[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014021252A1 - Semiconductor device and production method therefor - Google Patents

Semiconductor device and production method therefor Download PDF

Info

Publication number
WO2014021252A1
WO2014021252A1 PCT/JP2013/070448 JP2013070448W WO2014021252A1 WO 2014021252 A1 WO2014021252 A1 WO 2014021252A1 JP 2013070448 W JP2013070448 W JP 2013070448W WO 2014021252 A1 WO2014021252 A1 WO 2014021252A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent conductive
electrode
gate
substrate
Prior art date
Application number
PCT/JP2013/070448
Other languages
French (fr)
Japanese (ja)
Inventor
安弘 小原
原田 光徳
聖 中原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2014528138A priority Critical patent/JP5964967B2/en
Priority to US14/417,887 priority patent/US9496287B2/en
Publication of WO2014021252A1 publication Critical patent/WO2014021252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof.
  • An active matrix substrate used for a liquid crystal display device or the like includes a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel.
  • a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel.
  • TFT thin film transistor
  • amorphous silicon TFT a TFT having an amorphous silicon film as an active layer
  • polycrystalline silicon TFT a TFT having a polycrystalline silicon film as an active layer
  • oxide semiconductor instead of amorphous silicon or polycrystalline silicon as a material for the active layer of a TFT.
  • Such a TFT is referred to as an “oxide semiconductor TFT”.
  • An oxide semiconductor has higher mobility than amorphous silicon.
  • the oxide semiconductor TFT can operate at a higher speed than the amorphous silicon TFT.
  • the oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, the oxide semiconductor film can be applied to a device that requires a large area.
  • Patent Document 1 discloses an active matrix substrate used for an IPS (In-Plane Switching) type liquid crystal display device.
  • IPS In-Plane Switching
  • a pixel electrode and a drain electrode of a TFT are connected in a contact hole formed in an interlayer insulating layer.
  • a contact portion for connecting a transparent conductive layer such as a pixel electrode and a metal layer such as a drain electrode is provided.
  • the contact resistance may be increased or the adhesion may be lowered depending on the configuration of the contact portion and the material of each layer.
  • the resistance of the contact portion is increased, desired characteristics may not be obtained. Further, the reliability of the semiconductor device may not be ensured due to a decrease in adhesion between the metal layer and the transparent conductive layer in the contact portion.
  • an object of an embodiment of the present invention is to suppress an increase in resistance and a decrease in adhesion in a contact portion in a semiconductor device including a contact portion between a transparent conductive layer and a metal layer.
  • a semiconductor device includes a substrate, a transparent conductive layer supported by the substrate, and an opening formed to cover the transparent conductive layer and at least partially overlaps the transparent conductive layer.
  • the transparent conductive layer and the metal A refractory metal nitride layer is disposed between the layer and the portion located in the opening, and the refractory metal nitride layer is in contact with the upper surface of the transparent conductive layer.
  • the shape of the refractory metal nitride layer is different from the shape of the metal layer when viewed from the normal direction of the substrate.
  • the refractory metal nitride layer is in contact with a portion of the metal layer located in the opening.
  • the semiconductor device further includes a thin film transistor supported by the substrate, and the thin film transistor includes a semiconductor layer including a channel region, a gate electrode, and a gate formed between the gate electrode and the semiconductor layer.
  • the insulating layer includes the gate insulating layer, and the transparent conductive layer functions as a pixel electrode.
  • the gate electrode includes a first gate layer formed of the same metal nitride film as the refractory metal nitride layer.
  • the gate electrode further includes a second gate layer disposed on the first gate layer, and the second gate layer is formed of a material different from that of the first gate layer. ing.
  • the semiconductor device further includes a conductive layer formed of the same conductive film as the second gate layer, between the refractory metal nitride layer and the metal layer.
  • the semiconductor device further includes an insulating layer between the gate electrode, the transparent conductive layer, and the insulating layer.
  • the semiconductor device has a base insulating layer between the substrate, the gate electrode, and the transparent conductive layer.
  • At least a part of the upper surface of the nitride layer is in contact with the insulating layer.
  • a semiconductor device connects a substrate, a transparent conductive layer supported by the substrate, a metal layer formed on the transparent conductive layer, and the transparent conductive layer and the metal layer.
  • a refractory metal nitride layer is disposed between the transparent conductive layer and the metal layer in the contact portion, and the refractory metal nitride layer is transparent.
  • the refractory metal nitride layer is in contact with the upper surface of the conductive layer and viewed from the normal direction of the substrate, and the refractory metal nitride layer is disposed in a region where the metal layer and the transparent conductive layer overlap.
  • the shape of the nitride layer is different from the shape of the metal layer.
  • the refractory metal nitride layer is disposed over the entire region where the metal layer and the transparent conductive layer overlap when viewed from the normal direction of the substrate.
  • the semiconductor device further includes a thin film transistor supported by the substrate, and the thin film transistor includes a semiconductor layer including a channel region, a gate electrode, and a gate formed between the gate electrode and the semiconductor layer.
  • the semiconductor device includes a protective layer formed on the source electrode and the drain electrode, and a common electrode disposed so as to overlap at least part of the transparent conductive layer with the protective layer interposed therebetween. And further.
  • the semiconductor layer is an oxide semiconductor layer.
  • the oxide semiconductor layer contains In, Ga, and Zn.
  • the oxide semiconductor layer has crystallinity.
  • a method for manufacturing a semiconductor device is the above-described method for manufacturing a semiconductor device, wherein after forming the transparent conductive layer on the substrate, before forming the gate electrode and the insulating layer, The nitride layer is formed.
  • the method of manufacturing a semiconductor device includes a step (a) of preparing a substrate, a step (b) of forming a transparent conductive layer on a part of the surface of the substrate, and the step of forming the substrate.
  • a step (c) of forming a metal nitride film made of a refractory metal nitride and a conductive film made of a material different from the metal nitride film in this order on the surface and the transparent conductive layer; and halftone exposure By patterning the metal nitride film and the conductive film from one photomask by the method, the metal nitride film and the conductive film are formed on the surface of the substrate where the transparent conductive layer is not formed.
  • a method of manufacturing a semiconductor device comprising: preparing a substrate; forming a gate electrode on a part of the surface of the substrate; and forming a gate insulating layer on the gate electrode.
  • the semiconductor layer is an oxide semiconductor layer.
  • the oxide semiconductor layer contains In, Ga, and Zn.
  • the oxide semiconductor layer has crystallinity.
  • the upper surface of the transparent conductive layer is in contact between the transparent conductive layer and the metal layer.
  • a refractory metal nitride layer is interposed between the two layers.
  • (A) is a schematic plan view of the TFT substrate 100A of the first embodiment according to the present invention
  • (b) is a schematic cross-sectional view of the TFT substrate 100A along the line AA ′ of (a).
  • (C) is a schematic cross-sectional view of the TFT substrate 100A along the line BB ′ of (a)
  • (d) is an enlarged cross-sectional view of the contact portion. It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100A.
  • (A)-(g) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100A, respectively. It is typical sectional drawing of TFT substrate 100B of 2nd Embodiment by this invention.
  • FIG. 1 It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100B.
  • (A)-(g) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100B, respectively.
  • (A)-(e) is typical sectional drawing for demonstrating the other example of the manufacturing method of TFT substrate 100B, respectively.
  • (A)-(f) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100C, respectively.
  • FIG. 1 It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100D.
  • FIG. 1 (A)-(f) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100D, respectively.
  • FIG. 1 (a) is an AA ′ view of the plan view shown in FIG. 1 (a). The cross-sectional structure along the line is shown, and (b) shows the cross-sectional structure along the line BB ′ of the plan view shown in FIG.
  • FIG. 1 (a) is an AA ′ in the plan view shown in FIG. 1 (a).
  • the cross-sectional structure along the line is shown, and (b) shows the cross-sectional structure along the line BB ′ of the plan view shown in FIG.
  • (A) is a typical top view of TFT substrate 100G of 7th Embodiment by this invention,
  • (b) is typical sectional drawing of TFT substrate 100G along the AA 'line of (a).
  • (C) is a schematic cross-sectional view of the TFT substrate 100G along the line BB ′ of (a), and (d) is an enlarged cross-sectional view of the contact portion.
  • It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100G.
  • (A)-(g) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100G, respectively.
  • (A)-(e) is typical sectional drawing for demonstrating the other example of the manufacturing method of TFT substrate 100G, respectively.
  • the inventor has studied a configuration in which, for example, in an active matrix substrate, a transparent conductive layer functioning as a pixel electrode is disposed below the TFT drain electrode. As a result, it has been found that there is a problem that contact resistance increases or adhesion decreases between the transparent conductive layer and the metal layer which is the drain electrode. It has also been found that the same problem can occur not only in the contact portion between the pixel electrode and the drain electrode but also in the contact portion connecting the transparent conductive layer and the metal layer such as an electrode or wiring thereover.
  • the increase in contact resistance and the decrease in adhesion do not occur so significantly. From this, it is surmised that the above problem is caused by the characteristics of the outermost surface of the transparent conductive layer.
  • the process is not limited to the contact hole formation process, and in the semiconductor device process, the outermost surface of the transparent conductive layer is modified by various treatments performed after the transparent conductive layer is formed. There was also a tendency for the contact resistance to become more unstable.
  • the said problem arises in the contact part in which a transparent conductive layer is lower (board
  • the present inventor has arranged a refractory metal nitride layer between the transparent conductive layer and the metal layer, thereby increasing contact resistance and adhesion.
  • the inventors have found that the reduction can be suppressed and have arrived at the present invention.
  • the semiconductor device of this embodiment includes an oxide semiconductor TFT.
  • the semiconductor device of this embodiment should just be provided with the oxide semiconductor TFT, and includes an active matrix substrate, various display apparatuses, an electronic device, etc. widely.
  • the semiconductor device has a contact portion that electrically connects a transparent conductive layer and a metal layer formed thereon.
  • FIG. 22 is a cross-sectional view schematically showing the contact portion 90 in the semiconductor device of this embodiment.
  • FIG. 23 shows a configuration of a contact portion 80 that directly contacts the transparent conductive layer 3 and the metal layer 7d.
  • the semiconductor device of this embodiment includes a substrate 2, a transparent conductive layer 3 supported by the substrate 2, an insulating layer 5 formed so as to cover the transparent conductive layer 3, and a metal layer 7d. And have.
  • the semiconductor device is provided with a contact portion 90 for electrically connecting the metal layer 7 d and the transparent conductive layer 3.
  • the insulating layer 5 is provided with an opening (contact hole) 5 u located on a part of the upper surface of the transparent conductive layer 3.
  • the opening part 5u should just be arrange
  • the metal layer 7d is formed on the insulating layer 5 and in the opening 5u.
  • a refractory metal nitride layer 20 is disposed between the transparent conductive layer 3 and a portion of the metal layer 7d located in the opening 5u.
  • the nitride layer 20 is provided in contact with the upper surface of the transparent conductive layer 3.
  • the nitride layer 20 is in contact with the portion located in the opening 5u of the metal layer 7d.
  • a further conductive layer may be formed between the portion of the metal layer 7d located in the opening 5u and the nitride layer 20.
  • the contact portion 80 of the comparative example there is a problem that the resistance increases between the transparent conductive layer 3 and the metal layer 7d, and the adhesion between the upper surface of the transparent conductive layer 3 and the metal layer 7d is low. These problems are particularly remarkable when an indium oxide material is used as the transparent conductive layer.
  • the nitride layer 20 is interposed between the transparent conductive layer 3 and the metal layer 7d, the resistance of the contact portion can be kept low. Further, by covering the upper surface of the transparent conductive layer 3 with the nitride layer 20, it is possible to suppress a decrease in adhesion due to the characteristics of the upper surface of the transparent conductive layer 3.
  • the nitride layer 20 is formed on the upper surface of the transparent conductive layer 3 immediately after forming the transparent conductive layer 3, the upper surface of the transparent conductive layer 3 is altered in the manufacturing process, and the contact portion 90 It can suppress more effectively that resistance becomes high or adhesiveness falls.
  • the nitride layer 20 is disposed only at a part of the interface between the metal layer 7d and the transparent conductive layer 3, and the metal layer 7d is formed between the nitride layer 20 and the transparent conductive layer 3 in the opening 5u. It is in contact with both.
  • the nitride layer 20 may be disposed on the entire interface between the metal layer 7d and the transparent conductive layer 3.
  • the opening 5 u may be disposed inside the nitride layer 20. In that case, the metal layer 7d is not in direct contact with the transparent conductive layer 3 in the opening 5u, but is connected to the transparent conductive layer 3 through the nitride layer 20.
  • the transparent conductive layer 3 may be a pixel electrode
  • the metal layer 7d may be a drain electrode 7d of the TFT or an electrode layer electrically connected to the drain electrode 7d.
  • the insulating layer 5 may include a gate insulating layer of the TFT.
  • the semiconductor device of the present embodiment only needs to have a contact portion 90 that electrically connects the transparent conductive layer 3 and the metal layer 7d.
  • a contact portion 90 is a contact between the TFT and the pixel electrode. It does not have to be a part.
  • a terminal part or a connection part for connecting wirings may be used.
  • FIG. 1A is a schematic plan view of a TFT substrate 100A according to an embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view of the TFT substrate 100A along the line AA ′ in FIG. 1A
  • FIG. 1C is the line BB ′ in FIG. It is typical sectional drawing of TFT substrate 100A along.
  • FIG. 1D is an enlarged plan view in which a region including the contact portion in the TFT substrate 100A is enlarged.
  • a TFT substrate 100A includes a substrate 2, a gate electrode 4 and a pixel electrode (transparent conductive layer) 3 formed on the substrate 2, a gate electrode 4 and Insulating layer 5 formed on pixel electrode 3, semiconductor layer 6 overlapping gate electrode 4 with insulating layer 5 interposed therebetween, source electrode 7s and drain electrode (metal layer) 7d electrically connected to semiconductor layer 6
  • a contact portion 90 that electrically connects the drain electrode 7d and the pixel electrode 3 is provided.
  • a refractory metal nitride layer 20 is disposed between a portion of the metal layer 7 d located in the opening 5 u provided in the insulating layer 5 and the upper surface of the transparent conductive layer 3. .
  • the configuration of the contact portion 90 is the same as that described above with reference to FIG. Since the TFT substrate 100A includes such a contact portion 90, the resistance between the pixel electrode 3 and the drain electrode 7d can be kept low, and the adhesion between them can be increased.
  • the shape of the nitride layer 20 and the shape of the drain electrode (metal layer) 7d are different when viewed from the normal direction of the substrate 2. ing. As described above, by separately patterning the nitride layer 20 and the drain electrode 7d, the nitride layer 20 can be disposed only in a necessary region, so that the manufacturing cost can be reduced.
  • the nitride layer 20 after forming the pixel electrode 3 and before forming the insulating layer 5. If the insulating layer 5 is formed before the nitride layer 20, a portion of the upper surface of the pixel electrode 3 exposed at the opening 5 u of the insulating layer 5 may be damaged by the patterning process of the insulating layer 5. On the other hand, when the nitride layer 20 is formed before the formation of the insulating layer 5, the upper surface of the pixel electrode 3 is protected by the nitride layer 20 when the insulating layer 5 is patterned. An increase in resistance and a decrease in adhesion can be more effectively suppressed.
  • the nitride layer 20 is formed before the insulating layer 5, if the shape of the nitride layer 20 is larger than the opening 5 u, at least a part of the upper surface of the nitride layer 20 is in contact with the insulating layer 5. .
  • the nitride layer 20 may be disposed so as to overlap at least a part of the opening 5 u of the insulating layer 5.
  • a part of the nitride layer 20 may overlap the opening 5u, and the other part may be located in a region around the opening 5u.
  • the nitride layer 20 is compared with the configuration in which the nitride layer 20 is disposed so as to overlap the entire opening 5u. The pattern size can be further reduced, and the size of the opening 5u can also be reduced. Therefore, the restriction on the design of the contact portion 90 is also eased.
  • the TFT substrate 100A may include a protective layer 8 formed on the source electrode 7s and the drain electrode 7d, and a common electrode 9 that overlaps at least a part of the pixel electrode 3 with the protective layer 8 interposed therebetween.
  • an auxiliary capacitor having the protective layer 8 as a dielectric layer can be formed.
  • the pixel electrode 3 and the common electrode 9 are formed of a transparent electrode material (for example, ITO (Indium Tin Oxide)), it is possible to suppress a decrease in the aperture ratio of the pixel.
  • An auxiliary capacity formed of a transparent material may be referred to as a “transparent auxiliary capacity”.
  • the common electrode 9 may not be separated for each pixel. For example, it may be provided so as to cover substantially the entire display area. Note that the above-described opening 5u is closer to the substrate 2 than the common electrode 9 is.
  • the TFT substrate 100A has source wirings 7 (m) and 7 (m + 1) electrically connected to the source electrode 7s of the corresponding pixel.
  • Source wirings 7 (m) and 7 (m + 1) are formed on the insulating layer 5.
  • a gate wiring 14 is formed between the pixel electrodes 3 (m) and 3 (m + 1) of adjacent pixels.
  • the pixel electrodes 3 (m) and 3 (m + 1) and the gate wiring 14 are all formed between the substrate 2 and the insulating layer 5.
  • the pixel electrode 3 is formed closer to the substrate 2 than the gate insulating layer (here, the insulating layer 5), and the contact hole (opening 5u) for connecting the drain electrode 7d and the pixel electrode 3 is connected. Is formed in the insulating layer 5.
  • the upper surface of the protective layer 8 formed on the TFT can be made substantially flat. Therefore, the shape of the contact hole hardly affects the liquid crystal alignment of the liquid crystal layer disposed on the protective layer 8 and hardly causes display failure.
  • a contact hole for connecting the pixel electrode and the drain electrode is formed in the protective layer. For this reason, since the vicinity of the contact hole on the upper surface of the protective layer does not become flat, the shape of the contact hole may affect the liquid crystal alignment of the liquid crystal layer disposed on the protective layer.
  • the drain electrode 7d formed above the insulating layer 5 and the nitride layer 20 formed below the insulating layer 5 are brought into contact with each other in the opening 5u of the insulating layer 5.
  • an insulating layer may not be formed between the nitride layer 20 and the drain electrode 7d.
  • the aperture ratio of the pixel can be further increased. The reason for this will be described later.
  • the substrate 2 is typically a transparent substrate, for example, a glass substrate.
  • a plastic substrate can also be used.
  • the plastic substrate includes a substrate formed of a thermosetting resin or a thermoplastic resin, and a composite substrate of these resins and inorganic fibers (for example, glass fibers or glass fiber nonwoven fabrics).
  • the heat-resistant resin material include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), acrylic resin, and polyimide resin.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • acrylic resin acrylic resin
  • polyimide resin polyimide resin
  • the pixel electrodes 3 (m), 3 (m + 1) and the common electrode 9 are transparent conductive layers such as indium oxide and zinc oxide, respectively.
  • transparent conductive layers such as indium oxide and zinc oxide, respectively.
  • ITO Indium Tin Oxide
  • IZO registered trademark
  • the thicknesses of the pixel electrodes 3 (m), 3 (m + 1) and the common electrode 9 may be, for example, 20 nm or more and 200 nm or less (for example, about 100 nm).
  • the refractory metal nitride layer 20 may be, for example, a molybdenum nitride (MoN) layer, a titanium nitride (TiN) layer, a tantalum nitride (TaN) layer, or the like.
  • the thickness of the nitride layer 20 is preferably 5 nm or more, for example. Thereby, the increase in resistance of the contact part 90 can be suppressed more reliably. Further, the thickness of the nitride layer 20 is preferably, for example, equal to or less than the thickness of the insulating layer 5 (for example, 400 nm or less).
  • the gate electrode 4 may be formed integrally with the gate wiring 14.
  • the gate electrode 4 and the gate wiring 14 are, for example, elements selected from Mo (molybdenum), Al (aluminum), Ti (titanium), W (tungsten), Ta (tantalum), Cu (copper), or these elements. It may be formed from a metal film such as an alloy or a metal nitride. Moreover, you may have the structure where those metal films were laminated
  • the thickness of the gate electrode 4 and the gate wiring 14 may be about 50 nm or more and 600 nm or less (for example, about 420 nm).
  • the insulating layer 5 includes SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y), Al 2.
  • a single layer or a stack formed from O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ) can be used.
  • the thickness of the insulating layer 5 is, for example, about 50 nm or more and 600 nm or less.
  • the insulating layer 5 is preferably formed using a rare gas such as Ar (argon).
  • the semiconductor layer 6 may be a silicon-based semiconductor layer such as an amorphous silicon (a-Si) layer, a polysilicon (p-Si) layer, or a microcrystalline silicon ( ⁇ -Si) layer.
  • the semiconductor layer 6 may be an oxide semiconductor layer.
  • the thickness of the semiconductor layer 6 is, for example, about 30 nm to 100 nm (for example, about 50 nm).
  • the TFT having the oxide semiconductor layer has high mobility as described above, the size of the TFT can be reduced and reduction in the aperture ratio of the pixel can be suppressed. It becomes possible.
  • the oxide semiconductor layer can be formed at a lower temperature than the silicon-based semiconductor layer, a substrate having low heat resistance can be used.
  • a semiconductor device applicable to a flexible display can be manufactured by forming an oxide semiconductor layer on a plastic substrate or a film substrate.
  • the oxide semiconductor layer is formed of, for example, an In—Ga—Zn—O based semiconductor film containing In (indium), Ga (gallium), and Zn (zinc) at a ratio of 1: 1: 1.
  • the ratio of In, G, and Zn can be selected as appropriate.
  • an amorphous In—Ga—Zn—O based semiconductor film is used as the In—Ga—Zn—O based semiconductor film, it can be manufactured at a low temperature and high mobility can be realized.
  • an In—Ga—Zn—O-based semiconductor film that exhibits crystallinity with respect to a predetermined crystal axis (C-axis) may be used.
  • the semiconductor layer 6 may be formed using another oxide semiconductor film instead of the In—Ga—Zn—O-based semiconductor film.
  • a semiconductor film, CdO (cadmium oxide), Mg—Zn—O based semiconductor film, or the like may be used.
  • an amorphous ZnO film to which one or a plurality of impurity elements of Group 1 element, Group 13 element, Group 14 element, Group 15 element, Group 17 element and the like are added is added.
  • a state, a polycrystalline state, a microcrystalline state in which an amorphous state and a polycrystalline state are mixed, or a state in which no impurity element is added can be used.
  • the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) are, for example, Mo (molybdenum), Al (aluminum), Ti (titanium), W (tungsten), Ta (tantalum), You may form from metal films, such as an element chosen from Cu (copper), or an alloy which uses these elements as a component. Moreover, you may have the structure where those metal films were laminated
  • the thicknesses of the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) are each preferably about 50 nm to 600 nm. The thickness of the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) is, for example, about 350 nm.
  • the protective layer 8 is formed on the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1).
  • the protective layer 8 include Si-based nitrides such as a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride (SiOxNy; x> y) film, and a silicon nitride oxide (SiNxOy; x> y) film.
  • Si-based nitrides such as a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride (SiOxNy; x> y) film, and a silicon nitride oxide (SiNxOy; x> y) film.
  • an inorganic insulating film (passivation film) containing an oxide can be used.
  • a protective layer 8 is disposed between the common electrode 9 and the pixel electrode 3. Accordingly, a transparent auxiliary capacitor is formed in which the protective layer 8 is a dielectric layer and the transparent common electrode 9 and the pixel electrode 3 are capacitor electrodes. Thereby, when the TFT substrate 100A is used for a display panel, a display panel having a high aperture ratio can be manufactured.
  • the thickness of the protective layer 8 is preferably about 50 nm to 300 nm (for example, about 200 nm), for example.
  • the TFT substrate 100A is used for, for example, a fringe field switching (FFS) mode liquid crystal display device.
  • FFS fringe field switching
  • a display signal voltage is supplied to the pixel electrode 3
  • a common voltage or a counter voltage is supplied to the upper common electrode 9.
  • the common electrode 9 is provided with at least one or more slits 19 (see FIGS. 1A and 1D).
  • FIG. 2 is a block diagram for explaining a manufacturing method of the TFT substrate 100A.
  • 3 (a) to 3 (g) are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100A.
  • the manufacturing method of the TFT substrate 100A includes a pixel electrode forming step PX, a refractory metal nitride layer forming step IM, a gate electrode forming step GT, a gate insulating layer / semiconductor layer forming step GI / PS, It has a source / drain electrode forming step SD, a protective layer forming step PAS, and a common electrode forming step CT, and the process proceeds in this order.
  • FIGS. 3 (a) to 3 (g) A specific manufacturing process will be described with reference to FIGS. 3 (a) to 3 (g). Note that the cross-sectional views shown in FIGS. 3A to 3G correspond to the cross-sectional view shown in FIG.
  • a conductive film (for example, a transparent conductive film such as an ITO film) is formed on the substrate 2 by sputtering, for example, The conductive film is patterned by wet etching or the like to form the pixel electrode 3.
  • the resist (not shown) used for patterning is peeled off.
  • a refractory metal nitride film is formed so as to cover the pixel electrode 3 by sputtering, for example, in a nitrogen atmosphere. . Thereafter, the nitride film is patterned by a photolithography method and a wet etching method to form a nitride layer 20 on a part of the pixel electrode 3. Thereafter, the resist (not shown) is peeled off.
  • the gate electrode formation step GT after forming a conductive film on the substrate 2 by, for example, sputtering, the conductive film is formed by photolithography and wet or dry etching.
  • the gate electrode 4 is formed by patterning. Note that the gate electrode 4 is formed so as not to be electrically connected to the pixel electrode 3. Further, when the gate electrode 4 is patterned, the difference between the conductive film for forming the gate electrode 4 and the nitride layer 20 is used to leave the nitride layer 20 without being removed. The film is selectively etched. After patterning the gate electrode 4, the resist (not shown) used for patterning is peeled off.
  • an insulating film (not shown) is formed on the gate electrode 4 and the pixel electrode 3 by, for example, a CVD (Chemical Vapor Deposition) method. And so on.
  • the insulating film is patterned by a photolithography method, a dry etching method, or the like to form the insulating layer 5 having the opening 5u.
  • the opening 5 u is arranged so as to at least partially overlap with the region where the pixel electrode 3 and the nitride layer 20 overlap when viewed from the normal direction of the substrate 2.
  • the opening 5u is formed so that the entire opening 5u is positioned on the pixel electrode 3. A part (or all) of the upper surface of the nitride layer 20 is exposed by the opening 5u.
  • the resist (not shown) used for patterning is peeled off.
  • a semiconductor film (for example, an In—Ga—Zn—O-based semiconductor film) is formed on the insulating layer 5 by, for example, a sputtering method, and this semiconductor film is formed by a photolithography method, a dry etching method, or the like.
  • the semiconductor layer 6 is formed by patterning.
  • the semiconductor layer 6 is formed so as to overlap the gate electrode 4 with the insulating layer 5 interposed therebetween. After patterning of the semiconductor layer 6, the resist (not shown) used for patterning is peeled off.
  • a metal film (not shown) is formed on the semiconductor layer 6, the insulating layer 5, and the opening 5u by, for example, sputtering. To do. Thereafter, the metal film is patterned by a photolithography method, a wet etching method, or the like to form the source electrode 7s and the drain electrode 7d. After patterning the source electrode 7s and the drain electrode 7d, the resist (not shown) used for patterning is stripped.
  • the source electrode 7s and the drain electrode 7d are electrically connected to the semiconductor layer 6, respectively.
  • a portion in contact with the source electrode 7 s is a source contact region
  • a portion in contact with the drain electrode 7 d is a drain contact region
  • a portion sandwiched between the source contact region and the drain contact region is a channel region.
  • the drain electrode 7d is also in contact with the nitride layer 20 in the opening 5u. You may contact both the nitride layer 20 and the pixel electrode 3 in the opening 5u. In this way, a contact portion 90 that connects the drain electrode 7d and the pixel electrode 3 is obtained.
  • an insulating film (not shown) is formed on the source electrode 7s and the drain electrode 7d by, for example, the CVD method.
  • the insulating film is patterned by a photolithography method, a dry etching method, or the like to form the protective layer 8.
  • the resist (not shown) used for patterning is peeled off.
  • a conductive film (for example, a transparent conductive film) is formed on the protective layer 8 by sputtering, for example, and photolithography and wet processing are performed.
  • the conductive film is patterned by an etching method or the like to form the common electrode 9. After patterning the common electrode 9, the resist (not shown) used for patterning is peeled off.
  • the common electrode 9 is formed so as to overlap a part of the pixel electrode 3 with the insulating layer 5 and the protective layer 8 interposed therebetween.
  • a transparent auxiliary capacitor having the insulating layer 5 and the protective layer 8 as dielectric layers can be formed.
  • the nitride layer 20 is formed after the pixel electrode 3 is formed and before the insulating layer 5 is formed, the upper surface of the pixel electrode 3 is damaged by the patterning of the insulating layer 5. This can be suppressed.
  • the nitride layer 20 is formed after the pixel electrode 3 is formed and before the gate electrode 4 is formed.
  • the nitride layer 20 can be formed after the gate electrode 4 is formed.
  • the surface of the pixel electrode 3 is modified by the gate insulating layer forming step GI and subsequent processes, and deterioration of the characteristics of the contact portion 90 can be suppressed.
  • the nitride layer 20 is formed immediately after the formation of the pixel electrode 3 and a part of the upper surface of the pixel electrode 3 (portion constituting the contact portion 90) is covered (capped), the upper surface of the pixel electrode 3 is more effectively obtained. Can be suppressed.
  • the pixel electrode 3 When an electrode layer made of an ITO polycrystal is formed as the pixel electrode 3, it is preferable to use wet etching for patterning the gate electrode 4 and patterning the nitride layer 20 after the pixel electrode 3 is formed. It can be suppressed that the characteristics of the upper surface of the pixel electrode 3 are deteriorated by dry etching, which causes a decrease in adhesion and an increase in contact resistance.
  • the semiconductor device of this embodiment is a TFT substrate of a display device.
  • FIG. 4 is a schematic cross-sectional view of the TFT substrate 100B of the present embodiment.
  • FIGS. 1A and 1D For a plan view of the TFT substrate 100B and an enlarged plan view of the contact portion, refer to FIGS. 1A and 1D, respectively.
  • FIG. 4 shows a cross-sectional structure along the line A-A ′ of FIG. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
  • the gate electrode 4 (and the gate wiring 14) includes a first gate layer 20a formed of the same metal nitride film as the nitride layer 20, and a first gate layer. It has a stacked structure including the second gate layer 4a formed on 20a.
  • the second gate layer 4a is formed of a conductive material different from that of the first gate layer 20a.
  • a metal film containing an element selected from Mo (molybdenum), Al (aluminum), Ti (titanium), W (tungsten), Ta (tantalum), and Cu (copper) is used. Also good.
  • Other configurations and the thicknesses and materials of the respective components are the same as those of the TFT substrate 100A.
  • the nitride layer 20 is interposed between the drain electrode (metal layer) 7d and the pixel electrode (transparent conductive layer) 3 in the contact portion 90, the contact resistance is increased as in the first embodiment. And the fall of adhesiveness can be suppressed. Furthermore, since the first gate layer 20a made of a refractory metal nitride is disposed under the second gate layer 4a, hillocks in the second gate layer 4a can be suppressed. Further, since the first gate layer 20a functions as a buffer, the adhesion between the gate electrode 4 and its base layer can be improved as compared with the case where the gate electrode is formed only by the second gate layer 4a.
  • the gate electrode 4 and the nitride layer 20 can be formed from one photomask. . Therefore, the number of photomasks can be reduced and manufacturing costs can be reduced.
  • FIG. 5 is a block diagram for explaining an example of a manufacturing method of the TFT substrate 100B.
  • 6A to 6G are schematic cross-sectional views for explaining an example of the manufacturing method of the TFT substrate 100B, and correspond to FIG.
  • the manufacturing method of the TFT substrate 100B includes a pixel electrode forming step PX, a refractory metal nitride layer and first gate layer forming step IM, a second gate layer forming step GT, and a gate insulating layer.
  • a pixel electrode forming step PX a refractory metal nitride layer and first gate layer forming step IM
  • a second gate layer forming step GT a gate insulating layer.
  • / Semiconductor layer forming step GI / PS, source / drain electrode forming step SD, protective layer forming step PAS and common electrode forming step CT and the process proceeds in this order.
  • the pixel electrode 3 is formed on the substrate 2.
  • the formation method of the pixel electrode 3 is the same as the method described above with reference to FIG.
  • a refractory metal nitride film (not shown) is formed on the substrate 2 and is patterned to form a nitride located on a part of the pixel electrode 3.
  • a layer 20 and a first gate layer 20a located on a region where the pixel electrode 3 is not formed are formed.
  • the first gate layer 20a is provided in a region where a gate electrode and a gate wiring are formed.
  • the method for forming the nitride film is the same as the method described above with reference to FIG.
  • the second gate layer 4a is formed on the first gate layer 20a, and the gate electrode 4 is obtained.
  • the method for forming the second gate layer 4a is the same as the method for forming the gate electrode 4 described above with reference to FIG.
  • the pattern of the second gate layer 4a and the pattern of the first gate layer 20a are matched, but the second gate layer 4a overlaps at least a part of the first gate layer 20a. It only has to be.
  • the entire gate electrode 4 and the gate wiring may have a stacked structure including the first gate layer 20a and the second gate layer 4a.
  • only a part of the gate electrode and the gate wiring may have such a stacked structure, and the other part may be configured by only one of the first gate layer 20a or the second gate layer 4a. .
  • the insulating layer 5, the semiconductor layer 6, the source and drain electrodes 7s and 7d, the protective layer 8, and the common electrode 9 are formed. These forming methods are the same as those described above with reference to FIGS. 3 (d) to 3 (g). In this way, the TFT substrate 100B is obtained.
  • the nitride layer 20 is formed to cover a part of the upper surface of the pixel electrode 3. Accordingly, it is possible to prevent the upper surface of the pixel electrode 3 from being modified during the manufacturing process and the characteristics of the contact portion 90 from being deteriorated.
  • the manufacturing method of the TFT substrate 100B is not limited to the above method.
  • the gate layer forming step GT can be performed using one photomask.
  • a refractory metal nitride film (metal nitride film) 20 ′ is formed on the substrate 2 on which the pixel electrode 3 is formed, and on the metal nitride film 20 ′.
  • a conductive film 4 ′ for forming the second gate layer is formed.
  • resist films R1 and R2 having different thicknesses are formed on the conductive film 4 'by a halftone exposure method using a single photomask (halftone mask). Form into shape.
  • a resist film R1 is formed in a region where the contact portion on the pixel electrode 3 is formed, and a resist film R3 thicker than the resist film R1 is formed in a region where the gate electrode and the gate wiring are formed.
  • the metal nitride film 20 'and the conductive film 4' in a region not covered with the resist films R1 and R2 are patterned by a wet etching method.
  • the nitride layer 20 is formed from the metal nitride film 20 'and the conductive layer (etched layer) 4b is formed from the conductive film 4' in the region defined by the resist film R1.
  • the first gate layer 20a is formed from the metal nitride film 20 'and the second gate layer 4a is formed from the conductive film 4' in the region defined by the resist film R2.
  • the first gate layer 20a and the second gate layer 4a constitute the gate electrode 4.
  • the resist film R1 is removed by a dry etching method.
  • a part of the resist film R2 is scraped to obtain a resist film R2 'having a smaller thickness than the resist film R2.
  • the resist film R2 'and the conductive layer 4b are removed by a further dry etching method.
  • the gate insulating layer / semiconductor layer forming step GI / PS, the source / drain electrode forming step SD, and the protective layer forming Through the process PAS and the common electrode formation process CT, the TFT substrate 100B is obtained.
  • the nitride layer 20 and the gate electrode 4 can be formed from one photomask, the number of photomasks can be reduced, and the manufacturing cost can be reduced.
  • the nitride layer 20 and the drain electrode 7d can be connected via the conductive layer 4b, leaving the conductive layer 4b without being removed.
  • an Al layer or Cu layer is used as the second gate layer 4a, an oxide film is formed on the surface, so that the connection with the upper drain electrode 7d becomes unstable, and the effective connection area may be reduced. There is. Therefore, in such a case, it is preferable to remove the conductive layer 4b and bring the nitride layer 20 and the drain electrode 7d into direct contact as in this embodiment.
  • the semiconductor device of this embodiment is a TFT substrate of a display device.
  • FIG. 8 is a schematic cross-sectional view of the TFT substrate 100C of this embodiment.
  • FIG. 8 shows a cross-sectional structure along the line A-A ′ of FIG. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
  • the TFT substrate 100C is different from the above-described TFT substrate 100A (FIG. 1) in that the gate electrode 4 (20a) and the gate wiring 14 are formed using the same metal nitride film as the nitride layer 20. Other configurations and the thicknesses and materials of the respective components are the same as those of the TFT substrate 100A.
  • the gate electrode 4 (20a) and the gate wiring and the nitride layer 20 are formed as a single layer of the same metal nitride film, the resistance of the contact portion 90 can be increased and the number of manufacturing steps can be increased. Decrease in adhesion can be suppressed. Further, when the nitride layer 20 and the gate electrode 4 are formed as separate layers, the nitride layer 20 may be etched when the gate electrode 4 is etched. Although it becomes unstable, according to this embodiment, such instability can be improved and the stability of the process can be improved.
  • FIG. 9 is a block diagram for explaining an example of a manufacturing method of the TFT substrate 100C.
  • FIGS. 10A to 10F are schematic cross-sectional views for explaining an example of the manufacturing method of the TFT substrate 100C, and correspond to FIG.
  • the manufacturing method of the TFT substrate 100C includes a pixel electrode forming step PX, a refractory metal nitride layer and gate electrode forming step IM, a gate insulating layer / semiconductor layer forming step GI / PS, and a source / drain. It has an electrode forming step SD, a protective layer forming step PAS, and a common electrode forming step CT, and the process proceeds in this order.
  • the pixel electrode 3 is formed on the substrate 2.
  • the formation method of the pixel electrode 3 is the same as the method described above with reference to FIG.
  • a refractory metal nitride film (not shown) is formed on the substrate 2 and is patterned to form a nitride located on a part of the pixel electrode 3.
  • the layer 20 and the gate electrode 4 (20a) located on the region where the pixel electrode 3 is not formed are formed.
  • the method for forming and patterning the metal nitride film is the same as that described above with reference to FIG.
  • the insulating layer 5, the semiconductor layer 6, the source and drain electrodes 7s and 7d, the protective layer 8, and the common electrode 9 are formed to obtain the TFT substrate 100C.
  • These forming methods are the same as those described above with reference to FIGS. 3 (d) to 3 (g).
  • the number of photomasks can be reduced because the gate electrode forming step GT can be reduced as compared with the manufacturing method of the TFT substrate 100A described above with reference to FIGS.
  • the contact portion 90 is formed during the insulating layer 5 forming process and the subsequent processes. It can suppress that the upper surface of the pixel electrode 3 located is improved.
  • FIG. 11 is a schematic cross-sectional view of the TFT substrate 100D of the present embodiment.
  • FIG. 11 shows a cross-sectional structure along the line AA ′ in FIG. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
  • the gate electrode 4 (and the gate wiring 14) includes the first gate layer 20a formed of the same metal nitride film as the nitride layer 20, and the first gate layer 20a. And a second gate layer 4a formed on the first gate layer 20a.
  • the second gate layer 4a is formed of a conductive material different from that of the first gate layer 20a.
  • the TFT substrate 100D includes a conductive layer 4b formed of the same conductive film as the second gate layer 4a between the nitride layer 20 and the drain electrode 7d. Conductive layer 4b is in contact with nitride layer 20 and in contact with the portion of drain electrode 7d located at opening 5u.
  • Other configurations and the thicknesses and materials of the respective components are the same as those of the TFT substrate 100A.
  • the gate electrode 4 and the gate wiring, and the conductor layer formed between the nitride layer 20 and the drain electrode 7d in the contact portion 90 are formed of the same two films (metal nitride film and conductive film). ) Are simultaneously formed by patterning. For this reason, it is possible to suppress an increase in resistance and a decrease in adhesion of the contact portion 90 without increasing the number of manufacturing steps. Further, when the nitride layer 20 and the gate electrode 4 are formed as separate layers, the nitride layer 20 may be etched when the gate electrode 4 is etched. Although it becomes unstable, according to this embodiment, such instability can be improved and the stability of the process can be improved.
  • FIG. 12 is a block diagram for explaining an example of a manufacturing method of the TFT substrate 100D.
  • FIGS. 13A to 13F are schematic cross-sectional views for explaining an example of the manufacturing method of the TFT substrate 100D, and correspond to FIG.
  • the manufacturing method of the TFT substrate 100D includes a pixel electrode forming step PX, a refractory metal nitride layer and gate electrode forming step IM / GT, a gate insulating layer / semiconductor layer forming step GI / PS, and a source.
  • the pixel electrode 3 is formed on the substrate 2.
  • the formation method of the pixel electrode 3 is the same as the method described above with reference to FIG.
  • a refractory metal nitride film (not shown) and a conductive film (not shown) are formed on the substrate 2 in this order.
  • a nitride layer 20 formed of a nitride film and a conductive layer 4b formed of a conductive film are formed on a part of the pixel electrode 3.
  • a first gate layer 20a formed of a nitride film and a second gate layer 4a formed of a conductive film are formed on a region where the pixel electrode 3 is not formed.
  • the insulating layer 5, the semiconductor layer 6, the source and drain electrodes 7s and 7d, the protective layer 8, and the common electrode 9 are formed to obtain the TFT substrate 100D.
  • These forming methods are the same as those described above with reference to FIGS. 3 (d) to 3 (g).
  • the drain electrode 7d is formed in contact with the conductive layer 4b in the opening 5u.
  • the gate electrode 4 and the nitride layer 20 can be formed by one photomask, the number of steps (number of photomasks) can be reduced as compared with the manufacturing method of the TFT substrate 100A. Also in this embodiment, since the nitride layer 20 is formed on the upper surface of the pixel electrode 3 after the pixel electrode 3 is formed and before the insulating layer 5 is formed, the insulating layer 5 is formed during or after the forming process. The upper surface of the pixel electrode 3 located in the contact portion 90 can be prevented from being modified.
  • the semiconductor device of this embodiment is a TFT substrate of a display device.
  • FIGS. 14A and 14B are schematic cross-sectional views of the TFT substrate 100E of the present embodiment, respectively.
  • FIGS. 14A and 14B show cross-sectional structures taken along lines A-A ′ and B-B ′ of FIG. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
  • the TFT substrate 100E is different from the TFT substrate 100A in that a further insulating layer 5a is formed between the gate electrode 4, the insulating layer 5, and the pixel electrode 3.
  • the gate insulating layer has a two-layer structure including the insulating layer 5 and the insulating layer 5a, and the pixel electrode 3 is provided between these two layers.
  • the insulating layer 5a is referred to as a “first gate insulating layer”
  • the insulating layer 5 in which the opening 5u is formed is referred to as a “second gate insulating layer”.
  • the first gate insulating layer 5a and the second gate insulating layer 5 are made of, for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (nitriding). It can be formed from silicon oxide, x> y), Al 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ).
  • the lower first gate insulating layer 5a is formed of SiN x or SiN x O y (silicon nitride oxide, x> y). May be. Since the insulating layer formed from the silicon nitride film has a high etching rate, the processing time can be shortened.
  • the first gate insulating layer 5a may be provided on substantially the entire display region (see FIG. 14B).
  • a silicon nitride layer, a silicon nitride oxide layer, or the like is formed to prevent diffusion of impurities and the like from the substrate 2, and insulation is ensured on the upper layer (upper layer). Therefore, a silicon oxide layer, a silicon oxynitride layer, or the like may be formed.
  • the configuration of the gate electrode 4 and the contact portion 90 is not limited to the configuration shown in FIG. In the example shown in FIG. 14, the first gate insulating layer 5a is provided on the TFT substrate 100A (FIG. 1), but the first gate insulating layer 5a may be provided on the other TFT substrates 100B to 100D.
  • the contact portion 90 by increasing the nitride layer 20 between the drain electrode 7d and the pixel electrode 3, an increase in resistance and a decrease in adhesion of the contact portion 90 can be suppressed.
  • the gate electrode 4, the pixel electrode 3, and the nitride layer 20 are formed as separate layers with the insulating layer 5a interposed therebetween, the gate electrode 4 may be affected when the pixel electrode 3 and the nitride layer 20 are processed. The nitride layer 20 can be prevented from being affected during the processing of the gate electrode 4, and the process stability can be improved.
  • the present embodiment can be suitably applied when an oxide semiconductor layer is used as the semiconductor layer 6.
  • an oxide semiconductor layer is used as the semiconductor layer 6.
  • a layer containing oxygen eg, an oxide insulating film such as SiO 2 or SiO x N y (x> y)
  • oxygen vacancies can be recovered by oxygen contained in the oxide layer. Accordingly, oxygen vacancies in the oxide semiconductor layer can be reduced and reduction in resistance of the oxide semiconductor layer can be suppressed.
  • the formation of such an oxide insulating film has a problem that the etching rate is slow and processing tact is required.
  • the first gate insulating layer 5a located on the gate electrode side in the gate insulating layer is formed of an insulating film other than the oxide insulating film (for example, a nitride film such as SiNx)
  • the insulation with respect to the entire thickness of the gate insulating layer is achieved.
  • the thickness ratio (film thickness occupancy) of the oxide film can be reduced. As a result, it is possible to suppress the processing tact while suppressing the resistance reduction of the oxide semiconductor layer.
  • this embodiment when this embodiment is applied to a semiconductor device including an oxide semiconductor TFT having a gate insulating layer having a two-layer structure, the above effect is achieved by using two layers of the gate insulating layer while ensuring high TFT characteristics. (Improvement of process stability) can be obtained.
  • FIG. 15 is a block diagram for explaining a manufacturing method of the TFT substrate 100E.
  • 16 (a) to 16 (h) are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100E.
  • 16 (a) to 16 (h) show a cross-sectional structure corresponding to FIG. 14 (a).
  • the manufacturing method of the TFT substrate 100E includes the gate electrode forming step GT, the first gate insulating layer step GI-1, the pixel electrode forming step PX, the refractory metal nitride layer forming step IM, It has a gate insulating layer / semiconductor layer forming step GI-2 / PS, a source / drain electrode forming step SD, a protective layer forming step PAS, and a common electrode forming step CT, and the process proceeds in this order.
  • the gate electrode 4 is formed by the same method as described above with reference to FIG. 16A.
  • the first gate insulating layer step GI-1 after forming an insulating film (not shown) on the gate electrode 4 by, for example, CVD, photolithography and wet or The insulating film is patterned by a dry etching method or the like to form the first gate insulating layer 5a. Further, after the patterning of the first gate insulating layer 5a, the resist (not shown) used for the patterning is peeled off.
  • the pixel electrode 3 is formed on the gate insulating layer 5a by the same method as described above with reference to FIG. To do.
  • the same method as described above with reference to FIG. 16D the same method as described above with reference to FIG.
  • the nitride layer 20 is formed by this method.
  • the second gate insulating layer 5 and the first gate insulating layer 5 are formed on the first gate insulating layer 5a and the pixel electrode 3.
  • a semiconductor layer 6 is formed.
  • the method for forming the second gate insulating layer 5 and the semiconductor layer 6 is the same as the method for forming the insulating layer 5 and the semiconductor layer 6 described above with reference to FIG.
  • the source electrode 7s, the drain electrode 7d, the protective layer 8 and A common electrode 9 is formed.
  • These forming methods are the same as those described above with reference to FIGS. 3 (e) to 3 (g). In this way, the TFT substrate 100E is obtained.
  • wet etching is used for patterning the nitride layer 20 and patterning the source and drain electrodes performed after the pixel electrode 3 is formed. preferable. It can be suppressed that the characteristics of the upper surface of the pixel electrode 3 are deteriorated by dry etching, which causes a decrease in adhesion and an increase in contact resistance.
  • the sixth embodiment of the semiconductor device according to the present invention will be described below.
  • the semiconductor device of this embodiment is a TFT substrate of a display device.
  • FIGS. 17A and 17B are schematic cross-sectional views of the TFT substrate 100F of the present embodiment, respectively.
  • FIGS. 17A and 17B show cross-sectional structures taken along lines A-A ′ and B-B ′ of FIG. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
  • the TFT substrate 100F is different from the TFT substrate 100A in that a base insulating layer (buffer layer) 15 is formed on the substrate 2 and a gate electrode 4 and a pixel electrode 3 are formed on the base insulating layer 15.
  • a base insulating layer (buffer layer) 15 is formed on the substrate 2 and a gate electrode 4 and a pixel electrode 3 are formed on the base insulating layer 15.
  • the same effect as the TFT substrate 100A of the first embodiment can be obtained.
  • the adhesion to the substrate 2 may be low, but by forming the base insulating layer 15 on the substrate 2, the adhesion of the gate electrode 4 can be improved.
  • the base insulating layer 15 functions as a protective layer for the substrate 2, it is possible to use a substrate that can cause ion elution, such as alkali glass, as the substrate 2.
  • a plastic substrate such as an acrylic resin or a film base material such as PET can be used.
  • substrate other than an alkali free glass can also be widely used as the board
  • an oxide semiconductor layer As the semiconductor layer 6, it is preferable to use an oxide semiconductor layer as the semiconductor layer 6. Since an oxide semiconductor can be processed at a lower temperature than a Si-based semiconductor, an oxide semiconductor film can be formed and patterned on a plastic or a film substrate. Therefore, when a plastic or film substrate is used as the substrate 2 and the oxide semiconductor TFT is formed after the base insulating layer 15 is formed on the surface thereof, a semiconductor device that can be suitably applied to, for example, a flexible display can be manufactured.
  • the base insulating layer 15 for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y), Al A single layer or a laminate formed of 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ) can be used.
  • the thickness of the base insulating layer 15 is, for example, not less than about 50 nm and not more than 600 nm.
  • the configurations of the gate electrode 4 and the contact portion 90 are not limited to the configuration shown in FIG. In FIG. 17, the base insulating layer 15 is formed on the TFT 100A (FIG. 1), but the base insulating layer 15 may be applied to other TFT substrates 100B to 100D.
  • the TFT substrate 100F can be manufactured as follows. First, the base insulating layer 15 is formed on the substrate 2 by a CVD method or the like (buffer layer forming step BU). Subsequently, pixel electrode formation step PX, gate electrode formation step GT, refractory metal nitride layer formation step IM, gate insulating layer / semiconductor layer formation step GI / PS, source / drain electrode formation step SD, protective layer formation step PAS and common electrode forming step CT are performed. Each process after the formation of the base insulating layer 15 is the same as the process described above with reference to FIGS.
  • the semiconductor device of this embodiment is different from the above-described embodiment in that an insulating layer is not formed between the transparent conductive layer and the metal layer.
  • the semiconductor device of this embodiment has a contact portion that connects the transparent conductive layer and the metal layer.
  • a refractory metal nitride layer is disposed between the transparent conductive layer and the metal layer, and the refractory metal nitride layer is in contact with the upper surface of the transparent conductive layer.
  • the refractory metal nitride layer is disposed in a region where the metal layer and the transparent conductive layer overlap, and the shape of the refractory metal nitride layer and the metal layer The shape is different.
  • the metal layer is, for example, a drain electrode or an electrode layer electrically connected to the drain electrode, and the transparent conductive layer is, for example, a pixel electrode.
  • the semiconductor device of the present embodiment only needs to have a contact portion configured as described above, and such a contact portion is not limited to the contact portion between the TFT and the pixel electrode, but a terminal portion or a connection portion. It may be.
  • FIG. 18A is a schematic plan view of a TFT substrate 100G according to an embodiment of the present invention.
  • 18B is a schematic cross-sectional view of the TFT substrate 100G along the line AA ′ in FIG. 18A, and
  • FIG. 18B is a line BB ′ in FIG. It is typical sectional drawing of the TFT substrate 100G along.
  • FIG. 18D is an enlarged plan view in which a region including the contact portion in the TFT substrate 100G is enlarged. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
  • the TFT substrate 100G includes a substrate 2, a gate electrode 4 formed on the substrate 2, an insulating layer 5 covering the gate electrode 4, and an insulating layer 5 A pixel electrode (transparent conductive layer) 3 formed thereon, a semiconductor layer 6 overlapping with the gate electrode 4 through the insulating layer 5, and a source electrode 7s and a drain electrode (metal layer) electrically connected to the semiconductor layer 6 ) 7d.
  • the TFT substrate 100G is provided with a contact portion 90 that electrically connects the drain electrode 7d and the pixel electrode 3.
  • the nitride layer 20 is disposed between the pixel electrode 3 and the drain electrode 7d.
  • the nitride layer 20 is in contact with a part of the upper surface of the pixel electrode 3. Further, when viewed from the normal direction of the substrate 2, the shape of the nitride layer 20 and the shape of the drain electrode 7 d are different.
  • the insulating layer 5 is a gate insulating layer, and the pixel electrode 3 and the nitride layer 20 are provided above the insulating layer 5.
  • the TFT substrate 100G of this embodiment has the nitride layer 20 between the drain electrode 7d and the pixel electrode 3, the resistance between the pixel electrode 3 and the drain electrode 7d can be kept low, And these adhesiveness can be improved.
  • the shape of the nitride layer 20 is different from the shape of the drain electrode 7d. Thus, since the nitride layer 20 and the drain electrode 7d are separately patterned, the nitride layer 20 can be disposed only in a necessary region, and the manufacturing cost can be kept low.
  • the nitride layer 20 when viewed from the normal direction of the substrate 2, the nitride layer 20 is disposed over the entire region where the drain electrode 7 d and the pixel electrode 3 overlap. For this reason, the upper surface of the pixel electrode 3 is not in direct contact with the drain electrode 7d. With such a configuration, a decrease in adhesion and an increase in resistance due to the characteristics of the upper surface of the pixel electrode 3 can be more effectively suppressed. For example, as can be seen from FIG. 18 (d), when viewed from the normal direction of the substrate 2, the above configuration can be realized more reliably by making the width of the nitride layer 20 larger than the width of the drain electrode 7d. .
  • the contact portion is formed in the contact hole of the insulating layer, so that the contact area is limited to the area of the contact hole.
  • the drain electrode 7d and the nitride layer 20 or the nitride layer 20 and the pixel electrode 3 in the contact portion The contact area can be increased. Therefore, the display quality can be further stabilized.
  • the width of the nitride layer 20 is made larger than the width of the drain electrode 7d, the opening area of the pixel is reduced accordingly.
  • FIG. 19 is a block diagram for explaining a manufacturing method of the TFT substrate 100G.
  • 20 (a) to 20 (g) are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100G.
  • the manufacturing method of the TFT substrate 100G includes a gate electrode formation step GT, a gate insulating layer / semiconductor layer formation step GI / PS, a pixel electrode formation step PX, a refractory metal nitride layer formation step IM, It has a source / drain electrode forming step SD, a protective layer forming step PAS, and a common electrode forming step CT, and the process proceeds in this order.
  • the cross-sectional structure shown in FIGS. 20A to 20G corresponds to the cross-sectional structure shown in FIG.
  • the formation method and patterning method of each film are the same as those described above with reference to FIG.
  • the gate electrode formation step GT after forming a conductive film on the substrate 2 by, for example, sputtering, the conductive film is patterned to form the gate electrode 4.
  • an insulating film (not shown) is formed by, for example, a CVD method so as to cover the gate electrode 4.
  • the insulating film 5 is formed by patterning this insulating film.
  • a semiconductor film (not shown) (for example, an In—Ga—Zn—O-based semiconductor film) is formed on the insulating layer 5 by, for example, sputtering, and the semiconductor film is patterned to form the semiconductor layer 6. To do.
  • the semiconductor layer 6 is formed so as to overlap the gate electrode 4 with the insulating layer 5 interposed therebetween.
  • a conductive film (not shown) (for example, a transparent conductive film such as an ITO film) is formed on the insulating layer 5, and then the conductive film is formed. Is patterned to form the pixel electrode 3.
  • a refractory metal nitride film is formed so as to cover the pixel electrode 3 by sputtering in a nitrogen atmosphere, for example. .
  • the nitride film is patterned to form a nitride layer 20 on a part of the upper surface of the pixel electrode 3.
  • a metal film (not shown) is formed on the semiconductor layer 6, the insulating layer 5, and the nitride layer 20 by, for example, sputtering. Form. Thereafter, the metal film is patterned by a photolithography method, a wet etching method, or the like to form the source electrode 7s and the drain electrode 7d.
  • the source electrode 7s and the drain electrode 7d are electrically connected to the semiconductor layer 6, respectively.
  • a portion in contact with the source electrode 7 s is a source contact region
  • a portion in contact with the drain electrode 7 d is a drain contact region
  • a portion sandwiched between the source contact region and the drain contact region is a channel region.
  • the drain electrode 7 d is also electrically connected to the pixel electrode 3 through the nitride layer 20.
  • the drain electrode 7d may be in contact with both the nitride layer 20 and the pixel electrode 3. In this way, a contact portion 90 that connects the drain electrode 7d and the pixel electrode 3 is obtained.
  • the protective layer forming step PAS and the common electrode forming step CT are performed to form the protective layer 8 and the common electrode 9. These forming methods are the same as those described above with reference to FIGS. 3 (f) and 3 (g). In this way, the TFT substrate 100G is obtained.
  • the nitride layer 20 is formed before the source and drain electrodes 7s and 7d are formed, so that the upper surface of the pixel electrode 3 can be protected. For this reason, it is possible to suppress the upper surface of the pixel electrode 3 from being modified in the source and drain electrode formation step and the subsequent steps, and thus it is possible to suppress an increase in resistance of the contact portion and a decrease in reliability.
  • the manufacturing method of the TFT substrate 100G is not limited to the above method.
  • the pixel electrode forming step PX and the refractory metal nitride layer forming step IM in the above method can be performed simultaneously.
  • FIGS. 21A to 21E are views for explaining another example of the manufacturing method of the TFT substrate 100G, and a process PX for simultaneously forming the pixel electrode and the refractory metal nitride layer. It is sectional drawing which shows / IM.
  • the gate electrode 4 and the insulating layer 5 are formed on the substrate 2 by the same method as described above.
  • a transparent conductive film 3 ′ is formed on the insulating layer 5, and a refractory metal nitride film (metal nitride film) 20 ′ is formed on the transparent conductive film 3 ′.
  • resist films R3 and R4 having different thicknesses are formed on the metal nitride film 20 ′ by a halftone exposure method using a single photomask (halftone mask). Form in pattern shape.
  • a resist film R3 is formed in a region where a nitride layer is to be formed, and a resist film R4 thinner than the resist film R3 is formed in a region where a pixel electrode is to be formed (other than a region where nitride is to be formed).
  • the transparent conductive film 3 'and the metal nitride film 20' in a region not covered with the resist films R3 and R4 are patterned by a wet etching method.
  • the pixel electrode 3 is formed from the transparent conductive film 3 ′
  • the nitride layer 20 is formed from the metal nitride film 20 ′.
  • the resist film R4 is removed by a dry etching method.
  • a part of the resist film R3 is removed to form a resist film R3 'having a smaller thickness than the resist film R3.
  • the resist film R3 ' is removed by a known method.
  • FIG. 1 A TFT substrate 100G is obtained.
  • the pixel electrode 3 and the nitride layer 20 can be formed from one photomask, so that the number of photomasks can be reduced and the manufacturing cost can be reduced.
  • the insulating layer 5 is formed between the nitride layer 20 and the drain electrode 7d, and the contact portion 90 is formed in the contact hole of the insulating layer 5.
  • no insulating layer is provided between the nitride layer 20 and the drain electrode 7d.
  • the source wiring 7 (m) and 7 (m + 1) and the pixel electrode 3 (m) are formed.
  • the pixel electrode 3 (m) is formed between adjacent source lines 7 (m) and 7 (m + 1).
  • the distance between the pixel electrode 3 and the source wirings 7 (m) and 7 (m + 1) is set to 5 ⁇ m or more, for example. This is because if the distance between the pixel electrode 3 and the source wiring 7 is too small (for example, less than 5 ⁇ m), there is a possibility of short circuit between them.
  • the distance between the pixel electrode 3 and the source wiring 7 is, for example, less than 5 ⁇ m. Even if the pixel electrode 3 and the source line 7 are arranged so as to overlap each other by about 1 ⁇ m at the maximum, the possibility of short circuit between them is low. Therefore, the distance between the source wirings 7 (m) and 7 (m + 1) and the pixel electrode 3 when viewed from the normal direction of the substrate 2 can be kept small or can be arranged so as to overlap. Become.
  • the distance between the gate wiring 14 and the pixel electrodes 3 (m) and 3 (m + 1) is reduced when the distance between the source wirings 7 (m) and 7 (m + 1) and the pixel electrode 3 is reduced.
  • the effect of increasing the area of the effective opening region v of the pixel is greater than this. Therefore, as shown in FIG. 1D, the pixel aperture ratio can be more effectively improved by adopting the configuration in which the insulating layer 5 is formed between the nitride layer 20 and the drain electrode 7d.
  • the embodiment of the semiconductor device according to the present invention only needs to have a contact portion having a transparent conductive layer, a metal layer on the transparent conductive layer, and a nitride layer disposed between them, and the TFT substrate described above is provided.
  • the present invention is not limited and can be applied to various semiconductor devices. Further, the manufacturing process, the material of each component, the thickness, and the like are not limited to the above-described example. Furthermore, the structure of the TFT is not limited to the above-described example. For example, when an oxide semiconductor TFT is formed, an etch stop layer may be provided so as to be in contact with the channel region. By reducing the resistance of part of the oxide semiconductor film, the oxide semiconductor layer and the pixel electrode can be formed from the same oxide semiconductor film.
  • the TFT substrates 100A to 100G of the above-described embodiments can be applied to display devices in operation modes other than the FFS mode.
  • the present invention may be applied to a vertical electric field drive type display device such as a VA (Vertical Alignment) mode.
  • the common electrode 9 may not be provided.
  • a transparent conductive layer that functions as an auxiliary capacitance electrode may be provided to face the pixel electrode 3, and a transparent auxiliary capacitance may be formed in the pixel.
  • Embodiments of the present invention can be widely applied to various semiconductor devices including a contact portion that connects a transparent conductive layer and a metal layer.
  • circuit boards such as active matrix substrates, liquid crystal display devices, display devices such as organic electroluminescence (EL) display devices and inorganic electroluminescence display devices, imaging devices such as image sensor devices, image input devices, fingerprint readers, etc. It can also be applied to other electronic devices.
  • EL organic electroluminescence
  • imaging devices such as image sensor devices, image input devices, fingerprint readers, etc. It can also be applied to other electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A semiconductor device (100A) is provided with: a transparent conductive layer (3); an insulating layer (5) that is formed so as to cover the transparent conductive layer (3) and that comprises an opening (5u) that at least partially overlaps with the transparent conductive layer (3); a metal layer (7d) that is formed on the insulating layer (5) and within the opening (5u); and a contact section (90) that connects the transparent conductive layer (3) and the metal layer (7d). A nitride layer (20) comprising a metal that has a high melting point is arranged at the contact section (90) between the transparent conductive layer (3) and the part of the metal layer (7d) that is positioned within the opening (5u). The nitride layer (20) comprising a metal that has a high melting point is in contact with the upper surface of the transparent conductive layer (3).

Description

半導体装置およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、半導体装置およびその製造方法に関する。 The present invention relates to a semiconductor device and a manufacturing method thereof.
 液晶表示装置等に用いられるアクティブマトリクス基板は、画素毎に薄膜トランジスタ(Thin Film Transistor;以下、「TFT」)などのスイッチング素子を備えている。このようなスイッチング素子としては、従来から、アモルファスシリコン膜を活性層とするTFT(以下、「アモルファスシリコンTFT」)や多結晶シリコン膜を活性層とするTFT(以下、「多結晶シリコンTFT」)が広く用いられている。また、近年、TFTの活性層の材料として、アモルファスシリコンや多結晶シリコンに代わって、酸化物半導体を用いることも提案されている。このようなTFTを「酸化物半導体TFT」と称する。酸化物半導体は、アモルファスシリコンよりも高い移動度を有している。このため、酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作することが可能である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成されるため、大面積が必要とされる装置にも適用できる。 An active matrix substrate used for a liquid crystal display device or the like includes a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel. Conventionally, as such a switching element, a TFT having an amorphous silicon film as an active layer (hereinafter referred to as “amorphous silicon TFT”) or a TFT having a polycrystalline silicon film as an active layer (hereinafter referred to as “polycrystalline silicon TFT”). Is widely used. In recent years, it has also been proposed to use an oxide semiconductor instead of amorphous silicon or polycrystalline silicon as a material for the active layer of a TFT. Such a TFT is referred to as an “oxide semiconductor TFT”. An oxide semiconductor has higher mobility than amorphous silicon. For this reason, the oxide semiconductor TFT can operate at a higher speed than the amorphous silicon TFT. In addition, since the oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, the oxide semiconductor film can be applied to a device that requires a large area.
 表示装置に用いられるアクティブマトリクス基板では、画素毎にTFTが設けられ、スイッチング素子として機能する。各TFTのドレイン電極は画素電極と接続されている。例えば特許文献1は、IPS(In-Plain Switching)方式の液晶表示装置に用いられるアクティブマトリクス基板を開示している。特許文献1に開示されているアクティブマトリクス基板では、層間絶縁層に形成されたコンタクトホール内で、画素電極とTFTのドレイン電極とを接続させている。 In an active matrix substrate used for a display device, a TFT is provided for each pixel and functions as a switching element. The drain electrode of each TFT is connected to the pixel electrode. For example, Patent Document 1 discloses an active matrix substrate used for an IPS (In-Plane Switching) type liquid crystal display device. In the active matrix substrate disclosed in Patent Document 1, a pixel electrode and a drain electrode of a TFT are connected in a contact hole formed in an interlayer insulating layer.
特開2007-328210号公報JP 2007-328210 A
 上述したように、TFTを備えたアクティブマトリクス基板(TFT基板)などの半導体装置では、例えば画素電極などの透明導電層とドレイン電極などの金属層とを接続するためのコンタクト部が設けられる。 As described above, in a semiconductor device such as an active matrix substrate (TFT substrate) provided with a TFT, for example, a contact portion for connecting a transparent conductive layer such as a pixel electrode and a metal layer such as a drain electrode is provided.
 本発明者が検討したところ、透明導電層と金属層とのコンタクト部では、コンタクト部の構成や各層の材料によっては、コンタクト抵抗が高くなったり、密着性が低下する場合があることを見出した。これは、本発明者が、アクティブマトリクス基板などの半導体装置の種々の構成を検討するなかで見出した知見である。詳しい説明は後述する。 As a result of investigations by the present inventors, it has been found that, in the contact portion between the transparent conductive layer and the metal layer, the contact resistance may be increased or the adhesion may be lowered depending on the configuration of the contact portion and the material of each layer. . This is a finding that the present inventor has found in various configurations of semiconductor devices such as an active matrix substrate. Detailed description will be described later.
 コンタクト部の抵抗が高くなると、所望の特性が得られなくなるおそれがある。また、コンタクト部における金属層と透明導電層との密着性の低下により、半導体装置の信頼性を確保できなくなるおそれがある。 When the resistance of the contact portion is increased, desired characteristics may not be obtained. Further, the reliability of the semiconductor device may not be ensured due to a decrease in adhesion between the metal layer and the transparent conductive layer in the contact portion.
 上記事情に鑑み、本発明の一実施形態の目的は、透明導電層と金属層とのコンタクト部を備えた半導体装置において、コンタクト部における抵抗の増大や密着性の低下を抑制することにある。 In view of the above circumstances, an object of an embodiment of the present invention is to suppress an increase in resistance and a decrease in adhesion in a contact portion in a semiconductor device including a contact portion between a transparent conductive layer and a metal layer.
 本発明の実施形態の半導体装置は、基板と、基板に支持された透明導電層と、前記透明導電層を覆うように形成され、かつ、前記透明導電層と少なくとも部分的に重なる開口部を有する絶縁層と、前記絶縁層上および前記開口部内に形成された金属層と、前記透明導電層と前記金属層とを接続するコンタクト部とを備え、前記コンタクト部において、前記透明導電層と前記金属層のうち前記開口部内に位置する部分との間には高融点金属の窒化物層が配置されており、前記高融点金属の窒化物層は前記透明導電層の上面と接している。 A semiconductor device according to an embodiment of the present invention includes a substrate, a transparent conductive layer supported by the substrate, and an opening formed to cover the transparent conductive layer and at least partially overlaps the transparent conductive layer. An insulating layer; a metal layer formed on the insulating layer and in the opening; and a contact portion that connects the transparent conductive layer and the metal layer. In the contact portion, the transparent conductive layer and the metal A refractory metal nitride layer is disposed between the layer and the portion located in the opening, and the refractory metal nitride layer is in contact with the upper surface of the transparent conductive layer.
 ある実施形態において、前記基板の法線方向から見たとき、前記高融点金属の窒化物層の形状と、前記金属層の形状とは異なっている。 In one embodiment, the shape of the refractory metal nitride layer is different from the shape of the metal layer when viewed from the normal direction of the substrate.
 ある実施形態において、前記高融点金属の窒化物層は前記金属層の前記開口部内に位置する部分と接している。 In one embodiment, the refractory metal nitride layer is in contact with a portion of the metal layer located in the opening.
 ある実施形態において、上記半導体装置は、前記基板に支持された薄膜トランジスタをさらに備え、前記薄膜トランジスタは、チャネル領域を含む半導体層、ゲート電極、前記ゲート電極と前記半導体層との間に形成されたゲート絶縁層、および、前記半導体層に電気的に接続されたソース電極およびドレイン電極を含み、前記金属層は、前記薄膜トランジスタの前記ドレイン電極または前記ドレイン電極と電気的に接続された電極層であり、前記絶縁層は前記ゲート絶縁層を含み、前記透明導電層は画素電極として機能する。 In one embodiment, the semiconductor device further includes a thin film transistor supported by the substrate, and the thin film transistor includes a semiconductor layer including a channel region, a gate electrode, and a gate formed between the gate electrode and the semiconductor layer. An insulating layer, and a source electrode and a drain electrode electrically connected to the semiconductor layer, wherein the metal layer is an electrode layer electrically connected to the drain electrode or the drain electrode of the thin film transistor; The insulating layer includes the gate insulating layer, and the transparent conductive layer functions as a pixel electrode.
 ある実施形態において、前記ゲート電極は、前記高融点金属の窒化物層と同一の金属窒化膜から形成された第1のゲート層を含む。 In one embodiment, the gate electrode includes a first gate layer formed of the same metal nitride film as the refractory metal nitride layer.
 ある実施形態において、前記ゲート電極は、前記第1のゲート層上に配置された第2のゲート層をさらに含み、前記第2のゲート層は前記第1のゲート層とは異なる材料から形成されている。 In one embodiment, the gate electrode further includes a second gate layer disposed on the first gate layer, and the second gate layer is formed of a material different from that of the first gate layer. ing.
 ある実施形態において、上記半導体装置は、前記高融点金属の窒化物層と前記金属層との間に、前記第2のゲート層と同一の導電膜から形成された導電層をさらに有する。 In one embodiment, the semiconductor device further includes a conductive layer formed of the same conductive film as the second gate layer, between the refractory metal nitride layer and the metal layer.
 ある実施形態において、上記半導体装置は、前記ゲート電極と前記透明導電層および前記絶縁層との間に、さらなる絶縁層を有している。 In one embodiment, the semiconductor device further includes an insulating layer between the gate electrode, the transparent conductive layer, and the insulating layer.
 ある実施形態において、上記半導体装置は、前記基板と前記ゲート電極および前記透明導電層との間に、下地絶縁層を有している。 In one embodiment, the semiconductor device has a base insulating layer between the substrate, the gate electrode, and the transparent conductive layer.
 ある実施形態において、前記窒化物層の上面の少なくとも一部は前記絶縁層と接している。 In one embodiment, at least a part of the upper surface of the nitride layer is in contact with the insulating layer.
 本発明の他の実施形態の半導体装置は、基板と、基板に支持された透明導電層と、前記透明導電層の上に形成された金属層と、前記透明導電層と前記金属層とを接続するコンタクト部とを備え、前記コンタクト部において、前記透明導電層と前記金属層との間には高融点金属の窒化物層が配置されており、前記高融点金属の窒化物層は、前記透明導電層の上面と接しており、前記基板の法線方向から見たとき、前記高融点金属の窒化物層は前記金属層と前記透明導電層とが重なった領域に配置され、前記高融点金属の窒化物層の形状と前記金属層の形状とは異なっている。 A semiconductor device according to another embodiment of the present invention connects a substrate, a transparent conductive layer supported by the substrate, a metal layer formed on the transparent conductive layer, and the transparent conductive layer and the metal layer. A refractory metal nitride layer is disposed between the transparent conductive layer and the metal layer in the contact portion, and the refractory metal nitride layer is transparent. The refractory metal nitride layer is in contact with the upper surface of the conductive layer and viewed from the normal direction of the substrate, and the refractory metal nitride layer is disposed in a region where the metal layer and the transparent conductive layer overlap. The shape of the nitride layer is different from the shape of the metal layer.
 ある実施形態において、前記基板の法線方向から見たとき、前記高融点金属の窒化物層は、前記金属層と前記透明導電層とが重なった領域の全体に配置されている。 In one embodiment, the refractory metal nitride layer is disposed over the entire region where the metal layer and the transparent conductive layer overlap when viewed from the normal direction of the substrate.
 ある実施形態において、上記半導体装置は、前記基板に支持された薄膜トランジスタをさらに備え、前記薄膜トランジスタは、チャネル領域を含む半導体層、ゲート電極、前記ゲート電極と前記半導体層との間に形成されたゲート絶縁層、および、前記半導体層に電気的に接続されたソース電極およびドレイン電極を含み、前記金属層および前記透明導電層は、前記ゲート絶縁層の上に配置されており、前記金属層は、前記薄膜トランジスタの前記ドレイン電極または前記ドレイン電極と電気的に接続された電極層であり、前記透明導電層は画素電極として機能する。 In one embodiment, the semiconductor device further includes a thin film transistor supported by the substrate, and the thin film transistor includes a semiconductor layer including a channel region, a gate electrode, and a gate formed between the gate electrode and the semiconductor layer. An insulating layer; and a source electrode and a drain electrode electrically connected to the semiconductor layer, wherein the metal layer and the transparent conductive layer are disposed on the gate insulating layer, and the metal layer includes: The drain electrode of the thin film transistor or an electrode layer electrically connected to the drain electrode, and the transparent conductive layer functions as a pixel electrode.
 ある実施形態において、上記半導体装置は、前記ソース電極および前記ドレイン電極の上に形成された保護層と、前記保護層を介して前記透明導電層の少なくとも一部と重なるように配置された共通電極とをさらに有する。 In one embodiment, the semiconductor device includes a protective layer formed on the source electrode and the drain electrode, and a common electrode disposed so as to overlap at least part of the transparent conductive layer with the protective layer interposed therebetween. And further.
 ある実施形態において、前記半導体層は酸化物半導体層である。 In one embodiment, the semiconductor layer is an oxide semiconductor layer.
 ある実施形態において、前記酸化物半導体層はIn、GaおよびZnを含む。 In one embodiment, the oxide semiconductor layer contains In, Ga, and Zn.
 ある実施形態において、前記酸化物半導体層は結晶性を有する。 In one embodiment, the oxide semiconductor layer has crystallinity.
 本発明の実施形態の半導体装置の製造方法は、上記半導体装置の製造方法であって、前記基板上に、前記透明導電層を形成した後、前記ゲート電極および前記絶縁層を形成する前に、前記窒化物層を形成する。 A method for manufacturing a semiconductor device according to an embodiment of the present invention is the above-described method for manufacturing a semiconductor device, wherein after forming the transparent conductive layer on the substrate, before forming the gate electrode and the insulating layer, The nitride layer is formed.
 本発明の他の実施形態の半導体装置の製造方法は、基板を用意する工程(a)と、前記基板の表面の一部上に透明導電層を形成する工程(b)と、前記基板の前記表面上および前記透明導電層上に高融点金属の窒化物からなる金属窒化膜と、前記金属窒化膜とは異なる材料からなる導電膜とをこの順で形成する工程(c)と、ハーフトーン露光法により、1つのフォトマスクから前記金属窒化膜および前記導電膜をパターニングすることによって、前記基板の前記表面のうち前記透明導電層が形成されていない部分に、前記金属窒化膜および前記導電膜からなるゲート電極を形成するとともに、前記透明導電層上に、前記金属窒化膜から窒化物層を形成する工程(d)と、前記ゲート電極、前記透明導電層および前記窒化物層を覆い、かつ、前記窒化物層の表面の少なくとも一部を露出する開口部を有する絶縁層を形成する工程(e)と、前記絶縁層上に半導体層を形成する工程(f)と、前記半導体層上、前記絶縁層上および前記開口部内に金属膜を形成する工程(g)と、前記金属膜をパターニングして、ソース電極およびドレイン電極を形成する工程であって、前記ドレイン電極は前記開口部内で前記窒化物層と接する工程(h)とを包含する。 The method of manufacturing a semiconductor device according to another embodiment of the present invention includes a step (a) of preparing a substrate, a step (b) of forming a transparent conductive layer on a part of the surface of the substrate, and the step of forming the substrate. A step (c) of forming a metal nitride film made of a refractory metal nitride and a conductive film made of a material different from the metal nitride film in this order on the surface and the transparent conductive layer; and halftone exposure By patterning the metal nitride film and the conductive film from one photomask by the method, the metal nitride film and the conductive film are formed on the surface of the substrate where the transparent conductive layer is not formed. A step (d) of forming a nitride layer from the metal nitride film on the transparent conductive layer, covering the gate electrode, the transparent conductive layer, and the nitride layer; and A step (e) of forming an insulating layer having an opening exposing at least a part of the surface of the nitride layer, a step (f) of forming a semiconductor layer on the insulating layer, the semiconductor layer, Forming a metal film on the insulating layer and in the opening; and patterning the metal film to form a source electrode and a drain electrode, wherein the drain electrode is nitrided in the opening. A step (h) in contact with the physical layer.
 本発明のさらに他の実施形態の半導体装置の製造方法は、基板を用意する工程(a)と、前記基板の表面の一部上にゲート電極を形成し、前記ゲート電極上にゲート絶縁層を介して半導体層を形成する工程(b)と、前記ゲート絶縁層上および前記半導体層上に、透明導電膜、および高融点金属の窒化物からなる金属窒化膜を形成する工程(c)と、ハーフトーン露光法により、1つのフォトマスクから前記透明導電膜および前記金属窒化膜をパターニングすることによって、前記基板の前記表面のうち前記ゲート電極が形成されていない部分に、前記透明導電膜から透明導電層を形成するとともに、前記透明導電層の一部上に、前記金属窒化膜から窒化物層を形成する工程(d)と、前記半導体層、前記透明導電層および前記窒化物層を覆う金属膜を形成する工程(e)と、前記金属膜をパターニングして、ソース電極およびドレイン電極を形成する工程であって、前記ドレイン電極は前記窒化物層と接する工程(f)とを包含する。 According to still another embodiment of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: preparing a substrate; forming a gate electrode on a part of the surface of the substrate; and forming a gate insulating layer on the gate electrode. A step (b) of forming a semiconductor layer, a step (c) of forming a transparent conductive film and a metal nitride film made of a refractory metal nitride on the gate insulating layer and the semiconductor layer, By patterning the transparent conductive film and the metal nitride film from one photomask by a halftone exposure method, the transparent conductive film is transparent to the surface of the substrate where the gate electrode is not formed. Forming a conductive layer and forming a nitride layer from the metal nitride film on a part of the transparent conductive layer; and the semiconductor layer, the transparent conductive layer, and the nitride layer. A step (e) of forming a metal film, and a step of patterning the metal film to form a source electrode and a drain electrode, wherein the drain electrode is in contact with the nitride layer (f). To do.
 ある実施形態において、前記半導体層は酸化物半導体層である。 In one embodiment, the semiconductor layer is an oxide semiconductor layer.
 ある実施形態において、前記酸化物半導体層は、In、GaおよびZnを含む。 In one embodiment, the oxide semiconductor layer contains In, Ga, and Zn.
 ある実施形態において、前記酸化物半導体層は結晶性を有する。 In one embodiment, the oxide semiconductor layer has crystallinity.
 本発明の実施形態では、透明導電層と、透明導電層の上に形成された金属層とを接続させるコンタクト部において、透明導電層と金属層との間に、透明導電層の上面に接するように高融点金属の窒化層を介在させる。これにより、透明導電層と金属層との間の抵抗を低く抑えることができる。また、金属層と透明導電層との密着性が低いことに起因する特性や信頼性の低下を抑制できる。 In the embodiment of the present invention, in the contact portion that connects the transparent conductive layer and the metal layer formed on the transparent conductive layer, the upper surface of the transparent conductive layer is in contact between the transparent conductive layer and the metal layer. A refractory metal nitride layer is interposed between the two layers. Thereby, resistance between a transparent conductive layer and a metal layer can be restrained low. Moreover, the fall of the characteristic and reliability resulting from the low adhesiveness of a metal layer and a transparent conductive layer can be suppressed.
(a)は本発明による第1の実施形態のTFT基板100Aの模式的な平面図であり、(b)は(a)のA-A’線に沿ったTFT基板100Aの模式的な断面図であり、(c)は(a)のB-B’線に沿ったTFT基板100Aの模式的な断面図であり、(d)はコンタクト部の拡大断面図である。(A) is a schematic plan view of the TFT substrate 100A of the first embodiment according to the present invention, and (b) is a schematic cross-sectional view of the TFT substrate 100A along the line AA ′ of (a). (C) is a schematic cross-sectional view of the TFT substrate 100A along the line BB ′ of (a), and (d) is an enlarged cross-sectional view of the contact portion. TFT基板100Aの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100A. (a)~(g)は、それぞれ、TFT基板100Aの製造方法の一例を説明するための模式的な断面図である。(A)-(g) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100A, respectively. 本発明による第2の実施形態のTFT基板100Bの模式的な断面図である。It is typical sectional drawing of TFT substrate 100B of 2nd Embodiment by this invention. TFT基板100Bの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100B. (a)~(g)は、それぞれ、TFT基板100Bの製造方法の一例を説明するための模式的な断面図である。(A)-(g) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100B, respectively. (a)~(e)は、それぞれ、TFT基板100Bの製造方法の他の例を説明するための模式的な断面図である。(A)-(e) is typical sectional drawing for demonstrating the other example of the manufacturing method of TFT substrate 100B, respectively. 本発明による第3の実施形態のTFT基板100Cの模式的な断面図である。It is typical sectional drawing of TFT substrate 100C of 3rd Embodiment by this invention. TFT基板100Cの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100C. (a)~(f)は、それぞれ、TFT基板100Cの製造方法の一例を説明するための模式的な断面図である。(A)-(f) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100C, respectively. 本発明による第4の実施形態のTFT基板100Dの模式的な断面図である。It is typical sectional drawing of TFT substrate 100D of 4th Embodiment by this invention. TFT基板100Dの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100D. (a)~(f)は、それぞれ、TFT基板100Dの製造方法の一例を説明するための模式的な断面図である。(A)-(f) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100D, respectively. (a)および(b)は、それぞれ、本発明による第5の実施形態のTFT基板100Eの模式的な断面図であり、(a)は図1(a)に示す平面図のA-A’線に沿った断面構造を示し、(b)は図1(a)に示す平面図のB-B’線に沿った断面構造を示す。(A) and (b) are schematic cross-sectional views of a TFT substrate 100E according to a fifth embodiment of the present invention, respectively, and (a) is an AA ′ view of the plan view shown in FIG. 1 (a). The cross-sectional structure along the line is shown, and (b) shows the cross-sectional structure along the line BB ′ of the plan view shown in FIG. TFT基板100Eの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100E. (a)~(h)は、それぞれ、TFT基板100Eの製造方法の一例を説明するための模式的な断面図である。(A)-(h) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100E, respectively. (a)および(b)は、それぞれ、本発明による第6の実施形態のTFT基板100Fの模式的な断面図であり、(a)は図1(a)に示す平面図のA-A’線に沿った断面構造を示し、(b)は図1(a)に示す平面図のB-B’線に沿った断面構造を示す。(A) and (b) are schematic cross-sectional views of a TFT substrate 100F according to a sixth embodiment of the present invention, respectively, and (a) is an AA ′ in the plan view shown in FIG. 1 (a). The cross-sectional structure along the line is shown, and (b) shows the cross-sectional structure along the line BB ′ of the plan view shown in FIG. (a)は本発明による第7の実施形態のTFT基板100Gの模式的な平面図であり、(b)は(a)のA-A’線に沿ったTFT基板100Gの模式的な断面図であり、(c)は(a)のB-B’線に沿ったTFT基板100Gの模式的な断面図であり、(d)はコンタクト部の拡大断面図である。(A) is a typical top view of TFT substrate 100G of 7th Embodiment by this invention, (b) is typical sectional drawing of TFT substrate 100G along the AA 'line of (a). (C) is a schematic cross-sectional view of the TFT substrate 100G along the line BB ′ of (a), and (d) is an enlarged cross-sectional view of the contact portion. TFT基板100Gの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100G. (a)~(g)は、それぞれ、TFT基板100Gの製造方法の一例を説明するための模式的な断面図である。(A)-(g) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100G, respectively. (a)~(e)は、それぞれ、TFT基板100Gの製造方法の他の例を説明するための模式的な断面図である。(A)-(e) is typical sectional drawing for demonstrating the other example of the manufacturing method of TFT substrate 100G, respectively. 本発明による実施形態のコンタクト部90の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the contact part 90 of embodiment by this invention. 比較例のコンタクト部80の模式的な断面図である。It is typical sectional drawing of the contact part 80 of a comparative example.
 本発明者は、例えばアクティブマトリクス基板において、画素電極として機能する透明導電層を、TFTのドレイン電極よりも下層に配置する構成を検討した。この結果、透明導電層と、ドレイン電極である金属層との間でコンタクト抵抗が増大したり、密着性が低下するという問題があることを見出した。また、画素電極とドレイン電極とのコンタクト部に限らず、透明導電層と、その上層にある電極や配線などの金属層とを接続するコンタクト部でも同様の問題が生じ得ることも分かった。 The inventor has studied a configuration in which, for example, in an active matrix substrate, a transparent conductive layer functioning as a pixel electrode is disposed below the TFT drain electrode. As a result, it has been found that there is a problem that contact resistance increases or adhesion decreases between the transparent conductive layer and the metal layer which is the drain electrode. It has also been found that the same problem can occur not only in the contact portion between the pixel electrode and the drain electrode but also in the contact portion connecting the transparent conductive layer and the metal layer such as an electrode or wiring thereover.
 一方、金属層の上に透明導電層を配置したコンタクト部では、コンタクト抵抗の増大や密着性の低下はそれほど顕著に生じない。このことから、上記の問題は、透明導電層の最表面の特性に起因するものと推察される。 On the other hand, in the contact portion in which the transparent conductive layer is disposed on the metal layer, the increase in contact resistance and the decrease in adhesion do not occur so significantly. From this, it is surmised that the above problem is caused by the characteristics of the outermost surface of the transparent conductive layer.
 さらに、上記問題は、絶縁層に設けられたコンタクトホール内で、金属層と透明導電層とを接触させる構成では特に顕著であることも分かった。これは、コンタクトホールの形成によって透明導電層の上面の特性が大きく低下する場合があるからと考えられる。 Furthermore, it has been found that the above problem is particularly remarkable in the configuration in which the metal layer and the transparent conductive layer are brought into contact with each other in the contact hole provided in the insulating layer. This is presumably because the characteristics of the upper surface of the transparent conductive layer may be greatly degraded by the formation of contact holes.
 さらに、コンタクトホールの形成プロセスに限定されず、半導体装置のプロセスにおいて、透明導電層を形成した後に行われる種々の処理によって、透明導電層の最表面が改質し、その結果、金属層との接触抵抗がより不安定になる傾向も見られた。 Further, the process is not limited to the contact hole formation process, and in the semiconductor device process, the outermost surface of the transparent conductive layer is modified by various treatments performed after the transparent conductive layer is formed. There was also a tendency for the contact resistance to become more unstable.
 なお、上記問題は、透明導電層が金属層よりも下方(基板側)にあるコンタクト部に生じるものであり、従来は認識されていなかった問題である。 In addition, the said problem arises in the contact part in which a transparent conductive layer is lower (board | substrate side) than a metal layer, and is a problem which was not recognized conventionally.
 本発明者は、上記問題を解決するために鋭意検討を重ねた結果、透明導電層と金属層との間に高融点金属の窒化物層を配置することによって、コンタクト抵抗の増大や密着性の低下を抑制できることを見出し、本願発明に想到した。 As a result of intensive investigations to solve the above problems, the present inventor has arranged a refractory metal nitride layer between the transparent conductive layer and the metal layer, thereby increasing contact resistance and adhesion. The inventors have found that the reduction can be suppressed and have arrived at the present invention.
 (第1の実施形態)
 以下、図面を参照しながら、本発明による半導体装置の第1の実施形態を説明する。本実施形態の半導体装置は、酸化物半導体TFTを備えている。なお、本実施形態の半導体装置は、酸化物半導体TFTを備えていればよく、アクティブマトリクス基板、各種表示装置、電子機器などを広く含む。
(First embodiment)
A semiconductor device according to a first embodiment of the present invention will be described below with reference to the drawings. The semiconductor device of this embodiment includes an oxide semiconductor TFT. In addition, the semiconductor device of this embodiment should just be provided with the oxide semiconductor TFT, and includes an active matrix substrate, various display apparatuses, an electronic device, etc. widely.
 本発明による実施形態の半導体装置は、透明導電層と、その上に形成された金属層とを電気的に接続するコンタクト部を有している。 The semiconductor device according to the embodiment of the present invention has a contact portion that electrically connects a transparent conductive layer and a metal layer formed thereon.
 図22は、本実施形態の半導体装置におけるコンタクト部90を模式的に示す断面図である。また、比較のため、透明導電層3と金属層7dとを直接接触させるコンタクト部80の構成を図23に示す。 FIG. 22 is a cross-sectional view schematically showing the contact portion 90 in the semiconductor device of this embodiment. For comparison, FIG. 23 shows a configuration of a contact portion 80 that directly contacts the transparent conductive layer 3 and the metal layer 7d.
 図22に示すように、本実施形態の半導体装置は、基板2と、基板2に支持された透明導電層3と、透明導電層3を覆うように形成された絶縁層5と、金属層7dとを有している。半導体装置には、金属層7dと透明導電層3とを電気的に接続するためのコンタクト部90が設けられている。コンタクト部90では、絶縁層5に、透明導電層3の上面の一部の上に位置する開口部(コンタクトホール)5uが設けられている。開口部5uは、透明導電層3と少なくとも部分的に重なるように配置されていればよい。金属層7dは、絶縁層5上および開口部5u内に形成されている。さらに、コンタクト部90において、透明導電層3と、金属層7dのうち開口部5u内に位置する部分との間には高融点金属の窒化物層20が配置されている。窒化物層20は、透明導電層3の上面と接するように設けられている。 As shown in FIG. 22, the semiconductor device of this embodiment includes a substrate 2, a transparent conductive layer 3 supported by the substrate 2, an insulating layer 5 formed so as to cover the transparent conductive layer 3, and a metal layer 7d. And have. The semiconductor device is provided with a contact portion 90 for electrically connecting the metal layer 7 d and the transparent conductive layer 3. In the contact portion 90, the insulating layer 5 is provided with an opening (contact hole) 5 u located on a part of the upper surface of the transparent conductive layer 3. The opening part 5u should just be arrange | positioned so that it may overlap with the transparent conductive layer 3 at least partially. The metal layer 7d is formed on the insulating layer 5 and in the opening 5u. Further, in the contact portion 90, a refractory metal nitride layer 20 is disposed between the transparent conductive layer 3 and a portion of the metal layer 7d located in the opening 5u. The nitride layer 20 is provided in contact with the upper surface of the transparent conductive layer 3.
 図示する例では、窒化物層20は、金属層7dの開口部5u内に位置する部分と接している。なお、金属層7dの開口部5u内に位置する部分と窒化物層20との間に、さらなる導電層が形成されていてもよい。 In the illustrated example, the nitride layer 20 is in contact with the portion located in the opening 5u of the metal layer 7d. A further conductive layer may be formed between the portion of the metal layer 7d located in the opening 5u and the nitride layer 20.
 図22に示すコンタクト部90を備えていると、次のような効果が得られる。 If the contact portion 90 shown in FIG. 22 is provided, the following effects can be obtained.
 上述したように、比較例のコンタクト部80では、透明導電層3と金属層7dと間で抵抗が高くなる、透明導電層3の上面と金属層7dとの密着性が低いといった問題がある。これらの問題は、透明導電層としてインジウム酸化物系の材料を用いた場合に特に顕著である。これに対し、本実施形態によると、透明導電層3と金属層7dとの間に窒化物層20を介在させるので、コンタクト部の抵抗を低く抑えることができる。また、透明導電層3の上面を窒化物層20で覆うことにより、透明導電層3の上面の特性に起因する密着性の低下を抑制できる。 As described above, in the contact portion 80 of the comparative example, there is a problem that the resistance increases between the transparent conductive layer 3 and the metal layer 7d, and the adhesion between the upper surface of the transparent conductive layer 3 and the metal layer 7d is low. These problems are particularly remarkable when an indium oxide material is used as the transparent conductive layer. On the other hand, according to the present embodiment, since the nitride layer 20 is interposed between the transparent conductive layer 3 and the metal layer 7d, the resistance of the contact portion can be kept low. Further, by covering the upper surface of the transparent conductive layer 3 with the nitride layer 20, it is possible to suppress a decrease in adhesion due to the characteristics of the upper surface of the transparent conductive layer 3.
 なお、後述するように、透明導電層3を形成した直後に、透明導電層3の上面に窒化物層20を形成すると、製造プロセスにおいて透明導電層3の上面が変質して、コンタクト部90の抵抗が高くなったり、密着性が低くなることをより効果的に抑制できる。 As will be described later, if the nitride layer 20 is formed on the upper surface of the transparent conductive layer 3 immediately after forming the transparent conductive layer 3, the upper surface of the transparent conductive layer 3 is altered in the manufacturing process, and the contact portion 90 It can suppress more effectively that resistance becomes high or adhesiveness falls.
 図示する例では、窒化物層20は金属層7dと透明導電層3との界面の一部にのみ配置されており、金属層7dは開口部5u内で窒化物層20および透明導電層3の両方と接している。なお、窒化物層20は金属層7dと透明導電層3との界面全体に配置されていてもよい。例えば基板2の法線方向から見たとき、窒化物層20の内部に開口部5uが配置されていてもよい。その場合、金属層7dは開口部5u内で透明導電層3と直接接しないで、窒化物層20を介して透明導電層3と接続される。 In the illustrated example, the nitride layer 20 is disposed only at a part of the interface between the metal layer 7d and the transparent conductive layer 3, and the metal layer 7d is formed between the nitride layer 20 and the transparent conductive layer 3 in the opening 5u. It is in contact with both. The nitride layer 20 may be disposed on the entire interface between the metal layer 7d and the transparent conductive layer 3. For example, when viewed from the normal direction of the substrate 2, the opening 5 u may be disposed inside the nitride layer 20. In that case, the metal layer 7d is not in direct contact with the transparent conductive layer 3 in the opening 5u, but is connected to the transparent conductive layer 3 through the nitride layer 20.
 本実施形態は、例えば液晶表示装置に用いられるTFT基板に適用され得る。その場合、透明導電層3は画素電極であり、金属層7dはTFTのドレイン電極7dまたはドレイン電極7dと電気的に接続された電極層であってもよい。また、絶縁層5はTFTのゲート絶縁層を含んでいてもよい。 This embodiment can be applied to a TFT substrate used for a liquid crystal display device, for example. In that case, the transparent conductive layer 3 may be a pixel electrode, and the metal layer 7d may be a drain electrode 7d of the TFT or an electrode layer electrically connected to the drain electrode 7d. The insulating layer 5 may include a gate insulating layer of the TFT.
 なお、本実施形態の半導体装置は、透明導電層3と金属層7dとを電気的に接続するコンタクト部90を有していればよく、そのようなコンタクト部90はTFTと画素電極とのコンタクト部でなくてもよい。例えば端子部や、配線同士を接続する接続部などであってもよい。 Note that the semiconductor device of the present embodiment only needs to have a contact portion 90 that electrically connects the transparent conductive layer 3 and the metal layer 7d. Such a contact portion 90 is a contact between the TFT and the pixel electrode. It does not have to be a part. For example, a terminal part or a connection part for connecting wirings may be used.
 以下、TFT基板を例に、本実施形態の半導体装置の構成をより具体的に説明する。 Hereinafter, the configuration of the semiconductor device according to the present embodiment will be described more specifically with reference to the TFT substrate.
 図1(a)は本発明の実施形態によるTFT基板100Aの模式的な平面図である。図1(b)は、図1(a)のA-A’線に沿ったTFT基板100Aの模式的な断面図、図1(c)は、図1(a)のB-B’線に沿ったTFT基板100Aの模式的な断面図である。図1(d)は、TFT基板100Aにおけるコンタクト部を含む領域を拡大した拡大平面図である。 FIG. 1A is a schematic plan view of a TFT substrate 100A according to an embodiment of the present invention. FIG. 1B is a schematic cross-sectional view of the TFT substrate 100A along the line AA ′ in FIG. 1A, and FIG. 1C is the line BB ′ in FIG. It is typical sectional drawing of TFT substrate 100A along. FIG. 1D is an enlarged plan view in which a region including the contact portion in the TFT substrate 100A is enlarged.
 図1(a)~図1(d)に示すように、TFT基板100Aは、基板2と、基板2上に形成されたゲート電極4および画素電極(透明導電層)3と、ゲート電極4および画素電極3上に形成された絶縁層5と、絶縁層5を介してゲート電極4と重なる半導体層6と、半導体層6に電気的に接続されたソース電極7sおよびドレイン電極(金属層)7dと、ドレイン電極7dと画素電極3とを電気的に接続するコンタクト部90が設けられている。 As shown in FIGS. 1A to 1D, a TFT substrate 100A includes a substrate 2, a gate electrode 4 and a pixel electrode (transparent conductive layer) 3 formed on the substrate 2, a gate electrode 4 and Insulating layer 5 formed on pixel electrode 3, semiconductor layer 6 overlapping gate electrode 4 with insulating layer 5 interposed therebetween, source electrode 7s and drain electrode (metal layer) 7d electrically connected to semiconductor layer 6 In addition, a contact portion 90 that electrically connects the drain electrode 7d and the pixel electrode 3 is provided.
 コンタクト部90では、金属層7dのうち絶縁層5に設けられた開口部5u内に位置する部分と、透明導電層3の上面との間に高融点金属の窒化物層20が配置されている。コンタクト部90の構成は、図22を参照しながら前述した構成と同様である。TFT基板100Aは、このようなコンタクト部90を備えているので、画素電極3とドレイン電極7dとの間の抵抗を低く抑えることができ、かつ、これらの密着性を高めることができる。 In the contact portion 90, a refractory metal nitride layer 20 is disposed between a portion of the metal layer 7 d located in the opening 5 u provided in the insulating layer 5 and the upper surface of the transparent conductive layer 3. . The configuration of the contact portion 90 is the same as that described above with reference to FIG. Since the TFT substrate 100A includes such a contact portion 90, the resistance between the pixel electrode 3 and the drain electrode 7d can be kept low, and the adhesion between them can be increased.
 本実施形態では、図1(a)および(d)から分かるように、基板2の法線方向から見たとき、窒化物層20の形状と、ドレイン電極(金属層)7dの形状とは異なっている。このように、窒化物層20とドレイン電極7dとを別々にパターニングすることにより、必要な領域にのみ窒化物層20を配置できるので、製造コストを低く抑えることができる。 In this embodiment, as can be seen from FIGS. 1A and 1D, the shape of the nitride layer 20 and the shape of the drain electrode (metal layer) 7d are different when viewed from the normal direction of the substrate 2. ing. As described above, by separately patterning the nitride layer 20 and the drain electrode 7d, the nitride layer 20 can be disposed only in a necessary region, so that the manufacturing cost can be reduced.
 また、画素電極3を形成した後、絶縁層5の形成前に、窒化物層20を形成することが好ましい。絶縁層5を窒化物層20よりも先に形成すると、画素電極3の上面のうち絶縁層5の開口部5uで露出される部分が、絶縁層5のパターニング工程によってダメージを受けるおそれがある。これに対し、絶縁層5の形成前に、窒化物層20を形成すると、絶縁層5のパターニングの際に、画素電極3の上面は窒化物層20で保護されているので、コンタクト部90の抵抗の増大や密着性の低下をより効果的に抑制できる。なお、窒化物層20が絶縁層5よりも前に形成される場合、窒化物層20の形状が開口部5uよりも大きいと、窒化物層20の上面の少なくとも一部が絶縁層5と接する。 Further, it is preferable to form the nitride layer 20 after forming the pixel electrode 3 and before forming the insulating layer 5. If the insulating layer 5 is formed before the nitride layer 20, a portion of the upper surface of the pixel electrode 3 exposed at the opening 5 u of the insulating layer 5 may be damaged by the patterning process of the insulating layer 5. On the other hand, when the nitride layer 20 is formed before the formation of the insulating layer 5, the upper surface of the pixel electrode 3 is protected by the nitride layer 20 when the insulating layer 5 is patterned. An increase in resistance and a decrease in adhesion can be more effectively suppressed. When the nitride layer 20 is formed before the insulating layer 5, if the shape of the nitride layer 20 is larger than the opening 5 u, at least a part of the upper surface of the nitride layer 20 is in contact with the insulating layer 5. .
 続いて、図1(d)を参照しながら、コンタクト部90の平面形状をより詳しく説明する。基板2の法線方向から見たとき、窒化物層20は、絶縁層5の開口部5uの少なくとも一部と重なるように配置されていればよい。例えば、図示するように、窒化物層20の一部が開口部5uと重なり、他の部分が開口部5uの周辺の領域に位置していてもよい。このように、窒化物層20を開口部5uの一部に掛かって配置させる構成を採用すると、窒化物層20を開口部5uの全体と重なるように配置させる構成と比べて、窒化物層20のパターンのサイズをより小さくすることが可能になり、開口部5uのサイズも小さくできる。従って、コンタクト部90の設計上の制約も緩和される。 Subsequently, the planar shape of the contact portion 90 will be described in more detail with reference to FIG. When viewed from the normal direction of the substrate 2, the nitride layer 20 may be disposed so as to overlap at least a part of the opening 5 u of the insulating layer 5. For example, as illustrated, a part of the nitride layer 20 may overlap the opening 5u, and the other part may be located in a region around the opening 5u. As described above, when the configuration in which the nitride layer 20 is disposed over a part of the opening 5u is employed, the nitride layer 20 is compared with the configuration in which the nitride layer 20 is disposed so as to overlap the entire opening 5u. The pattern size can be further reduced, and the size of the opening 5u can also be reduced. Therefore, the restriction on the design of the contact portion 90 is also eased.
 TFT基板100Aは、ソース電極7sおよびドレイン電極7dの上に形成された保護層8と、保護層8を介して画素電極3の少なくとも一部と重なる共通電極9とを有してもよい。これにより、保護層8を誘電体層とする補助容量を形成し得る。また、画素電極3および共通電極9を透明な電極材料(例えば、ITO(Indium Tin Oxide))から形成すると、画素の開口率の低下を抑制し得る。透明な材料から形成された補助容量を「透明補助容量」という場合がある。共通電極9は、画素毎に分離されていなくてもよい。例えば表示領域の略全体を覆うように設けられていてもよい。なお、上述した開口部5uは共通電極9よりも基板2側にある。 The TFT substrate 100A may include a protective layer 8 formed on the source electrode 7s and the drain electrode 7d, and a common electrode 9 that overlaps at least a part of the pixel electrode 3 with the protective layer 8 interposed therebetween. Thereby, an auxiliary capacitor having the protective layer 8 as a dielectric layer can be formed. Further, when the pixel electrode 3 and the common electrode 9 are formed of a transparent electrode material (for example, ITO (Indium Tin Oxide)), it is possible to suppress a decrease in the aperture ratio of the pixel. An auxiliary capacity formed of a transparent material may be referred to as a “transparent auxiliary capacity”. The common electrode 9 may not be separated for each pixel. For example, it may be provided so as to cover substantially the entire display area. Note that the above-described opening 5u is closer to the substrate 2 than the common electrode 9 is.
 図1(a)に示す例では、TFT基板100Aは、対応する画素のソース電極7sに電気的に接続されたソース配線7(m)および7(m+1)を有する。ソース配線7(m)および7(m+1)は、絶縁層5の上に形成されている。さらに、隣接する画素の画素電極3(m)および3(m+1)の間にゲート配線14が形成されている。画素電極3(m)および3(m+1)ならびにゲート配線14はいずれも基板2と絶縁層5との間に形成されている。 In the example shown in FIG. 1A, the TFT substrate 100A has source wirings 7 (m) and 7 (m + 1) electrically connected to the source electrode 7s of the corresponding pixel. Source wirings 7 (m) and 7 (m + 1) are formed on the insulating layer 5. Further, a gate wiring 14 is formed between the pixel electrodes 3 (m) and 3 (m + 1) of adjacent pixels. The pixel electrodes 3 (m) and 3 (m + 1) and the gate wiring 14 are all formed between the substrate 2 and the insulating layer 5.
 TFT基板100Aでは、画素電極3をゲート絶縁層(ここでは絶縁層5)よりも基板2側に形成し、かつ、ドレイン電極7dと画素電極3とを接続させるためのコンタクトホール(開口部5u)を絶縁層5に形成している。このため、TFTの上に形成される保護層8の上面をほぼ平坦にできる。従って、コンタクトホールの形状が、保護層8の上に配置される液晶層の液晶配向に影響しにくく、表示不良を起こしにくい。これに対し、例えば、TFTの上に保護層を介して画素電極を配置する構成では、画素電極とドレイン電極とを接続するためのコンタクトホールが保護層に形成される。このため、保護層の上面のコンタクトホール付近は平坦にならないので、コンタクトホールの形状が、保護層の上に配置される液晶層の液晶配向に影響するおそれがある。 In the TFT substrate 100A, the pixel electrode 3 is formed closer to the substrate 2 than the gate insulating layer (here, the insulating layer 5), and the contact hole (opening 5u) for connecting the drain electrode 7d and the pixel electrode 3 is connected. Is formed in the insulating layer 5. For this reason, the upper surface of the protective layer 8 formed on the TFT can be made substantially flat. Therefore, the shape of the contact hole hardly affects the liquid crystal alignment of the liquid crystal layer disposed on the protective layer 8 and hardly causes display failure. On the other hand, for example, in the configuration in which the pixel electrode is disposed on the TFT via the protective layer, a contact hole for connecting the pixel electrode and the drain electrode is formed in the protective layer. For this reason, since the vicinity of the contact hole on the upper surface of the protective layer does not become flat, the shape of the contact hole may affect the liquid crystal alignment of the liquid crystal layer disposed on the protective layer.
 また、TFT基板100Aでは、絶縁層5よりも上層に形成されたドレイン電極7dと、絶縁層5よりも下層に形成された窒化物層20とを、絶縁層5の開口部5u内で接触させているが、後述するように、窒化物層20とドレイン電極7dとの間に絶縁層を形成しなくてもよい。ただし、絶縁層5を形成し、その開口部5u内にコンタクト部90を形成すると、画素の開口率をより大きくすることが可能になる。この理由は後述する。 In the TFT substrate 100A, the drain electrode 7d formed above the insulating layer 5 and the nitride layer 20 formed below the insulating layer 5 are brought into contact with each other in the opening 5u of the insulating layer 5. However, as will be described later, an insulating layer may not be formed between the nitride layer 20 and the drain electrode 7d. However, if the insulating layer 5 is formed and the contact portion 90 is formed in the opening 5u, the aperture ratio of the pixel can be further increased. The reason for this will be described later.
 次に、TFT基板100Aの各構成要素を詳細に説明する。 Next, each component of the TFT substrate 100A will be described in detail.
 基板2は、典型的には透明基板であり、例えばガラス基板である。ガラス基板の他、プラスチック基板を用いることもできる。プラスチック基板は、熱硬化性樹脂または熱可塑性樹脂で形成された基板、さらには、これらの樹脂と無機繊維(例えば、ガラス繊維、ガラス繊維の不織布)との複合基板を含む。耐熱性を有する樹脂材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリル樹脂、ポリイミド樹脂を例示することがきる。また、反射型液晶表示装置に用いる場合には、基板2として、シリコン基板を用いることもできる。 The substrate 2 is typically a transparent substrate, for example, a glass substrate. In addition to a glass substrate, a plastic substrate can also be used. The plastic substrate includes a substrate formed of a thermosetting resin or a thermoplastic resin, and a composite substrate of these resins and inorganic fibers (for example, glass fibers or glass fiber nonwoven fabrics). Examples of the heat-resistant resin material include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), acrylic resin, and polyimide resin. In addition, when used in a reflective liquid crystal display device, a silicon substrate can be used as the substrate 2.
 画素電極3(m)、3(m+1)および共通電極9は、それぞれ、例えばインジウム酸化物、亜鉛酸化物などの透明導電層である。例えばITO(Indium Tin Oxide)、またはIZO(登録商標)(Indium Zinc Oxide)層であってもよい。画素電極3(m)、3(m+1)および共通電極9の厚さは、それぞれ、例えば20nm以上200nm以下(例えば約100nm)であってもよい。 The pixel electrodes 3 (m), 3 (m + 1) and the common electrode 9 are transparent conductive layers such as indium oxide and zinc oxide, respectively. For example, an ITO (Indium Tin Oxide) or IZO (registered trademark) (Indium Zinc Oxide) layer may be used. The thicknesses of the pixel electrodes 3 (m), 3 (m + 1) and the common electrode 9 may be, for example, 20 nm or more and 200 nm or less (for example, about 100 nm).
 高融点金属の窒化物層20は、例えば窒化モリブデン(MoN)層、窒化チタン(TiN)層、窒素化タンタル(TaN)層などであってもよい。窒化物層20の厚さは、例えば5nm以上であることが好ましい。これにより、コンタクト部90の抵抗の増大をより確実に抑えることができる。また、窒化物層20の厚さは、例えば、絶縁層5の厚さ以下(例えば400nm以下)であることが好ましい。 The refractory metal nitride layer 20 may be, for example, a molybdenum nitride (MoN) layer, a titanium nitride (TiN) layer, a tantalum nitride (TaN) layer, or the like. The thickness of the nitride layer 20 is preferably 5 nm or more, for example. Thereby, the increase in resistance of the contact part 90 can be suppressed more reliably. Further, the thickness of the nitride layer 20 is preferably, for example, equal to or less than the thickness of the insulating layer 5 (for example, 400 nm or less).
 ゲート電極4は、ゲート配線14と一体的に形成されていてもよい。ゲート電極4およびゲート配線14は、例えば、Mo(モリブデン)、Al(アルミニウム)、Ti(チタン)、W(タングステン)、Ta(タンタル)、Cu(銅)から選ばれた元素、またはこれらの元素を成分とする合金もしくは金属窒化物などの金属膜から形成されてもよい。また、それらの金属膜が積層された構造を有していてもよい。ゲート電極4およびゲート配線14の厚さは約50nm以上600nm以下(例えば約420nm)であってもよい。 The gate electrode 4 may be formed integrally with the gate wiring 14. The gate electrode 4 and the gate wiring 14 are, for example, elements selected from Mo (molybdenum), Al (aluminum), Ti (titanium), W (tungsten), Ta (tantalum), Cu (copper), or these elements. It may be formed from a metal film such as an alloy or a metal nitride. Moreover, you may have the structure where those metal films were laminated | stacked. The thickness of the gate electrode 4 and the gate wiring 14 may be about 50 nm or more and 600 nm or less (for example, about 420 nm).
 絶縁層5は、例えばSiO2(酸化シリコン)、SiNx(窒化シリコン)、SiOxy(酸化窒化シリコン、x>y)、SiNxy(窒化酸化シリコン、x>y)、Al23(酸化アルミニウム)または酸化タンタル(Ta25)から形成された単層または積層を用いることができる。絶縁層5の厚さは、例えば約50nm以上600nm以下である。なお、低い温度でゲートリーク電流の少ない緻密な絶縁層5を形成させるには、Ar(アルゴン)などの希ガスを用いながら絶縁層5を形成するとよい。 For example, the insulating layer 5 includes SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y), Al 2. A single layer or a stack formed from O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ) can be used. The thickness of the insulating layer 5 is, for example, about 50 nm or more and 600 nm or less. In order to form the dense insulating layer 5 with little gate leakage current at a low temperature, the insulating layer 5 is preferably formed using a rare gas such as Ar (argon).
 半導体層6は、アモルファスシリコン(a-Si)層、ポリシリコン(p-Si)層、微結晶シリコン(μ-Si)層などのシリコン系半導体層であってもよい。あるいは、半導体層6は酸化物半導体層であってもよい。半導体層6の厚さは、例えば約30nm以上100nm以下(例えば約50nm)である。 The semiconductor layer 6 may be a silicon-based semiconductor layer such as an amorphous silicon (a-Si) layer, a polysilicon (p-Si) layer, or a microcrystalline silicon (μ-Si) layer. Alternatively, the semiconductor layer 6 may be an oxide semiconductor layer. The thickness of the semiconductor layer 6 is, for example, about 30 nm to 100 nm (for example, about 50 nm).
 半導体層6として酸化物半導体層を用いる場合、上述したように酸化物半導体層を有するTFTは高い移動度を有するので、TFTの大きさを小さくでき、画素の開口率の低下を抑制することが可能になる。また、酸化物半導体層は、シリコン系半導体層よりも低温で形成できるので、耐熱性の低い基板を使用することが可能になる。例えばプラスチック基板やフィルム基材上に酸化物半導体層を形成することにより、フレキシブルディスプレイに適用可能な半導体装置を製造できる。 In the case where an oxide semiconductor layer is used as the semiconductor layer 6, since the TFT having the oxide semiconductor layer has high mobility as described above, the size of the TFT can be reduced and reduction in the aperture ratio of the pixel can be suppressed. It becomes possible. In addition, since the oxide semiconductor layer can be formed at a lower temperature than the silicon-based semiconductor layer, a substrate having low heat resistance can be used. For example, a semiconductor device applicable to a flexible display can be manufactured by forming an oxide semiconductor layer on a plastic substrate or a film substrate.
 酸化物半導体層は例えばIn(インジウム)、Ga(ガリウム)およびZn(亜鉛)を1:1:1の割合で含むIn-Ga-Zn-O系半導体膜から形成されている。In、GおよびZnの割合は適宜選択され得る。 The oxide semiconductor layer is formed of, for example, an In—Ga—Zn—O based semiconductor film containing In (indium), Ga (gallium), and Zn (zinc) at a ratio of 1: 1: 1. The ratio of In, G, and Zn can be selected as appropriate.
 In-Ga-Zn-O系半導体膜として、アモルファスIn-Ga-Zn-O系半導体膜を用いれば、低温で製造でき、高い移動度を実現できる。ただし、アモルファスIn-Ga-Zn-O系半導体膜に代えて、所定の結晶軸(C軸)に関して結晶性を示すIn-Ga-Zn-O系半導体膜を用いても良い。 If an amorphous In—Ga—Zn—O based semiconductor film is used as the In—Ga—Zn—O based semiconductor film, it can be manufactured at a low temperature and high mobility can be realized. However, instead of the amorphous In—Ga—Zn—O-based semiconductor film, an In—Ga—Zn—O-based semiconductor film that exhibits crystallinity with respect to a predetermined crystal axis (C-axis) may be used.
 In-Ga-Zn-O系半導体膜の代わりに、他の酸化物半導体膜を用いて半導体層6を形成してもよい。例えばZn-O系半導体(ZnO)膜、In-Zn-O系半導体(IZO)膜、Zn-Ti-O系半導体(ZTO)膜、Cd-Ge-O系半導体膜、Cd-Pb-O系半導体膜、CdO(酸化カドニウム)、Mg-Zn-O系半導体膜などを用いてもよい。さらに、酸化物半導体層として、1族元素、13族元素、14族元素、15族元素および17族元素等のうち一種、又は複数種の不純物元素が添加されたZnOの非晶質(アモルファス)状態、多結晶状態又は非晶質状態と多結晶状態が混在する微結晶状態のもの、又は何も不純物元素が添加されていないものを用いることができる。 The semiconductor layer 6 may be formed using another oxide semiconductor film instead of the In—Ga—Zn—O-based semiconductor film. For example, Zn—O based semiconductor (ZnO) film, In—Zn—O based semiconductor (IZO) film, Zn—Ti—O based semiconductor (ZTO) film, Cd—Ge—O based semiconductor film, Cd—Pb—O based film A semiconductor film, CdO (cadmium oxide), Mg—Zn—O based semiconductor film, or the like may be used. Further, as an oxide semiconductor layer, an amorphous ZnO film to which one or a plurality of impurity elements of Group 1 element, Group 13 element, Group 14 element, Group 15 element, Group 17 element and the like are added is added. A state, a polycrystalline state, a microcrystalline state in which an amorphous state and a polycrystalline state are mixed, or a state in which no impurity element is added can be used.
 ソース電極7s、ドレイン電極7d、ソース配線7(m)および7(m+1)は、例えば、例えば、Mo(モリブデン)、Al(アルミニウム)、Ti(チタン)、W(タングステン)、Ta(タンタル)、Cu(銅)から選ばれた元素、またはこれらの元素を成分とする合金などの金属膜から形成されてもよい。また、それらの金属膜が積層された構造を有していてもよい。ソース電極7s、ドレイン電極7d、ソース配線7(m)および7(m+1)の厚さは、それぞれ約50nm以上600nm以下が好ましい。ソース電極7s、ドレイン電極7d、ソース配線7(m)および7(m+1)の厚さは例えば約350nmである。 The source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) are, for example, Mo (molybdenum), Al (aluminum), Ti (titanium), W (tungsten), Ta (tantalum), You may form from metal films, such as an element chosen from Cu (copper), or an alloy which uses these elements as a component. Moreover, you may have the structure where those metal films were laminated | stacked. The thicknesses of the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) are each preferably about 50 nm to 600 nm. The thickness of the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) is, for example, about 350 nm.
 保護層8はソース電極7s、ドレイン電極7d、ソース配線7(m)および7(m+1)の上に形成されている。保護層8として、例えば、酸化珪素(SiOx)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等のSi系窒化物または酸化物を含む無機絶縁膜(パッシベーション膜)を用いることができる。あるいはAl23(酸化アルミニウム)またはTa25(酸化タンタル)膜を用いても良い。 The protective layer 8 is formed on the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1). Examples of the protective layer 8 include Si-based nitrides such as a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride (SiOxNy; x> y) film, and a silicon nitride oxide (SiNxOy; x> y) film. Alternatively, an inorganic insulating film (passivation film) containing an oxide can be used. Alternatively, an Al 2 O 3 (aluminum oxide) or Ta 2 O 5 (tantalum oxide) film may be used.
 図示する例では、共通電極9と画素電極3との間に保護層8が配置されている。従って、保護層8を誘電体層とし、透明な共通電極9と画素電極3とを容量電極とする透明な補助容量が形成される。これにより、TFT基板100Aを表示パネルに用いたとき、高い開口率を有する表示パネルを製造できる。保護層8の厚さは、例えば約50nm以上300nm以下(例えば約200nm)であることが好ましい。 In the illustrated example, a protective layer 8 is disposed between the common electrode 9 and the pixel electrode 3. Accordingly, a transparent auxiliary capacitor is formed in which the protective layer 8 is a dielectric layer and the transparent common electrode 9 and the pixel electrode 3 are capacitor electrodes. Thereby, when the TFT substrate 100A is used for a display panel, a display panel having a high aperture ratio can be manufactured. The thickness of the protective layer 8 is preferably about 50 nm to 300 nm (for example, about 200 nm), for example.
 TFT基板100Aは、例えば、Fringe Field Switching(FFS)モードの液晶表示装置に用いられる。このとき、画素電極3には表示信号電圧が供給され、上層の共通電極9には共通電圧または対向電圧が供給される。共通電極9には、少なくとも1以上のスリット19が設けられる(図1(a)および図1(d)を参照)。 The TFT substrate 100A is used for, for example, a fringe field switching (FFS) mode liquid crystal display device. At this time, a display signal voltage is supplied to the pixel electrode 3, and a common voltage or a counter voltage is supplied to the upper common electrode 9. The common electrode 9 is provided with at least one or more slits 19 (see FIGS. 1A and 1D).
 次に、図2および図3を参照しながらTFT基板100Aの製造方法の一例を説明する。図2は、TFT基板100Aの製造方法を説明するためのブロック図である。図3(a)~図3(g)は、TFT基板100Aの製造方法を説明するための模式的な断面図である。 Next, an example of a manufacturing method of the TFT substrate 100A will be described with reference to FIGS. FIG. 2 is a block diagram for explaining a manufacturing method of the TFT substrate 100A. 3 (a) to 3 (g) are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100A.
 図2に示すように、TFT基板100Aの製造方法は、画素電極形成工程PX、高融点金属の窒化物層形成工程IM、ゲート電極形成工程GT、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 As shown in FIG. 2, the manufacturing method of the TFT substrate 100A includes a pixel electrode forming step PX, a refractory metal nitride layer forming step IM, a gate electrode forming step GT, a gate insulating layer / semiconductor layer forming step GI / PS, It has a source / drain electrode forming step SD, a protective layer forming step PAS, and a common electrode forming step CT, and the process proceeds in this order.
 図3(a)~図3(g)を参照しながら具体的な製造工程を説明する。なお、図3(a)~図3(g)に示す断面図は、図1(b)に示した断面図に対応する。 A specific manufacturing process will be described with reference to FIGS. 3 (a) to 3 (g). Note that the cross-sectional views shown in FIGS. 3A to 3G correspond to the cross-sectional view shown in FIG.
 図3(a)に示すように、画素電極形成工程PXでは、基板2上に例えばスパッタ法で不図示の導電膜(例えば、ITO膜などの透明導電膜)を形成した後、フォトリソグラフィ法およびウェットエッチング法などでこの導電膜をパターニングして、画素電極3を形成する。なお、画素電極3のパターニング後、パターニングに用いられたレジスト(不図示)を剥離する。 As shown in FIG. 3A, in the pixel electrode formation step PX, a conductive film (not shown) (for example, a transparent conductive film such as an ITO film) is formed on the substrate 2 by sputtering, for example, The conductive film is patterned by wet etching or the like to form the pixel electrode 3. In addition, after patterning of the pixel electrode 3, the resist (not shown) used for patterning is peeled off.
 続いて、図3(b)に示すように、高融点金属の窒化物層形成工程IMでは、例えば窒素雰囲気中でスパッタ法により、画素電極3を覆うように高融点金属の窒化膜を形成する。この後、フォトリソグラフィ法およびウェットエッチング法などでこの窒化膜をパターニングして、画素電極3の一部上に窒化物層20を形成する。この後、レジスト(不図示)を剥離する。 3B, in the refractory metal nitride layer forming step IM, a refractory metal nitride film is formed so as to cover the pixel electrode 3 by sputtering, for example, in a nitrogen atmosphere. . Thereafter, the nitride film is patterned by a photolithography method and a wet etching method to form a nitride layer 20 on a part of the pixel electrode 3. Thereafter, the resist (not shown) is peeled off.
 次に、図3(c)に示すように、ゲート電極形成工程GTでは、基板2上に例えばスパッタ法で導電膜を形成した後、フォトリソグラフィ法およびウェットまたはドライエッチング法などでこの導電膜をパターニングして、ゲート電極4を形成する。なお、ゲート電極4は画素電極3と電気的に接続されないように形成される。また、ゲート電極4のパターニングの際、ゲート電極4を形成するための導電膜と窒化物層20とのエッチレート差を利用して、窒化物層20を除去せずに残した状態で、導電膜を選択的にエッチングする。ゲート電極4のパターニング後、パターニングに用いたレジスト(不図示)を剥離する。 Next, as shown in FIG. 3C, in the gate electrode formation step GT, after forming a conductive film on the substrate 2 by, for example, sputtering, the conductive film is formed by photolithography and wet or dry etching. The gate electrode 4 is formed by patterning. Note that the gate electrode 4 is formed so as not to be electrically connected to the pixel electrode 3. Further, when the gate electrode 4 is patterned, the difference between the conductive film for forming the gate electrode 4 and the nitride layer 20 is used to leave the nitride layer 20 without being removed. The film is selectively etched. After patterning the gate electrode 4, the resist (not shown) used for patterning is peeled off.
 次に、図3(d)に示すように、ゲート絶縁層/半導体層形成工程GI/PSでは、ゲート電極4および画素電極3上に、不図示の絶縁膜を例えばCVD(Chemical Vapor Deposition)法などで形成する。次いで、フォトリソグラフィ法およびドライエッチング法などでこの絶縁膜をパターニングして、開口部5uを有する絶縁層5を形成する。開口部5uは、基板2の法線方向から見たとき、画素電極3と窒化物層20とが重なった領域と少なくとも部分的に重なるように配置される。好ましくは、開口部5uの全体が画素電極3の上に位置するように、開口部5uを形成する。開口部5uによって、窒化物層20の上面の一部(または全部)が露出される。この後、パターニングに用いたレジスト(不図示)を剥離する。 Next, as shown in FIG. 3D, in the gate insulating layer / semiconductor layer forming step GI / PS, an insulating film (not shown) is formed on the gate electrode 4 and the pixel electrode 3 by, for example, a CVD (Chemical Vapor Deposition) method. And so on. Next, the insulating film is patterned by a photolithography method, a dry etching method, or the like to form the insulating layer 5 having the opening 5u. The opening 5 u is arranged so as to at least partially overlap with the region where the pixel electrode 3 and the nitride layer 20 overlap when viewed from the normal direction of the substrate 2. Preferably, the opening 5u is formed so that the entire opening 5u is positioned on the pixel electrode 3. A part (or all) of the upper surface of the nitride layer 20 is exposed by the opening 5u. Thereafter, the resist (not shown) used for patterning is peeled off.
 次に、絶縁層5上に、不図示の半導体膜(例えば、In-Ga-Zn-O系半導体膜)を例えばスパッタ法などで形成し、フォトリソグラフィ法およびドライエッチング法などでこの半導体膜をパターニングして、半導体層6を形成する。半導体層6は、絶縁層5を介してゲート電極4と重なるように形成される。半導体層6のパターニング後、パターニングに用いたレジスト(不図示)を剥離する。 Next, a semiconductor film (not shown) (for example, an In—Ga—Zn—O-based semiconductor film) is formed on the insulating layer 5 by, for example, a sputtering method, and this semiconductor film is formed by a photolithography method, a dry etching method, or the like. The semiconductor layer 6 is formed by patterning. The semiconductor layer 6 is formed so as to overlap the gate electrode 4 with the insulating layer 5 interposed therebetween. After patterning of the semiconductor layer 6, the resist (not shown) used for patterning is peeled off.
 次に、図3(e)に示すように、ソース・ドレイン電極形成工程SDでは、半導体層6上、絶縁層5上、および開口部5u内に不図示の金属膜を例えばスパッタ法にて形成する。この後、フォトリソグラフィ法およびウェットエッチング法などによりこの金属膜をパターニングして、ソース電極7sおよびドレイン電極7dを形成する。ソース電極7sおよびドレイン電極7dのパターニング後、パターニングに用いたレジスト(不図示)を剥離する。 Next, as shown in FIG. 3E, in the source / drain electrode formation step SD, a metal film (not shown) is formed on the semiconductor layer 6, the insulating layer 5, and the opening 5u by, for example, sputtering. To do. Thereafter, the metal film is patterned by a photolithography method, a wet etching method, or the like to form the source electrode 7s and the drain electrode 7d. After patterning the source electrode 7s and the drain electrode 7d, the resist (not shown) used for patterning is stripped.
 ソース電極7sおよびドレイン電極7dは、それぞれ、半導体層6に電気的に接続される。半導体層6のうちソース電極7sと接する部分がソースコンタクト領域、ドレイン電極7dと接する部分がドレインコンタクト領域となり、ソースコンタクト領域とドレインコンタクト領域とに挟まれた部分がチャネル領域となる。ドレイン電極7dは、また、開口部5u内で窒化物層20と接する。開口部5u内で窒化物層20および画素電極3の両方と接してもよい。このようにして、ドレイン電極7dと画素電極3とを接続するコンタクト部90が得られる。 The source electrode 7s and the drain electrode 7d are electrically connected to the semiconductor layer 6, respectively. Of the semiconductor layer 6, a portion in contact with the source electrode 7 s is a source contact region, a portion in contact with the drain electrode 7 d is a drain contact region, and a portion sandwiched between the source contact region and the drain contact region is a channel region. The drain electrode 7d is also in contact with the nitride layer 20 in the opening 5u. You may contact both the nitride layer 20 and the pixel electrode 3 in the opening 5u. In this way, a contact portion 90 that connects the drain electrode 7d and the pixel electrode 3 is obtained.
 次に、図3(f)に示すように、保護層形成工程PASでは、ソース電極7sおよびドレイン電極7d上に例えばCVD法で不図示の絶縁膜を形成する。次いで、フォトリソグラフィ法およびドライエッチング法などによりこの絶縁膜をパターニングして、保護層8を形成する。保護層8のパターニング後、パターニングに用いたレジスト(不図示)を剥離する。 Next, as shown in FIG. 3F, in the protective layer forming step PAS, an insulating film (not shown) is formed on the source electrode 7s and the drain electrode 7d by, for example, the CVD method. Next, the insulating film is patterned by a photolithography method, a dry etching method, or the like to form the protective layer 8. After patterning of the protective layer 8, the resist (not shown) used for patterning is peeled off.
 次に、図3(g)に示すように、共通電極形成工程CTでは、保護層8上に例えばスパッタ法で不図示の導電膜(例えば、透明導電膜)を形成し、フォトリソグラフィ法およびウェットエッチング法などによりこの導電膜をパターニングして、共通電極9を形成する。共通電極9のパターニング後、パターニングに用いたレジスト(不図示)を剥離する。 Next, as shown in FIG. 3G, in the common electrode formation step CT, a conductive film (not shown) (for example, a transparent conductive film) is formed on the protective layer 8 by sputtering, for example, and photolithography and wet processing are performed. The conductive film is patterned by an etching method or the like to form the common electrode 9. After patterning the common electrode 9, the resist (not shown) used for patterning is peeled off.
 この例では、共通電極9は、絶縁層5および保護層8を介して画素電極3の一部と重なるように形成される。これにより、絶縁層5および保護層8を誘電体層とする透明な補助容量を形成できる。 In this example, the common electrode 9 is formed so as to overlap a part of the pixel electrode 3 with the insulating layer 5 and the protective layer 8 interposed therebetween. As a result, a transparent auxiliary capacitor having the insulating layer 5 and the protective layer 8 as dielectric layers can be formed.
 上述したように、上記方法によると、画素電極3の形成後、絶縁層5の形成前に窒化物層20を形成しているので、絶縁層5のパターニングによって画素電極3の上面がダメージを受けることを抑制できる。 As described above, according to the above method, since the nitride layer 20 is formed after the pixel electrode 3 is formed and before the insulating layer 5 is formed, the upper surface of the pixel electrode 3 is damaged by the patterning of the insulating layer 5. This can be suppressed.
 また、上記方法では、画素電極3の形成後、ゲート電極4の形成前に窒化物層20を形成しているが、ゲート電極4を形成した後に窒化物層20を形成することも可能である。ただし、ゲート電極4の形成前に窒化物層20を形成すると、ゲート絶縁層形成工程GIおよびその後のプロセスによって画素電極3の表面が改質され、コンタクト部90の特性を低下させることを抑制できる。特に、画素電極3の形成直後に窒化物層20を形成し、画素電極3の上面の一部(コンタクト部90を構成する部分)を被覆(キャップ)すると、より効果的に画素電極3の上面の改質を抑制できる。 In the above method, the nitride layer 20 is formed after the pixel electrode 3 is formed and before the gate electrode 4 is formed. However, the nitride layer 20 can be formed after the gate electrode 4 is formed. . However, if the nitride layer 20 is formed before the gate electrode 4 is formed, the surface of the pixel electrode 3 is modified by the gate insulating layer forming step GI and subsequent processes, and deterioration of the characteristics of the contact portion 90 can be suppressed. . In particular, when the nitride layer 20 is formed immediately after the formation of the pixel electrode 3 and a part of the upper surface of the pixel electrode 3 (portion constituting the contact portion 90) is covered (capped), the upper surface of the pixel electrode 3 is more effectively obtained. Can be suppressed.
 画素電極3としてITOの多結晶体からなる電極層を形成する場合、画素電極3の形成後に行うゲート電極4のパターニング、および、窒化物層20のパターニングにはウェットエッチングを用いることが好ましい。ドライエッチングによって画素電極3の上面の特性が低下し、密着性の低下や接触抵抗の増大の要因になることを抑制できる。 When an electrode layer made of an ITO polycrystal is formed as the pixel electrode 3, it is preferable to use wet etching for patterning the gate electrode 4 and patterning the nitride layer 20 after the pixel electrode 3 is formed. It can be suppressed that the characteristics of the upper surface of the pixel electrode 3 are deteriorated by dry etching, which causes a decrease in adhesion and an increase in contact resistance.
 (第2の実施形態)
 以下、本発明による半導体装置の第2の実施形態を説明する。本実施形態の半導体装置は表示装置のTFT基板である。
(Second Embodiment)
Hereinafter, a second embodiment of the semiconductor device according to the present invention will be described. The semiconductor device of this embodiment is a TFT substrate of a display device.
 図4は、本実施形態のTFT基板100Bの模式的な断面図である。TFT基板100Bの平面図およびコンタクト部の拡大平面図は、それぞれ、図1(a)および図1(d)を参照する。図4は図1(a)のA-A’線に沿った断面構造を示している。図1に示すTFT基板100Aと同様の構成要素には同じ参照符号を付し、説明の重複を避ける。 FIG. 4 is a schematic cross-sectional view of the TFT substrate 100B of the present embodiment. For a plan view of the TFT substrate 100B and an enlarged plan view of the contact portion, refer to FIGS. 1A and 1D, respectively. FIG. 4 shows a cross-sectional structure along the line A-A ′ of FIG. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
 図4に示すように、TFT基板100Bでは、ゲート電極4(およびゲート配線14)は、窒化物層20と同一の金属窒化膜から形成された第1のゲート層20aと、第1のゲート層20aの上に形成された第2のゲート層4aとを含む積層構造を有している。第2のゲート層4aは、第1のゲート層20aとは異なる導電材料から形成されている。第2のゲート層4aとして、例えばMo(モリブデン)、Al(アルミニウム)、Ti(チタン)、W(タングステン)、Ta(タンタル)、Cu(銅)から選ばれた元素を含む金属膜を用いてもよい。その他の構成および各構成要素の厚さや材料等は、TFT基板100Aと同様である。 As shown in FIG. 4, in the TFT substrate 100B, the gate electrode 4 (and the gate wiring 14) includes a first gate layer 20a formed of the same metal nitride film as the nitride layer 20, and a first gate layer. It has a stacked structure including the second gate layer 4a formed on 20a. The second gate layer 4a is formed of a conductive material different from that of the first gate layer 20a. As the second gate layer 4a, for example, a metal film containing an element selected from Mo (molybdenum), Al (aluminum), Ti (titanium), W (tungsten), Ta (tantalum), and Cu (copper) is used. Also good. Other configurations and the thicknesses and materials of the respective components are the same as those of the TFT substrate 100A.
 本実施形態によると、コンタクト部90において、ドレイン電極(金属層)7dと画素電極(透明導電層)3との間に窒化物層20を介在させるので、実施形態1と同様にコンタクト抵抗の増大および密着性の低下を抑制できる。さらに、第2のゲート層4aの下に高融点金属の窒化物からなる第1のゲート層20aを配置するので、第2のゲート層4aのヒロックを抑えることができる。また、第1のゲート層20aがバッファとして機能するので、第2のゲート層4aのみでゲート電極を形成する場合と比べて、ゲート電極4とその下地層との密着性を改善できる。 According to the present embodiment, since the nitride layer 20 is interposed between the drain electrode (metal layer) 7d and the pixel electrode (transparent conductive layer) 3 in the contact portion 90, the contact resistance is increased as in the first embodiment. And the fall of adhesiveness can be suppressed. Furthermore, since the first gate layer 20a made of a refractory metal nitride is disposed under the second gate layer 4a, hillocks in the second gate layer 4a can be suppressed. Further, since the first gate layer 20a functions as a buffer, the adhesion between the gate electrode 4 and its base layer can be improved as compared with the case where the gate electrode is formed only by the second gate layer 4a.
 さらに、詳細な説明は後述するが、金属窒化膜の一部をゲート電極4の下層として残す場合には、ゲート電極4と窒化物層20とを1つのフォトマスクから形成することが可能となる。従って、フォトマスクの数を削減でき製造コストを削減し得る。 Further, as will be described in detail later, when a part of the metal nitride film is left as the lower layer of the gate electrode 4, the gate electrode 4 and the nitride layer 20 can be formed from one photomask. . Therefore, the number of photomasks can be reduced and manufacturing costs can be reduced.
 次に、図5および図6を参照しながら、TFT基板100Bの製造方法の一例を詳細に説明する。図5はTFT基板100Bの製造方法の一例を説明するためのブロック図である。図6(a)~図6(g)は、TFT基板100Bの製造方法の一例を説明するための模式的な断面図であり、図4に対応する。 Next, an example of a manufacturing method of the TFT substrate 100B will be described in detail with reference to FIGS. FIG. 5 is a block diagram for explaining an example of a manufacturing method of the TFT substrate 100B. 6A to 6G are schematic cross-sectional views for explaining an example of the manufacturing method of the TFT substrate 100B, and correspond to FIG.
 図5に示すように、TFT基板100Bの製造方法は、画素電極形成工程PX、高融点金属の窒化物層および第1のゲート層形成工程IM、第2のゲート層形成工程GT、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 As shown in FIG. 5, the manufacturing method of the TFT substrate 100B includes a pixel electrode forming step PX, a refractory metal nitride layer and first gate layer forming step IM, a second gate layer forming step GT, and a gate insulating layer. / Semiconductor layer forming step GI / PS, source / drain electrode forming step SD, protective layer forming step PAS and common electrode forming step CT, and the process proceeds in this order.
 まず、図6(a)に示すように、基板2の上に画素電極3を形成する。画素電極3の形成方法は、図3(a)を参照しながら前述した方法と同様である。 First, as shown in FIG. 6A, the pixel electrode 3 is formed on the substrate 2. The formation method of the pixel electrode 3 is the same as the method described above with reference to FIG.
 次いで、図6(b)に示すように、基板2の上に高融点金属の窒化膜(不図示)を形成し、これをパターニングすることにより、画素電極3の一部上に位置する窒化物層20と、画素電極3が形成されていない領域上に位置する第1のゲート層20aとを形成する。第1のゲート層20aは、ゲート電極およびゲート配線を形成する領域に設ける。窒化膜の形成方法は、図3(b)を参照しながら前述した方法と同様である。 Next, as shown in FIG. 6B, a refractory metal nitride film (not shown) is formed on the substrate 2 and is patterned to form a nitride located on a part of the pixel electrode 3. A layer 20 and a first gate layer 20a located on a region where the pixel electrode 3 is not formed are formed. The first gate layer 20a is provided in a region where a gate electrode and a gate wiring are formed. The method for forming the nitride film is the same as the method described above with reference to FIG.
 次いで、図6(c)に示すように、第1のゲート層20aの上に、第2のゲート層4aを形成し、ゲート電極4を得る。第2のゲート層4aの形成方法は、図3(a)を参照しながら前述したゲート電極4の形成方法と同様である。図示する例では、第2のゲート層4aのパターンと第1のゲート層20aのパターンとは整合しているが、第2のゲート層4aは、第1のゲート層20aの少なくとも一部と重なっていればよい。 Next, as shown in FIG. 6C, the second gate layer 4a is formed on the first gate layer 20a, and the gate electrode 4 is obtained. The method for forming the second gate layer 4a is the same as the method for forming the gate electrode 4 described above with reference to FIG. In the illustrated example, the pattern of the second gate layer 4a and the pattern of the first gate layer 20a are matched, but the second gate layer 4a overlaps at least a part of the first gate layer 20a. It only has to be.
 本実施形態では、ゲート電極4およびゲート配線の全体が、第1のゲート層20aおよび第2のゲート層4aを含む積層構造を有してもよい。あるいは、ゲート電極およびゲート配線の一部のみがそのような積層構造を有し、他の部分が第1のゲート層20aまたは第2のゲート層4aのいずれか一方のみから構成されていてもよい。 In the present embodiment, the entire gate electrode 4 and the gate wiring may have a stacked structure including the first gate layer 20a and the second gate layer 4a. Alternatively, only a part of the gate electrode and the gate wiring may have such a stacked structure, and the other part may be configured by only one of the first gate layer 20a or the second gate layer 4a. .
 その後、図6(d)~(g)に示すように、絶縁層5、半導体層6、ソースおよびドレイン電極7s、7d、保護層8および共通電極9を形成する。これらの形成方法は、図3(d)~(g)を参照しながら前述した方法と同様である。このようにして、TFT基板100Bを得る。 Thereafter, as shown in FIGS. 6D to 6G, the insulating layer 5, the semiconductor layer 6, the source and drain electrodes 7s and 7d, the protective layer 8, and the common electrode 9 are formed. These forming methods are the same as those described above with reference to FIGS. 3 (d) to 3 (g). In this way, the TFT substrate 100B is obtained.
 上記方法では、画素電極3の形成後、第2のゲート層4aを形成する前に、窒化物層20を形成して画素電極3の上面の一部を被覆する。従って、製造プロセス中に画素電極3の上面が改質し、コンタクト部90の特性が低下することを抑制できる。 In the above method, after the pixel electrode 3 is formed and before the second gate layer 4a is formed, the nitride layer 20 is formed to cover a part of the upper surface of the pixel electrode 3. Accordingly, it is possible to prevent the upper surface of the pixel electrode 3 from being modified during the manufacturing process and the characteristics of the contact portion 90 from being deteriorated.
 TFT基板100Bの製造方法は上記の方法に限定されない。例えば、図7(a)~図7(e)に示すように、ハーフトーン露光法を用いて、図5に示す高融点金属の窒化物層および第1のゲート層形成工程IMと、第2のゲート層形成工程GTとを、1つのフォトマスクを用いて行うことができる。 The manufacturing method of the TFT substrate 100B is not limited to the above method. For example, as shown in FIGS. 7A to 7E, a refractory metal nitride layer and first gate layer forming step IM shown in FIG. The gate layer forming step GT can be performed using one photomask.
 まず、図7(a)に示すように、画素電極3が形成された基板2上に、高融点金属の窒化膜(金属窒化膜)20’を形成し、金属窒化膜20’の上に、第2のゲート層を形成するための導電膜4’を形成する。 First, as shown in FIG. 7A, a refractory metal nitride film (metal nitride film) 20 ′ is formed on the substrate 2 on which the pixel electrode 3 is formed, and on the metal nitride film 20 ′. A conductive film 4 ′ for forming the second gate layer is formed.
 次に、図7(b)に示すように、1つのフォトマスク(ハーフトーンマスク)からハーフトーン露光法により、導電膜4’上に、互いに厚さの異なるレジスト膜R1およびR2を所望のパターン形状に形成する。画素電極3上のコンタクト部を形成する領域にはレジスト膜R1を形成し、ゲート電極およびゲート配線を形成する領域には、レジスト膜R1よりも厚いレジスト膜R3を形成する。 Next, as shown in FIG. 7B, resist films R1 and R2 having different thicknesses are formed on the conductive film 4 'by a halftone exposure method using a single photomask (halftone mask). Form into shape. A resist film R1 is formed in a region where the contact portion on the pixel electrode 3 is formed, and a resist film R3 thicker than the resist film R1 is formed in a region where the gate electrode and the gate wiring are formed.
 次に、図7(c)に示すように、レジスト膜R1およびR2で覆われていない領域の金属窒化膜20’および導電膜4’をウェットエッチング法でパターニングする。このパターニングにより、レジスト膜R1によって規定される領域に、金属窒化膜20’から窒化物層20が形成され、導電膜4’から導電層(被エッチング層)4bが形成される。また、レジスト膜R2によって規定される領域に、金属窒化膜20’から第1のゲート層20aが形成され、導電膜4’から第2のゲート層4aが形成される。第1のゲート層20aおよび第2のゲート層4aはゲート電極4を構成する。 Next, as shown in FIG. 7C, the metal nitride film 20 'and the conductive film 4' in a region not covered with the resist films R1 and R2 are patterned by a wet etching method. By this patterning, the nitride layer 20 is formed from the metal nitride film 20 'and the conductive layer (etched layer) 4b is formed from the conductive film 4' in the region defined by the resist film R1. Further, the first gate layer 20a is formed from the metal nitride film 20 'and the second gate layer 4a is formed from the conductive film 4' in the region defined by the resist film R2. The first gate layer 20a and the second gate layer 4a constitute the gate electrode 4.
 次に、図7(d)に示すように、ドライエッチング法によりレジスト膜R1を除去する。このドライエッチング法により、レジスト膜R2の一部が削られてレジスト膜R2よりも厚さの小さいレジスト膜R2’が得られる。 Next, as shown in FIG. 7D, the resist film R1 is removed by a dry etching method. By this dry etching method, a part of the resist film R2 is scraped to obtain a resist film R2 'having a smaller thickness than the resist film R2.
 続いて、さらなるドライエッチング法により、レジスト膜R2’および導電層4bを除去する。レジスト膜R2’の下にある第2のゲート層4aは除去されずに残る。 Subsequently, the resist film R2 'and the conductive layer 4b are removed by a further dry etching method. The second gate layer 4a under the resist film R2 'remains without being removed.
 この後、図示しないが、図6(d)~図6(g)を参照しながら説明したように、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを経て、TFT基板100Bを得る。 Thereafter, although not shown, as described with reference to FIGS. 6D to 6G, the gate insulating layer / semiconductor layer forming step GI / PS, the source / drain electrode forming step SD, and the protective layer forming Through the process PAS and the common electrode formation process CT, the TFT substrate 100B is obtained.
 この方法によると、窒化物層20とゲート電極4とを1枚のフォトマスクから形成できるので、フォトマスクの数を削減でき、製造コストを削減し得る。 According to this method, since the nitride layer 20 and the gate electrode 4 can be formed from one photomask, the number of photomasks can be reduced, and the manufacturing cost can be reduced.
 なお、後述するように、導電層4bを除去せずに残し、導電層4bを介して、窒化物層20とドレイン電極7dとを接続させることもできる。ただし、第2のゲート層4aとしてAl層やCu層を用いる場合、表面に酸化被膜が形成されるため、上層となるドレイン電極7dとの接続が不安定となり、有効接続面積が小さくなる可能性がある。従って、そのような場合には、本実施形態のように、導電層4bを除去し、窒化物層20とドレイン電極7dとを直接接触させることが好ましい。 As will be described later, the nitride layer 20 and the drain electrode 7d can be connected via the conductive layer 4b, leaving the conductive layer 4b without being removed. However, when an Al layer or Cu layer is used as the second gate layer 4a, an oxide film is formed on the surface, so that the connection with the upper drain electrode 7d becomes unstable, and the effective connection area may be reduced. There is. Therefore, in such a case, it is preferable to remove the conductive layer 4b and bring the nitride layer 20 and the drain electrode 7d into direct contact as in this embodiment.
 (第3の実施形態)
 以下、本発明による半導体装置の第3の実施形態を説明する。本実施形態の半導体装置は表示装置のTFT基板である。
(Third embodiment)
Hereinafter, a third embodiment of a semiconductor device according to the present invention will be described. The semiconductor device of this embodiment is a TFT substrate of a display device.
 図8は、本実施形態のTFT基板100Cの模式的な断面図である。TFT基板100Cの平面図およびコンタクト部の拡大平面図は、それぞれ、図1(a)および図1(d)を参照する。図8は図1(a)のA-A’線に沿った断面構造を示している。図1に示すTFT基板100Aと同様の構成要素には同じ参照符号を付し、説明の重複を避ける。 FIG. 8 is a schematic cross-sectional view of the TFT substrate 100C of this embodiment. For a plan view of the TFT substrate 100C and an enlarged plan view of the contact portion, refer to FIG. 1 (a) and FIG. 1 (d), respectively. FIG. 8 shows a cross-sectional structure along the line A-A ′ of FIG. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
 TFT基板100Cは、窒化物層20と同一の金属窒化膜を用いてゲート電極4(20a)およびゲート配線14が形成されている点で前述のTFT基板100A(図1)と異なっている。その他の構成および各構成要素の厚さや材料等は、TFT基板100Aと同様である。 The TFT substrate 100C is different from the above-described TFT substrate 100A (FIG. 1) in that the gate electrode 4 (20a) and the gate wiring 14 are formed using the same metal nitride film as the nitride layer 20. Other configurations and the thicknesses and materials of the respective components are the same as those of the TFT substrate 100A.
 本実施形態では、ゲート電極4(20a)およびゲート配線と窒化物層20とを同一の金属窒化膜の単層で形成するので、製造工程数を増やすことなく、コンタクト部90の抵抗の増大および密着性の低下を抑制できる。また、窒化物層20とゲート電極4とを別層で形成する場合には、ゲート電極4のエッチングの際に窒化物層20もエッチングされる可能性があり、窒化物層20の形成工程が不安定となるが、本実施形態によると、そのような不安定性を改善でき、プロセスの安定性を向上できる。 In this embodiment, since the gate electrode 4 (20a) and the gate wiring and the nitride layer 20 are formed as a single layer of the same metal nitride film, the resistance of the contact portion 90 can be increased and the number of manufacturing steps can be increased. Decrease in adhesion can be suppressed. Further, when the nitride layer 20 and the gate electrode 4 are formed as separate layers, the nitride layer 20 may be etched when the gate electrode 4 is etched. Although it becomes unstable, according to this embodiment, such instability can be improved and the stability of the process can be improved.
 次に、図9および図10を参照しながら、TFT基板100Cの製造方法の一例を詳細に説明する。図9はTFT基板100Cの製造方法の一例を説明するためのブロック図である。図10(a)~図10(f)は、TFT基板100Cの製造方法の一例を説明するための模式的な断面図であり、図8に対応する。 Next, an example of a manufacturing method of the TFT substrate 100C will be described in detail with reference to FIGS. FIG. 9 is a block diagram for explaining an example of a manufacturing method of the TFT substrate 100C. FIGS. 10A to 10F are schematic cross-sectional views for explaining an example of the manufacturing method of the TFT substrate 100C, and correspond to FIG.
 図9に示すように、TFT基板100Cの製造方法は、画素電極形成工程PX、高融点金属の窒化物層およびゲート電極形成工程IM、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 As shown in FIG. 9, the manufacturing method of the TFT substrate 100C includes a pixel electrode forming step PX, a refractory metal nitride layer and gate electrode forming step IM, a gate insulating layer / semiconductor layer forming step GI / PS, and a source / drain. It has an electrode forming step SD, a protective layer forming step PAS, and a common electrode forming step CT, and the process proceeds in this order.
 まず、図10(a)に示すように、基板2の上に画素電極3を形成する。画素電極3の形成方法は、図3(a)を参照しながら前述した方法と同様である。 First, as shown in FIG. 10A, the pixel electrode 3 is formed on the substrate 2. The formation method of the pixel electrode 3 is the same as the method described above with reference to FIG.
 次いで、図10(b)に示すように、基板2の上に高融点金属の窒化膜(不図示)を形成し、これをパターニングすることにより、画素電極3の一部上に位置する窒化物層20と、画素電極3が形成されていない領域上に位置するゲート電極4(20a)とを形成する。金属窒化膜の形成およびパターニングの方法は、図3(b)を参照しながら前述した方法と同様である。 Next, as shown in FIG. 10B, a refractory metal nitride film (not shown) is formed on the substrate 2 and is patterned to form a nitride located on a part of the pixel electrode 3. The layer 20 and the gate electrode 4 (20a) located on the region where the pixel electrode 3 is not formed are formed. The method for forming and patterning the metal nitride film is the same as that described above with reference to FIG.
 次いで、図10(c)~(f)に示すように、絶縁層5、半導体層6、ソースおよびドレイン電極7s、7d、保護層8および共通電極9を形成し、TFT基板100Cを得る。これらの形成方法は、図3(d)~(g)を参照しながら前述した方法と同様である。 Next, as shown in FIGS. 10C to 10F, the insulating layer 5, the semiconductor layer 6, the source and drain electrodes 7s and 7d, the protective layer 8, and the common electrode 9 are formed to obtain the TFT substrate 100C. These forming methods are the same as those described above with reference to FIGS. 3 (d) to 3 (g).
 上記方法によると、図2および図3を参照しながら前述したTFT基板100Aの製造方法よりも、ゲート電極形成工程GTを削減できるので、フォトマスク数を低減できる。また、画素電極3を形成した後、絶縁層5の形成前に、画素電極3の上に窒化物層20を形成するので、絶縁層5の形成工程やその後の工程中に、コンタクト部90に位置する画素電極3の上面が改質されることを抑制できる。 According to the above method, the number of photomasks can be reduced because the gate electrode forming step GT can be reduced as compared with the manufacturing method of the TFT substrate 100A described above with reference to FIGS. In addition, since the nitride layer 20 is formed on the pixel electrode 3 after the pixel electrode 3 is formed and before the insulating layer 5 is formed, the contact portion 90 is formed during the insulating layer 5 forming process and the subsequent processes. It can suppress that the upper surface of the pixel electrode 3 located is improved.
 (第4の実施形態)
 図11は、本実施形態のTFT基板100Dの模式的な断面図である。TFT基板100Dの平面図およびコンタクト部の拡大平面図は、それぞれ、図1(a)および図1(d)を参照する。図11は図1(a)のA-A’線に沿った断面構造を示している。図1に示すTFT基板100Aと同様の構成要素には同じ参照符号を付し、説明の重複を避ける。
(Fourth embodiment)
FIG. 11 is a schematic cross-sectional view of the TFT substrate 100D of the present embodiment. For a plan view of the TFT substrate 100D and an enlarged plan view of the contact portion, refer to FIG. 1 (a) and FIG. 1 (d), respectively. FIG. 11 shows a cross-sectional structure along the line AA ′ in FIG. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
 TFT基板100Dでは、TFT基板100B(図4)と同様に、ゲート電極4(およびゲート配線14)は、窒化物層20と同一の金属窒化膜から形成された第1のゲート層20aと、第1のゲート層20aの上に形成された第2のゲート層4aとを含む積層構造を有している。第2のゲート層4aは、第1のゲート層20aとは異なる導電材料から形成されている。また、TFT基板100Dでは、窒化物層20とドレイン電極7dとの間に、第2のゲート層4aと同一の導電膜から形成された導電層4bを有している。導電層4bは、窒化物層20と接し、かつ、ドレイン電極7dのうち開口部5uに位置する部分と接している。その他の構成および各構成要素の厚さや材料等は、TFT基板100Aと同様である。 In the TFT substrate 100D, as in the TFT substrate 100B (FIG. 4), the gate electrode 4 (and the gate wiring 14) includes the first gate layer 20a formed of the same metal nitride film as the nitride layer 20, and the first gate layer 20a. And a second gate layer 4a formed on the first gate layer 20a. The second gate layer 4a is formed of a conductive material different from that of the first gate layer 20a. In addition, the TFT substrate 100D includes a conductive layer 4b formed of the same conductive film as the second gate layer 4a between the nitride layer 20 and the drain electrode 7d. Conductive layer 4b is in contact with nitride layer 20 and in contact with the portion of drain electrode 7d located at opening 5u. Other configurations and the thicknesses and materials of the respective components are the same as those of the TFT substrate 100A.
 本実施形態では、ゲート電極4およびゲート配線と、コンタクト部90において窒化物層20とドレイン電極7dとの間に形成される導電体層とを、同一の2つの膜(金属窒化膜および導電膜)をパターニングすることによって同時に形成する。このため、製造工程数を増やすことなく、コンタクト部90の抵抗の増大および密着性の低下を抑制できる。また、窒化物層20とゲート電極4とを別層で形成する場合には、ゲート電極4のエッチングの際に窒化物層20もエッチングされる可能性があり、窒化物層20の形成工程が不安定となるが、本実施形態によると、そのような不安定性を改善でき、プロセスの安定性を向上できる。 In the present embodiment, the gate electrode 4 and the gate wiring, and the conductor layer formed between the nitride layer 20 and the drain electrode 7d in the contact portion 90 are formed of the same two films (metal nitride film and conductive film). ) Are simultaneously formed by patterning. For this reason, it is possible to suppress an increase in resistance and a decrease in adhesion of the contact portion 90 without increasing the number of manufacturing steps. Further, when the nitride layer 20 and the gate electrode 4 are formed as separate layers, the nitride layer 20 may be etched when the gate electrode 4 is etched. Although it becomes unstable, according to this embodiment, such instability can be improved and the stability of the process can be improved.
 次に、図12および図13を参照しながら、TFT基板100Dの製造方法の一例を詳細に説明する。図12はTFT基板100Dの製造方法の一例を説明するためのブロック図である。図13(a)~図13(f)は、TFT基板100Dの製造方法の一例を説明するための模式的な断面図であり、図11に対応する。 Next, an example of a manufacturing method of the TFT substrate 100D will be described in detail with reference to FIGS. FIG. 12 is a block diagram for explaining an example of a manufacturing method of the TFT substrate 100D. FIGS. 13A to 13F are schematic cross-sectional views for explaining an example of the manufacturing method of the TFT substrate 100D, and correspond to FIG.
 図12に示すように、TFT基板100Dの製造方法は、画素電極形成工程PX、高融点金属の窒化物層およびゲート電極形成工程IM/GT、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 As shown in FIG. 12, the manufacturing method of the TFT substrate 100D includes a pixel electrode forming step PX, a refractory metal nitride layer and gate electrode forming step IM / GT, a gate insulating layer / semiconductor layer forming step GI / PS, and a source. A drain electrode forming step SD, a protective layer forming step PAS, and a common electrode forming step CT, and the process proceeds in this order.
 まず、図13(a)に示すように、基板2の上に画素電極3を形成する。画素電極3の形成方法は、図3(a)を参照しながら前述した方法と同様である。 First, as shown in FIG. 13A, the pixel electrode 3 is formed on the substrate 2. The formation method of the pixel electrode 3 is the same as the method described above with reference to FIG.
 次いで、図13(b)に示すように、基板2の上に高融点金属の窒化膜(不図示)および導電膜(不図示)をこの順で形成する。次いで、これらの膜を同時にパターニングすることにより、画素電極3の一部上に、窒化膜から形成された窒化物層20と、導電膜から形成された導電層4bとを形成する。また、画素電極3が形成されていない領域上に、窒化膜から形成された第1のゲート層20aと、導電膜から形成された第2のゲート層4aとを形成する。 Next, as shown in FIG. 13B, a refractory metal nitride film (not shown) and a conductive film (not shown) are formed on the substrate 2 in this order. Next, by simultaneously patterning these films, a nitride layer 20 formed of a nitride film and a conductive layer 4b formed of a conductive film are formed on a part of the pixel electrode 3. In addition, a first gate layer 20a formed of a nitride film and a second gate layer 4a formed of a conductive film are formed on a region where the pixel electrode 3 is not formed.
 次いで、図13(c)~(f)に示すように、絶縁層5、半導体層6、ソースおよびドレイン電極7s、7d、保護層8および共通電極9を形成し、TFT基板100Dを得る。これらの形成方法は、図3(d)~(g)を参照しながら前述した方法と同様である。なお、本実施形態では、ドレイン電極7dは、開口部5u内で導電層4bと接するように形成される。 Next, as shown in FIGS. 13C to 13F, the insulating layer 5, the semiconductor layer 6, the source and drain electrodes 7s and 7d, the protective layer 8, and the common electrode 9 are formed to obtain the TFT substrate 100D. These forming methods are the same as those described above with reference to FIGS. 3 (d) to 3 (g). In the present embodiment, the drain electrode 7d is formed in contact with the conductive layer 4b in the opening 5u.
 上記方法によると、ゲート電極4と窒化物層20とを1つのフォトマスクで形成できるので、TFT基板100Aの製造方法よりも、工程数(フォトマスク数)を削減できる。また、本実施形態でも、画素電極3を形成した後、絶縁層5の形成前に、画素電極3の上面に窒化物層20を形成するので、絶縁層5の形成工程やその後の工程中に、コンタクト部90に位置する画素電極3の上面が改質されることを抑制できる。 According to the above method, since the gate electrode 4 and the nitride layer 20 can be formed by one photomask, the number of steps (number of photomasks) can be reduced as compared with the manufacturing method of the TFT substrate 100A. Also in this embodiment, since the nitride layer 20 is formed on the upper surface of the pixel electrode 3 after the pixel electrode 3 is formed and before the insulating layer 5 is formed, the insulating layer 5 is formed during or after the forming process. The upper surface of the pixel electrode 3 located in the contact portion 90 can be prevented from being modified.
 (第5の実施形態)
 以下、本発明による半導体装置の第5の実施形態を説明する。本実施形態の半導体装置は表示装置のTFT基板である。
(Fifth embodiment)
Hereinafter, a fifth embodiment of the semiconductor device according to the present invention will be described. The semiconductor device of this embodiment is a TFT substrate of a display device.
 図14(a)および(b)は、それぞれ、本実施形態のTFT基板100Eの模式的な断面図である。TFT基板100Eの平面図およびコンタクト部の拡大平面図は、それぞれ、図1(a)および図1(d)を参照する。図14(a)および(b)は、それぞれ、図1(a)のA-A’線およびB-B’線に沿った断面構造を示している。図1に示すTFT基板100Aと同様の構成要素には同じ参照符号を付し、説明の重複を避ける。 FIGS. 14A and 14B are schematic cross-sectional views of the TFT substrate 100E of the present embodiment, respectively. For a plan view of the TFT substrate 100E and an enlarged plan view of the contact portion, refer to FIG. 1 (a) and FIG. 1 (d), respectively. FIGS. 14A and 14B show cross-sectional structures taken along lines A-A ′ and B-B ′ of FIG. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
 TFT基板100Eはゲート電極4と絶縁層5および画素電極3との間に、さらなる絶縁層5aが形成されている点で、TFT基板100Aと異なる。 The TFT substrate 100E is different from the TFT substrate 100A in that a further insulating layer 5a is formed between the gate electrode 4, the insulating layer 5, and the pixel electrode 3.
 TFT基板100Eでは、ゲート絶縁層が絶縁層5および絶縁層5aからなる2層構造を有し、これらの2層の間に画素電極3が設けられている。本実施形態では、絶縁層5aを「第1ゲート絶縁層」、開口部5uが形成される絶縁層5を「第2ゲート絶縁層」と称する。 In the TFT substrate 100E, the gate insulating layer has a two-layer structure including the insulating layer 5 and the insulating layer 5a, and the pixel electrode 3 is provided between these two layers. In the present embodiment, the insulating layer 5a is referred to as a “first gate insulating layer”, and the insulating layer 5 in which the opening 5u is formed is referred to as a “second gate insulating layer”.
 第1ゲート絶縁層5aおよび第2ゲート絶縁層5は、例えばSiO2(酸化シリコン)、SiNx(窒化シリコン)、SiOxy(酸化窒化シリコン、x>y)、SiNxy(窒化酸化シリコン、x>y)、Al23(酸化アルミニウム)または酸化タンタル(Ta25)から形成され得る。 The first gate insulating layer 5a and the second gate insulating layer 5 are made of, for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (nitriding). It can be formed from silicon oxide, x> y), Al 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ).
 また、基板2からの不純物などの拡散防止や製造プロセスの処理時間低減のため、下層の第1ゲート絶縁層5aは、SiNx、またはSiNxy(窒化酸化シリコン、x>y)から形成されてもよい。シリコン窒化膜から形成された絶縁層はエッチングレートが大きいので、処理時間を短くできる。また、第1ゲート絶縁層5aは表示領域の略全面に設けられていてもよい(図14(b)参照)。 Further, in order to prevent diffusion of impurities from the substrate 2 and reduce the processing time of the manufacturing process, the lower first gate insulating layer 5a is formed of SiN x or SiN x O y (silicon nitride oxide, x> y). May be. Since the insulating layer formed from the silicon nitride film has a high etching rate, the processing time can be shortened. The first gate insulating layer 5a may be provided on substantially the entire display region (see FIG. 14B).
 下層である第1ゲート絶縁層5aとして、基板2からの不純物等の拡散防止のために窒化珪素層、窒化酸化珪素層等を形成し、その上の層(上層)に、絶縁性を確保するために酸化珪素層、酸化窒化珪素層等を形成してもよい。 As the lower first gate insulating layer 5a, a silicon nitride layer, a silicon nitride oxide layer, or the like is formed to prevent diffusion of impurities and the like from the substrate 2, and insulation is ensured on the upper layer (upper layer). Therefore, a silicon oxide layer, a silicon oxynitride layer, or the like may be formed.
 なお、ゲート電極4やコンタクト部90の構成は、図14に示す構成に限定されない。図14に示す例では、TFT基板100A(図1)に第1ゲート絶縁層5aを設けているが、前述の他のTFT基板100B~100Dに第1ゲート絶縁層5aを設けてもよい。 Note that the configuration of the gate electrode 4 and the contact portion 90 is not limited to the configuration shown in FIG. In the example shown in FIG. 14, the first gate insulating layer 5a is provided on the TFT substrate 100A (FIG. 1), but the first gate insulating layer 5a may be provided on the other TFT substrates 100B to 100D.
 本実施形態によると、コンタクト部90において、ドレイン電極7dと画素電極3との間に窒化物層20を介在させることにより、コンタクト部90の抵抗の増大および密着性の低下を抑制できる。また、ゲート電極4と、画素電極3および窒化物層20とを、絶縁層5aを挟んで別層で形成するので、画素電極3および窒化物層20の処理時にゲート電極4が影響を受けたり、ゲート電極4の処理時に窒化物層20が影響を受けることを抑制できる、従って、プロセスの安定性を向上できる。 According to the present embodiment, in the contact portion 90, by increasing the nitride layer 20 between the drain electrode 7d and the pixel electrode 3, an increase in resistance and a decrease in adhesion of the contact portion 90 can be suppressed. In addition, since the gate electrode 4, the pixel electrode 3, and the nitride layer 20 are formed as separate layers with the insulating layer 5a interposed therebetween, the gate electrode 4 may be affected when the pixel electrode 3 and the nitride layer 20 are processed. The nitride layer 20 can be prevented from being affected during the processing of the gate electrode 4, and the process stability can be improved.
 本実施形態は、半導体層6として酸化物半導体層を用いる場合に好適に適用され得る。酸化物半導体TFTでは、酸化物半導体層の特性を維持するため(低抵抗化を抑制するため)には、ゲート絶縁層のうち酸化物半導体層と接する層となる第2ゲート絶縁層5として、酸素を含む層(例えばSiO2、SiOxy(x>y)などの酸化絶縁膜)を用いることが好ましい。これにより、酸化物半導体層に酸素欠損が生じた場合に、酸化物層に含まれる酸素によって酸素欠損を回復することが可能となる。従って、酸化物半導体層の酸素欠損を低減でき、酸化物半導体層の低抵抗化を抑制できる。一方、そのような酸化絶縁膜の形成には、エッチレートが遅く処理タクトがかかるという問題がある。これに対し、ゲート絶縁層のうちゲート電極側に位置する第1ゲート絶縁層5aを酸化絶縁膜以外の絶縁膜(例えばSiNxなどの窒化膜)で形成すると、ゲート絶縁層全体の厚さに対する絶縁酸化膜の厚さの割合(膜厚占有率)を低減できる。これにより、酸化物半導体層の低抵抗化を抑制しつつ、処理タクトを抑えることができる。このように、2層構造のゲート絶縁層を有する酸化物半導体TFTを備えた半導体装置に本実施形態を適用すると、高いTFT特性を確保しつつ、ゲート絶縁層の2層を利用して上記効果(プロセスの安定性の向上)を得ることができる。 The present embodiment can be suitably applied when an oxide semiconductor layer is used as the semiconductor layer 6. In the oxide semiconductor TFT, in order to maintain the characteristics of the oxide semiconductor layer (in order to suppress a reduction in resistance), as the second gate insulating layer 5 serving as a layer in contact with the oxide semiconductor layer among the gate insulating layers, A layer containing oxygen (eg, an oxide insulating film such as SiO 2 or SiO x N y (x> y)) is preferably used. Accordingly, when oxygen vacancies occur in the oxide semiconductor layer, the oxygen vacancies can be recovered by oxygen contained in the oxide layer. Accordingly, oxygen vacancies in the oxide semiconductor layer can be reduced and reduction in resistance of the oxide semiconductor layer can be suppressed. On the other hand, the formation of such an oxide insulating film has a problem that the etching rate is slow and processing tact is required. On the other hand, when the first gate insulating layer 5a located on the gate electrode side in the gate insulating layer is formed of an insulating film other than the oxide insulating film (for example, a nitride film such as SiNx), the insulation with respect to the entire thickness of the gate insulating layer is achieved. The thickness ratio (film thickness occupancy) of the oxide film can be reduced. As a result, it is possible to suppress the processing tact while suppressing the resistance reduction of the oxide semiconductor layer. As described above, when this embodiment is applied to a semiconductor device including an oxide semiconductor TFT having a gate insulating layer having a two-layer structure, the above effect is achieved by using two layers of the gate insulating layer while ensuring high TFT characteristics. (Improvement of process stability) can be obtained.
 次に、図15および図16を参照しながら、本発明の実施形態によるTFT基板100Eの製造方法の一例を説明する。 Next, an example of a manufacturing method of the TFT substrate 100E according to the embodiment of the present invention will be described with reference to FIGS.
 図15はTFT基板100Eの製造方法を説明するためのブロック図である。図16(a)~図16(h)はTFT基板100Eの製造方法を説明するための模式的な断面図である。なお、図16(a)~図16(h)は図14(a)に対応する断面構造を示す。 FIG. 15 is a block diagram for explaining a manufacturing method of the TFT substrate 100E. 16 (a) to 16 (h) are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100E. 16 (a) to 16 (h) show a cross-sectional structure corresponding to FIG. 14 (a).
 図15に示すように、TFT基板100Eの製造方法は、ゲート電極形成工程GT、第1ゲート絶縁層工程GI-1、画素電極形成工程PX、高融点金属の窒化物層形成工程IM、第2ゲート絶縁層/半導体層形成工程GI-2/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 As shown in FIG. 15, the manufacturing method of the TFT substrate 100E includes the gate electrode forming step GT, the first gate insulating layer step GI-1, the pixel electrode forming step PX, the refractory metal nitride layer forming step IM, It has a gate insulating layer / semiconductor layer forming step GI-2 / PS, a source / drain electrode forming step SD, a protective layer forming step PAS, and a common electrode forming step CT, and the process proceeds in this order.
 まず、図16(a)に示すように、ゲート電極形成工程GTでは、図3(c)を参照しながら前述した方法と同様の方法でゲート電極4を形成する。 First, as shown in FIG. 16A, in the gate electrode formation step GT, the gate electrode 4 is formed by the same method as described above with reference to FIG.
 次に、図16(b)に示すように、第1ゲート絶縁層工程GI-1では、ゲート電極4上に、例えばCVD法で不図示の絶縁膜を形成した後、フォトリソグラフィ法およびウェットまたはドライエッチング法などでこの絶縁膜をパターニングして、第1ゲート絶縁層5aを形成する。また、第1ゲート絶縁層5aのパターニング後、パターニングに用いられたレジスト(不図示)を剥離する。 Next, as shown in FIG. 16B, in the first gate insulating layer step GI-1, after forming an insulating film (not shown) on the gate electrode 4 by, for example, CVD, photolithography and wet or The insulating film is patterned by a dry etching method or the like to form the first gate insulating layer 5a. Further, after the patterning of the first gate insulating layer 5a, the resist (not shown) used for the patterning is peeled off.
 次に、図16(c)に示すように、画素電極形成工程PXでは、ゲート絶縁層5aの上に、図3(a)を参照しながら前述した方法と同様の方法で画素電極3を形成する。 Next, as shown in FIG. 16C, in the pixel electrode formation step PX, the pixel electrode 3 is formed on the gate insulating layer 5a by the same method as described above with reference to FIG. To do.
 次に、図16(d)に示すように、高融点金属の窒化物層形成工程IMでは、画素電極3の上面の一部上に、図3(b)を参照しながら前述した方法と同様の方法で、窒化物層20を形成する。 Next, as shown in FIG. 16D, in the refractory metal nitride layer forming step IM, the same method as described above with reference to FIG. The nitride layer 20 is formed by this method.
 続いて、図16(e)に示すように、第2ゲート絶縁層/半導体層形成工程GI-2/PSでは、第1ゲート絶縁層5aおよび画素電極3上に、第2ゲート絶縁層5および半導体層6を形成する。第2ゲート絶縁層5および半導体層6の形成方法は、それぞれ、図3(d)を参照しながら前述した絶縁層5および半導体層6の形成方法と同様である。 Subsequently, as shown in FIG. 16E, in the second gate insulating layer / semiconductor layer forming step GI-2 / PS, the second gate insulating layer 5 and the first gate insulating layer 5 are formed on the first gate insulating layer 5a and the pixel electrode 3. A semiconductor layer 6 is formed. The method for forming the second gate insulating layer 5 and the semiconductor layer 6 is the same as the method for forming the insulating layer 5 and the semiconductor layer 6 described above with reference to FIG.
 次に、図16(f)~図16(h)に示すソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを経て、ソース電極7s、ドレイン電極7d、保護層8および共通電極9を形成する。これらの形成方法は、図3(e)~(g)を参照しながら前述した方法と同様である。このようにして、TFT基板100Eを得る。 Next, after the source / drain electrode formation step SD, the protective layer formation step PAS, and the common electrode formation step CT shown in FIGS. 16 (f) to 16 (h), the source electrode 7s, the drain electrode 7d, the protective layer 8 and A common electrode 9 is formed. These forming methods are the same as those described above with reference to FIGS. 3 (e) to 3 (g). In this way, the TFT substrate 100E is obtained.
 画素電極3としてITOの多結晶体からなる電極層を形成する場合、上記方法において、画素電極3の形成後に行う窒化物層20のパターニングとソースおよびドレイン電極のパターニングにはウェットエッチングを用いることが好ましい。ドライエッチングによって画素電極3の上面の特性が低下し、密着性の低下や接触抵抗の増大の要因になることを抑制できる。 When an electrode layer made of an ITO polycrystal is formed as the pixel electrode 3, in the above method, wet etching is used for patterning the nitride layer 20 and patterning the source and drain electrodes performed after the pixel electrode 3 is formed. preferable. It can be suppressed that the characteristics of the upper surface of the pixel electrode 3 are deteriorated by dry etching, which causes a decrease in adhesion and an increase in contact resistance.
 (第6の実施形態)
 以下、本発明による半導体装置の第6の実施形態を説明する。本実施形態の半導体装置は表示装置のTFT基板である。
(Sixth embodiment)
The sixth embodiment of the semiconductor device according to the present invention will be described below. The semiconductor device of this embodiment is a TFT substrate of a display device.
 図17(a)および(b)は、それぞれ、本実施形態のTFT基板100Fの模式的な断面図である。TFT基板100Fの平面図およびコンタクト部の拡大平面図は、それぞれ、図1(a)および図1(d)を参照する。図17(a)および(b)は、それぞれ、図1(a)のA-A’線およびB-B’線に沿った断面構造を示している。図1に示すTFT基板100Aと同様の構成要素には同じ参照符号を付し、説明の重複を避ける。 FIGS. 17A and 17B are schematic cross-sectional views of the TFT substrate 100F of the present embodiment, respectively. For a plan view of the TFT substrate 100F and an enlarged plan view of the contact portion, refer to FIG. 1 (a) and FIG. 1 (d), respectively. FIGS. 17A and 17B show cross-sectional structures taken along lines A-A ′ and B-B ′ of FIG. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
 TFT基板100Fは、基板2上に下地絶縁層(バッファ層)15が形成され、下地絶縁層15の上にゲート電極4および画素電極3が形成されている点で、TFT基板100Aと異なる。 The TFT substrate 100F is different from the TFT substrate 100A in that a base insulating layer (buffer layer) 15 is formed on the substrate 2 and a gate electrode 4 and a pixel electrode 3 are formed on the base insulating layer 15.
 本実施形態によると、第1の実施形態のTFT基板100Aと同様の効果が得られる。さらに、ゲート電極4を構成するメタル材料によっては、基板2との密着性が低い場合があるが、基板2に下地絶縁層15を形成することにより、ゲート電極4の密着性を高めることができる。また、下地絶縁層15が基板2の保護層として機能することから、基板2として、アルカリガラスなどのイオン溶出が生じ得る基板を使用することも可能になる。さらに、基板2として、アクリル樹脂などのプラスチック基板や、PETなどのフィルム基材を用いることもできる。このように、基板2として、無アルカリガラス以外の基板も広く用いることができるので、基板2の選択性が高くなる。 According to this embodiment, the same effect as the TFT substrate 100A of the first embodiment can be obtained. Further, depending on the metal material constituting the gate electrode 4, the adhesion to the substrate 2 may be low, but by forming the base insulating layer 15 on the substrate 2, the adhesion of the gate electrode 4 can be improved. . In addition, since the base insulating layer 15 functions as a protective layer for the substrate 2, it is possible to use a substrate that can cause ion elution, such as alkali glass, as the substrate 2. Furthermore, as the substrate 2, a plastic substrate such as an acrylic resin or a film base material such as PET can be used. Thus, since the board | substrate other than an alkali free glass can also be widely used as the board | substrate 2, the selectivity of the board | substrate 2 becomes high.
 基板2として、耐熱性の低いプラスチックやフィルム基材を用いる場合には、半導体層6として酸化物半導体層を用いることが好ましい。酸化物半導体はSi系半導体よりも低温での処理が可能であるので、プラスチックやフィルム基材上に、酸化物半導体膜を形成し、パターニングすることが可能である。従って、基板2としてプラスチックやフィルム基材を使用し、その表面に下地絶縁層15を形成した後に酸化物半導体TFTを形成すると、例えばフレキシブルディスプレイに好適に適用可能な半導体装置を製造できる。 When using a plastic or film base material having low heat resistance as the substrate 2, it is preferable to use an oxide semiconductor layer as the semiconductor layer 6. Since an oxide semiconductor can be processed at a lower temperature than a Si-based semiconductor, an oxide semiconductor film can be formed and patterned on a plastic or a film substrate. Therefore, when a plastic or film substrate is used as the substrate 2 and the oxide semiconductor TFT is formed after the base insulating layer 15 is formed on the surface thereof, a semiconductor device that can be suitably applied to, for example, a flexible display can be manufactured.
 下地絶縁層15として、例えばSiO2(酸化シリコン)、SiNx(窒化シリコン)、SiOxy(酸化窒化シリコン、x>y)、SiNxy(窒化酸化シリコン、x>y)、Al23(酸化アルミニウム)または酸化タンタル(Ta25)から形成された単層または積層を用いることができる。下地絶縁層15の厚さは例えば約50nm以上600nm以下である。 As the base insulating layer 15, for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y), Al A single layer or a laminate formed of 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ) can be used. The thickness of the base insulating layer 15 is, for example, not less than about 50 nm and not more than 600 nm.
 なお、ゲート電極4やコンタクト部90の構成は図17に示す構成に限定されない。図17では、TFT100A(図1)に下地絶縁層15を形成しているが、他のTFT基板100B~100Dに下地絶縁層15を適用してもよい。 The configurations of the gate electrode 4 and the contact portion 90 are not limited to the configuration shown in FIG. In FIG. 17, the base insulating layer 15 is formed on the TFT 100A (FIG. 1), but the base insulating layer 15 may be applied to other TFT substrates 100B to 100D.
 TFT基板100Fは、次のようにして製造できる。まず、基板2上に、CVD法などにより下地絶縁層15を形成する(バッファ層形成工程BU)。続いて、画素電極形成工程PX、ゲート電極形成工程GT、高融点金属の窒化物層形成工程IM、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを行う。下地絶縁層15の形成後の各工程は、図3(a)~(g)を参照しながら前述した工程と同様である。 The TFT substrate 100F can be manufactured as follows. First, the base insulating layer 15 is formed on the substrate 2 by a CVD method or the like (buffer layer forming step BU). Subsequently, pixel electrode formation step PX, gate electrode formation step GT, refractory metal nitride layer formation step IM, gate insulating layer / semiconductor layer formation step GI / PS, source / drain electrode formation step SD, protective layer formation step PAS and common electrode forming step CT are performed. Each process after the formation of the base insulating layer 15 is the same as the process described above with reference to FIGS.
 (第7の実施形態)
 以下、本発明の半導体装置の第7の実施形態を説明する。本実施形態の半導体装置は、透明導電層と金属層との間に絶縁層が形成されていない点で、前述の実施形態と異なっている。
(Seventh embodiment)
Hereinafter, a seventh embodiment of the semiconductor device of the present invention will be described. The semiconductor device of this embodiment is different from the above-described embodiment in that an insulating layer is not formed between the transparent conductive layer and the metal layer.
 本実施形態の半導体装置は、透明導電層と金属層とを接続するコンタクト部を有している。コンタクト部において、透明導電層と金属層との間に高融点金属の窒化物層が配置されており、高融点金属の窒化物層は、透明導電層の上面と接している。また、基板の法線方向から見たとき、高融点金属の窒化物層は、金属層と透明導電層とが重なった領域に配置されており、高融点金属の窒化物層の形状と金属層の形状とは異なっている。金属層は例えばドレイン電極またはドレイン電極と電気的に接続された電極層であり、透明導電層は例えば画素電極である。なお、本実施形態の半導体装置は、上記のような構成のコンタクト部を有していればよく、そのようなコンタクト部はTFTと画素電極とのコンタクト部に限定されず、端子部や接続部であってもよい。 The semiconductor device of this embodiment has a contact portion that connects the transparent conductive layer and the metal layer. In the contact portion, a refractory metal nitride layer is disposed between the transparent conductive layer and the metal layer, and the refractory metal nitride layer is in contact with the upper surface of the transparent conductive layer. Further, when viewed from the normal direction of the substrate, the refractory metal nitride layer is disposed in a region where the metal layer and the transparent conductive layer overlap, and the shape of the refractory metal nitride layer and the metal layer The shape is different. The metal layer is, for example, a drain electrode or an electrode layer electrically connected to the drain electrode, and the transparent conductive layer is, for example, a pixel electrode. Note that the semiconductor device of the present embodiment only needs to have a contact portion configured as described above, and such a contact portion is not limited to the contact portion between the TFT and the pixel electrode, but a terminal portion or a connection portion. It may be.
 以下、TFT基板を例に、本実施形態の半導体装置の構成をより具体的に説明する。 Hereinafter, the configuration of the semiconductor device according to the present embodiment will be described more specifically with reference to the TFT substrate.
 図18(a)は本発明の実施形態によるTFT基板100Gの模式的な平面図である。図18(b)は、図18(a)のA-A’線に沿ったTFT基板100Gの模式的な断面図、図18(b)は、図18(a)のB-B’線に沿ったTFT基板100Gの模式的な断面図である。図18(d)は、TFT基板100Gにおけるコンタクト部を含む領域を拡大した拡大平面図である。図1に示すTFT基板100Aと同様の構成要素には同じ参照符号を付し、説明の重複を避ける。 FIG. 18A is a schematic plan view of a TFT substrate 100G according to an embodiment of the present invention. 18B is a schematic cross-sectional view of the TFT substrate 100G along the line AA ′ in FIG. 18A, and FIG. 18B is a line BB ′ in FIG. It is typical sectional drawing of the TFT substrate 100G along. FIG. 18D is an enlarged plan view in which a region including the contact portion in the TFT substrate 100G is enlarged. Constituent elements similar to those of the TFT substrate 100A shown in FIG.
 図18(a)~図18(d)に示すように、TFT基板100Gは、基板2と、基板2上に形成されたゲート電極4と、ゲート電極4を覆う絶縁層5と、絶縁層5上に形成された画素電極(透明導電層)3と、絶縁層5を介してゲート電極4と重なる半導体層6と、半導体層6に電気的に接続されたソース電極7sおよびドレイン電極(金属層)7dとを有している。TFT基板100Gには、ドレイン電極7dと画素電極3とを電気的に接続するコンタクト部90が設けられている。 As shown in FIGS. 18A to 18D, the TFT substrate 100G includes a substrate 2, a gate electrode 4 formed on the substrate 2, an insulating layer 5 covering the gate electrode 4, and an insulating layer 5 A pixel electrode (transparent conductive layer) 3 formed thereon, a semiconductor layer 6 overlapping with the gate electrode 4 through the insulating layer 5, and a source electrode 7s and a drain electrode (metal layer) electrically connected to the semiconductor layer 6 ) 7d. The TFT substrate 100G is provided with a contact portion 90 that electrically connects the drain electrode 7d and the pixel electrode 3.
 コンタクト部90では、画素電極3とドレイン電極7dとの間には窒化物層20が配置されている。窒化物層20は、画素電極3の上面の一部と接している。また、基板2の法線方向から見たとき、窒化物層20の形状と、ドレイン電極7dの形状とは異なっている。本実施形態では、絶縁層5はゲート絶縁層であり、画素電極3および窒化物層20は、絶縁層5よりも上に設けられている。 In the contact portion 90, the nitride layer 20 is disposed between the pixel electrode 3 and the drain electrode 7d. The nitride layer 20 is in contact with a part of the upper surface of the pixel electrode 3. Further, when viewed from the normal direction of the substrate 2, the shape of the nitride layer 20 and the shape of the drain electrode 7 d are different. In the present embodiment, the insulating layer 5 is a gate insulating layer, and the pixel electrode 3 and the nitride layer 20 are provided above the insulating layer 5.
 本実施形態のTFT基板100Gは、ドレイン電極7dと画素電極3との間に窒化物層20を有しているので、画素電極3とドレイン電極7dとの間の抵抗を低く抑えることができ、かつ、これらの密着性を高めることができる。また、窒化物層20の形状と、ドレイン電極7dの形状とは異なっている。このように、窒化物層20とドレイン電極7dとは別々にパターニングされているので、必要な領域にのみ窒化物層20を配置でき、製造コストを低く抑えることができる。 Since the TFT substrate 100G of this embodiment has the nitride layer 20 between the drain electrode 7d and the pixel electrode 3, the resistance between the pixel electrode 3 and the drain electrode 7d can be kept low, And these adhesiveness can be improved. The shape of the nitride layer 20 is different from the shape of the drain electrode 7d. Thus, since the nitride layer 20 and the drain electrode 7d are separately patterned, the nitride layer 20 can be disposed only in a necessary region, and the manufacturing cost can be kept low.
 図示する例では、基板2の法線方向から見たとき、窒化物層20は、ドレイン電極7dと画素電極3とが重なった領域の全体に配置されている。このため、画素電極3の上面はドレイン電極7dと直接接していない。このような構成により、画素電極3の上面の特性による密着性の低下や抵抗の増大をより効果的に抑制できる。例えば図18(d)から分かるように、基板2の法線方向から見たとき、ドレイン電極7dの幅よりも窒化物層20の幅を大きくすることにより、より確実に上記の構成を実現できる。 In the illustrated example, when viewed from the normal direction of the substrate 2, the nitride layer 20 is disposed over the entire region where the drain electrode 7 d and the pixel electrode 3 overlap. For this reason, the upper surface of the pixel electrode 3 is not in direct contact with the drain electrode 7d. With such a configuration, a decrease in adhesion and an increase in resistance due to the characteristics of the upper surface of the pixel electrode 3 can be more effectively suppressed. For example, as can be seen from FIG. 18 (d), when viewed from the normal direction of the substrate 2, the above configuration can be realized more reliably by making the width of the nitride layer 20 larger than the width of the drain electrode 7d. .
 前述の第1~第6の実施形態では、コンタクト部は、絶縁層のコンタクトホール内に形成されるので、接触面積はコンタクトホールの面積に制限される。これに対し、本実施形態では、ドレイン電極7dと画素電極3との間に絶縁層を形成しないので、コンタクト部におけるドレイン電極7dと窒化物層20(または窒化物層20および画素電極3)との接触面積をより大きくできる。従って、表示品位をより安定化できる。 In the first to sixth embodiments described above, the contact portion is formed in the contact hole of the insulating layer, so that the contact area is limited to the area of the contact hole. On the other hand, in this embodiment, since an insulating layer is not formed between the drain electrode 7d and the pixel electrode 3, the drain electrode 7d and the nitride layer 20 (or the nitride layer 20 and the pixel electrode 3) in the contact portion The contact area can be increased. Therefore, the display quality can be further stabilized.
 また、図18に示す例では、窒化物層20の幅をドレイン電極7dの幅よりも大きくしているので、その分だけ画素の開口面積が小さくなる。しかしながら、本実施形態によると、第1~第6の実施形態と比べて、同程度の接触面積を確保しつつ、ドレイン電極7dのうち画素電極3と重なる部分の長さを抑えることが可能である。従って、ドレイン電極7dの長さを抑えることによって、ドレイン電極7dの幅を大きくしても、開口率を高く維持できる。 Further, in the example shown in FIG. 18, since the width of the nitride layer 20 is made larger than the width of the drain electrode 7d, the opening area of the pixel is reduced accordingly. However, according to the present embodiment, it is possible to suppress the length of the portion of the drain electrode 7d that overlaps the pixel electrode 3 while ensuring the same contact area as compared with the first to sixth embodiments. is there. Therefore, by suppressing the length of the drain electrode 7d, the aperture ratio can be kept high even if the width of the drain electrode 7d is increased.
 次に、図19および図20を参照しながらTFT基板100Gの製造方法の一例を説明する。図19は、TFT基板100Gの製造方法を説明するためのブロック図である。図20(a)~図20(g)は、TFT基板100Gの製造方法を説明するための模式的な断面図である。 Next, an example of a manufacturing method of the TFT substrate 100G will be described with reference to FIGS. FIG. 19 is a block diagram for explaining a manufacturing method of the TFT substrate 100G. 20 (a) to 20 (g) are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100G.
 図19に示すように、TFT基板100Gの製造方法は、ゲート電極形成工程GT、ゲート絶縁層/半導体層形成工程GI/PS、画素電極形成工程PX、高融点金属の窒化物層形成工程IM、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 As shown in FIG. 19, the manufacturing method of the TFT substrate 100G includes a gate electrode formation step GT, a gate insulating layer / semiconductor layer formation step GI / PS, a pixel electrode formation step PX, a refractory metal nitride layer formation step IM, It has a source / drain electrode forming step SD, a protective layer forming step PAS, and a common electrode forming step CT, and the process proceeds in this order.
 図20(a)~図20(g)を参照しながら具体的な製造工程を説明する。なお、図20(a)~図20(g)に示す断面構造は、図18(b)に示した断面構造に対応する。また、各膜の形成方法やパターニング方法は、図3を参照しながら前述した方法と同様とする。 Specific manufacturing steps will be described with reference to FIGS. 20 (a) to 20 (g). Note that the cross-sectional structure shown in FIGS. 20A to 20G corresponds to the cross-sectional structure shown in FIG. The formation method and patterning method of each film are the same as those described above with reference to FIG.
 図20(a)に示すように、ゲート電極形成工程GTでは、基板2上に例えばスパッタ法で導電膜を形成した後、この導電膜をパターニングして、ゲート電極4を形成する。 As shown in FIG. 20A, in the gate electrode formation step GT, after forming a conductive film on the substrate 2 by, for example, sputtering, the conductive film is patterned to form the gate electrode 4.
 次に、図20(b)に示すように、ゲート絶縁層/半導体層形成工程GI/PSでは、ゲート電極4を覆うように、不図示の絶縁膜を例えばCVD法などで形成する。次いで、この絶縁膜をパターニングして絶縁層5を形成する。この後、絶縁層5上に、不図示の半導体膜(例えば、In-Ga-Zn-O系半導体膜)を例えばスパッタ法などで形成し、この半導体膜をパターニングして、半導体層6を形成する。半導体層6は、絶縁層5を介してゲート電極4と重なるように形成される。 Next, as shown in FIG. 20B, in the gate insulating layer / semiconductor layer forming step GI / PS, an insulating film (not shown) is formed by, for example, a CVD method so as to cover the gate electrode 4. Next, the insulating film 5 is formed by patterning this insulating film. Thereafter, a semiconductor film (not shown) (for example, an In—Ga—Zn—O-based semiconductor film) is formed on the insulating layer 5 by, for example, sputtering, and the semiconductor film is patterned to form the semiconductor layer 6. To do. The semiconductor layer 6 is formed so as to overlap the gate electrode 4 with the insulating layer 5 interposed therebetween.
 次に、図20(c)に示すように、画素電極形成工程PXでは、絶縁層5の上に不図示の導電膜(例えば、ITO膜などの透明導電膜)を形成した後、この導電膜をパターニングして、画素電極3を形成する。 Next, as shown in FIG. 20C, in the pixel electrode formation step PX, a conductive film (not shown) (for example, a transparent conductive film such as an ITO film) is formed on the insulating layer 5, and then the conductive film is formed. Is patterned to form the pixel electrode 3.
 続いて、図20(d)に示すように、高融点金属の窒化物層形成工程IMでは、例えば窒素雰囲気中でスパッタ法により、画素電極3を覆うように高融点金属の窒化膜を形成する。次いで、この窒化膜をパターニングして、画素電極3の上面の一部上に窒化物層20を形成する。 Subsequently, as shown in FIG. 20D, in the refractory metal nitride layer forming step IM, a refractory metal nitride film is formed so as to cover the pixel electrode 3 by sputtering in a nitrogen atmosphere, for example. . Next, the nitride film is patterned to form a nitride layer 20 on a part of the upper surface of the pixel electrode 3.
 次に、図20(e)に示すように、ソース・ドレイン電極形成工程SDでは、半導体層6上、絶縁層5上、および窒化物層20上に不図示の金属膜を例えばスパッタ法にて形成する。この後、フォトリソグラフィ法およびウェットエッチング法などによりこの金属膜をパターニングして、ソース電極7sおよびドレイン電極7dを形成する。 Next, as shown in FIG. 20E, in the source / drain electrode formation step SD, a metal film (not shown) is formed on the semiconductor layer 6, the insulating layer 5, and the nitride layer 20 by, for example, sputtering. Form. Thereafter, the metal film is patterned by a photolithography method, a wet etching method, or the like to form the source electrode 7s and the drain electrode 7d.
 ソース電極7sおよびドレイン電極7dは、それぞれ、半導体層6に電気的に接続される。半導体層6のうちソース電極7sと接する部分がソースコンタクト領域、ドレイン電極7dと接する部分がドレインコンタクト領域となり、ソースコンタクト領域とドレインコンタクト領域とに挟まれた部分がチャネル領域となる。ドレイン電極7dは、また、窒化物層20を介して画素電極3と電気的に接続される。なお、ドレイン電極7dが窒化物層20および画素電極3の両方と接していてもよい。このようにして、ドレイン電極7dと画素電極3とを接続するコンタクト部90が得られる。 The source electrode 7s and the drain electrode 7d are electrically connected to the semiconductor layer 6, respectively. Of the semiconductor layer 6, a portion in contact with the source electrode 7 s is a source contact region, a portion in contact with the drain electrode 7 d is a drain contact region, and a portion sandwiched between the source contact region and the drain contact region is a channel region. The drain electrode 7 d is also electrically connected to the pixel electrode 3 through the nitride layer 20. The drain electrode 7d may be in contact with both the nitride layer 20 and the pixel electrode 3. In this way, a contact portion 90 that connects the drain electrode 7d and the pixel electrode 3 is obtained.
 次に、図20(f)および図20(g)に示すように、保護層形成工程PASおよび共通電極形成工程CTを行い、保護層8および共通電極9を形成する。これらの形成方法は、図3(f)および図3(g)を参照しながら前述した方法と同様である。このようにして、TFT基板100Gを得る。 Next, as shown in FIGS. 20 (f) and 20 (g), the protective layer forming step PAS and the common electrode forming step CT are performed to form the protective layer 8 and the common electrode 9. These forming methods are the same as those described above with reference to FIGS. 3 (f) and 3 (g). In this way, the TFT substrate 100G is obtained.
 上記方法によると、画素電極3を形成した後、ソースおよびドレイン電極7s、7dを形成する前に窒化物層20を形成し、画素電極3の上面を保護できる。このため、ソースおよびドレイン電極形成工程やその後の工程で、画素電極3の上面が改質することを抑制できるので、コンタクト部の抵抗の増大や信頼性の低下を抑制できる。 According to the above method, after the pixel electrode 3 is formed, the nitride layer 20 is formed before the source and drain electrodes 7s and 7d are formed, so that the upper surface of the pixel electrode 3 can be protected. For this reason, it is possible to suppress the upper surface of the pixel electrode 3 from being modified in the source and drain electrode formation step and the subsequent steps, and thus it is possible to suppress an increase in resistance of the contact portion and a decrease in reliability.
 TFT基板100Gの製造方法は上記方法に限定されない。例えば、上記方法における画素電極形成工程PXと高融点金属の窒化物層形成工程IMとを同時に行うことも可能である。 The manufacturing method of the TFT substrate 100G is not limited to the above method. For example, the pixel electrode forming step PX and the refractory metal nitride layer forming step IM in the above method can be performed simultaneously.
 図21(a)~(e)は、TFT基板100Gの製造方法の他の例を説明するための図であり、画素電極の形成と高融点金属の窒化物層の形成とを同時に行う工程PX/IMを示す断面図である。 FIGS. 21A to 21E are views for explaining another example of the manufacturing method of the TFT substrate 100G, and a process PX for simultaneously forming the pixel electrode and the refractory metal nitride layer. It is sectional drawing which shows / IM.
 まず、上記と同様の方法で、基板2上にゲート電極4および絶縁層5を形成する。 First, the gate electrode 4 and the insulating layer 5 are formed on the substrate 2 by the same method as described above.
 次いで、図21(a)に示すように、絶縁層5の上に、透明導電膜3’を形成し、透明導電膜3’の上に高融点金属の窒化膜(金属窒化膜)20’を形成する。 Next, as shown in FIG. 21A, a transparent conductive film 3 ′ is formed on the insulating layer 5, and a refractory metal nitride film (metal nitride film) 20 ′ is formed on the transparent conductive film 3 ′. Form.
 次に、図21(b)に示すように、1つのフォトマスク(ハーフトーンマスク)からハーフトーン露光法により、金属窒化膜20’上に、互いに厚さの異なるレジスト膜R3およびR4を所望のパターン形状に形成する。ここでは、窒化物層を形成しようとする領域にレジスト膜R3を形成し、画素電極を形成しようとする領域(窒化物を形成しようとする領域以外)にレジスト膜R3よりも薄いレジスト膜R4を形成する。 Next, as shown in FIG. 21B, resist films R3 and R4 having different thicknesses are formed on the metal nitride film 20 ′ by a halftone exposure method using a single photomask (halftone mask). Form in pattern shape. Here, a resist film R3 is formed in a region where a nitride layer is to be formed, and a resist film R4 thinner than the resist film R3 is formed in a region where a pixel electrode is to be formed (other than a region where nitride is to be formed). Form.
 次に、図21(c)に示すように、レジスト膜R3およびR4で覆われていない領域の透明導電膜3’および金属窒化膜20’をウェットエッチング法でパターニングする。このパターニングにより、透明導電膜3’から画素電極3が形成され、金属窒化膜20’から窒化物層20が形成される。 Next, as shown in FIG. 21C, the transparent conductive film 3 'and the metal nitride film 20' in a region not covered with the resist films R3 and R4 are patterned by a wet etching method. By this patterning, the pixel electrode 3 is formed from the transparent conductive film 3 ′, and the nitride layer 20 is formed from the metal nitride film 20 ′.
 次に、図21(d)に示すように、ドライエッチング法によりレジスト膜R4を除去する。また、このドライエッチング法により、レジスト膜R3の一部が削られてレジスト膜R3よりも厚さの小さいレジスト膜R3’となる。この後、図21(e)に示すように、レジスト膜R3’を公知の方法で除去する。 Next, as shown in FIG. 21D, the resist film R4 is removed by a dry etching method. In addition, by this dry etching method, a part of the resist film R3 is removed to form a resist film R3 'having a smaller thickness than the resist film R3. Thereafter, as shown in FIG. 21E, the resist film R3 'is removed by a known method.
 この後、図3(e)~図3(g)を参照しながら説明したように、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを経て、図18に示したTFT基板100Gが得られる。 Thereafter, as described with reference to FIGS. 3E to 3G, the source / drain electrode forming step SD, the protective layer forming step PAS, and the common electrode forming step CT are shown in FIG. A TFT substrate 100G is obtained.
 上記方法のように、ハーフトーン露光法を利用すると、画素電極3と窒化物層20とを1枚のフォトマスクから形成できるので、フォトマスクの数を削減でき、製造コストを削減できる。 When the halftone exposure method is used as in the above method, the pixel electrode 3 and the nitride layer 20 can be formed from one photomask, so that the number of photomasks can be reduced and the manufacturing cost can be reduced.
 上述した第1~第6の実施形態では、窒化物層20とドレイン電極7dとの間に絶縁層5を形成しており、コンタクト部90は、絶縁層5のコンタクトホール内に形成される。第7の実施形態では、窒化物層20とドレイン電極7dとの間に絶縁層が設けられていない。上述したように、第7の実施形態によると、コンタクト部90におけるドレイン電極7dと窒化物層20、および窒化物層20と画素電極3との接触面積を大きくできるというメリットがある。一方、第1~第6の実施形態のように、絶縁層5のコンタクトホール内にコンタクト部90を形成すると、画素の開口率をさらに高めることが可能になる。以下、図面を参照しながら、この理由を説明する。 In the first to sixth embodiments described above, the insulating layer 5 is formed between the nitride layer 20 and the drain electrode 7d, and the contact portion 90 is formed in the contact hole of the insulating layer 5. In the seventh embodiment, no insulating layer is provided between the nitride layer 20 and the drain electrode 7d. As described above, according to the seventh embodiment, there is an advantage that the contact area between the drain electrode 7d and the nitride layer 20 in the contact portion 90 and between the nitride layer 20 and the pixel electrode 3 can be increased. On the other hand, if the contact portion 90 is formed in the contact hole of the insulating layer 5 as in the first to sixth embodiments, the aperture ratio of the pixel can be further increased. Hereinafter, this reason will be described with reference to the drawings.
 窒化物層20とドレイン電極7dとの間に絶縁層を形成しない構成によると(第7の実施形態)、図18(d)に示すように、絶縁層5上にソース配線7(m)および7(m+1)と画素電極3(m)が形成される。画素電極3(m)は、隣接するソース配線7(m)および7(m+1)の間に形成される。この場合、画素電極3とソース配線7(m)および7(m+1)との間の距離は、それぞれ例えば5μm以上に設定される。これは、画素電極3とソース配線7との間隔が小さすぎると(例えば5μm未満)、これらの間で短絡する可能性があるからである。 According to the configuration in which the insulating layer is not formed between the nitride layer 20 and the drain electrode 7d (seventh embodiment), as shown in FIG. 18D, the source wiring 7 (m) and 7 (m + 1) and the pixel electrode 3 (m) are formed. The pixel electrode 3 (m) is formed between adjacent source lines 7 (m) and 7 (m + 1). In this case, the distance between the pixel electrode 3 and the source wirings 7 (m) and 7 (m + 1) is set to 5 μm or more, for example. This is because if the distance between the pixel electrode 3 and the source wiring 7 is too small (for example, less than 5 μm), there is a possibility of short circuit between them.
 これに対し、窒化物層20とドレイン電極7dとの間に絶縁層5を形成する構成によると(第1~第6の実施形態)、図1(d)に示すように、ソース配線7(m)および7(m+1)と画素電極3(m)とが異なるレイヤーに形成されるので、基板2の法線方向から見たときに、画素電極3とソース配線7との間隔が例えば5μm未満であっても、さらには画素電極3とソース配線7とが最大約1μmぐらい重なって配置されていても、これらの間で短絡が起きる可能性は低い。従って、基板2の法線方向から見たときの、ソース配線7(m)および7(m+1)と画素電極3との間の距離を小さく抑えたり、あるいは、重なるように配置することが可能になる。 On the other hand, according to the configuration in which the insulating layer 5 is formed between the nitride layer 20 and the drain electrode 7d (first to sixth embodiments), as shown in FIG. m) and 7 (m + 1) and the pixel electrode 3 (m) are formed in different layers. Therefore, when viewed from the normal direction of the substrate 2, the distance between the pixel electrode 3 and the source wiring 7 is, for example, less than 5 μm. Even if the pixel electrode 3 and the source line 7 are arranged so as to overlap each other by about 1 μm at the maximum, the possibility of short circuit between them is low. Therefore, the distance between the source wirings 7 (m) and 7 (m + 1) and the pixel electrode 3 when viewed from the normal direction of the substrate 2 can be kept small or can be arranged so as to overlap. Become.
 なお、上記とは逆に、ゲート配線14と画素電極3とは、図18に示す構成では異なるレイヤーに形成され、図1に示す構成では同じレイヤーに形成される。このため、図18に示す構成の方が、ゲート配線14と画素電極3との距離を小さくできる。一般的に、例えば液晶表示装置の1画素は、ソース配線7(m)および7(m+1)の延設方向と平行な方向(列方向)の長さは、列方向と垂直な方向(行方向)の長さよりも長い(例えば、列方向の長さ:行方向の長さ=3:1)。従って、ソース配線7(m)および7(m+1)と画素電極3との間の距離を小さくする方が、ゲート配線14と画素電極3(m)および3(m+1)との間の距離を小さくするよりも、画素の有効開口領域vの面積を大きくすることに対する効果が大きい。よって、図1(d)に示すように、窒化物層20とドレイン電極7dとの間に絶縁層5を形成する構成を採用した方が、画素の開口率をより効果的に向上できる。 Note that, contrary to the above, the gate wiring 14 and the pixel electrode 3 are formed in different layers in the configuration shown in FIG. 18, and are formed in the same layer in the configuration shown in FIG. For this reason, the configuration shown in FIG. 18 can reduce the distance between the gate wiring 14 and the pixel electrode 3. In general, for example, one pixel of a liquid crystal display device has a length in a direction (column direction) parallel to the extending direction of the source lines 7 (m) and 7 (m + 1) in a direction perpendicular to the column direction (row direction). ) (For example, length in the column direction: length in the row direction = 3: 1). Therefore, the distance between the gate wiring 14 and the pixel electrodes 3 (m) and 3 (m + 1) is reduced when the distance between the source wirings 7 (m) and 7 (m + 1) and the pixel electrode 3 is reduced. The effect of increasing the area of the effective opening region v of the pixel is greater than this. Therefore, as shown in FIG. 1D, the pixel aperture ratio can be more effectively improved by adopting the configuration in which the insulating layer 5 is formed between the nitride layer 20 and the drain electrode 7d.
 本発明による半導体装置の実施形態は、透明導電層と、その上層にある金属層と、それらの間に配置された窒化物層とを有するコンタクト部を備えていればよく、上述したTFT基板に限定されず、種々の半導体装置に適用され得る。また、製造プロセスや各構成要素の材料、厚さなども上述した例に限定されない。さらに、TFTの構造も上述した例に限定されない。例えば酸化物半導体TFTを形成する場合、チャネル領域と接するようにエッチストップ層が設けられていてもよい。酸化物半導体膜の一部を低抵抗化することにより、酸化物半導体層と画素電極とを同一の酸化物半導体膜から形成することもできる。その場合でも、画素電極(透明な酸化物層)とドレイン電極との間に、画素電極の上面と接するように窒化物層を形成することにより、コンタクト部の抵抗の増大と密着性の低下を抑える効果が得られる。 The embodiment of the semiconductor device according to the present invention only needs to have a contact portion having a transparent conductive layer, a metal layer on the transparent conductive layer, and a nitride layer disposed between them, and the TFT substrate described above is provided. The present invention is not limited and can be applied to various semiconductor devices. Further, the manufacturing process, the material of each component, the thickness, and the like are not limited to the above-described example. Furthermore, the structure of the TFT is not limited to the above-described example. For example, when an oxide semiconductor TFT is formed, an etch stop layer may be provided so as to be in contact with the channel region. By reducing the resistance of part of the oxide semiconductor film, the oxide semiconductor layer and the pixel electrode can be formed from the same oxide semiconductor film. Even in that case, by forming a nitride layer in contact with the upper surface of the pixel electrode between the pixel electrode (transparent oxide layer) and the drain electrode, the resistance of the contact portion is increased and the adhesion is decreased. The effect of suppressing is obtained.
 上述した実施形態のTFT基板100A~100Gは、FFSモード以外の動作モードの表示装置にも適用され得る。例えばVA(Vertical Alignment)モードなどの縦電界駆動方式の表示装置に適用してもよい。その場合には、共通電極9を設けなくてもよい。あるいは、共通電極9の代わりに、画素電極3と対向して補助容量電極として機能する透明導電層を設けて、画素内に透明な補助容量を形成してもよい。 The TFT substrates 100A to 100G of the above-described embodiments can be applied to display devices in operation modes other than the FFS mode. For example, the present invention may be applied to a vertical electric field drive type display device such as a VA (Vertical Alignment) mode. In that case, the common electrode 9 may not be provided. Alternatively, instead of the common electrode 9, a transparent conductive layer that functions as an auxiliary capacitance electrode may be provided to face the pixel electrode 3, and a transparent auxiliary capacitance may be formed in the pixel.
 本発明の実施形態は、透明導電層と金属層とを接続するコンタクト部を備えた種々の半導体装置に広く適用され得る。例えばアクティブマトリクス基板等の回路基板、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置および無機エレクトロルミネセンス表示装置等の表示装置、イメージセンサー装置等の撮像装置、画像入力装置や指紋読み取り装置等の電子装置などにも適用できる。 Embodiments of the present invention can be widely applied to various semiconductor devices including a contact portion that connects a transparent conductive layer and a metal layer. For example, circuit boards such as active matrix substrates, liquid crystal display devices, display devices such as organic electroluminescence (EL) display devices and inorganic electroluminescence display devices, imaging devices such as image sensor devices, image input devices, fingerprint readers, etc. It can also be applied to other electronic devices.
 2   基板
 3、3(m)、3(m+1)   画素電極(透明導電層)
 4   ゲート電極
 5   絶縁層
 5u   開口部
 6   半導体層
 7s   ソース電極
 7d   ドレイン電極(金属層)
 7(m)、7(m+1)   ソース配線
 8   保護層
 9   共通電極
 14   ゲート配線
 15   下地絶縁層
 19   スリット
 20   窒化物層
 100A~100G   半導体装置(TFT基板)
2 Substrate 3, 3 (m), 3 (m + 1) Pixel electrode (transparent conductive layer)
4 Gate electrode 5 Insulating layer 5u Opening 6 Semiconductor layer 7s Source electrode 7d Drain electrode (metal layer)
7 (m), 7 (m + 1) Source wiring 8 Protective layer 9 Common electrode 14 Gate wiring 15 Base insulating layer 19 Slit 20 Nitride layer 100A to 100G Semiconductor device (TFT substrate)

Claims (23)

  1.  基板と、
     基板に支持された透明導電層と、
     前記透明導電層を覆うように形成され、かつ、前記透明導電層と少なくとも部分的に重なる開口部を有する絶縁層と、
     前記絶縁層上および前記開口部内に形成された金属層と、
     前記透明導電層と前記金属層とを接続するコンタクト部と
    を備え、
     前記コンタクト部において、前記透明導電層と前記金属層のうち前記開口部内に位置する部分との間には高融点金属の窒化物層が配置されており、
     前記高融点金属の窒化物層は前記透明導電層の上面と接している半導体装置。
    A substrate,
    A transparent conductive layer supported by a substrate;
    An insulating layer formed to cover the transparent conductive layer and having an opening at least partially overlapping the transparent conductive layer;
    A metal layer formed on the insulating layer and in the opening;
    A contact portion connecting the transparent conductive layer and the metal layer;
    In the contact portion, a refractory metal nitride layer is disposed between the transparent conductive layer and a portion of the metal layer located in the opening,
    The semiconductor device in which the nitride layer of the refractory metal is in contact with the upper surface of the transparent conductive layer.
  2.  前記基板の法線方向から見たとき、前記高融点金属の窒化物層の形状と、前記金属層の形状とは異なっている請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the shape of the refractory metal nitride layer is different from the shape of the metal layer when viewed from the normal direction of the substrate.
  3.  前記高融点金属の窒化物層は前記金属層の前記開口部内に位置する部分と接している請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the refractory metal nitride layer is in contact with a portion of the metal layer located in the opening.
  4.  前記基板に支持された薄膜トランジスタをさらに備え、
     前記薄膜トランジスタは、チャネル領域を含む半導体層、ゲート電極、前記ゲート電極と前記半導体層との間に形成されたゲート絶縁層、および、前記半導体層に電気的に接続されたソース電極およびドレイン電極を含み、
     前記金属層は、前記薄膜トランジスタの前記ドレイン電極または前記ドレイン電極と電気的に接続された電極層であり、
     前記絶縁層は前記ゲート絶縁層を含み、
     前記透明導電層は画素電極として機能する請求項1から3のいずれかに記載の半導体装置。
    Further comprising a thin film transistor supported on the substrate,
    The thin film transistor includes a semiconductor layer including a channel region, a gate electrode, a gate insulating layer formed between the gate electrode and the semiconductor layer, and a source electrode and a drain electrode electrically connected to the semiconductor layer. Including
    The metal layer is an electrode layer electrically connected to the drain electrode or the drain electrode of the thin film transistor,
    The insulating layer includes the gate insulating layer;
    The semiconductor device according to claim 1, wherein the transparent conductive layer functions as a pixel electrode.
  5.  前記ゲート電極は、前記高融点金属の窒化物層と同一の金属窒化膜から形成された第1のゲート層を含む請求項4に記載の半導体装置。 5. The semiconductor device according to claim 4, wherein the gate electrode includes a first gate layer formed of the same metal nitride film as the refractory metal nitride layer.
  6.  前記ゲート電極は、前記第1のゲート層上に配置された第2のゲート層をさらに含み、前記第2のゲート層は前記第1のゲート層とは異なる材料から形成されている請求項5に記載の半導体装置。 6. The gate electrode further includes a second gate layer disposed on the first gate layer, and the second gate layer is formed of a material different from that of the first gate layer. A semiconductor device according to 1.
  7.  前記高融点金属の窒化物層と前記金属層との間に、前記第2のゲート層と同一の導電膜から形成された導電層をさらに有する請求項6に記載の半導体装置。 The semiconductor device according to claim 6, further comprising a conductive layer formed of the same conductive film as the second gate layer, between the refractory metal nitride layer and the metal layer.
  8.  前記ゲート電極と前記透明導電層および前記絶縁層との間に、さらなる絶縁層を有している請求項4から7のいずれかに記載の半導体装置。 8. The semiconductor device according to claim 4, further comprising an insulating layer between the gate electrode and the transparent conductive layer and the insulating layer.
  9.  前記基板と前記ゲート電極および前記透明導電層との間に、下地絶縁層を有している請求項4から7のいずれかに記載の半導体装置。 The semiconductor device according to claim 4, further comprising a base insulating layer between the substrate and the gate electrode and the transparent conductive layer.
  10.  前記窒化物層の上面の少なくとも一部は前記絶縁層と接している請求項1から6のいずれかに記載の半導体装置。 7. The semiconductor device according to claim 1, wherein at least a part of the upper surface of the nitride layer is in contact with the insulating layer.
  11.  基板と、
     基板に支持された透明導電層と、
     前記透明導電層の上に形成された金属層と、
     前記透明導電層と前記金属層とを接続するコンタクト部と
    を備え、
     前記コンタクト部において、前記透明導電層と前記金属層との間には高融点金属の窒化物層が配置されており、
     前記高融点金属の窒化物層は、前記透明導電層の上面と接しており、
     前記基板の法線方向から見たとき、前記高融点金属の窒化物層は前記金属層と前記透明導電層とが重なった領域に配置され、前記高融点金属の窒化物層の形状と前記金属層の形状とは異なっている半導体装置。
    A substrate,
    A transparent conductive layer supported by a substrate;
    A metal layer formed on the transparent conductive layer;
    A contact portion connecting the transparent conductive layer and the metal layer;
    In the contact portion, a refractory metal nitride layer is disposed between the transparent conductive layer and the metal layer,
    The refractory metal nitride layer is in contact with the upper surface of the transparent conductive layer,
    When viewed from the normal direction of the substrate, the refractory metal nitride layer is disposed in a region where the metal layer and the transparent conductive layer overlap, and the shape of the refractory metal nitride layer and the metal A semiconductor device that differs from the shape of the layer.
  12.  前記基板の法線方向から見たとき、前記高融点金属の窒化物層は、前記金属層と前記透明導電層とが重なった領域の全体に配置されている請求項11に記載の半導体装置。 12. The semiconductor device according to claim 11, wherein the refractory metal nitride layer is disposed in an entire region where the metal layer and the transparent conductive layer overlap when viewed from the normal direction of the substrate.
  13.  前記基板に支持された薄膜トランジスタをさらに備え、
     前記薄膜トランジスタは、チャネル領域を含む半導体層、ゲート電極、前記ゲート電極と前記半導体層との間に形成されたゲート絶縁層、および、前記半導体層に電気的に接続されたソース電極およびドレイン電極を含み、
     前記金属層および前記透明導電層は、前記ゲート絶縁層の上に配置されており、
     前記金属層は、前記薄膜トランジスタの前記ドレイン電極または前記ドレイン電極と電気的に接続された電極層であり、
     前記透明導電層は画素電極として機能する請求項11または12に記載の半導体装置。
    Further comprising a thin film transistor supported on the substrate,
    The thin film transistor includes a semiconductor layer including a channel region, a gate electrode, a gate insulating layer formed between the gate electrode and the semiconductor layer, and a source electrode and a drain electrode electrically connected to the semiconductor layer. Including
    The metal layer and the transparent conductive layer are disposed on the gate insulating layer,
    The metal layer is an electrode layer electrically connected to the drain electrode or the drain electrode of the thin film transistor,
    The semiconductor device according to claim 11, wherein the transparent conductive layer functions as a pixel electrode.
  14.  前記ソース電極および前記ドレイン電極の上に形成された保護層と、
     前記保護層を介して前記透明導電層の少なくとも一部と重なるように配置された共通電極とをさらに有する請求項4または13に記載の半導体装置。
    A protective layer formed on the source electrode and the drain electrode;
    The semiconductor device according to claim 4, further comprising a common electrode disposed so as to overlap at least a part of the transparent conductive layer with the protective layer interposed therebetween.
  15.  前記半導体層は酸化物半導体層である請求項4から9、13および14のいずれかに記載の半導体装置。 The semiconductor device according to any one of claims 4 to 9, 13, and 14, wherein the semiconductor layer is an oxide semiconductor layer.
  16.  前記酸化物半導体層はIn、GaおよびZnを含む請求項15に記載の半導体装置。 The semiconductor device according to claim 15, wherein the oxide semiconductor layer contains In, Ga, and Zn.
  17.  請求項4または13に記載の半導体装置の製造方法であって、
     前記基板上に、前記透明導電層を形成した後、前記ゲート電極および前記絶縁層を形成する前に、前記窒化物層を形成する半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 4 or 13,
    A method of manufacturing a semiconductor device, wherein the nitride layer is formed after forming the transparent conductive layer on the substrate and before forming the gate electrode and the insulating layer.
  18.  基板を用意する工程(a)と、
     前記基板の表面の一部上に透明導電層を形成する工程(b)と、
     前記基板の前記表面上および前記透明導電層上に高融点金属の窒化物からなる金属窒化膜と、前記金属窒化膜とは異なる材料からなる導電膜とをこの順で形成する工程(c)と、
     ハーフトーン露光法により、1つのフォトマスクから前記金属窒化膜および前記導電膜をパターニングすることによって、前記基板の前記表面のうち前記透明導電層が形成されていない部分に、前記金属窒化膜および前記導電膜からなるゲート電極を形成するとともに、前記透明導電層上に、前記金属窒化膜から窒化物層を形成する工程(d)と、
     前記ゲート電極、前記透明導電層および前記窒化物層を覆い、かつ、前記窒化物層の表面の少なくとも一部を露出する開口部を有する絶縁層を形成する工程(e)と、
     前記絶縁層上に半導体層を形成する工程(f)と、
     前記半導体層上、前記絶縁層上および前記開口部内に金属膜を形成する工程(g)と、
     前記金属膜をパターニングして、ソース電極およびドレイン電極を形成する工程であって、前記ドレイン電極は前記開口部内で前記窒化物層と接する工程(h)と
    を包含する半導体装置の製造方法。
    Preparing a substrate (a);
    Forming a transparent conductive layer on a part of the surface of the substrate (b);
    Forming a metal nitride film made of a refractory metal nitride on the surface of the substrate and the transparent conductive layer, and a conductive film made of a material different from the metal nitride film in this order (c); ,
    By patterning the metal nitride film and the conductive film from one photomask by a halftone exposure method, the metal nitride film and the part of the surface of the substrate where the transparent conductive layer is not formed are formed. Forming a gate electrode made of a conductive film and forming a nitride layer from the metal nitride film on the transparent conductive layer;
    Forming an insulating layer that covers the gate electrode, the transparent conductive layer, and the nitride layer, and has an opening that exposes at least a portion of the surface of the nitride layer; and
    Forming a semiconductor layer on the insulating layer (f);
    Forming a metal film on the semiconductor layer, on the insulating layer and in the opening;
    A method of manufacturing a semiconductor device, comprising: patterning the metal film to form a source electrode and a drain electrode, wherein the drain electrode is in contact with the nitride layer in the opening.
  19.  基板を用意する工程(a)と、
     前記基板の表面の一部上にゲート電極を形成し、前記ゲート電極上にゲート絶縁層を介して半導体層を形成する工程(b)と、
     前記ゲート絶縁層上および前記半導体層上に、透明導電膜、および高融点金属の窒化物からなる金属窒化膜を形成する工程(c)と、
     ハーフトーン露光法により、1つのフォトマスクから前記透明導電膜および前記金属窒化膜をパターニングすることによって、前記基板の前記表面のうち前記ゲート電極が形成されていない部分に、前記透明導電膜から透明導電層を形成するとともに、前記透明導電層の一部上に、前記金属窒化膜から窒化物層を形成する工程(d)と、
     前記半導体層、前記透明導電層および前記窒化物層を覆う金属膜を形成する工程(e)と、
     前記金属膜をパターニングして、ソース電極およびドレイン電極を形成する工程であって、前記ドレイン電極は前記窒化物層と接する工程(f)と
    を包含する半導体装置の製造方法。
    Preparing a substrate (a);
    Forming a gate electrode on a part of the surface of the substrate, and forming a semiconductor layer on the gate electrode via a gate insulating layer; and
    Forming a transparent conductive film and a metal nitride film made of a refractory metal nitride on the gate insulating layer and the semiconductor layer;
    By patterning the transparent conductive film and the metal nitride film from one photomask by a halftone exposure method, the transparent conductive film is transparent to the surface of the substrate where the gate electrode is not formed. Forming a conductive layer and forming a nitride layer from the metal nitride film on a part of the transparent conductive layer;
    Forming a metal film that covers the semiconductor layer, the transparent conductive layer, and the nitride layer; and
    A method of manufacturing a semiconductor device, comprising: forming a source electrode and a drain electrode by patterning the metal film, wherein the drain electrode is in contact with the nitride layer (f).
  20.  前記酸化物半導体層は結晶性を有する、請求項16に記載の半導体装置。 The semiconductor device according to claim 16, wherein the oxide semiconductor layer has crystallinity.
  21.  前記半導体層は酸化物半導体層である、請求項18または19に記載の半導体装置の製造方法。 20. The method of manufacturing a semiconductor device according to claim 18, wherein the semiconductor layer is an oxide semiconductor layer.
  22.  前記酸化物半導体層は、In、GaおよびZnを含む、請求項21に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 21, wherein the oxide semiconductor layer contains In, Ga, and Zn.
  23.  前記酸化物半導体層は結晶性を有する、請求項22に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 22, wherein the oxide semiconductor layer has crystallinity.
PCT/JP2013/070448 2012-08-02 2013-07-29 Semiconductor device and production method therefor WO2014021252A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014528138A JP5964967B2 (en) 2012-08-02 2013-07-29 Semiconductor device and manufacturing method thereof
US14/417,887 US9496287B2 (en) 2012-08-02 2013-07-29 Semiconductor device and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012172217 2012-08-02
JP2012-172217 2012-08-02

Publications (1)

Publication Number Publication Date
WO2014021252A1 true WO2014021252A1 (en) 2014-02-06

Family

ID=50027927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070448 WO2014021252A1 (en) 2012-08-02 2013-07-29 Semiconductor device and production method therefor

Country Status (3)

Country Link
US (1) US9496287B2 (en)
JP (1) JP5964967B2 (en)
WO (1) WO2014021252A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191893A (en) * 2014-03-27 2015-11-02 三菱電機株式会社 Thin film transistor and manufacturing method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576650B (en) * 2013-10-12 2017-06-30 北京京东方光电科技有限公司 Array base palte and preparation method thereof, display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120790A (en) * 1993-08-31 1995-05-12 Kyocera Corp Active matrix substrate and its production
JP2000206508A (en) * 1999-01-12 2000-07-28 Advanced Display Inc Liquid crystal display device and its production
JP2007298649A (en) * 2006-04-28 2007-11-15 Hitachi Displays Ltd Image display apparatus and its manufacturing method
WO2009128424A1 (en) * 2008-04-16 2009-10-22 住友金属鉱山株式会社 Thin film transistor type substrate, thin film transistor type liquid crystal display device and method for manufacturing thin film transistor type substrate
JP2012118531A (en) * 2010-12-02 2012-06-21 Samsung Electronics Co Ltd Display device and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3362008B2 (en) * 1999-02-23 2003-01-07 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
JP5170985B2 (en) 2006-06-09 2013-03-27 株式会社ジャパンディスプレイイースト Liquid crystal display
US9551910B2 (en) 2009-10-02 2017-01-24 Unified Innovative Technology, Llc Active matrix substrate and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120790A (en) * 1993-08-31 1995-05-12 Kyocera Corp Active matrix substrate and its production
JP2000206508A (en) * 1999-01-12 2000-07-28 Advanced Display Inc Liquid crystal display device and its production
JP2007298649A (en) * 2006-04-28 2007-11-15 Hitachi Displays Ltd Image display apparatus and its manufacturing method
WO2009128424A1 (en) * 2008-04-16 2009-10-22 住友金属鉱山株式会社 Thin film transistor type substrate, thin film transistor type liquid crystal display device and method for manufacturing thin film transistor type substrate
JP2012118531A (en) * 2010-12-02 2012-06-21 Samsung Electronics Co Ltd Display device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191893A (en) * 2014-03-27 2015-11-02 三菱電機株式会社 Thin film transistor and manufacturing method of the same

Also Published As

Publication number Publication date
US9496287B2 (en) 2016-11-15
JPWO2014021252A1 (en) 2016-07-21
US20150162348A1 (en) 2015-06-11
JP5964967B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
KR101346874B1 (en) Semiconductor device and process for production thereof
US8685803B2 (en) Semiconductor device and method for producing same
US9613990B2 (en) Semiconductor device and method for manufacturing same
WO2013137045A1 (en) Semiconductor device and method for manufacturing same
WO2013150981A1 (en) Semiconductor device and method for manufacturing same
KR20130139935A (en) Semiconductor device, display device, and method for manufacturing semiconductor device and display device
WO2013172185A1 (en) Semiconductor device and method for manufacturing same
TW201405833A (en) Display device and manufacturing method for same
WO2014042125A1 (en) Semiconductor device and method for manufacturing same
WO2014038482A1 (en) Semiconductor device and method for producing same
US8618538B2 (en) Thin film transistor array panel and manufacturing method thereof
WO2018061851A1 (en) Active matrix substrate and method for manufacturing same
JP5964967B2 (en) Semiconductor device and manufacturing method thereof
WO2013161738A1 (en) Semiconductor device and method of manufacture thereof
TWI546965B (en) Semiconductor device and manufacturing method thereof
US9379250B2 (en) Semiconductor device and method for producing same
KR101085450B1 (en) Tft substrate and manufacturing method of the same
WO2014091959A1 (en) Semiconductor device and production method therefor
WO2013191033A1 (en) Semiconductor device and method for producing same
WO2014021249A1 (en) Semiconductor device and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528138

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14417887

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825200

Country of ref document: EP

Kind code of ref document: A1