[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014010243A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2014010243A1
WO2014010243A1 PCT/JP2013/004275 JP2013004275W WO2014010243A1 WO 2014010243 A1 WO2014010243 A1 WO 2014010243A1 JP 2013004275 W JP2013004275 W JP 2013004275W WO 2014010243 A1 WO2014010243 A1 WO 2014010243A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
protrusion
actuator
projection
modification
Prior art date
Application number
PCT/JP2013/004275
Other languages
French (fr)
Japanese (ja)
Inventor
万里夫 木内
亮平 内納
登紀子 三崎
治 寅屋敷
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to JP2014524656A priority Critical patent/JP6130374B2/en
Publication of WO2014010243A1 publication Critical patent/WO2014010243A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Document 1 discloses an oscillator as an example of a semiconductor device.
  • the vibrating reed and the electrode portion are disposed with a gap.
  • the electrode portion is provided with a protrusion which protrudes toward the vibrating reed in the gap. By providing this projection, sticking (sticking) between the vibrating reed and the electrode portion is prevented.
  • the technology disclosed herein has been made in view of the above-described point, and the object of the present invention is to provide a semiconductor device capable of preventing adhesion between two parts provided with a gap and easily manufactured. It is to provide.
  • the semiconductor device disclosed herein comprises a first portion and a second portion spaced apart from the first portion, and at least one of the first portion and the second portion is moved
  • the second portion is provided with a protrusion that protrudes toward the first portion in the gap, and the second portion is adjacent to a portion of the first portion that faces the protrusion.
  • a recess is provided in at least one of the second portion and the portion adjacent to the protrusion of the second portion.
  • the first portion contacts the second portion via the projection, so the contact area can be reduced. It can be made smaller. As a result, sticking can be prevented.
  • a recess is provided in at least one of a portion adjacent to the portion facing the protrusion in the first portion and a portion adjacent to the protrusion in the second portion.
  • the portion provided with the projection has a minute gap between the first portion and the second portion, but the portion provided with the recess has a relatively small gap between the first portion and the second portion. It is getting bigger.
  • a crevice is located in at least 1 side of a portion which adjoins to a portion which counters a projection among the 1st portions, and a portion which adjoins a projection among 2nd parts, a portion where a crevice became minute by a projection And the part which the clearance gap became large by the recessed part adjoin mutually.
  • the etching species can easily enter the periphery of the protrusion, and the second portion having the protrusion and the first portion opposed thereto can be easily formed.
  • the semiconductor device it is possible to provide a semiconductor device which can prevent adhesion between two parts provided with a gap and which is easy to manufacture.
  • FIG. 1 is a plan view of a mirror array.
  • FIG. 2 is a cross-sectional view of the mirror array taken along line II-II of FIG.
  • FIG. 3 is a schematic view of a wavelength selective switch.
  • FIG. 4 is a partially enlarged view of the first mirror and the second mirror.
  • FIG. 5 is a partially enlarged view of the first mirror and the second mirror according to the first modification.
  • FIG. 6 is a partially enlarged view of the first mirror and the second mirror according to the second modification.
  • FIG. 7 is a partially enlarged view of the first mirror and the second mirror according to the third modification.
  • FIG. 8 is a partially enlarged view of the first mirror and the second mirror according to the fourth modification.
  • FIG. 4 is a partially enlarged view of the first mirror and the second mirror.
  • FIG. 5 is a partially enlarged view of the first mirror and the second mirror according to the first modification.
  • FIG. 6 is a partially enlarged view of the first mirror and the second mirror according to the second
  • FIG. 9 is a partially enlarged view of the first mirror and the second mirror according to the fifth modification.
  • FIG. 10 is a plan view of a mirror array according to the sixth modification.
  • FIG. 11 is a plan view of a mirror array according to the seventh modification.
  • FIG. 12 is a plan view of a mirror array according to the eighth modification.
  • FIG. 1 shows a plan view of the mirror array 100
  • FIG. 2 shows a cross-sectional view of the mirror array 100 along the line II-II in FIG.
  • the mirror array 100 includes a plurality of mirror devices 103, 103,.
  • the plurality of mirror devices 103, 103,... are arranged in a line in a predetermined direction.
  • the mirror array 100 is an example of a semiconductor device.
  • the mirror array 100 is manufactured using an SOI (Silicon on Insulator) substrate 109.
  • SOI Silicon on Insulator
  • a first silicon layer 191 formed of single crystal silicon, an oxide film layer 192 formed of SiO 2 , and a second silicon layer 193 formed of single crystal silicon are stacked in this order. Is configured.
  • the mirror device 103 includes a base portion 102, a mirror 131, two actuators 104 and 104 for driving the mirror 131, a beam member 105 for supporting the mirror 131, and a hinge for connecting the mirror 131 to the actuator 104 or the beam member 105.
  • the base portion 102 is formed in a substantially rectangular frame shape, although the whole illustration is omitted.
  • the base portion 102 is formed of a first silicon layer 191, an oxide film layer 192, and a second silicon layer 193.
  • the mirror 131 is formed in a rectangular plate shape in plan view. Specifically, the mirror 131 has first to fourth sides 131a to 131d. The first side 131 a and the third side 131 c are short sides of a rectangle, and the second side 131 b and the fourth side 131 d are long sides of the rectangle.
  • the mirror 131 has a mirror main body 132 and a mirror surface layer 133 laminated on the surface of the mirror main body 132.
  • the mirror body 132 is formed of the first silicon layer 191, and the mirror layer 133 is formed of an Au / Ti film.
  • an axis passing through the center of the mirror 131 and extending in the arrangement direction of the plurality of mirror devices 103, 103 is taken as a minor axis Y.
  • An axis orthogonal to both the principal axis X and the minor axis Y is taken as a Z axis.
  • the Z-axis direction may be referred to as the vertical direction. In that case, the side of the mirror surface layer 133 is up, and the side of the mirror body 132 is down.
  • Each actuator 104 extends from the base portion 102 in a cantilevered manner, and its tip is connected to the mirror 131.
  • the actuator 104 tilts the mirror 131 by bending.
  • the actuator 104 has an actuator body 141 having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 142 stacked on the surface of the actuator body 141. ing.
  • the actuator body 141 is formed in a rectangular plate shape in plan view.
  • the actuator body 141 is formed of the first silicon layer 191.
  • the two actuator bodies 141, 141 extend parallel to each other in the sub-axis Y direction.
  • the tip of the actuator body 141 is connected to the third side 131 c of the mirror 131 via the hinge 106.
  • the hinge 106 is bent in a serpentine manner as a whole.
  • the hinge 106 is formed of the first silicon layer 191.
  • the piezoelectric element 142 is formed in a plate shape having a rectangular shape in a plan view.
  • the piezoelectric element 142 has a lower electrode 143, an upper electrode 145, and a piezoelectric layer 144 sandwiched therebetween.
  • the lower electrode 143, the piezoelectric layer 144, and the upper electrode 145 are stacked in this order on the surface of the actuator body 141.
  • the piezoelectric element 142 is formed of a member different from the SOI substrate 109.
  • the lower electrode 143 is formed of a Pt / Ti film.
  • the piezoelectric layer 144 is formed of lead zirconate titanate (PZT).
  • the upper electrode 145 is formed of an Au / Ti film.
  • the surface of the actuator body 141 on which the piezoelectric element 142 is stacked expands and contracts, and the actuator body 141 bends in the vertical direction.
  • the beam member 105 extends from the base portion 102 in a cantilever manner, and its tip end is connected to the mirror 131.
  • the beam member 105 is provided on the opposite side of the actuators 104 and 104 across the main axis X.
  • the beam member 105 has a beam main body 151 having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 152 stacked on the surface of the beam main body 151. doing.
  • the beam member 105 includes the piezoelectric element 152, it does not drive the mirror 131, but merely supports the mirror 131.
  • the beam main body 151 is formed in a plate shape having a rectangular shape in a plan view.
  • the beam main body 151 is formed of the first silicon layer 191.
  • the beam main body 151 extends in the sub-axis Y direction.
  • the tip of the beam body 151 is connected to the first side 131 a of the mirror 131 via the hinge 106.
  • the hinge 106 has the same configuration as the hinge 106 that connects the actuator body 141 and the mirror 131.
  • One end of the hinge 106 is connected to the center of the tip end portion of the beam main body 151 in the main axis X direction, and the other end is connected to the center of the first side 131 a in the main axis X direction.
  • the piezoelectric element 152 is formed in a plate shape having a rectangular shape in a plan view.
  • the piezoelectric element 152 has the same configuration as the piezoelectric element 142. That is, the piezoelectric element 152 has the lower electrode 153, the upper electrode 155, and the piezoelectric layer 154 sandwiched therebetween.
  • the lower electrode 153, the piezoelectric layer 154, and the upper electrode 155 are stacked on the surface of the beam body 151 in this order.
  • the piezoelectric element 152 is formed of a member different from the SOI substrate 109.
  • the lower electrode 153 is formed of a Pt / Ti film.
  • the piezoelectric layer 154 is formed of lead zirconate titanate (PZT).
  • the upper electrode 155 is formed of an Au / Ti film.
  • the length and thickness of the beam main body 151 are substantially the same as the actuator main body 141.
  • the width of the beam body 151 is approximately twice the width of the actuator body 141.
  • the length and thickness of the piezoelectric element 152 are substantially the same as the piezoelectric element 142.
  • the width of the piezoelectric element 152 is approximately twice the width of the piezoelectric element 142.
  • a control unit (not shown) of the mirror array 100 applies a voltage to the upper electrode 145 and the lower electrode 143.
  • the piezoelectric layer 144 contracts or expands, and the actuator body 141 curves upward or downward.
  • the control unit applies an offset voltage to the lower electrode 143 and the upper electrode 145 of each actuator 104, and also applies an offset voltage to the lower electrode 153 and the upper electrode 145 of the beam member 105.
  • the actuator 104 is curved with the piezoelectric element 142 inside
  • the beam member 105 is also curved with the piezoelectric element 152 inside.
  • the offset voltage of the actuator 104 and the offset voltage of the beam member 105 are set so that the heights (positions in the Z-axis direction) of the tip of the actuator 104 and the tip of the beam member 105 are the same. That is, in the state where an offset voltage is applied to the actuator 104 and the beam member 105 (hereinafter, referred to as “reference state”), the mirror 131 is in a state parallel to the XY plane.
  • each actuator 104 is increased or decreased to bend each actuator 104 and rotate the mirror 131.
  • the two actuators 104, 104 are both bent in the same direction, and the mirror 131 is rotated around the main axis X. It can be moved. At this time, it is possible to switch the rotation direction around the main axis X of the mirror 131 depending on whether the applied voltages of the two actuators 104 and 104 are both increased or decreased.
  • the two actuators 104 and 104 are curved in opposite directions to rotate the mirror 131 around the minor axis Y. It can be moved. At this time, the rotational direction of the mirror 131 about the minor axis Y can be switched by switching the actuator 104 for increasing the applied voltage and the actuator 104 for decreasing the applied voltage.
  • the voltage applied to the piezoelectric element 142 of the actuator 104 is increased or decreased, but the voltage applied to the piezoelectric element 152 of the beam member 105 is not increased or decreased. That is, although the voltage is applied to the piezoelectric element 152 of the beam member 105 in order to offset the beam member 105 into the reference state, it is not used for driving the mirror 131.
  • the control unit may be configured by an arithmetic device such as a CPU.
  • the control unit determines the voltage value of the drive voltage for rotating the mirror 131 to a desired rotation angle with reference to the parameters stored in the storage device accessible from the arithmetic device.
  • the parameter represents the rotation angle of the mirror 131 for each drive voltage, and is data in the form of a table or is stored in the storage device in the form of the coefficient of the approximate curve.
  • the mirror array 100 is used by being incorporated into the wavelength selective switch 108, for example.
  • FIG. 3 shows a schematic view of the wavelength selective switch 108.
  • the wavelength selective switch 108 includes one input optical fiber 181, three output optical fibers 182 to 184, a collimator 185 provided on the optical fibers 181 to 184, and a spectroscope 186 configured of a diffraction grating.
  • a lens 187 and a mirror array 100 are provided. In this example, the number of output fibers is only three, but it is not limited to this.
  • optical signals of a plurality of different wavelengths are input through the input optical fiber 181.
  • This light signal is collimated by the collimator 185.
  • the collimated light signal is demultiplexed by the spectroscope 186 into a predetermined number of light signals of specific wavelengths.
  • the demultiplexed light signal is collected by the lens 187 and is incident on the mirror array 100.
  • the number of specific wavelengths to be demultiplexed corresponds to the number of mirrors 131 of the mirror array 100. That is, the demultiplexed optical signals of the specific wavelength are incident on the corresponding mirrors 131, respectively.
  • the light signal is reflected by each mirror 131, passes through the lens 187 again, and enters the spectroscope 186.
  • the spectroscope 186 multiplexes optical signals of a plurality of different wavelengths and outputs the optical signals to output optical fibers 182 to 184.
  • the mirror array 100 adjusts the reflection angle of the optical signal by rotating each mirror 131 around the main axis, and switches to which output optical fiber 182 to 184 the corresponding optical signal is input. . More specifically, when changing the rotation angle around the main axis of each mirror 131 in order to switch the output optical fibers 182 to 184 for inputting the light signal, the mirror 131 is once rotated around the sub axis. The rotation angle around the main axis is changed, and then the rotation around the secondary axis is returned. This prevents the light reflected from the mirror 131 from being input to an undesired output optical fiber when changing the rotation angle around the main axis.
  • the plurality of mirrors 131, 131,... are arranged in the principal axis X direction. Then, a minute gap G0 is provided between the mirrors 131 and 131 adjacent to each other. In the gap G0, one mirror 131 is provided with a protrusion 134 that protrudes toward the other mirror 131.
  • FIG. 4 is a partially enlarged view of the first mirror 131A and the second mirror 131B.
  • the mirror 131 is simply referred to.
  • the second side 131b of the second mirror 131B projects toward the first mirror 131A at both ends in the sub-axis Y direction (only the end on the actuator 104 side is shown in FIG. 4) and the first mirror 131A.
  • a protrusion 134 which does not contact is provided.
  • the term "does not contact” as used herein means that it does not contact at normal times, and does not mean to exclude contact at the time of use, transport or the like.
  • concave portions 135a and 135b are provided in portions on both sides adjacent to the protrusion 134.
  • the tip of the protrusion 134 is convexly curved.
  • the first mirror 131A is an example of a first portion
  • the second mirror 131B is an example of a second portion.
  • the gap G1 between the first mirror 131A and the second mirror 131B in the protrusion 134 is narrower than the gap G0.
  • the gap G2 between the first mirror 131A and the second mirror 131B in the concave portions 135a and 135b is wider than the gap G0.
  • the gap G0 between the fourth side 131d of the first mirror 131A and the second side 131b of the second mirror 131B is 2 ⁇ m.
  • the protrusion 134 protrudes by 0.5 ⁇ m from the second side 131 b, and the concave portions 135 a and 135 b are recessed by 2 ⁇ m from the second side 131 b. That is, the gap G1 in the protrusion 134 is 1.5 ⁇ m, and the gap G2 in the concave portions 135a and 135b is 4 ⁇ m.
  • the first mirror 131A and the second mirror 131B can be prevented from adhering (sticking). That is, when electrostatic attraction is generated between the first mirror 131A and the second mirror 131B, the first mirror 131A and the second mirror 131B may come in contact with each other and be fixed. In addition, when water adheres between the first mirror 131A and the second mirror 131B due to water vapor in the air, there is a risk that the first mirror 131A and the second mirror 131B may be in contact with each other by surface tension and be fixed. .
  • the contact area between the first mirror 131A and the second mirror 131B is reduced. Since both electrostatic attraction and surface tension depend on the area, the possibility of sticking can be reduced by reducing the contact area between the first mirror 131A and the second mirror 131B.
  • the protrusion 134 provided on the second mirror 131B in the gap between the first mirror 131A and the second mirror 131B has been described, but the provision of the protrusion 134 is limited to the second mirror 131B. Absent.
  • the protrusion 134 is provided on the third mirror 131C in the gap between the second mirror 131B and the third mirror 131C, and although not shown, the fourth mirror is located on the gap between the third mirror 131C and the fourth mirror.
  • the projection 134 is provided on the In the relationship between the second mirror 131B and the third mirror 131C, the second mirror 131B constitutes a first part, and the third mirror 131C constitutes a second part.
  • the one provided with the protrusion 134 constitutes the second part, and the other constitutes the first part.
  • the projection 134 is necessarily provided in the second part, and does not necessarily mean that the projection 134 is not present in the first part. That is, as long as the protrusion 134 is provided in the second portion, the protrusion 134 may not be provided or may be provided in the first portion.
  • the mirror array 100 configured in this manner is manufactured by etching the SOI substrate 109 or forming a film on the surface thereof.
  • the first silicon layer 191 is subjected to anisotropic etching such as ICP-RIE to form the mirror body 132, the actuator body 141, the beam body 151, and the like.
  • anisotropic etching such as ICP-RIE to form the mirror body 132, the actuator body 141, the beam body 151, and the like.
  • an Au / Ti film is formed on the surface of the mirror body 132 to form the mirror layer 133.
  • the piezoelectric elements 142 and 152 are formed on the surface of the actuator main body 141 and the surface of the beam main body 151.
  • Pt / Ti films lower electrodes 143 and 153
  • lead zirconate titanate pieoelectric layers 144 and 154
  • Au / Ti films upper electrodes 145.
  • the gap G1 between the mirrors 131 and 131 adjacent to each other in the projection 134 is small, the aspect ratio (depth / width) is high, and it is difficult for etching species to enter.
  • etching species can be easily made deep and it is possible to facilitate processing around the protrusion 134. .
  • the mirror array 100 includes the mirrors 131 and 131 disposed with the gap G0 therebetween, and at least one of the mirrors 131 is configured to be movable.
  • a protrusion 134 protruding toward the other mirror 131 is provided, and in the portion of the one mirror 131 adjacent to the protrusion 134, concave portions 135a and 135b are provided.
  • the concave portions 135 a and 135 b are provided on both sides of the mirror 131 adjacent to the protrusion 134. By so doing, the etching species can easily enter on both sides of the protrusion 134, so the protrusion 134 can be formed more easily.
  • the tip of the protrusion 134 is convexly curved.
  • the contact area can be reduced while preventing damage to the projections 134. That is, when the protrusion 134 has a sharp shape, the protrusion 134 may be broken when the protrusion 134 contacts the mirror 131.
  • the contact area of the protrusion 134 and the mirror 131 can be made as small as possible by curving the tip of the protrusion 134 not flat but curved.
  • the portion facing the protrusion 134 is curved flat or convex
  • the contact between the protrusion 134 and the opposite portion can be substantially linear contact, and the contact area is extremely small. can do.
  • FIG. 5 is a partially enlarged view of the first mirror 131A and the second mirror 131B according to the first modification.
  • the protrusion 134 is provided on one of the mirrors 131 and the recesses 135 a and 135 b are provided on the other of the mirrors 131.
  • the projection 134 is provided on the second side 131 b of the second mirror 131 B.
  • the concave portions 135a and 135b are provided on the fourth side 131d of the first mirror 131A. More specifically, concave portions 135a and 135b are provided on both sides of a portion (hereinafter referred to as "opposite portion") 136 facing the protrusion 134 in the fourth side 131d.
  • the facing portion 136 is formed in a planar shape.
  • the possibility of fixing the two mirrors 131, 131 can be reduced, and the protrusion 134 can be easily formed. That is, since the protrusion 134 is formed on the second mirror 131B, and the recess is not formed on the facing portion 136 of the first mirror 131A, the case where the first mirror 131A and the second mirror 131B are in contact with each other. The protrusion 134 and the facing portion 136 are in contact with each other. As a result, the contact area between the two can be reduced, and the possibility of sticking can be reduced. Furthermore, by forming the facing portion 136 in a planar shape, the contact between the projection 134 and the facing portion 136 can be made substantially linear contact, and the contact area can be made extremely small.
  • the etching species can be easily penetrated deeply on both sides of the protrusion 134, and the protrusion 134 can be easily formed.
  • FIG. 6 is a partially enlarged view of the first mirror 131A and the second mirror 131B according to the second modification.
  • the protrusion 134 and the recess 135 a are provided on one mirror 131
  • the recess 135 b is provided on the other mirror 131.
  • the projection 134 is provided on the second side 131 b of the second mirror 131 B.
  • the recessed part 135a is provided in the one side of the part which adjoins the projection part 134 among the 2nd sides 131b.
  • the concave portion 135b is provided on the fourth side 131d of the first mirror 131A.
  • a recess 135b is provided on one side of a portion of the fourth side 131d adjacent to the facing portion 136 and on the opposite side of the recess 135a of the second mirror 131B.
  • the facing portion 136 is formed in a planar shape.
  • the possibility of fixing the two mirrors 131, 131 can be reduced, and the protrusion 134 can be easily formed. That is, since the protrusion 134 is formed on the second mirror 131B, and the recess is not formed on the facing portion 136 of the first mirror 131A, the case where the first mirror 131A and the second mirror 131B are in contact with each other. The protrusion 134 and the facing portion 136 are in contact with each other. As a result, the contact area between the two can be reduced, and the possibility of sticking can be reduced. Furthermore, by forming the facing portion 136 in a planar shape, the contact between the projection 134 and the facing portion 136 can be made substantially linear contact, and the contact area can be made extremely small.
  • both sides of the protruding portion 134 are provided. Relatively large gaps G2, G2 can be formed. Therefore, the etching species can be easily penetrated deeply on both sides of the protrusion 134, and the protrusion 134 can be easily formed.
  • FIG. 7 is a partially enlarged view of the first mirror 131A and the second mirror 131B according to the third modification.
  • the protrusion 134a and the recesses 135a and 135b are provided on one mirror 131, and the same protrusion 134b and the recesses 135c and 135d are provided on the other mirror 131.
  • a protrusion 134a is provided on the second side 131b of the second mirror 131B, and recesses 135a and 135b are provided on both sides adjacent to the protrusion 134a.
  • the protrusion 134b is provided on the fourth side 131d of the first mirror 131A, and the recesses 135c and 135d are provided on both sides adjacent to the protrusion 134b.
  • the protrusion 134a and the protrusion 134b face each other, the recess 135a and the recess 135c face each other, and the recess 135b and the recess 135d face each other.
  • the possibility of fixing the two mirrors 131, 131 can be reduced, and the protrusion 134 can be easily formed. That is, since the projection 134a is formed on the second mirror 131B, and the projection 134b is formed on the portion of the first mirror 131A facing the projection 134a, the first mirror 131A and the second mirror 131B In the case of contact, the protrusion 134a and the protrusion 134b come in contact with each other. Thereby, both contact can be made into a substantially linear contact, and a contact area can be made very small. As a result, the possibility of sticking can be reduced.
  • G2 can be formed on both sides of the protrusion 134a and on both sides of the protrusion 134b. Therefore, the etching species can be easily penetrated deep on both sides of the protrusions 134a and 134b, and the protrusions 134a and 134b can be easily formed.
  • FIG. 8 is a partially enlarged view of the first mirror 131A and the second mirror 131B according to the fourth modification.
  • the protrusion 134 a and the recesses 135 a and 135 b are provided on one mirror 131, and the same protrusion 134 b is provided on the other mirror 131. That is, in the first mirror 131A in the first modification, the protrusion is also provided in the portion facing the protrusion 134 of the second mirror 131B.
  • a protrusion 134a is provided on the second side 131b of the second mirror 131B, and recesses 135a and 135b are provided on both sides adjacent to the protrusion 134a.
  • a protrusion 134b is provided at a position facing the protrusion 134a.
  • the recessed part is not provided in the part which adjoins the projection part 134b among the 1st mirrors 131A.
  • the possibility of fixing the two mirrors 131, 131 can be reduced, and the protrusions 134a, 134b can be easily formed. That is, since the projection 134a is formed on the second mirror 131B, and the projection 134b is formed on the portion of the first mirror 131A facing the projection 134a, the first mirror 131A and the second mirror 131B In the case of contact, the protrusion 134a and the protrusion 134b come in contact with each other. Thereby, both contact can be made into a substantially linear contact, and a contact area can be made very small. As a result, the possibility of sticking can be reduced.
  • G2 can be formed on both sides of the protrusion 134a and on both sides of the protrusion 134b. Therefore, the etching species can be easily penetrated deep on both sides of the protrusions 134a and 134b, and the protrusions 134a and 134b can be easily formed.
  • FIG. 9 is a partially enlarged view of the first mirror 131A and the second mirror 131B according to the fifth modification.
  • a protrusion 134 a and a recess 135 a are provided on one mirror 131, and a similar protrusion 134 b and a recess 135 b are provided on the other mirror 131. That is, the projection is also provided on the facing portion 136 of the first mirror 131A in the second modification.
  • a protrusion 134a is provided on the second side 131b of the second mirror 131B, and a recess 135a is provided on one side of the portion adjacent to the protrusion 134a.
  • a protrusion 134b is provided at a position facing the protrusion 134a, which is one side of the portion adjacent to the protrusion 134b, and the recess 135a of the second mirror 131B.
  • a recess 135 b is provided on the opposite side of
  • the possibility of fixing the two mirrors 131, 131 can be reduced, and the protrusions 134a, 134b can be easily formed. That is, since the projection 134a is formed on the second mirror 131B, and the projection 134b is formed on the portion of the first mirror 131A facing the projection 134a, the first mirror 131A and the second mirror 131B In the case of contact, the protrusion 134a and the protrusion 134b come in contact with each other. Thereby, both contact can be made into a substantially linear contact, and a contact area can be made very small. As a result, the possibility of sticking can be reduced.
  • G2 can be formed on both sides of the protrusion 134a and on both sides of the protrusion 134b. Therefore, the etching species can be easily penetrated deep on both sides of the protrusions 134a and 134b, and the protrusions 134a and 134b can be easily formed.
  • the configuration of the mirror device 103 is not limited to the above embodiment. Below, the modification is shown.
  • FIG. 10 is a plan view of a mirror array 200 according to the sixth modification.
  • the configuration of each mirror device 203 is different from the configuration of the mirror device 103.
  • parts different from the mirror device 103 will be mainly described.
  • the configuration unique to the sixth modification may be described by attaching a code in the 200s. In that case, the same numerals and symbols are used for the configuration having the same function as that of the mirror device 103 for the numerals and symbols of tens of digits or less.
  • the mirror array 200 includes a plurality of mirror devices 203, 203,.
  • Each mirror device 203 couples the base portion 102, the mirror 131, one actuator 204 for driving the mirror 131, one beam member 105 for supporting the mirror 131, and the mirror 131 with the actuator 204 or the beam member 105.
  • hinges 106, 106 that is, the mirror device 203 drives the mirror 131 by one actuator 204.
  • the basic configuration of the actuator 204 is the same as the actuator 104 of the mirror device 103.
  • the widths of the actuator body 241 and the piezoelectric element 242 are substantially the same as the widths of the beam body 151 and the piezoelectric element 152, respectively. That is, the actuator 204 and the beam member 105 have the same configuration and materials, and have symmetrical shapes with respect to the main axis X.
  • the tip of the actuator body 241 is connected to the third side 131 d of the mirror 131 via the two hinges 106 and 106.
  • the hinges 106 and 106 each have one end connected to each end (i.e., a corner) in the main axis X direction at the tip of the actuator main body 241, while the other end is each end (i.e., the corner) of the third side 131 d Are linked to the
  • the tip end portion of the beam main body 151 is connected to the first side 131 a of the mirror 131 via the two hinges 106 and 106.
  • the hinges 106 and 106 each have one end connected to each end (i.e., a corner) in the main axis X direction at the tip of the beam main body 151, while the other end is each end (i.e., a corner) of the first side 131a.
  • the mirror device 203 applies an offset voltage to the piezoelectric element 242 of the actuator 204 and the piezoelectric element 152 of the beam member 105. Then, by increasing or decreasing the voltage applied to the piezoelectric element 242 from this reference state, the actuator 204 is curved upward or downward. Thereby, the mirror 131 can be rotated around the main axis X. At this time, the turning direction of the mirror 131 about the main axis X can be switched depending on whether the actuator 204 is bent upward or downward. However, since the mirror device 203 drives the mirror 131 with only one actuator 204, the mirror 131 can be tilted only about the main axis X, and the mirror 131 can be tilted about the minor axis X. Can not.
  • the protrusion 134 and the concave portions 135 a and 135 b are provided on one of the adjacent mirrors 131 and 131.
  • the two mirrors 131 and 131 may come into contact with each other, the two come into contact via the projection 134, so that the possibility of fixing them can be reduced.
  • the concave portions 135a and 135b in the portion adjacent to the protrusion 134, the etching species can be easily penetrated deep and the protrusion 134 can be easily formed.
  • FIG. 11 is a plan view of the mirror array 300.
  • FIG. The mirror array 300 according to the seventh modification differs from the configuration of the mirror device 103 in the configuration of each mirror device 303.
  • parts different from the mirror device 103 will be mainly described.
  • the configuration specific to the seventh modification may be described by attaching a reference numeral in the 300s. In that case, the same numerals and symbols are used for the configuration having the same function as that of the mirror device 103 for the numerals and symbols of tens of digits or less.
  • the mirror array 300 includes a plurality of mirror devices 303, 303,.
  • Each mirror device 303 has a base portion 102, a mirror 131, four actuators 304, 304, ... for driving the mirror 131, and hinges 106, 106, ... for connecting the mirror 131 with the actuator 304. . That is, the mirror device 303 drives the mirror 131 by the four actuators 304.
  • the four actuators 304, 304,... Are two first actuators 304A, 304A provided on one side across the main axis X and two second actuators 304B, 304B provided on the other side across the main axis X. And consists of.
  • the basic configuration of each of the first actuator 304A and the second actuator 304B is the same as the actuator 104 of the mirror device 103.
  • the first actuator 304A has an actuator body 341a having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 342a provided on the surface of the actuator body 341a. doing.
  • the two actuator bodies 341a, 341a extend parallel to each other in the sub-axis Y direction.
  • the second actuator 304B has an actuator body 341b having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 342b provided on the surface of the actuator body 341b.
  • the two actuator bodies 341b, 341b extend parallel to each other in the sub-axis Y direction.
  • the length, width and thickness of the actuator body 341b are substantially the same as the length, width and thickness of the actuator body 341a.
  • the length, width and thickness of the piezoelectric element 342b are substantially the same as the length, width and thickness of the piezoelectric element 342a.
  • the actuator body 341 a of the first actuator 304 A is connected to the third side 131 c of the mirror 131 via the hinge 106
  • the actuator body 341 b of the second actuator 304 B is the mirror 131 via the hinge 106. Is connected to the first side 131a of the
  • first actuators 304A and 304A and the second actuators 304B and 304B have the same configuration and materials, and have symmetrical shapes with the main axis X interposed therebetween.
  • the mirror device 303 applies an offset voltage to the piezoelectric element 342a of each first actuator 304A and the piezoelectric element 342b of each second actuator 304B. Then, from the reference state, the voltage applied to the piezoelectric elements 342a and 342b is increased or decreased to bend the first and second actuators 304A and 304B upward or downward, thereby rotating the mirror 131. Thereby, the mirror 131 can be rotated around the main axis X. For example, curving the two first actuators 304A and 304A both in the same direction, and curving the two second actuators 304B and 304B both in the same direction and in the opposite direction to the first actuators 304A and 304A.
  • the mirror 131 can be rotated about the main axis X.
  • the turning direction of the mirror 131 about the main axis X can be switched by switching the direction in which the two first actuators 304A and 304A are curved and the direction in which the two second actuators 304B and 304B are bent.
  • the first actuators 304A and 304A are curved in opposite directions
  • the second actuators 304B and 304B are opposite to each other
  • the second actuators 304B are aligned in the minor axis Y direction.
  • the mirror 131 can be rotated about the minor axis Y by curving so as to be in the same direction as 304A.
  • the protrusion 134 and the concave portions 135 a and 135 b are provided on one of the adjacent mirrors 131 and 131.
  • the two mirrors 131 and 131 may come into contact with each other, the two come into contact via the projection 134, so that the possibility of fixing them can be reduced.
  • the concave portions 135a and 135b in the portion adjacent to the protrusion 134, the etching species can be easily penetrated deep and the protrusion 134 can be easily formed.
  • FIG. 12 is a plan view of the mirror array 400.
  • FIG. The mirror array 400 according to the eighth modification differs from the mirror device 103 in the configuration of each mirror device 403.
  • the configuration unique to the modification 8 may be described by attaching a 400-series code. In that case, the same numerals and symbols are used for the configuration having the same function as that of the mirror device 103 for the numerals and symbols of tens of digits or less.
  • the mirror array 400 includes a plurality of mirror devices 403, 403,.
  • Each mirror device 403 has a base portion 102, a mirror 131, two actuators 404, 404 for driving the mirror 131, and hinges 106, 106,... For connecting the mirror 131 with the actuator 404. That is, the mirror device 403 drives the mirror 131 by the two actuators 404.
  • the two actuators 404, 404 are configured by a first actuator 404A provided on one side across the main axis X and a second actuator 404B provided on the other side across the main axis X.
  • the basic configuration of each of the first actuator 404A and the second actuator 404B is the same as the actuator 204 of the sixth modification.
  • the first actuator 404A has an actuator body 441a having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 442a provided on the surface of the actuator body 441a. doing.
  • the second actuator 404b has an actuator body 441b having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 442b provided on the surface of the actuator body 441b.
  • the length, width and thickness of the actuator body 441b are substantially the same as the length, width and thickness of the actuator body 441a.
  • the length, width and thickness of the piezoelectric element 442b are substantially the same as the length, width and thickness of the piezoelectric element 442a.
  • the actuator body 441a of the first actuator 404A is connected to the third side 131c of the mirror 131 via the hinges 106 and 106
  • the actuator body 441b of the second actuator 404B does not include the hinges 106 and 106. It is connected to the first side 131 a of the mirror 131 via the same.
  • first actuator 404A and the second actuator 404B have the same configuration and materials, and have symmetrical shapes with respect to the main axis X.
  • the mirror device 403 applies an offset voltage to the piezoelectric element 442a of the first actuator 404A and the piezoelectric element 442b of the second actuator 404B. Then, from the reference state, the voltage applied to the piezoelectric elements 442a and 442b is increased or decreased to bend the first and second actuators 404A and 404B upward or downward, thereby rotating the mirror 131. Thereby, the mirror 131 can be rotated around the main axis X. For example, the mirror 131 can be rotated about the main axis X by bending the first actuator 404A and the second actuator 404B in opposite directions.
  • the turning direction of the mirror 131 about the main axis X can be switched by switching the direction of bending the first actuator 404A and the direction of bending the second actuator 404B.
  • the mirror device 403 does not have a plurality of actuators aligned in the main axis X direction, so the mirror 131 can be tilted only about the main axis X and about the minor axis Y. The mirror 131 can not be tilted.
  • the protrusion 134 and the concave portions 135 a and 135 b are provided on one of the adjacent mirrors 131 and 131.
  • the two mirrors 131 and 131 may come into contact with each other, the two come into contact via the projection 134, so that the possibility of fixing them can be reduced.
  • the concave portions 135a and 135b in the portion adjacent to the protrusion 134, the etching species can be easily penetrated deep and the protrusion 134 can be easily formed.
  • the mirror array is applied to the wavelength selective switch 108 in the above embodiment, the present invention is not limited to this.
  • the mirror array 100 can be incorporated into various applications.
  • the mirror array has been described as an example of the semiconductor device in the above embodiment, the present invention is not limited to this. If it is a semiconductor device provided with the 1st part and 2nd part which opened a crevice, the above-mentioned projection part, crevice, etc. can be adopted as arbitrary semiconductor devices.
  • the configuration of the protrusion and the recess may be adopted in an oscillator or a gas sensor provided with a vibrator. In an oscillator or gas sensor provided with a vibrator, the vibrator may come in contact with members around it. Therefore, by providing the protrusion and the recess on at least one of the vibrator and the members around the vibrator, the possibility of fixing the both can be reduced.
  • the driving method of the first part or the second part configured to be movable is not limited to the piezoelectric driving. It is not limited to a specific drive system as long as the first part or the second part can be moved.
  • an opposing electrode may be provided at a position facing the mirror 131 or the actuator 104, and the mirror 131 may be moved by electrostatic force between the opposing electrode and the mirror 131 or the actuator 104.
  • the mirror 131 may be moved according to the relationship between the magnetic field generated by the coil provided to the mirror 131 or the actuator 104 and the external magnetic field.
  • the shapes, dimensions, and materials in the embodiment are merely examples, and the present invention is not limited to these.
  • a lead-free piezoelectric material such as KNN ((K, Na) NbO 3 ) may be used.
  • the mirror 131 may not have a rectangular shape in plan view.
  • the mirror 131 may be circular or oval.
  • the configuration of the hinge 106 is not limited to the above configuration. Also, one or more hinges 106 may be omitted.
  • the mirror 131 is supported by the beam member 105.
  • the mirror 131 may be supported by the base portion 102 via a hinge or the like.
  • the shapes of the protrusions 134, 134a and 134b and the shapes of the recesses 135a to 135d are not limited to those in the above embodiment.
  • the tips of the protrusions 134, 134a, 134b may be sharp or flat.
  • curving it is possible to prevent damage to the protrusion while reducing the contact area.
  • the positions and the number of the protrusions 134 134 a and 134 b and the recesses 135 a to 135 d are not limited to the above embodiment.
  • the protrusion part 134 and recessed part 135a, 135b are provided in the both ends of the minor axis Y direction of the mirror 131, it is not restricted to this.
  • only one set of the protrusion 134 and the recesses 135a and 135b may be provided at the center of the mirror 131 in the sub-axis Y direction.
  • the projection 134 and the recesses 135a and 135b are provided on the second mirror 131B.
  • the projection 134 and the recesses 135a and 135b can be used as the first mirror 131A. It may be provided in Furthermore, one set of the protrusion 134 and the recesses 135a and 135b may be provided in the first mirror 131A, and another set of the protrusion 134 and the recesses 135a and 135b may be provided in the second mirror 131B.
  • the mirror layer 133 is provided on the surface of the portion of the mirror 131 where the protrusions 134, 134a and 134b and the recesses 135a to 135d are provided, but the end portion of the mirror 131 in the minor axis Y direction is provided.
  • a portion where the mirror layer 133 is not stacked may be provided, and a protrusion and a recess may be provided on the end face of the portion.
  • the technology disclosed herein is useful for semiconductor devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A mirror array (100) provided with a first mirror (131A), and a second mirror (131B) that is disposed so that a gap (G0) is open between the first mirror (131A) and the second mirror (131B). The first mirror (131A) and the second mirror (131B) are formed so as to be movable. At the gap (G0), the second mirror (131B) is provided with a protrusion (134) that protrudes towards the first mirror (131A). The areas of the second mirror (131B) that are adjacent to the protrusion (134) are provided with recesses (135a, 135b).

Description

半導体装置Semiconductor device
 本発明は、半導体装置に関するものである。 The present invention relates to a semiconductor device.
 従来より、様々な半導体装置が知られている。特許文献1には、半導体装置の一例として、発振器が開示されている。この発振器では、振動片と電極部とが隙間を空けて配置されている。電極部には、隙間において、振動片の方へ突出する突起部が設けられている。この突起部を設けることによって、振動片と電極部との固着(スティッキング)を防止している。 Conventionally, various semiconductor devices are known. Patent Document 1 discloses an oscillator as an example of a semiconductor device. In this oscillator, the vibrating reed and the electrode portion are disposed with a gap. The electrode portion is provided with a protrusion which protrudes toward the vibrating reed in the gap. By providing this projection, sticking (sticking) between the vibrating reed and the electrode portion is prevented.
特開2009-60173号公報JP, 2009-60173, A
 しかしながら、上述のような構成では、突起部において2つの部分の隙間が非常に狭くなってしまう。そのため、そのような構成の半導体装置を製造することは非常に難しい。 However, in the configuration as described above, the gap between the two parts in the projection becomes very narrow. Therefore, it is very difficult to manufacture a semiconductor device having such a configuration.
 ここに開示された技術は、かかる点に鑑みてなされたものであり、その目的とするところは、隙間を有して設けられた2つの部分の固着を防止でき且つ製造の容易な半導体装置を提供することにある。 The technology disclosed herein has been made in view of the above-described point, and the object of the present invention is to provide a semiconductor device capable of preventing adhesion between two parts provided with a gap and easily manufactured. It is to provide.
 ここに開示された半導体装置は、第1部分と、前記第1部分との間に隙間を空けて配置された第2部分とを備え、前記第1部分及び第2部分の少なくとも一方は、移動可能に構成されており、前記第2部分には、前記隙間において、前記第1部分の方へ突出する突起部が設けられており、前記第1部分のうち前記突起部と対向する部分に隣接する部分及び前記第2部分のうち前記突起部に隣接する部分の少なくとも一方には、凹部が設けられているものとする。 The semiconductor device disclosed herein comprises a first portion and a second portion spaced apart from the first portion, and at least one of the first portion and the second portion is moved The second portion is provided with a protrusion that protrudes toward the first portion in the gap, and the second portion is adjacent to a portion of the first portion that faces the protrusion. A recess is provided in at least one of the second portion and the portion adjacent to the protrusion of the second portion.
 前記の構成によれば、使用時や運搬時等に第1部分が第2部分に接触することがあっても、第1部分は突起部を介して第2部分と接触するので、接触面積を小さくすることができる。その結果、固着を防止することができる。 According to the above configuration, even if the first portion contacts the second portion during use or transport, the first portion contacts the second portion via the projection, so the contact area can be reduced. It can be made smaller. As a result, sticking can be prevented.
 ここで、第1部分のうち突起部と対向する部分に隣接する部分及び第2部分のうち突起部に隣接する部分の少なくとも一方には、凹部が設けられている。突起部が設けられた部分は、第1部分と第2部分との間の隙間が微小であるが、凹部が設けられた部分は、第1部分と第2部分との間の隙間が比較的大きくなっている。そして、凹部は、第1部分のうち突起部と対向する部分に隣接する部分及び第2部分のうち突起部に隣接する部分の少なくとも一方に位置するので、突起部により隙間が微小になった部分と凹部により隙間が大きくなった部分とは互いに隣接する。その結果、突起部の周辺にエッチング種が入り込み易くなり、突起部を有する第2部分及びそれに対向する第1部分を容易に形成することができる。 Here, a recess is provided in at least one of a portion adjacent to the portion facing the protrusion in the first portion and a portion adjacent to the protrusion in the second portion. The portion provided with the projection has a minute gap between the first portion and the second portion, but the portion provided with the recess has a relatively small gap between the first portion and the second portion. It is getting bigger. And since a crevice is located in at least 1 side of a portion which adjoins to a portion which counters a projection among the 1st portions, and a portion which adjoins a projection among 2nd parts, a portion where a crevice became minute by a projection And the part which the clearance gap became large by the recessed part adjoin mutually. As a result, the etching species can easily enter the periphery of the protrusion, and the second portion having the protrusion and the first portion opposed thereto can be easily formed.
 前記半導体装置によれば、隙間を有して設けられた2つの部分の固着を防止でき且つ製造の容易な半導体装置を提供することができる。 According to the semiconductor device, it is possible to provide a semiconductor device which can prevent adhesion between two parts provided with a gap and which is easy to manufacture.
図1は、ミラーアレイの平面図である。FIG. 1 is a plan view of a mirror array. 図2は、ミラーアレイの、図1のII-II線における断面図である。FIG. 2 is a cross-sectional view of the mirror array taken along line II-II of FIG. 図3は、波長選択スイッチの概略図である。FIG. 3 is a schematic view of a wavelength selective switch. 図4は、第1ミラー及び第2ミラーの部分拡大図である。FIG. 4 is a partially enlarged view of the first mirror and the second mirror. 図5は、変形例1に係る第1ミラー及び第2ミラーの部分拡大図である。FIG. 5 is a partially enlarged view of the first mirror and the second mirror according to the first modification. 図6は、変形例2に係る第1ミラー及び第2ミラーの部分拡大図である。FIG. 6 is a partially enlarged view of the first mirror and the second mirror according to the second modification. 図7は、変形例3に係る第1ミラー及び第2ミラーの部分拡大図である。FIG. 7 is a partially enlarged view of the first mirror and the second mirror according to the third modification. 図8は、変形例4に係る第1ミラー及び第2ミラーの部分拡大図である。FIG. 8 is a partially enlarged view of the first mirror and the second mirror according to the fourth modification. 図9は、変形例5に係る第1ミラー及び第2ミラーの部分拡大図である。FIG. 9 is a partially enlarged view of the first mirror and the second mirror according to the fifth modification. 図10は、変形例6に係るミラーアレイの平面図である。FIG. 10 is a plan view of a mirror array according to the sixth modification. 図11は、変形例7に係るミラーアレイの平面図である。FIG. 11 is a plan view of a mirror array according to the seventh modification. 図12は、変形例8に係るミラーアレイの平面図である。FIG. 12 is a plan view of a mirror array according to the eighth modification.
 以下、例示的な実施形態を図面に基づいて詳細に説明する。 Hereinafter, exemplary embodiments will be described in detail based on the drawings.
 図1は、ミラーアレイ100の平面図を、図2は、ミラーアレイ100の、図1のII-II線における断面図を示す。 FIG. 1 shows a plan view of the mirror array 100, and FIG. 2 shows a cross-sectional view of the mirror array 100 along the line II-II in FIG.
 ミラーアレイ100は、複数のミラーデバイス103,103,…を備えている。複数のミラーデバイス103,103,…は、所定の方向に一列に配列されている。ミラーアレイ100は、半導体装置の一例である。 The mirror array 100 includes a plurality of mirror devices 103, 103,. The plurality of mirror devices 103, 103,... Are arranged in a line in a predetermined direction. The mirror array 100 is an example of a semiconductor device.
 ミラーアレイ100は、SOI(Silicon on Insulator)基板109を用いて製造されている。SOI基板109は、単結晶シリコンで形成された第1シリコン層191と、SiOで形成された酸化膜層192と、単結晶シリコンで形成された第2シリコン層193とがこの順で積層されて構成されている。 The mirror array 100 is manufactured using an SOI (Silicon on Insulator) substrate 109. In the SOI substrate 109, a first silicon layer 191 formed of single crystal silicon, an oxide film layer 192 formed of SiO 2 , and a second silicon layer 193 formed of single crystal silicon are stacked in this order. Is configured.
 ミラーデバイス103は、ベース部102と、ミラー131と、ミラー131を駆動する2つのアクチュエータ104,104と、ミラー131を支持する梁部材105と、ミラー131をアクチュエータ104又は梁部材105と連結するヒンジ106,106,…とを有している。 The mirror device 103 includes a base portion 102, a mirror 131, two actuators 104 and 104 for driving the mirror 131, a beam member 105 for supporting the mirror 131, and a hinge for connecting the mirror 131 to the actuator 104 or the beam member 105. 106, 106,...
 ベース部102は、全体の図示は省略するが、概略長方形の枠状に形成されている。ベース部102は、第1シリコン層191、酸化膜層192及び第2シリコン層193で形成されている。 The base portion 102 is formed in a substantially rectangular frame shape, although the whole illustration is omitted. The base portion 102 is formed of a first silicon layer 191, an oxide film layer 192, and a second silicon layer 193.
 ミラー131は、平面視長方形の板状に形成されている。詳しくは、ミラー131は、第1~第4辺131a~131dを有している。第1辺131a及び第3辺131cは、長方形の短辺であり、第2辺131b及び第4辺131dは、長方形の長辺である。ミラー131は、ミラー本体132と、ミラー本体132の表面に積層された鏡面層133とを有している。ミラー本体132は、第1シリコン層191で形成され、鏡面層133は、Au/Ti膜で形成されている。 The mirror 131 is formed in a rectangular plate shape in plan view. Specifically, the mirror 131 has first to fourth sides 131a to 131d. The first side 131 a and the third side 131 c are short sides of a rectangle, and the second side 131 b and the fourth side 131 d are long sides of the rectangle. The mirror 131 has a mirror main body 132 and a mirror surface layer 133 laminated on the surface of the mirror main body 132. The mirror body 132 is formed of the first silicon layer 191, and the mirror layer 133 is formed of an Au / Ti film.
 ここで、ミラー131の中心を通り、複数のミラーデバイス103,103,…の配列方向に延びる軸を主軸Xとする。ミラー131の中心を通り、主軸Xに直交し、ミラー131の表面と平行に延びる軸を副軸Yとする。主軸X及び副軸Yの両方に直交する軸をZ軸とする。尚、Z軸方向を上下方向ということがある。その場合、鏡面層133の側を上とし、ミラー本体132の側を下とする。 Here, an axis passing through the center of the mirror 131 and extending in the arrangement direction of the plurality of mirror devices 103, 103,. An axis passing through the center of the mirror 131, orthogonal to the principal axis X, and extending in parallel with the surface of the mirror 131 is taken as a minor axis Y. An axis orthogonal to both the principal axis X and the minor axis Y is taken as a Z axis. The Z-axis direction may be referred to as the vertical direction. In that case, the side of the mirror surface layer 133 is up, and the side of the mirror body 132 is down.
 各アクチュエータ104は、ベース部102から片持ち状に延び、その先端がミラー131に連結されている。アクチュエータ104は、湾曲することによって、ミラー131を傾動させる。詳しくは、アクチュエータ104は、基端部がベース部102に連結され、ベース部102から片持ち状に張り出しているアクチュエータ本体141と、アクチュエータ本体141の表面に積層された圧電素子142とを有している。 Each actuator 104 extends from the base portion 102 in a cantilevered manner, and its tip is connected to the mirror 131. The actuator 104 tilts the mirror 131 by bending. Specifically, the actuator 104 has an actuator body 141 having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 142 stacked on the surface of the actuator body 141. ing.
 アクチュエータ本体141は、平面視長方形の板状に形成されている。アクチュエータ本体141は、第1シリコン層191で形成されている。2つのアクチュエータ本体141,141は、互いに平行に副軸Y方向に延びている。アクチュエータ本体141の先端部は、ヒンジ106を介して、ミラー131の第3辺131cに連結されている。ヒンジ106は、全体としてつづら折り状に屈曲している。ヒンジ106は、第1シリコン層191で形成されている。 The actuator body 141 is formed in a rectangular plate shape in plan view. The actuator body 141 is formed of the first silicon layer 191. The two actuator bodies 141, 141 extend parallel to each other in the sub-axis Y direction. The tip of the actuator body 141 is connected to the third side 131 c of the mirror 131 via the hinge 106. The hinge 106 is bent in a serpentine manner as a whole. The hinge 106 is formed of the first silicon layer 191.
 圧電素子142は、アクチュエータ本体141と同様に、平面視長方形の板状に形成されている。圧電素子142は、下部電極143と、上部電極145と、これらに挟持された圧電体層144とを有する。下部電極143、圧電体層144、上部電極145は、アクチュエータ本体141の表面にこの順で積層されている。圧電素子142は、SOI基板109とは別の部材で形成されている。詳しくは、下部電極143は、Pt/Ti膜で形成されている。圧電体層144は、チタン酸ジルコン酸鉛(PZT)で形成されている。上部電極145は、Au/Ti膜で形成されている。 Like the actuator body 141, the piezoelectric element 142 is formed in a plate shape having a rectangular shape in a plan view. The piezoelectric element 142 has a lower electrode 143, an upper electrode 145, and a piezoelectric layer 144 sandwiched therebetween. The lower electrode 143, the piezoelectric layer 144, and the upper electrode 145 are stacked in this order on the surface of the actuator body 141. The piezoelectric element 142 is formed of a member different from the SOI substrate 109. Specifically, the lower electrode 143 is formed of a Pt / Ti film. The piezoelectric layer 144 is formed of lead zirconate titanate (PZT). The upper electrode 145 is formed of an Au / Ti film.
 アクチュエータ104は、圧電素子142に電圧が印加されると、アクチュエータ本体141のうち圧電素子142が積層された表面が伸縮し、アクチュエータ本体141が上下方向に湾曲する。 In the actuator 104, when a voltage is applied to the piezoelectric element 142, the surface of the actuator body 141 on which the piezoelectric element 142 is stacked expands and contracts, and the actuator body 141 bends in the vertical direction.
 梁部材105は、ベース部102から片持ち状に延び、その先端がミラー131に連結されている。梁部材105は、主軸Xを挟んでアクチュエータ104,104の反対側に設けられている。詳しくは、梁部材105は、基端部がベース部102に連結され、ベース部102から片持ち状に張り出している梁本体151と、梁本体151の表面に積層された圧電素子152とを有している。尚、梁部材105は、圧電素子152を有しているが、ミラー131の駆動を行わず、ミラー131を単に支持するだけである。 The beam member 105 extends from the base portion 102 in a cantilever manner, and its tip end is connected to the mirror 131. The beam member 105 is provided on the opposite side of the actuators 104 and 104 across the main axis X. Specifically, the beam member 105 has a beam main body 151 having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 152 stacked on the surface of the beam main body 151. doing. Although the beam member 105 includes the piezoelectric element 152, it does not drive the mirror 131, but merely supports the mirror 131.
 梁本体151は、平面視長方形の板状に形成されている。梁本体151は、第1シリコン層191で形成されている。梁本体151は、副軸Y方向に延びている。梁本体151の先端部は、ヒンジ106を介して、ミラー131のうち第1辺131aに連結されている。このヒンジ106は、アクチュエータ本体141とミラー131とを連結するヒンジ106と同様の構成をしている。ヒンジ106は、一端が梁本体151の先端部における主軸X方向中央に連結される一方、他端が第1辺131aの主軸X方向中央に連結されている。 The beam main body 151 is formed in a plate shape having a rectangular shape in a plan view. The beam main body 151 is formed of the first silicon layer 191. The beam main body 151 extends in the sub-axis Y direction. The tip of the beam body 151 is connected to the first side 131 a of the mirror 131 via the hinge 106. The hinge 106 has the same configuration as the hinge 106 that connects the actuator body 141 and the mirror 131. One end of the hinge 106 is connected to the center of the tip end portion of the beam main body 151 in the main axis X direction, and the other end is connected to the center of the first side 131 a in the main axis X direction.
 圧電素子152は、梁本体151と同様に、平面視長方形の板状に形成されている。圧電素子152は、圧電素子142と同様の構成をしている。すなわち、圧電素子152は、下部電極153と、上部電極155と、これらに挟持された圧電体層154とを有する。下部電極153、圧電体層154、上部電極155は、梁本体151の表面にこの順で積層されている。圧電素子152は、SOI基板109とは別の部材で形成されている。詳しくは、下部電極153は、Pt/Ti膜で形成されている。圧電体層154は、チタン酸ジルコン酸鉛(PZT)で形成されている。上部電極155は、Au/Ti膜で形成されている。 Like the beam main body 151, the piezoelectric element 152 is formed in a plate shape having a rectangular shape in a plan view. The piezoelectric element 152 has the same configuration as the piezoelectric element 142. That is, the piezoelectric element 152 has the lower electrode 153, the upper electrode 155, and the piezoelectric layer 154 sandwiched therebetween. The lower electrode 153, the piezoelectric layer 154, and the upper electrode 155 are stacked on the surface of the beam body 151 in this order. The piezoelectric element 152 is formed of a member different from the SOI substrate 109. Specifically, the lower electrode 153 is formed of a Pt / Ti film. The piezoelectric layer 154 is formed of lead zirconate titanate (PZT). The upper electrode 155 is formed of an Au / Ti film.
 梁本体151の長さ及び厚さは、アクチュエータ本体141と略同じである。梁本体151の幅は、アクチュエータ本体141の幅の略2倍である。同様に、圧電素子152の長さ及び厚さは、圧電素子142と略同じである。圧電素子152の幅は、圧電素子142の幅の略2倍である。 The length and thickness of the beam main body 151 are substantially the same as the actuator main body 141. The width of the beam body 151 is approximately twice the width of the actuator body 141. Similarly, the length and thickness of the piezoelectric element 152 are substantially the same as the piezoelectric element 142. The width of the piezoelectric element 152 is approximately twice the width of the piezoelectric element 142.
 次に、このように構成されたミラーアレイ100の動作について説明する。ミラーアレイ100の制御部(図示省略)は、上部電極145と下部電極143とに電圧を印加する。この電圧に応じて、圧電体層144が収縮又は伸張し、アクチュエータ本体141が上方又は下方に湾曲する。 Next, the operation of the mirror array 100 configured as described above will be described. A control unit (not shown) of the mirror array 100 applies a voltage to the upper electrode 145 and the lower electrode 143. In response to this voltage, the piezoelectric layer 144 contracts or expands, and the actuator body 141 curves upward or downward.
 さらに詳しくは、制御部は、各アクチュエータ104の下部電極143及び上部電極145にオフセット電圧を印加すると共に、梁部材105の下部電極153及び上部電極145にもオフセット電圧を印加する。これにより、アクチュエータ104は圧電素子142を内側にして湾曲し、梁部材105も圧電素子152を内側にして湾曲する。アクチュエータ104のオフセット電圧と梁部材105のオフセット電圧とは、アクチュエータ104の先端と梁部材105の先端との高さ(Z軸方向の位置)が同じになるように設定されている。つまり、アクチュエータ104及び梁部材105にオフセット電圧を印加した状態(以下、「基準状態」という)においては、ミラー131は、XY平面に平行な状態となっている。 More specifically, the control unit applies an offset voltage to the lower electrode 143 and the upper electrode 145 of each actuator 104, and also applies an offset voltage to the lower electrode 153 and the upper electrode 145 of the beam member 105. Thereby, the actuator 104 is curved with the piezoelectric element 142 inside, and the beam member 105 is also curved with the piezoelectric element 152 inside. The offset voltage of the actuator 104 and the offset voltage of the beam member 105 are set so that the heights (positions in the Z-axis direction) of the tip of the actuator 104 and the tip of the beam member 105 are the same. That is, in the state where an offset voltage is applied to the actuator 104 and the beam member 105 (hereinafter, referred to as “reference state”), the mirror 131 is in a state parallel to the XY plane.
 この状態から、各アクチュエータ104の下部電極143及び上部電極145に印加している電圧を増減することによって、各アクチュエータ104を湾曲させてミラー131を回動させる。具体的には、2つのアクチュエータ104,104の印加電圧を両方とも増加させるか又は減少させることによって、2つのアクチュエータ104,104を両方とも同じ方向に湾曲させて、ミラー131を主軸X周りに回動させることができる。このとき、2つのアクチュエータ104,104の印加電圧を両方とも増加させるか、減少させるかによって、ミラー131の主軸X周りの回動方向を切り替えることができる。また、一方のアクチュエータ104の印加電圧を増加させ,他方のアクチュエータ104の印加電圧を減少させることによって、2つのアクチュエータ104,104を互いに逆向きに湾曲させて、ミラー131を副軸Y周りに回動させることができる。このとき、印加電圧を増加させるアクチュエータ104と印加電圧を減少させるアクチュエータ104とを入れ替えることによって、ミラー131の副軸Y周りの回動方向を切り替えることができる。 From this state, the voltage applied to the lower electrode 143 and the upper electrode 145 of each actuator 104 is increased or decreased to bend each actuator 104 and rotate the mirror 131. Specifically, by increasing or decreasing both of the applied voltages of the two actuators 104, 104, the two actuators 104, 104 are both bent in the same direction, and the mirror 131 is rotated around the main axis X. It can be moved. At this time, it is possible to switch the rotation direction around the main axis X of the mirror 131 depending on whether the applied voltages of the two actuators 104 and 104 are both increased or decreased. Also, by increasing the voltage applied to one actuator 104 and decreasing the voltage applied to the other actuator 104, the two actuators 104 and 104 are curved in opposite directions to rotate the mirror 131 around the minor axis Y. It can be moved. At this time, the rotational direction of the mirror 131 about the minor axis Y can be switched by switching the actuator 104 for increasing the applied voltage and the actuator 104 for decreasing the applied voltage.
 尚、ミラー131を駆動する際には、アクチュエータ104の圧電素子142への印加電圧を増減させるが、梁部材105の圧電素子152への印加電圧は増減させない。つまり、梁部材105の圧電素子152は、梁部材105をオフセットさせて基準状態とするために電圧が印加されるが、ミラー131の駆動のためには用いられない。 When driving the mirror 131, the voltage applied to the piezoelectric element 142 of the actuator 104 is increased or decreased, but the voltage applied to the piezoelectric element 152 of the beam member 105 is not increased or decreased. That is, although the voltage is applied to the piezoelectric element 152 of the beam member 105 in order to offset the beam member 105 into the reference state, it is not used for driving the mirror 131.
 制御部は、CPUのような演算装置で構成され得る。制御部は、ミラー131を所望の回動角に回動させるための駆動電圧の電圧値を、演算装置からアクセス可能な記憶装置に記憶されているパラメータを参照して決定する。パラメータは、各駆動電圧ごとのミラー131の回動角を表しており、テーブル形式のデータであったり、近似曲線の係数の形式で記憶装置に記憶されている。 The control unit may be configured by an arithmetic device such as a CPU. The control unit determines the voltage value of the drive voltage for rotating the mirror 131 to a desired rotation angle with reference to the parameters stored in the storage device accessible from the arithmetic device. The parameter represents the rotation angle of the mirror 131 for each drive voltage, and is data in the form of a table or is stored in the storage device in the form of the coefficient of the approximate curve.
 このミラーアレイ100は、例えば、波長選択スイッチ108に組み込まれて使用される。図3に、波長選択スイッチ108の概略図を示す。 The mirror array 100 is used by being incorporated into the wavelength selective switch 108, for example. FIG. 3 shows a schematic view of the wavelength selective switch 108.
 波長選択スイッチ108は、1つの入力用光ファイバ181と、3つの出力用光ファイバ182~184と、光ファイバ181~184に設けられたコリメータ185と、回折格子で構成された分光器186と、レンズ187と、ミラーアレイ100とを備えている。尚、この例では、出力用ファイバは、3本だけであるが、これに限られるものではない。 The wavelength selective switch 108 includes one input optical fiber 181, three output optical fibers 182 to 184, a collimator 185 provided on the optical fibers 181 to 184, and a spectroscope 186 configured of a diffraction grating. A lens 187 and a mirror array 100 are provided. In this example, the number of output fibers is only three, but it is not limited to this.
 この波長選択スイッチ108においては、入力用光ファイバ181を介して、複数の異なる波長の光信号が入力される。この光信号は、コリメータ185により平行光にされる。平行光となった光信号は、分光器186によって、所定の数の特定波長の光信号に分波される。分波された光信号は、レンズ187によって集光され、ミラーアレイ100に入射する。分波される特定波長の個数と、ミラーアレイ100のミラー131の個数は対応している。つまり、分波された特定波長の光信号は、それぞれ対応するミラー131に入射する。そして、該光信号は、各ミラー131により反射し、再びレンズ187を通って、分光器186へ入射する。分光器186は、複数の異なる波長の光信号を合波し、出力用光ファイバ182~184へ出力する。ここで、ミラーアレイ100は、各ミラー131を主軸周りに回動させることによって光信号の反射角度を調整して、対応する光信号がどの出力用光ファイバ182~184へ入力されるのかを切り替える。さらに詳しくは、光信号を入力する出力用光ファイバ182~184を切り替えるために各ミラー131の主軸周りの回動角を変更するときには、ミラー131を一旦、副軸周りに回動させた状態で主軸周りの回動角を変更し、その後、副軸周りの回動を元に戻す。こうすることによって、主軸周りの回動角を変更する際に、ミラー131からの反射光が所望していない出力用光ファイバへ入力されてしまうことを防止している。 In the wavelength selective switch 108, optical signals of a plurality of different wavelengths are input through the input optical fiber 181. This light signal is collimated by the collimator 185. The collimated light signal is demultiplexed by the spectroscope 186 into a predetermined number of light signals of specific wavelengths. The demultiplexed light signal is collected by the lens 187 and is incident on the mirror array 100. The number of specific wavelengths to be demultiplexed corresponds to the number of mirrors 131 of the mirror array 100. That is, the demultiplexed optical signals of the specific wavelength are incident on the corresponding mirrors 131, respectively. Then, the light signal is reflected by each mirror 131, passes through the lens 187 again, and enters the spectroscope 186. The spectroscope 186 multiplexes optical signals of a plurality of different wavelengths and outputs the optical signals to output optical fibers 182 to 184. Here, the mirror array 100 adjusts the reflection angle of the optical signal by rotating each mirror 131 around the main axis, and switches to which output optical fiber 182 to 184 the corresponding optical signal is input. . More specifically, when changing the rotation angle around the main axis of each mirror 131 in order to switch the output optical fibers 182 to 184 for inputting the light signal, the mirror 131 is once rotated around the sub axis. The rotation angle around the main axis is changed, and then the rotation around the secondary axis is returned. This prevents the light reflected from the mirror 131 from being input to an undesired output optical fiber when changing the rotation angle around the main axis.
  -突起部-
 このように構成されたミラーアレイ100においては、複数のミラー131,131,…が主軸X方向に配列されている。そして、隣り合うミラー131,131の間には微小な隙間G0が設けられている。隙間G0において、一方のミラー131には、他方のミラー131の方へ突出する突起部134が設けられている。
-protrusion-
In the mirror array 100 configured in this way, the plurality of mirrors 131, 131,... Are arranged in the principal axis X direction. Then, a minute gap G0 is provided between the mirrors 131 and 131 adjacent to each other. In the gap G0, one mirror 131 is provided with a protrusion 134 that protrudes toward the other mirror 131.
 突起部134について、図4を参照しながら詳細に説明する。図4は、第1ミラー131A及び第2ミラー131Bの部分拡大図である。ここで、図1において、左側から順に第1ミラー131A、第2ミラー131B、第3ミラー131C、…と呼ぶこととする。尚、特に区別しない場合は、単にミラー131と称する。 The protrusion 134 will be described in detail with reference to FIG. FIG. 4 is a partially enlarged view of the first mirror 131A and the second mirror 131B. Here, in FIG. 1, the first mirror 131A, the second mirror 131B, the third mirror 131C,. In the case where no distinction is made in particular, the mirror 131 is simply referred to.
 第2ミラー131Bの第2辺131bのうち、副軸Y方向の両端部(図4では、アクチュエータ104側の端部のみ図示)には、第1ミラー131Aの方へ突出し且つ第1ミラー131Aに接触しない突起部134が設けられている。ここでいう「接触しない」とは、通常時において接触しないことを意味し、使用時又は搬送時等に接触してしまうことを排除する意味ではない。さらに、第2ミラー131Bには、突起部134に隣接する両側の部分に凹部135a,135bが設けられている。突起部134の先端は、凸状に湾曲している。第1ミラー131Aが第1部分の一例であり、第2ミラー131Bが第2部分の一例である。 Of the second side 131b of the second mirror 131B, it projects toward the first mirror 131A at both ends in the sub-axis Y direction (only the end on the actuator 104 side is shown in FIG. 4) and the first mirror 131A. A protrusion 134 which does not contact is provided. The term "does not contact" as used herein means that it does not contact at normal times, and does not mean to exclude contact at the time of use, transport or the like. Furthermore, in the second mirror 131B, concave portions 135a and 135b are provided in portions on both sides adjacent to the protrusion 134. The tip of the protrusion 134 is convexly curved. The first mirror 131A is an example of a first portion, and the second mirror 131B is an example of a second portion.
 突起部134を設けることによって、突起部134における第1ミラー131Aと第2ミラー131Bとの隙間G1は、隙間G0よりも狭くなっている。一方、凹部135a,135bを設けることによって、凹部135a,135bにおける第1ミラー131Aと第2ミラー131Bとの隙間G2は、隙間G0よりも広くなっている。一例として、第1ミラー131Aの第4辺131dと第2ミラー131Bの第2辺131bとの隙間G0は、2μmである。突起部134は、第2辺131bよりも0.5μmだけ突出し、凹部135a,135bは、第2辺131bよりも2μmだけ凹んでいる。すなわち、突起部134における隙間G1は、1.5μmであり、凹部135a,135bにおける隙間G2は、4μmである。 By providing the protrusion 134, the gap G1 between the first mirror 131A and the second mirror 131B in the protrusion 134 is narrower than the gap G0. On the other hand, by providing the concave portions 135a and 135b, the gap G2 between the first mirror 131A and the second mirror 131B in the concave portions 135a and 135b is wider than the gap G0. As an example, the gap G0 between the fourth side 131d of the first mirror 131A and the second side 131b of the second mirror 131B is 2 μm. The protrusion 134 protrudes by 0.5 μm from the second side 131 b, and the concave portions 135 a and 135 b are recessed by 2 μm from the second side 131 b. That is, the gap G1 in the protrusion 134 is 1.5 μm, and the gap G2 in the concave portions 135a and 135b is 4 μm.
 この突起部134を設けることによって、第1ミラー131Aと第2ミラー131Bとが固着すること(スティッキング)を防止することができる。つまり、第1ミラー131Aと第2ミラー131Bとの間に静電引力が生じると、第1ミラー131Aと第2ミラー131Bとが接触し、固着する虞がある。また、空気中の水蒸気に起因して第1ミラー131Aと第2ミラー131Bとの間に水分が付着すると、表面張力により第1ミラー131Aと第2ミラー131Bとが接触し、固着する虞がある。 By providing the protrusion 134, the first mirror 131A and the second mirror 131B can be prevented from adhering (sticking). That is, when electrostatic attraction is generated between the first mirror 131A and the second mirror 131B, the first mirror 131A and the second mirror 131B may come in contact with each other and be fixed. In addition, when water adheres between the first mirror 131A and the second mirror 131B due to water vapor in the air, there is a risk that the first mirror 131A and the second mirror 131B may be in contact with each other by surface tension and be fixed. .
 それに対し、突起部134を設けることによって、第1ミラー131Aと第2ミラー131Bとの接触面積が小さくなる。静電引力も表面張力も面積に依存する力であるため、第1ミラー131Aと第2ミラー131Bとの接触面積を小さくすることによって、固着の可能性を低減することができる。 On the other hand, by providing the protrusion 134, the contact area between the first mirror 131A and the second mirror 131B is reduced. Since both electrostatic attraction and surface tension depend on the area, the possibility of sticking can be reduced by reducing the contact area between the first mirror 131A and the second mirror 131B.
 以上では、第1ミラー131Aと第2ミラー131Bとの隙間において第2ミラー131Bに設けられた突起部134について説明したが、突起部134が設けられているのは、第2ミラー131Bに限られない。第2ミラー131Bと第3ミラー131Cとの隙間においては第3ミラー131Cに突起部134が設けられており、図示は省略するが、第3ミラー131Cと第4ミラーとの隙間においては第4ミラーに突起部134が設けられている。尚、第2ミラー131Bと第3ミラー131Cとの関係においては、第2ミラー131Bが第1部分を構成し、第3ミラー131Cが第2部分を構成する。すなわち、2つのミラー131,131との関係において、突起部134が設けられている方が第2部分を構成し、他方が第1部分を構成する。このことは、第2部分となる方に必ず突起部134が設けられていることを意味し、第1部分となる方には必ず突起部134が存在しないことを意味するわけではない。つまり、第2部分となる方に突起部134が設けられていれば、第1部分となる方には突起部134が設けられていなくても、設けられていてもよい。 In the above, the protrusion 134 provided on the second mirror 131B in the gap between the first mirror 131A and the second mirror 131B has been described, but the provision of the protrusion 134 is limited to the second mirror 131B. Absent. The protrusion 134 is provided on the third mirror 131C in the gap between the second mirror 131B and the third mirror 131C, and although not shown, the fourth mirror is located on the gap between the third mirror 131C and the fourth mirror. The projection 134 is provided on the In the relationship between the second mirror 131B and the third mirror 131C, the second mirror 131B constitutes a first part, and the third mirror 131C constitutes a second part. That is, in relation to the two mirrors 131 and 131, the one provided with the protrusion 134 constitutes the second part, and the other constitutes the first part. This means that the projection 134 is necessarily provided in the second part, and does not necessarily mean that the projection 134 is not present in the first part. That is, as long as the protrusion 134 is provided in the second portion, the protrusion 134 may not be provided or may be provided in the first portion.
  -製造方法-
 このように構成されたミラーアレイ100は、SOI基板109をエッチングしたり、その表面に成膜することにより製造される。例えば、第1シリコン層191をICP-RIE等の異方性エッチングを行うことによりミラー本体132、アクチュエータ本体141及び梁本体151等を形成する。その後、ミラー本体132の表面にAu/Ti膜を成膜して、鏡面層133を形成する。また、アクチュエータ本体141の表面及び梁本体151の表面に、Pt/Ti膜(下部電極143,153)、チタン酸ジルコン酸鉛(圧電体層144,154)及びAu/Ti膜(上部電極145,155)を順に成膜して、圧電素子142,152を形成する。その後、圧電素子142,152に所定の電圧を印加して分極処理を施す。
-Production method-
The mirror array 100 configured in this manner is manufactured by etching the SOI substrate 109 or forming a film on the surface thereof. For example, the first silicon layer 191 is subjected to anisotropic etching such as ICP-RIE to form the mirror body 132, the actuator body 141, the beam body 151, and the like. Thereafter, an Au / Ti film is formed on the surface of the mirror body 132 to form the mirror layer 133. In addition, on the surface of the actuator main body 141 and the surface of the beam main body 151, Pt / Ti films (lower electrodes 143 and 153), lead zirconate titanate (piezoelectric layers 144 and 154) and Au / Ti films (upper electrodes 145, By sequentially forming films 155), the piezoelectric elements 142 and 152 are formed. Thereafter, a predetermined voltage is applied to the piezoelectric elements 142 and 152 to perform polarization processing.
 ここで、突起部134においては、隣り合うミラー131,131の隙間G1が小さいため、アスペクト比(深さ/幅)が高くエッチング種が入り込み難い。ところが、突起部134の周辺、詳しくは、突起部134の隣りに凹部135a,135bを設けることによって、エッチング種が深く入り込み易くすることができ、突起部134周辺の加工を容易にすることができる。 Here, since the gap G1 between the mirrors 131 and 131 adjacent to each other in the projection 134 is small, the aspect ratio (depth / width) is high, and it is difficult for etching species to enter. However, by providing the concave portions 135a and 135b around the protrusion 134, specifically, adjacent to the protrusion 134, etching species can be easily made deep and it is possible to facilitate processing around the protrusion 134. .
  -まとめ-
 したがって、本実施形態によれば、ミラーアレイ100は、隙間G0を空けて配置されたミラー131,131を備え、少なくとも一方のミラー131は、移動可能に構成されており、一方のミラー131には、隙間G0において、他方のミラー131の方へ突出する突起部134が設けられており、一方のミラー131のうち突起部134に隣接する部分には、凹部135a,135bが設けられている。
-Summary-
Therefore, according to the present embodiment, the mirror array 100 includes the mirrors 131 and 131 disposed with the gap G0 therebetween, and at least one of the mirrors 131 is configured to be movable. In the gap G0, a protrusion 134 protruding toward the other mirror 131 is provided, and in the portion of the one mirror 131 adjacent to the protrusion 134, concave portions 135a and 135b are provided.
 この構成によれば、突起部134を設けることによって、2つのミラー131,131が接触することがあっても、両者は突起部134を介して接触するので、両者の固着の可能性を低減することができる。それに加えて、突起部134に隣接する部分に凹部135a,135bを設けることによって、エッチング種を深くまで入り込み易くし、突起部134を容易に形成することができる。 According to this configuration, by providing the projection 134, even if the two mirrors 131 and 131 may come in contact with each other, both are in contact via the projection 134, thereby reducing the possibility of fixing the two. be able to. In addition, by providing the concave portions 135a and 135b in the portion adjacent to the protrusion 134, the etching species can be easily penetrated deep and the protrusion 134 can be easily formed.
 また、凹部135a,135bは、ミラー131のうち突起部134に隣接する両側の部分に設けられている。こうすることによって、突起部134の両側においてエッチング種が入り込み易くなるので、突起部134をさらに容易に形成することができる。 The concave portions 135 a and 135 b are provided on both sides of the mirror 131 adjacent to the protrusion 134. By so doing, the etching species can easily enter on both sides of the protrusion 134, so the protrusion 134 can be formed more easily.
 さらに、突起部134の先端は、凸状に湾曲している。こうすることによって、ミラー131,131が突起部134を介して接触する場合であっても、突起部134の破損を防止しつつ、接触面積を小さくすることができる。つまり、突起部134が尖鋭な形状をしていると、突起部134がミラー131に接触する際に突起部134が破損する虞がある。それに対して、突起部134の先端を湾曲させることによって、突起部134の破損を防止することができる。それに加えて、突起部134の先端を平面ではなく湾曲させることによって、突起部134とミラー131の接触面積を可及的に小さくすることができる。特に、突起部134と対向する部分が平面又は凸状に湾曲している場合には、突起部134と該対向する部分との接触を略線接触とすることができ、接触面積を非常に小さくすることができる。 Furthermore, the tip of the protrusion 134 is convexly curved. By so doing, even when the mirrors 131, 131 are in contact via the projections 134, the contact area can be reduced while preventing damage to the projections 134. That is, when the protrusion 134 has a sharp shape, the protrusion 134 may be broken when the protrusion 134 contacts the mirror 131. On the other hand, it is possible to prevent breakage of the protrusion 134 by curving the tip of the protrusion 134. In addition, the contact area of the protrusion 134 and the mirror 131 can be made as small as possible by curving the tip of the protrusion 134 not flat but curved. In particular, when the portion facing the protrusion 134 is curved flat or convex, the contact between the protrusion 134 and the opposite portion can be substantially linear contact, and the contact area is extremely small. can do.
  -突起部及び凹部の変形例-
 突起部134及び凹部135a,135bの配置は、前記実施形態に限られるものではない。以下に、その変形例を示す。
-Modification of projection and recess-
The arrangement of the protrusions 134 and the recesses 135a and 135b is not limited to the above embodiment. Below, the modification is shown.
  〈変形例1〉
 図5は、変形例1に係る第1ミラー131A及び第2ミラー131Bの部分拡大図である。変形例1においては、一方のミラー131に突起部134が設けられ、他方のミラー131に凹部135a,135bが設けられている。
Modified Example 1
FIG. 5 is a partially enlarged view of the first mirror 131A and the second mirror 131B according to the first modification. In the first modification, the protrusion 134 is provided on one of the mirrors 131 and the recesses 135 a and 135 b are provided on the other of the mirrors 131.
 詳しくは、突起部134は、第2ミラー131Bの第2辺131bに設けられている。一方、凹部135a,135bは、第1ミラー131Aの第4辺131dに設けられている。詳しくは、該第4辺131dのうち、突起部134と対向する部分(以下、「対向部分」という)136の両隣に凹部135a,135bが設けられている。該対向部分136は、平面状に形成されている。 Specifically, the projection 134 is provided on the second side 131 b of the second mirror 131 B. On the other hand, the concave portions 135a and 135b are provided on the fourth side 131d of the first mirror 131A. More specifically, concave portions 135a and 135b are provided on both sides of a portion (hereinafter referred to as "opposite portion") 136 facing the protrusion 134 in the fourth side 131d. The facing portion 136 is formed in a planar shape.
 このような構成であっても、2つのミラー131,131の固着の可能性を低減することができ且つ、突起部134を容易に形成することができる。つまり、第2ミラー131Bに突起部134が形成される一方、第1ミラー131Aのうち対向部分136には凹部が形成されていないので、第1ミラー131Aと第2ミラー131Bとが接触する場合には、突起部134と対向部分136とが接触する。これにより、両者の接触面積を小さくすることができ、固着の可能性を低減することができる。さらには、対向部分136を平面状に形成することによって、突起部134と対向部分136との接触を略線接触とすることができ、接触面積を非常に小さくすることができる。それに加えて、突起部134が設けられた第2ミラー131Bとは反対側の第1ミラー131Aに凹部135a,135bを設ける構成であっても、突起部134の両隣には比較的大きな隙間G2,G2を形成することができる。そのため、突起部134の両隣においてエッチング種を深くまで入り込み易くし、突起部134を容易に形成することができる。 Even with such a configuration, the possibility of fixing the two mirrors 131, 131 can be reduced, and the protrusion 134 can be easily formed. That is, since the protrusion 134 is formed on the second mirror 131B, and the recess is not formed on the facing portion 136 of the first mirror 131A, the case where the first mirror 131A and the second mirror 131B are in contact with each other. The protrusion 134 and the facing portion 136 are in contact with each other. As a result, the contact area between the two can be reduced, and the possibility of sticking can be reduced. Furthermore, by forming the facing portion 136 in a planar shape, the contact between the projection 134 and the facing portion 136 can be made substantially linear contact, and the contact area can be made extremely small. In addition to that, even if the first mirror 131A opposite to the second mirror 131B provided with the protrusion 134 is provided with the recesses 135a and 135b, a relatively large gap G2, G2, G2 can be formed. Therefore, the etching species can be easily penetrated deeply on both sides of the protrusion 134, and the protrusion 134 can be easily formed.
  〈変形例2〉
 図6は、変形例2に係る第1ミラー131A及び第2ミラー131Bの部分拡大図である。変形例2においては、一方のミラー131に突起部134及び凹部135aが設けられ、他方のミラー131に凹部135bが設けられている。
<Modification 2>
FIG. 6 is a partially enlarged view of the first mirror 131A and the second mirror 131B according to the second modification. In the second modification, the protrusion 134 and the recess 135 a are provided on one mirror 131, and the recess 135 b is provided on the other mirror 131.
 詳しくは、突起部134は、第2ミラー131Bの第2辺131bに設けられている。また、第2辺131bのうち突起部134に隣接する部分の片側には、凹部135aが設けられている。一方、第1ミラー131Aの第4辺131dに、凹部135bが設けられている。詳しくは、該第4辺131dのうち対向部分136に隣接する部分の片側であって、第2ミラー131Bの凹部135aとは反対側に凹部135bが設けられている。該対向部分136は、平面状に形成されている。 Specifically, the projection 134 is provided on the second side 131 b of the second mirror 131 B. Moreover, the recessed part 135a is provided in the one side of the part which adjoins the projection part 134 among the 2nd sides 131b. On the other hand, the concave portion 135b is provided on the fourth side 131d of the first mirror 131A. Specifically, a recess 135b is provided on one side of a portion of the fourth side 131d adjacent to the facing portion 136 and on the opposite side of the recess 135a of the second mirror 131B. The facing portion 136 is formed in a planar shape.
 このような構成であっても、2つのミラー131,131の固着の可能性を低減することができ且つ、突起部134を容易に形成することができる。つまり、第2ミラー131Bに突起部134が形成される一方、第1ミラー131Aのうち対向部分136には凹部が形成されていないので、第1ミラー131Aと第2ミラー131Bとが接触する場合には、突起部134と対向部分136とが接触する。これにより、両者の接触面積を小さくすることができ、固着の可能性を低減することができる。さらには、対向部分136を平面状に形成することによって、突起部134と対向部分136との接触を略線接触とすることができ、接触面積を非常に小さくすることができる。それに加えて、2つの凹部135a,135bのうち一方を、突起部134が設けられた第2ミラー131Bとは反対側の第1ミラー131Aに設ける構成であっても、突起部134の両隣には比較的大きな隙間G2,G2を形成することができる。そのため、突起部134の両隣においてエッチング種を深くまで入り込み易くし、突起部134を容易に形成することができる。 Even with such a configuration, the possibility of fixing the two mirrors 131, 131 can be reduced, and the protrusion 134 can be easily formed. That is, since the protrusion 134 is formed on the second mirror 131B, and the recess is not formed on the facing portion 136 of the first mirror 131A, the case where the first mirror 131A and the second mirror 131B are in contact with each other. The protrusion 134 and the facing portion 136 are in contact with each other. As a result, the contact area between the two can be reduced, and the possibility of sticking can be reduced. Furthermore, by forming the facing portion 136 in a planar shape, the contact between the projection 134 and the facing portion 136 can be made substantially linear contact, and the contact area can be made extremely small. In addition to that, even if one of the two concave portions 135a and 135b is provided on the first mirror 131A opposite to the second mirror 131B provided with the protruding portion 134, both sides of the protruding portion 134 are provided. Relatively large gaps G2, G2 can be formed. Therefore, the etching species can be easily penetrated deeply on both sides of the protrusion 134, and the protrusion 134 can be easily formed.
  〈変形例3〉
 図7は、変形例3に係る第1ミラー131A及び第2ミラー131Bの部分拡大図である。変形例3においては、一方のミラー131に突起部134a及び凹部135a,135bが設けられ、他方のミラー131にも同様の突起部134b及び凹部135c,135dが設けられている。
<Modification 3>
FIG. 7 is a partially enlarged view of the first mirror 131A and the second mirror 131B according to the third modification. In the third modification, the protrusion 134a and the recesses 135a and 135b are provided on one mirror 131, and the same protrusion 134b and the recesses 135c and 135d are provided on the other mirror 131.
 詳しくは、第2ミラー131Bの第2辺131bには、突起部134aが設けられ、突起部134aに隣接する両側の部分には、凹部135a,135bが設けられている。一方、第1ミラー131Aの第4辺131dには、突起部134bが設けられ、突起部134bに隣接する両側の部分には、凹部135c,135dが設けられている。突起部134aと突起部134bとは相対向し、凹部135aと凹部135cとは相対向し、凹部135bと凹部135dとは相対向している。 In more detail, a protrusion 134a is provided on the second side 131b of the second mirror 131B, and recesses 135a and 135b are provided on both sides adjacent to the protrusion 134a. On the other hand, the protrusion 134b is provided on the fourth side 131d of the first mirror 131A, and the recesses 135c and 135d are provided on both sides adjacent to the protrusion 134b. The protrusion 134a and the protrusion 134b face each other, the recess 135a and the recess 135c face each other, and the recess 135b and the recess 135d face each other.
 このような構成であっても、2つのミラー131,131の固着の可能性を低減することができ且つ、突起部134を容易に形成することができる。つまり、第2ミラー131Bに突起部134aが形成される一方、第1ミラー131Aのうち突起部134aと対向する部分に突起部134bが形成されているので、第1ミラー131Aと第2ミラー131Bとが接触する場合には、突起部134aと突起部134bとが接触する。これにより、両者の接触を略線接触とすることができ、接触面積を非常に小さくすることができる。その結果、固着の可能性を低減することができる。それに加えて、突起部134aの両隣及び突起部134bの両隣には比較的大きな隙間G2,G2を形成することができる。そのため、突起部134a,134bの両隣においてエッチング種を深くまで入り込み易くし、突起部134a,134bを容易に形成することができる。 Even with such a configuration, the possibility of fixing the two mirrors 131, 131 can be reduced, and the protrusion 134 can be easily formed. That is, since the projection 134a is formed on the second mirror 131B, and the projection 134b is formed on the portion of the first mirror 131A facing the projection 134a, the first mirror 131A and the second mirror 131B In the case of contact, the protrusion 134a and the protrusion 134b come in contact with each other. Thereby, both contact can be made into a substantially linear contact, and a contact area can be made very small. As a result, the possibility of sticking can be reduced. In addition, relatively large gaps G2, G2 can be formed on both sides of the protrusion 134a and on both sides of the protrusion 134b. Therefore, the etching species can be easily penetrated deep on both sides of the protrusions 134a and 134b, and the protrusions 134a and 134b can be easily formed.
  〈変形例4〉
 図8は、変形例4に係る第1ミラー131A及び第2ミラー131Bの部分拡大図である。変形例4においては、一方のミラー131に突起部134a及び凹部135a,135bが設けられ、他方のミラー131にも同様の突起部134bが設けられている。つまり、変形例1における第1ミラー131Aのうち、第2ミラー131Bの突起部134と対向する部分にも突起部が設けられている。
<Modification 4>
FIG. 8 is a partially enlarged view of the first mirror 131A and the second mirror 131B according to the fourth modification. In the fourth modification, the protrusion 134 a and the recesses 135 a and 135 b are provided on one mirror 131, and the same protrusion 134 b is provided on the other mirror 131. That is, in the first mirror 131A in the first modification, the protrusion is also provided in the portion facing the protrusion 134 of the second mirror 131B.
 詳しくは、第2ミラー131Bの第2辺131bには、突起部134aが設けられ、突起部134aに隣接する両側の部分には、凹部135a,135bが設けられている。一方、第1ミラー131Aの第4辺131dには、前記突起部134aと対向する位置に突起部134bが設けられている。尚、第1ミラー131Aのうち突起部134bと隣接する部分には、凹部が設けられていない。 In more detail, a protrusion 134a is provided on the second side 131b of the second mirror 131B, and recesses 135a and 135b are provided on both sides adjacent to the protrusion 134a. On the other hand, on the fourth side 131d of the first mirror 131A, a protrusion 134b is provided at a position facing the protrusion 134a. In addition, the recessed part is not provided in the part which adjoins the projection part 134b among the 1st mirrors 131A.
 このような構成であっても、2つのミラー131,131の固着の可能性を低減することができ且つ、突起部134a,134bを容易に形成することができる。つまり、第2ミラー131Bに突起部134aが形成される一方、第1ミラー131Aのうち突起部134aと対向する部分に突起部134bが形成されているので、第1ミラー131Aと第2ミラー131Bとが接触する場合には、突起部134aと突起部134bとが接触する。これにより、両者の接触を略線接触とすることができ、接触面積を非常に小さくすることができる。その結果、固着の可能性を低減することができる。それに加えて、突起部134aの両隣及び突起部134bの両隣には比較的大きな隙間G2,G2を形成することができる。そのため、突起部134a,134bの両隣においてエッチング種を深くまで入り込み易くし、突起部134a,134bを容易に形成することができる。 Even with such a configuration, the possibility of fixing the two mirrors 131, 131 can be reduced, and the protrusions 134a, 134b can be easily formed. That is, since the projection 134a is formed on the second mirror 131B, and the projection 134b is formed on the portion of the first mirror 131A facing the projection 134a, the first mirror 131A and the second mirror 131B In the case of contact, the protrusion 134a and the protrusion 134b come in contact with each other. Thereby, both contact can be made into a substantially linear contact, and a contact area can be made very small. As a result, the possibility of sticking can be reduced. In addition, relatively large gaps G2, G2 can be formed on both sides of the protrusion 134a and on both sides of the protrusion 134b. Therefore, the etching species can be easily penetrated deep on both sides of the protrusions 134a and 134b, and the protrusions 134a and 134b can be easily formed.
  〈変形例5〉
 図9は、変形例5に係る第1ミラー131A及び第2ミラー131Bの部分拡大図である。変形例5においては、一方のミラー131に突起部134a及び凹部135aが設けられ、他方のミラー131にも同様の突起部134b及び凹部135bが設けられている。つまり、変形例2における第1ミラー131Aの対向部分136にも突起部が設けられている。
<Modification 5>
FIG. 9 is a partially enlarged view of the first mirror 131A and the second mirror 131B according to the fifth modification. In the fifth modification, a protrusion 134 a and a recess 135 a are provided on one mirror 131, and a similar protrusion 134 b and a recess 135 b are provided on the other mirror 131. That is, the projection is also provided on the facing portion 136 of the first mirror 131A in the second modification.
 詳しくは、第2ミラー131Bの第2辺131bには、突起部134aが設けられ、突起部134aに隣接する部分の片側には、凹部135aが設けられている。一方、第1ミラー131Aの第4辺131dには、前記突起部134aと対向する位置に突起部134bが設けられ、突起部134bに隣接する部分の片側であって、第2ミラー131Bの凹部135aとは反対側に凹部135bが設けられている。 Specifically, a protrusion 134a is provided on the second side 131b of the second mirror 131B, and a recess 135a is provided on one side of the portion adjacent to the protrusion 134a. On the other hand, on the fourth side 131d of the first mirror 131A, a protrusion 134b is provided at a position facing the protrusion 134a, which is one side of the portion adjacent to the protrusion 134b, and the recess 135a of the second mirror 131B. A recess 135 b is provided on the opposite side of
 このような構成であっても、2つのミラー131,131の固着の可能性を低減することができ且つ、突起部134a,134bを容易に形成することができる。つまり、第2ミラー131Bに突起部134aが形成される一方、第1ミラー131Aのうち突起部134aと対向する部分に突起部134bが形成されているので、第1ミラー131Aと第2ミラー131Bとが接触する場合には、突起部134aと突起部134bとが接触する。これにより、両者の接触を略線接触とすることができ、接触面積を非常に小さくすることができる。その結果、固着の可能性を低減することができる。それに加えて、突起部134aの両隣及び突起部134bの両隣には比較的大きな隙間G2,G2を形成することができる。そのため、突起部134a,134bの両隣においてエッチング種を深くまで入り込み易くし、突起部134a,134bを容易に形成することができる。 Even with such a configuration, the possibility of fixing the two mirrors 131, 131 can be reduced, and the protrusions 134a, 134b can be easily formed. That is, since the projection 134a is formed on the second mirror 131B, and the projection 134b is formed on the portion of the first mirror 131A facing the projection 134a, the first mirror 131A and the second mirror 131B In the case of contact, the protrusion 134a and the protrusion 134b come in contact with each other. Thereby, both contact can be made into a substantially linear contact, and a contact area can be made very small. As a result, the possibility of sticking can be reduced. In addition, relatively large gaps G2, G2 can be formed on both sides of the protrusion 134a and on both sides of the protrusion 134b. Therefore, the etching species can be easily penetrated deep on both sides of the protrusions 134a and 134b, and the protrusions 134a and 134b can be easily formed.
  -ミラーデバイスの変形例-
 ミラーデバイス103の構成は、前記実施形態に限られるものではない。以下に、その変形例を示す。
-Modification of mirror device-
The configuration of the mirror device 103 is not limited to the above embodiment. Below, the modification is shown.
  〈変形例6〉
 図10は、変形例6に係るミラーアレイ200の平面図である。変形例6に係るミラーアレイ200は、各ミラーデバイス203の構成が前記ミラーデバイス103の構成と異なる。以下、ミラーアレイ200の構成のうち、ミラーデバイス103と異なる部分を中心に説明する。変形例6に特有の構成については、200番台の符号を付して説明する場合がある。その場合、十の位以下の数字及び記号については、ミラーデバイス103と同様の機能を有する構成には同じ数字及び記号を用いる。
<Modification 6>
FIG. 10 is a plan view of a mirror array 200 according to the sixth modification. In the mirror array 200 according to the sixth modification, the configuration of each mirror device 203 is different from the configuration of the mirror device 103. Hereinafter, in the configuration of the mirror array 200, parts different from the mirror device 103 will be mainly described. The configuration unique to the sixth modification may be described by attaching a code in the 200s. In that case, the same numerals and symbols are used for the configuration having the same function as that of the mirror device 103 for the numerals and symbols of tens of digits or less.
 ミラーアレイ200は、複数のミラーデバイス203,203,…を備えている。各ミラーデバイス203は、ベース部102と、ミラー131と、ミラー131を駆動する1つのアクチュエータ204と、ミラー131を支持する1つの梁部材105と、ミラー131をアクチュエータ204又は梁部材105と連結するヒンジ106,106,…とを有している。つまり、ミラーデバイス203は、1つのアクチュエータ204によりミラー131を駆動する。 The mirror array 200 includes a plurality of mirror devices 203, 203,. Each mirror device 203 couples the base portion 102, the mirror 131, one actuator 204 for driving the mirror 131, one beam member 105 for supporting the mirror 131, and the mirror 131 with the actuator 204 or the beam member 105. And hinges 106, 106,. That is, the mirror device 203 drives the mirror 131 by one actuator 204.
 アクチュエータ204の基本的な構成は、ミラーデバイス103のアクチュエータ104と同じである。ただし、アクチュエータ本体241及び圧電素子242の幅はそれぞれ、梁本体151及び圧電素子152の幅と略同じである。つまり、アクチュエータ204と梁部材105とは、構成及び材料が同じであり且つ、主軸Xを挟んで対称な形状をしている。 The basic configuration of the actuator 204 is the same as the actuator 104 of the mirror device 103. However, the widths of the actuator body 241 and the piezoelectric element 242 are substantially the same as the widths of the beam body 151 and the piezoelectric element 152, respectively. That is, the actuator 204 and the beam member 105 have the same configuration and materials, and have symmetrical shapes with respect to the main axis X.
 アクチュエータ本体241の先端部は、2つのヒンジ106,106を介して、ミラー131のうち第3辺131dに連結されている。ヒンジ106,106はそれぞれ、一端がアクチュエータ本体241の先端部における主軸X方向の各端部(即ち、角部)に連結される一方、他端が第3辺131dの各端部(即ち、角部)に連結されている。 The tip of the actuator body 241 is connected to the third side 131 d of the mirror 131 via the two hinges 106 and 106. The hinges 106 and 106 each have one end connected to each end (i.e., a corner) in the main axis X direction at the tip of the actuator main body 241, while the other end is each end (i.e., the corner) of the third side 131 d Are linked to the
 また、梁本体151の先端部は、2つのヒンジ106,106を介して、ミラー131のうち第1辺131aに連結されている。ヒンジ106,106はそれぞれ、一端が梁本体151の先端部における主軸X方向の各端部(即ち、角部)に連結される一方、他端が第1辺131aの各端部(即ち、角部)に連結されている。 Further, the tip end portion of the beam main body 151 is connected to the first side 131 a of the mirror 131 via the two hinges 106 and 106. The hinges 106 and 106 each have one end connected to each end (i.e., a corner) in the main axis X direction at the tip of the beam main body 151, while the other end is each end (i.e., a corner) of the first side 131a. Are linked to the
 ミラーデバイス203は、ミラーデバイス103と同様に、アクチュエータ204の圧電素子242と梁部材105の圧電素子152にオフセット電圧を印加する。そして、この基準状態から、圧電素子242への印加電圧を増減することによって、アクチュエータ204を上方又は下方に湾曲させる。これにより、ミラー131を主軸X周りに回動させることができる。このとき、アクチュエータ204を上方に湾曲させるか、下方に湾曲させるかによって、ミラー131の主軸X周りの回動方向を切り替えることができる。ただし、ミラーデバイス203は、1つのアクチュエータ204だけでミラー131を駆動するため、ミラー131を傾動させることができるのは主軸X周りだけであり、副軸X周りにはミラー131を傾動させることができない。 Similar to the mirror device 103, the mirror device 203 applies an offset voltage to the piezoelectric element 242 of the actuator 204 and the piezoelectric element 152 of the beam member 105. Then, by increasing or decreasing the voltage applied to the piezoelectric element 242 from this reference state, the actuator 204 is curved upward or downward. Thereby, the mirror 131 can be rotated around the main axis X. At this time, the turning direction of the mirror 131 about the main axis X can be switched depending on whether the actuator 204 is bent upward or downward. However, since the mirror device 203 drives the mirror 131 with only one actuator 204, the mirror 131 can be tilted only about the main axis X, and the mirror 131 can be tilted about the minor axis X. Can not.
 このように構成されたミラーアレイ200においても、図4に示すように、隣り合うミラー131,131の一方には、突起部134及び凹部135a,135bが設けられている。これにより、2つのミラー131,131が接触することがあっても、両者は突起部134を介して接触するので、両者の固着の可能性を低減することができる。それに加えて、突起部134に隣接する部分に凹部135a,135bを設けることによって、エッチング種を深くまで入り込み易くし、突起部134を容易に形成することができる。 Also in the mirror array 200 configured in this way, as shown in FIG. 4, the protrusion 134 and the concave portions 135 a and 135 b are provided on one of the adjacent mirrors 131 and 131. As a result, even if the two mirrors 131 and 131 may come into contact with each other, the two come into contact via the projection 134, so that the possibility of fixing them can be reduced. In addition, by providing the concave portions 135a and 135b in the portion adjacent to the protrusion 134, the etching species can be easily penetrated deep and the protrusion 134 can be easily formed.
  〈変形例7〉
 図11は、ミラーアレイ300の平面図である。変形例7に係るミラーアレイ300は、各ミラーデバイス303の構成がミラーデバイス103の構成と異なる。以下、ミラーアレイ300の構成のうち、ミラーデバイス103と異なる部分を中心に説明する。変形例7に特有の構成については、300番台の符号を付して説明する場合がある。その場合、十の位以下の数字及び記号については、ミラーデバイス103と同様の機能を有する構成には同じ数字及び記号を用いる。
<Modification 7>
FIG. 11 is a plan view of the mirror array 300. FIG. The mirror array 300 according to the seventh modification differs from the configuration of the mirror device 103 in the configuration of each mirror device 303. Hereinafter, in the configuration of the mirror array 300, parts different from the mirror device 103 will be mainly described. The configuration specific to the seventh modification may be described by attaching a reference numeral in the 300s. In that case, the same numerals and symbols are used for the configuration having the same function as that of the mirror device 103 for the numerals and symbols of tens of digits or less.
 ミラーアレイ300は、複数のミラーデバイス303,303,…を備えている。各ミラーデバイス303は、ベース部102と、ミラー131と、ミラー131を駆動する4つのアクチュエータ304,304,…と、ミラー131をアクチュエータ304と連結するヒンジ106,106,…とを有している。つまり、ミラーデバイス303は、4つのアクチュエータ304によりミラー131を駆動する。 The mirror array 300 includes a plurality of mirror devices 303, 303,. Each mirror device 303 has a base portion 102, a mirror 131, four actuators 304, 304, ... for driving the mirror 131, and hinges 106, 106, ... for connecting the mirror 131 with the actuator 304. . That is, the mirror device 303 drives the mirror 131 by the four actuators 304.
 4つのアクチュエータ304,304,…は、主軸Xを挟んで一方側に設けられた2つの第1アクチュエータ304A,304Aと、主軸Xを挟んで他方側に設けられた2つの第2アクチュエータ304B,304Bとで構成されている。第1アクチュエータ304A及び第2アクチュエータ304Bのそれぞれの基本的な構成は、ミラーデバイス103のアクチュエータ104と同じである。 The four actuators 304, 304,... Are two first actuators 304A, 304A provided on one side across the main axis X and two second actuators 304B, 304B provided on the other side across the main axis X. And consists of. The basic configuration of each of the first actuator 304A and the second actuator 304B is the same as the actuator 104 of the mirror device 103.
 つまり、第1アクチュエータ304Aは、基端部がベース部102に連結され、ベース部102から片持ち状に張り出しているアクチュエータ本体341aと、アクチュエータ本体341aの表面に設けられた圧電素子342aとを有している。2つのアクチュエータ本体341a,341aは、互いに平行に副軸Y方向に延びている。 In other words, the first actuator 304A has an actuator body 341a having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 342a provided on the surface of the actuator body 341a. doing. The two actuator bodies 341a, 341a extend parallel to each other in the sub-axis Y direction.
 第2アクチュエータ304Bも同様に、基端部がベース部102に連結され、ベース部102から片持ち状に張り出しているアクチュエータ本体341bと、アクチュエータ本体341bの表面に設けられた圧電素子342bとを有している。2つのアクチュエータ本体341b,341bは、互いに平行に副軸Y方向に延びている。アクチュエータ本体341bの長さ、幅及び厚さは、アクチュエータ本体341aの長さ、幅及び厚さと略同じである。また、圧電素子342bの長さ、幅及び厚さは、圧電素子342aの長さ、幅及び厚さと略同じである。 Similarly, the second actuator 304B has an actuator body 341b having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 342b provided on the surface of the actuator body 341b. doing. The two actuator bodies 341b, 341b extend parallel to each other in the sub-axis Y direction. The length, width and thickness of the actuator body 341b are substantially the same as the length, width and thickness of the actuator body 341a. Further, the length, width and thickness of the piezoelectric element 342b are substantially the same as the length, width and thickness of the piezoelectric element 342a.
 ただし、第1アクチュエータ304Aのアクチュエータ本体341aが、ヒンジ106を介してミラー131の第3辺131cに連結されているのに対し、第2アクチュエータ304Bのアクチュエータ本体341bは、ヒンジ106を介してミラー131の第1辺131aに連結されている。 However, while the actuator body 341 a of the first actuator 304 A is connected to the third side 131 c of the mirror 131 via the hinge 106, the actuator body 341 b of the second actuator 304 B is the mirror 131 via the hinge 106. Is connected to the first side 131a of the
 このように、第1アクチュエータ304A,304Aと第2アクチュエータ304B,304Bとは、構成及び材料が同じであり且つ、主軸Xを挟んで対称な形状をしている。 Thus, the first actuators 304A and 304A and the second actuators 304B and 304B have the same configuration and materials, and have symmetrical shapes with the main axis X interposed therebetween.
 ミラーデバイス303は、ミラーデバイス103と同様に、各第1アクチュエータ304Aの圧電素子342aと各第2アクチュエータ304Bの圧電素子342bにオフセット電圧を印加する。そして、この基準状態から、圧電素子342a,342bへの印加電圧を増減することによって、第1及び第2アクチュエータ304A,304Bを上方又は下方に湾曲させて、ミラー131を回動させる。これにより、ミラー131を主軸X周りに回動させることができる。例えば、2つの第1アクチュエータ304A,304Aを両方とも同じ方向に湾曲させると共に、2つの第2アクチュエータ304B,304Bを両方とも同じ方向であって第1アクチュエータ304A,304Aとは逆向きに湾曲させることによって、ミラー131を主軸X周りに回動させることができる。このとき、2つの第1アクチュエータ304A,304Aを湾曲させる向きと2つの第2アクチュエータ304B,304Bを湾曲させる向きを入れ替えることによって、ミラー131の主軸X周りの回動方向を切り替えることができる。また、2つの第1アクチュエータ304A,304Aを互いに逆向きに湾曲させると共に、2つの第2アクチュエータ304B,304Bを互いに逆向きであって、各第2アクチュエータ304Bが副軸Y方向に並ぶ第1アクチュエータ304Aと同じ向きとなるように湾曲させることによって、ミラー131を副軸Y周りに回動させることができる。このとき、2つの第1アクチュエータ304A,304Aの間で湾曲させる向きを入れ替えると共に、2つの第2アクチュエータ304B,304Bの間で湾曲させる向きを入れ替えることによって、ミラー131の副軸Y周りの回動方向を切り替えることができる。 Similar to the mirror device 103, the mirror device 303 applies an offset voltage to the piezoelectric element 342a of each first actuator 304A and the piezoelectric element 342b of each second actuator 304B. Then, from the reference state, the voltage applied to the piezoelectric elements 342a and 342b is increased or decreased to bend the first and second actuators 304A and 304B upward or downward, thereby rotating the mirror 131. Thereby, the mirror 131 can be rotated around the main axis X. For example, curving the two first actuators 304A and 304A both in the same direction, and curving the two second actuators 304B and 304B both in the same direction and in the opposite direction to the first actuators 304A and 304A. Thus, the mirror 131 can be rotated about the main axis X. At this time, the turning direction of the mirror 131 about the main axis X can be switched by switching the direction in which the two first actuators 304A and 304A are curved and the direction in which the two second actuators 304B and 304B are bent. In addition, the first actuators 304A and 304A are curved in opposite directions, and the second actuators 304B and 304B are opposite to each other, and the second actuators 304B are aligned in the minor axis Y direction. The mirror 131 can be rotated about the minor axis Y by curving so as to be in the same direction as 304A. At this time, the direction of bending between the two first actuators 304A and 304A is switched, and the direction of bending between the two second actuators 304B and 304B is switched, whereby the rotation of the mirror 131 about the minor axis Y You can switch the direction.
 このように構成されたミラーアレイ300においても、図4に示すように、隣り合うミラー131,131の一方には、突起部134及び凹部135a,135bが設けられている。これにより、2つのミラー131,131が接触することがあっても、両者は突起部134を介して接触するので、両者の固着の可能性を低減することができる。それに加えて、突起部134に隣接する部分に凹部135a,135bを設けることによって、エッチング種を深くまで入り込み易くし、突起部134を容易に形成することができる。 Also in the mirror array 300 configured in this manner, as shown in FIG. 4, the protrusion 134 and the concave portions 135 a and 135 b are provided on one of the adjacent mirrors 131 and 131. As a result, even if the two mirrors 131 and 131 may come into contact with each other, the two come into contact via the projection 134, so that the possibility of fixing them can be reduced. In addition, by providing the concave portions 135a and 135b in the portion adjacent to the protrusion 134, the etching species can be easily penetrated deep and the protrusion 134 can be easily formed.
  〈変形例8〉
 図12は、ミラーアレイ400の平面図である。変形例8に係るミラーアレイ400は、各ミラーデバイス403の構成がミラーデバイス103の構成と異なる。以下、ミラーアレイ400の構成のうち、ミラーデバイス103と異なる部分を中心に説明する。変形例8に特有の構成については、400番台の符号を付して説明する場合がある。その場合、十の位以下の数字及び記号については、ミラーデバイス103と同様の機能を有する構成には同じ数字及び記号を用いる。
<Modification 8>
FIG. 12 is a plan view of the mirror array 400. FIG. The mirror array 400 according to the eighth modification differs from the mirror device 103 in the configuration of each mirror device 403. Hereinafter, in the configuration of the mirror array 400, parts different from the mirror device 103 will be mainly described. The configuration unique to the modification 8 may be described by attaching a 400-series code. In that case, the same numerals and symbols are used for the configuration having the same function as that of the mirror device 103 for the numerals and symbols of tens of digits or less.
 ミラーアレイ400は、複数のミラーデバイス403,403,…を備えている。各ミラーデバイス403は、ベース部102と、ミラー131と、ミラー131を駆動する2つのアクチュエータ404,404と、ミラー131をアクチュエータ404と連結するヒンジ106,106,…とを有している。つまり、ミラーデバイス403は、2つのアクチュエータ404によりミラー131を駆動する。 The mirror array 400 includes a plurality of mirror devices 403, 403,. Each mirror device 403 has a base portion 102, a mirror 131, two actuators 404, 404 for driving the mirror 131, and hinges 106, 106,... For connecting the mirror 131 with the actuator 404. That is, the mirror device 403 drives the mirror 131 by the two actuators 404.
 2つのアクチュエータ404,404は、主軸Xを挟んで一方側に設けられた第1アクチュエータ404Aと、主軸Xを挟んで他方側に設けられた第2アクチュエータ404Bとで構成されている。第1アクチュエータ404A及び第2アクチュエータ404Bのそれぞれの基本的な構成は、変形例6のアクチュエータ204と同じである。 The two actuators 404, 404 are configured by a first actuator 404A provided on one side across the main axis X and a second actuator 404B provided on the other side across the main axis X. The basic configuration of each of the first actuator 404A and the second actuator 404B is the same as the actuator 204 of the sixth modification.
 つまり、第1アクチュエータ404Aは、基端部がベース部102に連結され、ベース部102から片持ち状に張り出しているアクチュエータ本体441aと、アクチュエータ本体441aの表面に設けられた圧電素子442aとを有している。 In other words, the first actuator 404A has an actuator body 441a having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 442a provided on the surface of the actuator body 441a. doing.
 第2アクチュエータ404bも同様に、基端部がベース部102に連結され、ベース部102から片持ち状に張り出しているアクチュエータ本体441bと、アクチュエータ本体441bの表面に設けられた圧電素子442bとを有している。アクチュエータ本体441bの長さ、幅及び厚さは、アクチュエータ本体441aの長さ、幅及び厚さと略同じである。また、圧電素子442bの長さ、幅及び厚さは、圧電素子442aの長さ、幅及び厚さと略同じである。 Similarly, the second actuator 404b has an actuator body 441b having a base end connected to the base portion 102 and cantilevered from the base portion 102, and a piezoelectric element 442b provided on the surface of the actuator body 441b. doing. The length, width and thickness of the actuator body 441b are substantially the same as the length, width and thickness of the actuator body 441a. Further, the length, width and thickness of the piezoelectric element 442b are substantially the same as the length, width and thickness of the piezoelectric element 442a.
 ただし、第1アクチュエータ404Aのアクチュエータ本体441aが、ヒンジ106,106を介してミラー131の第3辺131cに連結されているのに対し、第2アクチュエータ404Bのアクチュエータ本体441bは、ヒンジ106,106を介してミラー131の第1辺131aに連結されている。 However, while the actuator body 441a of the first actuator 404A is connected to the third side 131c of the mirror 131 via the hinges 106 and 106, the actuator body 441b of the second actuator 404B does not include the hinges 106 and 106. It is connected to the first side 131 a of the mirror 131 via the same.
 このように、第1アクチュエータ404Aと第2アクチュエータ404Bとは、構成及び材料が同じであり且つ、主軸Xを挟んで対称な形状をしている。 Thus, the first actuator 404A and the second actuator 404B have the same configuration and materials, and have symmetrical shapes with respect to the main axis X.
 ミラーデバイス403は、ミラーデバイス103と同様に、第1アクチュエータ404Aの圧電素子442aと第2アクチュエータ404Bの圧電素子442bにオフセット電圧を印加する。そして、この基準状態から、圧電素子442a,442bへの印加電圧を増減することによって、第1及び第2アクチュエータ404A,404Bを上方又は下方に湾曲させて、ミラー131を回動させる。これにより、ミラー131を主軸X周りに回動させることができる。例えば、第1アクチュエータ404Aと第2アクチュエータ404Bとを互いに逆向きに湾曲させることによって、ミラー131を主軸X周りに回動させることができる。このとき、第1アクチュエータ404Aを湾曲させる向きと第2アクチュエータ404Bを湾曲させる向きとを入れ替えることによって、ミラー131の主軸X周りの回動方向を切り替えることができる。ただし、ミラーデバイス403は、ミラーデバイス103,303と異なり、主軸X方向に並ぶ複数のアクチュエータを備えていないので、ミラー131を傾動させることができるのは主軸X周りだけであり、副軸Y周りにはミラー131を傾動させることができない。 Similar to the mirror device 103, the mirror device 403 applies an offset voltage to the piezoelectric element 442a of the first actuator 404A and the piezoelectric element 442b of the second actuator 404B. Then, from the reference state, the voltage applied to the piezoelectric elements 442a and 442b is increased or decreased to bend the first and second actuators 404A and 404B upward or downward, thereby rotating the mirror 131. Thereby, the mirror 131 can be rotated around the main axis X. For example, the mirror 131 can be rotated about the main axis X by bending the first actuator 404A and the second actuator 404B in opposite directions. At this time, the turning direction of the mirror 131 about the main axis X can be switched by switching the direction of bending the first actuator 404A and the direction of bending the second actuator 404B. However, unlike the mirror devices 103 and 303, the mirror device 403 does not have a plurality of actuators aligned in the main axis X direction, so the mirror 131 can be tilted only about the main axis X and about the minor axis Y. The mirror 131 can not be tilted.
 このように構成されたミラーアレイ400においても、図4に示すように、隣り合うミラー131,131の一方には、突起部134及び凹部135a,135bが設けられている。これにより、2つのミラー131,131が接触することがあっても、両者は突起部134を介して接触するので、両者の固着の可能性を低減することができる。それに加えて、突起部134に隣接する部分に凹部135a,135bを設けることによって、エッチング種を深くまで入り込み易くし、突起部134を容易に形成することができる。 Also in the mirror array 400 configured in this way, as shown in FIG. 4, the protrusion 134 and the concave portions 135 a and 135 b are provided on one of the adjacent mirrors 131 and 131. As a result, even if the two mirrors 131 and 131 may come into contact with each other, the two come into contact via the projection 134, so that the possibility of fixing them can be reduced. In addition, by providing the concave portions 135a and 135b in the portion adjacent to the protrusion 134, the etching species can be easily penetrated deep and the protrusion 134 can be easily formed.
 《その他の実施形態》
 前記実施形態について、以下のような構成としてもよい。
<< Other Embodiments >>
The following configuration may be adopted for the embodiment.
 前記実施形態では、ミラーアレイを波長選択スイッチ108に適用した例を説明したが、これに限られるものではない。ミラーアレイ100は様々なアプリケーションに組み込むことができる。 Although the mirror array is applied to the wavelength selective switch 108 in the above embodiment, the present invention is not limited to this. The mirror array 100 can be incorporated into various applications.
 また、前記実施形態では、半導体装置の例としてミラーアレイについて説明したが、これに限られるものではない。隙間を空けて配置された第1部分及び第2部分を備える半導体装置であれば、任意の半導体装置に前記突起部及び凹部等を採用することができる。例えば、振動子を備えた発振器やガスセンサに前記突起部及び凹部の構成を採用してもよい。振動子を備えた発振器やガスセンサにおいては、振動子がその周辺の部材に接触する虞がある。そのため、振動子及びその周辺の部材の少なくとも一方に前記突起部及び凹部を設けることによって、両者の固着の可能性を低減することができる。 Further, although the mirror array has been described as an example of the semiconductor device in the above embodiment, the present invention is not limited to this. If it is a semiconductor device provided with the 1st part and 2nd part which opened a crevice, the above-mentioned projection part, crevice, etc. can be adopted as arbitrary semiconductor devices. For example, the configuration of the protrusion and the recess may be adopted in an oscillator or a gas sensor provided with a vibrator. In an oscillator or gas sensor provided with a vibrator, the vibrator may come in contact with members around it. Therefore, by providing the protrusion and the recess on at least one of the vibrator and the members around the vibrator, the possibility of fixing the both can be reduced.
 また、移動可能に構成された第1部分又は第2部分の駆動方式は、圧電駆動に限られるものではない。第1部分又は第2部分を移動させることができる限りにおいては、特定の駆動方式に限定されるものではない。例えば、前記実施形態でいえば、ミラー131又はアクチュエータ104に対向する位置に対向電極を設け、対向電極とミラー131又はアクチュエータ104との間の静電力によりミラー131を移動させる構成であってもよい。また、ミラー131又はアクチュエータ104に設けたコイルによる磁力と外部磁場との関係でミラー131を移動させる構成であってもよい。 Further, the driving method of the first part or the second part configured to be movable is not limited to the piezoelectric driving. It is not limited to a specific drive system as long as the first part or the second part can be moved. For example, in the embodiment, an opposing electrode may be provided at a position facing the mirror 131 or the actuator 104, and the mirror 131 may be moved by electrostatic force between the opposing electrode and the mirror 131 or the actuator 104. . In addition, the mirror 131 may be moved according to the relationship between the magnetic field generated by the coil provided to the mirror 131 or the actuator 104 and the external magnetic field.
 また、前記実施形態における形状、寸法、材質は、例示に過ぎず、これらに限られるものではない。例えば、PZTの代わりに、非鉛圧電材料であるKNN((K,Na)NbO)等を用いてもよい。また、ミラー131は、平面視長方形状でなくてもよい。ミラー131は、円形や長円形であってもよい。ヒンジ106の構成は、前記の構成に限られるものではない。また、一又は複数のヒンジ106を省略してもよい。 Further, the shapes, dimensions, and materials in the embodiment are merely examples, and the present invention is not limited to these. For example, instead of PZT, a lead-free piezoelectric material such as KNN ((K, Na) NbO 3 ) may be used. Also, the mirror 131 may not have a rectangular shape in plan view. The mirror 131 may be circular or oval. The configuration of the hinge 106 is not limited to the above configuration. Also, one or more hinges 106 may be omitted.
 また、前記実施形態では、ミラー131が梁部材105によって支持されているが、ミラー131は、ヒンジ等を介してベース部102に支持される構成であってもよい。 In the above embodiment, the mirror 131 is supported by the beam member 105. However, the mirror 131 may be supported by the base portion 102 via a hinge or the like.
 また、前記突起部134,134a,134bの形状及び凹部135a~135dの形状は、前記実施形態に限られるものではない。例えば、突起部134,134a,134bの先端は、尖鋭な形状でも、平坦な形状であってもよい。ただし、湾曲させることによって、接触面積をより小さくしつつ、突起部の破損を防止することができる。 Further, the shapes of the protrusions 134, 134a and 134b and the shapes of the recesses 135a to 135d are not limited to those in the above embodiment. For example, the tips of the protrusions 134, 134a, 134b may be sharp or flat. However, by curving, it is possible to prevent damage to the protrusion while reducing the contact area.
 また、突起部134,134a,134b及び凹部135a~135dの位置や個数は、前記実施形態に限定されるものではない。例えば、突起部134及び凹部135a,135bは、ミラー131の副軸Y方向の両端部に設けられているが、これに限られるものではない。例えば、ミラー131の副軸Y方向の中央に突起部134及び凹部135a,135bが1組だけ設けられていてもよい。また、第1ミラー131Aと第2ミラー131Bとの隙間においては、第2ミラー131Bに突起部134及び凹部135a,135bが設けられているが、突起部134及び凹部135a,135bを第1ミラー131Aに設けてもよい。さらには、1組の突起部134及び凹部135a,135bを、第1ミラー131Aに設け、もう1組の突起部134及び凹部135a,135bを、第2ミラー131Bに設けてもよい。 Further, the positions and the number of the protrusions 134 134 a and 134 b and the recesses 135 a to 135 d are not limited to the above embodiment. For example, although the protrusion part 134 and recessed part 135a, 135b are provided in the both ends of the minor axis Y direction of the mirror 131, it is not restricted to this. For example, only one set of the protrusion 134 and the recesses 135a and 135b may be provided at the center of the mirror 131 in the sub-axis Y direction. In the gap between the first mirror 131A and the second mirror 131B, the projection 134 and the recesses 135a and 135b are provided on the second mirror 131B. However, the projection 134 and the recesses 135a and 135b can be used as the first mirror 131A. It may be provided in Furthermore, one set of the protrusion 134 and the recesses 135a and 135b may be provided in the first mirror 131A, and another set of the protrusion 134 and the recesses 135a and 135b may be provided in the second mirror 131B.
 また、ミラー131のうち、突起部134,134a,134b及び凹部135a~135dが設けられている部分の表面には鏡面層133が設けられているが、ミラー131の副軸Y方向の端部に、鏡面層133を積層させない部分を設け、その部分の端面に突起部及び凹部を設けてもよい。 The mirror layer 133 is provided on the surface of the portion of the mirror 131 where the protrusions 134, 134a and 134b and the recesses 135a to 135d are provided, but the end portion of the mirror 131 in the minor axis Y direction is provided. A portion where the mirror layer 133 is not stacked may be provided, and a protrusion and a recess may be provided on the end face of the portion.
 尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 The above embodiments are essentially preferred examples, and are not intended to limit the scope of the present invention, its applications, or its applications.
 以上説明したように、ここに開示された技術は、半導体装置について有用である。 As described above, the technology disclosed herein is useful for semiconductor devices.
100,200,300,400  ミラーアレイ
131  ミラー
134,134a,134b  突起部
135a,135b,135c,135d  凹部
136  対向部分
G0   隙間
X    主軸
Y    副軸
100, 200, 300, 400 Mirror array 131 Mirrors 134, 134a, 134b Protrusions 135a, 135b, 135c, 135d Recesses 136 Opposite part G0 Gap X Principal axis Y Secondary axis

Claims (4)

  1.  第1部分と、
     前記第1部分との間に隙間を空けて配置された第2部分とを備え、
     前記第1部分及び第2部分の少なくとも一方は、移動可能に構成されており、
     前記第2部分には、前記隙間において、前記第1部分の方へ突出する突起部が設けられており、
     前記第1部分のうち前記突起部と対向する部分に隣接する部分及び前記第2部分のうち前記突起部に隣接する部分の少なくとも一方には、凹部が設けられている半導体装置。
    The first part,
    And a second portion spaced apart from the first portion,
    At least one of the first part and the second part is movable.
    The second portion is provided with a projection which protrudes toward the first portion in the gap.
    A semiconductor device, wherein a recess is provided in at least one of a portion of the first portion adjacent to a portion facing the protrusion and a portion of the second portion adjacent to the protrusion.
  2.  請求項1に記載の半導体装置において、
     前記凹部は、前記第1部分のうち前記突起部と対向する部分に隣接する両側の部分、又は、前記第2部分のうち前記突起部に隣接する両側の部分に設けられている半導体装置。
    In the semiconductor device according to claim 1,
    The semiconductor device according to claim 1, wherein the recess is provided in portions on both sides of the first portion adjacent to the portion facing the protrusion or in portions on the both sides adjacent to the protrusion of the second portion.
  3.  請求項1又は2に記載の半導体装置において、
     前記突起部の先端は、凸状に湾曲している半導体装置。
    In the semiconductor device according to claim 1 or 2,
    The tip of the projection is a convexly curved semiconductor device.
  4.  請求項1乃至3の何れか1つに記載の半導体装置において、
     隙間を空けて配列され、移動可能に構成された複数のミラーを備え、
     前記第1部分及び第2部分は、隣り合う前記ミラーである半導体素子。
    The semiconductor device according to any one of claims 1 to 3.
    A plurality of mirrors arranged with gaps and configured to be movable,
    The semiconductor element in which the said 1st part and the 2nd part are the said adjacent mirrors.
PCT/JP2013/004275 2012-07-13 2013-07-10 Semiconductor device WO2014010243A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524656A JP6130374B2 (en) 2012-07-13 2013-07-10 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012157958 2012-07-13
JP2012-157958 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010243A1 true WO2014010243A1 (en) 2014-01-16

Family

ID=49915724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004275 WO2014010243A1 (en) 2012-07-13 2013-07-10 Semiconductor device

Country Status (2)

Country Link
JP (1) JP6130374B2 (en)
WO (1) WO2014010243A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106737A (en) * 2004-09-30 2006-04-20 Lucent Technol Inc Micromirror apparatus with improved in-plane rotation tolerance
JP2006337858A (en) * 2005-06-03 2006-12-14 Fujifilm Holdings Corp Optical modulation element array
JP2007248731A (en) * 2006-03-15 2007-09-27 Hitachi Metals Ltd Micromirror, and optical component and optical switch using the micromirror
WO2008129988A1 (en) * 2007-04-19 2008-10-30 Nippon Telegraph And Telephone Corporation Micromirror element and micromirror array
JP2009229916A (en) * 2008-03-24 2009-10-08 Nippon Telegr & Teleph Corp <Ntt> Micromirror element and micro mirror array
JP2010026162A (en) * 2008-07-17 2010-02-04 Panasonic Electric Works Co Ltd Movable structure and optical scanning mirror using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106737A (en) * 2004-09-30 2006-04-20 Lucent Technol Inc Micromirror apparatus with improved in-plane rotation tolerance
JP2006337858A (en) * 2005-06-03 2006-12-14 Fujifilm Holdings Corp Optical modulation element array
JP2007248731A (en) * 2006-03-15 2007-09-27 Hitachi Metals Ltd Micromirror, and optical component and optical switch using the micromirror
WO2008129988A1 (en) * 2007-04-19 2008-10-30 Nippon Telegraph And Telephone Corporation Micromirror element and micromirror array
JP2009229916A (en) * 2008-03-24 2009-10-08 Nippon Telegr & Teleph Corp <Ntt> Micromirror element and micro mirror array
JP2010026162A (en) * 2008-07-17 2010-02-04 Panasonic Electric Works Co Ltd Movable structure and optical scanning mirror using the same

Also Published As

Publication number Publication date
JPWO2014010243A1 (en) 2016-06-20
JP6130374B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP6447683B2 (en) Scanning microelectromechanical reflector system, light detection and ranging (LIDAR) device, and method of operating scanning microelectromechanical reflector system
US20070268549A1 (en) Micro-oscillation element
US20080239446A1 (en) Micromechanical device with tilted electrodes
JP6154636B2 (en) Mirror device
JP5757034B2 (en) Micro scanner
KR20110013520A (en) Movable structure and optical scanning mirror using same
US10411182B2 (en) Drive apparatus
JP5049904B2 (en) Movable structure and optical scanning mirror using the same
JP2003057575A (en) Micromirror device and its manufacturing method
JP2014006418A (en) Actuator
JP4193817B2 (en) Actuator
WO2016080317A1 (en) Optical element
JP2007326204A (en) Actuator
JP5053194B2 (en) Movable structure and optical scanning mirror using the same
WO2014010243A1 (en) Semiconductor device
JP6225169B2 (en) Mirror array
US20230139572A1 (en) Optical scanning device and method of driving micromirror device
WO2015146146A1 (en) Drive apparatus
JP2008292703A (en) Movable structure, optical scanning mirror element using the same and method of manufacturing movable structure
JP2013088703A (en) Mirror array
WO2023181675A1 (en) Optical reflective element
JP6186364B2 (en) Mirror device manufacturing method
WO2021229689A1 (en) Optical scanning device and distance measuring device
JP2007326205A (en) Actuator
JP2014021208A (en) Mirror device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817416

Country of ref document: EP

Kind code of ref document: A1