[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014002545A1 - Method for manufacturing linear conductor, and method for manufacturing rotating electrical machine - Google Patents

Method for manufacturing linear conductor, and method for manufacturing rotating electrical machine Download PDF

Info

Publication number
WO2014002545A1
WO2014002545A1 PCT/JP2013/058082 JP2013058082W WO2014002545A1 WO 2014002545 A1 WO2014002545 A1 WO 2014002545A1 JP 2013058082 W JP2013058082 W JP 2013058082W WO 2014002545 A1 WO2014002545 A1 WO 2014002545A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
coil side
coating material
coil
insulating coating
Prior art date
Application number
PCT/JP2013/058082
Other languages
French (fr)
Japanese (ja)
Inventor
杉浦圭介
古賀清隆
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2014002545A1 publication Critical patent/WO2014002545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0025Shaping or compacting conductors or winding heads after the installation of the winding in the core or machine ; Applying fastening means on winding heads
    • H02K15/0031Shaping or compacting conductors in slots or around salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators

Definitions

  • the present invention relates to a manufacturing method for manufacturing a linear conductor for a coil of a rotating electrical machine, and a manufacturing method of a rotating electrical machine including the manufacturing method.
  • Patent Document 1 discloses a linear configuration in which a conductor wire bundle [conductor bundle 44] in which a plurality of conductor wires [conductor 41] are assembled is covered with a deformable insulating coating material [insulator 43]. A technique is described in which the conductor [winding 42] is used as a linear conductor for a coil of a rotating electrical machine. In the configuration of Patent Document 1, as shown in FIG.
  • the perimeter of the insulation coating material of the part which comprises the coil side part in a linear conductor. Is the same for all coil sides.
  • the final cross-sectional shape of each of the plurality of coil sides is different from each other depending on the arrangement position of each coil side.
  • the internal area of the insulation coating material is reduced in the degree of flatness of the cross-sectional shape of the coil side portion. There is a tendency to increase accordingly.
  • the characteristic configuration of the manufacturing method for manufacturing a linear conductor for a coil of a rotating electrical machine according to the present invention is that a conductor wire bundle in which a plurality of conductor wires are assembled is surrounded by a flexible insulating coating material.
  • a coated conductor wire bundle configured to be covered, and having a pressurizing step of pressurizing a processing target site in the covered conductor wire bundle in an intersecting direction intersecting an extending direction of the conductor wire bundle In the pressurizing step, the insulating coating material at the site to be processed is plastically deformed to increase the peripheral length of the insulating coating material in an orthogonal cross section that is a cross section orthogonal to the extending direction.
  • the “periphery of a conductor wire bundle” means the periphery (outer periphery) of a cross section in a plane orthogonal to the extending direction of the conductor wire bundle.
  • part to be processed can be adjusted. Therefore, for the part to be processed, the circumference difference between the circumference of the insulation coating material and the circumference of the circumscribed curve circumscribing the conductor wire bundle can be kept short, and as a result, wrinkles occur in the insulation coating material. It is easy to suppress and increase the coil space factor.
  • the circumferential length of the insulating coating material is adjusted in accordance with the shape of the final orthogonal cross section of the part to be processed, and the circumferential length difference between the circumferential length of the insulating coating material and the circumferential length of the circumscribed curve Can be kept short.
  • the characteristic configuration of the method for manufacturing a rotating electrical machine according to the present invention includes the above-described method for manufacturing a linear conductor, and a plurality of slots extending in the axial direction of a cylindrical core reference surface are distributed in the circumferential direction of the core reference surface.
  • the coated conductor strand bundle is arranged in the slot.
  • a part corresponding to a coil side part which is a coil part is set as the part to be processed, and an insertion step of inserting the part to be processed into the slot is provided.
  • the linear conductor wound around the core is a linear conductor that can be easily wound around the core with a high space factor as described above. It is possible to manufacture a rotating electrical machine in which a conductor is wound around a core.
  • the portion to be processed after being pressurized in the pressurization step is inserted into the slot.
  • the pressurization process compared to the case where the pressurization process is performed on the processing target portion after being inserted into the slot by the insertion process, for example, a device such as a jig used in the pressurization process Restrictions on the shape, dimensions, etc. can be relaxed, and the pressurization process can be simplified. Further, according to this configuration, the circumference difference between the circumference of the insulating coating material at the site to be processed and the circumference of the circumscribed curve according to the final cross-sectional shape of the coil side corresponding to the site to be processed However, the insertion process can be executed in a short state.
  • the restoring force generated in the insulating coating material is suppressed at the time of execution of the insertion process as compared with the case where the processing target part before being pressurized in the pressurizing process is inserted into the slot. It is easy to change the shape of the orthogonal cross section to the final cross sectional shape of the coil side portion corresponding to the processing target site in the slot, and as a result, the manufacturing process can be simplified.
  • the insulating portion that electrically insulates the coil side portion and the core in the configuration in which the portion to be processed after being pressed in the pressing step is inserted into the slot.
  • An insulating step of providing a portion along the inner surface of the slot, and in the inserting step, the portion to be processed is inserted into the slot in which the insulating portion is provided by the insulating step.
  • the portion to be processed is arranged inside the slot in a predetermined arrangement direction, and the arrangement direction is such that the portion to be pressed in the pressing step in the insulating coating material is in the circumferential direction with respect to the insulating portion. It is preferable to adopt a configuration in which they face each other.
  • the electrical insulation between the coil side and the core, and the coil side and another member disposed adjacent to the coil side in the radial direction (hereinafter simply referred to in this paragraph) It is easy to appropriately ensure both the electrical insulation between the “other member” and the other member.
  • the thickness (for example, the average value or the minimum value, the same applies hereinafter) of the insulating coating material by pressing the insulating coating material is generally the portion other than the pressing target portion (pressing material) in the insulating coating material. It becomes smaller than the thickness of the non-target portion.
  • the pressing target portion is pressed against the inner surface of the pressing target portion during the pressing step, and the conductor strand in the pressing target portion is indented. This is because the portion is easily thinned.
  • the insulating portion is provided along the inner surface of the slot by the insulating process, it is possible to ensure electrical insulation between the coil side portion and the inner surface (that is, the core) of the slot.
  • the insulating portion can be used.
  • the electrical insulation between the coil side and the other member is mainly achieved when, for example, the other member is another coil side, the insulation coating material for these two coil sides.
  • the portion to be processed is arranged such that the portion to be pressed is opposed to the insulating portion in the circumferential direction. That is, the pressing target portion with the smaller thickness is disposed in the facing portion of the coil side portion with the insulating portion, and the pressing non-target portion with the larger thickness is disposed in the facing portion with the other member of the coil side portion. The As a result, it becomes easy to appropriately ensure both the electrical insulation between the coil side and the core and the electrical insulation between the coil side and the other member.
  • a plurality of the processing target portions are inserted into the slot, and a plurality of the processing target portions are disposed inside the slot in a predetermined arrangement direction, It is also preferable that the non-pressing target portion other than the pressing target portion in the pressurizing step in the insulating coating material is oriented in the circumferential direction with respect to the inner surface of the slot.
  • the electrical insulation between the coil side portion and the core Appropriate both electrical insulation between the coil side and another member (hereinafter simply referred to as “other member” in this paragraph) disposed radially adjacent to the coil side. It is easy to ensure.
  • the thickness of the pressing target portion of the insulating coating material is generally smaller than the thickness of the non-pressing target portion of the insulating coating material by executing the pressing step.
  • the portion to be processed is arranged such that the non-pressing target portion is opposed to the inner surface of the slot in the circumferential direction. That is, the pressing non-target portion with the larger thickness is disposed at the facing portion of the coil side portion with the inner surface of the slot, and the pressing target portion with the smaller thickness is disposed at the facing portion with the other member of the coil side portion. Is done. As a result, it becomes easy to appropriately ensure both the electrical insulation between the coil side and the core and the electrical insulation between the coil side and the other member.
  • the insertion step a plurality of the processing target portions are inserted into the slots, and in the pressing step, the circumferential direction in the orthogonal cross section of the coil side portion is inserted.
  • the peripheral length of the insulating coating material increases. Therefore, the circumferential length difference between the circumference of the circumscribed curve, which becomes longer as the degree of flatness of the shape of the orthogonal cross section of the coil side portion becomes higher, and the circumferential length of the insulating coating material, It becomes easy to increase the space factor of the coil by keeping each short.
  • the processing target site is inserted into the slots, and in the insertion step, the circumferential slot width is different depending on the radial position. It is preferable that the processing target site is inserted into the slot.
  • the degree of flatness of the cross-sectional shape of the coil side portion tends to increase as the slot width increases. Therefore, also in such a case, the circumference difference between the circumference of the insulating coating material and the circumference of the circumscribed curve can be kept short for each of the plurality of coil sides. That is, according to the above configuration of the present invention, the degree of freedom of the shape of the core can be increased, and the performance of the rotating electrical machine can be improved.
  • the processing is performed inside the slot formed so that the slot width in the circumferential direction differs according to the radial position of the core reference surface.
  • a plurality of target portions are inserted, and a plurality of the processing target portions are arranged in a line along the radial direction inside the slot, and in the pressurizing step, the insulating coating material of the coil side portion is arranged.
  • the amount of pressure applied to each of the plurality of processing target portions is increased so that the circumferential length becomes longer as the slot width increases based on the radial position where the coil side portion is disposed. It is preferable to adopt a configuration in which the coil side portion corresponding to the part to be processed is varied depending on the radial position.
  • the circumferential length of the insulating coating material on the coil side portion to be arranged increases, so that the cross-sectional area of the coil side portion increases as the slot width increases. It is possible to manufacture a rotating electrical machine having a high space factor, which is a rotating electrical machine having a large flatness.
  • the insulating coating material is configured to be able to reduce the circumference by heating, and heats the part to be processed inserted into the slot by the insertion step to thereby insulate the part to be processed. It is preferable to further include a heating step for reducing the peripheral length of the covering material.
  • FIG. 5 is a partial cross-sectional view of a stator according to another embodiment of the present invention. It is a flowchart which shows the manufacturing method of the rotary electric machine which concerns on other embodiment of this invention.
  • FIG. 5 is a partial cross-sectional view of a stator according to another embodiment of the present invention.
  • the rotating electrical machine 100 is a rotating field type rotating electrical machine
  • the core to be wound with the coil 3 is the core of the stator 1 (stator core 2). That is, the stator core 2 corresponds to a “core” in the present invention.
  • the rotating electrical machine is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions of the motor and the generator as necessary.
  • the “axial direction L”, “circumferential direction C”, and “radial direction R” are the cylindrical core reference surface 21 (see FIGS. 1 and 2). ) Axis.
  • the “diameter first direction R1” and the “diameter second direction R2” represent a direction toward the inner side and an outer side of the radial direction R of the core reference surface 21, respectively.
  • terms relating to the arrangement direction, arrangement position, and the like of each member are used as a concept including a state in which there is a difference due to an error (an error that is acceptable in manufacturing).
  • the rotating electrical machine 100 includes a stator 1 and a rotor 6 that is rotatably provided on the first radial direction R1 side of the stator 1 (that is, radially inner side).
  • the stator 1 includes a stator core 2 and a coil 3 wound around the stator core 2.
  • the stator core 2 is formed using a magnetic material.
  • FIG. 1 in order to avoid complication, only the portion protruding from the pair of slots 22 is shown for the coil end portion which is the portion of the coil 3 protruding from the stator core 2 in the axial direction L, and the other portions are not shown. Is omitted.
  • FIG. 1 in order to avoid complication, only the portion protruding from the pair of slots 22 is shown for the coil end portion which is the portion of the coil 3 protruding from the stator core 2 in the axial direction L, and the other portions are not shown. Is omitted.
  • FIG. 1 in order to avoid complication, only the portion protruding
  • a cross section of a coil side portion 71 that is a portion of the coil 3 disposed in the slot 22 appears at the end portion in the axial direction L of the remaining slot 22. Further, in FIG. 1, the rotor 6 is shown in a simplified manner, and a part of the rotor 6 is drawn in perspective.
  • the stator core 2 is integrally formed at least in the circumferential direction C. That is, the stator core 2 does not have a circumferential joint that joins a portion divided in the circumferential direction C in the circumferential direction C.
  • the circumferential joint portion is adjacent to each other in the circumferential direction. It is formed in order to join end faces.
  • the stator core 2 is integrally formed in the circumferential direction C and the radial direction R, and is not integrally formed in the axial direction L.
  • the stator core 2 has an axial joint that joins the part divided in the axial direction L in the axial direction L.
  • the stator core 2 is formed by laminating a plurality of annular plate-like magnetic plates 7 in the axial direction L, as shown in FIG.
  • the magnetic plates 7 in the laminated state are joined to each other by welding or caulking or the like, and the joint between the magnetic plates 7 adjacent in the axial direction L constitutes the above-described axial joint.
  • the magnetic plate 7 for example, an electromagnetic steel plate (for example, a silicon steel plate) can be used.
  • the stator core 2 has a plurality of slots 22 distributed in the circumferential direction C.
  • a tooth 23 is formed between two slots 22 adjacent to each other in the circumferential direction C.
  • the above-described “cylindrical core reference surface 21” is a virtual surface that serves as a reference for the arrangement and configuration of the slots 22, and in the present embodiment, a plurality of (the same number as the slots 22) teeth 23 in the first diameter direction.
  • a cylindrical virtual surface (core inner peripheral surface) including the end surface on the R1 side is used as the core reference surface 21.
  • a surface on the second radial direction R2 side (core outer peripheral surface) of the stator core 2 may be used as the core reference surface 21.
  • the plurality of slots 22 are distributed at regular intervals along the circumferential direction C.
  • Each slot 22 extends in the axial direction L and is formed to have an opening 22b on the first radial direction R1 side.
  • the slot 22 is formed so as to penetrate the stator core 2 in the axial direction L.
  • the slots 22 are formed so as to extend radially from the axis of the core reference surface 21 in the radial direction R.
  • the opening width W1 which is the width in the circumferential direction C of the opening 22b, is the circumferential direction C inside the slot 22 (the portion on the radial second direction R2 side from the opening 22b).
  • the slot 22 is formed so as to be narrower than the internal width W2, which is the width of the. That is, in the present embodiment, the slot 22 is a semi-open slot.
  • each tooth 23 is a parallel tooth in which two tooth side surfaces 23 a facing opposite sides in the circumferential direction C are parallel to each other, and each slot 22 has a width in the circumferential direction C. Is formed so as to gradually become wider toward the second radial direction R2. That is, each slot 22 is formed so that the slot width W, which is the width in the circumferential direction C, differs depending on the position in the radial direction R.
  • the circumferential direction protrusion part 23b which protrudes in the circumferential direction C with respect to the other part of the teeth side surface 23a is formed in the front-end
  • the space is formed as a space sandwiched on both sides in the circumferential direction C by the circumferential protrusion 23b.
  • a slot insulating portion 24 is formed on a wall surface portion (a portion including the tooth side surface 23 a) that forms the slot 22 in the stator core 2. Therefore, in this embodiment, the slot width W (opening width W1 and internal width W2) of the slot 22 depends on the thickness of the slot 23 in addition to the circumferential width C and the arrangement pitch of the teeth 23. Determined.
  • the slot insulating part 24 is formed by, for example, insulating powder coating or a slot insulating sheet.
  • the rotating electrical machine 100 is a three-phase AC motor or a three-phase AC generator driven by a three-phase AC (an example of a multi-phase AC).
  • the coil 3 includes a U-phase coil, a V-phase coil, and a W-phase coil corresponding to each of the three phases (U-phase, V-phase, and W-phase).
  • the W-phase slots 22 are arranged so as to repeatedly appear along the circumferential direction C.
  • the coil 3 can be configured by winding the linear conductor 4 around the stator core 2 by a combination of one of lap winding and wave winding and one of concentrated winding and distributed winding. .
  • the linear conductor 4 is a conductor constituting the coil 3, and the coil 3 is configured by winding the linear conductor 4 around the stator core 2.
  • the linear conductor 4 is configured by covering the periphery of a bare conductor wire bundle 42 in which a plurality of flexible bare conductor wires 41 are assembled with a flexible insulating coating material 46.
  • the “bare conductor wire” is a bare conductor wire whose surface is not covered with an insulator. Therefore, a conductor wire provided with a coating or a coating with an electrically insulating material such as resin on its surface is not included in the bare conductor wire.
  • a conductor wire having an oxide film formed on the surface is included in the bare conductor wire.
  • the bare conductor wire 41 corresponds to a “conductor wire” in the present invention
  • the bare conductor wire bundle 42 corresponds to a “conductor wire bundle” in the present invention.
  • the bare conductor wire 41 is a linear bare conductor, and is made of, for example, copper or aluminum.
  • the bare conductor wire 41 has a circular cross-sectional shape orthogonal to the extending direction.
  • a bare wire having a diameter (wire diameter) of 0.2 mm or less is used as the bare conductor wire 41. be able to.
  • the surface of the bare conductor wire 41 is not covered with an insulator, and the conductor surface is exposed.
  • the “insulator” here does not include an oxide film formed by oxidizing the surface of the conductor.
  • a plurality of such bare conductor strands 41 are assembled to form a bare conductor strand bundle 42.
  • the bare conductor strand bundle 42 is configured by twisting and bundling a plurality of bare conductor strands 41 or by bundling a plurality of bare conductor strands 41 without twisting.
  • the insulating coating material 46 is a flexible electrical insulating member, and is made of, for example, a synthetic resin such as a fluorine resin, an epoxy resin, or polyphenylene sulfide.
  • Flexibility means a property that can be bent or bent.
  • the insulating coating material 46 also has stretchability.
  • stretchability is a property that can be stretched or shrunk.
  • the insulating covering material 46 is provided so as to cover the periphery of the bare conductor wire bundle 42.
  • the insulation coating material 46 covers the entire circumference of the bare conductor strand bundle 42 and extends in the extending direction except for the connection portion provided at the end in the extending direction A of the bare conductor strand bundle 42. It is provided so as to cover the entire area along A.
  • the connecting portion is a portion for electrically connecting one linear conductor 4 to another linear conductor 4 or another conductor.
  • the insulating coating material 46 is made of a flexible sheet-like material (tubular material) that wraps around the bare conductor wire bundle 42.
  • an external force acts on an unprocessed portion of the linear conductor 4 where a coil side pressurizing step # 01 (see FIGS. 6 and 7) described later is not performed.
  • the shape of the cross section (henceforth an "orthogonal cross section") in the extended orthogonal plane P in the state which has not been shown is shown.
  • the extending orthogonal plane P is a plane orthogonal to the extending direction A of the bare conductor strand 42, as shown in FIG. As shown in FIG.
  • the plurality of bare conductor strands 41 are in close contact with each other and gather together with high density, and the bare conductor strand bundles 42 are orthogonal to each other.
  • the cross-sectional shape (outer shape) is a perfect circle when no external force is applied.
  • the shape of the orthogonal cross-section of the insulating coating material 46 is a circumscribed curve that circumscribes the bare conductor wire bundle 42, and specifically, a perfect circle shape that follows the true circular shape of the bare conductor wire bundle 42.
  • a symbol “Z” in FIG. 4 represents a “reference circumferential length” that is a circumferential length of an orthogonal cross section of the insulating coating material 46 in a state where no external force is applied to the linear conductor 4.
  • FIG. 8 shows the shape of the orthogonal cross-section of the insulating covering material 46 at the processed portion where the coil side pressurizing step # 01 (see FIGS. 6 and 7), which will be described later, is performed on the linear conductor 4.
  • An example of the shape of the orthogonal cross section in the state deformed into the shape is shown.
  • the number of bare conductor wires 41 is less than that in FIG. 4 for simplification.
  • the insulating coating material 46 is stable in a state where the shape of the orthogonal cross section is a perfect circle as shown in FIG.
  • the reference circumferential length Z of the insulating coating material 46 increases by the execution of the coil side pressurizing step # 01. Therefore, the area difference between the sum of the areas of orthogonal cross sections (hereinafter simply referred to as “cross-sectional areas”) of the plurality of bare conductor strands 41 constituting the bare conductor strand bundle 42 and the internal area of the insulating coating material 46 is
  • cross-sectional areas areas of orthogonal cross sections
  • the internal area of the insulating coating material 46 is a cross-sectional area of an internal space formed inside the insulating coating material 46 in the radial direction by the inner surface of the insulating coating material 46. Since the internal area of the insulation coating material 46 is reduced by flattening the shape of the orthogonal cross section of the insulation coating material 46, illustration is omitted, but when the cross sectional shape of the linear conductor 4 shown in FIG. The above area difference is reduced.
  • the shape of the orthogonal cross section of the bare conductor wire 41 is circular. Therefore, as shown in FIG. 4, there is a gap G between the bare conductor strands 41 constituting the bare conductor strand bundle 42 or between the bare conductor strands 41 and the inner peripheral surface of the insulating coating material 46. Is formed.
  • the plurality of bare conductor wires 41 constituting the unprocessed portion of the linear conductor 4 are in close contact with each other and gathered at a high density as shown in FIG.
  • the gap G formed in is relatively small. Therefore, when a relatively large external force does not act on the linear conductor 4, the plurality of bare conductor strands 41 do not move relative to each other in the radial direction R.
  • the plurality of bare conductor wires 41 constituting the processed portion of the linear conductor are gathered at a lower density than the unprocessed portion (see FIG. 4).
  • a relatively large gap G is formed inside the covering material 46. Therefore, even if a large external force does not act on the linear conductor 4, the plurality of bare conductor strands 41 can move relative to each other in the radial direction R. That is, an in-coating gap in which the bare conductor wires 41 can move relative to each other is formed inside the insulating coating material 46.
  • the density of the bare conductor wires 41 inside the insulating coating material 46 is shown as an example in which the radial inner region is higher than the radial outer region.
  • the insulating coating material 46 is made of a material having flexibility and stretchability. Therefore, the linear conductor 4 can change the shape of an orthogonal cross section, as shown in FIG.5 and FIG.7. That is, following the deformation of the insulating coating material 46, the plurality of bare conductor wires 41 move relative to each other in the inside thereof, whereby the shape of the orthogonal cross section of the linear conductor 4 is deformed. As shown in FIG. 8, the processed portion of the linear conductor 4 has a low density of the plurality of bare conductor strands 41 when the shape of the orthogonal cross section of the linear conductor 4 is a perfect circle. Have gathered.
  • the insulation covering material 46 increases in circumference until the plurality of bare conductor wires 41 come into close contact with each other and gather together at a high density. Deforms without accompanying. Therefore, the shape of the orthogonal cross section of the linear conductor 4 can be easily changed. Note that after the plurality of bare conductor wires 41 are brought into close contact with each other and gathered at a high density, the insulating coating 46 is deformed with an increase in peripheral length due to elastic or plastic deformation. On the other hand, as shown in FIG.
  • the unprocessed portion of the linear conductor 4 has a plurality of bare conductor strands 41 in close contact with each other even when the shape of the orthogonal cross section of the linear conductor 4 is a perfect circle. Are gathered at a high density. Therefore, when flattening the shape of the orthogonal cross section of the unprocessed portion, the insulating coating material 46 is deformed with an increase in peripheral length due to elastic or plastic deformation even when the flatness is small. .
  • the width (circumferential direction) in the circumferential direction C in a state where the shape of the orthogonal cross section of the unprocessed portion of the linear conductor 4 is a perfect circle (see FIG. 7A).
  • Width D that is, the diameter in a state where the cross-sectional shape of the unprocessed portion of the linear conductor 4 is a perfect circle is set to be larger than the opening width W1 of the slot 22.
  • the linear conductor 4 has a circumferential width D having a first circumferential width D1 narrower than the opening width W1 and a second circumferential width D2 wider than the opening width W1. It can be deformed between.
  • the coil 3 includes a coil side portion 71 disposed in the slot 22, and a transition portion 72 that connects the two coil side portions 71 to each other outside in the axial direction L of the stator core 2. It has.
  • the coil side portion 71 is formed in a straight line parallel to the axial direction L.
  • the crossover portion 72 is arranged outside the stator core 2 in the axial direction L to form a coil end portion, and in the example shown in FIG. 1, the two coil side portions 71 arranged at a distance of 6 slots are connected to each other.
  • a plurality of coil side portions 71 are arranged inside the slot 22.
  • the coil side portions 71 are arranged in a plurality of layers B so as to be arranged in a line along the radial direction R at the same position in the circumferential direction C.
  • the layer B represents the position (arrangement region) in the radial direction R of each coil side portion 71 in the slot 22.
  • the coil side portion 71 is divided into an odd number of layers B, and specifically, is divided into five layers B.
  • the layer B closest to the second radial direction R2 in the slot 22 is defined as a first layer B1, and the second layer B2, the third layer B3, and the fourth layer are sequentially formed from the first layer B1 toward the first radial direction R1.
  • B4 be the fifth layer B5.
  • the linear conductor 4 constituting the coil 3 is wound around the stator core 2 so as to be included in one linear conductor 4 in which a plurality of coil side portions 71 are continuous. That is, in the present embodiment, a plurality of processing target parts to be pressed by the coil side pressing step # 01 described later are included in one continuous linear conductor 4.
  • continuous for the linear conductor 4 means that the bare conductor wire 41 or the insulating coating material 46 is integrally formed in the extending direction A without a seam.
  • each coil side portion 71 has a contact surface that is in surface contact with the inner wall surface of the slot 22 (in this example, in surface contact via the slot insulating portion 24), It has a rectangular shape having a contact surface in surface contact with the outer peripheral surface of the coil side portion 71 adjacent in the radial direction R.
  • both the clearance gap between the coil side part 71 and the inner wall face of the slot 22, and the clearance gap between coil side parts 71 can be restrained small, As a result, the space factor of the coil 3 is raised. Is possible.
  • Each slot 22 is formed so that the slot width W varies depending on the position in the radial direction R, and the shape of the slot 22 varies depending on the layer B.
  • each slot 22 is formed so that the slot width W gradually becomes wider toward the second radial direction R ⁇ b> 2. That is, assuming that the layer B at the position in the radial direction R having the largest slot width W is a “specific layer”, in the present embodiment, the first layer B1 is the specific layer.
  • the plurality of coil sides 71 arranged in the same slot 22 are configured to have substantially the same cross-sectional area. Therefore, in the present embodiment, as shown in FIG. 2, the plurality of coil sides 71 arranged in each of the slots 22 is based on the position (region) in the radial direction R where each of the coil sides 71 is arranged.
  • the aspect ratio in the orthogonal cross section of the coil side portion 71 disposed is larger than the aspect ratio in the orthogonal cross section of the coil side portion 71 disposed in the (N + 1) th layer.
  • the aspect ratio in the orthogonal cross section of the linear conductor 4 is 1 or more, if the aspect ratio increases, the absolute difference in dimension between the width in the circumferential direction C and the width in the radial direction R in the orthogonal cross section of the linear conductor 4 The value increases. Therefore, in the present embodiment, the plurality of coil sides 71 arranged in each of the slots 22 has a large slot width W based on the position (region) in the radial direction R where each of the coil sides 71 is arranged. Accordingly, the absolute value of the dimensional difference between the width in the circumferential direction C and the width in the radial direction R in the orthogonal cross section of the coil side portion 71 increases.
  • the plurality of coil sides 71 arranged in the same slot 22 are configured so that the cross-sectional areas are substantially the same.
  • the reason for adopting such a configuration is as follows. That is, in order to increase the space factor of the coil 3, as shown schematically in FIG. 5, a plurality of coil side portions 71 that are arranged in the slot 22 are configured as a plurality. It is desirable that the bare conductor wires 41 of each other are in close contact with each other and are gathered at a high density.
  • FIG.5 (b) shows the shape of the orthogonal cross section of the coil side part 71 arrange
  • FIG.5 (c) shows the coil side part 71 arrange
  • FIG. 5A shows the shape of the orthogonal cross section of the unprocessed portion of the linear conductor 4 as in FIG.
  • the number of bare conductor wires 41 is less than that in FIG. 4 for simplification.
  • the sum of the cross-sectional areas of the plurality of bare conductor wires 41 is constant regardless of the shape of the orthogonal cross section of the coil side portion 71. become. Therefore, a plurality of coils arranged in the same slot 22 by making the cross-sectional area of the coil side portion 71 (that is, the internal area of the insulating coating material 46) substantially equal regardless of the shape of the orthogonal cross section of the coil side portion 71. For each of the side portions 71, the sum of the cross-sectional areas of the gaps G formed inside the insulating coating material 46 can be kept small, and the space factor of the coil 3 can be increased.
  • the internal area of the insulation coating material 46 is maximized when the shape of the orthogonal cross section of the linear conductor 4 is a perfect circle (see FIG. 5A) if the circumference of the insulation coating material 46 is constant. . Further, when the shape of the orthogonal cross section of the linear conductor 4 is rectangular, the inner area of the insulating coating material 46 is as long as the peripheral length of the insulating coating material 46 is constant. As is clear from the comparison with (c), the aspect ratio decreases as the aspect ratio increases.
  • the two-dot chain line in FIG.5 (c) has the same aspect-ratio as the insulation coating material 46 of the coil side part 71 of 1st layer B1 shown in FIG.5 (b) with the insulation coating material 46 of 5th layer B5.
  • FIG. 5A shows a state in which the insulation coating material 46 of the coil side portion 71 of the first layer B1 shown in FIG. 5B is deformed into a perfect circle by a two-dot chain line.
  • a state where the insulating coating material 46 of the coil side portion 71 of the fifth layer B5 shown in 5 (c) is deformed into a perfect circle is indicated by another two-dot chain line.
  • the insulating coating material 46 in the state shown in FIG. It is necessary to make the perimeter of the orthogonal cross section longer than the perimeter of the orthogonal cross section of the insulation coating material 46 in the state shown in FIG. 5A, and further, the insulation coating in the state shown in FIG. It is necessary to make the circumference of the orthogonal cross section of the material 46 longer than the circumference of the orthogonal cross section of the insulating coating material 46 in the state shown in FIG.
  • the reference peripheral length Z of the insulating coating material 46 of the coil side portion 71 is determined based on the aspect ratio in a state where the coil side portion 71 is disposed in the slot 22. The length is set longer as the ratio increases.
  • the reference circumferential length Z of the insulating coating material 46 of the coil side portion 71 is set to the width and diameter in the circumferential direction C in the orthogonal cross section in a state where the coil side portion 71 is disposed in the slot 22.
  • the absolute value of the dimensional difference from the width in the direction R is increased as the absolute value increases.
  • the reference circumferential length Z is the circumferential length of the orthogonal cross section of the insulating coating material 46 in a state where no external force is applied to the linear conductor 4 as described above with reference to FIG. .
  • a certain amount of force is required to change the shape of the orthogonal cross section of the bare conductor strand 42. Therefore, even when no external force is applied to the linear conductor 4, it is assumed that the peripheral length of the insulating coating material 46 is elastically extended by the force received from the bare conductor strand 42. .
  • the elastic extension amount of the circumferential length can be a different value depending on the shape of the orthogonal cross section of the bare conductor strand 42.
  • the linear conductor 4 in the state where no external force is acting on the linear conductor 4, the linear conductor 4 is generally considered to be stable in a state where the shape of the orthogonal cross section is a perfect circle. Therefore, in this specification, the reference circumferential length Z is the circumferential length of the orthogonal cross section of the insulating coating material 46 when the shape of the orthogonal cross section of the linear conductor 4 is a perfect circle. That is, the reference circumference Z basically matches the circumference (natural circumference) of the orthogonal cross section of the insulation coating material 46 when the bare conductor wire bundle 42 does not exist inside the insulation coating material 46. .
  • the insulating coating material 46 of the coil side portion 71 disposed in the first layer B1 that is the layer B in the radial direction R where the slot width W is the largest is at least one of the layers B other than the first layer B1.
  • the reference circumferential length Z is longer than the insulating covering material 46 of the coil side portion 71 arranged in the coil.
  • the insulating coating of the coil side portion 71 arranged in all the layers B other than the first layer B1 is used.
  • the reference circumferential length Z is longer than that of the material 46.
  • one of the plurality of coil side portions 71 and at least one other coil side portion 71 arranged in the same slot 22 are different in the reference circumferential length Z of the insulating coating material 46.
  • one of the plurality of coil side parts 71 and the other coil side parts 71 arranged in the same slot 22 have different reference peripheral lengths Z of the insulating covering material 46.
  • the insulating coating material 46 of the coil side portion 71 is changed.
  • the amount of elastic extension of the circumference can be kept short, and as a result, the process of winding the linear conductor 4 around the stator core 2 can be simplified.
  • the amount of elastic extension is determined according to the difference between the reference circumference Z and the design circumference having a value equal to or greater than the reference circumference Z.
  • the design circumference is a design circumference of an orthogonal cross section of the insulating coating material 46 in a state where the coil side portion 71 is disposed in the slot 22 (see FIG.
  • the reference peripheral length Z of the insulating coating material 46 is set to the same value as the design peripheral length for each of the plurality of coil side portions 71 disposed in the slot 22.
  • “same” includes a state where there is a difference due to an error (an error that is acceptable in manufacturing).
  • the restoring force (tension) generated in the insulating coating material 46 due to the elastic extension amount of the circumference of each coil side portion 71 is substantially suppressed to zero, and the linear conductor 4 is fixed to the stator core 2. It is possible to further simplify the winding process.
  • the reference circumferential length Z of the insulating coating material 46 is set to the same value as the design circumferential length. Therefore, each configuration described above regarding the setting of the length of the reference circumference Z is similarly established for the setting of the length of the design circumference.
  • one of the plurality of coil side portions 71 and at least one other (all other in this example) coil side portion 71 disposed in the same slot 22 are formed of the insulating coating material 46.
  • Design circumference is different.
  • the design peripheral length of the coil side portion 71 is set longer as the aspect ratio in the state where the coil side portion 71 is disposed in the slot 22 is increased.
  • the design peripheral length of the coil side portion 71 is the width between the circumferential direction C and the radial direction R in the orthogonal cross section when the coil side portion 71 is disposed in the slot 22. It is set longer as the absolute value of the dimensional difference increases. Further, in the present embodiment, the plurality of coil side portions 71 arranged in each of the slots 22 has a slot width W that increases based on the position in the radial direction R where each of the coil side portions 71 is arranged. Accordingly, the design circumference of the insulating coating material 46 is increased.
  • the reference peripheral length Z of the insulating coating material 46 of the coil side portion 71 is set shorter than the above-described design peripheral length. It is also possible to adopt a configuration. In this case, it is necessary to apply a pressing force in the radial direction R to the coil side portion 71 to elastically extend the circumferential length of the orthogonal cross section of the insulating coating material 46 to the design circumferential length.
  • the coil side portion 71 maintains a shape in a state where the coil side portion 71 is pressed by the pressing force in the radial direction R according to the difference between the reference circumferential length Z and the design circumferential length, and is in the slot 22. Be placed.
  • the reference circumferential length Z of the insulating coating material 46 is set to be shorter than the design circumferential length, at least a part of the configurations described above regarding the setting of the length of the reference circumferential length Z is the reference circumferential length. It is also possible to adopt a configuration that does not hold for the length Z but only holds for the design circumference.
  • the process of manufacturing the rotating electrical machine 100 includes a coil side pressurizing step # 01 and a coil side inserting step # 02, and the coil 3 constituted by the linear conductors 4 is a stator core.
  • the rotating electrical machine 100 wound around 2 is manufactured.
  • the coil side pressurizing step # 01 is a crossing direction E in which a portion corresponding to the coil side portion 71 in the linear conductor 4 (hereinafter referred to as “processing target portion”) intersects the extending direction A. This is a process of pressurizing (pressurizing process).
  • the part to be processed is set to a covered conductor wire bundle formed by covering the periphery of a bare conductor wire bundle 42 in which a plurality of bare conductor wires 41 are assembled with a flexible insulating coating material 46.
  • This is a region along the extending direction A.
  • the coil side pressurizing step # 01 the insulating coating material 46 at the site to be processed is plastically deformed to increase the circumferential length of the insulating coating material 46.
  • the coil side pressing step # 01 is a step of increasing the reference circumferential length Z of the insulating coating material 46. In the present embodiment, as shown in FIG.
  • the intersecting direction E is set to a direction orthogonal to the extending direction A.
  • the coil side insertion step # 02 is a step (insertion step) of inserting the processing target portion after being pressurized in the coil side pressurization step # 01 into the slot 22 from the opening 22b.
  • the pressure in the crossing direction E exceeding the elastic limit is applied to the insulation coating material 46 at the site to be processed in the linear conductor 4 to the insulation coating material 46 causess plastic deformation.
  • the heat treatment for the insulating coating material 46 is also performed.
  • the portion to be processed before the coil side pressurizing step # 01 is performed as shown in FIG. 4, the shape of the orthogonal cross section of the bare conductor strand 42 is a perfect circle.
  • This coil side pressurizing step # 01 is a step of manufacturing the linear conductor 4 for the coil of the rotating electrical machine, and the manufacturing method of the rotating electrical machine 100 according to the present embodiment includes the manufacturing process of the linear conductor 4. A coil side pressurizing step # 01 is included.
  • the reference circumferential length Z of the insulating coating material 46 of the coil side 71 is set to the slot width W based on the position in the radial direction R where the coil side 71 is disposed.
  • the amount of pressure applied to each of the plurality of processing target sites is set so that the length of the coil side portion 71 corresponding to each processing target site is positioned in the radial direction R (layer) in the slot 22 so as to increase as the size increases.
  • the aspect ratio of the orthogonal cross section of the coil side portion 71 increases as the slot width W increases, and the width in the circumferential direction C of the orthogonal cross section of the coil side portion 71 increases.
  • a plurality of reference peripheral lengths Z of the insulating coating material 46 of the coil side portion 71 are increased as the absolute value of the dimensional difference in the orthogonal cross section of the coil side portion 71 increases.
  • the amount of pressure applied to each of the processing target parts is varied according to the absolute value of the dimensional difference of the coil side portion 71 corresponding to each processing target part. In other words, pressure is applied to each of the plurality of processing target parts so that the reference peripheral length Z of the insulating coating material 46 of the coil side 71 increases as the aspect ratio in the orthogonal cross section of the coil side 71 increases.
  • the amount is varied according to the aspect ratio in the orthogonal cross section of the coil side portion 71 corresponding to each processing target portion.
  • the amount of pressurization in the cross direction E with respect to each processing target part is set so that the reference peripheral length Z of the insulating coating material 46 at the processing target part has the same value as the design peripheral length described above.
  • “same” includes a state where there is a difference due to an error (an error that is acceptable in manufacturing).
  • the processing target site in the linear conductor 4 is placed in the crossing direction E using the pressurizing jig 51. Pressurize.
  • the pressing jig 51 abuts on the linear conductor 4 from the one side in the cross direction E, and a first pressing portion having a contact surface that abuts on the linear conductor 4 from the other side in the cross direction E.
  • the pressing jig 51 is inserted into the pressing gap 51a between the first pressing portion and the second pressing portion in the linear conductor 4 by bringing the first pressing portion and the second pressing portion closer to each other in the crossing direction E.
  • the formed portion is flattened to such an extent that plastic deformation occurs.
  • part in the linear conductor 4 is adjusted by adjusting the width
  • the pressing portion of the pressing jig 51 has, for example, the same length in the axial direction L as the slot 22.
  • the increase of the reference circumferential length Z by the execution of the coil side pressing step # 01 is realized by reducing the thickness of the portion pressed by the pressing jig 51 in the insulating coating material 46. That is, as the reference circumferential length Z increases, the average value of the thickness of the insulating coating material 46 on the entire circumference decreases.
  • the plurality of coil side portions 71 arranged in each of the slots 22 is based on the position in the radial direction R where each of the coil side portions 71 is arranged. As W increases, the reference circumferential length Z of the insulating coating material 46 increases.
  • the plurality of coil side portions 71 arranged in each of the slots 22 have the slot width W increased based on the position in the radial direction R where each of the coil side portions 71 is arranged. Accordingly, the average value of the thickness of the insulating coating material 46 is reduced.
  • the coil side inserting step # 02 is executed.
  • the processing target portion pressed in the coil side pressurizing step # 01 is moved to the second radial direction R2 side so that the processing target portion is opened in the opening 22b.
  • the part to be processed was inserted into the slot 22 in a state where the circumferential width D was deformed so as to be the first circumferential width D1 narrower than the opening width W1. Then, it pushes in to the position (layer B) of the radial direction R where the said process target site
  • the shape of the orthogonal cross section of the processing target portion is changed so as to match the cross sectional shape of the slot 22 by pressing the processing target portion toward the second radial direction R2 side opposite to the opening direction of the slot 22.
  • a plurality of processing target parts (five in this example) are inserted into the slots 22, and the plurality of processing target parts are the slots 22. They are arranged in a line along the radial direction R inside.
  • the coil side inserting step # 02 is performed on the processing target portion. It can be any time before the time when is executed.
  • the coil side portion inserting step # 02 may be performed after the coil side portion pressing step # 01 is performed on all the processing target parts included in one linear conductor 4.
  • the insulation coating is performed in accordance with the increase in the slot width W based on the position in the radial direction R where each of the coil side 71 is disposed.
  • the amount of pressurization in the cross direction E with respect to the processing target site is set in accordance with the position (layer B) in the radial direction where the processing target site is arranged in the slot 22 so that the reference circumferential length Z of the material 46 increases.
  • the configuration to be different has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • the insulation coating material 46 is configured so that the reference circumference Z can be reduced by heating, and as shown in FIG.
  • the coil side heating step # 03 heats the coil side portion 71 inserted into the slot 22 by the coil side portion insertion step # 02 to heat the reference peripheral length Z of the insulating coating material 46 of the coil side portion 71.
  • This is a step (heating step) for reducing the amount of heat.
  • the insulating coating material 46 is made of a heat-shrinkable material such as FEP (a copolymer of tetrafluoroethylene and hexafluoropropylene), so that the reference circumference Z of the insulating coating material 46 can be increased by heating. Can be reduced. At this time, the amount of decrease in the reference circumferential length Z increases as the heating amount increases.
  • the reference circumference Z is set to at least one of the coil sides 71 arranged in the slot 22.
  • the amount of pressurization in the intersecting direction E with respect to the portion to be processed which is a portion corresponding to the coil side portion 71 in the linear conductor 4 is set so as to be longer than the above-described design circumference.
  • the same pressurization amount for all the coil side portions 71 specifically, the same value as the design circumference having the longest reference circumference Z (design circumference of the first layer B1 in the example shown in FIG. 2). It can be set as the structure which sets the pressurization amount which becomes.
  • the reference peripheral length Z of the insulating coating material 46 is set according to the increase in the slot width W based on the position in the radial direction R where each of the coil side parts 71 is arranged.
  • the heating amount for the coil side portion 71 is varied according to the position in the radial direction R where the coil side portion 71 is disposed so as to be longer. For example, it is preferable to set the heating amount for each coil side portion 71 so that the reference circumferential length Z of the insulating coating material 46 of the coil side portion 71 has the same value as the design circumferential length.
  • the coil side heating step # 03 for the coil side 71 may be performed each time one coil side 71 is inserted in the coil side insertion step # 02.
  • the coil side heating step # 03 is collectively performed on the plurality of coil side parts 71 inserted by # 02 (for example, all the coil side parts 71 arranged in the same slot 22). You can also.
  • the coil side heating step # 03 is performed in a state where the coil side 71 is pressed in the second radial direction R2 side and the coil side 71 is in contact with both side surfaces of the slot 22. Can do.
  • the portion to be processed after the coil side portion insertion step # 02 (insertion step) is pressurized in the coil side portion pressurization step # 01 (pressurization step)
  • the configuration which is the process of inserting into the above has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, in the flowchart shown in FIG. 6, a configuration in which the coil side pressing step # 01 and the coil side inserting step # 02 are interchanged is also a preferred embodiment of the present invention.
  • the coil side insertion step is a step of inserting the processing target site before being pressurized in the coil side pressurization step into the slot 22 from the opening 22b
  • the coil side pressurization step is the coil side pressurization step.
  • a first example shown in FIGS. 10 and 11 and a second example shown in FIGS. 12 to 15 will be described.
  • the processing target site (unprocessed site) before being pressurized by the coil side pressurizing step is inserted into the slot 22 by the coil side inserting step.
  • the flattening tool 52 is used to flatten the width in the circumferential direction C of the portion to be processed in the linear conductor 4 to be narrower than the width in the circumferential direction C of the opening 22 b of the slot 22.
  • the part to be processed is inserted into the slot 22.
  • the part to be processed in the linear conductor 4 is elastically deformed to flatten the shape of the orthogonal cross section, and after being inserted into the slot 22, the shape of the orthogonal cross section returns to a perfect circle.
  • the coil side pressurizing step is executed, and the portion to be processed in the linear conductor 4 inserted into the slot 22 is the diameter opposite to the opening direction of the slot 22. Pressurize in the second direction R2 side.
  • the processing target site is pressed from the first radial direction R1 side using the pressing jig 53 to increase the reference peripheral length Z of the insulating coating material 46 of the processing target site.
  • the coil side pressurizing step is collectively performed on a plurality of processing target portions arranged in the radial direction R, and each insulating coating material of the plurality of processing target portions is performed. 46, the reference circumference Z is increased.
  • a plurality of processing target portions are sequentially inserted into the slots 22 (see FIG. 10), and in the coil side portion pressurization step, all the portions to be disposed inside the slots 22 ( In this example, the five parts to be processed are pressed together to increase the reference circumferential length Z of each insulation coating material 46 of all the parts to be processed.
  • the pressing jig 53 is narrower in the circumferential direction C than the opening 22 b of the slot 22, and the pressing jig 53 is inserted into the slot 22 along the radial direction R. Is done.
  • the part to be processed (unprocessed part) before being pressurized by the coil side part pressurizing step is slotted.
  • the portion to be processed in the linear conductor 4 inserted into the inside of the slot 22 is subjected to the coil side pressurizing step so that the second radial direction R ⁇ b> 2 is opposite to the opening direction of the slot 22. Pressurize to the side.
  • the coil side pressurizing step is executed to pressurize the processing target site. That is, as shown in FIG.
  • the processing target portion as shown in FIG. 12
  • the coil side pressurizing step is executed.
  • FIG. 14 after inserting the processing target portion corresponding to the coil side portion 71 of the second layer B ⁇ b> 2 into the slot 22, the coil side with respect to the processing target portion as shown in FIG. 15.
  • a part pressurization process is performed.
  • the coil side inserting step and the coil side pressing step are repeatedly executed until the coil side 71 of the fifth layer B5 is inserted.
  • the tip of the pressing jig 53 is wider in the circumferential direction C than the opening 22 b of the slot 22, and the pressing jig 53 extends in the axial direction L. Then, it is moved along the radial direction R.
  • the configuration is such that the portion to be processed in the linear conductor 4 is arranged inside the slot 22 in an arbitrary arrangement direction. Described as an example. However, the embodiment of the present invention is not limited to this. That is, it is also a preferred embodiment of the present invention that the processing target portion is arranged in the slot 22 in a predetermined arrangement direction.
  • FIGS. 16 and 17 and a fourth example shown in FIG. 18 will be described. 16 and 18, in order to facilitate the understanding of the invention, the insulating coating material 46 is insulated against the pressing target portion 46a (see FIG.
  • the covering material 46 is shaded deeper than the non-pressing portion 46b other than the pressing target portion 46a. 16 and 18, for the sake of simplicity, the circumferential width C of the slot 22 is shown to be uniform along the radial direction R. As a result, the coil sides 71 are the same as each other. It is shown to have a cross-sectional shape.
  • the slot insulating portion 24 as an insulating portion that electrically insulates the coil side portion 71 and the stator core 2 (including the teeth 23) is a slot. 22 is provided along the inner surface.
  • the inner surface of the slot 22 is formed by a wall surface portion (a portion including the tooth side surface 23 a) that forms the slot 22 in the stator core 2.
  • the coil side portion insertion step # 02 is performed after the insulation step # 04 in which the slot insulating portion 24 is provided along the inner surface of the slot 22.
  • the insulating step # 04 is a step of applying the coating to the inner surface of the slot 22, and the slot insulating portion 24 is formed by the slot insulating sheet. In this case, the sheet is disposed along the inner surface of the slot 22.
  • the portion to be processed is inserted into the slot 22 in which the slot insulating portion 24 is provided in the insulating step # 04, and the portion to be processed is placed in the slot 22 in a predetermined arrangement direction. Place inside.
  • the arrangement direction of the processing target portion is set such that the pressing target portion 46 a of the insulating coating material 46 faces the circumferential direction C with respect to the slot insulating portion 24.
  • the coil side portion 71 has a first portion 71 a extending in the radial direction R at each end portion on both sides in the circumferential direction C, and the circumferential direction C at each end portion on both sides in the radial direction R.
  • the second portion 71b extends in the direction.
  • a plurality of coil side portions 71 are arranged inside the slot 22, and the plurality of coil side portions 71 include a target coil side portion 73.
  • the first portion 71 a is in contact with the slot insulating portion 24 while facing the circumferential direction C, and the second portion 71 b is opposed to the other coil side portion 71 in the radial direction R.
  • the portion to be processed constituting the coil side portion 71 is disposed such that the pressing target portion 46 a of the insulating coating material 46 faces the slot insulating portion 24 in the circumferential direction C. Therefore, at least a part of the first portion 71a of the target coil side portion 73 is formed by the pressing target portion 46a. On the other hand, at least a part of the second portion 71b of the target coil side portion 73 is formed by the pressing non-target portion 46b.
  • the entire first portion 71a is formed by the pressing target portion 46a
  • the entire second portion 71b is formed by the pressing non-target portion 46b.
  • angular part in the rectangular cross section of the coil side part 71) of the 1st part 71a and the 2nd part 71b is formed of the pressing object part 46a.
  • the extension length of the pressing target portion 46a in the orthogonal cross section is set to be larger than the extension length of the first portion 71a in the orthogonal cross section.
  • the extension length in the orthogonal cross section of the pressing non-target portion 46b is larger than the extension length in the orthogonal cross section of the second portion 71b, a part or the whole of the connecting portion is formed by the pressing non-target portion 46b.
  • a formed configuration is also possible.
  • the pressing target portion 46a is a portion pressed in the coil side pressing step # 01 (in the example of the above embodiment, a portion pressed by the pressing jig 51 shown in FIG. 7B). Therefore, after execution of coil side part pressurization process # 01, the average value of the thickness of the pressing target part 46a becomes smaller than the average value of the thickness of the pressing non-target part 46b. This is because the pressing target portion 46a is plastically extended by the execution of the coil side pressurizing step # 01 and, as schematically shown in FIG. 16, when the coil side pressurizing step # 01 is executed.
  • the insulation coating material 46 of the target coil side portion 73 has an average thickness value in the first portion 71a smaller than an average thickness value in the second portion 71b.
  • the average value of the thickness of the insulating coating material 46 in the first portion 71a may be about 9/10 or about 3/4 of the average thickness of the insulating coating material 46 in the second portion 71b. it can.
  • the minimum value of the thickness of the insulating coating material 46 in the first portion 71a (thickness of the thinnest portion) is two thirds of the minimum value of the thickness of the insulating coating material 46 in the second portion 71b (thickness of the thinnest portion). It can be set as the structure which is a grade or a half.
  • the coil side portions 71 other than the target coil side portion 73 may be included in the plurality of coil side portions 71 arranged inside the slot 22.
  • the coil side 71 arranged in the first layer B1 and the coil side 71 arranged in the fifth layer B5 are different from the target coil side 73, Only one of the second portions 71 b on both sides in the radial direction R is disposed so as to be opposed to and contact the other coil side portion 71 in the radial direction R.
  • such a coil side portion 71 can also be disposed so that the pressing target portion 46 a faces the slot insulating portion 24 in the circumferential direction C.
  • a portion (hereinafter referred to as “target portion”) disposed on the second radial direction R2 side of the coil side portion 71 of the first layer B1 in the slot insulating portion 24 is more than the other portion of the slot insulating portion 24. Insulation performance can also be relaxed. That is, for example, when the slot insulating portion 24 is formed by insulating powder coating, the coating thickness of the target portion can be reduced, and when the slot insulating portion 24 is formed by a slot insulating sheet. The thickness of the sheet of the target portion can be reduced, or the number of overlapping sheets of the target portion can be reduced.
  • the slot insulating portion 24 is not provided inside the slot 22.
  • the processing direction of the linear conductor 4 is such that the non-pressing portion 46 b of the insulating coating 46 is in the circumferential direction C with respect to the inner surface of the slot 22.
  • the facing direction is set.
  • a plurality of processing target parts are arranged inside the slot 22 in the coil side portion insertion step # 02.
  • the first portion 71 a is in contact with the inner surface of the slot 22 facing the inner surface of the slot 22 in the circumferential direction C
  • the target coil side portion 74 is included, which is the coil side portion 71 in which the two portions 71b are in contact with the other coil side portions 71 in the radial direction R.
  • the portion to be processed constituting the coil side portion 71 is disposed so that the non-pressing portion 46 b of the insulating coating material 46 faces the inner surface of the slot 22 in the circumferential direction C. . Therefore, at least a part of the first portion 71a of the target coil side portion 74 is formed by the pressing non-target portion 46b.
  • at least a part of the second portion 71b of the target coil side portion 74 is formed by the pressing target portion 46a.
  • the entire first portion 71a of the target coil side 74 is formed by the non-pressing portion 46b, and the entire second portion 71b is formed by the pressing target portion 46a.
  • the average value of the thickness in the 1st part 71a is larger than the average value of the thickness in the 2nd part 71b.
  • the average value of the thickness of the insulating coating material 46 in the second portion 71b may be about 9/10 or about 3/4 of the average thickness of the insulating coating material 46 in the first portion 71a. it can.
  • the minimum value of the thickness of the insulating coating material 46 in the second portion 71b is two thirds of the minimum value of the thickness of the insulating coating material 46 in the first portion 71a (thickness of the thinnest portion). It can be set as the structure which is a grade or a half. In the example shown in FIG. 18, the entire connection portion between the first portion 71 a and the second portion 71 b is formed by the pressing non-target portion 46 b. A part or the whole of the connecting portion may be formed by the pressing target portion 46a.
  • the coil side portions 71 other than the target coil side portion 74 may be included in the plurality of coil side portions 71 arranged inside the slot 22.
  • the coil side portion 71 may be included in the plurality of coil side portions 71.
  • such a coil side portion 71 can also be arranged so that the pressing non-target portion 46 b of the insulation coating material 46 faces the inner surface of the slot 22 in the circumferential direction C. .
  • one of the second portions 71b on both sides in the radial direction R is arranged so as to be opposed to and contact the other coil side portion 71 in the radial direction R, and the other second portion 71b is the diameter of the slot 22.
  • the pressing non-target portion 46 b of the insulating coating material 46 faces the circumferential direction C with respect to the inner surface of the slot 22.
  • the slot insulating portion 24 is provided between the coil side portion 71 and the inner surface of the slot 22 facing the radial direction R.
  • a configuration in which the slot insulating portion 24 is provided on the entire inner surface of the slot 22 is also possible.
  • the plurality of coil sides 71 arranged in each of the slots 22 has a slot width W that is large based on the position in the radial direction R where each of the coil sides 71 is arranged.
  • the configuration in which the reference circumferential length Z of the insulating coating material 46 is increased according to the above is described as an example.
  • the embodiment of the present invention is not limited to this.
  • the reference peripheral length Z of the insulating coating material 46 can be shortened as the slot width W increases between some of the coil sides 71. For example, when the cross-sectional area of the coil side portion 71 is set to be larger in the example shown in FIG.
  • the shape of the orthogonal cross section of the coil side portion 71 arranged closest to the first radial direction R1 is the circumferential direction. It is assumed that the width in the radial direction R is larger than the width of C. In such a case, the insulating coating material 46 of the coil side 71 arranged in the layer B at the position in the radial direction R where the slot width W is the smallest is the coil side 71 arranged in any other layer B.
  • the reference circumferential length Z can be longer than that of the insulating coating material 46. That is, between these coil side parts 71, as the slot width W increases, the reference circumferential length Z of the insulating coating material 46 decreases.
  • the reference circumferential length Z of the insulating coating material 46 of the coil side portion 71 disposed in the layer B located in the radial direction R where the slot width W is the smallest is the radial direction where the slot width W is the largest. It can be equal to or greater than the reference circumferential length Z of the insulating coating material 46 of the coil side portion 71 disposed in the layer B (specific layer) at the position of R.
  • the insulation coating material 46 of the coil side portion 71 arranged in the specific layer is arranged not in all the layers B other than the specific layer but in some layers B other than the specific layer.
  • the reference circumferential length Z is longer than that of the insulation coating material 46 of the coil side portion 71 that has been made.
  • the present invention includes such a configuration within the scope of rights.
  • the slot 22 is formed so that the slot width W gradually increases toward the second radial direction R2, and the first layer B1 is a specific layer. did.
  • the embodiment of the present invention is not limited to this.
  • the shape of the slot 22 is changed, and the layer B (the second layer B2, the third layer B3, or the fourth layer B4 in the example shown in FIG. 2) at the middle position in the radial direction R, or the The layer B (the fifth layer B5 in the example shown in FIG. 2) at the position on the one direction R1 side may be a layer B (specific layer) at the position in the radial direction R where the slot width W is the largest. Is possible.
  • one of the plurality of coil side portions 71 and the other coil side portions 71 arranged in the same slot 22 have different reference peripheral lengths Z of the insulating coating material 46.
  • the configuration has been described as an example. However, the embodiment of the present invention is not limited to this. That is, inside the slot 22, a plurality of coil side portions 71 having the same reference circumferential length Z of the insulating coating material 46 are disposed, and one of the plurality of coil side portions 71 is disposed in the same slot 22. It is also possible to adopt a configuration in which the reference peripheral length Z of the insulating coating material 46 is different from some other coil side portions 71.
  • the configuration in which the coil side portion 71 is divided into the five layers B inside the slot 22 has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the coil side portion 71 is divided into an odd number (for example, three, seven, etc.) of layers B other than “5”, and the coil side portion 71 is an even number (for example, two, four, etc.). It is also one of the preferred embodiments of the present invention to have a configuration in which the layer B is divided and disposed.
  • the configuration in which the bare conductor wire 41 corresponds to the “conductor wire” in the present invention has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, a conductor wire (covered conductor wire) provided with an insulating film made of an electrically insulating material such as a resin (eg, polyamideimide resin or polyimide resin) on the surface is used as the “conductor wire” in the present invention.
  • a configuration in which a periphery of a bundle of coated conductor strands in which a plurality of the coated conductor strands are assembled is further covered with an insulating coating material 46 may be employed.
  • the circumferential width D in a state where the shape of the orthogonal cross section of the unprocessed portion of the linear conductor 4 is a perfect circle is set to be larger than the opening width W1 of the slot 22.
  • the configuration has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the circumferential width D in a state where the shape of the orthogonal cross section of the unprocessed portion of the linear conductor 4 is a perfect circle may be set to be equal to or smaller than the opening width W1 of the slot 22.
  • the configuration in which the shape of the cross section orthogonal to the extending direction of the bare conductor wire 41 is a circular shape has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the cross-sectional shape of the bare conductor wire 41 may be various polygonal shapes such as a quadrangular shape, a triangular shape, a pentagonal shape, a hexagonal shape, and an octagonal shape.
  • the configuration in which the slot 22 has the opening 22b on the radial first direction R1 side, which is the direction toward the inner side in the radial direction R has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, it is also possible to employ a configuration in which the slot 22 has an opening on the radial second direction R2 side, which is a direction toward the outside of the radial direction R. That is, the present invention can also be applied to an outer rotor type rotating electrical machine in which the rotor is disposed on the second radial direction R2 side of the stator.
  • stator core 2 is formed by laminating a plurality of annular plate-like magnetic plates 7 in the axial direction L
  • the embodiment of the present invention is not limited to this.
  • the stator core 2 may have a configuration in which a compact material formed by pressing a magnetic material powder is formed as a main component.
  • the stator core 2 can be formed integrally in both the radial direction R and the axial direction L in addition to the circumferential direction C.
  • stator core 2 corresponds to the “core” in the present invention
  • the embodiment of the present invention is not limited to this.
  • the present invention is applied to a fixed field type rotating electrical machine, and the core to be wound by the coil 3 is a rotor core, that is, the rotor core corresponds to the “core” in the present invention. It is also possible.
  • the “core” according to the present invention can be applied to an armature core other than the stator core 2.
  • the coil 3 may be configured to have a single-layer winding structure, and a single machining target site may be inserted into the slot 22 in the coil side portion insertion step # 02.
  • the shape of the orthogonal cross section of the coil side portion 71 is the same rectangular shape for all the coil side portions 71 arranged in the same slot 22, and the insulating coating material for the coil side portion 71 is used.
  • the circumferential length 46 (reference circumferential length Z or design circumferential length) may be the same for all the coil side portions 71 arranged in the same slot 22.
  • the configuration in which the pressurizing step is the coil side pressurizing step # 01 in which the portion corresponding to the coil side portion 71 in the coated conductor strand bundle is the processing target portion has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • a portion corresponding to a coil end portion in the coated conductor wire bundle can be set as a processing target portion in the pressurizing step.
  • the bare conductors 41 Processing so that the difference between the radius of the perfect circle circumscribing the strand of wire 42 and the radius of the circle whose circumferential length is the reference circumferential length Z of the insulation coating material 46 is at least equal to or larger than the diameter of the bare conductor strand 41. It is preferable to set the amount of pressure applied to the target part.
  • the present invention can be suitably used in a manufacturing method for manufacturing a linear conductor for a coil of a rotating electrical machine and a manufacturing method of a rotating electrical machine including the manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Provided is a method for manufacturing a linear conductor enabling a core to be wrapped at a high space factor. The method for manufacturing a linear conductor uses a sheathed conductor-wire bundle configured by using a flexible insulating sheathing (46) to sheath the circumference of a conductor-wire bundle in which multiple conductor wires are collected, the method having a pressurizing step for subjecting a processing-designated region of the coated conductor-wire bundle to pressurization in an intersecting direction (E) intersecting the direction in which the conductor-wire bundle extends. In the pressurizing step, the insulating sheathing (46) in the processing-designated region is plastically deformed, so that the perimeter of the processing-designated region (46) is increased in the perpendicular cross-section, which is a cross-section intersecting the extension direction.

Description

線状導体の製造方法及び回転電機の製造方法Method for manufacturing linear conductor and method for manufacturing rotating electrical machine
 本発明は、回転電機のコイル用の線状導体を製造するための製造方法、及び、当該製造方法を含む回転電機の製造方法に関する。 The present invention relates to a manufacturing method for manufacturing a linear conductor for a coil of a rotating electrical machine, and a manufacturing method of a rotating electrical machine including the manufacturing method.
 回転電機のコイル用の線状導体に関する従来技術として、例えば特開2011-91943号公報(特許文献1)に記載された技術がある。以下、この背景技術の欄の説明では、〔〕内に特許文献1における部材名や符号を引用して説明する。特許文献1には、導体素線〔導体41〕を複数本集合させた導体素線束〔導体束44〕の周囲を変形可能な絶縁被覆材〔絶縁体43〕により被覆して構成される線状導体〔巻線42〕を、回転電機のコイル用の線状導体として用いる技術が記載されている。特許文献1の構成では、当該文献の図8に示されるように、ティース毎に分割された分割コア〔ステータコア11〕に対して線状導体を扁平させた状態で巻きつけた後、成形型〔スライド型47〕を移動させて線状導体の断面形状を変形させることで、当該文献の図9に示されるように線状導体が分割コアに巻装された状態が実現される。 As a conventional technique related to a linear conductor for a coil of a rotating electrical machine, there is a technique described in, for example, Japanese Unexamined Patent Application Publication No. 2011-91943 (Patent Document 1). Hereinafter, in the description of the column of the background art, member names and symbols in Patent Document 1 are quoted in []. Patent Document 1 discloses a linear configuration in which a conductor wire bundle [conductor bundle 44] in which a plurality of conductor wires [conductor 41] are assembled is covered with a deformable insulating coating material [insulator 43]. A technique is described in which the conductor [winding 42] is used as a linear conductor for a coil of a rotating electrical machine. In the configuration of Patent Document 1, as shown in FIG. 8 of the document, after the linear conductor is wound around the divided core [stator core 11] divided for each tooth, the forming die [ By moving the slide mold 47] to deform the cross-sectional shape of the linear conductor, a state in which the linear conductor is wound around the split core as shown in FIG. 9 of the document is realized.
 ところで、特許文献1の構成では、当該文献の図8に示されるように、線状導体におけるコイル辺部を構成する部分(以下、単に「コイル辺部」という。)の絶縁被覆材の周長は、全てのコイル辺部について同一となっている。一方、当該文献の図9に示されるように、複数のコイル辺部のそれぞれの最終的な断面形状は、各コイル辺部の配置位置に応じて互いに異なる形状となる。ここで、導体素線束を構成する複数の導体素線の断面積の総和は一定であるのに対し、絶縁被覆材の内部面積は、コイル辺部の断面形状の扁平の度合が低下するのに応じて大きくなる傾向がある。そのため、特許文献1の構成では、図9において最も径方向内側(図中下側)に配置されるコイル辺部のように、図8に示される状態との間で断面形状の扁平の度合が大きく異なるコイル辺部について、導体素線束を構成する複数の導体素線の断面積の総和と絶縁被覆材の内部面積との面積差が大きくなることによって、絶縁被覆材にシワが発生するおそれがある。なぜなら、複数のコイル辺部は、隣接するコイル辺部同士の間の隙間が小さくなるように配置されるため、各コイル辺部には、隣接するコイル辺部からの押圧力が作用するからである。このような絶縁被覆材のシワは、コイルの占積率の低下や回転電機の信頼性の低下の要因となるおそれがある。 By the way, in the structure of patent document 1, as shown in FIG. 8 of the said document, the perimeter of the insulation coating material of the part (henceforth a "coil side part") which comprises the coil side part in a linear conductor. Is the same for all coil sides. On the other hand, as shown in FIG. 9 of the document, the final cross-sectional shape of each of the plurality of coil sides is different from each other depending on the arrangement position of each coil side. Here, while the sum of the cross-sectional areas of the plurality of conductor strands constituting the conductor strand bundle is constant, the internal area of the insulation coating material is reduced in the degree of flatness of the cross-sectional shape of the coil side portion. There is a tendency to increase accordingly. Therefore, in the configuration of Patent Document 1, the degree of flatness of the cross-sectional shape between the state shown in FIG. 8 and the coil side portion arranged at the innermost radial direction (lower side in the drawing) in FIG. There is a risk that wrinkles will occur in the insulation coating material due to the large area difference between the total cross-sectional area of the plurality of conductor wires constituting the conductor wire bundle and the internal area of the insulation coating material for the coil sides that are greatly different. is there. This is because a plurality of coil sides are arranged so that a gap between adjacent coil sides becomes small, and a pressing force from adjacent coil sides acts on each coil side. is there. Such wrinkles of the insulating coating material may cause a decrease in the coil space factor and a decrease in the reliability of the rotating electrical machine.
特開2011-91943号公報(段落0049~0053、図5~図9)Japanese Unexamined Patent Publication No. 2011-91943 (paragraphs 0049 to 0053, FIGS. 5 to 9)
 そこで、高い占積率でコアに巻装することが容易な線状導体を製造するための製造方法の実現や、高い占積率で線状導体がコアに巻装された回転電機を製造するための製造方法の実現が望まれる。 Therefore, realization of a manufacturing method for manufacturing a linear conductor that can be easily wound around the core with a high space factor, and a rotating electrical machine in which the linear conductor is wound around the core with a high space factor. Realization of a manufacturing method for this purpose is desired.
 本発明に係る、回転電機のコイル用の線状導体を製造するための製造方法の特徴構成は、導体素線を複数本集合させた導体素線束の周囲を、可撓性の絶縁被覆材により被覆して構成されている被覆導体素線束を用い、当該被覆導体素線束における加工対象部位を前記導体素線束の延在方向に対して交差する交差方向に加圧する加圧工程を有し、前記加圧工程では、前記加工対象部位の前記絶縁被覆材を塑性変形させて、前記延在方向に対して直交する断面である直交断面における、前記絶縁被覆材の周長を増加させる点にある。 The characteristic configuration of the manufacturing method for manufacturing a linear conductor for a coil of a rotating electrical machine according to the present invention is that a conductor wire bundle in which a plurality of conductor wires are assembled is surrounded by a flexible insulating coating material. Using a coated conductor wire bundle configured to be covered, and having a pressurizing step of pressurizing a processing target site in the covered conductor wire bundle in an intersecting direction intersecting an extending direction of the conductor wire bundle, In the pressurizing step, the insulating coating material at the site to be processed is plastically deformed to increase the peripheral length of the insulating coating material in an orthogonal cross section that is a cross section orthogonal to the extending direction.
 ここで、「導体素線束の周囲」とは、当該導体素線束の延在方向に直交する平面での断面の周囲(外周)のことである。 Here, the “periphery of a conductor wire bundle” means the periphery (outer periphery) of a cross section in a plane orthogonal to the extending direction of the conductor wire bundle.
 上記の特徴構成によれば、加圧工程により絶縁被覆材の直交断面における周長(以下、単に「周長」という。)を塑性的に伸長させることができるため、加工対象部位の絶縁被覆材の周長を調整することができる。よって、加工対象部位について、絶縁被覆材の周長と、導体素線束に外接する外接曲線の周長との周長差を短く抑えることができ、結果、絶縁被覆材にシワが発生することを抑制して、コイルの占積率を高めることが容易となる。
 補足説明すると、導体素線束を構成する導体素線の本数は一定であるため、導体素線束を構成する複数の導体素線が高い密集度で集合する場合の上記外接曲線の周長は、導体素線束の直交断面の形状に応じて変化する。上記の特徴構成によれば、加工対象部位の最終的な直交断面の形状に合わせて絶縁被覆材の周長を調整し、絶縁被覆材の周長と上記外接曲線の周長との周長差を短く抑えることができる。よって、加工対象部位が、スロット内に配置されるコイルの部分であるコイル辺部となるように、線状導体をコアに巻装することで、コイル辺部の絶縁被覆材にシワが発生することを抑制することができ、結果、コイルの占積率を高めることができる。
 以上のように、上記の特徴構成によれば、高い占積率でコアに巻装することが容易な線状導体を製造することができる。
According to said characteristic structure, since the circumference in the orthogonal cross section of insulation coating material (henceforth only "perimeter") can be extended plastically by a pressurization process, the insulation coating material of the site | part to be processed Can be adjusted. Therefore, for the part to be processed, the circumference difference between the circumference of the insulation coating material and the circumference of the circumscribed curve circumscribing the conductor wire bundle can be kept short, and as a result, wrinkles occur in the insulation coating material. It is easy to suppress and increase the coil space factor.
Supplementally, since the number of conductor strands constituting the conductor strand bundle is constant, the perimeter of the circumscribed curve when a plurality of conductor strands constituting the conductor strand bundle are gathered with high density is the conductor It changes according to the shape of the orthogonal cross section of the wire bundle. According to the above characteristic configuration, the circumferential length of the insulating coating material is adjusted in accordance with the shape of the final orthogonal cross section of the part to be processed, and the circumferential length difference between the circumferential length of the insulating coating material and the circumferential length of the circumscribed curve Can be kept short. Therefore, wrinkles are generated in the insulation coating material on the coil side portion by winding the linear conductor around the core so that the processing target portion becomes the coil side portion that is a portion of the coil disposed in the slot. This can be suppressed, and as a result, the space factor of the coil can be increased.
As described above, according to the above characteristic configuration, it is possible to manufacture a linear conductor that can be easily wound around the core with a high space factor.
 本発明に係る回転電機の製造方法の特徴構成は、上述した線状導体の製造方法を含み、円筒状のコア基準面の軸方向に延びるスロットが当該コア基準面の周方向に複数分散配置されているコアに、前記線状導体により構成されたコイルが巻装された回転電機を製造する製造方法であり、前記加圧工程では、前記被覆導体素線束における、前記スロット内に配置される前記コイルの部分であるコイル辺部に相当する部位を、前記加工対象部位とし、前記スロット内に前記加工対象部位を挿入する挿入工程を有する点にある。 The characteristic configuration of the method for manufacturing a rotating electrical machine according to the present invention includes the above-described method for manufacturing a linear conductor, and a plurality of slots extending in the axial direction of a cylindrical core reference surface are distributed in the circumferential direction of the core reference surface. In the manufacturing method of manufacturing a rotating electrical machine in which a coil composed of the linear conductor is wound around a core, and in the pressurizing step, the coated conductor strand bundle is arranged in the slot. A part corresponding to a coil side part which is a coil part is set as the part to be processed, and an insertion step of inserting the part to be processed into the slot is provided.
 上記の特徴構成によれば、コアに巻装される線状導体が、上述したように高い占積率でコアに巻装することが容易な線状導体であるため、高い占積率で線状導体がコアに巻装された回転電機を製造することができる。 According to the above characteristic configuration, the linear conductor wound around the core is a linear conductor that can be easily wound around the core with a high space factor as described above. It is possible to manufacture a rotating electrical machine in which a conductor is wound around a core.
 ここで、前記挿入工程では、前記加圧工程により加圧した後の前記加工対象部位を、前記スロット内に挿入する構成とすると好適である。 Here, in the insertion step, it is preferable that the portion to be processed after being pressurized in the pressurization step is inserted into the slot.
 この構成によれば、加圧工程では、挿入工程によりスロット内に挿入した後の加工対象部位に対して加圧処理を実行する場合に比べて、例えば加圧工程に用いる治具等の装置の形状や寸法等に関する制約を緩和することができ、加圧工程を簡素な工程とすることができる。
 また、この構成によれば、加工対象部位の絶縁被覆材の周長と、当該加工対象部位に対応するコイル辺部の最終的な断面形状に応じた上記外接曲線の周長との周長差が、短い状態で、挿入工程を実行することができる。よって、挿入工程では加圧工程により加圧する前の加工対象部位をスロット内に挿入する場合に比べて、挿入工程の実行時に、絶縁被覆材に発生する復元力を小さく抑えつつ、加工対象部位の直交断面の形状を、スロット内において、当該加工対象部位に対応するコイル辺部の最終的な断面形状に変化させることが容易となり、結果、製造工程の簡素化を図ることができる。
According to this configuration, in the pressurization process, compared to the case where the pressurization process is performed on the processing target portion after being inserted into the slot by the insertion process, for example, a device such as a jig used in the pressurization process Restrictions on the shape, dimensions, etc. can be relaxed, and the pressurization process can be simplified.
Further, according to this configuration, the circumference difference between the circumference of the insulating coating material at the site to be processed and the circumference of the circumscribed curve according to the final cross-sectional shape of the coil side corresponding to the site to be processed However, the insertion process can be executed in a short state. Therefore, in the insertion process, the restoring force generated in the insulating coating material is suppressed at the time of execution of the insertion process as compared with the case where the processing target part before being pressurized in the pressurizing process is inserted into the slot. It is easy to change the shape of the orthogonal cross section to the final cross sectional shape of the coil side portion corresponding to the processing target site in the slot, and as a result, the manufacturing process can be simplified.
 上記のように、前記挿入工程では、前記加圧工程により加圧した後の前記加工対象部位を、前記スロット内に挿入する構成において、前記コイル辺部と前記コアとを電気的に絶縁する絶縁部を、前記スロットの内面に沿って設ける絶縁工程を更に有し、前記挿入工程では、前記絶縁工程により前記絶縁部が設けられた前記スロットの内部に、前記加工対象部位を挿入すると共に、予め定められた配置方向で前記加工対象部位を前記スロットの内部に配置し、前記配置方向は、前記絶縁被覆材における前記加圧工程での押圧対象部分が、前記絶縁部に対して前記周方向に対向する向きである構成とすると好適である。 As described above, in the insertion step, the insulating portion that electrically insulates the coil side portion and the core in the configuration in which the portion to be processed after being pressed in the pressing step is inserted into the slot. An insulating step of providing a portion along the inner surface of the slot, and in the inserting step, the portion to be processed is inserted into the slot in which the insulating portion is provided by the insulating step. The portion to be processed is arranged inside the slot in a predetermined arrangement direction, and the arrangement direction is such that the portion to be pressed in the pressing step in the insulating coating material is in the circumferential direction with respect to the insulating portion. It is preferable to adopt a configuration in which they face each other.
 この構成によれば、コイル辺部とコアとの間の電気的絶縁性と、コイル辺部と当該コイル辺部に対して径方向に隣接して配置される他部材(以下、この段落において単に「他部材」という。)との間の電気的絶縁性との双方を、適切に確保することが容易となる。補足説明すると、加圧工程の実行により、絶縁被覆材の押圧対象部分の厚み(例えば、平均値或いは最小値、以下同様)は、一般的に、絶縁被覆材における押圧対象部分以外の部分(押圧非対象部分)の厚みよりも小さくなる。なぜなら、押圧対象部分は、押圧工程の実行により塑性的に伸長することに加えて、押圧工程の実行時に導体素線が押圧対象部分の内面に押し付けられて、押圧対象部分における導体素線がめり込んだ部分が薄くなり易いからである。また、上記の構成では、絶縁工程によりスロットの内面に沿って絶縁部が設けられるため、コイル辺部とスロットの内面(すなわちコア)との間の電気的絶縁性の確保を、コイル辺部の絶縁被覆材に加えて、絶縁部を用いて行うことができる。これに対し、コイル辺部と他部材との間の電気的絶縁性の確保は、例えば他部材が他のコイル辺部である場合には、主に、これら2つのコイル辺部の絶縁被覆材のみを用いて行う必要がある。そのため、絶縁被覆材に要求される絶縁性能は、一般的に、コイル辺部と他部材との間に比べて、コイル辺部と絶縁部との間の方が低くなる。これらの点に鑑みて、上記の構成によれば、押圧対象部分が絶縁部に対して周方向に対向するように、加工対象部位が配置される。すなわち、厚みが小さい方の押圧対象部分が、コイル辺部の絶縁部との対向部に配置され、厚みが大きい方の押圧非対象部分が、コイル辺部の他部材との対向部に配置される。この結果、コイル辺部とコアとの間の電気的絶縁性と、コイル辺部と他部材との間の電気的絶縁性との双方を、適切に確保することが容易となる。 According to this configuration, the electrical insulation between the coil side and the core, and the coil side and another member disposed adjacent to the coil side in the radial direction (hereinafter simply referred to in this paragraph) It is easy to appropriately ensure both the electrical insulation between the “other member” and the other member. As a supplementary explanation, the thickness (for example, the average value or the minimum value, the same applies hereinafter) of the insulating coating material by pressing the insulating coating material is generally the portion other than the pressing target portion (pressing material) in the insulating coating material. It becomes smaller than the thickness of the non-target portion. This is because, in addition to the plastic target extending by the execution of the pressing step, the pressing target portion is pressed against the inner surface of the pressing target portion during the pressing step, and the conductor strand in the pressing target portion is indented. This is because the portion is easily thinned. Further, in the above configuration, since the insulating portion is provided along the inner surface of the slot by the insulating process, it is possible to ensure electrical insulation between the coil side portion and the inner surface (that is, the core) of the slot. In addition to the insulating coating material, the insulating portion can be used. On the other hand, the electrical insulation between the coil side and the other member is mainly achieved when, for example, the other member is another coil side, the insulation coating material for these two coil sides. Need to be used only. Therefore, the insulation performance required for the insulation coating material is generally lower between the coil side and the insulating part than between the coil side and the other member. In view of these points, according to the above configuration, the portion to be processed is arranged such that the portion to be pressed is opposed to the insulating portion in the circumferential direction. That is, the pressing target portion with the smaller thickness is disposed in the facing portion of the coil side portion with the insulating portion, and the pressing non-target portion with the larger thickness is disposed in the facing portion with the other member of the coil side portion. The As a result, it becomes easy to appropriately ensure both the electrical insulation between the coil side and the core and the electrical insulation between the coil side and the other member.
 或いは、前記挿入工程では、前記加工対象部位を前記スロットの内部に複数挿入すると共に、予め定められた配置方向で複数の前記加工対象部位を前記スロットの内部に配置し、前記配置方向は、前記絶縁被覆材における前記加圧工程での押圧対象部分以外の押圧非対象部分が、前記スロットの内面に対して前記周方向に対向する向きである構成としても好適である。 Alternatively, in the inserting step, a plurality of the processing target portions are inserted into the slot, and a plurality of the processing target portions are disposed inside the slot in a predetermined arrangement direction, It is also preferable that the non-pressing target portion other than the pressing target portion in the pressurizing step in the insulating coating material is oriented in the circumferential direction with respect to the inner surface of the slot.
 この構成によれば、コイル辺部とコアとを電気的に絶縁する絶縁部をスロットの内面に沿って設けない場合であっても、コイル辺部とコアとの間の電気的絶縁性と、コイル辺部と当該コイル辺部に対して径方向に隣接して配置される他部材(以下、この段落において単に「他部材」という。)との間の電気的絶縁性との双方を、適切に確保することが容易となる。補足説明すると、上記のように、加圧工程の実行により、絶縁被覆材の押圧対象部分の厚みは、一般的に、絶縁被覆材の押圧非対象部分の厚みよりも小さくなる。また、他部材が他のコイル辺部である場合には、一般的に、コイル辺部とスロットの内面(すなわちコア)との間の電位差は、コイル辺部と他部材との間の電位差に比べて大きくなる。そのため、スロットの内面に沿って絶縁部を設けない場合には、絶縁被覆材に要求される絶縁性能は、一般的に、コイル辺部と他部材との間に比べて、コイル辺部とスロットの内面との間の方が高くなる。これらの点に鑑みて、上記の構成によれば、押圧非対象部分がスロットの内面に対して周方向に対向するように、加工対象部位が配置される。すなわち、厚みが大きい方の押圧非対象部分が、コイル辺部のスロットの内面との対向部に配置され、厚みが小さい方の押圧対象部分が、コイル辺部の他部材との対向部に配置される。この結果、コイル辺部とコアとの間の電気的絶縁性と、コイル辺部と他部材との間の電気的絶縁性との双方を、適切に確保することが容易となる。 According to this configuration, even if the insulating portion that electrically insulates the coil side portion and the core is not provided along the inner surface of the slot, the electrical insulation between the coil side portion and the core, Appropriate both electrical insulation between the coil side and another member (hereinafter simply referred to as “other member” in this paragraph) disposed radially adjacent to the coil side. It is easy to ensure. Supplementally, as described above, the thickness of the pressing target portion of the insulating coating material is generally smaller than the thickness of the non-pressing target portion of the insulating coating material by executing the pressing step. When the other member is another coil side, generally, the potential difference between the coil side and the inner surface of the slot (that is, the core) is the potential difference between the coil side and the other member. Compared to larger. Therefore, when the insulating portion is not provided along the inner surface of the slot, the insulating performance required for the insulating covering material is generally higher than that between the coil side portion and the other member. It is higher between the inner surface. In view of these points, according to the above configuration, the portion to be processed is arranged such that the non-pressing target portion is opposed to the inner surface of the slot in the circumferential direction. That is, the pressing non-target portion with the larger thickness is disposed at the facing portion of the coil side portion with the inner surface of the slot, and the pressing target portion with the smaller thickness is disposed at the facing portion with the other member of the coil side portion. Is done. As a result, it becomes easy to appropriately ensure both the electrical insulation between the coil side and the core and the electrical insulation between the coil side and the other member.
 上記の各構成の回転電機の製造方法において、前記挿入工程では、前記加工対象部位を前記スロットの内部に複数挿入し、前記加圧工程では、前記コイル辺部の前記直交断面における前記周方向の幅と前記直交断面における前記コア基準面の径方向の幅との寸法差の絶対値が大きくなるのに応じて前記コイル辺部の前記絶縁被覆材の前記周長が長くなるように、複数の前記加工対象部位のそれぞれに対する加圧量を、各加工対象部位に対応する前記コイル辺部の前記寸法差の絶対値に応じて異ならせる構成とすると好適である。 In the manufacturing method of the rotating electric machine having each configuration described above, in the insertion step, a plurality of the processing target portions are inserted into the slots, and in the pressing step, the circumferential direction in the orthogonal cross section of the coil side portion is inserted. In order to increase the peripheral length of the insulating covering material of the coil side portion as the absolute value of the dimensional difference between the width and the radial width of the core reference surface in the orthogonal cross section increases, a plurality of It is preferable that the amount of pressure applied to each of the processing target portions is made different according to the absolute value of the dimensional difference of the coil side portion corresponding to each processing target portion.
 この構成によれば、コイル辺部の直交断面の形状の扁平の度合が高くなるのに応じて、絶縁被覆材の周長が長くなる。よって、コイル辺部の直交断面の形状の扁平の度合が高くなるのに応じて長くなる上記外接曲線の周長と、絶縁被覆材の周長との周長差を、複数のコイル辺部のそれぞれについて短く抑えて、コイルの占積率を高めることが容易となる。 According to this configuration, as the degree of flatness of the shape of the orthogonal cross section of the coil side portion increases, the peripheral length of the insulating coating material increases. Therefore, the circumferential length difference between the circumference of the circumscribed curve, which becomes longer as the degree of flatness of the shape of the orthogonal cross section of the coil side portion becomes higher, and the circumferential length of the insulating coating material, It becomes easy to increase the space factor of the coil by keeping each short.
 上記のように、前記挿入工程では、前記加工対象部位を前記スロットの内部に複数挿入する構成において、前記挿入工程では、前記径方向の位置に応じて前記周方向のスロット幅が異なるように形成された前記スロット内に、前記加工対象部位を挿入する構成とすると好適である。 As described above, in the insertion step, a plurality of the processing target sites are inserted into the slots, and in the insertion step, the circumferential slot width is different depending on the radial position. It is preferable that the processing target site is inserted into the slot.
 スロット幅が径方向の位置に応じて異なる場合には、スロット幅が大きくなるのに応じてコイル辺部の直交断面の形状の扁平の度合が高くなる傾向があるが、本発明の上記構成によれば、このような場合にも、複数のコイル辺部のそれぞれについて、絶縁被覆材の周長と上記外接曲線の周長との周長差を短く抑えることができる。すなわち、本発明の上記構成によれば、コアの形状の自由度を高めて、回転電機の性能の向上を図ることもできる。 When the slot width varies depending on the radial position, the degree of flatness of the cross-sectional shape of the coil side portion tends to increase as the slot width increases. Therefore, also in such a case, the circumference difference between the circumference of the insulating coating material and the circumference of the circumscribed curve can be kept short for each of the plurality of coil sides. That is, according to the above configuration of the present invention, the degree of freedom of the shape of the core can be increased, and the performance of the rotating electrical machine can be improved.
 上記の各構成の回転電機の製造方法において、前記挿入工程では、前記コア基準面の径方向の位置に応じて前記周方向のスロット幅が異なるように形成された前記スロットの内部に、前記加工対象部位を複数挿入すると共に、複数の前記加工対象部位が前記スロットの内部において前記径方向に沿って一列に並ぶように配置し、前記加圧工程では、前記コイル辺部の前記絶縁被覆材の前記周長が、前記コイル辺部が配置される前記径方向の位置に基づき前記スロット幅が大きくなるのに応じて長くなるように、複数の前記加工対象部位のそれぞれに対する加圧量を、各加工対象部位に対応するコイル辺部が配置される前記径方向の位置に応じて異ならせる構成とすると好適である。 In the manufacturing method of the rotating electric machine having each configuration described above, in the insertion step, the processing is performed inside the slot formed so that the slot width in the circumferential direction differs according to the radial position of the core reference surface. A plurality of target portions are inserted, and a plurality of the processing target portions are arranged in a line along the radial direction inside the slot, and in the pressurizing step, the insulating coating material of the coil side portion is arranged. The amount of pressure applied to each of the plurality of processing target portions is increased so that the circumferential length becomes longer as the slot width increases based on the radial position where the coil side portion is disposed. It is preferable to adopt a configuration in which the coil side portion corresponding to the part to be processed is varied depending on the radial position.
 この構成によれば、スロット幅が大きくなるのに応じて、配置されるコイル辺部の絶縁被覆材の周長が長くなるため、スロット幅が大きくなるのに応じてコイル辺部の直交断面の扁平の度合が大きくなる回転電機であって占積率の高い回転電機を、製造することができる。 According to this configuration, as the slot width increases, the circumferential length of the insulating coating material on the coil side portion to be arranged increases, so that the cross-sectional area of the coil side portion increases as the slot width increases. It is possible to manufacture a rotating electrical machine having a high space factor, which is a rotating electrical machine having a large flatness.
 また、前記絶縁被覆材は、加熱により前記周長を減少させることができるように構成され、前記挿入工程により前記スロット内に挿入された前記加工対象部位を加熱して当該加工対象部位の前記絶縁被覆材の前記周長を減少させる加熱工程を更に有する構成とすると好適である。 In addition, the insulating coating material is configured to be able to reduce the circumference by heating, and heats the part to be processed inserted into the slot by the insertion step to thereby insulate the part to be processed. It is preferable to further include a heating step for reducing the peripheral length of the covering material.
 この構成によれば、絶縁被覆材の周長を加圧工程により増加させることに加えて、絶縁被覆材の周長を加熱工程により減少させることが可能となる。よって、加工対象部位の最終的な直交断面の形状に合わせて絶縁被覆材の周長を調整することが容易となり、絶縁被覆材の周長と上記外接曲線の周長との周長差を短く抑えることが容易となる。 According to this configuration, in addition to increasing the peripheral length of the insulating coating material by the pressurizing step, it is possible to reduce the peripheral length of the insulating coating material by the heating step. Therefore, it becomes easy to adjust the peripheral length of the insulating coating material according to the shape of the final orthogonal cross section of the processing target site, and the peripheral length difference between the peripheral length of the insulating coating material and the peripheral length of the circumscribed curve is shortened. It becomes easy to suppress.
本発明の実施形態に係る回転電機の斜視図である。It is a perspective view of the rotary electric machine which concerns on embodiment of this invention. 本発明の実施形態に係るステータの一部の断面図である。It is a partial sectional view of a stator concerning an embodiment of the present invention. 本発明の実施形態に係る線状導体の構造を示す斜視図である。It is a perspective view which shows the structure of the linear conductor which concerns on embodiment of this invention. 本発明の実施形態に係る線状導体の構造を示す断面図である。It is sectional drawing which shows the structure of the linear conductor which concerns on embodiment of this invention. 本発明の実施形態に係る線状導体の直交断面の形状の一例を示す模式図である。It is a schematic diagram which shows an example of the shape of the orthogonal cross section of the linear conductor which concerns on embodiment of this invention. 本発明の実施形態に係る回転電機の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the rotary electric machine which concerns on embodiment of this invention. 本発明の実施形態に係るコイル辺部加圧工程及びコイル辺部挿入工程を模式的に示す図である。It is a figure which shows typically the coil side part pressurization process and coil side part insertion process which concern on embodiment of this invention. 本発明の実施形態に係る線状導体の直交断面の形状の一例を示す図である。It is a figure which shows an example of the shape of the orthogonal cross section of the linear conductor which concerns on embodiment of this invention. 本発明のその他の実施形態に係る回転電機の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the rotary electric machine which concerns on other embodiment of this invention. 本発明のその他の実施形態に係るコイル辺部挿入工程を模式的に示す図である。It is a figure which shows typically the coil side part insertion process which concerns on other embodiment of this invention. 本発明のその他の実施形態に係るコイル辺部加圧工程を模式的に示す図である。It is a figure which shows typically the coil side part pressurization process which concerns on other embodiment of this invention. 本発明のその他の実施形態に係るコイル辺部挿入工程を模式的に示す図である。It is a figure which shows typically the coil side part insertion process which concerns on other embodiment of this invention. 本発明のその他の実施形態に係るコイル辺部加圧工程を模式的に示す図である。It is a figure which shows typically the coil side part pressurization process which concerns on other embodiment of this invention. 本発明のその他の実施形態に係るコイル辺部挿入工程を模式的に示す図である。It is a figure which shows typically the coil side part insertion process which concerns on other embodiment of this invention. 本発明のその他の実施形態に係るコイル辺部加圧工程を模式的に示す図である。It is a figure which shows typically the coil side part pressurization process which concerns on other embodiment of this invention. 本発明のその他の実施形態に係るステータの一部の断面図である。FIG. 5 is a partial cross-sectional view of a stator according to another embodiment of the present invention. 本発明のその他の実施形態に係る回転電機の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the rotary electric machine which concerns on other embodiment of this invention. 本発明のその他の実施形態に係るステータの一部の断面図である。FIG. 5 is a partial cross-sectional view of a stator according to another embodiment of the present invention.
 本発明の実施形態について、図面を参照して説明する。ここでは、本発明を、インナロータ型の回転電機100(図1参照)に適用した場合を例として説明する。本実施形態では、回転電機100は回転界磁型の回転電機であり、コイル3の巻装対象のコアは、ステータ1のコア(ステータコア2)である。すなわち、ステータコア2が本発明における「コア」に相当する。本明細書では、回転電機は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。 Embodiments of the present invention will be described with reference to the drawings. Here, a case where the present invention is applied to an inner rotor type rotating electrical machine 100 (see FIG. 1) will be described as an example. In this embodiment, the rotating electrical machine 100 is a rotating field type rotating electrical machine, and the core to be wound with the coil 3 is the core of the stator 1 (stator core 2). That is, the stator core 2 corresponds to a “core” in the present invention. In this specification, the rotating electrical machine is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions of the motor and the generator as necessary.
 以下の説明では、特に区別して明記している場合を除き、「軸方向L」、「周方向C」、及び「径方向R」は、円筒状のコア基準面21(図1、図2参照)の軸心を基準として定義している。「径第一方向R1」及び「径第二方向R2」は、それぞれ、コア基準面21の径方向Rの内側へ向かう方向及び外側へ向かう方向を表す。本明細書では、各部材についての配置方向や配置位置等に関する用語は、誤差(製造上許容され得る程度の誤差)による差異がある状態を含む概念として用いている。 In the following description, unless otherwise specified, the “axial direction L”, “circumferential direction C”, and “radial direction R” are the cylindrical core reference surface 21 (see FIGS. 1 and 2). ) Axis. The “diameter first direction R1” and the “diameter second direction R2” represent a direction toward the inner side and an outer side of the radial direction R of the core reference surface 21, respectively. In the present specification, terms relating to the arrangement direction, arrangement position, and the like of each member are used as a concept including a state in which there is a difference due to an error (an error that is acceptable in manufacturing).
1.回転電機の全体構成
 本実施形態に係る回転電機100の全体構成について説明する。図1に示すように、回転電機100は、ステータ1と、このステータ1の径第一方向R1側(すなわち径方向内側)に回転可能に設けられたロータ6とを備えている。ステータ1は、ステータコア2と、このステータコア2に巻装されるコイル3とを備えている。ステータコア2は、磁性材料を用いて形成されている。図1では、煩雑さを避けるために、ステータコア2から軸方向Lに突出するコイル3の部分であるコイルエンド部については、一対のスロット22から突出する部分のみを示し、他の部分については図示を省略している。図1では、残りのスロット22の軸方向Lの端部には、スロット22内に配置されるコイル3の部分であるコイル辺部71の断面が表れている。また、図1では、ロータ6を簡略化して示すと共に、ロータ6の一部を透視的に描いている。
1. Overall configuration of rotating electrical machine The overall configuration of the rotating electrical machine 100 according to the present embodiment will be described. As shown in FIG. 1, the rotating electrical machine 100 includes a stator 1 and a rotor 6 that is rotatably provided on the first radial direction R1 side of the stator 1 (that is, radially inner side). The stator 1 includes a stator core 2 and a coil 3 wound around the stator core 2. The stator core 2 is formed using a magnetic material. In FIG. 1, in order to avoid complication, only the portion protruding from the pair of slots 22 is shown for the coil end portion which is the portion of the coil 3 protruding from the stator core 2 in the axial direction L, and the other portions are not shown. Is omitted. In FIG. 1, a cross section of a coil side portion 71 that is a portion of the coil 3 disposed in the slot 22 appears at the end portion in the axial direction L of the remaining slot 22. Further, in FIG. 1, the rotor 6 is shown in a simplified manner, and a part of the rotor 6 is drawn in perspective.
 ステータコア2は、少なくとも周方向Cにおいて一体に形成されている。すなわち、ステータコア2は、周方向Cに分断された部分を周方向Cに接合する周方向接合部を有さない。周方向接合部は、例えば、直方体状のコアを曲げて円筒状のコアを構成する場合や、複数の分割コアを周方向に並べて円筒状のコアを構成する場合において、互いに隣接する周方向の端面同士を接合するために形成される。本実施形態では、ステータコア2は、周方向C及び径方向Rにおいて一体に形成され、軸方向Lにおいては一体に形成されていない。すなわち、ステータコア2は、軸方向Lに分断された部分を軸方向Lに接合する軸方向接合部を有している。本実施形態では、ステータコア2は、図1に示すように、円環板状の磁性体板7を軸方向Lに複数積層して形成されている。積層状態にある磁性体板7は、溶接又はカシメ等により、互いに接合されており、軸方向Lに隣接する磁性体板7同士の接合部が、上記の軸方向接合部を構成する。磁性体板7は、例えば、電磁鋼板(例えばケイ素鋼板等)を用いることができる。 The stator core 2 is integrally formed at least in the circumferential direction C. That is, the stator core 2 does not have a circumferential joint that joins a portion divided in the circumferential direction C in the circumferential direction C. For example, in the case where a cylindrical core is formed by bending a rectangular parallelepiped core, or in the case where a cylindrical core is formed by arranging a plurality of divided cores in the circumferential direction, the circumferential joint portion is adjacent to each other in the circumferential direction. It is formed in order to join end faces. In the present embodiment, the stator core 2 is integrally formed in the circumferential direction C and the radial direction R, and is not integrally formed in the axial direction L. That is, the stator core 2 has an axial joint that joins the part divided in the axial direction L in the axial direction L. In the present embodiment, the stator core 2 is formed by laminating a plurality of annular plate-like magnetic plates 7 in the axial direction L, as shown in FIG. The magnetic plates 7 in the laminated state are joined to each other by welding or caulking or the like, and the joint between the magnetic plates 7 adjacent in the axial direction L constitutes the above-described axial joint. As the magnetic plate 7, for example, an electromagnetic steel plate (for example, a silicon steel plate) can be used.
 ステータコア2には、スロット22が周方向Cに複数分散配置されている。周方向Cに隣接する2つのスロット22の間には、ティース23が形成されている。上述した「円筒状のコア基準面21」は、スロット22の配置や構成に関して基準となる仮想的な面であり、本実施形態では、複数(スロット22と同数)のティース23の径第一方向R1側の端面を含む円筒状の仮想面(コア内周面)をコア基準面21としている。ステータコア2の径第二方向R2側の面(コア外周面)等をコア基準面21としても良い。 The stator core 2 has a plurality of slots 22 distributed in the circumferential direction C. A tooth 23 is formed between two slots 22 adjacent to each other in the circumferential direction C. The above-described “cylindrical core reference surface 21” is a virtual surface that serves as a reference for the arrangement and configuration of the slots 22, and in the present embodiment, a plurality of (the same number as the slots 22) teeth 23 in the first diameter direction. A cylindrical virtual surface (core inner peripheral surface) including the end surface on the R1 side is used as the core reference surface 21. A surface on the second radial direction R2 side (core outer peripheral surface) of the stator core 2 may be used as the core reference surface 21.
 複数のスロット22は、周方向Cに沿って一定間隔で分散配置されている。各スロット22は、軸方向Lに延びると共に径第一方向R1側に開口部22bを有するように形成されている。スロット22は、ステータコア2を軸方向Lに貫通するように形成されている。また、スロット22は、コア基準面21の軸心から放射状に径方向Rに延びるように形成されている。本実施形態では、図2に示すように、開口部22bの周方向Cの幅である開口幅W1が、スロット22の内部(開口部22bより径第二方向R2側の部分)の周方向Cの幅である内部幅W2よりも狭くなるように、スロット22が形成されている。すなわち、本実施形態では、スロット22は、セミオープンスロットである。 The plurality of slots 22 are distributed at regular intervals along the circumferential direction C. Each slot 22 extends in the axial direction L and is formed to have an opening 22b on the first radial direction R1 side. The slot 22 is formed so as to penetrate the stator core 2 in the axial direction L. The slots 22 are formed so as to extend radially from the axis of the core reference surface 21 in the radial direction R. In the present embodiment, as shown in FIG. 2, the opening width W1, which is the width in the circumferential direction C of the opening 22b, is the circumferential direction C inside the slot 22 (the portion on the radial second direction R2 side from the opening 22b). The slot 22 is formed so as to be narrower than the internal width W2, which is the width of the. That is, in the present embodiment, the slot 22 is a semi-open slot.
 本実施形態では、図2に示すように、各ティース23は、周方向Cの互いに反対側を向く2つのティース側面23aが互いに平行な平行ティースであり、各スロット22は、周方向Cの幅が径第二方向R2側に向かうに従って次第に広くなるように形成されている。すなわち、各スロット22は、径方向Rの位置に応じて、周方向Cの幅であるスロット幅Wが異なるように形成されている。また、本実施形態では、各ティース23の先端部には、ティース側面23aの他の部分に対して周方向Cに突出する周方向突出部23bが形成されており、スロット22の開口部22bは、周方向突出部23bにより周方向Cの両側を挟まれた空間として形成されている。図2に示すように、本実施形態では、ステータコア2におけるスロット22を形成する壁面部(ティース側面23aを含む部分)には、スロット絶縁部24が形成されている。そのため、本実施形態では、スロット22のスロット幅W(開口幅W1及び内部幅W2)は、ティース23の周方向Cの幅や配設ピッチに加えて、スロット絶縁部24の厚みにも応じて定まる。スロット絶縁部24は、例えば、絶縁粉体塗装により形成され、或いは、スロット絶縁シートにより形成される。 In the present embodiment, as shown in FIG. 2, each tooth 23 is a parallel tooth in which two tooth side surfaces 23 a facing opposite sides in the circumferential direction C are parallel to each other, and each slot 22 has a width in the circumferential direction C. Is formed so as to gradually become wider toward the second radial direction R2. That is, each slot 22 is formed so that the slot width W, which is the width in the circumferential direction C, differs depending on the position in the radial direction R. Moreover, in this embodiment, the circumferential direction protrusion part 23b which protrudes in the circumferential direction C with respect to the other part of the teeth side surface 23a is formed in the front-end | tip part of each teeth 23, and the opening part 22b of the slot 22 is formed. The space is formed as a space sandwiched on both sides in the circumferential direction C by the circumferential protrusion 23b. As shown in FIG. 2, in this embodiment, a slot insulating portion 24 is formed on a wall surface portion (a portion including the tooth side surface 23 a) that forms the slot 22 in the stator core 2. Therefore, in this embodiment, the slot width W (opening width W1 and internal width W2) of the slot 22 depends on the thickness of the slot 23 in addition to the circumferential width C and the arrangement pitch of the teeth 23. Determined. The slot insulating part 24 is formed by, for example, insulating powder coating or a slot insulating sheet.
 回転電機100は、本実施形態では、三相交流(多相交流の一例)で駆動される三相交流電動機又は三相交流発電機である。コイル3は、三相(U相、V相、W相)のそれぞれに対応して、U相コイル、V相コイル、W相コイルを備えており、ステータコア2には、U相用、V相用、及びW相用のスロット22が、周方向Cに沿って繰り返し現れるように配置されている。詳細は省略するが、例えば、重ね巻及び波巻のいずれか一方と集中巻及び分布巻のいずれか一方との組み合わせにより線状導体4をステータコア2に巻き付けて、コイル3を構成することができる。 In this embodiment, the rotating electrical machine 100 is a three-phase AC motor or a three-phase AC generator driven by a three-phase AC (an example of a multi-phase AC). The coil 3 includes a U-phase coil, a V-phase coil, and a W-phase coil corresponding to each of the three phases (U-phase, V-phase, and W-phase). And the W-phase slots 22 are arranged so as to repeatedly appear along the circumferential direction C. Although details are omitted, for example, the coil 3 can be configured by winding the linear conductor 4 around the stator core 2 by a combination of one of lap winding and wave winding and one of concentrated winding and distributed winding. .
2.線状導体の構成
 次に、本実施形態に係る線状導体4の構成について説明する。線状導体4はコイル3を構成する導体であり、線状導体4をステータコア2に巻き付けることにより、コイル3が構成されている。図3に示すように、線状導体4は、可撓性の裸導体素線41を複数本集合させた裸導体素線束42の周囲を、可撓性の絶縁被覆材46により被覆して構成されている。ここで、「裸導体素線」とは、表面が絶縁体により覆われていないむき出しの導体素線のことである。従って、樹脂等の電気的絶縁材料による被覆や被膜が表面に設けられた導体素線は、裸導体素線には含まれない。一方、表面に酸化皮膜が形成された導体素線は、裸導体素線に含まれる。本実施形態では、裸導体素線41が本発明における「導体素線」に相当し、裸導体素線束42が本発明における「導体素線束」に相当する。
2. Next, the configuration of the linear conductor 4 according to this embodiment will be described. The linear conductor 4 is a conductor constituting the coil 3, and the coil 3 is configured by winding the linear conductor 4 around the stator core 2. As shown in FIG. 3, the linear conductor 4 is configured by covering the periphery of a bare conductor wire bundle 42 in which a plurality of flexible bare conductor wires 41 are assembled with a flexible insulating coating material 46. Has been. Here, the “bare conductor wire” is a bare conductor wire whose surface is not covered with an insulator. Therefore, a conductor wire provided with a coating or a coating with an electrically insulating material such as resin on its surface is not included in the bare conductor wire. On the other hand, a conductor wire having an oxide film formed on the surface is included in the bare conductor wire. In the present embodiment, the bare conductor wire 41 corresponds to a “conductor wire” in the present invention, and the bare conductor wire bundle 42 corresponds to a “conductor wire bundle” in the present invention.
 裸導体素線41は、線状の裸導体であり、例えば、銅やアルミニウム等により構成される。本実施形態では、裸導体素線41は、延在方向に直交する断面の形状が円形状であり、例えば直径(素線径)が0.2mm以下の素線を裸導体素線41として用いることができる。裸導体素線41の表面は絶縁体によって覆われておらず、導体表面がむき出しになっている。なお、ここでいう「絶縁体」には、導体の表面が酸化することにより形成される酸化皮膜は含まない。このような裸導体素線41が複数集合することにより、裸導体素線束42が構成されている。裸導体素線束42は、複数の裸導体素線41を撚って束ねることより構成され、或いは、複数の裸導体素線41を撚ることなく束ねることにより構成される。 The bare conductor wire 41 is a linear bare conductor, and is made of, for example, copper or aluminum. In the present embodiment, the bare conductor wire 41 has a circular cross-sectional shape orthogonal to the extending direction. For example, a bare wire having a diameter (wire diameter) of 0.2 mm or less is used as the bare conductor wire 41. be able to. The surface of the bare conductor wire 41 is not covered with an insulator, and the conductor surface is exposed. The “insulator” here does not include an oxide film formed by oxidizing the surface of the conductor. A plurality of such bare conductor strands 41 are assembled to form a bare conductor strand bundle 42. The bare conductor strand bundle 42 is configured by twisting and bundling a plurality of bare conductor strands 41 or by bundling a plurality of bare conductor strands 41 without twisting.
 絶縁被覆材46は、可撓性を有する電気的絶縁部材であり、例えば、フッ素系樹脂、エポキシ系樹脂、ポリフェニレンスルファイド等の合成樹脂により構成される。ここで、「可撓性」とは、曲げたり撓ませたりすることができる性質のことである。本実施形態では、絶縁被覆材46は、伸縮性も有する。ここで、「伸縮性」は、伸びたり縮んだりすることができる性質のことである。絶縁被覆材46は、裸導体素線束42の周囲を被覆するように設けられている。具体的には、絶縁被覆材46は、裸導体素線束42の周囲の全周を覆うと共に、裸導体素線束42の延在方向Aの端部に設けられた接続部を除いて延在方向Aに沿った全域を覆うように設けられている。ここで、接続部は、1つの線状導体4を他の線状導体4又は他の導体に電気的に接続するための部分である。本実施形態では、絶縁被覆材46は、裸導体素線束42の周囲を包む可撓性のシート状材料(筒状材料)によって構成されている。 The insulating coating material 46 is a flexible electrical insulating member, and is made of, for example, a synthetic resin such as a fluorine resin, an epoxy resin, or polyphenylene sulfide. Here, “flexibility” means a property that can be bent or bent. In the present embodiment, the insulating coating material 46 also has stretchability. Here, “stretchability” is a property that can be stretched or shrunk. The insulating covering material 46 is provided so as to cover the periphery of the bare conductor wire bundle 42. Specifically, the insulation coating material 46 covers the entire circumference of the bare conductor strand bundle 42 and extends in the extending direction except for the connection portion provided at the end in the extending direction A of the bare conductor strand bundle 42. It is provided so as to cover the entire area along A. Here, the connecting portion is a portion for electrically connecting one linear conductor 4 to another linear conductor 4 or another conductor. In the present embodiment, the insulating coating material 46 is made of a flexible sheet-like material (tubular material) that wraps around the bare conductor wire bundle 42.
 図4は、線状導体4における後述するコイル辺部加圧工程#01(図6、図7参照)が実行されていない未加工部位の、外力(重力を除く。以下同様。)が作用していない状態における、延在直交平面Pでの断面(以下、「直交断面」という。)の形状を示している。ここで、延在直交平面Pは、図3に示すように、裸導体素線束42の延在方向Aに直交する平面である。図4に示すように、本実施形態では、線状導体4の未加工部位では、複数の裸導体素線41は、互いに密着し合って高い密集度で集合し、裸導体素線束42の直交断面の形状(外形)は、外力が作用していない状態において、真円状となる。そして、絶縁被覆材46の直交断面の形状は、裸導体素線束42に外接する外接曲線状となり、具体的には、裸導体素線束42の真円状の外形に沿う真円状となる。図4における符号“Z”は、線状導体4に対して外力が作用していない状態での絶縁被覆材46の直交断面の周長である「基準周長」を表している。 In FIG. 4, an external force (excluding gravity, the same applies hereinafter) acts on an unprocessed portion of the linear conductor 4 where a coil side pressurizing step # 01 (see FIGS. 6 and 7) described later is not performed. The shape of the cross section (henceforth an "orthogonal cross section") in the extended orthogonal plane P in the state which has not been shown is shown. Here, the extending orthogonal plane P is a plane orthogonal to the extending direction A of the bare conductor strand 42, as shown in FIG. As shown in FIG. 4, in the present embodiment, in the unprocessed portion of the linear conductor 4, the plurality of bare conductor strands 41 are in close contact with each other and gather together with high density, and the bare conductor strand bundles 42 are orthogonal to each other. The cross-sectional shape (outer shape) is a perfect circle when no external force is applied. The shape of the orthogonal cross-section of the insulating coating material 46 is a circumscribed curve that circumscribes the bare conductor wire bundle 42, and specifically, a perfect circle shape that follows the true circular shape of the bare conductor wire bundle 42. A symbol “Z” in FIG. 4 represents a “reference circumferential length” that is a circumferential length of an orthogonal cross section of the insulating coating material 46 in a state where no external force is applied to the linear conductor 4.
 一方、図8は、線状導体4における後述するコイル辺部加圧工程#01(図6、図7参照)が実行された加工済み部位の、絶縁被覆材46の直交断面の形状を真円状に変形させた状態における、直交断面の形状の一例を示している。図8では、簡素化のため、裸導体素線41の本数を図4よりも少なくしている。線状導体4に対して外力が作用していない状態では、絶縁被覆材46は、図8に示すように直交断面の形状が真円状である状態で安定する。詳細は後述するが、コイル辺部加圧工程#01の実行により絶縁被覆材46の基準周長Zは増大する。そのため、裸導体素線束42を構成する複数の裸導体素線41の直交断面の面積(以下、単に「断面積」という。)の総和と、絶縁被覆材46の内部面積との面積差は、絶縁被覆材46の直交断面の形状が真円状である場合には、未加工部位(図4参照)よりも加工済み部位(図8参照)の方が大きくなる。ここで、絶縁被覆材46の内部面積とは、絶縁被覆材46の内面により当該絶縁被覆材46の径方向内側に形成される内部空間の断面積である。絶縁被覆材46の内部面積は、絶縁被覆材46の直交断面の形状を扁平化することで減少するため、図示は省略するが、図8に示す線状導体4の断面形状を扁平化すると、上記の面積差が小さくなる。 On the other hand, FIG. 8 shows the shape of the orthogonal cross-section of the insulating covering material 46 at the processed portion where the coil side pressurizing step # 01 (see FIGS. 6 and 7), which will be described later, is performed on the linear conductor 4. An example of the shape of the orthogonal cross section in the state deformed into the shape is shown. In FIG. 8, the number of bare conductor wires 41 is less than that in FIG. 4 for simplification. In a state where no external force is applied to the linear conductor 4, the insulating coating material 46 is stable in a state where the shape of the orthogonal cross section is a perfect circle as shown in FIG. Although details will be described later, the reference circumferential length Z of the insulating coating material 46 increases by the execution of the coil side pressurizing step # 01. Therefore, the area difference between the sum of the areas of orthogonal cross sections (hereinafter simply referred to as “cross-sectional areas”) of the plurality of bare conductor strands 41 constituting the bare conductor strand bundle 42 and the internal area of the insulating coating material 46 is When the shape of the orthogonal cross section of the insulating coating material 46 is a perfect circle, the processed part (see FIG. 8) is larger than the unprocessed part (see FIG. 4). Here, the internal area of the insulating coating material 46 is a cross-sectional area of an internal space formed inside the insulating coating material 46 in the radial direction by the inner surface of the insulating coating material 46. Since the internal area of the insulation coating material 46 is reduced by flattening the shape of the orthogonal cross section of the insulation coating material 46, illustration is omitted, but when the cross sectional shape of the linear conductor 4 shown in FIG. The above area difference is reduced.
 上記のように、裸導体素線41の直交断面の形状は円形状である。そのため、図4に示すように、裸導体素線束42を構成する複数の裸導体素線41同士の間や、裸導体素線41と絶縁被覆材46の内周面との間に、隙間Gが形成される。なお、線状導体4における未加工部位を構成する複数の裸導体素線41は、図4に示すように、互いに密着し合って高い密集度で集合しているため、絶縁被覆材46の内部に形成される隙間Gは比較的小さい。そのため、線状導体4に対して比較的大きな外力が作用しない場合には、複数の裸導体素線41同士は互いに径方向Rに相対移動しない。一方、線状導体における加工済み部位を構成する複数の裸導体素線41は、図8に示すように、未加工部位(図4参照)に比べて低い密集度で集合しているため、絶縁被覆材46の内部には比較的大きな隙間Gが形成される。そのため、線状導体4に対して大きな外力が作用しなくても、複数の裸導体素線41同士は互いに径方向Rに相対移動することができる。すなわち、絶縁被覆材46の内部には、裸導体素線41同士が相対移動可能な被覆内隙間が形成されている。なお、図8に示す例では、絶縁被覆材46の内部における裸導体素線41の密集度が、径方向外側領域に比べて径方向内側領域の方が高くなる場合を例として示している。 As described above, the shape of the orthogonal cross section of the bare conductor wire 41 is circular. Therefore, as shown in FIG. 4, there is a gap G between the bare conductor strands 41 constituting the bare conductor strand bundle 42 or between the bare conductor strands 41 and the inner peripheral surface of the insulating coating material 46. Is formed. The plurality of bare conductor wires 41 constituting the unprocessed portion of the linear conductor 4 are in close contact with each other and gathered at a high density as shown in FIG. The gap G formed in is relatively small. Therefore, when a relatively large external force does not act on the linear conductor 4, the plurality of bare conductor strands 41 do not move relative to each other in the radial direction R. On the other hand, as shown in FIG. 8, the plurality of bare conductor wires 41 constituting the processed portion of the linear conductor are gathered at a lower density than the unprocessed portion (see FIG. 4). A relatively large gap G is formed inside the covering material 46. Therefore, even if a large external force does not act on the linear conductor 4, the plurality of bare conductor strands 41 can move relative to each other in the radial direction R. That is, an in-coating gap in which the bare conductor wires 41 can move relative to each other is formed inside the insulating coating material 46. In the example shown in FIG. 8, the density of the bare conductor wires 41 inside the insulating coating material 46 is shown as an example in which the radial inner region is higher than the radial outer region.
 上記のように、絶縁被覆材46は、可撓性及び伸縮性を有する材料により構成されている。従って、線状導体4は、図5及び図7に示すように、直交断面の形状を変形可能である。すなわち、絶縁被覆材46の変形に追従して、その内部において複数の裸導体素線41同士が相対移動することにより、線状導体4の直交断面の形状が変形する。なお、線状導体4における加工済み部位は、図8に示すように、線状導体4の直交断面の形状が真円状である場合には、複数の裸導体素線41が低い密集度で集合している。そのため、加工済み部位の直交断面の形状を扁平化する際、複数の裸導体素線41が互いに密着し合って高い密集度で集合するまでの間は、絶縁被覆材46は、周長の増大を伴わずに変形する。よって、線状導体4の直交断面の形状を容易に変形させることができる。なお、複数の裸導体素線41が互いに密着し合って高い密集度で集合した後は、絶縁被覆材46は、弾性的或いは塑性的な変形による周長の増大を伴いながら変形する。一方、線状導体4における未加工部位は、図4に示すように、線状導体4の直交断面の形状が真円状である場合にも、複数の裸導体素線41が互いに密着し合って高い密集度で集合している。そのため、未加工部位の直交断面の形状を扁平化する際には、扁平の度合いが小さい場合にも、絶縁被覆材46は、弾性的或いは塑性的な変形による周長の増大を伴いながら変形する。 As described above, the insulating coating material 46 is made of a material having flexibility and stretchability. Therefore, the linear conductor 4 can change the shape of an orthogonal cross section, as shown in FIG.5 and FIG.7. That is, following the deformation of the insulating coating material 46, the plurality of bare conductor wires 41 move relative to each other in the inside thereof, whereby the shape of the orthogonal cross section of the linear conductor 4 is deformed. As shown in FIG. 8, the processed portion of the linear conductor 4 has a low density of the plurality of bare conductor strands 41 when the shape of the orthogonal cross section of the linear conductor 4 is a perfect circle. Have gathered. Therefore, when flattening the shape of the orthogonal cross section of the processed part, the insulation covering material 46 increases in circumference until the plurality of bare conductor wires 41 come into close contact with each other and gather together at a high density. Deforms without accompanying. Therefore, the shape of the orthogonal cross section of the linear conductor 4 can be easily changed. Note that after the plurality of bare conductor wires 41 are brought into close contact with each other and gathered at a high density, the insulating coating 46 is deformed with an increase in peripheral length due to elastic or plastic deformation. On the other hand, as shown in FIG. 4, the unprocessed portion of the linear conductor 4 has a plurality of bare conductor strands 41 in close contact with each other even when the shape of the orthogonal cross section of the linear conductor 4 is a perfect circle. Are gathered at a high density. Therefore, when flattening the shape of the orthogonal cross section of the unprocessed portion, the insulating coating material 46 is deformed with an increase in peripheral length due to elastic or plastic deformation even when the flatness is small. .
 本実施形態では、図7に示すように、線状導体4の未加工部位の直交断面の形状を真円状とした状態(図7(a)参照)での周方向Cの幅(周方向幅D)、すなわち、線状導体4の未加工部位の直交断面の形状を真円状とした状態での直径は、スロット22の開口幅W1よりも大きく設定されている。そして、線状導体4は、図7(c)に示すように、周方向幅Dを、開口幅W1より狭い第一周方向幅D1と、開口幅W1より広い第二周方向幅D2との間で変形可能である。 In the present embodiment, as shown in FIG. 7, the width (circumferential direction) in the circumferential direction C in a state where the shape of the orthogonal cross section of the unprocessed portion of the linear conductor 4 is a perfect circle (see FIG. 7A). Width D), that is, the diameter in a state where the cross-sectional shape of the unprocessed portion of the linear conductor 4 is a perfect circle is set to be larger than the opening width W1 of the slot 22. As shown in FIG. 7C, the linear conductor 4 has a circumferential width D having a first circumferential width D1 narrower than the opening width W1 and a second circumferential width D2 wider than the opening width W1. It can be deformed between.
3.コイルの配置構成
 次に、本実施形態に係るコイル3の配置構成について説明する。コイル3は、図1及び図2に示すように、スロット22内に配置されるコイル辺部71と、ステータコア2の軸方向Lの外側において2つのコイル辺部71同士を接続する渡り部72とを備えている。コイル辺部71は、軸方向Lに平行な直線状に形成されている。渡り部72は、ステータコア2の軸方向Lの外側に配置されてコイルエンド部を構成し、図1に示す例では、互いに6スロットピッチ離れて配置された2つのコイル辺部71同士を接続するように配置されている。
3. Coil Arrangement Configuration Next, an arrangement configuration of the coil 3 according to the present embodiment will be described. As shown in FIGS. 1 and 2, the coil 3 includes a coil side portion 71 disposed in the slot 22, and a transition portion 72 that connects the two coil side portions 71 to each other outside in the axial direction L of the stator core 2. It has. The coil side portion 71 is formed in a straight line parallel to the axial direction L. The crossover portion 72 is arranged outside the stator core 2 in the axial direction L to form a coil end portion, and in the example shown in FIG. 1, the two coil side portions 71 arranged at a distance of 6 slots are connected to each other. Are arranged as follows.
 図2に示すように、コイル辺部71は、スロット22の内部において、複数配置されている。具体的には、コイル辺部71は、周方向Cの同じ位置において径方向Rに沿って一列に並ぶように、複数の層Bに分かれて配置されている。ここで、層Bは、スロット22内における各コイル辺部71の径方向Rの位置(配置領域)を表す。本実施形態では、コイル辺部71は、奇数個の層Bに分かれて配置されており、具体的には、5個の層Bに分かれて配置されている。以下では、スロット22内の最も径第二方向R2側の層Bを第一層B1とし、そこから径第一方向R1側に向かって順に、第二層B2、第三層B3、第四層B4、第五層B5とする。本実施形態では、コイル3を構成する線状導体4は、複数のコイル辺部71が連続する一本の線状導体4に含まれるように、ステータコア2に巻装されている。すなわち、本実施形態では、後述するコイル辺部加圧工程#01による加圧の対象となる加工対象部位は、連続する一本の線状導体4に複数含まれる。ここで、線状導体4について「連続」とは、裸導体素線41或いは絶縁被覆材46が継ぎ目なく延在方向Aに一体に形成されていることを意味する。 As shown in FIG. 2, a plurality of coil side portions 71 are arranged inside the slot 22. Specifically, the coil side portions 71 are arranged in a plurality of layers B so as to be arranged in a line along the radial direction R at the same position in the circumferential direction C. Here, the layer B represents the position (arrangement region) in the radial direction R of each coil side portion 71 in the slot 22. In the present embodiment, the coil side portion 71 is divided into an odd number of layers B, and specifically, is divided into five layers B. Hereinafter, the layer B closest to the second radial direction R2 in the slot 22 is defined as a first layer B1, and the second layer B2, the third layer B3, and the fourth layer are sequentially formed from the first layer B1 toward the first radial direction R1. Let B4 be the fifth layer B5. In the present embodiment, the linear conductor 4 constituting the coil 3 is wound around the stator core 2 so as to be included in one linear conductor 4 in which a plurality of coil side portions 71 are continuous. That is, in the present embodiment, a plurality of processing target parts to be pressed by the coil side pressing step # 01 described later are included in one continuous linear conductor 4. Here, “continuous” for the linear conductor 4 means that the bare conductor wire 41 or the insulating coating material 46 is integrally formed in the extending direction A without a seam.
 図2に示すように、各コイル辺部71の直交断面の形状は、スロット22の内壁面に面接触する(本例では、スロット絶縁部24を介して面接触する)接触面を有すると共に、径方向Rに隣り合うコイル辺部71の外周面に面接触する接触面を有する矩形状となっている。これにより、コイル辺部71とスロット22の内壁面との間の隙間と、コイル辺部71同士の間の隙間との双方を小さく抑えることができ、結果、コイル3の占積率を高めることが可能となっている。なお、各スロット22は、径方向Rの位置に応じてスロット幅Wが異なるように形成されており、スロット22の形状は、層Bに応じて異なる。よって、同一のスロット22内に配置される複数のコイル辺部71は、直交断面の形状が互いに異なる。本実施形態では、図2に示すように、各スロット22は、スロット幅Wが径第二方向R2側に向かうに従って次第に広くなるように形成されている。すなわち、スロット幅Wが最も大きい径方向Rの位置にある層Bを「特定層」とすると、本実施形態では、第一層B1が特定層である。 As shown in FIG. 2, the shape of the orthogonal cross section of each coil side portion 71 has a contact surface that is in surface contact with the inner wall surface of the slot 22 (in this example, in surface contact via the slot insulating portion 24), It has a rectangular shape having a contact surface in surface contact with the outer peripheral surface of the coil side portion 71 adjacent in the radial direction R. Thereby, both the clearance gap between the coil side part 71 and the inner wall face of the slot 22, and the clearance gap between coil side parts 71 can be restrained small, As a result, the space factor of the coil 3 is raised. Is possible. Each slot 22 is formed so that the slot width W varies depending on the position in the radial direction R, and the shape of the slot 22 varies depending on the layer B. Therefore, the plurality of coil side portions 71 arranged in the same slot 22 are different from each other in the shape of the orthogonal cross section. In the present embodiment, as shown in FIG. 2, each slot 22 is formed so that the slot width W gradually becomes wider toward the second radial direction R <b> 2. That is, assuming that the layer B at the position in the radial direction R having the largest slot width W is a “specific layer”, in the present embodiment, the first layer B1 is the specific layer.
 後述するように、本実施形態では、同じスロット22内に配置される複数のコイル辺部71は、断面積が互いにほぼ同一となるように構成されている。よって、本実施形態では、図2に示すように、スロット22のそれぞれに配置された複数のコイル辺部71は、コイル辺部71のそれぞれが配置される径方向Rの位置(領域)に基づいて、スロット幅Wが大きくなるのに応じて、コイル辺部71の直交断面における径方向Rの幅に対する周方向Cの幅の比であるアスペクト比(=周方向Cの幅/径方向Rの幅)が大きくなっている。すなわち、スロット22のそれぞれに配置された複数のコイル辺部71は、スロット幅Wが大きくなるのに応じて、矩形状に形成される直交断面の扁平の度合が大きくなっている。本実施形態では、各スロット22が、スロット幅Wが径第二方向R2側に向かうに従って次第に広くなるように形成されているため、第N層(N=1,2,・・・4)に配置されるコイル辺部71の直交断面におけるアスペクト比は、第(N+1)層に配置されるコイル辺部71の直交断面におけるアスペクト比よりも大きくなっている。線状導体4の直交断面におけるアスペクト比が1以上である場合に、当該アスペクト比が大きくなると、線状導体4の直交断面における周方向Cの幅と径方向Rの幅との寸法差の絶対値が大きくなる。よって、本実施形態では、スロット22のそれぞれに配置された複数のコイル辺部71は、コイル辺部71のそれぞれが配置される径方向Rの位置(領域)に基づいて、スロット幅Wが大きくなるのに応じて、コイル辺部71の直交断面における周方向Cの幅と径方向Rの幅との寸法差の絶対値が大きくなっている。 As will be described later, in the present embodiment, the plurality of coil sides 71 arranged in the same slot 22 are configured to have substantially the same cross-sectional area. Therefore, in the present embodiment, as shown in FIG. 2, the plurality of coil sides 71 arranged in each of the slots 22 is based on the position (region) in the radial direction R where each of the coil sides 71 is arranged. Thus, as the slot width W increases, the aspect ratio (= the width in the circumferential direction C / the width in the radial direction R) is a ratio of the width in the circumferential direction C to the width in the radial direction R in the orthogonal cross section of the coil side portion 71. (Width) is larger. That is, the plurality of coil side portions 71 arranged in each of the slots 22 have a flattened degree of orthogonal cross section formed in a rectangular shape as the slot width W increases. In the present embodiment, each slot 22 is formed so that the slot width W gradually becomes wider toward the second radial direction R2 side, so that the Nth layer (N = 1, 2,... 4) is formed. The aspect ratio in the orthogonal cross section of the coil side portion 71 disposed is larger than the aspect ratio in the orthogonal cross section of the coil side portion 71 disposed in the (N + 1) th layer. When the aspect ratio in the orthogonal cross section of the linear conductor 4 is 1 or more, if the aspect ratio increases, the absolute difference in dimension between the width in the circumferential direction C and the width in the radial direction R in the orthogonal cross section of the linear conductor 4 The value increases. Therefore, in the present embodiment, the plurality of coil sides 71 arranged in each of the slots 22 has a large slot width W based on the position (region) in the radial direction R where each of the coil sides 71 is arranged. Accordingly, the absolute value of the dimensional difference between the width in the circumferential direction C and the width in the radial direction R in the orthogonal cross section of the coil side portion 71 increases.
 上記のように、本実施形態では、同じスロット22内に配置される複数のコイル辺部71は、断面積が互いにほぼ同一となるように構成されている。このような構成を採用するのは、以下の理由による。すなわち、コイル3の占積率を高めるためには、スロット22内に配置される複数のコイル辺部71のそれぞれについて、図5に模式的に示すように、当該コイル辺部71を構成する複数の裸導体素線41が互いに密着し合って高い密集度で集合していることが望ましい。ここで、図5(b)は、第一層B1に配置されるコイル辺部71の直交断面の形状を示し、図5(c)は、第五層B5に配置されるコイル辺部71の直交断面の形状を示す。図5(a)は、図4と同様に、線状導体4における未加工部位の直交断面の形状を示す。図5では、簡素化のため、裸導体素線41の本数を図4よりも少なくしている。 As described above, in the present embodiment, the plurality of coil sides 71 arranged in the same slot 22 are configured so that the cross-sectional areas are substantially the same. The reason for adopting such a configuration is as follows. That is, in order to increase the space factor of the coil 3, as shown schematically in FIG. 5, a plurality of coil side portions 71 that are arranged in the slot 22 are configured as a plurality. It is desirable that the bare conductor wires 41 of each other are in close contact with each other and are gathered at a high density. Here, FIG.5 (b) shows the shape of the orthogonal cross section of the coil side part 71 arrange | positioned at 1st layer B1, FIG.5 (c) shows the coil side part 71 arrange | positioned at 5th layer B5. The shape of an orthogonal cross section is shown. FIG. 5A shows the shape of the orthogonal cross section of the unprocessed portion of the linear conductor 4 as in FIG. In FIG. 5, the number of bare conductor wires 41 is less than that in FIG. 4 for simplification.
 絶縁被覆材46の内部に含まれる裸導体素線41の本数は一定であるため、複数の裸導体素線41の断面積の総和は、コイル辺部71の直交断面の形状によらず、一定になる。そのため、コイル辺部71の直交断面の形状によらずにコイル辺部71の断面積(すなわち絶縁被覆材46の内部面積)をほぼ等しくすることで、同じスロット22内に配置される複数のコイル辺部71のそれぞれについて、絶縁被覆材46の内部に形成される隙間Gの断面積の総和を小さく抑えることができ、コイル3の占積率を高めることができる。 Since the number of bare conductor wires 41 included in the insulation coating material 46 is constant, the sum of the cross-sectional areas of the plurality of bare conductor wires 41 is constant regardless of the shape of the orthogonal cross section of the coil side portion 71. become. Therefore, a plurality of coils arranged in the same slot 22 by making the cross-sectional area of the coil side portion 71 (that is, the internal area of the insulating coating material 46) substantially equal regardless of the shape of the orthogonal cross section of the coil side portion 71. For each of the side portions 71, the sum of the cross-sectional areas of the gaps G formed inside the insulating coating material 46 can be kept small, and the space factor of the coil 3 can be increased.
 ところで、絶縁被覆材46の内部面積は、絶縁被覆材46の周長が一定であれば、線状導体4の直交断面の形状が真円の場合(図5(a)参照)に最大となる。また、線状導体4の直交断面の形状が矩形状である場合には、絶縁被覆材46の内部面積は、絶縁被覆材46の周長が一定であれば、図5(b)と図5(c)との比較から明らかなように、アスペクト比が大きくなるに従って小さくなる。なお、図5(c)における二点鎖線は、図5(b)に示す第一層B1のコイル辺部71の絶縁被覆材46を、第五層B5の絶縁被覆材46と同じアスペクト比となるように変形させた状態を示している。また、図5(a)には、図5(b)に示す第一層B1のコイル辺部71の絶縁被覆材46を、真円状に変形させた状態を二点鎖線で示すと共に、図5(c)に示す第五層B5のコイル辺部71の絶縁被覆材46を、真円状に変形させた状態を別の二点鎖線で示している。図5より明らかなように、コイル辺部71の直交断面の形状によらずにコイル辺部71の断面積をほぼ等しくするためには、図5(c)に示す状態での絶縁被覆材46の直交断面の周長を、図5(a)に示す状態での絶縁被覆材46の直交断面の周長よりも長くする必要があり、更に、図5(b)に示す状態での絶縁被覆材46の直交断面の周長を、図5(c)に示す状態での絶縁被覆材46の直交断面の周長よりも長くする必要がある。 By the way, the internal area of the insulation coating material 46 is maximized when the shape of the orthogonal cross section of the linear conductor 4 is a perfect circle (see FIG. 5A) if the circumference of the insulation coating material 46 is constant. . Further, when the shape of the orthogonal cross section of the linear conductor 4 is rectangular, the inner area of the insulating coating material 46 is as long as the peripheral length of the insulating coating material 46 is constant. As is clear from the comparison with (c), the aspect ratio decreases as the aspect ratio increases. In addition, the two-dot chain line in FIG.5 (c) has the same aspect-ratio as the insulation coating material 46 of the coil side part 71 of 1st layer B1 shown in FIG.5 (b) with the insulation coating material 46 of 5th layer B5. This shows a state of being deformed. FIG. 5A shows a state in which the insulation coating material 46 of the coil side portion 71 of the first layer B1 shown in FIG. 5B is deformed into a perfect circle by a two-dot chain line. A state where the insulating coating material 46 of the coil side portion 71 of the fifth layer B5 shown in 5 (c) is deformed into a perfect circle is indicated by another two-dot chain line. As is apparent from FIG. 5, in order to make the cross-sectional area of the coil side portion 71 substantially equal regardless of the shape of the orthogonal cross section of the coil side portion 71, the insulating coating material 46 in the state shown in FIG. It is necessary to make the perimeter of the orthogonal cross section longer than the perimeter of the orthogonal cross section of the insulation coating material 46 in the state shown in FIG. 5A, and further, the insulation coating in the state shown in FIG. It is necessary to make the circumference of the orthogonal cross section of the material 46 longer than the circumference of the orthogonal cross section of the insulating coating material 46 in the state shown in FIG.
 絶縁被覆材46の直交断面の周長の上記のような関係を、絶縁被覆材46を弾性変形させることのみによって実現することが、1つの方法として考えられる。しかし、この場合、絶縁被覆材46の直交断面のアスペクト比が大きくなるに従って、絶縁被覆材46の周長の弾性的な伸長量(弾性伸長量)が長くなり、絶縁被覆材46に発生する復元力(張力)の大きさによっては、コイル辺部71の直交断面の形状をスロット22内において所望の形状とするのが困難となるおそれがある。すなわち、このような方法では、線状導体4をステータコア2に対して巻き付ける工程が複雑化するおそれがある。 It is conceivable as one method to realize the above-described relationship between the circumferential lengths of the orthogonal cross sections of the insulating coating material 46 only by elastically deforming the insulating coating material 46. However, in this case, as the aspect ratio of the orthogonal cross section of the insulating coating material 46 increases, the elastic extension amount (elastic extension amount) of the peripheral length of the insulating coating material 46 becomes longer, and the restoration generated in the insulating coating material 46. Depending on the magnitude of the force (tension), it may be difficult to make the shape of the orthogonal cross section of the coil side portion 71 a desired shape in the slot 22. That is, in such a method, there is a possibility that the process of winding the linear conductor 4 around the stator core 2 may be complicated.
 この点に鑑みて、本実施形態では、コイル辺部71の絶縁被覆材46の基準周長Zを、当該コイル辺部71がスロット22内に配置された状態でのアスペクト比に基づき、当該アスペクト比が大きくなるのに応じて長く設定している。言い換えれば、本実施形態では、コイル辺部71の絶縁被覆材46の基準周長Zを、当該コイル辺部71がスロット22内に配置された状態での直交断面における周方向Cの幅と径方向Rの幅との寸法差の絶対値が大きくなるのに応じて、長く設定している。ここで、基準周長Zは、図4を参照して先に説明したように、線状導体4に対して外力が作用していない状態での絶縁被覆材46の直交断面の周長である。なお、線状導体4に対して外力が作用していない状態でも、裸導体素線束42の直交断面の形状を変化させるためにはある程度の力が必要である。そのため、線状導体4に対して外力が作用していない状態でも、裸導体素線束42から受ける力によって絶縁被覆材46の周長が弾性的に伸びた状態が維持される場合が想定される。そして、この場合の周長の弾性伸長量は、裸導体素線束42の直交断面の形状に応じて異なる値となり得る。この点に関し、線状導体4に対して外力が作用していない状態では、線状導体4は、一般的に、直交断面の形状が真円状である状態で安定すると考えられる。そこで、本明細書では、基準周長Zを、線状導体4の直交断面の形状を真円状とした場合の、絶縁被覆材46の直交断面の周長とする。すなわち、基準周長Zは、絶縁被覆材46の内部に裸導体素線束42が存在しないとした場合の、絶縁被覆材46の直交断面の周長(自然周長)と、基本的に一致する。 In view of this point, in the present embodiment, the reference peripheral length Z of the insulating coating material 46 of the coil side portion 71 is determined based on the aspect ratio in a state where the coil side portion 71 is disposed in the slot 22. The length is set longer as the ratio increases. In other words, in the present embodiment, the reference circumferential length Z of the insulating coating material 46 of the coil side portion 71 is set to the width and diameter in the circumferential direction C in the orthogonal cross section in a state where the coil side portion 71 is disposed in the slot 22. The absolute value of the dimensional difference from the width in the direction R is increased as the absolute value increases. Here, the reference circumferential length Z is the circumferential length of the orthogonal cross section of the insulating coating material 46 in a state where no external force is applied to the linear conductor 4 as described above with reference to FIG. . Even when no external force is applied to the linear conductor 4, a certain amount of force is required to change the shape of the orthogonal cross section of the bare conductor strand 42. Therefore, even when no external force is applied to the linear conductor 4, it is assumed that the peripheral length of the insulating coating material 46 is elastically extended by the force received from the bare conductor strand 42. . In this case, the elastic extension amount of the circumferential length can be a different value depending on the shape of the orthogonal cross section of the bare conductor strand 42. In this regard, in the state where no external force is acting on the linear conductor 4, the linear conductor 4 is generally considered to be stable in a state where the shape of the orthogonal cross section is a perfect circle. Therefore, in this specification, the reference circumferential length Z is the circumferential length of the orthogonal cross section of the insulating coating material 46 when the shape of the orthogonal cross section of the linear conductor 4 is a perfect circle. That is, the reference circumference Z basically matches the circumference (natural circumference) of the orthogonal cross section of the insulation coating material 46 when the bare conductor wire bundle 42 does not exist inside the insulation coating material 46. .
 本実施形態では、上述したように、アスペクト比は、スロット幅Wが大きくなるのに応じて大きくなる。よって、本実施形態では、スロット22のそれぞれに配置された複数のコイル辺部71は、コイル辺部71のそれぞれが配置される径方向Rの位置に基づいて、スロット幅Wが大きくなるのに応じて絶縁被覆材46の基準周長Zが長くなっている。具体的には、各スロット22は、スロット幅Wが径第二方向R2側に向かうに従って次第に広くなるように形成されている。そのため、第N層(N=1,2,・・・4)に配置されるコイル辺部71の絶縁被覆材46の基準周長Zは、第(N+1)層に配置されるコイル辺部71の絶縁被覆材46の基準周長Zよりも長くなっている。すなわち、スロット幅Wが最も大きい径方向Rの位置にある層Bである第一層B1に配置されたコイル辺部71の絶縁被覆材46は、第一層B1以外の少なくともいずれかの層Bに配置されたコイル辺部71の絶縁被覆材46よりも、基準周長Zが長くなり、本実施形態では、第一層B1以外の全ての層Bに配置されたコイル辺部71の絶縁被覆材46よりも、基準周長Zが長くなっている。言い換えれば、複数のコイル辺部71のうちの1つと、同じスロット22に配置された少なくとも他の1つのコイル辺部71とは、絶縁被覆材46の基準周長Zが異なる。本実施形態では、複数のコイル辺部71のうちの1つと、同じスロット22に配置された他の全てのコイル辺部71とは、絶縁被覆材46の基準周長Zが異なる。 In this embodiment, as described above, the aspect ratio increases as the slot width W increases. Therefore, in the present embodiment, the plurality of coil side portions 71 arranged in each of the slots 22 have the slot width W increased based on the position in the radial direction R where each of the coil side portions 71 is arranged. Accordingly, the reference circumferential length Z of the insulating coating material 46 is increased. Specifically, each slot 22 is formed such that the slot width W gradually becomes wider toward the second radial direction R2. Therefore, the reference peripheral length Z of the insulating coating material 46 of the coil side portion 71 arranged in the Nth layer (N = 1, 2,... 4) is the coil side portion 71 arranged in the (N + 1) th layer. It is longer than the reference circumferential length Z of the insulating coating material 46. That is, the insulating coating material 46 of the coil side portion 71 disposed in the first layer B1 that is the layer B in the radial direction R where the slot width W is the largest is at least one of the layers B other than the first layer B1. The reference circumferential length Z is longer than the insulating covering material 46 of the coil side portion 71 arranged in the coil. In this embodiment, the insulating coating of the coil side portion 71 arranged in all the layers B other than the first layer B1 is used. The reference circumferential length Z is longer than that of the material 46. In other words, one of the plurality of coil side portions 71 and at least one other coil side portion 71 arranged in the same slot 22 are different in the reference circumferential length Z of the insulating coating material 46. In the present embodiment, one of the plurality of coil side parts 71 and the other coil side parts 71 arranged in the same slot 22 have different reference peripheral lengths Z of the insulating covering material 46.
 上記のような構成を採用することで、コイル辺部71の直交断面の形状をスロット22内に配置された状態での形状に変形させた状態において、当該コイル辺部71の絶縁被覆材46の周長の弾性伸長量を短く抑えることができ、結果、線状導体4をステータコア2に対して巻き付ける工程の簡素化を図ることが可能となっている。なお、この弾性伸長量は、基準周長Zと、基準周長Z以上の値となる設計周長との間の差に応じて定まる。ここで、設計周長は、コイル辺部71がスロット22内に配置された状態(図2参照)における、絶縁被覆材46の直交断面の設計上の周長であり、層Bに応じて異なる値に設定される。本実施形態では、スロット22内に配置される複数のコイル辺部71のそれぞれについて、絶縁被覆材46の基準周長Zを、設計周長と同一の値に設定している。ここで、「同一」とは、誤差(製造上許容され得る程度の誤差)による差異がある状態を含む。これにより、各コイル辺部71について、周長の弾性伸長量に起因して絶縁被覆材46に発生する復元力(張力)を、実質的にゼロに抑え、線状導体4をステータコア2に対して巻き付ける工程の簡素化をより一層図ることが可能となっている。 By adopting the configuration as described above, in the state where the shape of the orthogonal cross section of the coil side portion 71 is deformed to the shape arranged in the slot 22, the insulating coating material 46 of the coil side portion 71 is changed. The amount of elastic extension of the circumference can be kept short, and as a result, the process of winding the linear conductor 4 around the stator core 2 can be simplified. The amount of elastic extension is determined according to the difference between the reference circumference Z and the design circumference having a value equal to or greater than the reference circumference Z. Here, the design circumference is a design circumference of an orthogonal cross section of the insulating coating material 46 in a state where the coil side portion 71 is disposed in the slot 22 (see FIG. 2), and varies depending on the layer B. Set to a value. In the present embodiment, the reference peripheral length Z of the insulating coating material 46 is set to the same value as the design peripheral length for each of the plurality of coil side portions 71 disposed in the slot 22. Here, “same” includes a state where there is a difference due to an error (an error that is acceptable in manufacturing). As a result, the restoring force (tension) generated in the insulating coating material 46 due to the elastic extension amount of the circumference of each coil side portion 71 is substantially suppressed to zero, and the linear conductor 4 is fixed to the stator core 2. It is possible to further simplify the winding process.
 上記のように、本実施形態では、絶縁被覆材46の基準周長Zは、設計周長と同一の値に設定される。そのため、基準周長Zの長さの設定に関して上述した各構成は、設計周長の長さの設定についても同様に成立する。具体的には、複数のコイル辺部71のうちの1つと、同じスロット22に配置された少なくとも他の1つ(本例では他の全て)のコイル辺部71とは、絶縁被覆材46の設計周長が異なる。また、本実施形態では、コイル辺部71の設計周長は、当該コイル辺部71がスロット22内に配置された状態でのアスペクト比が大きくなるのに応じて長く設定されている。言い換えれば、本実施形態では、コイル辺部71の設計周長は、当該コイル辺部71がスロット22内に配置された状態での直交断面における周方向Cの幅と径方向Rの幅との寸法差の絶対値が大きくなるのに応じて、長く設定されている。更に、本実施形態では、スロット22のそれぞれに配置された複数のコイル辺部71は、コイル辺部71のそれぞれが配置される径方向Rの位置に基づいて、スロット幅Wが大きくなるのに応じて絶縁被覆材46の設計周長が長くなっている。 As described above, in this embodiment, the reference circumferential length Z of the insulating coating material 46 is set to the same value as the design circumferential length. Therefore, each configuration described above regarding the setting of the length of the reference circumference Z is similarly established for the setting of the length of the design circumference. Specifically, one of the plurality of coil side portions 71 and at least one other (all other in this example) coil side portion 71 disposed in the same slot 22 are formed of the insulating coating material 46. Design circumference is different. In the present embodiment, the design peripheral length of the coil side portion 71 is set longer as the aspect ratio in the state where the coil side portion 71 is disposed in the slot 22 is increased. In other words, in this embodiment, the design peripheral length of the coil side portion 71 is the width between the circumferential direction C and the radial direction R in the orthogonal cross section when the coil side portion 71 is disposed in the slot 22. It is set longer as the absolute value of the dimensional difference increases. Further, in the present embodiment, the plurality of coil side portions 71 arranged in each of the slots 22 has a slot width W that increases based on the position in the radial direction R where each of the coil side portions 71 is arranged. Accordingly, the design circumference of the insulating coating material 46 is increased.
 なお、スロット22内に配置される複数のコイル辺部71の少なくとも何れかのコイル辺部71について、コイル辺部71の絶縁被覆材46の基準周長Zが、上記の設計周長より短く設定される構成とすることも可能である。この場合、当該コイル辺部71に対して径方向Rの押圧力を加えて、絶縁被覆材46の直交断面の周長を設計周長まで弾性的に伸ばす必要がある。そのため、この場合、当該コイル辺部71は、基準周長Zと設計周長との間の差に応じた径方向Rの押圧力によって押圧された状態での形状を保って、スロット22内に配置される。このように、絶縁被覆材46の基準周長Zが設計周長より短く設定される場合には、基準周長Zの長さの設定に関して上述した各構成の少なくとも一部の構成が、基準周長Zについては成立せず、設計周長についてのみ成立する構成とすることも可能である。 For at least one of the coil side portions 71 of the plurality of coil side portions 71 arranged in the slot 22, the reference peripheral length Z of the insulating coating material 46 of the coil side portion 71 is set shorter than the above-described design peripheral length. It is also possible to adopt a configuration. In this case, it is necessary to apply a pressing force in the radial direction R to the coil side portion 71 to elastically extend the circumferential length of the orthogonal cross section of the insulating coating material 46 to the design circumferential length. Therefore, in this case, the coil side portion 71 maintains a shape in a state where the coil side portion 71 is pressed by the pressing force in the radial direction R according to the difference between the reference circumferential length Z and the design circumferential length, and is in the slot 22. Be placed. As described above, when the reference circumferential length Z of the insulating coating material 46 is set to be shorter than the design circumferential length, at least a part of the configurations described above regarding the setting of the length of the reference circumferential length Z is the reference circumferential length. It is also possible to adopt a configuration that does not hold for the length Z but only holds for the design circumference.
4.回転電機の製造方法
 次に、本実施形態に係る回転電機100の製造方法について、図6に示すフローチャートを参照して説明する。図6に示すように、回転電機100を製造する工程には、コイル辺部加圧工程#01とコイル辺部挿入工程#02とが含まれ、線状導体4により構成されたコイル3がステータコア2に巻装された回転電機100が製造される。ここで、コイル辺部加圧工程#01は、線状導体4におけるコイル辺部71に相当する部位(以下、「加工対象部位」という。)を延在方向Aに対して交差する交差方向Eに加圧する工程(加圧工程)である。すなわち、加工対象部位は、裸導体素線41を複数本集合させた裸導体素線束42の周囲を、可撓性の絶縁被覆材46により被覆して構成されている被覆導体素線束に設定される、延在方向Aに沿った領域である。このコイル辺部加圧工程#01では、加工対象部位の絶縁被覆材46を塑性変形させて、当該絶縁被覆材46の周長を増加させる。この際、絶縁被覆材46の周長は塑性的に伸長するため、コイル辺部加圧工程#01は、絶縁被覆材46の基準周長Zを増加させる工程である。本実施形態では、図3に示すように、交差方向Eは延在方向Aに対して直交する方向に設定されている。また、コイル辺部挿入工程#02は、コイル辺部加圧工程#01により加圧した後の加工対象部位を、スロット22内に開口部22bから挿入する工程(挿入工程)である。
4). Next, a method for manufacturing the rotating electrical machine 100 according to the present embodiment will be described with reference to the flowchart shown in FIG. As shown in FIG. 6, the process of manufacturing the rotating electrical machine 100 includes a coil side pressurizing step # 01 and a coil side inserting step # 02, and the coil 3 constituted by the linear conductors 4 is a stator core. The rotating electrical machine 100 wound around 2 is manufactured. Here, the coil side pressurizing step # 01 is a crossing direction E in which a portion corresponding to the coil side portion 71 in the linear conductor 4 (hereinafter referred to as “processing target portion”) intersects the extending direction A. This is a process of pressurizing (pressurizing process). That is, the part to be processed is set to a covered conductor wire bundle formed by covering the periphery of a bare conductor wire bundle 42 in which a plurality of bare conductor wires 41 are assembled with a flexible insulating coating material 46. This is a region along the extending direction A. In this coil side pressurizing step # 01, the insulating coating material 46 at the site to be processed is plastically deformed to increase the circumferential length of the insulating coating material 46. At this time, since the circumferential length of the insulating coating material 46 is plastically extended, the coil side pressing step # 01 is a step of increasing the reference circumferential length Z of the insulating coating material 46. In the present embodiment, as shown in FIG. 3, the intersecting direction E is set to a direction orthogonal to the extending direction A. In addition, the coil side insertion step # 02 is a step (insertion step) of inserting the processing target portion after being pressurized in the coil side pressurization step # 01 into the slot 22 from the opening 22b.
 コイル辺部加圧工程#01では、線状導体4における加工対象部位の絶縁被覆材46に対して弾性限界を超える程度の交差方向Eの圧力を加えることで、当該絶縁被覆材46に対して塑性変形を起こさせる。この際、絶縁被覆材46に対する加熱処理が併せて実行される構成とすることもできる。本実施形態では、上述したように、コイル辺部加圧工程#01の実行前の加工対象部位は、図4に示すように、裸導体素線束42の直交断面の形状が真円状となるように集合した複数の裸導体素線41と、直交断面の形状が当該裸導体素線束42に外接する真円状の絶縁被覆材46とにより構成されている。この塑性変形により、当該絶縁被覆材46の基準周長Zが増大し、基準周長Zの増大量は、交差方向Eの加圧量が大きくなるに従って大きくなる。このコイル辺部加圧工程#01は、回転電機のコイル用の線状導体4を製造する工程であり、本実施形態に係る回転電機100の製造方法には、線状導体4の製造工程であるコイル辺部加圧工程#01が含まれる。 In the coil side pressurizing step # 01, the pressure in the crossing direction E exceeding the elastic limit is applied to the insulation coating material 46 at the site to be processed in the linear conductor 4 to the insulation coating material 46 Causes plastic deformation. At this time, it is possible to adopt a configuration in which the heat treatment for the insulating coating material 46 is also performed. In the present embodiment, as described above, the portion to be processed before the coil side pressurizing step # 01 is performed, as shown in FIG. 4, the shape of the orthogonal cross section of the bare conductor strand 42 is a perfect circle. The plurality of bare conductor strands 41 assembled in this way, and a perfectly circular insulating covering material 46 whose shape of the orthogonal cross section circumscribes the bare conductor strand bundle 42 are configured. Due to this plastic deformation, the reference circumferential length Z of the insulating coating material 46 increases, and the increase amount of the reference circumferential length Z increases as the amount of pressurization in the cross direction E increases. This coil side pressurizing step # 01 is a step of manufacturing the linear conductor 4 for the coil of the rotating electrical machine, and the manufacturing method of the rotating electrical machine 100 according to the present embodiment includes the manufacturing process of the linear conductor 4. A coil side pressurizing step # 01 is included.
 本実施形態では、コイル辺部加圧工程#01では、コイル辺部71の絶縁被覆材46の基準周長Zが、コイル辺部71が配置される径方向Rの位置に基づきスロット幅Wが大きくなるのに応じて長くなるように、複数の加工対象部位のそれぞれに対する加圧量を、各加工対象部位に対応するコイル辺部71がスロット22内で配置される径方向Rの位置(層B)に応じて異ならせる。本実施形態では、上述したように、スロット幅Wが大きくなるのに応じて、コイル辺部71の直交断面のアスペクト比が大きくなると共に、コイル辺部71の直交断面における周方向Cの幅と径方向Rの幅との寸法差の絶対値が大きくなる。よって、本実施形態では、コイル辺部71の直交断面における上記寸法差の絶対値が大きくなるのに応じてコイル辺部71の絶縁被覆材46の基準周長Zが長くなるように、複数の加工対象部位のそれぞれに対する加圧量を、各加工対象部位に対応するコイル辺部71の上記寸法差の絶対値に応じて異ならせる。言い換えれば、コイル辺部71の直交断面におけるアスペクト比が大きくなるのに応じてコイル辺部71の絶縁被覆材46の基準周長Zが長くなるように、複数の加工対象部位のそれぞれに対する加圧量を、各加工対象部位に対応するコイル辺部71の直交断面におけるアスペクト比に応じて異ならせる。本実施形態では、加工対象部位の絶縁被覆材46の基準周長Zが上述した設計周長と同一の値となるように、各加工対象部位に対する交差方向Eの加圧量が設定される。ここで、「同一」とは、誤差(製造上許容され得る程度の誤差)による差異がある状態を含む。 In the present embodiment, in the coil side pressurizing step # 01, the reference circumferential length Z of the insulating coating material 46 of the coil side 71 is set to the slot width W based on the position in the radial direction R where the coil side 71 is disposed. The amount of pressure applied to each of the plurality of processing target sites is set so that the length of the coil side portion 71 corresponding to each processing target site is positioned in the radial direction R (layer) in the slot 22 so as to increase as the size increases. Different depending on B). In the present embodiment, as described above, the aspect ratio of the orthogonal cross section of the coil side portion 71 increases as the slot width W increases, and the width in the circumferential direction C of the orthogonal cross section of the coil side portion 71 increases. The absolute value of the dimensional difference from the width in the radial direction R increases. Therefore, in the present embodiment, a plurality of reference peripheral lengths Z of the insulating coating material 46 of the coil side portion 71 are increased as the absolute value of the dimensional difference in the orthogonal cross section of the coil side portion 71 increases. The amount of pressure applied to each of the processing target parts is varied according to the absolute value of the dimensional difference of the coil side portion 71 corresponding to each processing target part. In other words, pressure is applied to each of the plurality of processing target parts so that the reference peripheral length Z of the insulating coating material 46 of the coil side 71 increases as the aspect ratio in the orthogonal cross section of the coil side 71 increases. The amount is varied according to the aspect ratio in the orthogonal cross section of the coil side portion 71 corresponding to each processing target portion. In the present embodiment, the amount of pressurization in the cross direction E with respect to each processing target part is set so that the reference peripheral length Z of the insulating coating material 46 at the processing target part has the same value as the design peripheral length described above. Here, “same” includes a state where there is a difference due to an error (an error that is acceptable in manufacturing).
 本実施形態では、コイル辺部加圧工程#01では、図7(b)に模式的に示すように、加圧治具51を用いて、線状導体4における加工対象部位を交差方向Eに加圧する。加圧治具51は、線状導体4に対して交差方向Eの一方側から当接する当接面を有する第一押圧部と、線状導体4に対して交差方向Eの他方側から当接する当接面を有する第二押圧部とを有する。加圧治具51は、第一押圧部と第二押圧部とを互いに交差方向Eに近づけることで、線状導体4における第一押圧部と第二押圧部との間の押圧隙間51aに挿入された部分を、塑性変形を起こさせる程度に扁平化する。本実施形態では、図7(b)に示すように、押圧隙間51aの交差方向Eの幅を調整することで、線状導体4における加工対象部位に対する加圧量を調整する。すなわち、押圧隙間51aが狭くなるに従って絶縁被覆材46の基準周長Zが長くなる。加圧治具51の押圧部は、例えば、スロット22と同じ軸方向Lの長さを有する。 In the present embodiment, in the coil side pressurizing step # 01, as shown schematically in FIG. 7B, the processing target site in the linear conductor 4 is placed in the crossing direction E using the pressurizing jig 51. Pressurize. The pressing jig 51 abuts on the linear conductor 4 from the one side in the cross direction E, and a first pressing portion having a contact surface that abuts on the linear conductor 4 from the other side in the cross direction E. A second pressing portion having a contact surface. The pressing jig 51 is inserted into the pressing gap 51a between the first pressing portion and the second pressing portion in the linear conductor 4 by bringing the first pressing portion and the second pressing portion closer to each other in the crossing direction E. The formed portion is flattened to such an extent that plastic deformation occurs. In this embodiment, as shown in FIG.7 (b), the pressurization amount with respect to the process target site | part in the linear conductor 4 is adjusted by adjusting the width | variety of the crossing direction E of the press gap 51a. That is, as the pressing gap 51a becomes narrower, the reference circumferential length Z of the insulating coating material 46 becomes longer. The pressing portion of the pressing jig 51 has, for example, the same length in the axial direction L as the slot 22.
 コイル辺部加圧工程#01の実行による基準周長Zの増大は、絶縁被覆材46における加圧治具51によって押圧された部分の厚さが薄くなることによって実現される。すなわち、基準周長Zが大きくなるのに応じて、絶縁被覆材46の厚みの全周における平均値が小さくなる。ここで、本実施形態では、上述したように、スロット22のそれぞれに配置された複数のコイル辺部71は、コイル辺部71のそれぞれが配置される径方向Rの位置に基づいて、スロット幅Wが大きくなるのに応じて絶縁被覆材46の基準周長Zが長くなっている。従って、本実施形態では、スロット22のそれぞれに配置された複数のコイル辺部71は、コイル辺部71のそれぞれが配置される径方向Rの位置に基づいて、スロット幅Wが大きくなるのに応じて絶縁被覆材46の厚みの平均値が小さくなっている。 The increase of the reference circumferential length Z by the execution of the coil side pressing step # 01 is realized by reducing the thickness of the portion pressed by the pressing jig 51 in the insulating coating material 46. That is, as the reference circumferential length Z increases, the average value of the thickness of the insulating coating material 46 on the entire circumference decreases. Here, in the present embodiment, as described above, the plurality of coil side portions 71 arranged in each of the slots 22 is based on the position in the radial direction R where each of the coil side portions 71 is arranged. As W increases, the reference circumferential length Z of the insulating coating material 46 increases. Therefore, in the present embodiment, the plurality of coil side portions 71 arranged in each of the slots 22 have the slot width W increased based on the position in the radial direction R where each of the coil side portions 71 is arranged. Accordingly, the average value of the thickness of the insulating coating material 46 is reduced.
 図6及び図7に示すように、コイル辺部加圧工程#01を実行した後、コイル辺部挿入工程#02が実行される。本実施形態では、コイル辺部挿入工程#02では、コイル辺部加圧工程#01により加圧した加工対象部位を径第二方向R2側に移動させることで、当該加工対象部位を開口部22bからスロット22内に挿入する。この際、加工対象部位は、図7(c)に示すように、周方向幅Dが開口幅W1より狭い第一周方向幅D1となるように変形された状態でスロット22内に挿入された後、当該加工対象部位が配置されるべき径方向Rの位置(層B)まで押し込まれる。その後、加工対象部位をスロット22の開口方向とは反対側である径第二方向R2側に押圧することで、スロット22の断面形状と合うように加工対象部位の直交断面の形状を変化させる。本実施形態では、図7に示すように、コイル辺部挿入工程#02では、スロット22の内部に加工対象部位を複数(本例では5個)挿入し、複数の加工対象部位がスロット22の内部において径方向Rに沿って一列に並ぶように配置する。 As shown in FIGS. 6 and 7, after executing the coil side pressurizing step # 01, the coil side inserting step # 02 is executed. In the present embodiment, in the coil side portion insertion step # 02, the processing target portion pressed in the coil side pressurizing step # 01 is moved to the second radial direction R2 side so that the processing target portion is opened in the opening 22b. Into the slot 22. At this time, as shown in FIG. 7C, the part to be processed was inserted into the slot 22 in a state where the circumferential width D was deformed so as to be the first circumferential width D1 narrower than the opening width W1. Then, it pushes in to the position (layer B) of the radial direction R where the said process target site | part should be arrange | positioned. Thereafter, the shape of the orthogonal cross section of the processing target portion is changed so as to match the cross sectional shape of the slot 22 by pressing the processing target portion toward the second radial direction R2 side opposite to the opening direction of the slot 22. In the present embodiment, as shown in FIG. 7, in the coil side portion insertion step # 02, a plurality of processing target parts (five in this example) are inserted into the slots 22, and the plurality of processing target parts are the slots 22. They are arranged in a line along the radial direction R inside.
 なお、線状導体4における加工対象部位は複数あるが、各加工対象部位に対してコイル辺部加圧工程#01を実行する時点は、当該加工対象部位に対してコイル辺部挿入工程#02が実行される時点より前の任意の時点とすることができる。例えば、1本の線状導体4に含まれる全ての加工対象部位に対してコイル辺部加圧工程#01を実行した後に、コイル辺部挿入工程#02を実行する構成とすることができる。或いは、単数又は複数の加工対象部位に対してコイル辺部加圧工程#01及びコイル辺部挿入工程#02を実行する工程を繰り返し単位として、当該工程が繰り返し実行される構成とすることもできる。 In addition, although there are a plurality of processing target portions in the linear conductor 4, when the coil side pressurizing step # 01 is performed on each processing target portion, the coil side inserting step # 02 is performed on the processing target portion. It can be any time before the time when is executed. For example, the coil side portion inserting step # 02 may be performed after the coil side portion pressing step # 01 is performed on all the processing target parts included in one linear conductor 4. Or it can also be set as the structure by which the process is repeatedly performed by making the process which performs coil side part pressurization process # 01 and coil side part insertion process # 02 with respect to a single or several process object site | part as a repeating unit. .
5.その他の実施形態
 最後に、本発明のその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。
5. Other Embodiments Finally, other embodiments of the present invention will be described. Note that the configurations disclosed in the following embodiments can be applied in combination with the configurations disclosed in other embodiments as long as no contradiction arises.
(1)上記の実施形態では、コイル辺部加圧工程#01において、コイル辺部71のそれぞれが配置される径方向Rの位置に基づいて、スロット幅Wが大きくなるのに応じて絶縁被覆材46の基準周長Zが長くなるように、加工対象部位に対する交差方向Eの加圧量を、当該加工対象部位がスロット22内で配置される径方向Rの位置(層B)に応じて異ならせる構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、絶縁被覆材46を、加熱により基準周長Zを減少させることができるように構成し、図9に示すように、コイル辺部挿入工程#02の実行後に、コイル辺部加熱工程#03を更に実行する構成とすることも可能である。ここで、コイル辺部加熱工程#03は、コイル辺部挿入工程#02によりスロット22内に挿入されたコイル辺部71を加熱して当該コイル辺部71の絶縁被覆材46の基準周長Zを減少させる工程(加熱工程)である。なお、絶縁被覆材46を、例えばFEP(テトラフルオロエチレンとヘキサフルオロプロピレンとの共重合体)等の、熱収縮性を有する材料により構成することで、加熱により絶縁被覆材46の基準周長Zを減少させることができる。この際の基準周長Zの減少量は、加熱量が大きくなるに従って大きくなる。 (1) In the above embodiment, in the coil side pressurizing step # 01, the insulation coating is performed in accordance with the increase in the slot width W based on the position in the radial direction R where each of the coil side 71 is disposed. The amount of pressurization in the cross direction E with respect to the processing target site is set in accordance with the position (layer B) in the radial direction where the processing target site is arranged in the slot 22 so that the reference circumferential length Z of the material 46 increases. The configuration to be different has been described as an example. However, the embodiment of the present invention is not limited to this. For example, the insulation coating material 46 is configured so that the reference circumference Z can be reduced by heating, and as shown in FIG. 9, after the coil side insertion step # 02 is performed, the coil side heating step # 03 is performed. It is also possible to adopt a configuration that further executes the above. Here, the coil side portion heating step # 03 heats the coil side portion 71 inserted into the slot 22 by the coil side portion insertion step # 02 to heat the reference peripheral length Z of the insulating coating material 46 of the coil side portion 71. This is a step (heating step) for reducing the amount of heat. The insulating coating material 46 is made of a heat-shrinkable material such as FEP (a copolymer of tetrafluoroethylene and hexafluoropropylene), so that the reference circumference Z of the insulating coating material 46 can be increased by heating. Can be reduced. At this time, the amount of decrease in the reference circumferential length Z increases as the heating amount increases.
 具体的には、このような構成では、コイル辺部加圧工程#01では、スロット22内に配置されるコイル辺部71のうちの少なくとも何れかのコイル辺部71について、基準周長Zが上述した設計周長よりも長くなるように、線状導体4におけるコイル辺部71に相当する部位である加工対象部位に対する交差方向Eの加圧量を設定する。例えば、全てのコイル辺部71について同一の加圧量、具体的には、基準周長Zが最も長い設計周長(図2に示す例では第一層B1の設計周長)と同一の値となる加圧量を設定する構成とすることができる。ここで、「同一」とは、誤差(製造上許容され得る程度の誤差)による差異がある状態を含む。そして、コイル辺部加熱工程#03では、コイル辺部71のそれぞれが配置される径方向Rの位置に基づいて、スロット幅Wが大きくなるのに応じて絶縁被覆材46の基準周長Zが長くなるように、コイル辺部71に対する加熱量を、当該コイル辺部71が配置される径方向Rの位置に応じて異ならせる。例えば、コイル辺部71の絶縁被覆材46の基準周長Zが設計周長と同一の値となるように、各コイル辺部71に対する加熱量を設定すると好適である。 Specifically, in such a configuration, in the coil side pressurizing step # 01, the reference circumference Z is set to at least one of the coil sides 71 arranged in the slot 22. The amount of pressurization in the intersecting direction E with respect to the portion to be processed which is a portion corresponding to the coil side portion 71 in the linear conductor 4 is set so as to be longer than the above-described design circumference. For example, the same pressurization amount for all the coil side portions 71, specifically, the same value as the design circumference having the longest reference circumference Z (design circumference of the first layer B1 in the example shown in FIG. 2). It can be set as the structure which sets the pressurization amount which becomes. Here, “same” includes a state where there is a difference due to an error (an error that is acceptable in manufacturing). In the coil side heating step # 03, the reference peripheral length Z of the insulating coating material 46 is set according to the increase in the slot width W based on the position in the radial direction R where each of the coil side parts 71 is arranged. The heating amount for the coil side portion 71 is varied according to the position in the radial direction R where the coil side portion 71 is disposed so as to be longer. For example, it is preferable to set the heating amount for each coil side portion 71 so that the reference circumferential length Z of the insulating coating material 46 of the coil side portion 71 has the same value as the design circumferential length.
 なお、コイル辺部挿入工程#02により1つのコイル辺部71が挿入される毎に、当該コイル辺部71に対するコイル辺部加熱工程#03を実行する構成とすることも、コイル辺部挿入工程#02により挿入された複数のコイル辺部71(例えば、同一のスロット22内に配置される全てのコイル辺部71)に対してまとめてコイル辺部加熱工程#03を実行する構成とすることもできる。また、コイル辺部71を径第二方向R2側に押圧して当該コイル辺部71をスロット22の両側面に当接させた状態で、コイル辺部加熱工程#03を実行する構成とすることができる。 The coil side heating step # 03 for the coil side 71 may be performed each time one coil side 71 is inserted in the coil side insertion step # 02. The coil side heating step # 03 is collectively performed on the plurality of coil side parts 71 inserted by # 02 (for example, all the coil side parts 71 arranged in the same slot 22). You can also. In addition, the coil side heating step # 03 is performed in a state where the coil side 71 is pressed in the second radial direction R2 side and the coil side 71 is in contact with both side surfaces of the slot 22. Can do.
(2)上記の実施形態では、コイル辺部挿入工程#02(挿入工程)が、コイル辺部加圧工程#01(加圧工程)により加圧した後の加工対象部位を、スロット22の内部に挿入する工程である構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、図6に示すフローチャートにおいて、コイル辺部加圧工程#01とコイル辺部挿入工程#02とを入れ替えた構成とすることも、本発明の好適な実施形態の一つである。この場合、コイル辺部挿入工程は、コイル辺部加圧工程により加圧する前の加工対象部位を、スロット22内に開口部22bから挿入する工程となり、コイル辺部加圧工程は、コイル辺部挿入工程によりスロット22内に挿入した後の加工対象部位に対して、加圧処理を実行する工程となる。以下、このような構成の例として、図10及び図11に示す第一例と、図12~図15に示す第二例とについて説明する。 (2) In the above-described embodiment, the portion to be processed after the coil side portion insertion step # 02 (insertion step) is pressurized in the coil side portion pressurization step # 01 (pressurization step) The configuration which is the process of inserting into the above has been described as an example. However, the embodiment of the present invention is not limited to this. That is, in the flowchart shown in FIG. 6, a configuration in which the coil side pressing step # 01 and the coil side inserting step # 02 are interchanged is also a preferred embodiment of the present invention. In this case, the coil side insertion step is a step of inserting the processing target site before being pressurized in the coil side pressurization step into the slot 22 from the opening 22b, and the coil side pressurization step is the coil side pressurization step. This is a step of performing a pressurizing process on the portion to be processed after being inserted into the slot 22 by the insertion step. Hereinafter, as an example of such a configuration, a first example shown in FIGS. 10 and 11 and a second example shown in FIGS. 12 to 15 will be described.
〔第一例〕
 図10に示すように、本例では、コイル辺部挿入工程により、コイル辺部加圧工程により加圧する前の加工対象部位(未加工部位)を、スロット22の内部に挿入する。図10に示す例では、扁平化冶具52を用いて線状導体4における加工対象部位の周方向Cの幅がスロット22の開口部22bの周方向Cの幅より狭くなるように扁平化して、当該加工対象部位をスロット22の内部に挿入している。この際、線状導体4における加工対象部位は、弾性変形することにより直交断面の形状が扁平化し、スロット22の内部に挿入された後は、直交断面の形状が真円状に戻る。次に、図11に示すように、コイル辺部加圧工程を実行し、スロット22の内部に挿入された線状導体4における加工対象部位を、スロット22の開口方向とは反対側である径第二方向R2側に加圧する。図11に示す例では、押圧治具53を用いて加工対象部位を径第一方向R1側から押圧して、当該加工対象部位の絶縁被覆材46の基準周長Zを増加させている。
[First example]
As shown in FIG. 10, in this example, the processing target site (unprocessed site) before being pressurized by the coil side pressurizing step is inserted into the slot 22 by the coil side inserting step. In the example shown in FIG. 10, the flattening tool 52 is used to flatten the width in the circumferential direction C of the portion to be processed in the linear conductor 4 to be narrower than the width in the circumferential direction C of the opening 22 b of the slot 22. The part to be processed is inserted into the slot 22. At this time, the part to be processed in the linear conductor 4 is elastically deformed to flatten the shape of the orthogonal cross section, and after being inserted into the slot 22, the shape of the orthogonal cross section returns to a perfect circle. Next, as shown in FIG. 11, the coil side pressurizing step is executed, and the portion to be processed in the linear conductor 4 inserted into the slot 22 is the diameter opposite to the opening direction of the slot 22. Pressurize in the second direction R2 side. In the example illustrated in FIG. 11, the processing target site is pressed from the first radial direction R1 side using the pressing jig 53 to increase the reference peripheral length Z of the insulating coating material 46 of the processing target site.
 この第一例では、図11に示すように、径方向Rに並ぶ複数の加工対象部位に対してまとめてコイル辺部加圧工程を実行し、当該複数の加工対象部位のそれぞれの絶縁被覆材46の基準周長Zを増加させる。具体的には、コイル辺部挿入工程では、複数の加工対象部位を順にスロット22の内部に挿入し(図10参照)、コイル辺部加圧工程では、スロット22の内部に配置された全て(本例では5つ)の加工対象部位をまとめて加圧し、当該全ての加工対象部位のそれぞれの絶縁被覆材46の基準周長Zを増加させる。図11に示す例では、押圧治具53は、スロット22の開口部22bよりも周方向Cの幅が狭くなっており、押圧治具53は、径方向Rに沿ってスロット22の内部に挿入される。 In this first example, as shown in FIG. 11, the coil side pressurizing step is collectively performed on a plurality of processing target portions arranged in the radial direction R, and each insulating coating material of the plurality of processing target portions is performed. 46, the reference circumference Z is increased. Specifically, in the coil side portion insertion step, a plurality of processing target portions are sequentially inserted into the slots 22 (see FIG. 10), and in the coil side portion pressurization step, all the portions to be disposed inside the slots 22 ( In this example, the five parts to be processed are pressed together to increase the reference circumferential length Z of each insulation coating material 46 of all the parts to be processed. In the example shown in FIG. 11, the pressing jig 53 is narrower in the circumferential direction C than the opening 22 b of the slot 22, and the pressing jig 53 is inserted into the slot 22 along the radial direction R. Is done.
〔第二例〕
 図12から図15に示すように、本例でも、第一例と同様に、コイル辺部挿入工程により、コイル辺部加圧工程により加圧する前の加工対象部位(未加工部位)を、スロット22の内部に挿入した後、コイル辺部加圧工程により、スロット22の内部に挿入された線状導体4における加工対象部位を、スロット22の開口方向とは反対側である径第二方向R2側に加圧する。しかし、本例では、コイル辺部挿入工程により1つの加工対象部位がスロット22の内部に挿入される毎に、コイル辺部加圧工程を実行して当該加工対象部位を加圧する。すなわち、図12に示すように第一層B1のコイル辺部71に対応する加工対象部位をコイル辺部挿入工程によりスロット22の内部に挿入した後、図13に示すように当該加工対象部位に対してコイル辺部加圧工程を実行する。次に、図14に示すように、第二層B2のコイル辺部71に対応する加工対象部位をスロット22の内部に挿入した後、図15に示すように当該加工対象部位に対してコイル辺部加圧工程を実行する。以降、第五層B5のコイル辺部71が挿入されるまで、コイル辺部挿入工程及びコイル辺部加圧工程が繰り返し実行される。なお、図13及び図15に示す例では、押圧治具53の先端部は、スロット22の開口部22bよりも周方向Cの幅が広くなっており、押圧治具53は、軸方向Lに沿ってスロット22の内部に挿入された後、径方向Rに沿って移動される。
[Second example]
As shown in FIG. 12 to FIG. 15, in this example as well, in the coil side part insertion step, the part to be processed (unprocessed part) before being pressurized by the coil side part pressurizing step is slotted. After being inserted into the inner portion of the wire 22, the portion to be processed in the linear conductor 4 inserted into the inside of the slot 22 is subjected to the coil side pressurizing step so that the second radial direction R <b> 2 is opposite to the opening direction of the slot 22. Pressurize to the side. However, in this example, every time one processing target site is inserted into the slot 22 by the coil side inserting step, the coil side pressurizing step is executed to pressurize the processing target site. That is, as shown in FIG. 12, after inserting the processing target portion corresponding to the coil side portion 71 of the first layer B <b> 1 into the slot 22 by the coil side portion insertion step, the processing target portion as shown in FIG. On the other hand, the coil side pressurizing step is executed. Next, as shown in FIG. 14, after inserting the processing target portion corresponding to the coil side portion 71 of the second layer B <b> 2 into the slot 22, the coil side with respect to the processing target portion as shown in FIG. 15. A part pressurization process is performed. Thereafter, the coil side inserting step and the coil side pressing step are repeatedly executed until the coil side 71 of the fifth layer B5 is inserted. In the example shown in FIGS. 13 and 15, the tip of the pressing jig 53 is wider in the circumferential direction C than the opening 22 b of the slot 22, and the pressing jig 53 extends in the axial direction L. Then, it is moved along the radial direction R.
(3)上記の実施形態では、コイル辺部挿入工程#02(図7(c)参照)において、線状導体4における加工対象部位が任意の配置方向でスロット22の内部に配置される構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、加工対象部位が予め定められた配置方向でスロット22の内部に配置される構成とすることも、本発明の好適な実施形態の一つである。以下、このような構成の例として、図16及び図17に示す第三例と、図18に示す第四例とについて説明する。なお、図16及び図18では、発明の理解を容易にすべく、絶縁被覆材46におけるコイル辺部加圧工程#01での押圧対象部分46a(図7(b)参照)に対して、絶縁被覆材46における押圧対象部分46a以外の押圧非対象部分46bよりも濃いハッチングを施している。また、図16及び図18では、簡素化のため、スロット22の周方向Cの幅が径方向Rに沿って一様となるように示しており、この結果、各コイル辺部71は互いに同じ断面形状となるように示されている。 (3) In the above-described embodiment, in the coil side portion insertion step # 02 (see FIG. 7C), the configuration is such that the portion to be processed in the linear conductor 4 is arranged inside the slot 22 in an arbitrary arrangement direction. Described as an example. However, the embodiment of the present invention is not limited to this. That is, it is also a preferred embodiment of the present invention that the processing target portion is arranged in the slot 22 in a predetermined arrangement direction. Hereinafter, as an example of such a configuration, a third example shown in FIGS. 16 and 17 and a fourth example shown in FIG. 18 will be described. 16 and 18, in order to facilitate the understanding of the invention, the insulating coating material 46 is insulated against the pressing target portion 46a (see FIG. 7B) in the coil side pressing step # 01. The covering material 46 is shaded deeper than the non-pressing portion 46b other than the pressing target portion 46a. 16 and 18, for the sake of simplicity, the circumferential width C of the slot 22 is shown to be uniform along the radial direction R. As a result, the coil sides 71 are the same as each other. It is shown to have a cross-sectional shape.
〔第三例〕
 図16に示すように、本例では、上記の実施形態と同様に、コイル辺部71とステータコア2(ティース23を含む)とを電気的に絶縁する絶縁部としてのスロット絶縁部24が、スロット22の内面に沿って設けられている。ここで、スロット22の内面は、ステータコア2におけるスロット22を形成する壁面部(ティース側面23aを含む部分)により形成される。そして、本例では、図17に示すように、スロット絶縁部24をスロット22の内面に沿って設ける絶縁工程#04よりも後に、コイル辺部挿入工程#02が実行される。絶縁工程#04は、例えば、スロット絶縁部24が絶縁粉体塗装により形成される場合には、当該塗装をスロット22の内面に施す工程とされ、スロット絶縁部24がスロット絶縁シートにより形成される場合には、当該シートをスロット22の内面に沿って配置する工程とされる。コイル辺部挿入工程#02では、絶縁工程#04によりスロット絶縁部24が設けられたスロット22の内部に、加工対象部位を挿入すると共に、予め定められた配置方向で加工対象部位をスロット22の内部に配置する。本例では、加工対象部位の配置方向は、絶縁被覆材46の押圧対象部分46aが、スロット絶縁部24に対して周方向Cに対向する向きに設定されている。
[Third example]
As shown in FIG. 16, in this example, as in the above embodiment, the slot insulating portion 24 as an insulating portion that electrically insulates the coil side portion 71 and the stator core 2 (including the teeth 23) is a slot. 22 is provided along the inner surface. Here, the inner surface of the slot 22 is formed by a wall surface portion (a portion including the tooth side surface 23 a) that forms the slot 22 in the stator core 2. In this example, as shown in FIG. 17, the coil side portion insertion step # 02 is performed after the insulation step # 04 in which the slot insulating portion 24 is provided along the inner surface of the slot 22. For example, when the slot insulating portion 24 is formed by insulating powder coating, the insulating step # 04 is a step of applying the coating to the inner surface of the slot 22, and the slot insulating portion 24 is formed by the slot insulating sheet. In this case, the sheet is disposed along the inner surface of the slot 22. In the coil side portion insertion step # 02, the portion to be processed is inserted into the slot 22 in which the slot insulating portion 24 is provided in the insulating step # 04, and the portion to be processed is placed in the slot 22 in a predetermined arrangement direction. Place inside. In this example, the arrangement direction of the processing target portion is set such that the pressing target portion 46 a of the insulating coating material 46 faces the circumferential direction C with respect to the slot insulating portion 24.
 図16に示すように、コイル辺部71は、周方向Cの両側の端部のそれぞれに径方向Rに延びる第一部分71aを有すると共に、径方向Rの両側の端部のそれぞれに周方向Cに延びる第二部分71bを有する。本例では、スロット22の内部には複数のコイル辺部71が配置され、複数のコイル辺部71には対象コイル辺部73が含まれる。ここで、対象コイル辺部73は、第一部分71aがスロット絶縁部24に対して周方向Cに対向して接すると共に、第二部分71bが他のコイル辺部71に対して径方向Rに対向して接するコイル辺部71である。本例では、上記のように、コイル辺部71を構成する加工対象部位は、絶縁被覆材46の押圧対象部分46aがスロット絶縁部24に対して周方向Cに対向するように配置される。そのため、対象コイル辺部73の第一部分71aの少なくとも一部は、押圧対象部分46aにより形成される。一方、対象コイル辺部73の第二部分71bの少なくとも一部は、押圧非対象部分46bにより形成される。 As shown in FIG. 16, the coil side portion 71 has a first portion 71 a extending in the radial direction R at each end portion on both sides in the circumferential direction C, and the circumferential direction C at each end portion on both sides in the radial direction R. The second portion 71b extends in the direction. In this example, a plurality of coil side portions 71 are arranged inside the slot 22, and the plurality of coil side portions 71 include a target coil side portion 73. Here, in the target coil side portion 73, the first portion 71 a is in contact with the slot insulating portion 24 while facing the circumferential direction C, and the second portion 71 b is opposed to the other coil side portion 71 in the radial direction R. It is the coil side part 71 which touches. In this example, as described above, the portion to be processed constituting the coil side portion 71 is disposed such that the pressing target portion 46 a of the insulating coating material 46 faces the slot insulating portion 24 in the circumferential direction C. Therefore, at least a part of the first portion 71a of the target coil side portion 73 is formed by the pressing target portion 46a. On the other hand, at least a part of the second portion 71b of the target coil side portion 73 is formed by the pressing non-target portion 46b.
 図16に示す例では、対象コイル辺部73について、第一部分71aの全体が、押圧対象部分46aにより形成されており、第二部分71bの全体が、押圧非対象部分46bにより形成されている。また、図16に示す例では、第一部分71aと第二部分71bとの接続部(コイル辺部71の矩形状断面における円弧状の角部)の全体が、押圧対象部分46aにより形成されている。すなわち、図16に示す例では、押圧対象部分46aの直交断面での延在長さが第一部分71aの直交断面での延在長さよりも大きく設定されている。押圧非対象部分46bの直交断面での延在長さを第二部分71bの直交断面での延在長さよりも大きく設定することにより、上記接続部の一部或いは全体が押圧非対象部分46bにより形成された構成とすることも可能である。 In the example shown in FIG. 16, with respect to the target coil side 73, the entire first portion 71a is formed by the pressing target portion 46a, and the entire second portion 71b is formed by the pressing non-target portion 46b. Moreover, in the example shown in FIG. 16, the whole connection part (arc-shaped corner | angular part in the rectangular cross section of the coil side part 71) of the 1st part 71a and the 2nd part 71b is formed of the pressing object part 46a. . That is, in the example shown in FIG. 16, the extension length of the pressing target portion 46a in the orthogonal cross section is set to be larger than the extension length of the first portion 71a in the orthogonal cross section. By setting the extension length in the orthogonal cross section of the pressing non-target portion 46b to be larger than the extension length in the orthogonal cross section of the second portion 71b, a part or the whole of the connecting portion is formed by the pressing non-target portion 46b. A formed configuration is also possible.
 ところで、押圧対象部分46aは、コイル辺部加圧工程#01において押圧される部分(上記実施形態の例では図7(b)に示す加圧治具51により押圧される部分)である。そのため、コイル辺部加圧工程#01の実行後には、押圧対象部分46aの厚みの平均値は、押圧非対象部分46bの厚みの平均値よりも小さくなる。なぜなら、押圧対象部分46aは、コイル辺部加圧工程#01の実行により塑性的に伸長することに加えて、図16に模式的に示すように、コイル辺部加圧工程#01の実行時に裸導体素線41が押圧対象部分46aの内面に押し付けられ、押圧対象部分46aにおける裸導体素線41がめり込んだ部分が薄くなるからである。そして、本例では、対象コイル辺部73の第一部分71aは押圧対象部分46aにより形成され、対象コイル辺部73の第二部分71bは押圧非対象部分46bにより形成される。よって、本例では、対象コイル辺部73の絶縁被覆材46は、第一部分71aにおける厚みの平均値が第二部分71bにおける厚みの平均値よりも小さくなっている。例えば、第一部分71aにおける絶縁被覆材46の厚みの平均値が、第二部分71bにおける絶縁被覆材46の厚みの平均値の10分の9程度或いは4分の3程度である構成とすることができる。また、第一部分71aにおける絶縁被覆材46の厚みの最小値(最も薄い部分の厚み)が、第二部分71bにおける絶縁被覆材46の厚みの最小値(最も薄い部分の厚み)の3分の2程度或いは2分の1程度である構成とすることができる。 By the way, the pressing target portion 46a is a portion pressed in the coil side pressing step # 01 (in the example of the above embodiment, a portion pressed by the pressing jig 51 shown in FIG. 7B). Therefore, after execution of coil side part pressurization process # 01, the average value of the thickness of the pressing target part 46a becomes smaller than the average value of the thickness of the pressing non-target part 46b. This is because the pressing target portion 46a is plastically extended by the execution of the coil side pressurizing step # 01 and, as schematically shown in FIG. 16, when the coil side pressurizing step # 01 is executed. This is because the bare conductor wire 41 is pressed against the inner surface of the pressing target portion 46a, and the portion of the pressing target portion 46a into which the bare conductor strand 41 is recessed becomes thin. In this example, the first portion 71a of the target coil side portion 73 is formed by the pressing target portion 46a, and the second portion 71b of the target coil side portion 73 is formed by the pressing non-target portion 46b. Therefore, in this example, the insulation coating material 46 of the target coil side portion 73 has an average thickness value in the first portion 71a smaller than an average thickness value in the second portion 71b. For example, the average value of the thickness of the insulating coating material 46 in the first portion 71a may be about 9/10 or about 3/4 of the average thickness of the insulating coating material 46 in the second portion 71b. it can. Further, the minimum value of the thickness of the insulating coating material 46 in the first portion 71a (thickness of the thinnest portion) is two thirds of the minimum value of the thickness of the insulating coating material 46 in the second portion 71b (thickness of the thinnest portion). It can be set as the structure which is a grade or a half.
 なお、スロット22の内部に配置される複数のコイル辺部71に、対象コイル辺部73以外のコイル辺部71が含まれていても良い。例えば、上記実施形態に係る図2に示す例では、第一層B1に配置されるコイル辺部71や第五層B5に配置されるコイル辺部71は、対象コイル辺部73とは異なり、径方向Rの両側の第二部分71bのうちの一方のみが、他のコイル辺部71に対して径方向Rに対向して接するように配置される。このようなコイル辺部71についても、対象コイル辺部73と同様に、押圧対象部分46aがスロット絶縁部24に対して周方向Cに対向するように配置することができる。この場合、スロット絶縁部24における第一層B1のコイル辺部71の径第二方向R2側に配置される部分(以下、「対象部分」という。)を、スロット絶縁部24の他の部分よりも絶縁性能を緩和することもできる。すなわち、例えば、スロット絶縁部24が絶縁粉体塗装により形成される場合には、上記対象部分の塗装の膜厚を薄くすることができ、スロット絶縁部24がスロット絶縁シートにより形成される場合には、上記対象部分のシートの厚みを薄く、或いは、上記対象部分のシートの重ね合わせ数を小さくすることができる。 Note that the coil side portions 71 other than the target coil side portion 73 may be included in the plurality of coil side portions 71 arranged inside the slot 22. For example, in the example shown in FIG. 2 according to the above embodiment, the coil side 71 arranged in the first layer B1 and the coil side 71 arranged in the fifth layer B5 are different from the target coil side 73, Only one of the second portions 71 b on both sides in the radial direction R is disposed so as to be opposed to and contact the other coil side portion 71 in the radial direction R. As with the target coil side portion 73, such a coil side portion 71 can also be disposed so that the pressing target portion 46 a faces the slot insulating portion 24 in the circumferential direction C. In this case, a portion (hereinafter referred to as “target portion”) disposed on the second radial direction R2 side of the coil side portion 71 of the first layer B1 in the slot insulating portion 24 is more than the other portion of the slot insulating portion 24. Insulation performance can also be relaxed. That is, for example, when the slot insulating portion 24 is formed by insulating powder coating, the coating thickness of the target portion can be reduced, and when the slot insulating portion 24 is formed by a slot insulating sheet. The thickness of the sheet of the target portion can be reduced, or the number of overlapping sheets of the target portion can be reduced.
〔第四例〕
 図18に示すように、本例では、上記の実施形態とは異なり、スロット22の内部にはスロット絶縁部24が設けられていない。そして、本例では、上記第三例とは異なり、線状導体4における加工対象部位の配置方向は、絶縁被覆材46の押圧非対象部分46bが、スロット22の内面に対して周方向Cに対向する向きに設定されている。本例では、このような配置方向に従って、コイル辺部挿入工程#02において、複数の加工対象部位がスロット22の内部に配置される。
[Fourth example]
As shown in FIG. 18, in this example, unlike the above-described embodiment, the slot insulating portion 24 is not provided inside the slot 22. In this example, unlike the third example, the processing direction of the linear conductor 4 is such that the non-pressing portion 46 b of the insulating coating 46 is in the circumferential direction C with respect to the inner surface of the slot 22. The facing direction is set. In this example, according to such an arrangement direction, a plurality of processing target parts are arranged inside the slot 22 in the coil side portion insertion step # 02.
 図18に示すように、本例では、スロット22の内部に配置される複数のコイル辺部71には、第一部分71aがスロット22の内面に対して周方向Cに対向して接すると共に、第二部分71bが他のコイル辺部71に対して径方向Rに対向して接するコイル辺部71である、対象コイル辺部74が含まれる。本例では、上記のように、コイル辺部71を構成する加工対象部位は、絶縁被覆材46の押圧非対象部分46bがスロット22の内面に対して周方向Cに対向するように配置される。そのため、対象コイル辺部74の第一部分71aの少なくとも一部は、押圧非対象部分46bにより形成される。一方、対象コイル辺部74の第二部分71bの少なくとも一部は、押圧対象部分46aにより形成される。 As shown in FIG. 18, in this example, the first portion 71 a is in contact with the inner surface of the slot 22 facing the inner surface of the slot 22 in the circumferential direction C, and The target coil side portion 74 is included, which is the coil side portion 71 in which the two portions 71b are in contact with the other coil side portions 71 in the radial direction R. In this example, as described above, the portion to be processed constituting the coil side portion 71 is disposed so that the non-pressing portion 46 b of the insulating coating material 46 faces the inner surface of the slot 22 in the circumferential direction C. . Therefore, at least a part of the first portion 71a of the target coil side portion 74 is formed by the pressing non-target portion 46b. On the other hand, at least a part of the second portion 71b of the target coil side portion 74 is formed by the pressing target portion 46a.
 図18に示す例では、対象コイル辺部74について、第一部分71aの全体が、押圧非対象部分46bにより形成されており、第二部分71bの全体が、押圧対象部分46aにより形成されている。そして、本例では、上記第三例とは異なり、対象コイル辺部74の絶縁被覆材46は、第一部分71aにおける厚みの平均値が第二部分71bにおける厚みの平均値よりも大きくなっている。例えば、第二部分71bにおける絶縁被覆材46の厚みの平均値が、第一部分71aにおける絶縁被覆材46の厚みの平均値の10分の9程度或いは4分の3程度である構成とすることができる。また、第二部分71bにおける絶縁被覆材46の厚みの最小値(最も薄い部分の厚み)が、第一部分71aにおける絶縁被覆材46の厚みの最小値(最も薄い部分の厚み)の3分の2程度或いは2分の1程度である構成とすることができる。なお、図18に示す例では、第一部分71aと第二部分71bとの接続部の全体が、押圧非対象部分46bにより形成されている。上記接続部の一部或いは全体が、押圧対象部分46aにより形成された構成とすることも可能である。 In the example shown in FIG. 18, the entire first portion 71a of the target coil side 74 is formed by the non-pressing portion 46b, and the entire second portion 71b is formed by the pressing target portion 46a. And in this example, unlike the said 3rd example, as for the insulation coating material 46 of the object coil side part 74, the average value of the thickness in the 1st part 71a is larger than the average value of the thickness in the 2nd part 71b. . For example, the average value of the thickness of the insulating coating material 46 in the second portion 71b may be about 9/10 or about 3/4 of the average thickness of the insulating coating material 46 in the first portion 71a. it can. Further, the minimum value of the thickness of the insulating coating material 46 in the second portion 71b (thickness of the thinnest portion) is two thirds of the minimum value of the thickness of the insulating coating material 46 in the first portion 71a (thickness of the thinnest portion). It can be set as the structure which is a grade or a half. In the example shown in FIG. 18, the entire connection portion between the first portion 71 a and the second portion 71 b is formed by the pressing non-target portion 46 b. A part or the whole of the connecting portion may be formed by the pressing target portion 46a.
 なお、スロット22の内部に配置される複数のコイル辺部71に、対象コイル辺部74以外のコイル辺部71が含まれていても良い。例えば、対象コイル辺部74とは異なり、径方向Rの両側の第二部分71bのうちの一方のみが、他のコイル辺部71に対して径方向Rに対向して接するように配置されるコイル辺部71が、複数のコイル辺部71に含まれていても良い。このようなコイル辺部71についても、対象コイル辺部74と同様に、絶縁被覆材46の押圧非対象部分46bがスロット22の内面に対して周方向Cに対向するように配置することができる。例えば、径方向Rの両側の第二部分71bのうちの一方が他のコイル辺部71に対して径方向Rに対向して接するように配置され、他方の第二部分71bがスロット22の径方向Rを向く内面に対して径方向Rに対向するように配置されるコイル辺部71について、絶縁被覆材46の押圧非対象部分46bがスロット22の内面に対して周方向Cに対向するように配置することができる。この場合、当該コイル辺部71とスロット22の径方向Rを向く内面との間に、スロット絶縁部24が設けられた構成とすることも可能である。なお、本例においても、スロット22の内面の全体にスロット絶縁部24が設けられた構成とすることも可能である。 It should be noted that the coil side portions 71 other than the target coil side portion 74 may be included in the plurality of coil side portions 71 arranged inside the slot 22. For example, unlike the target coil side portion 74, only one of the second portions 71 b on both sides in the radial direction R is disposed so as to be opposed to the other coil side portion 71 in the radial direction R. The coil side portion 71 may be included in the plurality of coil side portions 71. As with the target coil side portion 74, such a coil side portion 71 can also be arranged so that the pressing non-target portion 46 b of the insulation coating material 46 faces the inner surface of the slot 22 in the circumferential direction C. . For example, one of the second portions 71b on both sides in the radial direction R is arranged so as to be opposed to and contact the other coil side portion 71 in the radial direction R, and the other second portion 71b is the diameter of the slot 22. With respect to the coil side portion 71 arranged so as to face the radial direction R with respect to the inner surface facing the direction R, the pressing non-target portion 46 b of the insulating coating material 46 faces the circumferential direction C with respect to the inner surface of the slot 22. Can be arranged. In this case, it is also possible to adopt a configuration in which the slot insulating portion 24 is provided between the coil side portion 71 and the inner surface of the slot 22 facing the radial direction R. In this example as well, a configuration in which the slot insulating portion 24 is provided on the entire inner surface of the slot 22 is also possible.
(4)上記の実施形態では、スロット22のそれぞれに配置された複数のコイル辺部71は、コイル辺部71のそれぞれが配置される径方向Rの位置に基づいて、スロット幅Wが大きくなるのに応じて絶縁被覆材46の基準周長Zが長くなっている構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、一部のコイル辺部71の間で、スロット幅Wが大きくなるのに応じて絶縁被覆材46の基準周長Zが短くなる構成とすることができる。例えば、図2に示す例においてコイル辺部71の断面積が更に大きく設定されている場合等において、最も径第一方向R1側に配置されるコイル辺部71の直交断面の形状が、周方向Cの幅よりも径方向Rの幅が大きい形状となることが想定される。このような場合、スロット幅Wが最も小さい径方向Rの位置にある層Bに配置されたコイル辺部71の絶縁被覆材46が、他のいずれかの層Bに配置されたコイル辺部71の絶縁被覆材46よりも基準周長Zが長くなり得る。すなわち、これらのコイル辺部71の間では、スロット幅Wが大きくなるのに応じて絶縁被覆材46の基準周長Zが短くなる。言い換えれば、スロット幅Wが大きくなるのに応じて、コイル辺部71の直交断面における周方向Cの幅と径方向Rの幅との寸法差の絶対値が小さくなる。また、このような場合、スロット幅Wが最も小さい径方向Rの位置にある層Bに配置されたコイル辺部71の絶縁被覆材46の基準周長Zが、スロット幅Wが最も大きい径方向Rの位置にある層B(特定層)に配置されたコイル辺部71の絶縁被覆材46の基準周長Z以上となり得る。この場合、上記の実施形態とは異なり、特定層に配置されたコイル辺部71の絶縁被覆材46が、特定層以外の全ての層Bではなく、特定層以外の一部の層Bに配置されたコイル辺部71の絶縁被覆材46よりも、基準周長Zが長い構成となる。本発明は、このような構成も権利範囲に含む。 (4) In the above-described embodiment, the plurality of coil sides 71 arranged in each of the slots 22 has a slot width W that is large based on the position in the radial direction R where each of the coil sides 71 is arranged. The configuration in which the reference circumferential length Z of the insulating coating material 46 is increased according to the above is described as an example. However, the embodiment of the present invention is not limited to this. In other words, the reference peripheral length Z of the insulating coating material 46 can be shortened as the slot width W increases between some of the coil sides 71. For example, when the cross-sectional area of the coil side portion 71 is set to be larger in the example shown in FIG. 2, the shape of the orthogonal cross section of the coil side portion 71 arranged closest to the first radial direction R1 is the circumferential direction. It is assumed that the width in the radial direction R is larger than the width of C. In such a case, the insulating coating material 46 of the coil side 71 arranged in the layer B at the position in the radial direction R where the slot width W is the smallest is the coil side 71 arranged in any other layer B. The reference circumferential length Z can be longer than that of the insulating coating material 46. That is, between these coil side parts 71, as the slot width W increases, the reference circumferential length Z of the insulating coating material 46 decreases. In other words, as the slot width W increases, the absolute value of the dimensional difference between the width in the circumferential direction C and the width in the radial direction R in the orthogonal cross section of the coil side portion 71 decreases. In such a case, the reference circumferential length Z of the insulating coating material 46 of the coil side portion 71 disposed in the layer B located in the radial direction R where the slot width W is the smallest is the radial direction where the slot width W is the largest. It can be equal to or greater than the reference circumferential length Z of the insulating coating material 46 of the coil side portion 71 disposed in the layer B (specific layer) at the position of R. In this case, unlike the above-described embodiment, the insulation coating material 46 of the coil side portion 71 arranged in the specific layer is arranged not in all the layers B other than the specific layer but in some layers B other than the specific layer. The reference circumferential length Z is longer than that of the insulation coating material 46 of the coil side portion 71 that has been made. The present invention includes such a configuration within the scope of rights.
(5)上記の実施形態では、スロット22が、径第二方向R2側に向かうに従ってスロット幅Wが次第に広くなるように形成されており、第一層B1が特定層である構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、スロット22の形状を変更し、径方向Rの中間の位置にある層B(図2に示す例では第二層B2、第三層B3、又は第四層B4)、或いは、最も径第一方向R1側の位置にある層B(図2に示す例では第五層B5)が、スロット幅Wが最も大きい径方向Rの位置にある層B(特定層)となる構成とすることも可能である。 (5) In the above embodiment, the slot 22 is formed so that the slot width W gradually increases toward the second radial direction R2, and the first layer B1 is a specific layer. did. However, the embodiment of the present invention is not limited to this. For example, the shape of the slot 22 is changed, and the layer B (the second layer B2, the third layer B3, or the fourth layer B4 in the example shown in FIG. 2) at the middle position in the radial direction R, or the The layer B (the fifth layer B5 in the example shown in FIG. 2) at the position on the one direction R1 side may be a layer B (specific layer) at the position in the radial direction R where the slot width W is the largest. Is possible.
(6)上記の実施形態では、複数のコイル辺部71のうちの1つと、同じスロット22に配置された他の全てのコイル辺部71とは、絶縁被覆材46の基準周長Zが異なる構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、スロット22の内部に、絶縁被覆材46の基準周長Zが互いに同一となる複数のコイル辺部71が配置され、複数のコイル辺部71のうちの1つと、同じスロット22に配置された他の一部のコイル辺部71とが、絶縁被覆材46の基準周長Zが異なる構成とすることも可能である。 (6) In the above-described embodiment, one of the plurality of coil side portions 71 and the other coil side portions 71 arranged in the same slot 22 have different reference peripheral lengths Z of the insulating coating material 46. The configuration has been described as an example. However, the embodiment of the present invention is not limited to this. That is, inside the slot 22, a plurality of coil side portions 71 having the same reference circumferential length Z of the insulating coating material 46 are disposed, and one of the plurality of coil side portions 71 is disposed in the same slot 22. It is also possible to adopt a configuration in which the reference peripheral length Z of the insulating coating material 46 is different from some other coil side portions 71.
(7)上記の実施形態では、コイル辺部71がスロット22の内部において5個の層Bに分かれて配置されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、コイル辺部71が“5”以外の奇数個(例えば3個、7個等)の層Bに分かれて配置されている構成や、コイル辺部71が偶数個(例えば、2個、4個、6個等)の層Bに分かれて配置されている構成とすることも、本発明の好適な実施形態の一つである。 (7) In the above embodiment, the configuration in which the coil side portion 71 is divided into the five layers B inside the slot 22 has been described as an example. However, the embodiment of the present invention is not limited to this. That is, the coil side portion 71 is divided into an odd number (for example, three, seven, etc.) of layers B other than “5”, and the coil side portion 71 is an even number (for example, two, four, etc.). It is also one of the preferred embodiments of the present invention to have a configuration in which the layer B is divided and disposed.
(8)上記の実施形態では、裸導体素線41が本発明における「導体素線」に相当する構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、樹脂等(例えばポリアミドイミド樹脂やポリイミド樹脂等)の電気的絶縁材料からなる絶縁皮膜が表面に設けられた導体素線(被覆導体素線)を、本発明における「導体素線」として用い、当該被覆導体素線を複数本集合させた被覆導体素線束の周囲が、絶縁被覆材46により更に被覆されている構成とすることもできる。 (8) In the above embodiment, the configuration in which the bare conductor wire 41 corresponds to the “conductor wire” in the present invention has been described as an example. However, the embodiment of the present invention is not limited to this. That is, a conductor wire (covered conductor wire) provided with an insulating film made of an electrically insulating material such as a resin (eg, polyamideimide resin or polyimide resin) on the surface is used as the “conductor wire” in the present invention. A configuration in which a periphery of a bundle of coated conductor strands in which a plurality of the coated conductor strands are assembled is further covered with an insulating coating material 46 may be employed.
(9)上記の実施形態では、ティース23の先端部に周方向突出部23bが形成されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、ティース23の先端部に周方向突出部23bが形成されていない構成、すなわち、スロット22がオープンスロットである構成とすることもできる。 (9) In the above embodiment, the configuration in which the circumferential protrusion 23b is formed at the tip of the tooth 23 has been described as an example. However, the embodiment of the present invention is not limited to this. That is, a configuration in which the circumferential protrusion 23b is not formed at the tip of the tooth 23, that is, a configuration in which the slot 22 is an open slot may be employed.
(10)上記の実施形態では、線状導体4の未加工部位の直交断面の形状を真円状とした状態での周方向幅Dが、スロット22の開口幅W1よりも大きく設定されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、線状導体4の未加工部位の直交断面の形状を真円状とした状態での周方向幅Dが、スロット22の開口幅W1以下に設定されている構成とすることもできる。 (10) In the above embodiment, the circumferential width D in a state where the shape of the orthogonal cross section of the unprocessed portion of the linear conductor 4 is a perfect circle is set to be larger than the opening width W1 of the slot 22. The configuration has been described as an example. However, the embodiment of the present invention is not limited to this. That is, the circumferential width D in a state where the shape of the orthogonal cross section of the unprocessed portion of the linear conductor 4 is a perfect circle may be set to be equal to or smaller than the opening width W1 of the slot 22.
(11)上記の実施形態では、裸導体素線41の延在方向に直交する断面の形状が円形状である構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、裸導体素線41の断面形状を、例えば、四角形状、三角形状、五角形状、六角形状、八角形状等の各種多角形状としても良い。 (11) In the above embodiment, the configuration in which the shape of the cross section orthogonal to the extending direction of the bare conductor wire 41 is a circular shape has been described as an example. However, the embodiment of the present invention is not limited to this. That is, the cross-sectional shape of the bare conductor wire 41 may be various polygonal shapes such as a quadrangular shape, a triangular shape, a pentagonal shape, a hexagonal shape, and an octagonal shape.
(12)上記の実施形態では、スロット22が径方向Rの内側へ向かう方向である径第一方向R1側に開口部22bを有する構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、スロット22が径方向Rの外側へ向かう方向である径第二方向R2側に開口部を有する構成とすることも可能である。すなわち、本発明は、ロータがステータの径第二方向R2側に配置されるアウタロータ型の回転電機に適用することも可能である。 (12) In the above embodiment, the configuration in which the slot 22 has the opening 22b on the radial first direction R1 side, which is the direction toward the inner side in the radial direction R, has been described as an example. However, the embodiment of the present invention is not limited to this. That is, it is also possible to employ a configuration in which the slot 22 has an opening on the radial second direction R2 side, which is a direction toward the outside of the radial direction R. That is, the present invention can also be applied to an outer rotor type rotating electrical machine in which the rotor is disposed on the second radial direction R2 side of the stator.
(13)上記の実施形態では、ステータコア2が、円環板状の磁性体板7を軸方向Lに複数積層して形成されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、ステータコア2が、磁性材料の粉体を加圧成形してなる圧粉材を主な構成要素として形成されている構成とすることも可能である。この場合、ステータコア2が、周方向Cに加えて、径方向R及び軸方向Lの双方においても一体に形成されている構成とすることができる。 (13) In the above embodiment, the configuration in which the stator core 2 is formed by laminating a plurality of annular plate-like magnetic plates 7 in the axial direction L has been described as an example. However, the embodiment of the present invention is not limited to this. For example, the stator core 2 may have a configuration in which a compact material formed by pressing a magnetic material powder is formed as a main component. In this case, the stator core 2 can be formed integrally in both the radial direction R and the axial direction L in addition to the circumferential direction C.
(14)上記の実施形態では、ステータコア2が本発明における「コア」に相当する構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、本発明を固定界磁型の回転電機に適用し、コイル3の巻装対象のコアがロータのコアである構成、すなわち、ロータのコアが本発明における「コア」に相当する構成とすることも可能である。このように、本発明に係る「コア」は、ステータコア2以外の電機子コアに適用することが可能である。 (14) In the above embodiment, the configuration in which the stator core 2 corresponds to the “core” in the present invention has been described as an example. However, the embodiment of the present invention is not limited to this. For example, the present invention is applied to a fixed field type rotating electrical machine, and the core to be wound by the coil 3 is a rotor core, that is, the rotor core corresponds to the “core” in the present invention. It is also possible. Thus, the “core” according to the present invention can be applied to an armature core other than the stator core 2.
(15)上記の実施形態では、コイル辺部挿入工程#02では、スロット22の内部に加工対象部位を複数挿入する構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、コイル3が単層巻構造を有する構成とし、コイル辺部挿入工程#02において、単一の加工対象部位をスロット22の内部に挿入する構成とすることも可能である。 (15) In the above embodiment, in the coil side portion insertion step # 02, a configuration in which a plurality of processing target portions are inserted into the slot 22 has been described as an example. However, the embodiment of the present invention is not limited to this. In other words, the coil 3 may be configured to have a single-layer winding structure, and a single machining target site may be inserted into the slot 22 in the coil side portion insertion step # 02.
(16)上記の実施形態では、コイル辺部挿入工程#02では、径方向Rの位置に応じてスロット幅Wが異なるように形成されたスロット22の内部に、加工対象部位を挿入する構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、コイル辺部挿入工程#02において、スロット幅Wが径方向Rに沿って一様となるように形成されたスロット22の内部に、加工対象部位を挿入する構成とすることも可能である。このような場合には、コイル辺部71の直交断面の形状が、同じスロット22に配置された全てのコイル辺部71について互いに同一の矩形状である構成とし、コイル辺部71の絶縁被覆材46の周長(基準周長Z又は設計周長)が、同じスロット22に配置された全てのコイル辺部71について互いに同一である構成とすることもできる。 (16) In the above-described embodiment, in the coil side portion insertion step # 02, a configuration in which the processing target site is inserted into the slot 22 that is formed so that the slot width W varies depending on the position in the radial direction R. Described as an example. However, the embodiment of the present invention is not limited to this. That is, in the coil side portion insertion step # 02, it is also possible to adopt a configuration in which the portion to be processed is inserted into the slot 22 formed so that the slot width W is uniform along the radial direction R. . In such a case, the shape of the orthogonal cross section of the coil side portion 71 is the same rectangular shape for all the coil side portions 71 arranged in the same slot 22, and the insulating coating material for the coil side portion 71 is used. The circumferential length 46 (reference circumferential length Z or design circumferential length) may be the same for all the coil side portions 71 arranged in the same slot 22.
(17)上記の実施形態では、加圧工程が、被覆導体素線束におけるコイル辺部71に相当する部位を加工対象部位とするコイル辺部加圧工程#01である構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、被覆導体素線束におけるコイルエンド部に相当する部位等を、加圧工程における加工対象部位とすることも可能である。このような場合において、複数の裸導体素線41が、裸導体素線束42の直交断面の外形が真円状となるように互いに密着し合って高い密集度で集合する場合の、当該裸導体素線束42に外接する真円の半径と、絶縁被覆材46の基準周長Zを円周長とする円の半径との差が、少なくとも裸導体素線41の直径以上となるように、加工対象部位に対する加圧量を設定すると好適である。 (17) In the above embodiment, the configuration in which the pressurizing step is the coil side pressurizing step # 01 in which the portion corresponding to the coil side portion 71 in the coated conductor strand bundle is the processing target portion has been described as an example. However, the embodiment of the present invention is not limited to this. For example, a portion corresponding to a coil end portion in the coated conductor wire bundle can be set as a processing target portion in the pressurizing step. In such a case, when a plurality of bare conductor wires 41 are gathered in close contact with each other such that the outer shape of the orthogonal cross section of the bare conductor strand bundle 42 is a perfect circle, the bare conductors 41 Processing so that the difference between the radius of the perfect circle circumscribing the strand of wire 42 and the radius of the circle whose circumferential length is the reference circumferential length Z of the insulation coating material 46 is at least equal to or larger than the diameter of the bare conductor strand 41. It is preferable to set the amount of pressure applied to the target part.
(18)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 (18) Regarding other configurations as well, the embodiments disclosed herein are illustrative in all respects, and the embodiments of the present invention are not limited thereto. In other words, configurations that are not described in the claims of the present application can be modified as appropriate without departing from the object of the present invention.
 本発明は、回転電機のコイル用の線状導体を製造するための製造方法、及び、当該製造方法を含む回転電機の製造方法に好適に利用することができる。 The present invention can be suitably used in a manufacturing method for manufacturing a linear conductor for a coil of a rotating electrical machine and a manufacturing method of a rotating electrical machine including the manufacturing method.
2:ステータコア(コア)
3:コイル
4:線状導体
21:コア基準面
22:スロット
24:スロット絶縁部(絶縁部)
41:裸導体素線(導体素線)
42:裸導体素線束(導体素線束)
46:絶縁被覆材
46a:押圧対象部分
46b:押圧非対象部分
71:コイル辺部
100:回転電機
A:延在方向
C:周方向
E:交差方向
L:軸方向
R:径方向
W:スロット幅
2: Stator core (core)
3: Coil 4: Linear conductor 21: Core reference plane 22: Slot 24: Slot insulation (insulation)
41: Bare conductor wire (conductor wire)
42: Bare conductor wire bundle (conductor wire bundle)
46: Insulation coating material 46a: Press target part 46b: Press non-target part 71: Coil side part 100: Rotating electric machine A: Extension direction C: Circumferential direction E: Cross direction L: Axial direction R: Radial direction W: Slot width

Claims (9)

  1.  回転電機のコイル用の線状導体を製造するための製造方法であって、
     導体素線を複数本集合させた導体素線束の周囲を、可撓性の絶縁被覆材により被覆して構成されている被覆導体素線束を用い、当該被覆導体素線束における加工対象部位を前記導体素線束の延在方向に対して交差する交差方向に加圧する加圧工程を有し、
     前記加圧工程では、前記加工対象部位の前記絶縁被覆材を塑性変形させて、前記延在方向に対して直交する断面である直交断面における、前記絶縁被覆材の周長を増加させる線状導体の製造方法。
    A manufacturing method for manufacturing a linear conductor for a coil of a rotating electrical machine,
    Using a covered conductor wire bundle formed by covering a conductor wire bundle in which a plurality of conductor wires are assembled with a flexible insulating coating material, the portion to be processed in the covered conductor wire bundle is defined as the conductor. Having a pressurizing step of pressurizing in an intersecting direction intersecting the extending direction of the wire bundle,
    In the pressurizing step, a linear conductor that plastically deforms the insulating coating material at the site to be processed and increases the peripheral length of the insulating coating material in an orthogonal cross section that is a cross section orthogonal to the extending direction. Manufacturing method.
  2.  請求項1に記載の製造方法を含み、円筒状のコア基準面の軸方向に延びるスロットが当該コア基準面の周方向に複数分散配置されているコアに、前記線状導体により構成されたコイルが巻装された回転電機を製造する回転電機の製造方法であって、
     前記加圧工程では、前記被覆導体素線束における、前記スロット内に配置される前記コイルの部分であるコイル辺部に相当する部位を、前記加工対象部位とし、
     前記スロット内に前記加工対象部位を挿入する挿入工程を有する回転電機の製造方法。
    A coil comprising the manufacturing method according to claim 1, wherein a plurality of slots extending in the axial direction of a cylindrical core reference surface are arranged in a distributed manner in a circumferential direction of the core reference surface, the coil being constituted by the linear conductor A method of manufacturing a rotating electrical machine for manufacturing a rotating electrical machine wound with
    In the pressurizing step, a portion corresponding to a coil side portion that is a portion of the coil disposed in the slot in the coated conductor wire bundle is set as the processing target portion,
    A method of manufacturing a rotating electrical machine comprising an insertion step of inserting the processing target portion into the slot.
  3.  前記挿入工程では、前記加圧工程により加圧した後の前記加工対象部位を、前記スロット内に挿入する請求項2に記載の回転電機の製造方法。 The method of manufacturing a rotating electrical machine according to claim 2, wherein, in the insertion step, the portion to be processed after being pressurized in the pressing step is inserted into the slot.
  4.  前記コイル辺部と前記コアとを電気的に絶縁する絶縁部を、前記スロットの内面に沿って設ける絶縁工程を更に有し、
     前記挿入工程では、前記絶縁工程により前記絶縁部が設けられた前記スロットの内部に、前記加工対象部位を挿入すると共に、予め定められた配置方向で前記加工対象部位を前記スロットの内部に配置し、
     前記配置方向は、前記絶縁被覆材における前記加圧工程での押圧対象部分が、前記絶縁部に対して前記周方向に対向する向きである請求項3に記載の回転電機の製造方法。
    Further comprising an insulating step of providing an insulating portion for electrically insulating the coil side portion and the core along the inner surface of the slot;
    In the inserting step, the processing target portion is inserted into the slot in which the insulating portion is provided in the insulating step, and the processing target portion is disposed in the slot in a predetermined arrangement direction. ,
    4. The method of manufacturing a rotating electrical machine according to claim 3, wherein the arrangement direction is a direction in which a portion to be pressed in the pressing step in the insulating coating material faces the circumferential direction with respect to the insulating portion.
  5.  前記挿入工程では、前記加工対象部位を前記スロットの内部に複数挿入すると共に、予め定められた配置方向で複数の前記加工対象部位を前記スロットの内部に配置し、
     前記配置方向は、前記絶縁被覆材における前記加圧工程での押圧対象部分以外の押圧非対象部分が、前記スロットの内面に対して前記周方向に対向する向きである請求項3に記載の回転電機の製造方法。
    In the inserting step, a plurality of the processing target parts are inserted into the slot, and a plurality of the processing target parts are arranged in the slot in a predetermined arrangement direction.
    The rotation according to claim 3, wherein the arrangement direction is a direction in which a non-pressing target portion other than a pressing target portion in the pressurizing step in the insulating coating material faces the circumferential direction with respect to an inner surface of the slot. Electric manufacturing method.
  6.  前記挿入工程では、前記加工対象部位を前記スロットの内部に複数挿入し、
     前記加圧工程では、前記コイル辺部の前記直交断面における前記周方向の幅と前記直交断面における前記コア基準面の径方向の幅との寸法差の絶対値が大きくなるのに応じて前記コイル辺部の前記絶縁被覆材の前記周長が長くなるように、複数の前記加工対象部位のそれぞれに対する加圧量を、各加工対象部位に対応する前記コイル辺部の前記寸法差の絶対値に応じて異ならせる請求項2から5のいずれか一項に記載の回転電機の製造方法。
    In the inserting step, a plurality of the processing target sites are inserted into the slot,
    In the pressurizing step, the coil according to an increase in an absolute value of a dimensional difference between the circumferential width in the orthogonal cross section of the coil side portion and the radial width of the core reference surface in the orthogonal cross section. The pressurization amount for each of the plurality of processing target parts is set to the absolute value of the dimensional difference of the coil side part corresponding to each processing target part so that the peripheral length of the insulating coating material on the side part becomes long. The method for manufacturing a rotating electrical machine according to any one of claims 2 to 5, wherein the rotating electrical machine is made different depending on the method.
  7.  前記挿入工程では、前記径方向の位置に応じて前記周方向のスロット幅が異なるように形成された前記スロット内に、前記加工対象部位を挿入する請求項6に記載の回転電機の製造方法。 The method for manufacturing a rotating electrical machine according to claim 6, wherein, in the insertion step, the portion to be processed is inserted into the slot formed so that the slot width in the circumferential direction differs according to the radial position.
  8.  前記挿入工程では、前記コア基準面の径方向の位置に応じて前記周方向のスロット幅が異なるように形成された前記スロットの内部に、前記加工対象部位を複数挿入すると共に、複数の前記加工対象部位が前記スロットの内部において前記径方向に沿って一列に並ぶように配置し、
     前記加圧工程では、前記コイル辺部の前記絶縁被覆材の前記周長が、前記コイル辺部が配置される前記径方向の位置に基づき前記スロット幅が大きくなるのに応じて長くなるように、複数の前記加工対象部位のそれぞれに対する加圧量を、各加工対象部位に対応するコイル辺部が配置される前記径方向の位置に応じて異ならせる請求項2から7のいずれか一項に記載の回転電機の製造方法。
    In the inserting step, a plurality of the processing target sites are inserted into the slots formed so that the circumferential slot widths differ according to the radial position of the core reference surface, and a plurality of the processing The target parts are arranged in a row along the radial direction inside the slot,
    In the pressurizing step, the peripheral length of the insulating covering material of the coil side portion is increased as the slot width is increased based on the radial position where the coil side portion is disposed. The pressurization amount with respect to each of the plurality of processing target parts is made different according to the radial position where the coil side portion corresponding to each processing target part is arranged. The manufacturing method of the rotary electric machine of description.
  9.  前記絶縁被覆材は、加熱により前記周長を減少させることができるように構成され、
     前記挿入工程により前記スロット内に挿入された前記加工対象部位を加熱して当該加工対象部位の前記絶縁被覆材の前記周長を減少させる加熱工程を更に有する請求項2から8のいずれか一項に記載の回転電機の製造方法。
    The insulating coating material is configured to reduce the circumference by heating,
    9. The heating process according to claim 2, further comprising a heating step of heating the processing target portion inserted into the slot by the insertion step to reduce the peripheral length of the insulating coating material of the processing target portion. The manufacturing method of the rotary electric machine as described in any one of.
PCT/JP2013/058082 2012-06-29 2013-03-21 Method for manufacturing linear conductor, and method for manufacturing rotating electrical machine WO2014002545A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012147706 2012-06-29
JP2012-147706 2012-06-29
JP2013013543A JP2014030332A (en) 2012-06-29 2013-01-28 Method of producing linear conductor and method of manufacturing dynamo-electric machine
JP2013-013543 2013-06-14

Publications (1)

Publication Number Publication Date
WO2014002545A1 true WO2014002545A1 (en) 2014-01-03

Family

ID=49782725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058082 WO2014002545A1 (en) 2012-06-29 2013-03-21 Method for manufacturing linear conductor, and method for manufacturing rotating electrical machine

Country Status (2)

Country Link
JP (1) JP2014030332A (en)
WO (1) WO2014002545A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3185405A1 (en) * 2015-12-23 2017-06-28 Grundfos Holding A/S Electric motor
US10511199B2 (en) 2014-10-24 2019-12-17 Ihi Corporation Rotary machine and method for manufacturing rotary machine
EP4030590A1 (en) * 2021-01-18 2022-07-20 Toyota Boshoku Kabushiki Kaisha Method for manufacturing armature, armature, and iron core
DE102022134667A1 (en) 2022-12-23 2024-07-04 Rolls-Royce Deutschland Ltd & Co Kg Electric coil and method for producing an electric coil

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246048B2 (en) * 2014-04-11 2017-12-13 三菱電機株式会社 Stator manufacturing method and coil insertion device
KR102627305B1 (en) * 2016-12-30 2024-01-18 한양대학교 산학협력단 Thin film trnasistor substrate and display device
JP7468340B2 (en) * 2020-12-25 2024-04-16 トヨタ紡織株式会社 Armature manufacturing method and armature

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180044A (en) * 2001-12-07 2003-06-27 Okuma Corp Stator and its manufacturing method
JP2004537247A (en) * 2001-07-31 2004-12-09 アロイス・ヴォベン Wind power generator with ring generator
JP2007227262A (en) * 2006-02-24 2007-09-06 Mitsubishi Cable Ind Ltd Assembled conductor and manufacturing method thereof
JP2009268274A (en) * 2008-04-25 2009-11-12 Toshiba Corp Method of manufacturing coil for rotary electric machine and coil for rotary electric machine
JP2011091943A (en) * 2009-10-22 2011-05-06 Aisan Industry Co Ltd Coil device
JP2011188721A (en) * 2010-03-11 2011-09-22 Toyota Central R&D Labs Inc Conductive wire for rotary electrical machine winding, manufacturing method thereof, and rotary electrical machine winding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537247A (en) * 2001-07-31 2004-12-09 アロイス・ヴォベン Wind power generator with ring generator
JP2003180044A (en) * 2001-12-07 2003-06-27 Okuma Corp Stator and its manufacturing method
JP2007227262A (en) * 2006-02-24 2007-09-06 Mitsubishi Cable Ind Ltd Assembled conductor and manufacturing method thereof
JP2009268274A (en) * 2008-04-25 2009-11-12 Toshiba Corp Method of manufacturing coil for rotary electric machine and coil for rotary electric machine
JP2011091943A (en) * 2009-10-22 2011-05-06 Aisan Industry Co Ltd Coil device
JP2011188721A (en) * 2010-03-11 2011-09-22 Toyota Central R&D Labs Inc Conductive wire for rotary electrical machine winding, manufacturing method thereof, and rotary electrical machine winding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10511199B2 (en) 2014-10-24 2019-12-17 Ihi Corporation Rotary machine and method for manufacturing rotary machine
EP3185405A1 (en) * 2015-12-23 2017-06-28 Grundfos Holding A/S Electric motor
EP4030590A1 (en) * 2021-01-18 2022-07-20 Toyota Boshoku Kabushiki Kaisha Method for manufacturing armature, armature, and iron core
DE102022134667A1 (en) 2022-12-23 2024-07-04 Rolls-Royce Deutschland Ltd & Co Kg Electric coil and method for producing an electric coil

Also Published As

Publication number Publication date
JP2014030332A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
KR101605642B1 (en) Conductive wire and electrical rotating machine
WO2014002545A1 (en) Method for manufacturing linear conductor, and method for manufacturing rotating electrical machine
WO2013114734A1 (en) Coil unit production method
WO2013114735A1 (en) Rotating electrical machine
US8082653B2 (en) Method of producing coil made up of rectangular wave-shaped windings
US11063488B2 (en) Stator for electric rotating machine
JP5229381B2 (en) Motor lead and motor coil
JP6390716B2 (en) Stator manufacturing method and coil
JPWO2011001736A1 (en) Multi-layer coil, stator, and manufacturing method thereof
US20180254681A1 (en) Stator assembly method
JP2011072052A (en) Stator and method for manufacturing the same
JP2011188721A (en) Conductive wire for rotary electrical machine winding, manufacturing method thereof, and rotary electrical machine winding
JP2014007938A (en) Rotary electric machine and process of manufacturing the same
WO2011039850A1 (en) Stator and method of manufacturing same
JP2014030333A (en) Dynamo-electric machine
JP2011239537A (en) Coil, motor, and insulation material for core
JP2010142019A (en) Polyphase wave winding of rotary electric machine and method of manufacturing the same
JP6210100B2 (en) Stator for rotating electrical machine and method for manufacturing the same
US8122588B2 (en) Method of manufacturing coil assembly of stator of electric rotating machine
JP6093266B2 (en) Segment coil and stator
JP2013192295A (en) Coated lead wire and rotary electric machine
JP2013251990A (en) Rotary electric machine
WO2021220322A1 (en) Stator coil and rotating electric machine stator
JP2010154619A (en) Manufacturing method of armature and armature
JP7516862B2 (en) Armature manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810119

Country of ref document: EP

Kind code of ref document: A1