition, you may embed a heating wire in the inner peripheral surface and / or outer peripheral surface of the 1st division member 1301 and the 2nd division member 1302 previously.
(テーパ面の関係)
続いて、上記で説明を行ったテーパ面の関係について説明を行う。図22は、テーパ面の角度の関係を示す説明図である。 (Relation of taper surface)
Subsequently, the relationship between the tapered surfaces described above will be described. FIG. 22 is an explanatory diagram showing the relationship between the angles of the tapered surfaces.
続いて、上記で説明を行ったテーパ面の関係について説明を行う。図22は、テーパ面の角度の関係を示す説明図である。 (Relation of taper surface)
Subsequently, the relationship between the tapered surfaces described above will be described. FIG. 22 is an explanatory diagram showing the relationship between the angles of the tapered surfaces.
図22に示すように、テーパ面TL1とテーパ面TL2とは、管体1200の延在方向(長手方向)を基準として角度θ1で設けられる。
また、面TL3は、管体1200の延在方向(長手方向)と同一方向の面で形成される。テーパ面TL4とテーパ面TL5とは、管体1200の延在方向(長手方向)を基準として角度θ2で設けられる。 As shown in FIG. 22, the tapered surface TL1 and the tapered surface TL2 are provided at an angle θ1 with respect to the extending direction (longitudinal direction) of thetubular body 1200.
Further, the surface TL3 is formed by a surface in the same direction as the extending direction (longitudinal direction) of thetube body 1200. The tapered surface TL4 and the tapered surface TL5 are provided at an angle θ2 with reference to the extending direction (longitudinal direction) of the tubular body 1200.
また、面TL3は、管体1200の延在方向(長手方向)と同一方向の面で形成される。テーパ面TL4とテーパ面TL5とは、管体1200の延在方向(長手方向)を基準として角度θ2で設けられる。 As shown in FIG. 22, the tapered surface TL1 and the tapered surface TL2 are provided at an angle θ1 with respect to the extending direction (longitudinal direction) of the
Further, the surface TL3 is formed by a surface in the same direction as the extending direction (longitudinal direction) of the
その結果、図22に示すように、フランジ付管体1100を他の金属管体1110に接続した場合(図27参照)に、力F4と力F3とが異なる方向に加わるため、管体1200および分割部材1300の1点で環状フランジ部1400を保持する構造ではなく、摺接領域ARの全体を用いて環状フランジ部1400を堅固に保持することができる。
As a result, as shown in FIG. 22, when the flanged tube 1100 is connected to another metal tube 1110 (see FIG. 27), the force F4 and the force F3 are applied in different directions. Instead of the structure in which the annular flange portion 1400 is held at one point of the dividing member 1300, the annular flange portion 1400 can be firmly held by using the entire sliding contact area AR.
なお、本実施の形態においては、角度θ1および角度θ2が異なる角度からなることとしているが、これに限定されず、同じ角度または一部同じ角度を有してもよい。さらに、テーパ面TL1とテーパ面TL2およびテーパ面TL4とテーパ面TL5がそれぞれ一定の角度を有することとしているが、これに限定されず、互いに嵌め合うものであればよい。
In the present embodiment, the angle θ1 and the angle θ2 are different from each other. However, the present invention is not limited to this, and the angles may be the same or partially the same. Furthermore, the taper surface TL1 and the taper surface TL2 and the taper surface TL4 and the taper surface TL5 each have a certain angle.
(配管継手)
図23は、本実施の形態に係る配管継手1500の一例を示す模式的平面図であり、図24は、図23に示す配管継手1500の模式的側面図である。 (Piping joint)
FIG. 23 is a schematic plan view showing an example of the pipe joint 1500 according to the present embodiment, and FIG. 24 is a schematic side view of the pipe joint 1500 shown in FIG.
図23は、本実施の形態に係る配管継手1500の一例を示す模式的平面図であり、図24は、図23に示す配管継手1500の模式的側面図である。 (Piping joint)
FIG. 23 is a schematic plan view showing an example of the pipe joint 1500 according to the present embodiment, and FIG. 24 is a schematic side view of the pipe joint 1500 shown in FIG.
図23および図24に示すように、配管継手1500は、筒部1520および筒部1530の間に、フランジ板1540を備える。
図23に示すように、フランジ板1540には、放射状に、中心が同心円上に位置される孔1550が複数設けられている。この孔1550は、後述するように、フランジ付管体1100または金属管体1110のいずれかまたは両方に配管継手1500を固定するため、またはフランジ付管体1100および金属管体1110の軸心と、配管継手1500の軸心とを一致させるための位置決めの機能を有する。 As shown in FIGS. 23 and 24, the pipe joint 1500 includes aflange plate 1540 between the tube portion 1520 and the tube portion 1530.
As shown in FIG. 23, theflange plate 1540 is provided with a plurality of holes 1550 that are radially centered on concentric circles. As will be described later, the hole 1550 is used to fix the pipe joint 1500 to either or both of the flanged tube 1100 and the metal tube 1110, or the axial centers of the flanged tube 1100 and the metal tube 1110, It has a positioning function for matching the axis of the pipe joint 1500.
図23に示すように、フランジ板1540には、放射状に、中心が同心円上に位置される孔1550が複数設けられている。この孔1550は、後述するように、フランジ付管体1100または金属管体1110のいずれかまたは両方に配管継手1500を固定するため、またはフランジ付管体1100および金属管体1110の軸心と、配管継手1500の軸心とを一致させるための位置決めの機能を有する。 As shown in FIGS. 23 and 24, the pipe joint 1500 includes a
As shown in FIG. 23, the
また、図23および図24に示すように、筒部1520および筒部1530は、円筒状からなる。筒部1520の外周面には、凹部1521が設けられる。筒部1530の外周面には、凹部1531が設けられる。凹部1521は、筒部1520の外周に沿って一周つながるように設けられる。また、凹部1531は、筒部1530の外周に沿って一周つながるように設けられる。
Further, as shown in FIGS. 23 and 24, the cylindrical portion 1520 and the cylindrical portion 1530 are formed in a cylindrical shape. A concave portion 1521 is provided on the outer peripheral surface of the cylindrical portion 1520. A concave portion 1531 is provided on the outer peripheral surface of the cylindrical portion 1530. The concave portion 1521 is provided so as to be connected around the outer periphery of the cylindrical portion 1520. Further, the concave portion 1531 is provided so as to be connected around the outer periphery of the cylindrical portion 1530.
<配管継手の断面>
次いで、図25は、図23に示す配管継手1500の模式的断面図である。図25に示すように、配管継手1500の内部は、筒部1520、フランジ板1540および筒部1530を貫通する孔1525が形成されている。筒部1520側における孔1525の端部の内周面には、傾斜面Cが設けられている。
同様に、筒部1530側における孔1525の端部の内周面にも、傾斜面Cが設けられている。 <Cross section of piping joint>
Next, FIG. 25 is a schematic cross-sectional view of the pipe joint 1500 shown in FIG. As shown in FIG. 25, the pipe joint 1500 has acylindrical portion 1520, a flange plate 1540, and a hole 1525 that penetrates the cylindrical portion 1530. An inclined surface C is provided on the inner peripheral surface of the end portion of the hole 1525 on the cylindrical portion 1520 side.
Similarly, an inclined surface C is also provided on the inner peripheral surface of the end portion of thehole 1525 on the cylindrical portion 1530 side.
次いで、図25は、図23に示す配管継手1500の模式的断面図である。図25に示すように、配管継手1500の内部は、筒部1520、フランジ板1540および筒部1530を貫通する孔1525が形成されている。筒部1520側における孔1525の端部の内周面には、傾斜面Cが設けられている。
同様に、筒部1530側における孔1525の端部の内周面にも、傾斜面Cが設けられている。 <Cross section of piping joint>
Next, FIG. 25 is a schematic cross-sectional view of the pipe joint 1500 shown in FIG. As shown in FIG. 25, the pipe joint 1500 has a
Similarly, an inclined surface C is also provided on the inner peripheral surface of the end portion of the
<Oリング取り付け>
続いて、図26は、凹部1521に、漏水防止部材であるOリング1580が取り付けられた状態を示す模式的断面図である。 <O-ring installation>
Next, FIG. 26 is a schematic cross-sectional view showing a state where an O-ring 1580 that is a water leakage preventing member is attached to the recess 1521.
続いて、図26は、凹部1521に、漏水防止部材であるOリング1580が取り付けられた状態を示す模式的断面図である。 <O-ring installation>
Next, FIG. 26 is a schematic cross-sectional view showing a state where an O-
ここで、本実施の形態における配管継手1500に接続されるフランジ付管体1100または金属管体1110(図27、図28参照)の呼び径が75A(A呼称)の場合、図26に示す筒部1520,1530の筒外径L51は、76.5mmであり、溝径L52は、68.5mmである。また、フランジ板1540の外径L53は、185mmである。
Here, when the nominal diameter of the flanged tube body 1100 or the metal tube body 1110 (see FIGS. 27 and 28) connected to the pipe joint 1500 in this embodiment is 75A (name A), the cylinder shown in FIG. The cylinder outer diameter L51 of the portions 1520 and 1530 is 76.5 mm, and the groove diameter L52 is 68.5 mm. The outer diameter L53 of the flange plate 1540 is 185 mm.
また、呼び径が75A(A呼称)の場合、Oリング1580のサイズは、内径64.6mmであり、断面径は5.7±0.15mm(呼び番号:P65,JIS B2401)である。図26の拡大図に示すように、Oリング1580のつぶししろ(L12/L13)は、20%以上30%以下の範囲であることが好ましい。
なお、本実施の形態において、実測したところ、呼び径が75A(A呼称)の場合、Oリング1580のつぶししろの範囲は、23.9%から24.6%までの範囲であった。 When the nominal diameter is 75A (name A), the O-ring 1580 has an inner diameter of 64.6 mm and a cross-sectional diameter of 5.7 ± 0.15 mm (call number: P65, JIS B2401). As shown in the enlarged view of FIG. 26, the crushing margin (L12 / L13) of the O-ring 1580 is preferably in the range of 20% to 30%.
In the present embodiment, as a result of actual measurement, when the nominal diameter is 75A (name A), the crushing range of the O-ring 1580 is a range from 23.9% to 24.6%.
なお、本実施の形態において、実測したところ、呼び径が75A(A呼称)の場合、Oリング1580のつぶししろの範囲は、23.9%から24.6%までの範囲であった。 When the nominal diameter is 75A (name A), the O-
In the present embodiment, as a result of actual measurement, when the nominal diameter is 75A (name A), the crushing range of the O-
一方、本実施の形態における配管継手1500に接続されるフランジ付管体1100または金属管体1110(図27、図28参照)の呼び径が200A(A呼称)の場合、図26に示す筒部1520,1530の筒外径L51は、192mmであり、溝径L52は、181.5mmである。また、フランジ板1540の外径L53は、412mmである。
On the other hand, when the nominal diameter of the flanged tube body 1100 or the metal tube body 1110 (see FIGS. 27 and 28) connected to the pipe joint 1500 in the present embodiment is 200 A (name A), the cylindrical portion shown in FIG. The cylinder outer diameter L51 of 1520 and 1530 is 192 mm, and the groove diameter L52 is 181.5 mm. The outer diameter L53 of the flange plate 1540 is 412 mm.
本実施の形態において、本実施の形態における配管継手1500に接続されるフランジ付管体1100または金属管体1110(図27、図28参照)の呼び径が200A(A呼称)の場合、Oリング1580のサイズは、内径179.5mmであり、断面径は8.4±0.15mm(呼び番号:P180,JIS B2401)である。また、呼び径が変化しても、図26の拡大図に示すように、Oリング1580のつぶししろ(L12/L13)は、20%以上30%以下の範囲であることが好ましい。
なお、本実施の形態において、実測したところ、呼び径が200A(A呼称)の場合、Oリング1580のつぶししろの範囲は、21.7%から27.0%までの範囲であった。 In the present embodiment, when the nominal diameter of theflanged tube body 1100 or the metal tube body 1110 (see FIGS. 27 and 28) connected to the pipe joint 1500 in the present embodiment is 200 A (name A), an O-ring The size of 1580 is an inner diameter of 179.5 mm, and the cross-sectional diameter is 8.4 ± 0.15 mm (reference number: P180, JIS B2401). Further, even if the nominal diameter changes, as shown in the enlarged view of FIG. 26, the crushing margin (L12 / L13) of the O-ring 1580 is preferably in the range of 20% to 30%.
In the present embodiment, as a result of actual measurement, when the nominal diameter was 200 A (name A), the range of the crushing margin of the O-ring 1580 was a range from 21.7% to 27.0%.
なお、本実施の形態において、実測したところ、呼び径が200A(A呼称)の場合、Oリング1580のつぶししろの範囲は、21.7%から27.0%までの範囲であった。 In the present embodiment, when the nominal diameter of the
In the present embodiment, as a result of actual measurement, when the nominal diameter was 200 A (name A), the range of the crushing margin of the O-
<フランジ付管体1100および金属管体1110の取り付け>
続いて、図27は、フランジ付管体1100および金属管体1110の間に配管継手1500を取り付ける一例を示す模式図であり、図28は、フランジ付管体1100および金属管体1110の間に配管継手1500を取り付けた場合の効果を説明するための模式図である。 <Attachment offlanged tube 1100 and metal tube 1110>
Next, FIG. 27 is a schematic diagram showing an example of attaching a pipe joint 1500 between theflanged tube 1100 and the metal tube 1110, and FIG. 28 is a diagram between the flanged tube 1100 and the metal tube 1110. It is a schematic diagram for demonstrating the effect at the time of attaching the piping coupling 1500.
続いて、図27は、フランジ付管体1100および金属管体1110の間に配管継手1500を取り付ける一例を示す模式図であり、図28は、フランジ付管体1100および金属管体1110の間に配管継手1500を取り付けた場合の効果を説明するための模式図である。 <Attachment of
Next, FIG. 27 is a schematic diagram showing an example of attaching a pipe joint 1500 between the
<管体継手構造1900><配管継手1500の全体が金属からなる場合>
例えば、配管継手1500の全体が金属からなる場合、図27に示すように、配管継手1500の筒部1530をフランジ付管体1100の管体内部1105に挿入する。この場合、フランジ板1540とフランジ付管体1100のフランジ部1400とを万力等の器具により挟持させることで、配管継手1500の筒部1530をフランジ付管体1100の管体内部1105に容易に挿入することができる。 <Tubejoint structure 1900><When the entire pipe joint 1500 is made of metal>
For example, when the entire pipe joint 1500 is made of metal, thetubular portion 1530 of the pipe joint 1500 is inserted into the pipe body inside 1105 of the flanged pipe body 1100 as shown in FIG. In this case, by sandwiching the flange plate 1540 and the flange portion 1400 of the flanged tube body 1100 with an instrument such as a vise, the tube portion 1530 of the pipe joint 1500 can be easily attached to the tube interior 1105 of the flanged tube body 1100. Can be inserted.
例えば、配管継手1500の全体が金属からなる場合、図27に示すように、配管継手1500の筒部1530をフランジ付管体1100の管体内部1105に挿入する。この場合、フランジ板1540とフランジ付管体1100のフランジ部1400とを万力等の器具により挟持させることで、配管継手1500の筒部1530をフランジ付管体1100の管体内部1105に容易に挿入することができる。 <Tube
For example, when the entire pipe joint 1500 is made of metal, the
なお、フランジ付管体1100においては、製造工程が、一般的に押出成形で形成されるため、フランジ付管体1100の外形は規定の値で形成されるが、フランジ付管体1100の内径L100は、基準値に対してばらつきが多い。この場合においても、配管継手1500が金属から形成されているので、容易に配管継手1500をフランジ付管体1100の管体内部1105に挿入することができる。
In addition, since the manufacturing process is generally formed by extrusion molding in the flanged tube body 1100, the outer shape of the flanged tube body 1100 is formed with a specified value, but the inner diameter L100 of the flanged tube body 1100 is formed. Have a large variation with respect to the reference value. Even in this case, since the pipe joint 1500 is made of metal, the pipe joint 1500 can be easily inserted into the pipe body 1105 of the flanged pipe body 1100.
一方、配管継手1500の筒部1520を金属管体1110の管体内部1115に挿入する。この場合、既にフランジ付管体1100のフランジ部1400および配管継手1500のフランジ板1540が一体になっているので、金属管体1110のフランジ部1140とフランジ板1540とを万力等の器具により挟持することで、容易に配管継手1500を金属管体1110の管体内部1115に挿入し、取り付けることができる。
On the other hand, the tube portion 1520 of the pipe joint 1500 is inserted into the tube body inside 1115 of the metal tube body 1110. In this case, since the flange portion 1400 of the flanged tube body 1100 and the flange plate 1540 of the pipe joint 1500 are already integrated, the flange portion 1140 of the metal tube body 1110 and the flange plate 1540 are sandwiched by a tool such as a vise. By doing so, the pipe joint 1500 can be easily inserted into the pipe interior 1115 of the metal pipe 1110 and attached.
続いて、図27に示すように、ボルトBをフランジ付管体1100のフランジ部1400の貫通孔1450、フランジ板1540の孔1550(図23参照)、金属管体1110のフランジ部1140の固定孔を貫通させ、ナットNで固定する。本実施の形態においては、8本のボルトBおよびナットNにより固定を行う。
Subsequently, as shown in FIG. 27, the bolt B is connected to the through hole 1450 of the flange portion 1400 of the flanged tube body 1100, the hole 1550 of the flange plate 1540 (see FIG. 23), and the fixing hole of the flange portion 1140 of the metal tube body 1110. And is fixed with a nut N. In the present embodiment, fixing is performed with eight bolts B and nuts N.
その結果、図28に示すように、配管継手1500は、フランジ付管体1100および金属管体1110の間に的確に取り付けられる。
また、上記の実施の形態において説明行った金属とは、例えば、青銅鋳物(BC6,BC6C)、黄銅鋳物(YBsC3)、改削黄銅引抜棒(押出棒)(C3604BD(BE))、鋳造用黄銅引抜棒(押出棒)(C3771BD(BE))、りん脱酸銅管(C1220T)、銅合金素地上のクロムメッキ(BCrM)、銅合金素地上のニッケルメッキ(BNM)、ネズミ鋳鉄品(FC)、ダクタイル鋳鉄(FCD)、可鍛鋳鉄(FCMB)、炭素工具鋼(SK)、ステンレス(18Cr-8Ni)(SUS304)、ステンレス(18Cr-12Ni-MO)(SUS316)、ステンレス(18Cr-12Ni-MO極低C)(SUS316L)、アルミニウム合金ダイカスト(ADC)または亜鉛合金ダイカスト(ZDC)等、これらの積層管、複合管など任意の材質と構成を選択することができる。さらに、これらの金属にはメッキ等の防錆処理、塗装を行ってもよい。 As a result, as shown in FIG. 28, the pipe joint 1500 is accurately attached between theflanged pipe body 1100 and the metal pipe body 1110.
The metal described in the above embodiment includes, for example, bronze casting (BC6, BC6C), brass casting (YBsC3), modified brass drawn rod (extruded rod) (C3604BD (BE)), and brass for casting. Drawing rod (extrusion rod) (C3771BD (BE)), phosphorous deoxidized copper tube (C1220T), chromium plating on the base of copper alloy (BCrM), nickel plating on the base of copper alloy (BNM), mud cast iron (FC) , Ductile cast iron (FCD), malleable cast iron (FCMB), carbon tool steel (SK), stainless steel (18Cr-8Ni) (SUS304), stainless steel (18Cr-12Ni-MO) (SUS316), stainless steel (18Cr-12Ni-MO) Extremely low C) (SUS316L), aluminum alloy die casting (ADC), zinc alloy die casting (ZDC), etc. Laminate tube, it is possible to select the configuration and any material such as a composite tube. Furthermore, these metals may be subjected to rust prevention treatment such as plating or painting.
また、上記の実施の形態において説明行った金属とは、例えば、青銅鋳物(BC6,BC6C)、黄銅鋳物(YBsC3)、改削黄銅引抜棒(押出棒)(C3604BD(BE))、鋳造用黄銅引抜棒(押出棒)(C3771BD(BE))、りん脱酸銅管(C1220T)、銅合金素地上のクロムメッキ(BCrM)、銅合金素地上のニッケルメッキ(BNM)、ネズミ鋳鉄品(FC)、ダクタイル鋳鉄(FCD)、可鍛鋳鉄(FCMB)、炭素工具鋼(SK)、ステンレス(18Cr-8Ni)(SUS304)、ステンレス(18Cr-12Ni-MO)(SUS316)、ステンレス(18Cr-12Ni-MO極低C)(SUS316L)、アルミニウム合金ダイカスト(ADC)または亜鉛合金ダイカスト(ZDC)等、これらの積層管、複合管など任意の材質と構成を選択することができる。さらに、これらの金属にはメッキ等の防錆処理、塗装を行ってもよい。 As a result, as shown in FIG. 28, the pipe joint 1500 is accurately attached between the
The metal described in the above embodiment includes, for example, bronze casting (BC6, BC6C), brass casting (YBsC3), modified brass drawn rod (extruded rod) (C3604BD (BE)), and brass for casting. Drawing rod (extrusion rod) (C3771BD (BE)), phosphorous deoxidized copper tube (C1220T), chromium plating on the base of copper alloy (BCrM), nickel plating on the base of copper alloy (BNM), mud cast iron (FC) , Ductile cast iron (FCD), malleable cast iron (FCMB), carbon tool steel (SK), stainless steel (18Cr-8Ni) (SUS304), stainless steel (18Cr-12Ni-MO) (SUS316), stainless steel (18Cr-12Ni-MO) Extremely low C) (SUS316L), aluminum alloy die casting (ADC), zinc alloy die casting (ZDC), etc. Laminate tube, it is possible to select the configuration and any material such as a composite tube. Furthermore, these metals may be subjected to rust prevention treatment such as plating or painting.
図28に示すように、例えば、フランジ付管体1100から金属管体1110の方向に高圧流体FLが流される場合、配管継手1500の傾斜面Cは、配管継手1500を通過する高圧流体FLの状態を層流状態に維持する働きを有する。
As shown in FIG. 28, for example, when the high-pressure fluid FL is caused to flow from the flanged tube 1100 to the metal tube 1110, the inclined surface C of the pipe joint 1500 is in a state of the high-pressure fluid FL passing through the pipe joint 1500. In a laminar flow state.
<管体継手構造1900><配管継手の筒部1520,1530のみが樹脂からなる場合>
図29は、フランジ付管体1100および金属管体1110の間に配管継手1500を取り付けた場合の効果を説明するための模式図である。 <Tubejoint structure 1900><When only pipe portions 1520 and 1530 of the pipe joint are made of resin>
FIG. 29 is a schematic diagram for explaining an effect when a pipe joint 1500 is attached between theflanged pipe body 1100 and the metal pipe body 1110.
図29は、フランジ付管体1100および金属管体1110の間に配管継手1500を取り付けた場合の効果を説明するための模式図である。 <Tube
FIG. 29 is a schematic diagram for explaining an effect when a pipe joint 1500 is attached between the
また、配管継手1500の筒部1520,1530が樹脂からなる場合、筒部1520,1530の厚みは、耐圧の観点から3mm以上15mm以下の範囲であることが望ましく、3mm以上10mm以下の範囲であることがさらに望ましい。厚みが3mmより小さければ、強度及び剛性が不足し、筒部1520,1530が破壊してしまう虞がある。また、厚みが、15mmより大きければ、フランジ付管体1100の管体内部1105に筒部1530を挿入した場合、または金属管体1110の管体内部1115に筒部1520を挿入した場合に、管体内部1105、1115の縮径が著しくなり、高圧流体FLの流動抵抗が増大して流れを阻害する虞がある。
また、図29の拡大図に示すように、筒部1520,1530の高圧流体FLの圧力が高圧力の場合、高圧流体FLが傾斜面Cに対して力FSを発生させるとともに、配管継手1500の孔1525を外周方向へ押す力FVを発生させる。 Moreover, when the cylinder parts 1520 and 1530 of the pipe joint 1500 are made of resin, the thickness of the cylinder parts 1520 and 1530 is preferably in the range of 3 mm to 15 mm from the viewpoint of pressure resistance, and is in the range of 3 mm to 10 mm. More desirable. If the thickness is smaller than 3 mm, the strength and rigidity are insufficient, and the cylindrical portions 1520 and 1530 may be destroyed. If the thickness is greater than 15 mm, the tube 1530 is inserted into the tube interior 1105 of the flanged tube 1100 or the tube portion 1520 is inserted into the tube interior 1115 of the metal tube 1110. There is a risk that the diameters of the insides 1105 and 1115 of the body become remarkable, and the flow resistance of the high-pressure fluid FL increases to obstruct the flow.
Further, as shown in the enlarged view of FIG. 29, when the pressure of the high-pressure fluid FL in the cylindrical portions 1520 and 1530 is high, the high-pressure fluid FL generates a force FS against the inclined surface C, and the pipe joint 1500 A force FV that pushes the hole 1525 in the outer circumferential direction is generated.
また、図29の拡大図に示すように、筒部1520,1530の高圧流体FLの圧力が高圧力の場合、高圧流体FLが傾斜面Cに対して力FSを発生させるとともに、配管継手1500の孔1525を外周方向へ押す力FVを発生させる。 Moreover, when the
Further, as shown in the enlarged view of FIG. 29, when the pressure of the high-pressure fluid FL in the
その結果、力FVによりOリング1580がフランジ付管体1100の管体内部1105および金属管体1110の管体内部1115に押し付けられる。その結果、高圧の高圧流体FLを流す場合であっても、配管継手1500の継ぐ近傍から漏水することを防止できる。
As a result, the O-ring 1580 is pressed against the tube interior 1105 of the flanged tube 1100 and the tube interior 1115 of the metal tube 1110 by the force FV. As a result, even when a high-pressure high-pressure fluid FL is flowed, it is possible to prevent water from leaking from the vicinity where the pipe joint 1500 is joined.
<管体継手構造1900><配管継手1500が樹脂の場合>
また、配管継手1500の全体が樹脂からなる場合には、筒部1520,1530の厚みは、耐圧の観点から5mm以上15mm以下の範囲であることが望ましく、フランジ板1540の厚みは、耐圧面から5mm以上、20mm以下の範囲であることが望ましい。筒部1520,1530の厚みが5mmより小さければ、強度及び剛性が不足し、全体が樹脂からなる配管継手1500が破壊してしまう虞がある。 <Tubejoint structure 1900><When pipe joint 1500 is resin>
When the entire pipe joint 1500 is made of resin, the thickness of the cylindrical portions 1520 and 1530 is preferably in the range of 5 mm to 15 mm from the viewpoint of pressure resistance, and the thickness of the flange plate 1540 is from the pressure resistance surface. A range of 5 mm or more and 20 mm or less is desirable. If the thickness of the cylindrical portions 1520 and 1530 is smaller than 5 mm, the strength and rigidity are insufficient, and the pipe joint 1500 made entirely of resin may be destroyed.
また、配管継手1500の全体が樹脂からなる場合には、筒部1520,1530の厚みは、耐圧の観点から5mm以上15mm以下の範囲であることが望ましく、フランジ板1540の厚みは、耐圧面から5mm以上、20mm以下の範囲であることが望ましい。筒部1520,1530の厚みが5mmより小さければ、強度及び剛性が不足し、全体が樹脂からなる配管継手1500が破壊してしまう虞がある。 <Tube
When the entire pipe joint 1500 is made of resin, the thickness of the
また、筒部1520,1530の厚みが15mmより大きければ、フランジ付管体1100の管体内部1105に筒部1530を挿入した場合、または金属管体1110の管体内部1115に筒部1520を挿入した場合に、管体内部1105、1115の縮径が著しくなり、高圧流体FLの流動抵抗が増大して流れを阻害する虞がある。
また、フランジ板1540の厚みが5mmより小さければ、強度及び剛性が不足し、フランジ板1540が破壊してしまう虞がある。
フランジ板1540の厚みが20mmより大きければ、樹脂の厚みが大きくなり、収縮などにより寸法狂いが生じやすくなる虞がある。 Further, if the thickness of the tube portions 1520 and 1530 is larger than 15 mm, the tube portion 1520 is inserted into the tube interior 1105 of the tube body 1100 of the flanged tube body 1100 or into the tube body interior 1115 of the metal tube body 1110. In such a case, the diameters of the tube interiors 1105 and 1115 are remarkably reduced, and the flow resistance of the high-pressure fluid FL is increased, which may hinder the flow.
Further, if the thickness of theflange plate 1540 is smaller than 5 mm, the strength and rigidity are insufficient, and the flange plate 1540 may be destroyed.
If the thickness of theflange plate 1540 is larger than 20 mm, the thickness of the resin is increased, and there is a possibility that a dimensional error is likely to occur due to shrinkage or the like.
また、フランジ板1540の厚みが5mmより小さければ、強度及び剛性が不足し、フランジ板1540が破壊してしまう虞がある。
フランジ板1540の厚みが20mmより大きければ、樹脂の厚みが大きくなり、収縮などにより寸法狂いが生じやすくなる虞がある。 Further, if the thickness of the
Further, if the thickness of the
If the thickness of the
なお、上記の実施の形態において説明を行った樹脂としては、例えば、硬質塩化ビニル樹脂(ポリ塩化ビニル:PVC)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、アクリロニトリル・スチレン樹脂(AS)、エポキシ樹脂(EP)、メラミン樹脂(MF)、ポリカーボネート樹脂(PC)、三弗化エチレン樹脂(PCTFE)、ポリエチレン樹脂(PE)、メタクリル樹脂(アクリル樹脂:PMMA)、アセタール樹脂(POM)、ポリプロピレン樹脂(PP)、ポリスチレン樹脂(PS)、四弗化エチレン樹脂(PTFE)、ポリウレタン樹脂(PUR)またはポリ酢酸ビニル樹脂(PVAC)等の合成樹脂管、繊維強化プラスチック(FRP)、これらの積層管、複合管など任意の材質と構成を選択することができる。
Examples of the resin described in the above embodiment include hard vinyl chloride resin (polyvinyl chloride: PVC), acrylonitrile / butadiene / styrene resin (ABS), acrylonitrile / styrene resin (AS), and epoxy resin. (EP), melamine resin (MF), polycarbonate resin (PC), ethylene trifluoride resin (PCTFE), polyethylene resin (PE), methacrylic resin (acrylic resin: PMMA), acetal resin (POM), polypropylene resin (PP ), Polystyrene resin (PS), tetrafluoroethylene resin (PTFE), polyurethane resin (PUR) or polyvinyl acetate resin (PVAC), etc., fiber reinforced plastic (FRP), laminated tubes of these, composite tubes Any material and configuration can be selected .
なお、本実施の形態において、フランジ付管体1100および金属管体1110が、直管の場合について説明したが、これに限定されず、例えば、曲管、ソケット、スリーブ、チーズ、レジューサ、インクリーザ、ヘッダーおよびキャップ等、その他任意のものであってもよい。また、金属管体1110の代わりに、フランジ付管体1100を用いて、フランジ付管体1100同士を接合してもよい。
In the present embodiment, the case where the flanged tube body 1100 and the metal tube body 1110 are straight pipes has been described. However, the present invention is not limited to this. For example, a curved pipe, socket, sleeve, cheese, reducer, and incrementer In addition, any other things such as a header and a cap may be used. Further, the flanged tube bodies 1100 may be joined to each other using the flanged tube body 1100 instead of the metal tube body 1110.
(他の接続状態の説明)
次に、フランジ付管体1100aに配管継手1500を取り付け、金属管体1110を接続する他の例について説明する。図30はフランジ付管体1100aに配管継手1500を取り付け、金属管体1110を接続する他の例を説明する説明図である。
以下、図30のフランジ付管体1100aに配管継手1500を接続する場合が、図28のフランジ付管体1100に配管継手1500を接続する場合と異なる点について説明する。 (Description of other connection states)
Next, another example in which the pipe joint 1500 is attached to theflanged pipe body 1100a and the metal pipe body 1110 is connected will be described. FIG. 30 is an explanatory view for explaining another example in which the pipe joint 1500 is attached to the flanged pipe body 1100a and the metal pipe body 1110 is connected.
Hereinafter, differences between the case where the pipe joint 1500 is connected to theflanged pipe body 1100a in FIG. 30 and the case where the pipe joint 1500 is connected to the flanged pipe body 1100 in FIG. 28 will be described.
次に、フランジ付管体1100aに配管継手1500を取り付け、金属管体1110を接続する他の例について説明する。図30はフランジ付管体1100aに配管継手1500を取り付け、金属管体1110を接続する他の例を説明する説明図である。
以下、図30のフランジ付管体1100aに配管継手1500を接続する場合が、図28のフランジ付管体1100に配管継手1500を接続する場合と異なる点について説明する。 (Description of other connection states)
Next, another example in which the pipe joint 1500 is attached to the
Hereinafter, differences between the case where the pipe joint 1500 is connected to the
図30に示すように、フランジ付管体1100aにおいては、フランジ付管体1100における複数の貫通孔の代わりに、環状フランジ部1400にボルトBaが埋設されている。当該ボルトBaを配管継手1500の孔1550を貫通させ、さらに金属管体1110のフランジ部の貫通孔を貫通させて、ナットNを用いて締結する。
As shown in FIG. 30, in the flanged tube body 1100 a, bolts Ba are embedded in the annular flange portion 1400 instead of the plurality of through holes in the flanged tube body 1100. The bolt Ba passes through the hole 1550 of the pipe joint 1500 and further passes through the through hole of the flange portion of the metal pipe body 1110 and is fastened using the nut N.
例えば、JIS規格品からなる管体1200にガラス繊維を積層して径大部1210を形成し、環状フランジ部1400の規格を維持しようとした場合、環状フランジ部1400のツバ部分が小さくなる。その結果、ボルトBで固定する際の座金またはワッシャが使用できないという場合がある。
しかしながら、フランジ付管体1100aにおいては、環状フランジ部1400にボルトBaが埋設されているので、容易に接続することができる。 For example, when alarge diameter portion 1210 is formed by laminating glass fibers on a tube body 1200 made of a JIS standard product and the standard of the annular flange portion 1400 is to be maintained, the flange portion of the annular flange portion 1400 becomes small. As a result, a washer or a washer for fixing with the bolt B may not be used.
However, since the bolt Ba is embedded in theannular flange portion 1400 in the flanged tube 1100a, it can be easily connected.
しかしながら、フランジ付管体1100aにおいては、環状フランジ部1400にボルトBaが埋設されているので、容易に接続することができる。 For example, when a
However, since the bolt Ba is embedded in the
(他の例)
また、図31は、図28に示したフランジ付管体1100を複数用いて、間に配管継手1500を取り付ける他の例を示す模式図である。 (Other examples)
FIG. 31 is a schematic diagram showing another example in which a plurality offlanged pipe bodies 1100 shown in FIG. 28 are used and a pipe joint 1500 is attached therebetween.
また、図31は、図28に示したフランジ付管体1100を複数用いて、間に配管継手1500を取り付ける他の例を示す模式図である。 (Other examples)
FIG. 31 is a schematic diagram showing another example in which a plurality of
他の例においては、金属管体1110の代わりに、フランジ付管体1100を用いたものである。その他は、図28と同じである。
In another example, a flanged tube 1100 is used instead of the metal tube 1110. Others are the same as FIG.
また、図32は、図27および図28に示したフランジ付管体1100の他の例を示す模式図である。
図32に示すように、フランジ付管体1100bは、配管継手1500が挿入し易いように、誘導部が設けられている。誘導部は、配管継手1500が挿入し易いように、フランジ付管体1100bの内周端部に傾斜面Dが形成されている。 FIG. 32 is a schematic diagram showing another example of theflanged tube 1100 shown in FIGS. 27 and 28.
As shown in FIG. 32, theflanged pipe body 1100b is provided with a guide portion so that the pipe joint 1500 can be easily inserted. In the guide portion, an inclined surface D is formed at the inner peripheral end of the flanged tube body 1100b so that the pipe joint 1500 can be easily inserted.
図32に示すように、フランジ付管体1100bは、配管継手1500が挿入し易いように、誘導部が設けられている。誘導部は、配管継手1500が挿入し易いように、フランジ付管体1100bの内周端部に傾斜面Dが形成されている。 FIG. 32 is a schematic diagram showing another example of the
As shown in FIG. 32, the
その結果、押出成形による内径L100のばらつきが生じた場合であっても、フランジ付管体1100bの内周面の端部に傾斜面Dが形成されているので、配管継手1500を容易に挿入することができる。
As a result, even if the inner diameter L100 varies due to extrusion, the inclined surface D is formed at the end portion of the inner peripheral surface of the flanged tube body 1100b, so that the pipe joint 1500 can be easily inserted. be able to.
なお、誘導部として、傾斜面Dを例示で説明したが、これに限定されず、R形状、曲面、その他の誘導形状のいずれであってもよく、管体内部1105の内周端部全体、または内周端部の一部に設けられていてもよい。
In addition, although the inclined surface D was demonstrated by way of example as the guide portion, it is not limited to this, and any of an R shape, a curved surface, and other guide shapes may be used. Or you may provide in a part of inner peripheral edge part.
(さらに他の例)
上記の実施の形態においては、環状フランジ部1400の内径L2が、管体1200の径大部1210の外径L1よりも大きく設けた場合について説明したが、さらに他の例においては、環状フランジ部1400の内径L2が、管体1200の径大部1210の外径L1よりも小さい場合について説明を行う。
すなわち、管体1200の径大部1210側から一体となって形成されている環状フランジ部1400を入れることができない場合である。 (Still other examples)
In the above-described embodiment, the case where the inner diameter L2 of theannular flange portion 1400 is provided larger than the outer diameter L1 of the large diameter portion 1210 of the tube body 1200 has been described. The case where the inner diameter L2 of 1400 is smaller than the outer diameter L1 of the large diameter portion 1210 of the tube body 1200 will be described.
That is, this is a case where theannular flange portion 1400 formed integrally from the large diameter portion 1210 side of the tube body 1200 cannot be inserted.
上記の実施の形態においては、環状フランジ部1400の内径L2が、管体1200の径大部1210の外径L1よりも大きく設けた場合について説明したが、さらに他の例においては、環状フランジ部1400の内径L2が、管体1200の径大部1210の外径L1よりも小さい場合について説明を行う。
すなわち、管体1200の径大部1210側から一体となって形成されている環状フランジ部1400を入れることができない場合である。 (Still other examples)
In the above-described embodiment, the case where the inner diameter L2 of the
That is, this is a case where the
図33は、環状フランジ部のさらに他の例を示す模式的斜視図である。
図33に示すように、環状フランジ部1400aは、フランジ部1401,1402からなる。フランジ部1401,1402は、複数の孔1450を有する。フランジ部1401,1402は、同一形状からなり、フランジ部1401およびフランジ部1402を突合わせることで、環状フランジ部1400aを形成する。 FIG. 33 is a schematic perspective view showing still another example of the annular flange portion.
As shown in FIG. 33, theannular flange portion 1400a includes flange portions 1401 and 1402. The flange portions 1401 and 1402 have a plurality of holes 1450. The flange portions 1401 and 1402 have the same shape, and an annular flange portion 1400a is formed by abutting the flange portion 1401 and the flange portion 1402 together.
図33に示すように、環状フランジ部1400aは、フランジ部1401,1402からなる。フランジ部1401,1402は、複数の孔1450を有する。フランジ部1401,1402は、同一形状からなり、フランジ部1401およびフランジ部1402を突合わせることで、環状フランジ部1400aを形成する。 FIG. 33 is a schematic perspective view showing still another example of the annular flange portion.
As shown in FIG. 33, the
(さらに他の例)
図34は、環状フランジ部のさらに他の例を示す模式的斜視図である。
図34に示すように、環状フランジ部1400bは、フランジ部1401b,1402bからなる。フランジ部1401b,1402bは、複数の孔1450を有する。フランジ部1401b,1402bは、同一形状からなる。
また、フランジ部1401b,1402bは、フランジ部1401,1402の突合わせ位置に鉤状凹部1411,1422および鉤状凸部1412,1421が形成されている。
フランジ部1401bの鉤状凹部1411がフランジ部1402bの鉤状凸部1421に嵌め合わされ、フランジ部1401bの鉤状凸部1412がフランジ部1402bの鉤状凹部1422に嵌め合わされる。
その結果、環状フランジ部1400bは、環状フランジ部1400b単体で環状を維持することができる。
なお、鉤状凹部1411,1422および鉤状凸部1412,1421について説明したが、これに限定されず、他の任意の鉤状、その他任意の形状であってもよい。 (Still other examples)
FIG. 34 is a schematic perspective view showing still another example of the annular flange portion.
As shown in FIG. 34, theannular flange portion 1400b includes flange portions 1401b and 1402b. The flange portions 1401b and 1402b have a plurality of holes 1450. The flange portions 1401b and 1402b have the same shape.
In addition, flange portions 1401b and 1402b are formed with flange-shaped concave portions 1411 and 1422 and flange-shaped convex portions 1412 and 1421 at the abutting positions of the flange portions 1401 and 1402, respectively.
The flange-shapedconcave portion 1411 of the flange portion 1401b is fitted into the flange-shaped convex portion 1421 of the flange portion 1402b, and the flange-shaped convex portion 1412 of the flange portion 1401b is fitted to the flange-shaped concave portion 1422 of the flange portion 1402b.
As a result, theannular flange portion 1400b can maintain the annular shape with the annular flange portion 1400b alone.
In addition, although the bowl-shaped recessed parts 1411 and 1422 and the bowl-shaped convex parts 1412 and 1421 have been described, the present invention is not limited to this, and any other bowl shape or any other shape may be used.
図34は、環状フランジ部のさらに他の例を示す模式的斜視図である。
図34に示すように、環状フランジ部1400bは、フランジ部1401b,1402bからなる。フランジ部1401b,1402bは、複数の孔1450を有する。フランジ部1401b,1402bは、同一形状からなる。
また、フランジ部1401b,1402bは、フランジ部1401,1402の突合わせ位置に鉤状凹部1411,1422および鉤状凸部1412,1421が形成されている。
フランジ部1401bの鉤状凹部1411がフランジ部1402bの鉤状凸部1421に嵌め合わされ、フランジ部1401bの鉤状凸部1412がフランジ部1402bの鉤状凹部1422に嵌め合わされる。
その結果、環状フランジ部1400bは、環状フランジ部1400b単体で環状を維持することができる。
なお、鉤状凹部1411,1422および鉤状凸部1412,1421について説明したが、これに限定されず、他の任意の鉤状、その他任意の形状であってもよい。 (Still other examples)
FIG. 34 is a schematic perspective view showing still another example of the annular flange portion.
As shown in FIG. 34, the
In addition,
The flange-shaped
As a result, the
In addition, although the bowl-shaped recessed
続いて、他の例において説明した環状フランジ部1400a,1400bを使用する場合について説明を行う。以下、環状フランジ部1400a,1400bのうち環状フランジ部1400aを例にして説明を行う。
Subsequently, a case where the annular flange portions 1400a and 1400b described in other examples are used will be described. Hereinafter, the annular flange portion 1400a of the annular flange portions 1400a and 1400b will be described as an example.
図35および図36は、環状フランジ部1400aの使用時を説明するための模式図である。
35 and 36 are schematic diagrams for explaining the use of the annular flange portion 1400a.
図35および図36に示すように環状フランジ部1400aを使用する場合、環状フランジ部1400aのフランジ部1401,1402の突合わせが離間しないように、フランジ板1610を用いてもよい。
フランジ板1610をフランジ部1401,1402に対して矢印FFの方向に並べて用いる。それにより、フランジ板1610の孔1650と、フランジ部1401,1402の孔1450とにボルトBが貫通されることで、環状フランジ部1400aのフランジ部1401,1402の突合わせの離間を防止できる。 When theannular flange portion 1400a is used as shown in FIGS. 35 and 36, the flange plate 1610 may be used so that the butts of the flange portions 1401 and 1402 of the annular flange portion 1400a are not separated.
Theflange plate 1610 is used side by side in the direction of the arrow FF with respect to the flange portions 1401 and 1402. Accordingly, the bolt B is passed through the hole 1650 of the flange plate 1610 and the hole 1450 of the flange portions 1401 and 1402, thereby preventing the butt separation of the flange portions 1401 and 1402 of the annular flange portion 1400 a.
フランジ板1610をフランジ部1401,1402に対して矢印FFの方向に並べて用いる。それにより、フランジ板1610の孔1650と、フランジ部1401,1402の孔1450とにボルトBが貫通されることで、環状フランジ部1400aのフランジ部1401,1402の突合わせの離間を防止できる。 When the
The
また、図37および図38は、環状フランジ部1400aの使用時を説明するための模式図である。
図37および図38に示すように、環状フランジ部1400aを使用する場合、環状フランジ部1400aのフランジ部1401,1402の突合わせが離間しないように、リング1620を用いてもよい。 FIGS. 37 and 38 are schematic diagrams for explaining the use of theannular flange portion 1400a.
As shown in FIGS. 37 and 38, when theannular flange portion 1400a is used, a ring 1620 may be used so that the butts of the flange portions 1401 and 1402 of the annular flange portion 1400a are not separated from each other.
図37および図38に示すように、環状フランジ部1400aを使用する場合、環状フランジ部1400aのフランジ部1401,1402の突合わせが離間しないように、リング1620を用いてもよい。 FIGS. 37 and 38 are schematic diagrams for explaining the use of the
As shown in FIGS. 37 and 38, when the
リング1620をフランジ部1401,1402の外周へ矢印FFの方向に取り付けることにより、環状フランジ部1400aの外周を保持することができる。その結果、環状フランジ部1400aのフランジ部1401,1402の突合わせの離間を防止できる。
The outer periphery of the annular flange portion 1400a can be held by attaching the ring 1620 to the outer periphery of the flange portions 1401 and 1402 in the direction of the arrow FF. As a result, it is possible to prevent separation of the flange portions 1401 and 1402 of the annular flange portion 1400a.
さらに、図39および図40は、環状フランジ部1400aの使用時を説明するための模式図である。
図39および図40に示すように、環状フランジ部1400aを使用する場合、環状フランジ部1400aのフランジ部1401,1402の突合わせが離間しないように、リング付フランジ1630を用いてもよい。
リング付フランジ1630は、フランジ板1610とリング1620とをあわせたものである。 Further, FIGS. 39 and 40 are schematic diagrams for explaining the use of theannular flange portion 1400a.
As shown in FIGS. 39 and 40, when theannular flange portion 1400a is used, a flange 1630 with a ring may be used so that the butts of the flange portions 1401 and 1402 of the annular flange portion 1400a are not separated from each other.
The flange withring 1630 is a combination of the flange plate 1610 and the ring 1620.
図39および図40に示すように、環状フランジ部1400aを使用する場合、環状フランジ部1400aのフランジ部1401,1402の突合わせが離間しないように、リング付フランジ1630を用いてもよい。
リング付フランジ1630は、フランジ板1610とリング1620とをあわせたものである。 Further, FIGS. 39 and 40 are schematic diagrams for explaining the use of the
As shown in FIGS. 39 and 40, when the
The flange with
リング付フランジ1630をフランジ部1401,1402に対して矢印FFの方向に取り付けることにより、環状フランジ部1400aの外周を保持しつつ、フランジ板1610の孔1650と、フランジ部1401,1402の孔1450とにボルトBが貫通されることで、環状フランジ部1400aのフランジ部1401,1402の突合わせの離間を確実に防止できる。
By attaching the flange with ring 1630 to the flange portions 1401 and 1402 in the direction of the arrow FF, the hole 1650 of the flange plate 1610 and the holes 1450 of the flange portions 1401 and 1402 are retained while maintaining the outer periphery of the annular flange portion 1400a. By allowing the bolt B to pass through, the abutting separation of the flange portions 1401 and 1402 of the annular flange portion 1400a can be reliably prevented.
なお、上記では、新たにフランジ板1610を用いる場合について説明したが、これに限定されず、フランジ板1610の代わりに、配管継手1500のフランジ板1540を用いてもよい。
In addition, although the case where the flange plate 1610 was newly used was demonstrated above, it is not limited to this, You may use the flange plate 1540 of the pipe joint 1500 instead of the flange plate 1610.
さらに、図41に示すように、リング付フランジ1630の代わりに、配管継手1500のフランジ板1540の端部にリング1590を設けて、リング付フランジ1630の機能を有する配管継手1500aを用いてもよい。
Furthermore, as shown in FIG. 41, instead of the flange with ring 1630, a pipe joint 1500a having the function of the flange with ring 1630 may be used by providing a ring 1590 at the end of the flange plate 1540 of the pipe joint 1500. .
なお、図35から図41までにおいて説明した環状フランジ部1400aの代わりに環状フランジ部1400bを用いてもよい。
In addition, you may use the annular flange part 1400b instead of the annular flange part 1400a demonstrated in FIGS. 35-41.
この場合、環状フランジ部1400の内径L2が、管体1200の径大部1210の外径L1よりも小さいので、環状フランジ部1400a,1400bを、管体1200の径大部1210側から挿入できないが、環状フランジ部1400a,1400bのフランジ部1401,1402により形成することで、容易に環状フランジ部1400a,1400bを装着することができる。その結果、予め管体1200に環状フランジ部1400a,1400bを装着する必要がなく、後から管体1200に環状フランジ部1400a,1400bを装着することができるので、作業効率化を図ることができる。
In this case, since the inner diameter L2 of the annular flange portion 1400 is smaller than the outer diameter L1 of the large diameter portion 1210 of the tubular body 1200, the annular flange portions 1400a and 1400b cannot be inserted from the large diameter portion 1210 side of the tubular body 1200. By forming the flange portions 1401 and 1402 of the annular flange portions 1400a and 1400b, the annular flange portions 1400a and 1400b can be easily mounted. As a result, it is not necessary to previously attach the annular flange portions 1400a and 1400b to the tube body 1200, and the annular flange portions 1400a and 1400b can be attached to the tube body 1200 later, so that work efficiency can be improved.
また、環状フランジ部1400a,1400bを一体に保持するためのフランジ板1610、リング1620、リング付フランジ1630、配管継手1500aを有するので、環状フランジ部1400a,1400bを確実に保持することができる。
Further, since the flange plate 1610, the ring 1620, the flange 1630 with the ring, and the pipe joint 1500a for integrally holding the annular flange portions 1400a and 1400b are provided, the annular flange portions 1400a and 1400b can be reliably held.
以上のように、本発明に係るフランジ付管体1100,1100a,1100bによれば、簡単な作業で環状フランジ部1400を管体1200に取り付けることができ、容易に他の金属管体1110またはフランジ付管体1100,1100a,1100bに接続することができる。
As described above, according to the flanged tubular bodies 1100, 1100a, and 1100b according to the present invention, the annular flange portion 1400 can be attached to the tubular body 1200 with a simple operation, and other metal tubular bodies 1110 or flanges can be easily attached. It can be connected to the attached tubes 1100, 1100a, 1100b.
また、テーパ面TL2とテーパ面TL4とのテーパ角度θ1,θ2とが異なる場合、環状フランジ部1400にかかる力を分散することができる。さらに、テーパ面TL2のテーパ角度θ1は、テーパ面TL4とのテーパ角度θ2よりも小さいので、環状フランジ部1400にかかる力を徐々に分散することができる。
Also, when the taper angles TL1 and θ2 of the tapered surface TL2 and the tapered surface TL4 are different, the force applied to the annular flange portion 1400 can be dispersed. Furthermore, since the taper angle θ1 of the taper surface TL2 is smaller than the taper angle θ2 with the taper surface TL4, the force applied to the annular flange portion 1400 can be gradually dispersed.
また、フランジ付管体1100に対して配管継手1500を挿入した管体継手構造1900により、配管内部に高圧流体を流通させることができる。また、フランジ付管体1100の環状フランジ部1400を取り外すことができるので、搬送時効率を高めることができる。
Moreover, a high-pressure fluid can be circulated inside the pipe by the pipe joint structure 1900 in which the pipe joint 1500 is inserted into the pipe body 1100 with the flange. Moreover, since the annular flange portion 1400 of the flanged tubular body 1100 can be removed, the efficiency during conveyance can be increased.
本発明においては、フランジ付管体1100,1100a,1100bがフランジ付管体に相当し、環状フランジ部1400,1400a,1400bが環状フランジ部に相当し、管体1200が管体に相当し、径大部1210が第1の径形状に相当し、フランジ板1540がフランジ部に相当し、第1分割部材1301および第2分割部材1302が分割部材に相当し、テーパ面TL2が第1テーパ面に相当し、ボルトB、Baが接続治具に相当し、テーパ面TL4が第2テーパ面に相当し、テーパ面TL5が第3テーパ面に相当し、筒部1520が第1筒部に相当し、筒部1530が第2筒部に相当し、Oリング1580が漏水防止部材に相当し、配管継手1500,1500aが管体継手に相当する。
In the present invention, flanged tubular bodies 1100, 1100a, 1100b correspond to flanged tubular bodies, annular flange portions 1400, 1400a, 1400b correspond to annular flange portions, tubular body 1200 corresponds to the tubular body, and diameter. The large portion 1210 corresponds to the first diameter shape, the flange plate 1540 corresponds to the flange portion, the first divided member 1301 and the second divided member 1302 correspond to the divided member, and the tapered surface TL2 becomes the first tapered surface. The bolts B and Ba correspond to the connecting jig, the tapered surface TL4 corresponds to the second tapered surface, the tapered surface TL5 corresponds to the third tapered surface, and the cylindrical portion 1520 corresponds to the first cylindrical portion. The cylinder 1530 corresponds to the second cylinder, the O-ring 1580 corresponds to the water leakage preventing member, and the pipe joints 1500 and 1500a correspond to the pipe joint.
本発明の好ましい実施の形態は上記の通りであるが、本発明はそれらだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施形態が他になされることは理解されよう。さらに、本実施形態において、本発明の構成による作用および効果を述べているが、これら作用および効果は、一例であり、本発明を限定するものではない。
The preferred embodiments of the present invention are as described above, but the present invention is not limited to them. It will be understood that various other embodiments may be made without departing from the spirit and scope of the invention. Furthermore, in this embodiment, although the effect | action and effect by the structure of this invention are described, these effect | actions and effects are examples and do not limit this invention.
The preferred embodiments of the present invention are as described above, but the present invention is not limited to them. It will be understood that various other embodiments may be made without departing from the spirit and scope of the invention. Furthermore, in this embodiment, although the effect | action and effect by the structure of this invention are described, these effect | actions and effects are examples and do not limit this invention.
Claims (19)
- 高圧流体を流通させる一の配管と他の配管とを継ぐ配管継手であって、
前記一の配管の配管内部に嵌合する第1筒部と、
前記第1筒部と連通し、かつ前記他の配管の配管内部に嵌合する第2筒部と、
前記第1筒部と前記第2筒部との間に設けられたフランジ部と、
前記第1筒部および前記第2筒部の筒部外周に設けられた漏水防止部材と、を含むことを特徴とする配管継手。 A pipe joint that connects one pipe through which a high-pressure fluid flows and another pipe,
A first tube portion that fits inside the pipe of the one pipe;
A second tube portion that communicates with the first tube portion and fits inside a pipe of the other tube;
A flange portion provided between the first tube portion and the second tube portion;
And a water leakage preventing member provided on the outer periphery of the cylindrical portion of the first cylindrical portion and the second cylindrical portion. - 前記第1筒部および前記第2筒部の少なくとも一方は、筒部外周凹部を有し、
前記漏水防止部材は、前記筒部外周凹部に取り付けられることを特徴とする請求項1記載の配管継手。 At least one of the first tube portion and the second tube portion has a tube portion outer peripheral recess,
The pipe joint according to claim 1, wherein the water leakage preventing member is attached to the outer circumferential concave portion of the cylindrical portion. - 前記第1筒部の外径と、前記第2筒部の外径とが、異なる径からなることを特徴とする請求項1または2記載の配管継手。 3. The pipe joint according to claim 1, wherein an outer diameter of the first tube portion and an outer diameter of the second tube portion are different from each other.
- 前記第1筒部の外径と、前記第2筒部の外径とが、同一径からなることを特徴とする請求項1または2記載の配管継手。 3. The pipe joint according to claim 1 or 2, wherein the outer diameter of the first cylinder portion and the outer diameter of the second cylinder portion are the same diameter.
- 前記第1筒部の内径と前記第2筒部の内径と前記連通する内径が連続した傾斜曲面を含むことを特徴とする請求項1から4のいずれか1項に記載の配管継手。 The pipe joint according to any one of claims 1 to 4, wherein the pipe joint includes an inclined curved surface in which an inner diameter of the first cylinder part, an inner diameter of the second cylinder part, and the inner diameter communicating with each other are continuous.
- 前記第1筒部および前記第2筒部の連通方向長さが、異なることを特徴とする請求項1から5のいずれか1項に記載の配管継手。 The pipe joint according to any one of claims 1 to 5, wherein lengths in the communication direction of the first tube portion and the second tube portion are different.
- 前記第1筒部および第2筒部の少なくとも一方の内周、かつ端部に、テーパー形状が形成されたことを特徴とする請求項1から6のいずれか1項に記載の配管継手。 The pipe joint according to any one of claims 1 to 6, wherein a tapered shape is formed on an inner periphery and an end of at least one of the first tube portion and the second tube portion.
- 少なくとも前記フランジ部は、金属からなることを特徴とする請求項1から7のいずれか1項に記載の配管継手。 The pipe joint according to any one of claims 1 to 7, wherein at least the flange portion is made of metal.
- 少なくとも前記第1筒部および前記第2筒部の一方は、樹脂からなることを特徴とする請求項1から8のいずれか1項に記載の配管継手。 9. The pipe joint according to any one of claims 1 to 8, wherein at least one of the first cylinder part and the second cylinder part is made of resin.
- 前記フランジ部は、前記一の配管のフランジ部および前記他の配管のフランジ部に形成された固定孔に対応する貫通孔を有することを特徴とする請求項1から9のいずれか1項に記載の配管継手。 The said flange part has a through-hole corresponding to the fixing hole formed in the flange part of said one piping, and the flange part of said other piping, The any one of Claim 1 to 9 characterized by the above-mentioned. Pipe fittings.
- 前記フランジ部は、前記一の配管のフランジ部に形成された固定孔に対応して形成されたタップ溝付の穴と、
前記他の配管のフランジ部に形成された固定孔に対応して形成されたタップ溝付の穴と、を有することを特徴とする請求項1から9のいずれか1項に記載の配管継手。 The flange portion is a hole with a tap groove formed corresponding to a fixing hole formed in the flange portion of the one pipe.
The pipe joint according to any one of claims 1 to 9, further comprising a tapped groove formed corresponding to a fixing hole formed in a flange portion of the other pipe. - 前記請求項1から11のいずれか1項に記載の配管継手と、
前記一の配管と他の配管とを含む配管継手構造であって、
前記一の配管および他の配管の少なくとも一方は、
前記配管の端部に向かって拡大する第1の径形状を有する管体と、
短管の外周面に、他の配管に接続させるためのフランジ部が設けられたフランジ継手と、
前記第1の径形状を有する管体の外周面、および前記フランジ継手の前記短管の内周面の間に挿入される半筒状の中子部材と、を含むことを特徴とする配管継手構造。 The pipe joint according to any one of claims 1 to 11,
A pipe joint structure including the one pipe and another pipe,
At least one of the one pipe and the other pipe is
A tubular body having a first diameter shape that expands toward an end of the pipe;
A flange joint provided with a flange portion for connection to another pipe on the outer peripheral surface of the short pipe;
A pipe joint comprising: a semi-cylindrical core member inserted between an outer peripheral surface of the tubular body having the first diameter shape and an inner peripheral surface of the short pipe of the flange joint. Construction. - 第1筒部と、
前記第1筒部と連通する第2筒部と、
前記第1筒部と前記第2筒部との間に設けられたフランジ部と、
前記第1筒部および前記第2筒部の筒部外周に設けられた漏水防止部材と、を含む配管継手を用いて、高圧流体を流通させる一の配管と他の配管とを継ぐ配管継手を用いた漏水防止方法であって、
前記一の配管の内部に前記第1筒部を挿入し、前記漏水防止部材を前記一の配管の配管内面および前記第1筒部の外面とで圧縮変形させて漏水防止する第1ステップと、
前記他の配管の内部に前記第2筒部を挿入し、前記漏水防止部材を前記他の配管の配管内面および前記第2筒部の外面とで圧縮変形させて漏水防止する第2ステップと、を含むことを特徴とする配管継手を用いた漏水防止方法。 A first tube portion;
A second tube portion communicating with the first tube portion;
A flange portion provided between the first tube portion and the second tube portion;
A pipe joint that connects one pipe for circulating a high-pressure fluid and another pipe using a pipe joint including a water leakage preventing member provided on the outer circumference of the first and second cylinder parts. A leakage prevention method used,
A first step of inserting the first tube portion into the one pipe and compressing and deforming the water leakage preventing member on the inner surface of the pipe and the outer surface of the first tube portion to prevent water leakage;
A second step of preventing water leakage by inserting the second cylinder part into the other pipe and compressing and deforming the water leakage preventing member on the pipe inner surface of the other pipe and the outer surface of the second cylinder part; A method for preventing water leakage using a pipe joint, comprising: - 管体の少なくとも一方の端部に係止されてなるフランジ付管体であって、
前記管体の端部に向かって拡大する第1の径形状を有する管体と、
前記第1の径形状に対応する内面および、前記管体の端部に向かって拡大する第2の径形状を有し、周を分割する分割部材と、
前記第2の径形状に対応する内面を有し、かつ別の管体の開口部に接続させるための環状フランジ部と、を含むことを特徴とするフランジ付管体。 A flanged tubular body locked to at least one end of the tubular body,
A tubular body having a first diameter shape expanding toward an end of the tubular body;
A split member that has an inner surface corresponding to the first diameter shape and a second diameter shape that expands toward an end of the tubular body, and divides the circumference;
An annular flange having an inner surface corresponding to the second diameter shape and connected to an opening of another tubular body. - 前記第1の径形状は、前記端部に向かって徐々に拡大する形状からなり、
前記分割部材の内周面には、前記第1の径形状に応じた第1テーパ面が形成され、
前記第2の径形状は、前記端部に向かって徐々に拡大する形状からなり、
前記環状フランジ部の内周面には、前記第2の径形状に応じた第2テーパ面が形成されたことを特徴とする請求項14記載のフランジ付管体。 The first diameter shape is a shape that gradually expands toward the end,
A first tapered surface corresponding to the first diameter shape is formed on the inner peripheral surface of the divided member,
The second diameter shape is a shape that gradually expands toward the end,
The flanged pipe body according to claim 14, wherein a second tapered surface corresponding to the second diameter shape is formed on an inner peripheral surface of the annular flange portion. - 前記管体の延在方向を基準としたテーパ角度が前記第1テーパ面と前記第2テーパ面とで異なることを特徴とする請求項15記載のフランジ付管体。 The flanged tubular body according to claim 15, wherein a taper angle based on an extending direction of the tubular body is different between the first tapered surface and the second tapered surface.
- 前記第1テーパ面は、前記第2テーパ面よりも前記管体の延在方向を基準としたテーパ角が小さいことを特徴とする請求項15または16に記載のフランジ付管体。 The flanged tubular body according to claim 15 or 16, wherein the first tapered surface has a smaller taper angle with respect to the extending direction of the tubular body than the second tapered surface.
- 前記環状フランジ部には、別の管体の開口部に接続するための孔部が形成されていることを特徴とする請求項14から17のいずれか1項に記載のフランジ付管体。 18. The flanged tubular body according to any one of claims 14 to 17, wherein the annular flange portion is formed with a hole for connection to an opening of another tubular body.
- 高圧流体を流通させる一の管体と他の管体とを継ぐ管体継手構造であって、
前記一の管体および他の管体の少なくとも一方を形成する請求項14から請求項17のいずれか1項に記載のフランジ付管体と、
前記一の管体と他の管体との間に設けられる管体継手と、を含み、
前記管体継手は、
前記一の管体の管体内部に嵌合される第1筒部と、
前記第1筒部と連通し、かつ前記他の管体の管体内部に嵌合される第2筒部と、
前記第1筒部と前記第2筒部との間に設けられたフランジ部と、
前記第1筒部および前記第2筒部の筒部外周に設けられた漏水防止部材と、を有することを特徴とする管体継手構造。
A pipe joint structure that connects one pipe body through which a high-pressure fluid flows and another pipe body,
The flanged tubular body according to any one of claims 14 to 17, which forms at least one of the one tubular body and the other tubular body,
A pipe joint provided between the one pipe body and the other pipe body,
The pipe joint is
A first tubular portion fitted inside the tubular body of the one tubular body;
A second cylindrical portion that communicates with the first cylindrical portion and is fitted inside a tubular body of the other tubular body;
A flange portion provided between the first tube portion and the second tube portion;
A tubular joint structure comprising: a water leakage preventing member provided on an outer periphery of the cylindrical portion of the first cylindrical portion and the second cylindrical portion.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012182232 | 2012-08-21 | ||
JP2012-182232 | 2012-08-21 | ||
JP2012-218237 | 2012-09-28 | ||
JP2012218237A JP2014070702A (en) | 2012-09-28 | 2012-09-28 | Flanged pipe body, and pipe body joint structure |
JP2012-251490 | 2012-11-15 | ||
JP2012251490A JP2014059046A (en) | 2012-08-21 | 2012-11-15 | Piping joint, piping joint structure, and water leakage prevention method using piping joint |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014030316A1 true WO2014030316A1 (en) | 2014-02-27 |
Family
ID=50149646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/004801 WO2014030316A1 (en) | 2012-08-21 | 2013-08-08 | Piping joint, piping joint structure, leak prevention method using piping joints, flanged tubes, and tube joint structures |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014030316A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016013682A1 (en) * | 2014-07-25 | 2016-01-28 | 旭有機材工業株式会社 | Piping member, and connecting or sealing structure using this member |
WO2016069971A1 (en) * | 2014-10-31 | 2016-05-06 | Emerson Process Management Regulator Technologies, Inc. | Valve adapter connection assembly |
EP3460306A1 (en) * | 2017-09-20 | 2019-03-27 | FiberSol GmbH | Pipe with connecting flange |
US20220235887A1 (en) * | 2021-01-27 | 2022-07-28 | Ga Health Company Limited | System for connecting tubing |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1217013A (en) * | 1957-11-11 | 1960-04-29 | Mendip Chemical Engineering Lt | Pipe connection |
JPS56158583U (en) * | 1980-04-09 | 1981-11-26 | ||
DE4127498A1 (en) * | 1991-08-20 | 1993-02-25 | Dietzel Hydraulik Gmbh & Co Kg | Pipe connection using cutting ring - has inner circumferential groove holding widened end of pipe |
JPH06101787A (en) * | 1992-08-03 | 1994-04-12 | Kikoo Kk | Pipe connecting fitting |
JPH11182756A (en) * | 1997-12-22 | 1999-07-06 | Kurimoto Ltd | Loose flange type pipe joint for polyethylene pipe |
JPH11223163A (en) * | 1998-02-05 | 1999-08-17 | Honda Motor Co Ltd | Resin member connection structure |
US20100117356A1 (en) * | 2008-11-09 | 2010-05-13 | Illinois Tool Works Inc. | Adapter |
-
2013
- 2013-08-08 WO PCT/JP2013/004801 patent/WO2014030316A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1217013A (en) * | 1957-11-11 | 1960-04-29 | Mendip Chemical Engineering Lt | Pipe connection |
JPS56158583U (en) * | 1980-04-09 | 1981-11-26 | ||
DE4127498A1 (en) * | 1991-08-20 | 1993-02-25 | Dietzel Hydraulik Gmbh & Co Kg | Pipe connection using cutting ring - has inner circumferential groove holding widened end of pipe |
JPH06101787A (en) * | 1992-08-03 | 1994-04-12 | Kikoo Kk | Pipe connecting fitting |
JPH11182756A (en) * | 1997-12-22 | 1999-07-06 | Kurimoto Ltd | Loose flange type pipe joint for polyethylene pipe |
JPH11223163A (en) * | 1998-02-05 | 1999-08-17 | Honda Motor Co Ltd | Resin member connection structure |
US20100117356A1 (en) * | 2008-11-09 | 2010-05-13 | Illinois Tool Works Inc. | Adapter |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016013682A1 (en) * | 2014-07-25 | 2016-01-28 | 旭有機材工業株式会社 | Piping member, and connecting or sealing structure using this member |
WO2016069971A1 (en) * | 2014-10-31 | 2016-05-06 | Emerson Process Management Regulator Technologies, Inc. | Valve adapter connection assembly |
US10066619B2 (en) | 2014-10-31 | 2018-09-04 | Emerson Process Management Regulator Technologies, Inc. | Valve adapter connection assembly |
US10975862B2 (en) | 2014-10-31 | 2021-04-13 | Emerson Process Management Regulator Technologies, Inc. | Valve adapter connection assembly |
EP3460306A1 (en) * | 2017-09-20 | 2019-03-27 | FiberSol GmbH | Pipe with connecting flange |
US20220235887A1 (en) * | 2021-01-27 | 2022-07-28 | Ga Health Company Limited | System for connecting tubing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4619470A (en) | Flange connection assembly for fiber-reinforced plastic pipe members | |
WO2014030316A1 (en) | Piping joint, piping joint structure, leak prevention method using piping joints, flanged tubes, and tube joint structures | |
CA2807109C (en) | A fluid handling assembly having a robust insert | |
WO1999061833A1 (en) | Multilayer composite pipe, fluid conduit system using multilayer composite pipe and method of making the composite pipe | |
JP6757718B2 (en) | Pipe connecting device | |
MXPA02009337A (en) | Pipe joint assembly and method for using same. | |
US10260658B2 (en) | Underwater pipe assembly and method for assembling underwater pipes | |
JP2014059046A (en) | Piping joint, piping joint structure, and water leakage prevention method using piping joint | |
JP2014009761A (en) | Flanged tube body | |
CN113983252A (en) | High-voltage connecting structure for steel wire mesh reinforced composite pipe and manufacturing method thereof | |
JP2014070702A (en) | Flanged pipe body, and pipe body joint structure | |
JP2015163798A (en) | Piping joint and water leakage prevention method using the same | |
US5988199A (en) | Corporation stop assembly | |
US20220403961A1 (en) | Conduit coupler for coupling stub end conduits | |
KR200399453Y1 (en) | A connecting apparatus of pipes | |
AU2008202859B2 (en) | Bamboo pipe for use as conduits for water/wastewater delivery | |
JP7413006B2 (en) | Synthetic resin flange pipe fittings | |
KR101607825B1 (en) | Connection equipment of filament winding pipe and method for connection using the same | |
JP7372804B2 (en) | pipe joint structure | |
EP4019225A1 (en) | Combined metal / plastic tubing apparatuses and methods of manufacture | |
EP4177508B1 (en) | Composite tube connector assembly | |
EP0088817A1 (en) | Corrosion-restistant pipe coupling structures | |
JP2012051109A (en) | Laminated tube and connection structure thereof | |
JP6573322B2 (en) | Plastic pipe | |
CN102141178B (en) | Fastening type pipe fitting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13831270 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13831270 Country of ref document: EP Kind code of ref document: A1 |