WO2014098224A1 - Sample holder - Google Patents
Sample holder Download PDFInfo
- Publication number
- WO2014098224A1 WO2014098224A1 PCT/JP2013/084268 JP2013084268W WO2014098224A1 WO 2014098224 A1 WO2014098224 A1 WO 2014098224A1 JP 2013084268 W JP2013084268 W JP 2013084268W WO 2014098224 A1 WO2014098224 A1 WO 2014098224A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating film
- sample holder
- flow path
- ceramic
- sample
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68757—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
Definitions
- the present invention relates to a sample holder for holding each sample such as a semiconductor wafer used in a manufacturing process of a semiconductor integrated circuit or a manufacturing process of a liquid crystal display device.
- Semiconductor wafers such as silicon wafers used in the manufacture of semiconductor integrated circuits and plate-like samples such as glass substrates used in the manufacture of liquid crystal display devices are placed on the support bases of the manufacturing equipment or inspection equipment in those manufacturing processes. Is held, and processing or inspection is performed.
- a manufacturing process it is common to use a plurality of manufacturing apparatuses and inspection apparatuses, and means for holding a sample such as a silicon wafer on a support base are the types of manufacturing apparatuses and inspection apparatuses in the manufacturing process and the following:
- Various types of devices have been proposed according to the type of the conveying device for conveying to the first device.
- the sample holder is further required to have thermal uniformity on the surface holding the sample.
- Patent Document 1 discloses an electrostatic chuck composed of a plurality of ceramic layers as a sample holder. A flow path for flowing the water is formed. Thereby, the thermal uniformity on the surface of the electrostatic chuck can be enhanced by adjusting the balance between heating and cooling in each part.
- a sample holder includes a substrate made of ceramics and having a sample holding surface on an upper surface and a heat medium channel inside, and a coating film covering the inner surface of the channel.
- the covering film is made of a ceramic having a hardness higher than that of the ceramic of the substrate.
- FIG. 3 is a cross-sectional view taken along the line A-A ′ of the sample holder shown in FIG. 2.
- FIG. 4 is a partially enlarged cross-sectional view in which one channel cross section in the cross-sectional view shown in FIG. 3 is enlarged. It is the elements on larger scale which expanded one channel section of the sample holder which is other embodiments of the present invention.
- FIG. 1 is a view showing an appearance of a sample holder 1 which is an example of an embodiment of the present invention.
- FIG. 1A is a perspective view of the sample holder 1
- FIG. 1B is a plan view of the sample holder 1.
- the sample holder 1 has a sample holding surface 10 a on the main surface (here, the upper surface) and a base film 10 having a flow channel 11 therein, an electrode layer 20, and a coating film 30 covering the inner surface of the flow channel 11. And have.
- the sample holder 1 is used so as to hold a sample such as a silicon wafer on the sample holding surface 10a of the substrate 10 by electrostatic force by applying a voltage to the electrode layer 20 provided on the substrate 10.
- the base body 10 is composed of a laminated body in which a plurality of ceramic layers are laminated.
- a flow path 11 for flowing a heat medium is provided inside the base body 10.
- the sample holder 1 can heat, cool, or keep the sample held on the sample holding surface 10 a by flowing a heat medium through the flow path 11.
- the heat medium flowing in the flow path 11 is a substance that can exchange heat with the sample held through the ceramic layer and the electrode layer 20 from the flow path 11 of the substrate 10 to one main surface serving as the sample holding surface 10a.
- Any heat medium may be used.
- various fluids for example, an aqueous medium such as hot water, cold water or steam, an organic medium such as ethylene glycol, a gas containing air, or the like can be used.
- the flow path 11 has the opening part 11a opened to external space in the end surface of the base
- the heat medium flowing in the flow path 11 flows into the flow path 11 from, for example, the opening 11a serving as a supply port, and is discharged from the opening on the opposite side of the opening 11a.
- a supply pipe extending from a supply apparatus for supplying a heat medium is connected to the opening 11a, and a flow path is provided from the supply apparatus at a predetermined flow rate and flow rate. 11 is supplied with a heat medium.
- a discharge pipe is connected to the discharge port on the side opposite to the opening 11a, and the heat medium that has flowed through the flow channel 11 and exchanged heat with the sample is discharged from the flow channel 11.
- a return pipe may be connected to the discharge port, and the heat medium that has flowed through the flow path 11 and exchanged heat with the sample may be discharged from the flow path 11 and returned to the supply device to circulate the heat medium.
- FIG. 2 is a schematic diagram showing the arrangement of the flow path 11 inside the substrate 10 in a plan view.
- the flow channel 11 is preferably formed in a wide range corresponding to the sample holding surface 10a.
- the width of the flow path 11 is increased, or the radius of curvature of the curved portion when the flow path 11 is meandered is reduced, so that Heat exchange can be performed more efficiently.
- the distance of the folded portion between the straight portions when meandering is made too short, the portion that becomes the side wall of the flow path 11 becomes thin and the mechanical strength is lowered.
- the flow path 11 has a meandering shape, but the arrangement shape of the flow path is not limited to this.
- the flow path 11 may have a spiral shape, or may have a shape in which a plurality of concentric circles and a straight line extending in the radial direction connecting the circles are combined.
- the shape of the channel 11 when viewed in a cross section perpendicular to the main surface of the substrate 10 can be a square shape or a circular shape.
- a rectangular shape is preferable from the viewpoint of ease of production.
- the base 10 is made of, for example, ceramic (ceramic sintered body) whose main component is silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, or the like.
- the base 10 is preferably made of an aluminum nitride sintered body.
- the aluminum nitride sintered body has a higher thermal conductivity than other ceramic materials.
- the aluminum nitride sintered body can have a thermal conductivity at room temperature of 150 W / (m ⁇ K) or more. For this reason, even when heat is locally applied to the held sample, the heat of the sample can be conducted by the base 10 and can be dissipated, so that the sample is hardly distorted due to thermal expansion. Thereby, in the exposure process in the semiconductor manufacturing process, it is possible to reduce the deterioration of the exposure accuracy due to the distortion of the sample due to heat generation.
- the thermal conductivity at room temperature is a value of thermal conductivity measured at a measurement atmosphere temperature within a room temperature range of 22 ° C. to 24 ° C., and heat measured at any set temperature within this temperature range.
- the conductivity is 150 W / (m ⁇ K) or more.
- the aluminum nitride sintered body can maintain a high thermal conductivity even in an environment exceeding room temperature.
- the thermal conductivity at an ambient temperature of 600 ° C. or higher can be 60 W / (m ⁇ K) or higher.
- the aluminum nitride sintered body preferably has an average crystal grain size in the range of 3 to 10 ⁇ m.
- the average crystal grain size is 3 ⁇ m or more, the crystal grains in the aluminum nitride sintered body are relatively sufficiently filled, and the mechanical properties of the sintered body become relatively good.
- the average crystal grain size is preferably in the range of 3 to 10 ⁇ m.
- a more preferable range of the average crystal grain size is 3 to 7 ⁇ m.
- the electrode layer 20 is provided inside the substrate 10 and is composed of one or two separated electrodes 21 and 22.
- the electrode layer 20 is provided for electrostatic adsorption.
- One of the electrodes 21 and 22 is connected to the positive electrode of the power supply, and the other is connected to the negative electrode.
- the electrode connected to the positive electrode is referred to as electrode 21 (hereinafter referred to as “positive electrode 21”)
- the electrode connected to the negative electrode is referred to as electrode 22 (hereinafter referred to as “negative electrode 22”).
- the electrode layer 20 may have the electrode 21 connected to the negative electrode and the electrode 22 connected to the positive electrode.
- the positive electrode 21 and the negative electrode 22 are each formed in a substantially semicircular shape, and are disposed inside the base body 10 so that the semicircular strings face each other.
- the two electrodes of the positive electrode 21 and the negative electrode 22 are combined to form a substantially circular outer shape of the entire electrode layer 20.
- the substantially circular center formed by the entire outer shape of the electrode layer 20 is set to be the same as the center of the circle formed by the outer shape of the substrate 10.
- the positive electrode 21 and the negative electrode 22 are provided with a connection terminal 21a and a connection terminal 22a for electrical connection with an external power source, respectively.
- each of the positive electrode 21 and the negative electrode 22 is provided with the connection terminal 21a and the connection terminal 22a so as to extend along the string at a portion where the arc and the string intersect.
- the connection terminal 21 a provided on the positive electrode 21 and the connection terminal 22 a provided on the negative electrode 22 are spaced from each other by the same distance between the semicircle strings of the positive electrode 21 and the semicircle strings of the negative electrode 22. And extend to the outer peripheral surface of the base body 10 along the extension lines of these semicircular strings.
- connection terminal 21 a and the connection terminal 22 a are provided so that a part thereof is exposed on the end surface of the base 10.
- the positive electrode 21 and the negative electrode 22 are connected to an external power source through a portion where the connection terminal 21a and the connection terminal 22a are exposed.
- the electrode layer 20 is made of a conductive material such as tungsten or molybdenum.
- the electrode layer 20 is formed so as to be positioned between the ceramic layers of the substrate 10 by screen printing or the like of a paste containing these conductive materials.
- the thickness of the electrode layer 20 of this embodiment is, for example, about 1 to 100 ⁇ m.
- FIG. 3 is a cross-sectional view of the sample holder 1 taken along a cutting plane line A-A ′ shown in FIG.
- FIG. 4 is a partially enlarged cross-sectional view in which the cross section of one channel 11 in the cross-sectional view shown in FIG. 3 is enlarged.
- the substrate 10 is formed of a laminate in which four ceramic layers 12, 13, 14, and 15 are laminated, and an electrode layer 20 is provided therein.
- the electrode layer 20 is provided on the one main surface (sample holding surface 10 a) side that holds the sample with respect to the flow path 11.
- the outermost ceramic layer 15 is the outermost layer 15, the ceramic layer 12 is provided with the electrode layer 20 between the outermost layer 15, and the upper layer 12 is the ceramic provided on the opposite side of the ceramic layer 13.
- the ceramic layer 13 sandwiched between the lower layer 14 and the upper layer 12 and the lower layer 14 is referred to as an intermediate layer 13.
- the names of these layers are given for convenience in order to make the explanation easy to understand, and the upper layer 12 is not necessarily positioned on the upper side in the vertical direction, and the lower layer 14 is not positioned on the lower side in the vertical direction.
- the heat medium flows from the opening 11a serving as the supply port to the opening 11b serving as the discharge port. Therefore, in FIGS. 3 and 4, the heat medium flows in a direction perpendicular to the paper surface. .
- the sample holder 1 includes a coating film 30 that covers a part of or the entire inner surface of the flow path 11.
- the coating film 30 is made of a ceramic having a hardness higher than that of the ceramic of the substrate 10.
- the base 10 Since the inner surface of the flow path 11 is coated with a ceramic having high hardness, the base 10 is not easily worn by the heat medium flowing through the flow path 11. As a result, the amount of powder deposited in the flow path 11 due to wear of the substrate 10 can be reduced. Therefore, the possibility that the heat conduction between the heat medium and the substrate 10 is partially reduced can be reduced. As a result, it is possible to suppress a decrease in heat uniformity on the surface of the sample holder 1, that is, the sample holding surface 10a.
- Hardness can be confirmed by the following method. Specifically, the surface of the part whose hardness is to be measured is polished with a diamond paste. Thereafter, the hardness is measured using a hardness meter.
- a hardness meter for example, a hardness meter (MVK-H3) manufactured by Akashi Seisakusho can be used. By using this hardness meter, Vickers hardness can be measured as hardness.
- the ceramic constituting the substrate 10 is preferably a ceramic that is stable against the heat medium flowing in the flow path 11. Thereby, the corrosion by the chemical reaction with a heat medium can be suppressed. As a result, it is possible to reduce deterioration of the thermal uniformity of the sample holding surface 10a due to the accumulation of corrosive powder.
- the ceramic used for the coating film 30 is preferably a conductive ceramic.
- ionization of the heat medium can be suppressed by electrically connecting the coating film 30 to a member having an external ground potential.
- a voltage is applied to the electrode layer 20
- an electric field is generated around the electrode layer 20.
- an electric field is also generated around the channel 11.
- This electric field may cause the heat medium flowing through the flow path 11 to be electrolyzed.
- the heat medium is water
- the heat medium is electrolyzed into hydroxide ions and hydrogen ions and oxygen. Oxygen generated by this electrolysis may corrode the coating film 30.
- the coating film 30 can function as a shield against an electric field. .
- the influence which the electric field produced by applying a voltage to the electrode layer 20 has on the heat medium which flows through the flow path 11 can be reduced. Therefore, since the possibility that the heat medium is electrolyzed can be reduced, the possibility that the coating film 30 is corroded can be reduced. As a result, it is possible to reduce the soaking of the sample holding surface 10a due to the accumulation of corrosive powder resulting from the corrosion of the coating film 30.
- the ceramic used for the coating film 30 is preferably tungsten carbide (hardness 18 GPa). Since tungsten carbide has high hardness and conductivity, the above-described effects can be obtained. In addition to this, by combining tungsten carbide having a high hardness with aluminum nitride having a low hardness, vibrations can be easily absorbed at the interface between the coating film 30 and the base 10, so that a heat medium is passed through the flow path 11. The generated pulsation can be suppressed.
- the tungsten carbide when tungsten carbide is used for the coating film 30, the tungsten carbide preferably contains a sintering aid.
- substrate 10 and the coating film 30 can be improved. This is because the sintering aid promotes densification of the tungsten carbide itself and part of the sintering aid diffuses into the base material, thereby strengthening the bonding at the interface.
- the tungsten carbide can promote densification of the tungsten carbide by including the IIIa group compound as a sintering aid. As a result, generation of voids on the surface of the coating film 30 can be suppressed. Thereby, the possibility that the coating film 30 is worn can be further suppressed.
- tungsten carbide contains a IIIa group compound as a sintering aid, densification of tungsten carbide can be promoted, so that the reactivity of tungsten carbide with water can be reduced. Thereby, when cooling water is used as a heat medium, possibility that the coating film 30 will corrode can be reduced.
- the group IIIa compound include erbium oxide, yttrium oxide, and cerium oxide.
- the shape of the coating film 30 is not particularly limited as long as it covers the inner surface of the flow path 11.
- the thickness of the coating film 30 is preferably about 1 ⁇ m to 100 ⁇ m. When the thickness is 1 ⁇ m or more, it is possible to suppress the possibility that the substrate 10 is exposed even after long-term use. Further, when the thickness is 100 ⁇ m or less, vibration is easily absorbed at the interface between the coating film 30 and the substrate 10. Therefore, the effect of suppressing the occurrence of the pulsation described above can be satisfactorily exhibited.
- the ceramic having high hardness, stable with respect to the heat medium and having conductivity for example, carbide, nitride or boride of refractory metal such as tungsten, molybdenum, titanium, niobium or tantalum is preferable. It is preferable to use a ceramic having a hardness of 14 GPa or more and an electric conductivity of 100 ⁇ 10 4 / ⁇ m or more as the coating film 30 like these ceramics.
- the base body 10 of the present embodiment is a laminate in which four layers of the outermost layer 15, the upper layer 12, the intermediate layer 13, and the lower layer 14 are laminated as described above.
- the base 10 is formed by applying and laminating four green sheets previously formed into a predetermined shape by applying a metal paste serving as the electrode layer 20 between the green sheet serving as the outermost layer 15 and the green sheet serving as the upper layer 12. It can be obtained by firing.
- the green sheets that become the outermost layer 15, the upper layer 12, and the lower layer 14 after firing have the same disc shape, and the green sheets that become the intermediate layer 13 after firing become green whose outer shapes become the outermost layer 15, the upper layer 12, and the lower layer 14. It has the same circular shape as the sheet.
- the green sheet which becomes the intermediate layer 13 is formed in a shape corresponding to the flow path 11 and is provided with a notch penetrating in the vertical direction.
- the inner surface of the flow path 11 is obtained after firing.
- the size and shape of the inner surface are not particularly limited, and are determined by the amount of the heat medium flowing through the flow path 11 and the necessary cooling rate.
- the coating film 30 As in the case of producing a green sheet, an organic binder, ceramic particles, additives, and the like are mixed to produce a slurry, and this slurry is laminated with, for example, a green sheet.
- the coating film 30 may be partially applied by printing, dipping, or the like, and fired together with the laminated green sheets.
- FIG. 5 is a partially enlarged cross-sectional view in which one channel cross section of a sample holder 1A according to another embodiment of the present invention is enlarged.
- the sample holder 1A of the present embodiment corresponds to FIG. 1 because the configuration of the coating film 30A is different from that of the sample holder 1 of the above-described embodiment shown in FIGS.
- the overall view, the layout of the flow path 11 corresponding to FIG. 2, the overall cross-sectional view corresponding to FIG. 3, and the like are omitted, and the flow path 11 corresponding to FIG. 4 in which the configuration of the coating film 30A of this embodiment is most apparent.
- the present embodiment will be described with reference to FIG.
- a coating film 30 ⁇ / b> A is provided on the entire surface of the upper layer 12 on the side in contact with the intermediate layer 13.
- a coating film 30 ⁇ / b> A is provided on the entire surface of the lower layer 14 on the side in contact with the intermediate layer 13.
- the coating film 30A is drawn out of the base 10 and the ceramic of the coating film 30A is conductive.
- the coating film 30A can be easily electrically connected to a member having an external ground potential.
- the coating film 30A can also be set to the ground potential.
- the possibility that the coating film 30A and the substrate 10 are corroded can be reduced.
- the possibility that the coating film 30A and the inner surface of the flow path 11 are worn can be further reduced.
- an aluminum nitride powder having an average particle diameter of 1.5 ⁇ m, an oxygen content of 0.8%, and a carbon content of 300 ppm manufactured by an alumina reduction nitriding method is used. Then, without adding a sintering aid to the aluminum nitride powder, an organic binder and solvent are mixed and mixed, and then dried at 60 ° C. to produce granulated powder.
- this granulated powder is filled into a mold, and one disk-shaped molded body having a thickness of 1 mm and three disk-shaped molded bodies having a thickness of 3 mm are molded at a molding pressure of 98 MPa. After that, a notch is formed by cutting on a single molded body having a thickness of 3 mm to be the intermediate layer 13.
- a paste in which an organic binder and tungsten carbide powder are mixed is applied to each of two main surfaces having a thickness of 3 mm in a molded body not cut by a screen printing method to a thickness of 10 ⁇ m.
- the molded body in which the notch is formed is placed on the surface to which this tungsten carbide paste is applied.
- the same tungsten carbide paste is applied to the side surface of the finished groove. Furthermore, the molded body to which the other tungsten carbide paste is applied is arranged so that the surface to which the paste is applied comes into contact with the molded body having a groove.
- the finished laminate is press-molded with a molding pressure of 98 MPa and adhered.
- the electrode layer 20 is formed by screen-printing the above-mentioned tungsten powder paste on one main surface of the formed compact. A 1 mm-thick disc shaped body is placed thereon, and press-molded with a molding pressure of 98 MPa to be brought into close contact therewith.
- the configuration in which the electrode layer 20 is provided on the one main surface side with respect to the flow path 11 inside the base body 10 has been described.
- the structure which provides a layer may be sufficient.
- the external shape of the sample holders 1 and 1A is a disk shape, the shape is not limited to this, and may be a rectangular plate shape as long as the sample can be held with a sufficient holding force, and other polygonal plates. It may be a shape.
- the intermediate layer 13 may have a plurality of layers, the upper layer 12, the lower layer 14, and the outermost layer 13 may have a plurality of layers in the same manner as the intermediate layer 13.
- the sample holder 1 having the electrode layer 20 as an embodiment of the present invention that is, a so-called electrostatic chuck has been described, but the present invention is not limited thereto.
- the present invention can be applied to a vacuum chuck by vacuum suction without providing the electrode layer 20.
- another flow channel is provided inside the base body 10, opens toward one main surface of the base body 10, and a plurality of suction holes connected to the other flow channel are provided.
- the other flow path may be connected to a vacuum pump to place the other flow path in a vacuum state.
- the channel 11 is configured to flow a heat medium that exchanges heat with the sample in order to cool or heat the sample that is vacuum-adsorbed and held on the sample holding surface 10a, as in the case of the sample holders 1 and 1A. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
This electrostatic chuck is provided with: a base made from a ceramic, the base having a sample-holding surface on the upper surface and a heat medium channel in the interior; and a coating film coating the inner surface of the channel. The coating film is made from a ceramic that is harder than the ceramic constituting the base.
Description
本発明は、半導体集積回路の製造工程または液晶表示装置の製造工程等において用いられる、半導体ウエハ等の各試料を保持するための試料保持具に関するものである。
The present invention relates to a sample holder for holding each sample such as a semiconductor wafer used in a manufacturing process of a semiconductor integrated circuit or a manufacturing process of a liquid crystal display device.
半導体集積回路の製造に用いられるシリコンウエハを始めとする半導体ウエハまたは液晶表示装置の製造に用いられるガラス基板等の板状の試料は、それらの製造工程において製造装置または検査装置の支持台の上に保持されて、加工処理または検査等が行なわれる。製造工程では、複数の製造装置および検査装置を使用することが一般的であり、シリコンウエハ等の試料を支持台に保持するための手段は、製造工程中の製造装置および検査装置の種類ならびに次の装置にまで搬送するための搬送装置の種類に応じて様々な形態のものが提案されている。
Semiconductor wafers such as silicon wafers used in the manufacture of semiconductor integrated circuits and plate-like samples such as glass substrates used in the manufacture of liquid crystal display devices are placed on the support bases of the manufacturing equipment or inspection equipment in those manufacturing processes. Is held, and processing or inspection is performed. In a manufacturing process, it is common to use a plurality of manufacturing apparatuses and inspection apparatuses, and means for holding a sample such as a silicon wafer on a support base are the types of manufacturing apparatuses and inspection apparatuses in the manufacturing process and the following: Various types of devices have been proposed according to the type of the conveying device for conveying to the first device.
半導体集積回路を例にとると、半導体集積回路の微細化および高密度化の要求は、近年さらに高まっている。これに伴って、試料保持具は、試料を保持する面における均熱性がさらに求められている。
Taking a semiconductor integrated circuit as an example, demands for miniaturization and higher density of the semiconductor integrated circuit have increased further in recent years. Along with this, the sample holder is further required to have thermal uniformity on the surface holding the sample.
特開平3-108737号公報(以下、特許文献1という)には、試料保持具として複数のセラミック層からなる静電チャックが開示されており、この静電チャックには、中間のセラミック層に冷媒を流すための流路が形成されている。これによって、各部における加熱と冷却とのバランスを調整することで、静電チャックの表面における均熱性を高めることができる。
Japanese Patent Application Laid-Open No. 3-108737 (hereinafter referred to as Patent Document 1) discloses an electrostatic chuck composed of a plurality of ceramic layers as a sample holder. A flow path for flowing the water is formed. Thereby, the thermal uniformity on the surface of the electrostatic chuck can be enhanced by adjusting the balance between heating and cooling in each part.
しかしながら、特許文献1に開示された静電チャックのように、基体がセラミック層の積層体で構成される場合には、流路に冷媒等の熱媒体を流したときに、熱媒体との接触によってセラミック層が劣化することがあり、そのために流路の内表面が熱媒体によって磨耗する場合があった。そして、この磨耗によって生じた粉末が流路の内部に堆積することによって、部分的に熱媒体と基体との間の熱伝導が低下する場合があった。その結果、静電チャックの表面において均熱性が低下してしまう場合があった。
However, as in the electrostatic chuck disclosed in Patent Document 1, when the substrate is composed of a laminate of ceramic layers, contact with the heat medium when a heat medium such as a refrigerant flows through the flow path. As a result, the ceramic layer may be deteriorated, and the inner surface of the flow path may be worn by the heat medium. In some cases, the heat generated between the heat medium and the substrate is partially reduced by the powder generated by the wear being deposited inside the flow path. As a result, the thermal uniformity may decrease on the surface of the electrostatic chuck.
本発明の一態様の試料保持具は、セラミックスからなり上面に試料保持面を有するとともに内部に熱媒体の流路を有する基体と、前記流路の内表面を被覆している被覆膜とを具備しており、該被覆膜は、前記基体のセラミックスよりも硬度が高いセラミックスからなる。
A sample holder according to one aspect of the present invention includes a substrate made of ceramics and having a sample holding surface on an upper surface and a heat medium channel inside, and a coating film covering the inner surface of the channel. The covering film is made of a ceramic having a hardness higher than that of the ceramic of the substrate.
図1は、本発明の実施形態の一例である試料保持具1の外観を示す図である。図1(a)は、試料保持具1の斜視図であり、図1(b)は、試料保持具1の平面図である。
FIG. 1 is a view showing an appearance of a sample holder 1 which is an example of an embodiment of the present invention. FIG. 1A is a perspective view of the sample holder 1, and FIG. 1B is a plan view of the sample holder 1.
試料保持具1は、主面(ここでは上面)に試料保持面10aを有するとともに内部に流路11を有する基体10と電極層20と流路11の内表面を被覆している被覆膜30とを有する。試料保持具1は、基体10に設けられた電極層20に電圧を印加することによって、例えば、シリコンウエハ等の試料を静電気力によって基体10の試料保持面10aに保持するようにして用いられる。
The sample holder 1 has a sample holding surface 10 a on the main surface (here, the upper surface) and a base film 10 having a flow channel 11 therein, an electrode layer 20, and a coating film 30 covering the inner surface of the flow channel 11. And have. The sample holder 1 is used so as to hold a sample such as a silicon wafer on the sample holding surface 10a of the substrate 10 by electrostatic force by applying a voltage to the electrode layer 20 provided on the substrate 10.
本実施形態では、基体10は、セラミック層が複数積層された積層体からなる。基体10の内部には、熱媒体を流すための流路11が設けられている。この試料保持具1は、流路11に熱媒体を流すことにより、試料保持面10aに保持した試料を加熱、冷却または保温することができる。流路11に流す熱媒体としては、基体10の流路11から試料保持面10aとなる一方主面までのセラミック層と電極層20とを介して保持した試料と熱交換可能な物質であれば、どのような熱媒体を用いてもよい。このような熱媒体としては、各種の流体、例えば温水、冷水またはスチーム等の水系媒体、エチレングリコール等の有機系媒体、あるいは空気を含む気体等を用いることができる。
In this embodiment, the base body 10 is composed of a laminated body in which a plurality of ceramic layers are laminated. A flow path 11 for flowing a heat medium is provided inside the base body 10. The sample holder 1 can heat, cool, or keep the sample held on the sample holding surface 10 a by flowing a heat medium through the flow path 11. The heat medium flowing in the flow path 11 is a substance that can exchange heat with the sample held through the ceramic layer and the electrode layer 20 from the flow path 11 of the substrate 10 to one main surface serving as the sample holding surface 10a. Any heat medium may be used. As such a heat medium, various fluids, for example, an aqueous medium such as hot water, cold water or steam, an organic medium such as ethylene glycol, a gas containing air, or the like can be used.
流路11は、図1(a)に示すように、基体10の端面に、外部空間に開口する開口部11aを有している。また、図1(a)には図示していないが、開口部11aの反対側の端面にも外部空間に通じる開口部を有している。流路11内を流れる熱媒体は、例えば、供給口となる開口部11aから流路11へと流入し、開口部11aの反対側の開口部から排出される。試料保持具1を半導体の製造装置または検査装置等に用いる場合は、熱媒体を供給するための供給装置から延びる供給管を開口部11aに接続し、供給装置から所定の流量、流速で流路11内に熱媒体を供給する。開口部11aと反対側の排出口には、排管を接続し、流路11を流れて試料と熱交換を行なった熱媒体を流路11から排出する。または、排出口に戻り管を接続し、流路11を流れて試料と熱交換を行なった熱媒体を流路11から排出するとともに、供給装置に戻して熱媒体を循環させるようにしてもよい。
The flow path 11 has the opening part 11a opened to external space in the end surface of the base | substrate 10, as shown to Fig.1 (a). Although not shown in FIG. 1A, the end face on the opposite side of the opening 11a also has an opening leading to the external space. The heat medium flowing in the flow path 11 flows into the flow path 11 from, for example, the opening 11a serving as a supply port, and is discharged from the opening on the opposite side of the opening 11a. When the sample holder 1 is used in a semiconductor manufacturing apparatus or inspection apparatus, a supply pipe extending from a supply apparatus for supplying a heat medium is connected to the opening 11a, and a flow path is provided from the supply apparatus at a predetermined flow rate and flow rate. 11 is supplied with a heat medium. A discharge pipe is connected to the discharge port on the side opposite to the opening 11a, and the heat medium that has flowed through the flow channel 11 and exchanged heat with the sample is discharged from the flow channel 11. Alternatively, a return pipe may be connected to the discharge port, and the heat medium that has flowed through the flow path 11 and exchanged heat with the sample may be discharged from the flow path 11 and returned to the supply device to circulate the heat medium. .
図2は、基体10の内部における流路11の配置を平面的に示す模式図である。流路11を流れる熱媒体が試料保持面10aに保持される試料と効率よく熱交換するためには、流路11が試料保持面10aに対応して広範囲に形成されていることが好ましい。また、試料保持面10aの全体にわたる均熱性の観点からも、流路11は広範囲に形成されていることが重要である。そこで、本実施形態の試料保持具1においては、図2に示すように、開口部11aから開口部11aの反対側に位置する開口部11bまでの流路11が試料保持面10aの全体に行き渡るように蛇行形状となっている。このように流路11を配置しておいて、流路11の幅を大きくしたり、流路11を蛇行させるときの湾曲部の曲率半径を小さくしたりすることで、保持される試料との熱交換をより効率的に行なうことができる。なお、蛇行させた場合の直線部分と直線部分との間の折返し部分の距離を短くし過ぎると、流路11の側壁となる部分が細くなり、機械的強度が低下するので、強度を考慮しつつ流路11を形成することが好ましい。
FIG. 2 is a schematic diagram showing the arrangement of the flow path 11 inside the substrate 10 in a plan view. In order for the heat medium flowing through the flow channel 11 to efficiently exchange heat with the sample held on the sample holding surface 10a, the flow channel 11 is preferably formed in a wide range corresponding to the sample holding surface 10a. In addition, it is important that the flow path 11 is formed in a wide range from the viewpoint of heat uniformity over the entire sample holding surface 10a. Therefore, in the sample holder 1 of the present embodiment, as shown in FIG. 2, the flow path 11 from the opening 11a to the opening 11b located on the opposite side of the opening 11a extends over the entire sample holding surface 10a. It has a meandering shape. By arranging the flow path 11 in this way, the width of the flow path 11 is increased, or the radius of curvature of the curved portion when the flow path 11 is meandered is reduced, so that Heat exchange can be performed more efficiently. In addition, if the distance of the folded portion between the straight portions when meandering is made too short, the portion that becomes the side wall of the flow path 11 becomes thin and the mechanical strength is lowered. However, it is preferable to form the flow path 11.
図2に示す例では流路11を蛇行形状としているが、流路の配置形状はこれに限られない。例えば、流路11は渦巻き状であってもよく、また、複数の同心円とこの円同士を繋ぐ径方向に延びる直線とを組み合わせた形状等であってもよい。
In the example shown in FIG. 2, the flow path 11 has a meandering shape, but the arrangement shape of the flow path is not limited to this. For example, the flow path 11 may have a spiral shape, or may have a shape in which a plurality of concentric circles and a straight line extending in the radial direction connecting the circles are combined.
流路11を基体10の主面に垂直な断面で見たときの形状は、四角形状または円形状等にすることができる。特に、製造のしやすさからは四角形状が好ましい。
The shape of the channel 11 when viewed in a cross section perpendicular to the main surface of the substrate 10 can be a square shape or a circular shape. In particular, a rectangular shape is preferable from the viewpoint of ease of production.
基体10は、例えば、炭化珪素、窒化珪素、窒化アルミニウムまたは酸化アルミニウム等を主成分とするセラミックス(セラミック焼結体)からなる。これらの中でも特に、基体10は、窒化アルミニウム質焼結体からなることが好ましい。窒化アルミニウム質焼結体は、他のセラミック材料に比べて熱伝導率が高い。具体的には、窒化アルミニウム質焼結体は、室温における熱伝導率を150W/(m・K)以上にすることができる。そのため、保持した試料に局所的に熱が加わった場合でも試料の熱を基体10によって伝導させて放熱させることができるので、熱膨張に伴う試料の歪みが生じにくい。これによって、半導体製造工程のうち、露光工程において、発熱による試料の歪みに起因する露光精度の劣化を低減することができる。
The base 10 is made of, for example, ceramic (ceramic sintered body) whose main component is silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, or the like. Among these, the base 10 is preferably made of an aluminum nitride sintered body. The aluminum nitride sintered body has a higher thermal conductivity than other ceramic materials. Specifically, the aluminum nitride sintered body can have a thermal conductivity at room temperature of 150 W / (m · K) or more. For this reason, even when heat is locally applied to the held sample, the heat of the sample can be conducted by the base 10 and can be dissipated, so that the sample is hardly distorted due to thermal expansion. Thereby, in the exposure process in the semiconductor manufacturing process, it is possible to reduce the deterioration of the exposure accuracy due to the distortion of the sample due to heat generation.
なお、室温における熱伝導率とは、測定雰囲気温度を22℃から24℃の室温の範囲内として測定した熱伝導率の値であり、この温度範囲内のうちいずれかの設定温度で測定した熱伝導率が150W/(m・K)以上であることを示す。さらに、窒化アルミニウム質焼結体は、室温を超える環境においても、熱伝導率を高い値で維持することができる。具体的には、例えば600℃以上での雰囲気温度における熱伝導率を、60W/(m・K)以上にすることができる。
The thermal conductivity at room temperature is a value of thermal conductivity measured at a measurement atmosphere temperature within a room temperature range of 22 ° C. to 24 ° C., and heat measured at any set temperature within this temperature range. The conductivity is 150 W / (m · K) or more. Furthermore, the aluminum nitride sintered body can maintain a high thermal conductivity even in an environment exceeding room temperature. Specifically, for example, the thermal conductivity at an ambient temperature of 600 ° C. or higher can be 60 W / (m · K) or higher.
この窒化アルミニウム質焼結体は、平均結晶粒径が3~10μmの範囲内であることが好ましい。平均結晶粒径が3μm以上であると、窒化アルミニウム質焼結体中の結晶粒子が比較的十分に充填され、焼結体の機械的特性が比較的良好になる。また、平均結晶粒径が10μm以下のサイズの結晶とすることで、結晶間に存在するボイドの残留を少なくすることができる。したがって、平均結晶粒径は3~10μmの範囲が好ましい。より好ましい平均結晶粒径の範囲は3~7μmである。
The aluminum nitride sintered body preferably has an average crystal grain size in the range of 3 to 10 μm. When the average crystal grain size is 3 μm or more, the crystal grains in the aluminum nitride sintered body are relatively sufficiently filled, and the mechanical properties of the sintered body become relatively good. In addition, by making crystals having an average crystal grain size of 10 μm or less, it is possible to reduce the residual voids existing between the crystals. Accordingly, the average crystal grain size is preferably in the range of 3 to 10 μm. A more preferable range of the average crystal grain size is 3 to 7 μm.
図1に戻って、電極層20は、基体10の内部に設けられ、1つまたは2つの分離された電極21と電極22とから構成される。電極層20は、静電吸着のために設けられている。電極21および電極22は、一方が電源の正極に接続され、他方が負極に接続される。一例として、正極に接続される側の電極を電極21(以下では「正電極21」という)とし、負極に接続される側の電極を電極22(以下では「負電極22」という)とする。なお、電極層20は、電極21が負極に接続され、電極22が正極に接続されていてもよい。
Returning to FIG. 1, the electrode layer 20 is provided inside the substrate 10 and is composed of one or two separated electrodes 21 and 22. The electrode layer 20 is provided for electrostatic adsorption. One of the electrodes 21 and 22 is connected to the positive electrode of the power supply, and the other is connected to the negative electrode. As an example, the electrode connected to the positive electrode is referred to as electrode 21 (hereinafter referred to as “positive electrode 21”), and the electrode connected to the negative electrode is referred to as electrode 22 (hereinafter referred to as “negative electrode 22”). The electrode layer 20 may have the electrode 21 connected to the negative electrode and the electrode 22 connected to the positive electrode.
正電極21および負電極22は、それぞれ略半円板状に形成され、半円の弦同士が対向するように、基体10の内部に配置される。正電極21および負電極22の2つの電極が合わさって、電極層20全体の外形が略円形状を成す。この電極層20全体の外形が成す略円形の中心は、基体10の外形が成す円の中心と同一に設定される。
The positive electrode 21 and the negative electrode 22 are each formed in a substantially semicircular shape, and are disposed inside the base body 10 so that the semicircular strings face each other. The two electrodes of the positive electrode 21 and the negative electrode 22 are combined to form a substantially circular outer shape of the entire electrode layer 20. The substantially circular center formed by the entire outer shape of the electrode layer 20 is set to be the same as the center of the circle formed by the outer shape of the substrate 10.
正電極21および負電極22には、それぞれ外部電源と電気的に接続するための接続端子21aおよび接続端子22aが設けられる。本実施形態では、正電極21および負電極22のいずれも、円弧と弦とが交差する部分に弦に沿って延びるように接続端子21aおよび接続端子22aが設けられている。正電極21に設けられた接続端子21aと、負電極22に設けられた接続端子22aとは、正電極21の半円の弦および負電極22の半円の弦同士の間隔と同じ間隔を空けて隣り合うように設けられるとともに、これらの半円の弦の延長線に沿って基体10の外周面にまで延びている。また、接続端子21aおよび接続端子22aは、基体10の端面にその一部が露出するように設けられる。正電極21および負電極22は、この接続端子21aおよび接続端子22aが露出した部分を介して外部電源と接続される。
The positive electrode 21 and the negative electrode 22 are provided with a connection terminal 21a and a connection terminal 22a for electrical connection with an external power source, respectively. In the present embodiment, each of the positive electrode 21 and the negative electrode 22 is provided with the connection terminal 21a and the connection terminal 22a so as to extend along the string at a portion where the arc and the string intersect. The connection terminal 21 a provided on the positive electrode 21 and the connection terminal 22 a provided on the negative electrode 22 are spaced from each other by the same distance between the semicircle strings of the positive electrode 21 and the semicircle strings of the negative electrode 22. And extend to the outer peripheral surface of the base body 10 along the extension lines of these semicircular strings. Further, the connection terminal 21 a and the connection terminal 22 a are provided so that a part thereof is exposed on the end surface of the base 10. The positive electrode 21 and the negative electrode 22 are connected to an external power source through a portion where the connection terminal 21a and the connection terminal 22a are exposed.
電極層20は、例えばタングステンまたはモリブデン等の導電性材料からなる。電極層20は、これら導電性材料を含むペーストのスクリーン印刷等によって、基体10のセラミック層の層間に位置するように形成される。本実施形態の電極層20の厚みは、例えば1~100μm程度である。
The electrode layer 20 is made of a conductive material such as tungsten or molybdenum. The electrode layer 20 is formed so as to be positioned between the ceramic layers of the substrate 10 by screen printing or the like of a paste containing these conductive materials. The thickness of the electrode layer 20 of this embodiment is, for example, about 1 to 100 μm.
図3は、図2に示す切断面線A-A’における試料保持具1の断面図である。図4は、図3に示す断面図における1つの流路11の断面を拡大した部分拡大断面図である。基体10は、4つのセラミック層12,13,14,15を積層した積層体からなり、内部に電極層20が設けられている。本実施形態では、電極層20は流路11よりも試料を保持する一方主面(試料保持面10a)側に設けられる。
FIG. 3 is a cross-sectional view of the sample holder 1 taken along a cutting plane line A-A ′ shown in FIG. FIG. 4 is a partially enlarged cross-sectional view in which the cross section of one channel 11 in the cross-sectional view shown in FIG. 3 is enlarged. The substrate 10 is formed of a laminate in which four ceramic layers 12, 13, 14, and 15 are laminated, and an electrode layer 20 is provided therein. In the present embodiment, the electrode layer 20 is provided on the one main surface (sample holding surface 10 a) side that holds the sample with respect to the flow path 11.
以下では、最外層のセラミック層15を最外層15、最外層15との間に電極層20が設けられるセラミック層12を上層12、上層12とはセラミック層13を挟んで反対側に設けられるセラミック層14を下層14、上層12と下層14とに挟持されるセラミック層13を中間層13という。これら各層の名称は説明をわかり易くするために便宜上付したものであって、必ずしも上層12が鉛直方向上側に位置するものではなく、下層14が鉛直方向下側に位置するものではない。また、図2で示したように、熱媒体は供給口となる開口11aから排出口となる開口11bまで流れるので、図3および図4において、熱媒体の流れる方向は紙面に垂直な方向となる。
In the following, the outermost ceramic layer 15 is the outermost layer 15, the ceramic layer 12 is provided with the electrode layer 20 between the outermost layer 15, and the upper layer 12 is the ceramic provided on the opposite side of the ceramic layer 13. The ceramic layer 13 sandwiched between the lower layer 14 and the upper layer 12 and the lower layer 14 is referred to as an intermediate layer 13. The names of these layers are given for convenience in order to make the explanation easy to understand, and the upper layer 12 is not necessarily positioned on the upper side in the vertical direction, and the lower layer 14 is not positioned on the lower side in the vertical direction. As shown in FIG. 2, the heat medium flows from the opening 11a serving as the supply port to the opening 11b serving as the discharge port. Therefore, in FIGS. 3 and 4, the heat medium flows in a direction perpendicular to the paper surface. .
ここで、試料保持具1は、流路11の内表面の一部または全面を被覆している被覆膜30を具備している。被覆膜30は、基体10のセラミックスよりも硬度が高いセラミックスからなる。
Here, the sample holder 1 includes a coating film 30 that covers a part of or the entire inner surface of the flow path 11. The coating film 30 is made of a ceramic having a hardness higher than that of the ceramic of the substrate 10.
流路11の内表面が硬度の高いセラミックスで被覆されていることによって、流路11を流れる熱媒体によって基体10が磨耗されにくくなる。これにより、流路11の内部に基体10の摩耗に起因して堆積する粉末の量を減らすことができる。そのため、部分的に熱媒体と基体10との間の熱伝導が低下する可能性を低減できる。その結果、試料保持具1の表面すなわち試料保持面10aにおける均熱性の低下を抑制できる。
Since the inner surface of the flow path 11 is coated with a ceramic having high hardness, the base 10 is not easily worn by the heat medium flowing through the flow path 11. As a result, the amount of powder deposited in the flow path 11 due to wear of the substrate 10 can be reduced. Therefore, the possibility that the heat conduction between the heat medium and the substrate 10 is partially reduced can be reduced. As a result, it is possible to suppress a decrease in heat uniformity on the surface of the sample holder 1, that is, the sample holding surface 10a.
硬度は、以下の方法で確認することができる。具体的には、硬度を測定したい部分の表面をダイヤモンドペーストを用いて研磨する。その後、硬度計を用いて硬度を測定する。硬度計としては、例えば、明石製作所製硬度計(MVK-H3)を用いることができる。この硬度計を用いることで、硬度としてビッカース硬さを測定することができる。
Hardness can be confirmed by the following method. Specifically, the surface of the part whose hardness is to be measured is polished with a diamond paste. Thereafter, the hardness is measured using a hardness meter. As the hardness meter, for example, a hardness meter (MVK-H3) manufactured by Akashi Seisakusho can be used. By using this hardness meter, Vickers hardness can be measured as hardness.
基体10を構成するセラミックスは、流路11に流れる熱媒体に対して安定なセラミックスであることが好ましい。これにより、熱媒体との化学反応による腐食を抑制することができる。その結果、腐食粉の堆積による試料保持面10aの均熱性の劣化を低減することができる。
The ceramic constituting the substrate 10 is preferably a ceramic that is stable against the heat medium flowing in the flow path 11. Thereby, the corrosion by the chemical reaction with a heat medium can be suppressed. As a result, it is possible to reduce deterioration of the thermal uniformity of the sample holding surface 10a due to the accumulation of corrosive powder.
また、被覆膜30に用いられるセラミックスは、導電性のセラミックスであることが好ましい。この場合には、被覆膜30を外部の接地電位となる部材に電気的に接続することによって、熱媒体のイオン化を抑制することができる。具体的には、電極層20に電圧を加えると、電極層20の周辺に電界が生じる。このとき、流路11の周辺にも電界が生じる。この電界が、流路11を流れる熱媒体を電気分解させる場合がある。例えば、熱媒体が水である場合には、熱媒体が水酸化イオンおよび水素イオンならびに酸素に電気分解する。この電気分解によって生じた酸素が被覆膜30を腐食させる場合がある。そこで、被覆膜30を導電性のセラミックスで形成するとともに、被覆膜30を外部の接地電位となる部材に接続しておくことによって、被覆膜30を電界に対するシールドとして機能させることができる。これにより、電極層20に電圧を加えることによって生じる電界が、流路11を流れる熱媒体におよぼす影響を低減することができる。そのため、熱媒体が電気分解する可能性を低減できるので、被覆膜30が腐食する可能性を低減できる。その結果、被覆膜30の腐食に起因する腐食粉の堆積による試料保持面10aの均熱性の劣化を低減することができる。
The ceramic used for the coating film 30 is preferably a conductive ceramic. In this case, ionization of the heat medium can be suppressed by electrically connecting the coating film 30 to a member having an external ground potential. Specifically, when a voltage is applied to the electrode layer 20, an electric field is generated around the electrode layer 20. At this time, an electric field is also generated around the channel 11. This electric field may cause the heat medium flowing through the flow path 11 to be electrolyzed. For example, when the heat medium is water, the heat medium is electrolyzed into hydroxide ions and hydrogen ions and oxygen. Oxygen generated by this electrolysis may corrode the coating film 30. Therefore, by forming the coating film 30 from conductive ceramics and connecting the coating film 30 to a member having an external ground potential, the coating film 30 can function as a shield against an electric field. . Thereby, the influence which the electric field produced by applying a voltage to the electrode layer 20 has on the heat medium which flows through the flow path 11 can be reduced. Therefore, since the possibility that the heat medium is electrolyzed can be reduced, the possibility that the coating film 30 is corroded can be reduced. As a result, it is possible to reduce the soaking of the sample holding surface 10a due to the accumulation of corrosive powder resulting from the corrosion of the coating film 30.
具体的には、基体10に窒化アルミニウム(硬度14GPa)が用いられる場合には、被覆膜30に用いられるセラミックスは炭化タングステン(硬度18GPa)であることが好ましい。炭化タングステンは硬度が高く、導電性を有することから、上述の効果を得ることができる。これに加え、硬度が高い炭化タングステンを硬度の低い窒化アルミニウムと組み合わせることにより、被覆膜30と基体10との界面で振動を吸収しやすくなることから、流路11に熱媒体を流すことによって発生する脈動を抑制することができる。
Specifically, when aluminum nitride (hardness 14 GPa) is used for the substrate 10, the ceramic used for the coating film 30 is preferably tungsten carbide (hardness 18 GPa). Since tungsten carbide has high hardness and conductivity, the above-described effects can be obtained. In addition to this, by combining tungsten carbide having a high hardness with aluminum nitride having a low hardness, vibrations can be easily absorbed at the interface between the coating film 30 and the base 10, so that a heat medium is passed through the flow path 11. The generated pulsation can be suppressed.
さらに、被覆膜30に炭化タングステンを用いた場合には、炭化タングステンが焼結助剤を含むことが好ましい。これにより、基体10と被覆膜30との密着性を高めることができる。焼結助剤が炭化タングステン自体の緻密化を促進するとともに、一部が母材に拡散することにより、界面の結合が強化されるためである。
Furthermore, when tungsten carbide is used for the coating film 30, the tungsten carbide preferably contains a sintering aid. Thereby, the adhesiveness of the base | substrate 10 and the coating film 30 can be improved. This is because the sintering aid promotes densification of the tungsten carbide itself and part of the sintering aid diffuses into the base material, thereby strengthening the bonding at the interface.
また、炭化タングステンが焼結助剤として、IIIa族化合物を含むことによって、炭化タングステンの緻密化を促進することができる。その結果、被覆膜30の表面のボイドの発生を抑制できる。これにより、被覆膜30が磨耗する可能性をさらに抑制できる。
Also, the tungsten carbide can promote densification of the tungsten carbide by including the IIIa group compound as a sintering aid. As a result, generation of voids on the surface of the coating film 30 can be suppressed. Thereby, the possibility that the coating film 30 is worn can be further suppressed.
さらに、炭化タングステンが焼結助剤としてIIIa族化合物を含むことにより、炭化タングステンの緻密化を促進できることから、炭化タングステンの水との反応性を低下させることができる。これにより、熱媒体として冷却水を用いた場合において、被覆膜30が腐食してしまう可能性を低減できる。IIIa族化合物としては、例えば、酸化エルビウム、酸化イットリビウムまたは酸化セリウム等が挙げられる。
Furthermore, since tungsten carbide contains a IIIa group compound as a sintering aid, densification of tungsten carbide can be promoted, so that the reactivity of tungsten carbide with water can be reduced. Thereby, when cooling water is used as a heat medium, possibility that the coating film 30 will corrode can be reduced. Examples of the group IIIa compound include erbium oxide, yttrium oxide, and cerium oxide.
被覆膜30は、流路11の内表面を被覆するものであれば、その形状は特に限定されない。被覆膜30の厚みは1μmから100μm程度が好ましい。厚みが1μm以上であることによって、長期間の使用によっても基体10が露出する可能性を抑制できる。また、厚みが100μm以下であることによって、被覆膜30と基体10との界面で振動を吸収しやすくなる。そのため、上述した脈動の発生を抑制する効果を良好に発揮することができる。
The shape of the coating film 30 is not particularly limited as long as it covers the inner surface of the flow path 11. The thickness of the coating film 30 is preferably about 1 μm to 100 μm. When the thickness is 1 μm or more, it is possible to suppress the possibility that the substrate 10 is exposed even after long-term use. Further, when the thickness is 100 μm or less, vibration is easily absorbed at the interface between the coating film 30 and the substrate 10. Therefore, the effect of suppressing the occurrence of the pulsation described above can be satisfactorily exhibited.
硬度が高く、熱媒体に対して安定で、導電性のあるセラミックスとしては、例えば、タングステン、モリブデン、チタン、ニオブまたはタンタル等の高融点金属の炭化物、窒化物またはホウ化物等が好ましい。これらのセラミックスのように硬度が14GPa以上、電気伝導率が100×104/Ωm以上のセラミックスを被覆膜30として用いることが好ましい。
As the ceramic having high hardness, stable with respect to the heat medium and having conductivity, for example, carbide, nitride or boride of refractory metal such as tungsten, molybdenum, titanium, niobium or tantalum is preferable. It is preferable to use a ceramic having a hardness of 14 GPa or more and an electric conductivity of 100 × 10 4 / Ωm or more as the coating film 30 like these ceramics.
ここで、流路11の内表面を被覆する被覆膜30を説明するために、基体10の製造方法について簡単に述べる。
Here, in order to describe the coating film 30 that covers the inner surface of the flow path 11, a method of manufacturing the base body 10 will be briefly described.
本実施形態の基体10は、前述のように最外層15、上層12、中間層13および下層14の4層が積層された積層体である。基体10は、所定の形状に予め成形した4枚のグリーンシートを、最外層15となるグリーンシートと上層12となるグリーンシートとの間に電極層20となる金属ペーストを塗布して積層し、焼成することによって得ることができる。焼成後に最外層15、上層12および下層14となるグリーンシートは、同一の円板形状であり、焼成後に中間層13となるグリーンシートは、外形が最外層15、上層12および下層14となるグリーンシートと同一の円形状である。さらに、中間層13となるグリーンシートは、流路11に対応した形状に形成され、上下方向に貫通した切欠きが設けられている。
The base body 10 of the present embodiment is a laminate in which four layers of the outermost layer 15, the upper layer 12, the intermediate layer 13, and the lower layer 14 are laminated as described above. The base 10 is formed by applying and laminating four green sheets previously formed into a predetermined shape by applying a metal paste serving as the electrode layer 20 between the green sheet serving as the outermost layer 15 and the green sheet serving as the upper layer 12. It can be obtained by firing. The green sheets that become the outermost layer 15, the upper layer 12, and the lower layer 14 after firing have the same disc shape, and the green sheets that become the intermediate layer 13 after firing become green whose outer shapes become the outermost layer 15, the upper layer 12, and the lower layer 14. It has the same circular shape as the sheet. Furthermore, the green sheet which becomes the intermediate layer 13 is formed in a shape corresponding to the flow path 11 and is provided with a notch penetrating in the vertical direction.
これら4枚のグリーンシートを積層すると、上層12となるグリーンシートにおける中間層13に接する側の表面のうち、中間層13となるグリーンシートに設けられた切欠きに臨む面121と、下層14となるグリーンシートにおける中間層13に接する側の表面のうち、中間層13となるグリーンシートに設けられた切欠きに臨む面141と、中間層13となるグリーンシートにおける切欠きの内側面131とが、焼成後に流路11の内表面となる。ここで、内表面の大きさおよび形状は特に限定されず、流路11に流す熱媒体の量や、必要な冷却速度等によって決められる。
When these four green sheets are laminated, the surface 121 facing the notch provided in the green sheet serving as the intermediate layer 13 among the surface of the green sheet serving as the upper layer 12 in contact with the intermediate layer 13, the lower layer 14, Of the surface of the green sheet that is in contact with the intermediate layer 13, a surface 141 that faces a notch provided in the green sheet that is the intermediate layer 13, and an inner surface 131 of the notch in the green sheet that is the intermediate layer 13 The inner surface of the flow path 11 is obtained after firing. Here, the size and shape of the inner surface are not particularly limited, and are determined by the amount of the heat medium flowing through the flow path 11 and the necessary cooling rate.
被覆膜30を形成するには、グリーンシートを作製する場合と同様に、有機系バインダーとセラミック粒子と添加剤等とを混合してスラリーを作製し、このスラリーを、例えば、グリーンシートを積層する工程よりも前の工程、または積層する工程中に、被覆膜30を設けたい箇所に印刷または浸漬等によって部分的に塗布しておき、積層したグリーンシートと一緒に焼成すればよい。
In order to form the coating film 30, as in the case of producing a green sheet, an organic binder, ceramic particles, additives, and the like are mixed to produce a slurry, and this slurry is laminated with, for example, a green sheet. During the step prior to the step of performing or the step of laminating, the coating film 30 may be partially applied by printing, dipping, or the like, and fired together with the laminated green sheets.
次に、本発明の他の実施形態について説明する。図5は、本発明の他の実施形態である試料保持具1Aの1つの流路断面を拡大した部分拡大断面図である。本実施形態の試料保持具1Aは、図1~図4で示した上記の実施形態の試料保持具1と比較して、被覆膜30Aの構成が異なるだけであるので、図1に相当する全体図、図2に相当する流路11の配置図、図3に相当する全体の断面図等は省略し、本実施形態の被覆膜30Aの構成が最も表れる図4に相当する流路11の拡大断面図を用いて本実施形態を説明する。
Next, another embodiment of the present invention will be described. FIG. 5 is a partially enlarged cross-sectional view in which one channel cross section of a sample holder 1A according to another embodiment of the present invention is enlarged. The sample holder 1A of the present embodiment corresponds to FIG. 1 because the configuration of the coating film 30A is different from that of the sample holder 1 of the above-described embodiment shown in FIGS. The overall view, the layout of the flow path 11 corresponding to FIG. 2, the overall cross-sectional view corresponding to FIG. 3, and the like are omitted, and the flow path 11 corresponding to FIG. 4 in which the configuration of the coating film 30A of this embodiment is most apparent. The present embodiment will be described with reference to FIG.
図5に示す例では、上層12における中間層13と接する側の表面の全面に被覆膜30Aが設けられている。また、下層14における中間層13と接する側の表面の全面に被覆膜30Aが設けられている。これにより、仮に流路11を流れる熱媒体が上層12と中間層13との間または中間層13と下層14との間に浸み出したとしても、その部分に硬度が高い被覆膜30Aがあることによって、基体10の内部に流路11を中心とした剥がれが生じる可能性を抑制できる。
In the example shown in FIG. 5, a coating film 30 </ b> A is provided on the entire surface of the upper layer 12 on the side in contact with the intermediate layer 13. A coating film 30 </ b> A is provided on the entire surface of the lower layer 14 on the side in contact with the intermediate layer 13. Thereby, even if the heat medium flowing through the flow path 11 oozes between the upper layer 12 and the intermediate layer 13 or between the intermediate layer 13 and the lower layer 14, the coating film 30A having high hardness is formed in that portion. By being, it is possible to suppress the possibility of peeling around the flow path 11 inside the base body 10.
さらに、被覆膜30Aが基体10の外部に引き出されているとともに、被覆膜30Aのセラミックスが導電性であることが好ましい。この場合には、被覆膜30Aを外部の接地電位となる部材と容易に電気的に接続させることができる。これにより、被覆膜30Aも接地電位とすることができる。その結果、電極層20に電圧を加えた際に、流路11に流れる熱媒体に電圧が印加されたとしても、熱媒体がイオン化することを抑制できる。そのため、被覆膜30Aおよび基体10が腐食する可能性を低減できる。これにより、被覆膜30Aおよび流路11の内表面が摩耗する可能性をさらに低減できる。
Further, it is preferable that the coating film 30A is drawn out of the base 10 and the ceramic of the coating film 30A is conductive. In this case, the coating film 30A can be easily electrically connected to a member having an external ground potential. Thereby, the coating film 30A can also be set to the ground potential. As a result, even when a voltage is applied to the heat medium flowing in the flow path 11 when a voltage is applied to the electrode layer 20, it is possible to suppress ionization of the heat medium. Therefore, the possibility that the coating film 30A and the substrate 10 are corroded can be reduced. Thereby, the possibility that the coating film 30A and the inner surface of the flow path 11 are worn can be further reduced.
以下では、図5に示した試料保持具1Aの製造方法の一例について説明する。
Hereinafter, an example of a method for manufacturing the sample holder 1A shown in FIG. 5 will be described.
出発原料として、アルミナ還元窒化法によって製造された平均粒径1.5μm、酸素含有量0.8%、炭素含有量300ppmの窒化アルミニウム粉末を用いる。そして、この窒化アルミニウム粉末に対して焼結助剤を加えずに、有機系のバインダーと溶剤を混ぜて混合した後、60℃で乾燥させて造粒粉を製作する。
As a starting material, an aluminum nitride powder having an average particle diameter of 1.5 μm, an oxygen content of 0.8%, and a carbon content of 300 ppm manufactured by an alumina reduction nitriding method is used. Then, without adding a sintering aid to the aluminum nitride powder, an organic binder and solvent are mixed and mixed, and then dried at 60 ° C. to produce granulated powder.
次に、この造粒粉を型内に充填して、98MPaの成形圧にて厚み1mmの円板状の成形体1枚と3mmの円板状の成形体3枚とを成形する。しかる後、中間層13となる3mm厚の1枚の成形体に対して切削加工にて切欠きを形成する。切削加工していない成形体のうち3mm厚の2枚の主面それぞれに有機系のバインダーと炭化タングステン粉末とを混ぜたペーストをスクリーン印刷法にて厚み10μmで塗布する。次に、切欠きを形成した成形体を、この炭化タングステンペーストを塗布した面に配置する。出来上がった溝部の側面には同じ炭化タングステンペーストを塗布する。さらに、もう1枚の炭化タングステンペーストを塗布した成形体を、ペーストを塗布した面が溝加工した成形体と接触するように配置する。出来上がった積層体は、98MPaの成形圧でプレス成形して密着させる。さらに、密着させた成形体の一方主面に上記タングステン粉末のペーストをスクリーン印刷することによって電極層20を形成する。その上に1mm厚の円板成形体を配置し、98MPaの成形圧でプレス成形して密着させる。
Next, this granulated powder is filled into a mold, and one disk-shaped molded body having a thickness of 1 mm and three disk-shaped molded bodies having a thickness of 3 mm are molded at a molding pressure of 98 MPa. After that, a notch is formed by cutting on a single molded body having a thickness of 3 mm to be the intermediate layer 13. A paste in which an organic binder and tungsten carbide powder are mixed is applied to each of two main surfaces having a thickness of 3 mm in a molded body not cut by a screen printing method to a thickness of 10 μm. Next, the molded body in which the notch is formed is placed on the surface to which this tungsten carbide paste is applied. The same tungsten carbide paste is applied to the side surface of the finished groove. Furthermore, the molded body to which the other tungsten carbide paste is applied is arranged so that the surface to which the paste is applied comes into contact with the molded body having a groove. The finished laminate is press-molded with a molding pressure of 98 MPa and adhered. Furthermore, the electrode layer 20 is formed by screen-printing the above-mentioned tungsten powder paste on one main surface of the formed compact. A 1 mm-thick disc shaped body is placed thereon, and press-molded with a molding pressure of 98 MPa to be brought into close contact therewith.
次に、窒素雰囲気中で脱脂し、次いで1900℃で2時間かけて焼成して、半径50mm、厚み8mmの円板状の焼結体(窒化アルミニウム質焼結体からなる基体)を作製することで、内部に電極層20および流路11を有し、流路11の内表面に被覆膜30Aが設けられた基体10を得ることができる。
Next, degreasing in a nitrogen atmosphere, followed by firing at 1900 ° C. for 2 hours to produce a disk-shaped sintered body (base made of an aluminum nitride-based sintered body) having a radius of 50 mm and a thickness of 8 mm. Thus, it is possible to obtain the substrate 10 having the electrode layer 20 and the flow channel 11 inside, and the coating film 30 </ b> A provided on the inner surface of the flow channel 11.
上記では、基体10内部の流路11よりも一方主面側に電極層20を設ける構成について説明したが、これに限らず、基体10内部の流路11よりも他方主面側にもさらに電極層を設ける構成であってもよい。また、試料保持具1,1Aの外形を円板状としたが、これに限らず、十分な保持力で試料を保持することができれば、矩形板状であってもよく、その他の多角形板状であってもよい。また、中間層13については複数層からなる構成でもよいことを説明したが、上層12、下層14および最外層13も中間層13と同様に複数層からなる構成であってもよい。
In the above description, the configuration in which the electrode layer 20 is provided on the one main surface side with respect to the flow path 11 inside the base body 10 has been described. The structure which provides a layer may be sufficient. Moreover, although the external shape of the sample holders 1 and 1A is a disk shape, the shape is not limited to this, and may be a rectangular plate shape as long as the sample can be held with a sufficient holding force, and other polygonal plates. It may be a shape. In addition, although it has been described that the intermediate layer 13 may have a plurality of layers, the upper layer 12, the lower layer 14, and the outermost layer 13 may have a plurality of layers in the same manner as the intermediate layer 13.
上記では、本発明の実施形態として電極層20を有する試料保持具1、いわゆる静電チャックについて説明したが、これに限られない。具体的には、電極層20を設けず、真空吸着による真空チャックにも本発明を適用することができる。真空チャックに適用する態様では、流路11以外に他の流路を基体10の内部に設けるとともに、基体10の一方主面に臨んで開口するとともに、他の流路に繋がる吸着孔を複数設け、他の流路を真空ポンプに接続して他の流路を真空状態とすればよい。流路11は、試料保持具1,1Aの態様と同様に、試料保持面10aに真空吸着保持される試料を冷却または加熱するために、試料と熱交換する熱媒体を流すように構成される。
In the above, the sample holder 1 having the electrode layer 20 as an embodiment of the present invention, that is, a so-called electrostatic chuck has been described, but the present invention is not limited thereto. Specifically, the present invention can be applied to a vacuum chuck by vacuum suction without providing the electrode layer 20. In the mode applied to the vacuum chuck, in addition to the flow channel 11, another flow channel is provided inside the base body 10, opens toward one main surface of the base body 10, and a plurality of suction holes connected to the other flow channel are provided. The other flow path may be connected to a vacuum pump to place the other flow path in a vacuum state. The channel 11 is configured to flow a heat medium that exchanges heat with the sample in order to cool or heat the sample that is vacuum-adsorbed and held on the sample holding surface 10a, as in the case of the sample holders 1 and 1A. .
1,1A 試料保持具
10 基体
10a 試料保持面
11 流路
11a,11b 開口部
12 上層
13 中間層
14 下層
15 最上層
20 電極層
21 正電極
22 負電極
30,30A 被覆膜 DESCRIPTION OF SYMBOLS 1,1A Sample holder 10 Base | substrate 10a Sample holding surface 11 Flow path 11a, 11b Opening part 12 Upper layer 13 Intermediate layer 14 Lower layer 15 Uppermost layer 20 Electrode layer 21 Positive electrode 22 Negative electrode 30, 30A Coating film
10 基体
10a 試料保持面
11 流路
11a,11b 開口部
12 上層
13 中間層
14 下層
15 最上層
20 電極層
21 正電極
22 負電極
30,30A 被覆膜 DESCRIPTION OF
Claims (9)
- セラミックスからなり上面に試料保持面を有するとともに内部に熱媒体の流路を有する基体と、前記流路の内表面を被覆している被覆膜とを具備しており、該被覆膜は、前記基体のセラミックスよりも硬度が高いセラミックスからなる試料保持具。 Comprising a base made of ceramics, having a sample holding surface on the upper surface and having a flow path for the heat medium therein, and a coating film covering the inner surface of the flow path, A sample holder made of a ceramic having a hardness higher than that of the ceramic of the substrate.
- 前記被覆膜は、前記基体のセラミックスよりも前記熱媒体に対して安定なセラミックスからなる請求項1記載の試料保持具。 The sample holder according to claim 1, wherein the coating film is made of ceramics that are more stable to the heat medium than the ceramics of the base.
- 前記被覆膜が導電性のセラミックスからなる請求項1記載の試料保持具。 The sample holder according to claim 1, wherein the coating film is made of conductive ceramics.
- 前記被覆膜は、前記流路の全面にある請求項1乃至3のいずれかに試料保持具。 The sample holder according to any one of claims 1 to 3, wherein the coating film is on the entire surface of the flow path.
- 前記基体は、内部に設けられた静電吸着用の電極をさらに有する請求項1乃至3のいずれかに記載の試料保持具。 The sample holder according to any one of claims 1 to 3, wherein the substrate further includes an electrode for electrostatic adsorption provided inside.
- 前記基体は、内部に設けられた発熱抵抗体をさらに有する請求項1乃至3のいずれかに記載の試料保持具。 The sample holder according to any one of claims 1 to 3, wherein the substrate further includes a heating resistor provided therein.
- 前記基体のセラミックスは窒化アルミニウムからなり、前記被覆膜のセラミックスは炭化タングステンからなる請求項1乃至6のいずれかに記載の試料保持具。 7. The sample holder according to claim 1, wherein the ceramic of the substrate is made of aluminum nitride, and the ceramic of the coating film is made of tungsten carbide.
- 前記炭化タングステンは焼結助剤を含んでなる請求項7記載の試料保持具。 The sample holder according to claim 7, wherein the tungsten carbide contains a sintering aid.
- 前記焼結助剤はIIIa族化合物である請求項8記載の試料保持具。 The sample holder according to claim 8, wherein the sintering aid is a group IIIa compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014553220A JP6027140B2 (en) | 2012-12-21 | 2013-12-20 | Sample holder |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-279432 | 2012-12-21 | ||
JP2012279432 | 2012-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014098224A1 true WO2014098224A1 (en) | 2014-06-26 |
Family
ID=50978538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/084268 WO2014098224A1 (en) | 2012-12-21 | 2013-12-20 | Sample holder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6027140B2 (en) |
WO (1) | WO2014098224A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029575A1 (en) * | 2013-08-26 | 2015-03-05 | 京セラ株式会社 | Sample-retainer |
JP2016207931A (en) * | 2015-04-27 | 2016-12-08 | 京セラ株式会社 | Flow channel member, heat exchanger employing the same, and semiconductor manufacturing device |
KR20180131423A (en) * | 2017-05-30 | 2018-12-10 | 램 리써치 코포레이션 | Substrate pedestal module including metallized ceramic tubes for rf and gas delivery |
JP2021125639A (en) * | 2020-02-07 | 2021-08-30 | 新光電気工業株式会社 | Ceramic substrate, electrostatic chuck, and manufacturing method for electrostatic chuck |
KR20210111157A (en) | 2020-03-02 | 2021-09-10 | 도쿄엘렉트론가부시키가이샤 | Electrostatic chuck manufacturing method,electrostatic chuck, and substrate processing apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63209903A (en) * | 1987-02-27 | 1988-08-31 | 日本碍子株式会社 | Jig for extrusion molding |
JPH0525637A (en) * | 1991-07-15 | 1993-02-02 | Idemitsu Petrochem Co Ltd | Manufacture of diamond coated member |
JPH0631711A (en) * | 1992-07-13 | 1994-02-08 | Japan Steel Works Ltd:The | Apparatus for molding ceramics and manufacture of ceramics product |
JPH1044209A (en) * | 1996-08-02 | 1998-02-17 | Asahi Chem Ind Co Ltd | Flow channel for resin extrusion processing and method for extrusion processing by using the same |
JP2003077996A (en) * | 2001-09-06 | 2003-03-14 | Mitsubishi Heavy Ind Ltd | Electrostatic chuck and semiconductor manufacturing device |
JP2007043042A (en) * | 2005-07-07 | 2007-02-15 | Sumitomo Electric Ind Ltd | Wafer holder and manufacturing method thereof, wafer prober mounting same, and semiconductor heating device |
JP2007266342A (en) * | 2006-03-29 | 2007-10-11 | Tokyo Electron Ltd | Mounting stand and vacuum processor |
-
2013
- 2013-12-20 WO PCT/JP2013/084268 patent/WO2014098224A1/en active Application Filing
- 2013-12-20 JP JP2014553220A patent/JP6027140B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63209903A (en) * | 1987-02-27 | 1988-08-31 | 日本碍子株式会社 | Jig for extrusion molding |
JPH0525637A (en) * | 1991-07-15 | 1993-02-02 | Idemitsu Petrochem Co Ltd | Manufacture of diamond coated member |
JPH0631711A (en) * | 1992-07-13 | 1994-02-08 | Japan Steel Works Ltd:The | Apparatus for molding ceramics and manufacture of ceramics product |
JPH1044209A (en) * | 1996-08-02 | 1998-02-17 | Asahi Chem Ind Co Ltd | Flow channel for resin extrusion processing and method for extrusion processing by using the same |
JP2003077996A (en) * | 2001-09-06 | 2003-03-14 | Mitsubishi Heavy Ind Ltd | Electrostatic chuck and semiconductor manufacturing device |
JP2007043042A (en) * | 2005-07-07 | 2007-02-15 | Sumitomo Electric Ind Ltd | Wafer holder and manufacturing method thereof, wafer prober mounting same, and semiconductor heating device |
JP2007266342A (en) * | 2006-03-29 | 2007-10-11 | Tokyo Electron Ltd | Mounting stand and vacuum processor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029575A1 (en) * | 2013-08-26 | 2015-03-05 | 京セラ株式会社 | Sample-retainer |
JP2016207931A (en) * | 2015-04-27 | 2016-12-08 | 京セラ株式会社 | Flow channel member, heat exchanger employing the same, and semiconductor manufacturing device |
KR20180131423A (en) * | 2017-05-30 | 2018-12-10 | 램 리써치 코포레이션 | Substrate pedestal module including metallized ceramic tubes for rf and gas delivery |
JP2018204104A (en) * | 2017-05-30 | 2018-12-27 | ラム リサーチ コーポレーションLam Research Corporation | Substrate pedestal module with metallized ceramic pipe for rf and gas supply |
JP7335060B2 (en) | 2017-05-30 | 2023-08-29 | ラム リサーチ コーポレーション | Substrate pedestal module with metallized ceramic tubes for RF and gas supply |
KR102620122B1 (en) | 2017-05-30 | 2023-12-29 | 램 리써치 코포레이션 | Substrate pedestal module including metallized ceramic tubes for rf and gas delivery |
JP2021125639A (en) * | 2020-02-07 | 2021-08-30 | 新光電気工業株式会社 | Ceramic substrate, electrostatic chuck, and manufacturing method for electrostatic chuck |
JP7312712B2 (en) | 2020-02-07 | 2023-07-21 | 新光電気工業株式会社 | Ceramic substrate, electrostatic chuck, manufacturing method of electrostatic chuck |
KR20210111157A (en) | 2020-03-02 | 2021-09-10 | 도쿄엘렉트론가부시키가이샤 | Electrostatic chuck manufacturing method,electrostatic chuck, and substrate processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP6027140B2 (en) | 2016-11-16 |
JPWO2014098224A1 (en) | 2017-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5969488B2 (en) | Sample holder | |
JP6027140B2 (en) | Sample holder | |
JP2002313781A (en) | Substrate treating equipment | |
KR20070032966A (en) | An electrostatic chuck | |
JP2007194320A (en) | Electrostatic chuck device | |
KR102216072B1 (en) | Electrostatic chuck device and manufacturing method of electrostatic chuck device | |
JP2002313899A (en) | Substrate holding structure and substrate processor | |
JP7020221B2 (en) | Electrostatic chuck device | |
JP2005317749A (en) | Holding body for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus loaded therewith | |
JP2008004926A (en) | Wafer holder, method for producing the same, and semiconductor production apparatus | |
JP4540407B2 (en) | Electrostatic chuck | |
WO2007136023A1 (en) | Wafer holder, method for producing the same and semiconductor production apparatus | |
JP6139249B2 (en) | Sample holder | |
CN111446197B (en) | Electrostatic chuck and electrostatic chuck device including the same | |
JP5343802B2 (en) | Electrostatic chuck device | |
JP6050505B2 (en) | Sample holder | |
JP2021158242A (en) | Electrostatic chuck device | |
JP2021158236A (en) | Electrostatic chuck device | |
JP6122323B2 (en) | Sample holder | |
JP6054696B2 (en) | Electrostatic chuck | |
JP2003338536A (en) | Electrostatic chuck | |
JP6121765B2 (en) | Sample holder | |
JP4789416B2 (en) | Ceramic resistor, method for manufacturing the same, and electrostatic chuck | |
JP2015142100A (en) | Electrode built-in plate and electrostatic chuck | |
JP2004087206A (en) | Flat ceramic heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13863982 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014553220 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13863982 Country of ref document: EP Kind code of ref document: A1 |