[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014091845A1 - Guide layer separation type optical recording medium - Google Patents

Guide layer separation type optical recording medium Download PDF

Info

Publication number
WO2014091845A1
WO2014091845A1 PCT/JP2013/080199 JP2013080199W WO2014091845A1 WO 2014091845 A1 WO2014091845 A1 WO 2014091845A1 JP 2013080199 W JP2013080199 W JP 2013080199W WO 2014091845 A1 WO2014091845 A1 WO 2014091845A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove portion
groove
recording medium
optical recording
inw
Prior art date
Application number
PCT/JP2013/080199
Other languages
French (fr)
Japanese (ja)
Inventor
松田 勲
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2014091845A1 publication Critical patent/WO2014091845A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24079Width or depth
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24047Substrates
    • G11B7/2405Substrates being also used as track layers of pre-formatted layers

Definitions

  • the present invention relates to a guide layer separation type optical recording medium having a land / groove structure guide layer.
  • the recording layer is multilayered.
  • tracking control at the time of recording or reproducing data on a recording layer is performed using a guide layer provided separately from the recording layer (for example, Patent Document 1 below) 2).
  • Such a guide layer separation type optical recording medium generally has a structure in which a guide layer and a plurality of recording layers are laminated via an intermediate layer along the thickness direction of the disc. Grooves and lands are provided in the guide layer.
  • tracking control of the guide layer is performed using a tracking laser beam having the same optical axis as the recording / reproducing laser beam. .
  • a guide track having a track pitch of 0.32 ⁇ m is also required in the guide layer. It is.
  • a guide track having a track pitch of 0.32 ⁇ m is recorded on a land track. If it is going to be realized by the groove structure, it is necessary to use each of the land and the groove as a guide track.
  • the track closer to the laser light source is referred to as “groove” or “On-Groove”, and the track farther from the laser light source is referred to as “land” or “in-groove”. (In-Groove) part ".
  • Land and groove have different diffraction characteristics of laser light due to the difference in their geometric shapes. For example, if the width of the in-groove portion is narrower than the spot diameter of the laser light, the diffraction of the laser light at the in-groove portion becomes insufficient as compared with the on-groove portion. As a result, there is a problem that the tracking followability at the in-groove portion is lowered and the track quality of the recording pit formed in the region corresponding to the in-groove portion on the recording layer is lowered. Further, when reproducing light is tracked by a recording track formed on the recording layer, it becomes difficult to accurately reproduce the recording track corresponding to the in-groove portion.
  • an object of the present invention is to provide a guide layer separation type optical recording medium capable of realizing improvement of information recording / reproducing characteristics.
  • a guide layer separation type optical recording medium comprises a guide layer and one or more recording layers.
  • the guide layer has a guide track including an in-groove portion and an on-groove portion.
  • the one or more recording layers can record information in areas corresponding to the in-groove portion and the on-groove portion.
  • the in-groove portion has a groove width of the in-groove portion (half value of the sum of the bottom width of the in-groove portion and the opening width of the in-groove portion) is InW [nm], and the depth of the in-groove portion is InD.
  • the diffraction characteristic of the laser beam to the in-groove portion is enhanced, and the tracking followability of the in-groove portion is improved.
  • a high-quality recording track can be formed on the recording layer, and the reproduction characteristics of the recording track can be improved.
  • the groove width InW [nm] of the in-groove portion may be configured to satisfy a relationship of 330 ⁇ InW ⁇ 400. Further, the depth InD [nm] of the in-groove portion may be configured to satisfy a relationship of (0.2 ⁇ 55) ⁇ InD ⁇ (0.2 ⁇ 45). This makes it possible to stably secure an evaluation value (less than 1E-3) of SER (Symbol Error Rate) that enables error correction.
  • SER Symbol Error Rate
  • the groove width of the in-groove portion may be wider than the groove width of the on-groove portion (half value of the sum of the minimum width of the on-groove portion and the maximum width of the on-groove portion).
  • the guide layer separation type optical recording medium of the present invention it is possible to realize improvement in information recording / reproducing characteristics.
  • FIG. 5 is a diagram illustrating a structure of a double spiral track of a guide layer in the optical recording medium of FIG. 4.
  • FIG. 5 is a diagram illustrating a configuration of a region divided by a radial position of a guide layer and a recording layer in the optical recording medium in FIG. 4. It is a figure which shows the structure of the disk drive in the optical recording system of FIG.
  • FIG. 9 is a diagram for explaining a recording order of data tracks by the disk drive of FIG. 8.
  • FIG. 9 is a diagram for explaining a recording order of data tracks by the disk drive of FIG. 8.
  • FIG. 5 is a schematic diagram illustrating a form of guide light irradiation to a guide layer in the optical recording medium of FIG. 4.
  • FIG. 5 is a schematic diagram illustrating details of an in-groove portion provided in a guide layer in the optical recording medium in FIG. 4.
  • FIG. 14 it is the figure which plotted the groove depth from which NPP becomes the maximum in each wavelength range of guide light. It is a figure which shows the relationship between the groove width and depth of an in-groove part in wavelength 650nm of guide light, and an NPP characteristic. It is a figure which shows the relationship between the groove width and depth of an in-groove part in wavelength 600nm of guide light, and NPP characteristic. It is a figure which shows the relationship between the groove width and depth of an in-groove part in wavelength 700nm of guide light, and NPP characteristic.
  • FIG. 1 is a diagram showing an optical recording system according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing the overall configuration of an optical recording system.
  • the optical recording system 1 includes a disk cartridge 10, a disk transport mechanism 20, a drive unit 30, a RAID controller 40, and a host device 50. Details of each will be described below.
  • the disc cartridge 10 is a unit in which a plurality of multilayer optical discs 11 (guide layer separation type optical recording media) are individually detachably accommodated.
  • FIG. 2 is a view showing a storage form of the disk cartridge 10 and a plurality of multilayer optical disks 11 therein.
  • the accommodation form of the plurality of multilayer optical discs 11 in the disc cartridge 10 flat stacking, vertical alignment, and the like are assumed. In any case, it is preferable that a certain gap is provided between adjacent multilayer optical discs 11 so that the multilayer optical disc 11 can be smoothly inserted into and removed from the disc cartridge 10.
  • the shape of the disk cartridge 10 is assumed to be, for example, a rectangular parallelepiped shape or a cylindrical shape from the viewpoint of handling by the user and the storage efficiency of the multilayer optical disk 11.
  • a rectangular parallelepiped disk cartridge 10 in which a plurality of multilayer optical disks 11 are accommodated in a flat stack is used.
  • FIG. 3 is a diagram showing the configuration of the disk cartridge 10, the multilayer optical disk 11, and the drive unit 30.
  • At least one side surface of the disk cartridge 10 is provided with an opening 101 for loading and unloading the multilayer optical disk 11 and a door (not shown) for opening and closing the opening 101.
  • the door is opened and closed in conjunction with the operation of loading / unloading the multilayer optical disk 11 from / to the disk cartridge 10 by the disk transport mechanism 20, and is closed at other times.
  • the plurality of multilayer optical disks 11 accommodated in the disk cartridge 10 are taken out by the disk transport mechanism 20 and selectively transported (loaded) to the plurality of disk drives 31 in the drive unit 30.
  • the configuration of the disk cartridge 10 is not limited to that shown in FIG.
  • Various modifications such as the shape of the disk cartridge 10, the number and position of the openings, the presence / absence of a door, and the accommodation form of a plurality of multilayer optical disks 11 are possible.
  • Multilayer optical disc 11 The multilayer optical disk 11 accommodated in the disk cartridge 10 is assumed to be a so-called guide layer separation type multilayer optical disk in which the guide layer and the recording layer are separated into separate layers.
  • the multilayer optical disc 11 includes a guide layer 112 and a plurality of recording layers 113.
  • the number of recording layers 113 is “4”.
  • An intermediate layer 114 having optical transparency is interposed between the guide layer 112 and the recording layer 113 closest to the guide layer 112 and between the adjacent recording layers 113.
  • These layers are the protective layer 115, the recording layer 113 (R3), the intermediate layer 114, the recording layer 113 (R2), and the intermediate layer 114 from the side on which the recording / reproducing light R1 and the guide light R2 from the optical pickup 32 are incident.
  • the recording layer 113 (R1), the intermediate layer 114, the recording layer 113 (R0), the intermediate layer 114, and the guide layer 112 are laminated in this order.
  • the guide layer 112 includes a light-transmitting plastic substrate 110 such as a disc-shaped polycarbonate having a spiral uneven portion 111 on one surface, and the uneven portion 111 following the uneven shape of the uneven portion 111. And a reflective structure 120 covering the substrate.
  • the substrate 110 is typically molded using a molding die such as a stamper, and the reflective film 120 is a metal material having a high reflectance with respect to red laser light, such as silver (Ag) or an alloy thereof.
  • the sputtered film is formed.
  • the thickness of the substrate 110 is not particularly limited, and is, for example, 0.6 mm to 1.2 mm, and 1.1 mm in this embodiment.
  • the thickness of the reflective film 120 is not particularly limited, and is, for example, 20 nm to 100 nm, and in this embodiment, 60 nm.
  • a guide track 121 having a land / groove structure is spirally provided on the surface of the guide layer 112 facing the recording layer 113.
  • the land is formed between the grooves, and the groove is formed between the lands.
  • the track closer to the laser light source (optical pickup 32) is referred to as “groove” or “On-Groove portion”, and the track farther from the laser light source is referred to as “land”. Or “In-Groove”.
  • the guide track 121 constitutes a so-called “double spiral track” composed of a land guide track (in-groove portion 121L) and a groove guide track (on-groove portion 121G).
  • the in-groove portion 121L and the on-groove portion 121G are continuously formed in a spiral shape from the inner peripheral side to the outer peripheral side of the multilayer optical disc 11, but are not limited thereto.
  • the in-groove portion 121L and the on-groove portion 121G may be continuously formed in a spiral shape so as to be alternately switched at a predetermined period (for example, every circumference) from the inner circumference side to the outer circumference side of the multilayer optical disc 11.
  • the in-groove portion 121L is surrounded by a pair of side walls 121s that form a boundary with the on-groove portion 121G.
  • the side wall 121s is typically formed with a tapered surface, but may be formed with a surface perpendicular to the surface of the substrate 110.
  • the taper angle of the side wall 121s is not particularly limited, and is appropriately set according to the draft angle of the stamper mold, the uneven height of the uneven portion 111, the thickness of the reflective film 120, and the like.
  • the in-groove portion 121L and the on-groove portion 121G are formed with a track pitch (0.64 ⁇ m) corresponding to red laser light used for recording / reproduction of a DVD (Digital Versatile Disk), for example.
  • the average pitch between the land and the groove is 0.32 ⁇ m, which corresponds to the track pitch of the guide track 121.
  • the laser beam of the red laser beam is referred to as “guide light”.
  • a push-pull method (PP: Push-Pull), a differential push-pull method (DPP: Differential Push-Pull), 3 beams in each of the land and groove of the guide track 121.
  • Tracking control is performed by law. By performing tracking control in each of the land and groove of the guide track 121, information can be recorded on the recording layer 113 at a track pitch of 0.32 ⁇ m. Details of the configuration of the guide track 121 will be described later.
  • the recording layer 113 is a layer on which information is recorded at a track pitch (0.32 ⁇ m) corresponding to blue laser light used for recording / reproducing of a Blu-ray Disc (registered trademark), for example.
  • this blue laser light is referred to as “recording / reproducing light” or “recording light”.
  • the recording layer 113 includes, for example, a light absorption layer and a reflection layer.
  • a light absorption layer an organic dye such as a cyanine dye or an azo dye, or an inorganic oxide material such as Si, Cu, Sb, Te, Ge, Fe, or Bi is used.
  • the target recording layer 113 in the multilayer optical disc 11 is irradiated with the recording light, the reflectance of the area irradiated with the recording light is changed, and the area where the reflectance is changed is formed as a recording mark. Information is recorded in layer 113.
  • the thickness of the recording layer 113 is not particularly limited, and is 10 nm to 200 nm, for example, and 83 nm in the present embodiment.
  • the distance X between the guide layer 112 and the recording layer 113 (R0) closest to the guide layer 112 is not particularly limited, and an appropriate value can be set. In the present embodiment, the distance X is set to 25 ⁇ m or more, thereby preventing crosstalk between the guide light irradiated to the guide layer 112 and the recording / reproducing light irradiated to the recording layer 113 (R0).
  • the tracking followability of the guide layer 112 (particularly the in-groove portion 121L) can be improved.
  • the tracking control and the acquisition of the physical address and the reference clock at the time of recording information on the recording layer 113 are performed by using the guide track 121 of the guide layer 112. Therefore, the recording track 113 has a guide track having a land / groove structure. 121 is not necessary. Therefore, the surface of the recording layer 113 may be flat.
  • the intermediate layer 114 and the protective layer 115 are formed of a light-transmitting material such as an ultraviolet curable resin.
  • the thickness of the intermediate layer 114 is not particularly limited, and is 10 ⁇ m to 300 ⁇ m, for example, and is 200 ⁇ m in this embodiment.
  • the thickness of the protective layer 115 is not particularly limited, and is 10 ⁇ m to 300 ⁇ m, for example, and is 100 ⁇ m in this embodiment.
  • FIG. 7 is a diagram showing a configuration of regions divided by the radial positions of the guide layer 112 and the recording layer 113 in the multilayer optical disc 11.
  • the guide layer 112 and the recording layer 113 are divided into the lead-in area, the data area, and the lead-out area in common from the inner peripheral side depending on the position in the radial direction.
  • management information unique to the multilayer optical disk 11 is recorded in advance by wobbling of guide tracks or pit rows provided in lands and grooves.
  • the management information unique to the multilayer optical disc 11 includes, for example, recommended information such as the number of recording layers, recording method, recording linear velocity, laser power and laser drive pulse waveform during recording / reproduction, position information of the data area, position of the OPC area Contains information.
  • the OPC area is provided, for example, on the inner peripheral side of the lead-in area.
  • the same information as the information recorded in the lead-in area may be recorded in advance by wobbling of the guide track 121 or a prepit row provided in the land and groove. Good.
  • the lead-in area of the recording layer 113 is an area where management information used for recording / reproducing of the recording layer 113 is recorded by a recording mark.
  • Management information used for recording / reproduction of the recording layer 113 includes layer information such as a layer number assigned to the recording layer 113, replacement management information regarding replacement processing of a defective area, and recording time determined by OPC processing (calibration processing). Recording condition data such as the optimum laser power, address information of the recorded area, and the like.
  • at least the layer information is, for example, information recorded with a recording mark on each recording layer 113 before the multilayer optical disc 11 is actually used for data recording by the user.
  • the disk transport mechanism 20 takes out the target multilayer optical disk 11 from the disk cartridge 10 and loads it in the disk drive 31 in the drive unit 30, or conversely returns the multilayer optical disk 11 ejected from the disk drive 31 to the disk cartridge 10.
  • the disk transport mechanism 20 operates independently so that, for example, a plurality of multilayer optical disks 11 can be taken out simultaneously or sequentially from the disk cartridge 10 and can be separately loaded into the plurality of disk drives 31 in the drive unit 30.
  • a plurality of possible transport mechanisms may be provided.
  • a plurality of disk drives 31 are mounted on the drive unit 30. In the example of FIG. 1, five disk drives 31 are installed.
  • the number of multilayer optical disks 11 accommodated in the disk cartridge 10 and the number of disk drives 31 mounted in the drive unit 30 are not necessarily the same.
  • FIG. 8 is a diagram showing the configuration of a disk drive 31 that is an optical recording apparatus.
  • the disk drive 31 includes an optical pickup 32.
  • the optical pickup 32 includes a recording / reproducing optical system corresponding to the recording / reproducing light and a guide optical system corresponding to the guide light.
  • the recording / reproducing optical system includes a first light source 33, a first collimator lens 34, a first polarizing beam splitter 35, a first relay lens 36, a second collimator lens 37, a combining prism 38, and a quarter wavelength plate. 39, an objective lens 60, a first light receiving lens 61, a first light receiving portion 62, and the like.
  • the combining prism 38, the quarter wavelength plate 39, and the objective lens 60 belong to both the recording / reproducing optical system and a guide optical system described later.
  • the first light source 33 includes a laser diode that emits blue laser light as recording / reproducing light R1.
  • the recording / reproducing light R 1 emitted from the first light source 33 is converted into parallel light by the first collimator lens 34, and passes through the first polarization beam splitter 35, the first relay lens 36 and the second collimator lens 37.
  • the light enters the combining prism 38.
  • the synthesizing prism 38 makes the optical axes of the recording / reproducing light R1 incident from the second collimator lens 37 and the guide light R2 incident from a third collimator lens belonging to a guide optical system, which will be described later, coincide with each other.
  • And is incident on the objective lens 60 through the quarter-wave plate 39.
  • the incident recording / reproducing light is collected by the objective lens 60 so as to be focused on the target recording layer 113 of the multilayer optical disc 11.
  • the recording / reproducing light (returned light) reflected by the recording layer 113 is incident on the combining prism 38 via the objective lens 60 and the quarter wavelength plate 39, and is transmitted through the combining prism 38 in the incident direction.
  • the first polarization beam splitter 35 reflects the return light of the first wavelength from the first relay lens 36 at an angle of about 90 degrees and passes through the first light receiving lens 61 to the first light receiving unit 62. Make it incident.
  • the first light receiving unit 62 includes a light receiving element whose light receiving surface is divided into four in the disk radial direction and the tangential direction, and outputs a voltage signal of a level corresponding to the light receiving intensity for each divided light receiving surface. To do.
  • the guide optical system includes a second light source 63, a third collimator lens 64, a second polarizing beam splitter 65, a second relay lens 66, a fourth collimator lens 67, a combining prism 38, and a quarter wavelength plate 39.
  • the second light source 63 emits guide light R2 which is red laser light.
  • the guide light R2 emitted from the second light source 63 is converted into parallel light by the third collimator lens 64, and is combined through the second polarization beam splitter 65, the second relay lens 66, and the fourth collimator lens 67.
  • the light enters the prism 38.
  • the guide light R2 incident on the combining prism 38 is combined by the combining prism 38 so that the optical axis coincides with the recording / reproducing light R1 incident from the second collimator lens 37 of the recording / reproducing optical system.
  • the light enters the objective lens 60 through the quarter-wave plate 39.
  • the incident guide light R ⁇ b> 2 is collected by the objective lens 60 so as to be focused on the guide layer 112 of the multilayer optical disk 11.
  • the guide light R2 (return light) reflected by the guide layer 112 enters the synthesis prism 38 through the objective lens 60 and the quarter wavelength plate 39, and is reflected by the synthesis prism 38 at an angle of about 90 degrees.
  • the second polarization beam splitter 65 reflects the return light of the guide light R2 from the second relay lens 66 at an angle of about 90 degrees, and passes through the second light receiving lens 68 to the second light receiving unit 69. Make it incident.
  • the second light receiving unit 69 is constituted by, for example, a light receiving element in which the light receiving surface is divided into four in the disk radial direction and the tangential direction.
  • the second light receiving unit 69 outputs a voltage signal corresponding to the amount of received light for each divided light receiving surface.
  • the optical pickup 32 is provided with a tracking actuator 70 and a focusing actuator 79.
  • the tracking actuator 70 moves the objective lens 60 in the disk radial direction that is perpendicular to the optical axis under the control of the tracking control unit 71.
  • the focusing actuator 79 moves the objective lens 60 in the optical axis direction under the control of the focus control unit 77.
  • the optical pickup 32 guides the guide light R2 and the first relay lens actuator 80 that moves the first relay lens 36 in the optical axis direction in order to switch the recording layer 113 irradiated with the recording / reproducing light.
  • a second relay lens actuator 81 that moves the second relay lens 66 in the optical axis direction is provided.
  • the optical pickup 32 is also provided with a tilt actuator that adjusts the inclination of the objective lens 60 in the radial direction and the tangential direction with respect to the recording surface of the multilayer optical disc 11. The above is the description of the optical pickup 32.
  • the disk drive 31 includes a tracking control unit 71, a data modulation unit 72, a first light source drive unit 73, a second light source drive unit 74, an equalizer 75, a data reproduction unit 76, a focus A control unit 77, a tracking error generation unit 82, a controller 83, a first relay control unit 84, a second relay control unit 85, and a focus error generation unit 86 are provided.
  • the disk drive 31 includes a disk motor drive unit that drives the disk motor 87, a feed mechanism that sends the optical pickup 32 in the radial direction of the multilayer optical disk 11, and a pickup vertical feed mechanism that sends the optical pickup 32 in the optical axis direction of the objective lens 60. Etc. These illustrations are omitted.
  • the data modulator 72 modulates the recording data supplied from the controller 83 and supplies the modulated signal to the first light source driver 73.
  • the first light source drive unit 73 generates a drive pulse for driving the first light source 33 based on the modulation signal from the data modulation unit 72.
  • the equalizer 75 performs an equalization process such as PRML (Partial Response Maximum Maximum Likelihood) on the reproduction RF signal from the first light receiving unit 62 to generate a binary signal.
  • PRML Partial Response Maximum Maximum Likelihood
  • the data reproduction unit 76 demodulates data from the binary signal output from the equalizer 75, performs decoding processing such as error correction from the demodulated data, generates reproduction data, and supplies the reproduction data to the controller 83.
  • the tracking error generation unit 82 generates a tracking error signal by, for example, a push-pull method, a differential push-pull method, a three-beam method, or the like based on the output of the second light receiving unit 69 at the time of data recording.
  • the tracking error generation unit 82 generates a tracking error signal by, for example, push-pull method, differential push-pull method, three-beam method, etc. based on the output of the first light receiving unit 62 at the time of data reproduction, for example. To do.
  • the tracking control unit 71 performs tracking control by controlling the tracking actuator 70 based on the tracking error signal to move the objective lens 60 in a direction perpendicular to the optical axis.
  • the focus error generation unit 86 generates a focus error signal based on, for example, the astigmatism method based on the output of the first light receiving unit 62.
  • the focus control unit 77 performs focus control by controlling the focus actuator 79 and moving the objective lens 60 in the optical axis direction based on the focus error signal.
  • the first relay control unit 84 controls the first relay lens actuator 80 so as to switch the recording layer to be recorded.
  • the second relay control unit 85 controls the second relay lens actuator 81 so that the guide light R2 is focused on the guide layer 112 (guide track 121).
  • the controller 83 includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like.
  • the controller 83 controls the entire disk drive 31 based on a program loaded in the main memory area allocated to the RAM.
  • the drive unit 30 includes a plurality of the disk drives 31 and can be independently controlled, and can record and reproduce information on the loaded multilayer optical disk 11 simultaneously.
  • RAID controller A RAID (Redundant Arrays of Inexpensive Disks) controller 40, in response to a recording command from the host device 50, multiplexly records data on one or more disk drives 31 in the drive unit 30, or records them in a distributed manner by striping. RAID control is performed.
  • the controller 83 of each disk drive 31 to which a recording or reproduction instruction is given from the RAID controller 40 performs control for recording or reproducing data on the multilayer optical disk 11.
  • the host device 50 is the highest-level device that controls the optical recording system 1.
  • the host device 50 may be a personal computer.
  • the host device 50 creates or prepares data for recording, and supplies a recording command for the data for recording to the RAID controller 40. Further, the host device 50 supplies a read command including a file name designated by a user or the like to the RAID controller 40, and acquires data of the corresponding file name from the RAID controller 40 as a response.
  • the host device 50 includes a CPU 51, a memory 52, a drive I / F 53, a disk transport mechanism I / F 54, and a system bus 56.
  • the CPU 51 performs arithmetic processing for executing a program stored in the memory 52 and controls exchange of information with each unit through the system bus 56.
  • the memory 52 is a main memory that stores programs to be executed by the CPU 51, operation results, and the like.
  • the drive I / F 53 is an interface for communicating with a plurality of disk drives 31 through the RAID controller 40.
  • the disk transport mechanism I / F 54 is an interface for communicating with the disk transport mechanism 20.
  • a data recording command is given from the host device 50 to the controller 83 of one or more disk drives 31 in the drive unit 30 through the RAID controller 40. Since the operation of each disk drive 31 when receiving a recording command is the same, the operation of one disk drive 31 will be described.
  • the controller 83 of the disk drive 31 controls a feed mechanism (not shown) so as to move the optical pickup 32 to a position corresponding to the innermost circumference of the area where data is not recorded in the recording area of the recording layer 113 of the optical disk 11. Then, the disk motor drive unit (not shown) is controlled to rotate the disk 11 at an appropriate speed in the CLV method or the CAV method.
  • the controller 83 positions the first relay lens 36 of the optical pickup 32 in the optical axis direction so that the recording light from the objective lens 60 of the optical pickup 32 is focused on the target recording layer 113 of the multilayer optical disc 11. And the position of the second relay lens 66 of the optical pickup 32 in the optical axis direction is controlled so that the guide light from the objective lens 60 of the optical pickup 32 is focused on the guide layer 112 of the optical disc 11.
  • the controller 83 of the disk drive 31 supplies the data modulation unit 72 with the recording data transferred from the host device 50 through the RAID controller 40.
  • the data modulation unit 72 generates a recording signal by performing modulation of recording data, adding an error correction code, and the like, and supplies the recording signal to the first light source driving unit 73.
  • the first light source driving unit 73 generates a driving pulse for the first light source 33 based on the recording signal and supplies it to the first light source 33.
  • the controller 83 outputs a control signal to the second light source driving unit 74 so as to drive the second light source 63.
  • recording of data on the recording layer 113 by the recording light from the optical pickup 32 is started. That is, data recording by the CLV method or the CAV method is started from the inner periphery to the outer periphery with respect to the target recording layer 113 of the optical disc 11.
  • the tracking error generation unit 82 generates an NPP (Normalized Push-Pull) signal (tracking error signal) by the PP (push-pull) method, for example, based on the output of the second light receiving unit 69.
  • the NPP signal is a signal obtained by dividing the push-pull voltage by the RF signal voltage and standardizing it.
  • the tracking error signal may be generated by a DPP (differential push-pull) method or a three-beam method.
  • the tracking control unit 71 inputs a tracking error signal, supplies a tracking drive signal to the tracking actuator 70 so that the value approaches 0, and moves the objective lens 60 in a direction perpendicular to the optical axis (disk radial direction). Move to perform tracking control.
  • Tracking control at the time of recording is performed using one of the in-groove portion 121L and the on-groove portion 121G constituting the guide track 121 provided on the guide layer 112 of the multilayer optical disc 11 first.
  • tracking control at the time of data reproduction is performed using a data track constituted by a row of recording marks recorded on the recording layer 113 of the multilayer optical disc 11.
  • FIG. 9 and 10 are diagrams showing the recording order of data tracks by the disk drive 31 of this embodiment.
  • recording is first performed by tracking control for the in-groove portion 121L (see FIG. 9), and after recording by tracking control for all the in-groove portions 121L is completed. Then, the recording is switched to the tracking control for the on-groove portion 121G (see FIG. 10). The details will be described below.
  • FIG. 9 using the in-groove portion 121L, recording is continuously performed in the order of L1, L2, and L3 on an arbitrary recording layer Rx of the multilayer optical disc 11 from the inner circumference side to the outer circumference side of the multilayer optical disc 11.
  • FIG. The upper half of the figure shows the multilayer optical disk 11 viewed from a direction orthogonal to the optical axis direction of the objective lens 60, and the lower half shows an arbitrary recording layer Rx of the multilayer optical disk 11 in the optical axis direction of the objective lens 60.
  • L0-L4 indicates the in-groove portion 121L
  • G0-G4 indicates the on-groove portion 121G. Note that the in-groove portion 121L is actually one continuous track, and the on-groove portion 121G is the same, but for the sake of explanation, guide track portions having different positions on the disk radius are referred to as “in-groove portion ( L0) ”and“ on-groove portion (G0) ”.
  • recording is performed by tracking control on the in-groove portion 121L first, whereby recording marks M are recorded on an arbitrary recording layer Rx of the multilayer optical disk 11 at a pitch of 0.64 ⁇ m.
  • the in-groove portion and the on-groove portion of the guide layer have a diffraction characteristic of the laser light (guide light) for tracking control due to the difference in the geometric shape thereof. Different from each other. For example, if the width of the in-groove portion is narrow with respect to the spot diameter of the laser light (for example, 1.1 ⁇ m at a wavelength of 650 nm), the diffraction of the laser light at the in-groove portion becomes insufficient compared to the on-groove portion, Since the tracking becomes slippery, the scanning on the recording pit is easily shifted.
  • FIG. 11 schematically shows a state in which the guide light GL is irradiated to the in-groove portion 221L and the on-groove portion 221G of the guide track 221.
  • the groove width of the in-groove portion 221L is narrower than the spot diameter of the guide light GL. Since the on-groove portion 221G is irradiated with the guide light GL on the groove (groove) protruding toward the optical pickup (lower side in the figure) and the groove (land) recessed on both sides around this, the diffraction limit is not exceeded. Hard to reach.
  • the guide light GL since the guide light GL is irradiated to the land and the grooves on both sides of the in-groove portion 221L, the guide light GL hardly enters the land and it is difficult to obtain diffraction. Such a phenomenon depends on the wavelength of the guide light GL, and becomes more prominent as the wavelength of the guide light GL is longer.
  • the C / N (Carrier-to-Noise-ratio) of the NPP signal due to insufficient diffraction deteriorates and the tracking followability at the in-groove portion decreases, so that the in-groove portion on the recording layer is reduced.
  • the track quality of the recording pits (record marks) formed in the area corresponding to is lowered. Further, when reproducing light is tracked by a recording track formed on the recording layer, it becomes difficult to accurately reproduce the recording track corresponding to the in-groove portion.
  • the present inventor has examined the groove width and depth of the in-groove portion 121L that can suppress the deterioration of C / N of the NPP signal.
  • the groove width of the in-groove portion 121L in the guide layer 112 is InW [nm]
  • the depth of the in-groove portion 121L is InD [nm].
  • the groove width InW was set to a half value ((InWa + InWb) / 2) of the sum of the bottom width InWa of the in-groove portion 121L and the opening width InWb of the in-groove portion 121L.
  • P represents the track pitch of the in-groove portion 121L (or the on-groove portion 121G), which is 0.64 ⁇ m here. Since both the in-groove portion 121L and the on-groove portion 121G function as guide tracks, the track pitch of the land / groove structure guide track 121 as a whole is 0.32 ⁇ m (P / 2).
  • the groove width of the on-groove portion 121G is set to OnW [nm].
  • the groove width OnW is defined as a half value ((OnWa + OnWb) / 2) of the minimum width (width of the protruding end) OnWa of the on-groove part 121G and the maximum width (base part width) OnWb of the on-groove part 121G. .
  • the sum of the groove width InW of the in-groove portion 121L and the groove width OnW of the on-groove portion 121G matches the track pitch P of the in-groove portion 121L (or the on-groove portion 121G).
  • the depth (height) of the on-groove portion 121G is the same as the depth (InD) of the in-groove portion 121L.
  • FIG. 13 is an experimental result showing the wavelength dependence of the guide light of the NPP characteristic with respect to the groove width InW of the in-groove portion 121L.
  • the NPP characteristic tends to decrease as the wavelength of the guide light increases.
  • the groove width InW of the in-groove portion 121L having the maximum NPP characteristic was 350 nm at any wavelength (600 nm, 650 nm, and 700 nm).
  • FIG. 14 shows an experimental result showing the wavelength dependence of the guide light of the NPP characteristic with respect to the depth InD of the in-groove portion 121L.
  • the maximum value of NPP in each wavelength band was almost constant.
  • the depth of the in-groove portion 121L at which the NPP characteristic is maximized increases as the wavelength of the guide light increases.
  • FIG. 15 is a graph plotting the groove depth InD at which the NPP is maximum for each wavelength ( ⁇ ) of the guide light.
  • the value of NPP is preferably high, and practically, reproduction evaluation of recording pits (record marks) formed on the recording track of the recording layer Rx corresponding to the in-groove portion
  • the index (SER: Symbol Error Rate) is suppressed to 10 or less of the fourth power of the order (9.9 ⁇ 10 ⁇ 4 (9.9E-4)).
  • the groove width InW [nm] and the depth InD [nm] of the in-groove portion 121L satisfying such conditions are defined by the following equations (1) to (3).
  • ⁇ [nm] represents the wavelength of the laser light focused on the guide track 121, that is, the guide light.
  • the groove width InW of the in-groove portion 121L is less than 280 nm, the diffraction of the guide light to the in-groove portion 121L becomes insufficient, and the C / N deterioration of the NPP signal is inevitable.
  • the groove width InW exceeds 430 nm, the groove width (OnW) of the on-groove portion 121G becomes too narrow at the track pitch P (0.64 ⁇ m) of the in-groove portion 121L, and the tracking followability of the on-groove portion 121G is reduced. Decline is inevitable.
  • the depth InD of the in-groove portion 121L is less than (0.2 ⁇ 65) nm, the difference between the diffraction characteristics in the in-groove portion 121L and the diffraction characteristics in the on-groove portion 121G is small, and the tracking follow-up property is reduced. Invite.
  • the depth InD of the in-groove portion 121L exceeds (0.2 ⁇ -40) nm, the diffraction of the guide light to the in-groove portion 121L becomes insufficient, and the C / N deterioration of the NPP signal is inevitable.
  • the C / N deterioration of the NPP signal due to insufficient diffraction is prevented, and the tracking followability of the on-groove portion 121G is ensured while the in-groove portion 121L is scanned.
  • the guide light from above the center can be prevented from coming off.
  • a high-quality recording track can be formed on the recording layer, and the reproduction characteristics of the recording track can be improved.
  • the groove width InW and the depth InD of the in-groove portion 121L are defined as follows according to the wavelength ⁇ of the guide light.
  • the wavelength is 600 nm, 280 nm ⁇ InW ⁇ 430 nm, 55 nm ⁇ InD ⁇ 80 nm
  • the wavelength is 650 nm, 280 nm ⁇ InW ⁇ 430 nm, 65 nm ⁇ InD ⁇ 90 nm
  • the wavelength is 700 nm, 280 nm ⁇ InW ⁇ 430 nm, 75 nm ⁇ InD ⁇ 100 nm
  • the groove width InW and the depth InD of the in-groove portion 121L are defined as follows according to the wavelength ⁇ of the guide light.
  • the wavelength is 600 nm, 330 nm ⁇ InW ⁇ 400 nm, 65 nm ⁇ InD ⁇ 75 nm
  • the wavelength is 650 nm, 330 nm ⁇ InW ⁇ 400 nm, 75 nm ⁇ InD ⁇ 85 nm
  • the wavelength is 700 nm, 330 nm ⁇ InW ⁇ 400 nm, 85 nm ⁇ InD ⁇ 95 nm
  • the expression (1) ′ indicates that the groove width InW of the in-groove portion 121L is larger (wider) than the groove width OnW of the on-groove portion 121G at the track pitch (P) of the in-groove portion 121L (on-groove portion 121G). Represents. Accordingly, the in-groove portion 121L can be scanned with a tracking capability equivalent to or better than the tracking tracking capability with respect to the on-groove portion 121G.
  • Example 1 A disc-shaped polycarbonate substrate (base material) having an outer diameter of 120 mm and a thickness of 1.1 mm was produced using a stamper molding die.
  • an annular area from the position of a radius of 23.5 mm to a radius of 58.0 mm is used as a data recording area, and this data recording area is constituted by a guide track including a spiral in-groove portion and an on-groove portion.
  • a reflective layer made of an Ag-0.2 wt% In alloy was sputtered to a thickness of 60 nm on the surface of the guide track.
  • the groove width (corresponding to “InW” in FIG. 12, the same applies hereinafter) was 330 nm, and the groove depth ( 12 corresponds to “InD” in FIG. 12 and the same applies hereinafter), and the track pitch (P) of the in-groove portion was 0.64 ⁇ m.
  • an ultraviolet curable resin was applied on the reflective layer in a thickness of 200 ⁇ m by spin coating, and then cured.
  • a transparent material mainly composed of SiO 2 and In 2 O 3 , Fe 3 O 4 (3 nm), GeBi—O (30 nm), mainly composed of SiO 2 and In 2 O 3
  • a recording layer was formed by laminating the layers in the order of transparent material (thickness 25 nm) by sputtering.
  • an ultraviolet curable resin was applied on the recording layer to a thickness of 100 ⁇ m by spin coating, and then cured to form a cover layer (protective layer).
  • 1-7PP Parity preserve / Prohibit repeated minimum transition length
  • 1-7PP Parity preserve / Prohibit repeated minimum transition length
  • the optical recording medium is rotated at a linear velocity of 9.84 m / s, and a laser beam (guide light) having a wavelength of 650 nm and an output of 0.3 mW is condensed on the in-groove portion, and tracking tracking control is performed.
  • SER Symbol Error Rate
  • Example 2 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 75 nm.
  • the evaluation value was 2.3E-4 (2.3 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 3 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 75 nm.
  • the evaluation value was 3.4E-4 (3.4 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 4 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 80 nm.
  • the evaluation value was 2.5E-4 (2.5 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 5 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 80 nm.
  • the evaluation value was 1.9E-4 (1.9 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 6 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 80 nm.
  • the evaluation value was 2.0E-4 (2.0 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 7 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 85 nm.
  • the evaluation value was 5.6E-4 (5.6 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 8 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 85 nm.
  • the evaluation value was 4.1E-4 (4.1 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 9 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 85 nm.
  • the evaluation value was 5.1E-4 (5.1 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 10 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 65 nm.
  • the evaluation value was 8.2E-4 (8.2 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 11 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 65 nm.
  • the evaluation value was 7.1E-4 (7.1 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 12 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 65 nm.
  • the evaluation value was 6.4E-4 (6.4 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 13 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 65 nm.
  • the evaluation value was 4.7E-4 (4.7 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 14 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 65 nm.
  • the evaluation value was 5.5E-4 (5.5 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 15 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 65 nm.
  • the evaluation value was 8.9E-4 (8.9 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 16 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 75 nm.
  • the evaluation value was 7.7E-4 (7.7 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 17 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 75 nm.
  • the evaluation value was 5.5E-4 (5.5 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 18 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 75 nm.
  • the evaluation value was 7.4E-4 (7.4 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 19 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 80 nm.
  • the evaluation value was 6.0E-4 (6.0 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 20 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 80 nm.
  • the evaluation value was 3.1E-4 (3.1 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 21 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 80 nm.
  • the evaluation value was 7.7E-4 (7.7 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 22 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 85 nm.
  • the evaluation value was 7.0E-4 (7.0 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 23 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 85 nm.
  • the evaluation value was 6.1E-4 (6.1 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 24 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 85 nm.
  • the evaluation value was 5.3E-4 (5.3 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 25 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 90 nm.
  • the evaluation value was 9.0E-4 (9.0 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 26 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 90 nm.
  • the evaluation value was 8.1E-4 (8.1 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 27 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 90 nm.
  • the evaluation value was 5.6E-4 (5.6 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 28 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 90 nm.
  • the evaluation value was 5.5E-4 (5.5 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 29 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 90 nm.
  • the evaluation value was 6.3E-4 (6.3 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 30 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 90 nm.
  • the evaluation value was 6.9E-4 (6.9 ⁇ 10 ⁇ 4 ), and a good result was obtained.
  • Example 1 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 260 nm and the groove depth (InD) was 60 nm.
  • the evaluation value was 3.2E-3 (3.2 ⁇ 10 ⁇ 3 ), and a result exceeding the standard was obtained.
  • Example 2 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 60 nm.
  • the evaluation value was 1.9E-3 (1.9 ⁇ 10 ⁇ 3 ), and a result exceeding the standard was obtained.
  • Example 3 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 60 nm.
  • the evaluation value was 1.6E-3 (1.6 ⁇ 10 ⁇ 3 ), and a result exceeding the standard was obtained.
  • Example 4 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 60 nm.
  • the evaluation value was 1.1E-3 (1.1 ⁇ 10 ⁇ 3 ), and a result exceeding the standard was obtained.
  • Example 5 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 60 nm.
  • the evaluation value was 1.1E-3 (1.1 ⁇ 10 ⁇ 3 ), and a result exceeding the standard was obtained.
  • Example 6 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 60 nm.
  • the evaluation value was 1.3E-3 (1.3 ⁇ 10 ⁇ 3 ), and a result exceeding the standard was obtained.
  • Example 7 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 60 nm.
  • the evaluation value was 1.5E-3 (1.5 ⁇ 10 ⁇ 3 ), and a result exceeding the standard was obtained.
  • Example 9 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 260 nm and the groove depth (InD) was 65 nm.
  • the evaluation value was 2.3E-3 (2.3 ⁇ 10 ⁇ 3 ), and a result exceeding the standard was obtained.
  • Example 10 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 450 nm and the groove depth (InD) was 65 nm.
  • the evaluation value was 1.3E-3 (1.3 ⁇ 10 ⁇ 3 ), and a result exceeding the standard was obtained.
  • Example 20 An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 100 nm.
  • the evaluation value was 2.5E-3 (2.5 ⁇ 10 ⁇ 3 ), and a result exceeding the standard was obtained.
  • Table 1 shows the relationship between the groove width and depth of the in-groove portion and the SER evaluation value.
  • the SER evaluation value is lower than the reference value (1E-3) (10 minus) 4th order).
  • the SER evaluation value exceeded the reference value (1E-3). If the SER evaluation value exceeds 1E-3, error correction during reproduction becomes difficult and reproduction characteristics deteriorate. Therefore, according to the first to thirty-first embodiments, the tracking followability of the in-groove portion is high, and track deviation can be effectively suppressed.
  • a SER evaluation value of 8E-4 or less can be obtained. Therefore, a predetermined value with respect to the reference value (1E-3) is obtained. A margin can be secured and stable recording / reproduction characteristics can be obtained.
  • FIG. 16 shows the relationship between the groove width and depth of the in-groove portion at the wavelength of 650 nm of the guide light and the NPP characteristics, and is a diagram showing the magnitude of the NPP value with contour lines.
  • the region surrounded by the rectangle S11 in the figure (280 nm ⁇ InW ⁇ 430 nm, 65 nm ⁇ InD ⁇ 90 nm) corresponds to Examples 1 to 30, and the region surrounded by the rectangle S12 in S11 (330 nm ⁇ InW ⁇ 400 nm, (75 nm ⁇ InD ⁇ 85 nm) indicates a region having a particularly high NPP value, and this range corresponds to Examples 1 to 9.
  • the higher the NPP value the lower the SER evaluation value.
  • Example 31 As in Examples 1 to 30, a plurality of samples of optical recording media having different groove widths (InW) or depths (InD) of the in-groove portions were prepared, and laser light having a wavelength of 600 nm and an output of 0.3 mW was produced for each sample. (Guide light) was condensed on the in-groove portion, and the output value of the NPP signal acquired based on the diffracted light was measured. The result is shown in FIG.
  • InW groove widths
  • InD depths
  • the region surrounded by the rectangle S21 satisfies the conditions of 280 nm ⁇ InW ⁇ 430 nm and 55 nm ⁇ InD ⁇ 80 nm
  • the region surrounded by the rectangle S22 in S21 is 330 nm ⁇ InW ⁇ 400 nm
  • the condition of 65 nm ⁇ InD ⁇ 75 nm is satisfied.
  • the SER evaluation value in the region S21 was lower than 1E-3, as in Examples 1 to 30, and good results were obtained.
  • the region S22 is a region having a particularly high NPP value in S21, and it has been confirmed that a SER evaluation value of 8E-4 or less can be obtained.
  • Example 32 Similar to Examples 1 to 30, a plurality of samples of optical recording media having different groove widths (InW) or depths (InD) of the in-groove portions were prepared, and laser light having a wavelength of 700 nm and an output of 0.3 mW was produced for each sample. (Guide light) was condensed on the in-groove portion, and the output value of the NPP signal acquired based on the diffracted light was measured. The result is shown in FIG.
  • InW groove widths
  • InD depths
  • the region surrounded by the rectangle S31 satisfies the conditions of 280 nm ⁇ InW ⁇ 430 nm and 75 nm ⁇ InD ⁇ 100 nm, the region surrounded by the rectangle S32 in S31 is 330 nm ⁇ InW ⁇ 400 nm, and The condition of 85 nm ⁇ InD ⁇ 95 nm is satisfied.
  • the SER evaluation value in the region S31 was lower than 1E-3, as in Examples 1 to 30, and good results were obtained.
  • the region surrounded by the rectangle S32 is a region having a particularly high NPP value in S31, and it has been confirmed that a SER evaluation value of 8E-4 or less can be obtained.
  • the guide layer separation type optical recording medium having a plurality of recording layers 113 has been described as an example.
  • the present invention is also applied to a guide layer separation type optical recording medium having a single recording layer. The invention is applicable.
  • the optical recording medium according to the present invention is driven by the optical recording system 1 shown in FIG. 1 .
  • the optical recording system is not limited to the above example, The present invention can also be applied to an optical recording system.
  • the guide track having a track pitch of 0.32 ⁇ m has been described as an example, but the track pitch is not limited to this, and an appropriate track according to the pitch between lands (or pitch between grooves). Pitch is applicable.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

[Problem] To provide a guide layer separation type optical recording medium in which information recording and reproduction characteristics can be improved. [Solution] A guide layer separation type optical recording medium (11) according to an embodiment of the present invention is provided with a guide layer (112) and one or more recording layers (113). The guide layer (112) has a guide track (121) including an in-groove part (121L) and an on-groove part (121G). Information can be recorded, in a region corresponding to the in-groove part (121L) and the on-groove part (121G), in each of the recording layers (113). When the groove width (half the sum of the bottom width (InWa) and the opening width (InWb)) is represented by InW [nm], the depth is represented by inD [nm], and the wavelength of the laser light collected on the guide track (121) is λ [nm], the in-groove part (121L) satisfies the relationships 280 ≤ InW ≤ 430, (0.2λ - 65) ≤ InD ≤ (0.2λ - 40), and 600 ≤ λ ≤ 700.

Description

ガイド層分離型光記録媒体Guide layer separation type optical recording medium
 本発明は、ランド・グルーブ構造のガイド層を有するガイド層分離型光記録媒体に関する。 The present invention relates to a guide layer separation type optical recording medium having a land / groove structure guide layer.
 DVD(Digital Versatile Disk)、ブルーレイディスク(登録商標)などの光ディスクの大容量化を目的として、記録層を多層化することが行われる。記録層の多層化に伴い、記録層へのデータの記録または再生時のトラッキング制御を、記録層とは別に設けられたガイド層を用いて行う方式も知られている(例えば下記特許文献1,2参照)。 For the purpose of increasing the capacity of optical discs such as DVD (Digital Versatile Disk) and Blu-ray Disc (registered trademark), the recording layer is multilayered. Along with the increase in the number of recording layers, there is also known a method in which tracking control at the time of recording or reproducing data on a recording layer is performed using a guide layer provided separately from the recording layer (for example, Patent Document 1 below) 2).
 このようなガイド層分離型の光記録媒体は、一般的に、ディスクの厚み方向に沿ってガイド層と複数の記録層とが中間層を介して積層された構造を有する。ガイド層にはグルーブ及びランドが設けられている。そして記録層に対する情報の書き込み(記録)又は読み出し(再生)を行うときは、記録再生用レーザ光と同一の光軸を有するトラッキング用のレーザ光を使用してガイド層のトラッキング制御が実行される。 Such a guide layer separation type optical recording medium generally has a structure in which a guide layer and a plurality of recording layers are laminated via an intermediate layer along the thickness direction of the disc. Grooves and lands are provided in the guide layer. When writing (recording) or reading (reproducing) information on the recording layer, tracking control of the guide layer is performed using a tracking laser beam having the same optical axis as the recording / reproducing laser beam. .
 ガイド層分離型の光記録媒体においては、上述のようにガイド層と記録層とがそれぞれ別々の層に設けられているため、高いトラッキング追従性が要求される。例えば下記特許文献3には、既記録箇所と追加記録箇所との距離を所定のトラック数だけ離すことで、記録済みの情報を破壊することなく追加記録を可能とする光記録媒体ドライブ装置及び追加記録方法が提案されている。 In the guide layer separation type optical recording medium, since the guide layer and the recording layer are provided in separate layers as described above, high tracking followability is required. For example, in Patent Document 3 below, an optical recording medium drive device and an additional recording device that can perform additional recording without destroying recorded information by separating the distance between the already recorded portion and the additional recorded portion by a predetermined number of tracks. A recording method has been proposed.
 ガイド層分離型の光記録媒体の記録層に、青色波長のレーザ光を使って例えば0.32μmのトラックピッチで記録を行う場合、ガイド層にも0.32μmのトラックピッチを有するガイドトラックが必要である。例えば、赤色波長のレーザ光でガイドトラックをトラッキングしながら青色波長のレーザ光を記録層に集光させて記録又は再生を行う光記録システムにおいて、0.32μmのトラックピッチを有するガイドトラックをランド・グルーブ構造により実現しようとすると、ランドおよびグルーブの各々をガイドトラックとして利用する必要がある。 When recording is performed on a recording layer of a guide layer separation type optical recording medium using a blue wavelength laser beam, for example, at a track pitch of 0.32 μm, a guide track having a track pitch of 0.32 μm is also required in the guide layer. It is. For example, in an optical recording system in which a blue wavelength laser beam is collected on a recording layer while tracking a guide track with a red wavelength laser beam, a guide track having a track pitch of 0.32 μm is recorded on a land track. If it is going to be realized by the groove structure, it is necessary to use each of the land and the groove as a guide track.
 なお以下の説明では、ガイドトラックにおいて、レーザ光源に近い方のトラックを「グルーブ」あるいは「オングルーブ(On-Groove)部」と称し、レーザ光源から遠い方のトラックを「ランド」あるいは「イングルーブ(In-Groove)部」と称する。 In the following description, in the guide track, the track closer to the laser light source is referred to as “groove” or “On-Groove”, and the track farther from the laser light source is referred to as “land” or “in-groove”. (In-Groove) part ".
特開2003-59092号公報JP 2003-59092 A 特開2008-192246号公報JP 2008-192246 A 特開2010-40093号公報JP 2010-40093 A
 ランドとグルーブとでは、それらの幾何学的な形状の相違に起因してレーザ光の回折特性が相互に異なる。例えば、レーザ光のスポット径に対してイングルーブ部の幅が狭いと、オングルーブ部と比較して、イングルーブ部でのレーザ光の回折が不十分となる。その結果、イングルーブ部でのトラッキング追従性が低下し、記録層上のイングルーブ部に対応する領域に形成される記録ピットのトラック品位が低下するという問題がある。また、記録層に形成された記録トラックによって再生光をトラッキングする場合において、イングルーブ部に対応する記録トラックを精度よく再生することが困難になる。 Land and groove have different diffraction characteristics of laser light due to the difference in their geometric shapes. For example, if the width of the in-groove portion is narrower than the spot diameter of the laser light, the diffraction of the laser light at the in-groove portion becomes insufficient as compared with the on-groove portion. As a result, there is a problem that the tracking followability at the in-groove portion is lowered and the track quality of the recording pit formed in the region corresponding to the in-groove portion on the recording layer is lowered. Further, when reproducing light is tracked by a recording track formed on the recording layer, it becomes difficult to accurately reproduce the recording track corresponding to the in-groove portion.
 以上のような事情に鑑み、本発明の目的は、情報の記録再生特性の向上を実現することができるガイド層分離型光記録媒体を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a guide layer separation type optical recording medium capable of realizing improvement of information recording / reproducing characteristics.
 上記目的を達成するため、本発明の一形態に係るガイド層分離型光記録媒体は、ガイド層と、1以上の記録層とを具備する。
 上記ガイド層は、イングルーブ部とオングルーブ部とを含むガイドトラックを有する。
 上記1以上の記録層は、上記イングルーブ部および上記オングルーブ部に対応する領域に情報を記録されることが可能である。
 上記イングルーブ部は、上記イングルーブ部の溝幅(上記イングルーブ部の底幅と上記イングルーブ部の開口幅との和の半値)をInW[nm]、上記イングルーブ部の深さをInD[nm]、上記ガイドトラックに集光されるレーザ光の波長をλ[nm]としたとき、
 280≦InW≦430、
 (0.2λ-65)≦InD≦(0.2λ-40)、かつ、
 600≦λ≦700
の関係を満たす。
In order to achieve the above object, a guide layer separation type optical recording medium according to one embodiment of the present invention comprises a guide layer and one or more recording layers.
The guide layer has a guide track including an in-groove portion and an on-groove portion.
The one or more recording layers can record information in areas corresponding to the in-groove portion and the on-groove portion.
The in-groove portion has a groove width of the in-groove portion (half value of the sum of the bottom width of the in-groove portion and the opening width of the in-groove portion) is InW [nm], and the depth of the in-groove portion is InD. [Nm], when the wavelength of the laser beam focused on the guide track is λ [nm],
280 ≦ InW ≦ 430,
(0.2λ−65) ≦ InD ≦ (0.2λ−40), and
600 ≦ λ ≦ 700
Satisfy the relationship.
 上記ガイド層分離型光記録媒体によれば、イングルーブ部へのレーザ光の回折特性が高まり、イングルーブ部のトラッキング追従性が向上する。これにより記録層に対して品位の高い記録トラックを形成することができるとともに、当該記録トラックの再生特性を高めることができる。 According to the above guide layer separation type optical recording medium, the diffraction characteristic of the laser beam to the in-groove portion is enhanced, and the tracking followability of the in-groove portion is improved. As a result, a high-quality recording track can be formed on the recording layer, and the reproduction characteristics of the recording track can be improved.
 上記イングルーブ部の溝幅InW[nm]は、330≦InW≦400の関係を満たすように構成されてもよい。
 また、前記イングルーブ部の深さInD[nm]は、(0.2λ-55)≦InD≦(0.2λ-45)の関係を満たすように構成されてもよい。
 これによりエラー訂正が可能とされるSER(Symbol Error Rate)の評価値(1E-3未満)を安定して確保することができる。
The groove width InW [nm] of the in-groove portion may be configured to satisfy a relationship of 330 ≦ InW ≦ 400.
Further, the depth InD [nm] of the in-groove portion may be configured to satisfy a relationship of (0.2λ−55) ≦ InD ≦ (0.2λ−45).
This makes it possible to stably secure an evaluation value (less than 1E-3) of SER (Symbol Error Rate) that enables error correction.
 上記イングルーブ部の溝幅は、上記オングルーブ部の溝幅(上記オングルーブ部の最小幅と上記オングルーブ部の最大幅との和の半値)よりも広く構成されてもよい。
 これによりイングルーブ部におけるレーザ光の良好な回折特性を確保でき、トラッキングエラー信号の高精度な生成が可能となる。
The groove width of the in-groove portion may be wider than the groove width of the on-groove portion (half value of the sum of the minimum width of the on-groove portion and the maximum width of the on-groove portion).
As a result, good diffraction characteristics of the laser light in the in-groove portion can be secured, and a tracking error signal can be generated with high accuracy.
 本発明に係るガイド層分離型光記録媒体によれば、情報の記録再生特性の向上を実現することができる。 According to the guide layer separation type optical recording medium of the present invention, it is possible to realize improvement in information recording / reproducing characteristics.
本発明の一実施形態において適用される光記録システムを示す図である。It is a figure which shows the optical recording system applied in one Embodiment of this invention. 図1の光記録システムにおけるディスクカートリッジとこの中の複数の光記録媒体の収容形態を示す図である。It is a figure which shows the accommodation form of the disc cartridge and the some optical recording medium in this in the optical recording system of FIG. 図1の光記録システムにおけるディスクカートリッジ、光記録媒体およびドライブユニットの構成を示す図である。It is a figure which shows the structure of the disc cartridge in the optical recording system of FIG. 1, an optical recording medium, and a drive unit. 本発明の一実施形態に係るガイド層分離型光記録媒体の構成を示す断面図である。It is sectional drawing which shows the structure of the guide layer separation type | mold optical recording medium which concerns on one Embodiment of this invention. 図4の光記録媒体の要部拡大図である。It is a principal part enlarged view of the optical recording medium of FIG. 図4の光記録媒体におけるガイド層のダブルスパイラルトラックの構造を示す図である。FIG. 5 is a diagram illustrating a structure of a double spiral track of a guide layer in the optical recording medium of FIG. 4. 図4の光記録媒体におけるガイド層および記録層の半径方向の位置によって区分される領域の構成を示す図である。FIG. 5 is a diagram illustrating a configuration of a region divided by a radial position of a guide layer and a recording layer in the optical recording medium in FIG. 4. 図1の光記録システムにおけるディスクドライブの構成を示す図である。It is a figure which shows the structure of the disk drive in the optical recording system of FIG. 図8のディスクドライブによるデータトラックの記録順序を説明するための図である。FIG. 9 is a diagram for explaining a recording order of data tracks by the disk drive of FIG. 8. 図8のディスクドライブによるデータトラックの記録順序を説明するための図である。FIG. 9 is a diagram for explaining a recording order of data tracks by the disk drive of FIG. 8. 図4の光記録媒体におけるガイド層へのガイド光の照射形態を示す模式図である。FIG. 5 is a schematic diagram illustrating a form of guide light irradiation to a guide layer in the optical recording medium of FIG. 4. 図4の光記録媒体におけるガイド層に設けられたイングルーブ部の詳細を示す模式図である。FIG. 5 is a schematic diagram illustrating details of an in-groove portion provided in a guide layer in the optical recording medium in FIG. 4. 図12のイングルーブ部の溝幅に対する回折光のNPP値の波長依存性を示す一実験結果である。It is one experimental result which shows the wavelength dependence of the NPP value of the diffracted light with respect to the groove width of the in-groove part of FIG. 図12のイングルーブ部の溝深さに対する回折光のNPP値の波長依存性を示す一実験結果である。It is one experimental result which shows the wavelength dependence of the NPP value of the diffracted light with respect to the groove depth of the in-groove part of FIG. 図14において、ガイド光の各波長帯でNPPが最大となる溝深さをプロットした図である。In FIG. 14, it is the figure which plotted the groove depth from which NPP becomes the maximum in each wavelength range of guide light. ガイド光の波長650nmにおけるイングルーブ部の溝幅および深さとNPP特性との関係を示す図である。It is a figure which shows the relationship between the groove width and depth of an in-groove part in wavelength 650nm of guide light, and an NPP characteristic. ガイド光の波長600nmにおけるイングルーブ部の溝幅および深さとNPP特性との関係を示す図である。It is a figure which shows the relationship between the groove width and depth of an in-groove part in wavelength 600nm of guide light, and NPP characteristic. ガイド光の波長700nmにおけるイングルーブ部の溝幅および深さとNPP特性との関係を示す図である。It is a figure which shows the relationship between the groove width and depth of an in-groove part in wavelength 700nm of guide light, and NPP characteristic.
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図1は、本発明の一実施形態に係る光記録システムを示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an optical recording system according to an embodiment of the present invention.
 図1は光記録システムの全体の構成を示す図である。
 この光記録システム1は、ディスクカートリッジ10と、ディスク搬送機構20と、ドライブユニット30と、RAIDコントローラ40と、ホスト装置50とを備える。以下、それぞれの詳細について説明する。
FIG. 1 is a diagram showing the overall configuration of an optical recording system.
The optical recording system 1 includes a disk cartridge 10, a disk transport mechanism 20, a drive unit 30, a RAID controller 40, and a host device 50. Details of each will be described below.
[ディスクカートリッジ]
 ディスクカートリッジ10は、複数の多層光ディスク11(ガイド層分離型光記録媒体)が個別に着脱自在に収容されるユニットである。
[Disc cartridge]
The disc cartridge 10 is a unit in which a plurality of multilayer optical discs 11 (guide layer separation type optical recording media) are individually detachably accommodated.
 図2はディスクカートリッジ10とこの中の複数の多層光ディスク11の収容形態を示す図である。
 ディスクカートリッジ10内での複数の多層光ディスク11の収容形態としては平積み、縦並びなどが想定される。いずれの場合も、ディスクカートリッジ10に対して多層光ディスク11の出し入れが円滑に行われるように、隣り合う多層光ディスク11間には一定の隙間が設けられることが好ましい。ディスクカートリッジ10の形状は、ユーザによるハンドリング性、多層光ディスク11の収納効率などの点から、例えば直方体形状、円筒形状などが想定される。図2の例では、複数の多層光ディスク11を平積みで収容した直方体形状のディスクカートリッジ10が用いられる。
FIG. 2 is a view showing a storage form of the disk cartridge 10 and a plurality of multilayer optical disks 11 therein.
As the accommodation form of the plurality of multilayer optical discs 11 in the disc cartridge 10, flat stacking, vertical alignment, and the like are assumed. In any case, it is preferable that a certain gap is provided between adjacent multilayer optical discs 11 so that the multilayer optical disc 11 can be smoothly inserted into and removed from the disc cartridge 10. The shape of the disk cartridge 10 is assumed to be, for example, a rectangular parallelepiped shape or a cylindrical shape from the viewpoint of handling by the user and the storage efficiency of the multilayer optical disk 11. In the example of FIG. 2, a rectangular parallelepiped disk cartridge 10 in which a plurality of multilayer optical disks 11 are accommodated in a flat stack is used.
 図3は、ディスクカートリッジ10、多層光ディスク11およびドライブユニット30の構成を示す図である。
 ディスクカートリッジ10の少なくとも一つの側面には多層光ディスク11の出し入れのための開口部101と、この開口部101を開閉する扉(図示せず)とが設けられている。扉はディスク搬送機構20によるディスクカートリッジ10からの多層光ディスク11の出し入れの動作と連動して開閉され、その他のときは閉状態とされる。ディスクカートリッジ10に収容された複数の多層光ディスク11は、ディスク搬送機構20によって取り出され、ドライブユニット30内の複数のディスクドライブ31に選択的に搬送(装填)される。
FIG. 3 is a diagram showing the configuration of the disk cartridge 10, the multilayer optical disk 11, and the drive unit 30.
At least one side surface of the disk cartridge 10 is provided with an opening 101 for loading and unloading the multilayer optical disk 11 and a door (not shown) for opening and closing the opening 101. The door is opened and closed in conjunction with the operation of loading / unloading the multilayer optical disk 11 from / to the disk cartridge 10 by the disk transport mechanism 20, and is closed at other times. The plurality of multilayer optical disks 11 accommodated in the disk cartridge 10 are taken out by the disk transport mechanism 20 and selectively transported (loaded) to the plurality of disk drives 31 in the drive unit 30.
 なお、本発明において、ディスクカートリッジ10の構成は図2のものに限定されない。ディスクカートリッジ10の形状、開口部の数や位置、扉の有無、複数の多層光ディスク11の収容形態など、様々な変形が可能である。 In the present invention, the configuration of the disk cartridge 10 is not limited to that shown in FIG. Various modifications such as the shape of the disk cartridge 10, the number and position of the openings, the presence / absence of a door, and the accommodation form of a plurality of multilayer optical disks 11 are possible.
 [多層光ディスク11]
 ディスクカートリッジ10に収容される多層光ディスク11は、ガイド層と記録層とが別々の層に分離して形成された、いわゆるガイド層分離型多層光ディスクである場合を想定している。
[Multilayer optical disc 11]
The multilayer optical disk 11 accommodated in the disk cartridge 10 is assumed to be a so-called guide layer separation type multilayer optical disk in which the guide layer and the recording layer are separated into separate layers.
 図4及び図5はガイド層分離型光記録媒体としての多層光ディスク11の構成を示す断面図である。
 図4に示すように多層光ディスク11は、ガイド層112と複数の記録層113とを有する。同図の多層光ディスク11の例では記録層113の層数は"4"である。ガイド層112とこれに最も近い記録層113との間、隣り合う記録層113の間との間には光透過性を有する中間層114がそれぞれ介層されている。これらの層は、光ピックアップ32からの記録再生光R1およびガイド光R2が入射される側から、保護層115、記録層113(R3)、中間層114、記録層113(R2)、中間層114、記録層113(R1)、中間層114、記録層113(R0)、中間層114、ガイド層112の順に積層配置される。
4 and 5 are cross-sectional views showing the configuration of a multilayer optical disk 11 as a guide layer separation type optical recording medium.
As shown in FIG. 4, the multilayer optical disc 11 includes a guide layer 112 and a plurality of recording layers 113. In the example of the multilayer optical disk 11 in FIG. 9, the number of recording layers 113 is “4”. An intermediate layer 114 having optical transparency is interposed between the guide layer 112 and the recording layer 113 closest to the guide layer 112 and between the adjacent recording layers 113. These layers are the protective layer 115, the recording layer 113 (R3), the intermediate layer 114, the recording layer 113 (R2), and the intermediate layer 114 from the side on which the recording / reproducing light R1 and the guide light R2 from the optical pickup 32 are incident. The recording layer 113 (R1), the intermediate layer 114, the recording layer 113 (R0), the intermediate layer 114, and the guide layer 112 are laminated in this order.
 図5に示すようにガイド層112は、一方の面に螺旋状の凹凸部111を有する円盤形状のポリカーボネート等の透光性プラスチック基材110と、凹凸部111の凹凸形状にならって凹凸部111を被覆する反射膜120との積層構造を有する。基材110は、典型的にはスタンパ等の成形金型を用いて成形され、反射膜120は、例えば銀(Ag)やその合金等のように赤色レーザ光に対して反射率の高い金属材料のスパッタ膜で形成される。基材110の厚みは特に限定されず、例えば0.6mm~1.2mmであり、本実施形態では1.1mmである。反射膜120の厚みも特に限定されず、例えば20nm~100nmであり、本実施形態では60nmである。 As shown in FIG. 5, the guide layer 112 includes a light-transmitting plastic substrate 110 such as a disc-shaped polycarbonate having a spiral uneven portion 111 on one surface, and the uneven portion 111 following the uneven shape of the uneven portion 111. And a reflective structure 120 covering the substrate. The substrate 110 is typically molded using a molding die such as a stamper, and the reflective film 120 is a metal material having a high reflectance with respect to red laser light, such as silver (Ag) or an alloy thereof. The sputtered film is formed. The thickness of the substrate 110 is not particularly limited, and is, for example, 0.6 mm to 1.2 mm, and 1.1 mm in this embodiment. The thickness of the reflective film 120 is not particularly limited, and is, for example, 20 nm to 100 nm, and in this embodiment, 60 nm.
 ガイド層112において記録層113に対向する側の面には、図5及び図6に示すように、ランド・グルーブ構造によるガイドトラック121が螺旋状に設けられている。ランドはグルーブ間に形成され、グルーブはランド間に形成される。以下の説明では、ガイドトラック121において、レーザ光源(光ピックアップ32)に近い方のトラックを「グルーブ」あるいは「オングルーブ(On-Groove)部」と称し、レーザ光源から遠い方のトラックを「ランド」あるいは「イングルーブ(In-Groove)部」と称する。 As shown in FIGS. 5 and 6, a guide track 121 having a land / groove structure is spirally provided on the surface of the guide layer 112 facing the recording layer 113. The land is formed between the grooves, and the groove is formed between the lands. In the following description, in the guide track 121, the track closer to the laser light source (optical pickup 32) is referred to as “groove” or “On-Groove portion”, and the track farther from the laser light source is referred to as “land”. Or “In-Groove”.
 ガイドトラック121は、ランドによるガイドトラック(イングルーブ部121L)とグルーブによるガイドトラック(オングルーブ部121G)とからなる、いわゆる「ダブルスパイラルトラック」を構成する。本実施形態では、イングルーブ部121Lおよびオングルーブ部121Gは多層光ディスク11の内周側から外周側にかけてそれぞれ螺旋状に連続的に形成されているが、これに限定されない。例えば、イングルーブ部121Lおよびオングルーブ部121Gは、多層光ディスク11の内周側から外周側にかけて所定周期で(例えば周ごとに)交互に入れ替わるように螺旋状に連続的に形成されてもよい。 The guide track 121 constitutes a so-called “double spiral track” composed of a land guide track (in-groove portion 121L) and a groove guide track (on-groove portion 121G). In the present embodiment, the in-groove portion 121L and the on-groove portion 121G are continuously formed in a spiral shape from the inner peripheral side to the outer peripheral side of the multilayer optical disc 11, but are not limited thereto. For example, the in-groove portion 121L and the on-groove portion 121G may be continuously formed in a spiral shape so as to be alternately switched at a predetermined period (for example, every circumference) from the inner circumference side to the outer circumference side of the multilayer optical disc 11.
 イングルーブ部121Lは、オングルーブ部121Gとの境界を形成する一対の側壁121sに囲まれている。側壁121sは、典型的にはテーパ面で形成されるが、基材110の表面に垂直な面で形成されてもよい。側壁121sのテーパ角は特に限定されず、スタンパ金型の抜き勾配や凹凸部111の凹凸高さ、反射膜120の厚さ等に応じて適宜設定される。 The in-groove portion 121L is surrounded by a pair of side walls 121s that form a boundary with the on-groove portion 121G. The side wall 121s is typically formed with a tapered surface, but may be formed with a surface perpendicular to the surface of the substrate 110. The taper angle of the side wall 121s is not particularly limited, and is appropriately set according to the draft angle of the stamper mold, the uneven height of the uneven portion 111, the thickness of the reflective film 120, and the like.
 ガイドトラック121には、側壁面のウォブリングあるいはピット列などによって物理アドレス情報が形成されている。イングルーブ部121Lおよびオングルーブ部121Gは、例えばDVD(Digital Versatile Disk)の記録再生に用いられる赤色レーザ光に対応するトラックピッチ(0.64μm)で形成される。ランドとグルーブ間のピッチの平均は0.32μmであり、これはガイドトラック121のトラックピッチに相当する。以後、赤色レーザ光のレーザ光を「ガイド光」と呼ぶ。 In the guide track 121, physical address information is formed by wobbling or pit rows on the side wall surface. The in-groove portion 121L and the on-groove portion 121G are formed with a track pitch (0.64 μm) corresponding to red laser light used for recording / reproduction of a DVD (Digital Versatile Disk), for example. The average pitch between the land and the groove is 0.32 μm, which corresponds to the track pitch of the guide track 121. Hereinafter, the laser beam of the red laser beam is referred to as “guide light”.
 本実施形態の光記録システム1では、ガイドトラック121のランドとグルーブのそれぞれにおいて、例えば、プッシュプル法(PP:Push-Pull)、差動プッシュプル法(DPP:Differential Push-Pull)、3ビーム法などによるトラッキング制御が行われる。ガイドトラック121のランドとグルーブのそれぞれにおいてトラッキング制御が行われることで、記録層113に対する情報の記録は0.32μmのトラックピッチで行うことが可能である。
 なおガイドトラック121の構成の詳細については後述する。
In the optical recording system 1 of the present embodiment, for example, a push-pull method (PP: Push-Pull), a differential push-pull method (DPP: Differential Push-Pull), 3 beams in each of the land and groove of the guide track 121. Tracking control is performed by law. By performing tracking control in each of the land and groove of the guide track 121, information can be recorded on the recording layer 113 at a track pitch of 0.32 μm.
Details of the configuration of the guide track 121 will be described later.
 記録層113は、例えばブルーレイディスク(登録商標)の記録再生に用いられる青色レーザ光に対応するトラックピッチ(0.32μm)で情報の記録が行われる層である。以後、この青色レーザ光を「記録再生光」または「記録光」と呼ぶ。 The recording layer 113 is a layer on which information is recorded at a track pitch (0.32 μm) corresponding to blue laser light used for recording / reproducing of a Blu-ray Disc (registered trademark), for example. Hereinafter, this blue laser light is referred to as “recording / reproducing light” or “recording light”.
 記録層113は、例えば光吸収層と反射層等とにより構成される。光吸収層としてはシアニン系色素やアゾ系色素等の有機色素や、Si、Cu、Sb、Te、Ge、Fe、Bi等の無機酸化材料が用いられる。記録光が多層光ディスク11における目的の記録層113に照射されると、その記録光が照射された領域の反射率が変化し、反射率が変化した領域が記録マークとして形成されることで、記録層113に情報が記録される。記録層113の厚みは特に限定されず、例えば10nm~200nmであり、本実施形態では83nmである。 The recording layer 113 includes, for example, a light absorption layer and a reflection layer. As the light absorption layer, an organic dye such as a cyanine dye or an azo dye, or an inorganic oxide material such as Si, Cu, Sb, Te, Ge, Fe, or Bi is used. When the target recording layer 113 in the multilayer optical disc 11 is irradiated with the recording light, the reflectance of the area irradiated with the recording light is changed, and the area where the reflectance is changed is formed as a recording mark. Information is recorded in layer 113. The thickness of the recording layer 113 is not particularly limited, and is 10 nm to 200 nm, for example, and 83 nm in the present embodiment.
 ガイド層112と、ガイド層112に最も近い記録層113(R0)との距離Xは、特に限定されず、適宜の値が設定可能である。本実施形態では、当該距離Xは25μm以上に設定されており、これによりガイド層112に照射されるガイド光と、記録層113(R0)に照射される記録再生光とのクロストークを防止し、ガイド層112(特にイングルーブ部121L)のトラッキング追従性を高めることができる。 The distance X between the guide layer 112 and the recording layer 113 (R0) closest to the guide layer 112 is not particularly limited, and an appropriate value can be set. In the present embodiment, the distance X is set to 25 μm or more, thereby preventing crosstalk between the guide light irradiated to the guide layer 112 and the recording / reproducing light irradiated to the recording layer 113 (R0). The tracking followability of the guide layer 112 (particularly the in-groove portion 121L) can be improved.
 なお、記録層113への情報の記録時のトラッキング制御および物理アドレスならびに基準クロックの取得は、ガイド層112のガイドトラック121を用いて行われるため、記録層113にはランド・グルーブ構造によるガイドトラック121は不要である。したがって、記録層113の表面は平坦でよい。 The tracking control and the acquisition of the physical address and the reference clock at the time of recording information on the recording layer 113 are performed by using the guide track 121 of the guide layer 112. Therefore, the recording track 113 has a guide track having a land / groove structure. 121 is not necessary. Therefore, the surface of the recording layer 113 may be flat.
 中間層114および保護層115は、例えば紫外線硬化樹脂等の透光性材料で形成される。中間層114の厚みは特に限定されず、例えば10μm~300μmであり、本実施形態では200μmである。保護層115の厚みも特に限定されず、例えば10μm~300μmであり、本実施形態では100μmである。 The intermediate layer 114 and the protective layer 115 are formed of a light-transmitting material such as an ultraviolet curable resin. The thickness of the intermediate layer 114 is not particularly limited, and is 10 μm to 300 μm, for example, and is 200 μm in this embodiment. The thickness of the protective layer 115 is not particularly limited, and is 10 μm to 300 μm, for example, and is 100 μm in this embodiment.
 図7は多層光ディスク11におけるガイド層112および記録層113の半径方向の位置によって区分される領域の構成を示す図である。
 ガイド層112および記録層113は、半径方向における位置によって内周側よりリードイン領域、データ領域、リードアウト領域に各層共通に区分される。
FIG. 7 is a diagram showing a configuration of regions divided by the radial positions of the guide layer 112 and the recording layer 113 in the multilayer optical disc 11.
The guide layer 112 and the recording layer 113 are divided into the lead-in area, the data area, and the lead-out area in common from the inner peripheral side depending on the position in the radial direction.
 ガイド層112のリードイン領域には、多層光ディスク11に固有の管理情報がガイドトラックのウォブリング、あるいはランドとグルーブに設けられたピット列などによって予め記録されている。
 多層光ディスク11に固有の管理情報は、例えば、記録層の数、記録方式、記録線速度、記録再生時のレーザパワーおよびレーザ駆動パルス波形などの推奨情報、データ領域の位置情報、OPC領域の位置情報などを含む。OPC領域は例えばリードイン領域よりも内周側に設けられる。
In the lead-in area of the guide layer 112, management information unique to the multilayer optical disk 11 is recorded in advance by wobbling of guide tracks or pit rows provided in lands and grooves.
The management information unique to the multilayer optical disc 11 includes, for example, recommended information such as the number of recording layers, recording method, recording linear velocity, laser power and laser drive pulse waveform during recording / reproduction, position information of the data area, position of the OPC area Contains information. The OPC area is provided, for example, on the inner peripheral side of the lead-in area.
 ガイド層112のデータ領域には、当該データ領域に対して割り当てられた物理アドレス情報が、ガイドトラック121のウォブリング、あるいはランドとグルーブに設けられたプリピット列などによって予め記録されている。 In the data area of the guide layer 112, physical address information assigned to the data area is recorded in advance by wobbling of the guide track 121 or prepit strings provided in lands and grooves.
 なお、ガイド層112のリードアウト領域にも、リードイン領域に記録された情報と同一の情報が、ガイドトラック121のウォブリング、あるいはランドとグルーブに設けられたプリピット列などによって予め記録されていてもよい。 In the lead-out area of the guide layer 112, the same information as the information recorded in the lead-in area may be recorded in advance by wobbling of the guide track 121 or a prepit row provided in the land and groove. Good.
 記録層113のリードイン領域は、記録層113の記録再生に用いられる管理情報が記録マークによって記録される領域である。記録層113の記録再生に用いられる管理情報は、当該記録層113に割り当てられた層番号などの層情報、欠陥領域の交替処理に関する交替管理情報、OPC処理(校正処理)によって決定された記録時の最適なレーザパワーなどの記録条件データ、記録済み領域のアドレス情報などを含む。この中で、少なくとも層情報は、例えば、当該多層光ディスク11がユーザによるデータの記録に実際に利用される以前に各記録層113に記録マークで記録された情報である。 The lead-in area of the recording layer 113 is an area where management information used for recording / reproducing of the recording layer 113 is recorded by a recording mark. Management information used for recording / reproduction of the recording layer 113 includes layer information such as a layer number assigned to the recording layer 113, replacement management information regarding replacement processing of a defective area, and recording time determined by OPC processing (calibration processing). Recording condition data such as the optimum laser power, address information of the recorded area, and the like. Among these, at least the layer information is, for example, information recorded with a recording mark on each recording layer 113 before the multilayer optical disc 11 is actually used for data recording by the user.
 [ディスク搬送機構]
 ディスク搬送機構20は、ディスクカートリッジ10から目的の多層光ディスク11を取り出してドライブユニット30内のディスクドライブ31に装填したり、逆にディスクドライブ31から排出された多層光ディスク11をディスクカートリッジ10に戻したりするための機構である。
[Disc transport mechanism]
The disk transport mechanism 20 takes out the target multilayer optical disk 11 from the disk cartridge 10 and loads it in the disk drive 31 in the drive unit 30, or conversely returns the multilayer optical disk 11 ejected from the disk drive 31 to the disk cartridge 10. Mechanism.
 ディスク搬送機構20は、例えば、ディスクカートリッジ10から同時あるいは順番連続して複数の多層光ディスク11を取り出し、ドライブユニット30内の複数のディスクドライブ31に別々に装填することができるように、独立して動作可能な複数の搬送機構を備えたものであってもよい。 The disk transport mechanism 20 operates independently so that, for example, a plurality of multilayer optical disks 11 can be taken out simultaneously or sequentially from the disk cartridge 10 and can be separately loaded into the plurality of disk drives 31 in the drive unit 30. A plurality of possible transport mechanisms may be provided.
 [ドライブユニット]
 ドライブユニット30には複数のディスクドライブ31が搭載される。図1の例では、5機のディスクドライブ31が搭載される。ディスクカートリッジ10に収容される多層光ディスク11の数とドライブユニット30内に搭載されるディスクドライブ31の数は必ずしも同じとする必要はない。
[Drive unit]
A plurality of disk drives 31 are mounted on the drive unit 30. In the example of FIG. 1, five disk drives 31 are installed. The number of multilayer optical disks 11 accommodated in the disk cartridge 10 and the number of disk drives 31 mounted in the drive unit 30 are not necessarily the same.
 (ディスクドライブの構成)
 図8は光記録装置であるディスクドライブ31の構成を示す図である。
 このディスクドライブ31は、光ピックアップ32を備える。光ピックアップ32は、記録再生光に対応する記録再生光学系と、ガイド光に対応するガイド光学系とを備える。
(Disk drive configuration)
FIG. 8 is a diagram showing the configuration of a disk drive 31 that is an optical recording apparatus.
The disk drive 31 includes an optical pickup 32. The optical pickup 32 includes a recording / reproducing optical system corresponding to the recording / reproducing light and a guide optical system corresponding to the guide light.
 記録再生光学系は、第1の光源33、第1のコリメータレンズ34、第1の偏光ビームスプリッタ35、第1のリレーレンズ36、第2のコリメータレンズ37、合成プリズム38、1/4波長板39、対物レンズ60、第1の受光レンズ61および第1の受光部62などで構成される。ここで、合成プリズム38、1/4波長板39、対物レンズ60は、当該記録再生光学系と後述するガイド光学系の両方に属する。 The recording / reproducing optical system includes a first light source 33, a first collimator lens 34, a first polarizing beam splitter 35, a first relay lens 36, a second collimator lens 37, a combining prism 38, and a quarter wavelength plate. 39, an objective lens 60, a first light receiving lens 61, a first light receiving portion 62, and the like. Here, the combining prism 38, the quarter wavelength plate 39, and the objective lens 60 belong to both the recording / reproducing optical system and a guide optical system described later.
 第1の光源33は青色レーザ光を記録再生光R1として出射するレーザダイオードを備える。第1の光源33から出射された記録再生光R1は第1のコリメータレンズ34によって平行光とされ、第1の偏光ビームスプリッタ35、第1のリレーレンズ36及び第2のコリメータレンズ37を介して合成プリズム38に入射する。合成プリズム38は、第2のコリメータレンズ37から入射される記録再生光R1と、後述するガイド光学系に属する第3のコリメータレンズから入射されるガイド光R2とを互いの光軸が一致するように合成し、1/4波長板39を介して対物レンズ60に入射させる。対物レンズ60にて、入射された記録再生光は、多層光ディスク11の目的の記録層113に合焦させるように集光される。 The first light source 33 includes a laser diode that emits blue laser light as recording / reproducing light R1. The recording / reproducing light R 1 emitted from the first light source 33 is converted into parallel light by the first collimator lens 34, and passes through the first polarization beam splitter 35, the first relay lens 36 and the second collimator lens 37. The light enters the combining prism 38. The synthesizing prism 38 makes the optical axes of the recording / reproducing light R1 incident from the second collimator lens 37 and the guide light R2 incident from a third collimator lens belonging to a guide optical system, which will be described later, coincide with each other. And is incident on the objective lens 60 through the quarter-wave plate 39. The incident recording / reproducing light is collected by the objective lens 60 so as to be focused on the target recording layer 113 of the multilayer optical disc 11.
 記録層113によって反射された記録再生光(戻り光)は、対物レンズ60、1/4波長板39を介して合成プリズム38に入射し、合成プリズム38を入射方向のまま透過して、第2のコリメータレンズ37及び第1のリレーレンズ36を介して第1の偏光ビームスプリッタ35に戻る。第1の偏光ビームスプリッタ35は、第1のリレーレンズ36からの第1の波長の戻り光を約90度の角度で反射して第1の受光レンズ61を介して第1の受光部62に入射させる。 The recording / reproducing light (returned light) reflected by the recording layer 113 is incident on the combining prism 38 via the objective lens 60 and the quarter wavelength plate 39, and is transmitted through the combining prism 38 in the incident direction. Return to the first polarization beam splitter 35 via the collimator lens 37 and the first relay lens 36. The first polarization beam splitter 35 reflects the return light of the first wavelength from the first relay lens 36 at an angle of about 90 degrees and passes through the first light receiving lens 61 to the first light receiving unit 62. Make it incident.
 第1の受光部62は、例えば、受光面がディスク半径方向とタンジェンシャル方向に4分割された受光素子などで構成され、分割された受光面毎に受光強度に応じたレベルの電圧信号を出力する。 For example, the first light receiving unit 62 includes a light receiving element whose light receiving surface is divided into four in the disk radial direction and the tangential direction, and outputs a voltage signal of a level corresponding to the light receiving intensity for each divided light receiving surface. To do.
 ガイド光学系は、第2の光源63、第3のコリメータレンズ64、第2の偏光ビームスプリッタ65、第2のリレーレンズ66、第4のコリメータレンズ67、合成プリズム38、1/4波長板39、対物レンズ60、第2の受光レンズ68および第2の受光部69などで構成される。 The guide optical system includes a second light source 63, a third collimator lens 64, a second polarizing beam splitter 65, a second relay lens 66, a fourth collimator lens 67, a combining prism 38, and a quarter wavelength plate 39. The objective lens 60, the second light receiving lens 68, the second light receiving portion 69, and the like.
 第2の光源63は、赤色レーザ光であるガイド光R2を出射する。第2の光源63から出射されたガイド光R2は第3のコリメータレンズ64によって平行光とされ、第2の偏光ビームスプリッタ65、第2のリレーレンズ66及び第4のコリメータレンズ67を介して合成プリズム38に入射する。合成プリズム38に入射されたガイド光R2は、前述したように、合成プリズム38にて記録再生光学系の第2のコリメータレンズ37から入射される記録再生光R1と光軸が一致するように合成され、1/4波長板39を介して対物レンズ60に入射される。対物レンズ60にて、入射されたガイド光R2は、多層光ディスク11のガイド層112に合焦させるように集光される。 The second light source 63 emits guide light R2 which is red laser light. The guide light R2 emitted from the second light source 63 is converted into parallel light by the third collimator lens 64, and is combined through the second polarization beam splitter 65, the second relay lens 66, and the fourth collimator lens 67. The light enters the prism 38. As described above, the guide light R2 incident on the combining prism 38 is combined by the combining prism 38 so that the optical axis coincides with the recording / reproducing light R1 incident from the second collimator lens 37 of the recording / reproducing optical system. Then, the light enters the objective lens 60 through the quarter-wave plate 39. The incident guide light R <b> 2 is collected by the objective lens 60 so as to be focused on the guide layer 112 of the multilayer optical disk 11.
 ガイド層112によって反射されたガイド光R2(戻り光)は、対物レンズ60、1/4波長板39を介して合成プリズム38に入射し、合成プリズム38にて約90度の角度で反射され、第4のコリメータレンズ67及び第2のリレーレンズ66を介して第2の偏光ビームスプリッタ65に戻る。第2の偏光ビームスプリッタ65は、第2のリレーレンズ66からのガイド光R2の戻り光を、約90度の角度で反射して第2の受光レンズ68を介して第2の受光部69に入射させる。 The guide light R2 (return light) reflected by the guide layer 112 enters the synthesis prism 38 through the objective lens 60 and the quarter wavelength plate 39, and is reflected by the synthesis prism 38 at an angle of about 90 degrees. Returning to the second polarizing beam splitter 65 via the fourth collimator lens 67 and the second relay lens 66. The second polarization beam splitter 65 reflects the return light of the guide light R2 from the second relay lens 66 at an angle of about 90 degrees, and passes through the second light receiving lens 68 to the second light receiving unit 69. Make it incident.
 第2の受光部69は、例えば、受光面がディスク半径方向とタンジェンシャル方向に4分割された受光素子などで構成される。第2の受光部69は、分割された受光面毎に受光量に対応した電圧信号を出力する。 The second light receiving unit 69 is constituted by, for example, a light receiving element in which the light receiving surface is divided into four in the disk radial direction and the tangential direction. The second light receiving unit 69 outputs a voltage signal corresponding to the amount of received light for each divided light receiving surface.
 また、光ピックアップ32には、トラッキングアクチュエータ70とフォーカシングアクチュエータ79が設けられている。トラッキングアクチュエータ70はトラッキング制御部71による制御のもとで対物レンズ60を光軸に対して垂直な方向であるディスク半径方向に移動させる。フォーカシングアクチュエータ79はフォーカス制御部77による制御のもと対物レンズ60を光軸方向に移動させる。 Further, the optical pickup 32 is provided with a tracking actuator 70 and a focusing actuator 79. The tracking actuator 70 moves the objective lens 60 in the disk radial direction that is perpendicular to the optical axis under the control of the tracking control unit 71. The focusing actuator 79 moves the objective lens 60 in the optical axis direction under the control of the focus control unit 77.
 さらに、光ピックアップ32には、記録再生光が照射される記録層113を切り替えるために、第1のリレーレンズ36を光軸方向に移動させる第1のリレーレンズアクチュエータ80と、ガイド光R2をガイド層112に合焦させるために、第2のリレーレンズ66を光軸方向に移動させる第2のリレーレンズアクチュエータ81が設けられている。 Further, the optical pickup 32 guides the guide light R2 and the first relay lens actuator 80 that moves the first relay lens 36 in the optical axis direction in order to switch the recording layer 113 irradiated with the recording / reproducing light. In order to focus on the layer 112, a second relay lens actuator 81 that moves the second relay lens 66 in the optical axis direction is provided.
 また。図示は省略したが、光ピックアップ32には、多層光ディスク11の記録面に対して、対物レンズ60のラジアル方向およびタンジェンシャル方向の傾きを調整するチルトアクチュエータなども設けられている。
 以上が、光ピックアップ32の説明である。
Also. Although not shown, the optical pickup 32 is also provided with a tilt actuator that adjusts the inclination of the objective lens 60 in the radial direction and the tangential direction with respect to the recording surface of the multilayer optical disc 11.
The above is the description of the optical pickup 32.
 ディスクドライブ31は、上記の光ピックアップ32のほか、トラッキング制御部71、データ変調部72、第1の光源駆動部73、第2の光源駆動部74、等化器75、データ再生部76、フォーカス制御部77、トラッキングエラー生成部82、コントローラ83、第1のリレー制御部84、第2のリレー制御部85、およびフォーカスエラー生成部86を備える。その他、ディスクドライブ31は、ディスクモータ87を駆動するディスクモータ駆動部、光ピックアップ32を多層光ディスク11の半径方向に送るフィード機構、光ピックアップ32を対物レンズ60の光軸方向に送るピックアップ上下送り機構などを備える。これらの図示は省略する。 In addition to the optical pickup 32, the disk drive 31 includes a tracking control unit 71, a data modulation unit 72, a first light source drive unit 73, a second light source drive unit 74, an equalizer 75, a data reproduction unit 76, a focus A control unit 77, a tracking error generation unit 82, a controller 83, a first relay control unit 84, a second relay control unit 85, and a focus error generation unit 86 are provided. In addition, the disk drive 31 includes a disk motor drive unit that drives the disk motor 87, a feed mechanism that sends the optical pickup 32 in the radial direction of the multilayer optical disk 11, and a pickup vertical feed mechanism that sends the optical pickup 32 in the optical axis direction of the objective lens 60. Etc. These illustrations are omitted.
 データ変調部72は、コントローラ83より供給された記録用のデータを変調し、変調信号を第1の光源駆動部73に供給する。 The data modulator 72 modulates the recording data supplied from the controller 83 and supplies the modulated signal to the first light source driver 73.
 第1の光源駆動部73は、データ変調部72からの変調信号をもとに第1の光源33を駆動するための駆動パルスを生成する。 The first light source drive unit 73 generates a drive pulse for driving the first light source 33 based on the modulation signal from the data modulation unit 72.
 等化器75は、第1の受光部62からの再生RF信号に対して、例えばPRML(Partial Response Maximum Likelihood)などの等化処理を行って二値信号を生成する。 The equalizer 75 performs an equalization process such as PRML (Partial Response Maximum Maximum Likelihood) on the reproduction RF signal from the first light receiving unit 62 to generate a binary signal.
 データ再生部76は、等化器75より出力された二値信号からデータを復調し、復調されたデータから誤り訂正などの復号処理を行って再生データを生成し、コントローラ83に供給する。 The data reproduction unit 76 demodulates data from the binary signal output from the equalizer 75, performs decoding processing such as error correction from the demodulated data, generates reproduction data, and supplies the reproduction data to the controller 83.
 トラッキングエラー生成部82は、例えばデータの記録時などに第2の受光部69の出力をもとに、例えばプッシュプル法、差動プッシュプル法、3ビーム法などによってトラッキングエラー信号を生成する。また、トラッキングエラー生成部82は、例えばデータの再生時などに第1の受光部62の出力をもとに、例えばプッシュプル法、差動プッシュプル法、3ビーム法などによってトラッキングエラー信号を生成する。 The tracking error generation unit 82 generates a tracking error signal by, for example, a push-pull method, a differential push-pull method, a three-beam method, or the like based on the output of the second light receiving unit 69 at the time of data recording. The tracking error generation unit 82 generates a tracking error signal by, for example, push-pull method, differential push-pull method, three-beam method, etc. based on the output of the first light receiving unit 62 at the time of data reproduction, for example. To do.
 トラッキング制御部71は、トラッキングエラー信号をもとにトラッキングアクチュエータ70を制御して対物レンズ60を光軸に対して垂直な方向に移動させることによってトラッキング制御を行う。 The tracking control unit 71 performs tracking control by controlling the tracking actuator 70 based on the tracking error signal to move the objective lens 60 in a direction perpendicular to the optical axis.
 フォーカスエラー生成部86は、第1の受光部62の出力をもとに、例えば、非点収差法などによりフォーカスエラー信号を生成する。 The focus error generation unit 86 generates a focus error signal based on, for example, the astigmatism method based on the output of the first light receiving unit 62.
 フォーカス制御部77は、フォーカスエラー信号をもとに、フォーカスアクチュエータ79を制御して対物レンズ60を光軸方向に移動させることによってフォーカス制御を行う。 The focus control unit 77 performs focus control by controlling the focus actuator 79 and moving the objective lens 60 in the optical axis direction based on the focus error signal.
 第1のリレー制御部84は、記録対象の記録層を切り替えるように第1のリレーレンズアクチュエータ80を制御する。 The first relay control unit 84 controls the first relay lens actuator 80 so as to switch the recording layer to be recorded.
 第2のリレー制御部85は、ガイド光R2をガイド層112(ガイドトラック121)に合焦させるように第2のリレーレンズアクチュエータ81を制御する。 The second relay control unit 85 controls the second relay lens actuator 81 so that the guide light R2 is focused on the guide layer 112 (guide track 121).
 コントローラ83は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。コントローラ83は、RAMに割り当てられたメインメモリの領域にロードされたプログラムに基づいて、ディスクドライブ31の全体の制御を行う。 The controller 83 includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like. The controller 83 controls the entire disk drive 31 based on a program loaded in the main memory area allocated to the RAM.
 ドライブユニット30には、上記のディスクドライブ31が複数搭載され、それぞれ独立して制御可能とされ、装填された多層光ディスク11に対する情報の記録および再生をそれぞれ同時に行うことができる。 The drive unit 30 includes a plurality of the disk drives 31 and can be independently controlled, and can record and reproduce information on the loaded multilayer optical disk 11 simultaneously.
 [RAIDコントローラ]
 RAID(Redundant Arrays of Inexpensive Disks)コントローラ40は、ホスト装置50からの記録命令などに対して、ドライブユニット30内の1以上のディスクドライブ31にデータを多重に記録したり、ストライピングにより分散して記録したりするRAID制御を行う。RAIDコントローラ40より記録または再生の指示が与えられたそれぞれのディスクドライブ31のコントローラ83は、多層光ディスク11に対してデータを記録したり再生したりするための制御を行う。
[RAID controller]
A RAID (Redundant Arrays of Inexpensive Disks) controller 40, in response to a recording command from the host device 50, multiplexly records data on one or more disk drives 31 in the drive unit 30, or records them in a distributed manner by striping. RAID control is performed. The controller 83 of each disk drive 31 to which a recording or reproduction instruction is given from the RAID controller 40 performs control for recording or reproducing data on the multilayer optical disk 11.
 [ホスト装置]
 ホスト装置50は、本光記録システム1を制御する最上位の装置である。ホスト装置50はパーソナルコンピュータでもよい。ホスト装置50は、記録用のデータを作成または準備し、RAIDコントローラ40に対して当該記録用のデータの記録命令を供給する。また、ホスト装置50は、ユーザなどより指定されたファイル名を含む読出命令をRAIDコントローラ40に供給し、RAIDコントローラ40よりその応答として該当するファイル名のデータを取得する。
[Host device]
The host device 50 is the highest-level device that controls the optical recording system 1. The host device 50 may be a personal computer. The host device 50 creates or prepares data for recording, and supplies a recording command for the data for recording to the RAID controller 40. Further, the host device 50 supplies a read command including a file name designated by a user or the like to the RAID controller 40, and acquires data of the corresponding file name from the RAID controller 40 as a response.
 図3に示したように、ホスト装置50は、CPU51、メモリ52、ドライブI/F53、ディスク搬送機構I/F54、システムバス56を有する。 3, the host device 50 includes a CPU 51, a memory 52, a drive I / F 53, a disk transport mechanism I / F 54, and a system bus 56.
 CPU51は、メモリ52に格納されたプログラムを実行するための演算処理を行うとともに、システムバス56を通じて各部との情報のやりとりを制御する。
 メモリ52は、CPU51に実行させるプログラムや演算結果などが格納されるメインメモリである。
The CPU 51 performs arithmetic processing for executing a program stored in the memory 52 and controls exchange of information with each unit through the system bus 56.
The memory 52 is a main memory that stores programs to be executed by the CPU 51, operation results, and the like.
 ドライブI/F53は、RAIDコントローラ40を通じて複数のディスクドライブ31と通信するためのインタフェースである。 The drive I / F 53 is an interface for communicating with a plurality of disk drives 31 through the RAID controller 40.
 ディスク搬送機構I/F54は、ディスク搬送機構20と通信するためのインタフェースである。 The disk transport mechanism I / F 54 is an interface for communicating with the disk transport mechanism 20.
 [光記録システムの動作例]
 次に、この光記録システム1のドライブユニット30内の1以上のディスクドライブ31において多層光ディスク11に対して記録を行う場合の制御について説明する。
[Operation example of optical recording system]
Next, control when recording is performed on the multilayer optical disk 11 in one or more disk drives 31 in the drive unit 30 of the optical recording system 1 will be described.
 ホスト装置50からRAIDコントローラ40を通じて、ドライブユニット30内の1以上のディスクドライブ31のコントローラ83にデータの記録命令がそれぞれ与えられる。記録命令を受けたときの各ディスクドライブ31の動作は同様であるため、一つのディスクドライブ31の動作について説明する。 A data recording command is given from the host device 50 to the controller 83 of one or more disk drives 31 in the drive unit 30 through the RAID controller 40. Since the operation of each disk drive 31 when receiving a recording command is the same, the operation of one disk drive 31 will be described.
 ディスクドライブ31のコントローラ83は、光ピックアップ32を光ディスク11の記録層113の記録領域においてデータが未記録の領域の最内周に対応する位置にそれぞれ移動させるように図示しないフィード機構を制御するとともに、図示しないディスクモータ駆動部を制御してディスク11をCLV方式またはCAV方式において適切な速度で回転駆動させる。 The controller 83 of the disk drive 31 controls a feed mechanism (not shown) so as to move the optical pickup 32 to a position corresponding to the innermost circumference of the area where data is not recorded in the recording area of the recording layer 113 of the optical disk 11. Then, the disk motor drive unit (not shown) is controlled to rotate the disk 11 at an appropriate speed in the CLV method or the CAV method.
 さらに、コントローラ83は、多層光ディスク11の目的の記録層113に光ピックアップ32の対物レンズ60からの記録光が焦点をむすぶように、光ピックアップ32の第1のリレーレンズ36の光軸方向の位置を制御するとともに、光ディスク11のガイド層112に光ピックアップ32の対物レンズ60からのガイド光が焦点をむすぶように光ピックアップ32の第2のリレーレンズ66の光軸方向の位置を制御する。 Further, the controller 83 positions the first relay lens 36 of the optical pickup 32 in the optical axis direction so that the recording light from the objective lens 60 of the optical pickup 32 is focused on the target recording layer 113 of the multilayer optical disc 11. And the position of the second relay lens 66 of the optical pickup 32 in the optical axis direction is controlled so that the guide light from the objective lens 60 of the optical pickup 32 is focused on the guide layer 112 of the optical disc 11.
 ディスクドライブ31のコントローラ83は、ホスト装置50からRAIDコントローラ40を通じて転送されてきた記録用のデータをデータ変調部72に供給する。データ変調部72では、記録用のデータの変調およびエラー訂正符号の付加などが行われることによって記録信号が生成され、第1の光源駆動部73に供給される。第1の光源駆動部73は、記録信号をもとに第1の光源33の駆動用パルスを生成して第1の光源33に供給する。同時にコントローラ83は、第2の光源63を駆動するように第2の光源駆動部74に制御信号を出力する。これにより光ピックアップ32からの記録光による記録層113へのデータの記録が開始される。すなわち、光ディスク11の目的の記録層113に対して内周から外周へ向けてCLV方式またはCAV方式でのデータ記録が開始される。 The controller 83 of the disk drive 31 supplies the data modulation unit 72 with the recording data transferred from the host device 50 through the RAID controller 40. The data modulation unit 72 generates a recording signal by performing modulation of recording data, adding an error correction code, and the like, and supplies the recording signal to the first light source driving unit 73. The first light source driving unit 73 generates a driving pulse for the first light source 33 based on the recording signal and supplies it to the first light source 33. At the same time, the controller 83 outputs a control signal to the second light source driving unit 74 so as to drive the second light source 63. Thereby, recording of data on the recording layer 113 by the recording light from the optical pickup 32 is started. That is, data recording by the CLV method or the CAV method is started from the inner periphery to the outer periphery with respect to the target recording layer 113 of the optical disc 11.
 ここで、データ記録時のトラッキング制御について説明する。
 トラッキングエラー生成部82は、第2の受光部69の出力をもとに例えばPP(プッシュプル)法によりNPP(Normalized Push-Pull)信号(トラッキングエラー信号)を生成する。NPP信号とは、プッシュプル電圧をRF信号電圧で除算、規格化したものをいう。プッシュプル法以外にも、例えば、DPP(差動プッシュプル)法、あるいは3ビーム法などによってトラッキングエラー信号を生成してもよい。
Here, tracking control during data recording will be described.
The tracking error generation unit 82 generates an NPP (Normalized Push-Pull) signal (tracking error signal) by the PP (push-pull) method, for example, based on the output of the second light receiving unit 69. The NPP signal is a signal obtained by dividing the push-pull voltage by the RF signal voltage and standardizing it. In addition to the push-pull method, for example, the tracking error signal may be generated by a DPP (differential push-pull) method or a three-beam method.
 トラッキング制御部71は、トラッキングエラー信号を入力し、その値が0に近付くようにトラッキングアクチュエータ70にトラッキング駆動信号を供給して対物レンズ60を光軸に対して垂直な方向(ディスク半径方向)に移動させてトラッキング制御を行う。 The tracking control unit 71 inputs a tracking error signal, supplies a tracking drive signal to the tracking actuator 70 so that the value approaches 0, and moves the objective lens 60 in a direction perpendicular to the optical axis (disk radial direction). Move to perform tracking control.
 記録時のトラッキング制御は多層光ディスク11のガイド層112に設けられたガイドトラック121を構成するイングルーブ部121Lとオングルーブ部121Gのうち、一方のガイドトラック121を先に用いて行われる。 Tracking control at the time of recording is performed using one of the in-groove portion 121L and the on-groove portion 121G constituting the guide track 121 provided on the guide layer 112 of the multilayer optical disc 11 first.
 なお、データ再生時のトラッキング制御は、多層光ディスク11の記録層113に記録された記録マークの列で構成されるデータトラックを用いて行われる。 Note that tracking control at the time of data reproduction is performed using a data track constituted by a row of recording marks recorded on the recording layer 113 of the multilayer optical disc 11.
 図9および図10は本実施形態のディスクドライブ31によるデータトラックの記録順序を示す図である。
 本実施形態のディスクドライブ31では、例えば、先にイングルーブ部121Lを対象としたトラッキング制御により記録が行われ(図9を参照)、全てのイングルーブ部121Lに対するトラッキング制御による記録が完了した後、オングルーブ部121Gを対象とするトラッキング制御による記録に切り替えられる(図10を参照)。以下に、その詳細を説明する。
9 and 10 are diagrams showing the recording order of data tracks by the disk drive 31 of this embodiment.
In the disk drive 31 of this embodiment, for example, recording is first performed by tracking control for the in-groove portion 121L (see FIG. 9), and after recording by tracking control for all the in-groove portions 121L is completed. Then, the recording is switched to the tracking control for the on-groove portion 121G (see FIG. 10). The details will be described below.
 図9はイングルーブ部121Lを用いて、多層光ディスク11の任意の記録層Rxに対し、多層光ディスク11の内周側から外周側に向けて記録がL1、L2、L3の順に連続して行われた状態を示す図である。
 なお、同図の上半分は多層光ディスク11を対物レンズ60の光軸方向に対して直交する方向から見た図、下半分は多層光ディスク11の任意の記録層Rxを対物レンズ60の光軸方向に見た図である。
In FIG. 9, using the in-groove portion 121L, recording is continuously performed in the order of L1, L2, and L3 on an arbitrary recording layer Rx of the multilayer optical disc 11 from the inner circumference side to the outer circumference side of the multilayer optical disc 11. FIG.
The upper half of the figure shows the multilayer optical disk 11 viewed from a direction orthogonal to the optical axis direction of the objective lens 60, and the lower half shows an arbitrary recording layer Rx of the multilayer optical disk 11 in the optical axis direction of the objective lens 60. FIG.
 L0-L4はイングルーブ部121Lを示し、G0-G4はオングルーブ部121Gを示す。なお、イングルーブ部121Lは実際には一本の連続したトラックであり、オングルーブ部121Gも同様であるが、説明上、ディスク半径上の位置が異なるガイドトラック部分を、例えば「イングルーブ部(L0)」、「オングルーブ部(G0)」のように表記する。 L0-L4 indicates the in-groove portion 121L, and G0-G4 indicates the on-groove portion 121G. Note that the in-groove portion 121L is actually one continuous track, and the on-groove portion 121G is the same, but for the sake of explanation, guide track portions having different positions on the disk radius are referred to as “in-groove portion ( L0) ”and“ on-groove portion (G0) ”.
 本実施形態のディスクドライブ31では、先にイングルーブ部121Lに対するトラッキング制御によって記録が行われることで、多層光ディスク11の任意の記録層Rxに記録マークMが0.64μmのピッチで記録される。 In the disk drive 31 of the present embodiment, recording is performed by tracking control on the in-groove portion 121L first, whereby recording marks M are recorded on an arbitrary recording layer Rx of the multilayer optical disk 11 at a pitch of 0.64 μm.
 [本実施形態に係る多層光ディスク]
 次に、本実施形態に係る多層光ディスク11の詳細について説明する。
[Multilayer Optical Disc According to this Embodiment]
Next, details of the multilayer optical disc 11 according to the present embodiment will be described.
 一般に、ガイド層分離型光記録媒体においてガイド層のイングルーブ部とオングルーブ部とでは、それらの幾何学的な形状の相違に起因してトラッキング制御用のレーザ光(ガイド光)の回折特性が相互に異なる。例えば、レーザ光のスポット径(例えば波長650nmにおいて1.1μm)に対してイングルーブ部の幅が狭いと、オングルーブ部と比較して、イングルーブ部でのレーザ光の回折が不十分となり、トラッキングが滑りやすくなることで、記録ピット上での走査がずれやすくなる。 Generally, in the guide layer separation type optical recording medium, the in-groove portion and the on-groove portion of the guide layer have a diffraction characteristic of the laser light (guide light) for tracking control due to the difference in the geometric shape thereof. Different from each other. For example, if the width of the in-groove portion is narrow with respect to the spot diameter of the laser light (for example, 1.1 μm at a wavelength of 650 nm), the diffraction of the laser light at the in-groove portion becomes insufficient compared to the on-groove portion, Since the tracking becomes slippery, the scanning on the recording pit is easily shifted.
 例えば図11に、ガイドトラック221のイングルーブ部221Lとオングルーブ部221Gに対してガイド光GLが照射された様子を模式的に示す。イングルーブ部221Lの溝幅は、ガイド光GLのスポット径に対して狭い。オングルーブ部221Gは、光ピックアップ(図中下側)に向かって突出した溝(グルーブ)とこれを中心として両側に窪んだ溝(ランド)にガイド光GLが照射されるため、回折限界には到達し難い。一方、イングルーブ部221Lは、ランドとその両側のグルーブにガイド光GLが照射されるため、ガイド光GLがランドの中に入り込み難く、回折を得難くなる。このような現象はガイド光GLの波長に依存しており、ガイド光GLの波長が長いほど顕著となる。 For example, FIG. 11 schematically shows a state in which the guide light GL is irradiated to the in-groove portion 221L and the on-groove portion 221G of the guide track 221. The groove width of the in-groove portion 221L is narrower than the spot diameter of the guide light GL. Since the on-groove portion 221G is irradiated with the guide light GL on the groove (groove) protruding toward the optical pickup (lower side in the figure) and the groove (land) recessed on both sides around this, the diffraction limit is not exceeded. Hard to reach. On the other hand, since the guide light GL is irradiated to the land and the grooves on both sides of the in-groove portion 221L, the guide light GL hardly enters the land and it is difficult to obtain diffraction. Such a phenomenon depends on the wavelength of the guide light GL, and becomes more prominent as the wavelength of the guide light GL is longer.
 以上のような問題が生じる結果、回折不十分によるNPP信号のC/N(Carrier to Noise ratio)が悪化し、イングルーブ部でのトラッキング追従性が低下することで、記録層上のイングルーブ部に対応する領域に形成される記録ピット(記録マーク)のトラック品位が低下するという問題がある。また、記録層に形成された記録トラックによって再生光をトラッキングする場合において、イングルーブ部に対応する記録トラックを精度よく再生することが困難になる。 As a result of the above problems, the C / N (Carrier-to-Noise-ratio) of the NPP signal due to insufficient diffraction deteriorates and the tracking followability at the in-groove portion decreases, so that the in-groove portion on the recording layer is reduced. There is a problem that the track quality of the recording pits (record marks) formed in the area corresponding to is lowered. Further, when reproducing light is tracked by a recording track formed on the recording layer, it becomes difficult to accurately reproduce the recording track corresponding to the in-groove portion.
 そこで本発明者は、上記問題を解決するために、NPP信号のC/Nの悪化を抑制することができるイングルーブ部121Lの溝幅と深さをそれぞれ検討した。ここで図11に示すように、ガイド層112におけるイングルーブ部121Lの溝幅をInW[nm]、イングルーブ部121Lの深さをInD[nm]とする。溝幅InWは、イングルーブ部121Lの底幅InWaとイングルーブ部121Lの開口幅InWbとの和の半値((InWa+InWb)/2)とした。 Therefore, in order to solve the above problem, the present inventor has examined the groove width and depth of the in-groove portion 121L that can suppress the deterioration of C / N of the NPP signal. Here, as shown in FIG. 11, the groove width of the in-groove portion 121L in the guide layer 112 is InW [nm], and the depth of the in-groove portion 121L is InD [nm]. The groove width InW was set to a half value ((InWa + InWb) / 2) of the sum of the bottom width InWa of the in-groove portion 121L and the opening width InWb of the in-groove portion 121L.
 図11において「P」は、イングルーブ部121L(あるいはオングルーブ部121G)のトラックピッチを現しており、ここでは0.64μmである。イングルーブ部121Lおよびオングルーブ部121Gはいずれもガイドトラックとして機能するため、ランド/グルーブ構造のガイドトラック121全体としてのトラックピッチは、0.32μm(P/2)である。 In FIG. 11, “P” represents the track pitch of the in-groove portion 121L (or the on-groove portion 121G), which is 0.64 μm here. Since both the in-groove portion 121L and the on-groove portion 121G function as guide tracks, the track pitch of the land / groove structure guide track 121 as a whole is 0.32 μm (P / 2).
 また本実施形態では、図11に示すように、オングルーブ部121Gの溝幅をOnW[nm]とする。溝幅OnWは、オングルーブ部121Gの最小幅(突出端部の幅)OnWaとオングルーブ部121Gの最大幅(基部の幅)OnWbとの和の半値((OnWa+OnWb)/2)と定義される。これによりイングルーブ部121Lの溝幅InWとオングルーブ部121Gの溝幅OnWとの和は、イングルーブ部121L(あるいはオングルーブ部121G)のトラックピッチPと一致する。
 なおオングルーブ部121Gの深さ(高さ)は、イングルーブ部121Lの深さ(InD)と同一である。
In this embodiment, as shown in FIG. 11, the groove width of the on-groove portion 121G is set to OnW [nm]. The groove width OnW is defined as a half value ((OnWa + OnWb) / 2) of the minimum width (width of the protruding end) OnWa of the on-groove part 121G and the maximum width (base part width) OnWb of the on-groove part 121G. . As a result, the sum of the groove width InW of the in-groove portion 121L and the groove width OnW of the on-groove portion 121G matches the track pitch P of the in-groove portion 121L (or the on-groove portion 121G).
The depth (height) of the on-groove portion 121G is the same as the depth (InD) of the in-groove portion 121L.
 図13は、イングルーブ部121Lの溝幅InWに対するNPP特性のガイド光の波長依存性を示す一実験結果である。同図に示すように、ガイド光の波長が大きいほどNPP特性が低下する傾向にある。また、NPP特性が最大となるイングルーブ部121Lの溝幅InWは、いずれの波長(600nm、650nmおよび700nm)においても350nmであることが確認された。 FIG. 13 is an experimental result showing the wavelength dependence of the guide light of the NPP characteristic with respect to the groove width InW of the in-groove portion 121L. As shown in the figure, the NPP characteristic tends to decrease as the wavelength of the guide light increases. Further, it was confirmed that the groove width InW of the in-groove portion 121L having the maximum NPP characteristic was 350 nm at any wavelength (600 nm, 650 nm, and 700 nm).
 一方、図14は、イングルーブ部121Lの深さInDに対するNPP特性のガイド光の波長依存性を示す一実験結果である。同図に示すように、各波長帯でのNPPの最大値はほぼ一定であった。またNPP特性が最大となるイングルーブ部121Lの深さは、ガイド光の波長が大きいほど大きくなる。図15は、ガイド光の各波長(λ)についてNPPが最大となる溝深さInDをプロットした図であり、同図に示すように波長と溝深さInDとは一次関数(y=0.2x-50)で近似できることが確認された。 On the other hand, FIG. 14 shows an experimental result showing the wavelength dependence of the guide light of the NPP characteristic with respect to the depth InD of the in-groove portion 121L. As shown in the figure, the maximum value of NPP in each wavelength band was almost constant. Further, the depth of the in-groove portion 121L at which the NPP characteristic is maximized increases as the wavelength of the guide light increases. FIG. 15 is a graph plotting the groove depth InD at which the NPP is maximum for each wavelength (λ) of the guide light. As shown in FIG. 15, the wavelength and the groove depth InD are linear functions (y = 0. It was confirmed that it can be approximated by 2x-50).
 高精度なトラッキング追従性を確保する観点からNPPの値は高い方が好ましく、実用的には、イングルーブ部に対応する記録層Rxの記録トラックに形成される記録ピット(記録マーク)の再生評価指標(SER:Symbol Error Rate)が10のマイナス4乗オーダ(9.9×10-4(9.9E-4))以下に抑えられることが好ましい。このような条件を満たすイングルーブ部121Lの溝幅InW[nm]および深さInD[nm]は、次の(1)~(3)式で規定される。 From the viewpoint of ensuring high-accuracy tracking followability, the value of NPP is preferably high, and practically, reproduction evaluation of recording pits (record marks) formed on the recording track of the recording layer Rx corresponding to the in-groove portion It is preferable that the index (SER: Symbol Error Rate) is suppressed to 10 or less of the fourth power of the order (9.9 × 10 −4 (9.9E-4)). The groove width InW [nm] and the depth InD [nm] of the in-groove portion 121L satisfying such conditions are defined by the following equations (1) to (3).
 280≦InW≦430 …(1)
 (0.2λ-65)≦InD≦(0.2λ-40) …(2)
 600≦λ≦700 …(3)
 ここで、λ[nm]はガイドトラック121に集光されるレーザ光、すなわちガイド光の波長を表す。
280 ≦ InW ≦ 430 (1)
(0.2λ−65) ≦ InD ≦ (0.2λ−40) (2)
600 ≦ λ ≦ 700 (3)
Here, λ [nm] represents the wavelength of the laser light focused on the guide track 121, that is, the guide light.
 イングルーブ部121Lの溝幅InWが280nm未満の場合、イングルーブ部121Lへのガイド光の回折が不十分となり、NPP信号のC/N悪化が避けられない。一方、溝幅InWが430nmを超えると、イングルーブ部121LのトラックピッチP(0.64μm)においてオングルーブ部121Gの溝幅(OnW)が狭くなり過ぎて、オングルーブ部121Gのトラッキング追従性の低下が避けられなくなる。 When the groove width InW of the in-groove portion 121L is less than 280 nm, the diffraction of the guide light to the in-groove portion 121L becomes insufficient, and the C / N deterioration of the NPP signal is inevitable. On the other hand, when the groove width InW exceeds 430 nm, the groove width (OnW) of the on-groove portion 121G becomes too narrow at the track pitch P (0.64 μm) of the in-groove portion 121L, and the tracking followability of the on-groove portion 121G is reduced. Decline is inevitable.
 また、イングルーブ部121Lの深さInDが(0.2λ-65)nm未満の場合、イングルーブ部121Lにおける回折特性とオングルーブ部121Gにおける回折特性との差が小さく、トラッキング追従性の低下を招く。一方、イングルーブ部121Lの深さInDが(0.2λ-40)nmを超える場合、イングルーブ部121Lへのガイド光の回折が不十分となり、NPP信号のC/N悪化が避けられない。 Further, when the depth InD of the in-groove portion 121L is less than (0.2λ−65) nm, the difference between the diffraction characteristics in the in-groove portion 121L and the diffraction characteristics in the on-groove portion 121G is small, and the tracking follow-up property is reduced. Invite. On the other hand, when the depth InD of the in-groove portion 121L exceeds (0.2λ-40) nm, the diffraction of the guide light to the in-groove portion 121L becomes insufficient, and the C / N deterioration of the NPP signal is inevitable.
 上記(1)~(3)式を満たすことにより、回折不十分によるNPP信号のC/N悪化を防止し、オングルーブ部121Gのトラッキング追従性を確保しつつ、イングルーブ部121Lの走査時にトラック中心上からのガイド光が外れないようにすることができる。これにより記録層に対して品位の高い記録トラックを形成することができるとともに、当該記録トラックの再生特性を高めることができる。 By satisfying the above formulas (1) to (3), the C / N deterioration of the NPP signal due to insufficient diffraction is prevented, and the tracking followability of the on-groove portion 121G is ensured while the in-groove portion 121L is scanned. The guide light from above the center can be prevented from coming off. As a result, a high-quality recording track can be formed on the recording layer, and the reproduction characteristics of the recording track can be improved.
 上記(1)、(2)式より、イングルーブ部121Lの溝幅InWおよび深さInDは、ガイド光の波長λに応じて、以下のように規定される。
 波長600nmのとき、
  280nm≦InW≦430nm、55nm≦InD≦80nm
 波長650nmのとき、
  280nm≦InW≦430nm、65nm≦InD≦90nm
 波長700nmのとき、
  280nm≦InW≦430nm、75nm≦InD≦100nm
From the above expressions (1) and (2), the groove width InW and the depth InD of the in-groove portion 121L are defined as follows according to the wavelength λ of the guide light.
When the wavelength is 600 nm,
280 nm ≦ InW ≦ 430 nm, 55 nm ≦ InD ≦ 80 nm
When the wavelength is 650 nm,
280 nm ≦ InW ≦ 430 nm, 65 nm ≦ InD ≦ 90 nm
When the wavelength is 700 nm,
280 nm ≦ InW ≦ 430 nm, 75 nm ≦ InD ≦ 100 nm
 なお好ましくは、イングルーブ部121Lの溝幅InWおよび深さInDは、ガイド光の波長λに応じて、以下のように規定される。
 波長600nmのとき、
  330nm≦InW≦400nm、65nm≦InD≦75nm
 波長650nmのとき、
  330nm≦InW≦400nm、75nm≦InD≦85nm
 波長700nmのとき、
  330nm≦InW≦400nm、85nm≦InD≦95nm
Preferably, the groove width InW and the depth InD of the in-groove portion 121L are defined as follows according to the wavelength λ of the guide light.
When the wavelength is 600 nm,
330 nm ≦ InW ≦ 400 nm, 65 nm ≦ InD ≦ 75 nm
When the wavelength is 650 nm,
330 nm ≦ InW ≦ 400 nm, 75 nm ≦ InD ≦ 85 nm
When the wavelength is 700 nm,
330 nm ≦ InW ≦ 400 nm, 85 nm ≦ InD ≦ 95 nm
 この場合、600≦λ≦700において、上記(1)、(2)式は、以下のように変形される。
 330≦InW≦400 …(1)’
 (0.2λ-55)≦InD≦(0.2λ-45) …(2)’
In this case, when 600 ≦ λ ≦ 700, the above equations (1) and (2) are modified as follows.
330 ≦ InW ≦ 400 (1) ′
(0.2λ−55) ≦ InD ≦ (0.2λ−45) (2) ′
 なお(1)’式は、イングルーブ部121L(オングルーブ部121G)のトラックピッチ(P)において、イングルーブ部121Lの溝幅InWがオングルーブ部121Gの溝幅OnWよりも大きい(広い)ことを表している。これによりオングルーブ部121Gに対するトラッキング追従性と同等以上の追従性をもってイングルーブ部121Lを走査することができる。 Note that the expression (1) ′ indicates that the groove width InW of the in-groove portion 121L is larger (wider) than the groove width OnW of the on-groove portion 121G at the track pitch (P) of the in-groove portion 121L (on-groove portion 121G). Represents. Accordingly, the in-groove portion 121L can be scanned with a tracking capability equivalent to or better than the tracking tracking capability with respect to the on-groove portion 121G.
 以下、本発明の実施例について説明するが、勿論、本発明は以下の実施例に限定されない。 Hereinafter, examples of the present invention will be described. Of course, the present invention is not limited to the following examples.
 (実施例1)
 スタンパ成形金型を用いて、外径120mm、厚さ1.1mmの円盤状のポリカーボネート製の基板(基材)を作製した。本例では、基板の半径23.5mmの位置から半径58.0mmまでの環状領域をデータ記録領域とし、このデータ記録領域を螺旋状のイングルーブ部とオングルーブ部とを含むガイドトラックで構成した。上記ガイドトラックの表面に、Ag-0.2wt%In合金からなる反射層を60nmの厚さでスパッタ成膜した。反射層の形成後にイングルーブ部に相当する凹部を原子間力顕微鏡(AFM)を用いて測定したところ、溝幅(図12の「InW」に相当。以下同じ。)は330nm、溝深さ(図12の「InD」に相当。以下同じ。)は75nm、イングルーブ部のトラックピッチ(P)は0.64μmであった。
(Example 1)
A disc-shaped polycarbonate substrate (base material) having an outer diameter of 120 mm and a thickness of 1.1 mm was produced using a stamper molding die. In this example, an annular area from the position of a radius of 23.5 mm to a radius of 58.0 mm is used as a data recording area, and this data recording area is constituted by a guide track including a spiral in-groove portion and an on-groove portion. . A reflective layer made of an Ag-0.2 wt% In alloy was sputtered to a thickness of 60 nm on the surface of the guide track. When a concave portion corresponding to the in-groove portion was measured using an atomic force microscope (AFM) after formation of the reflective layer, the groove width (corresponding to “InW” in FIG. 12, the same applies hereinafter) was 330 nm, and the groove depth ( 12 corresponds to “InD” in FIG. 12 and the same applies hereinafter), and the track pitch (P) of the in-groove portion was 0.64 μm.
 次に、反射層の上に、スピンコート法により紫外線硬化樹脂を200μmの厚さで塗布した後、硬化させた。次に、SiO2およびIn23を主成分とした透明材料(厚さ25nm)、Fe34(3nm)、GeBi-O(30nm)、SiO2およびIn23を主成分とした透明材料(厚さ25nm)の順でスパッタリング法により積層成膜した記録層を形成した。最後に、記録層の上に、スピンコート法により紫外線硬化樹脂を100μmの厚さで塗布した後、硬化させて、カバー層(保護層)を形成した。 Next, an ultraviolet curable resin was applied on the reflective layer in a thickness of 200 μm by spin coating, and then cured. Next, a transparent material (thickness 25 nm) mainly composed of SiO 2 and In 2 O 3 , Fe 3 O 4 (3 nm), GeBi—O (30 nm), mainly composed of SiO 2 and In 2 O 3 A recording layer was formed by laminating the layers in the order of transparent material (thickness 25 nm) by sputtering. Finally, an ultraviolet curable resin was applied on the recording layer to a thickness of 100 μm by spin coating, and then cured to form a cover layer (protective layer).
 続いて、以上のようにして作製された光記録媒体の記録層に、パルステック工業(株)製の光ディスクドライブユニット「ODU-1000」を用いて、1-7PP(Parity preserve/ Prohibit repeated minimum transition length)変調方式でフォーマットデータを記録した。このとき、光記録媒体を線速度9.84m/sで回転させ、波長650nm、出力0.3mWのレーザ光(ガイド光)をイングルーブ部に集光してトラッキング追従制御を実行しながら、波長405nm、出力20mWのレーザ光(記録光)を当該イングルーブ部に対応する記録層の領域に集光して記録ピットを形成した。そして、イングルーブ部に対応する記録層の領域に記録ピット(記録マーク)を形成後、当該記録ピットを波長405nm、出力80mWのレーザ光(再生光)でトラックずれを評価した。トラックずれは、再生信号の劣化の度合いで評価した。評価指標にはSER(Symbol Error Rate)の計測値を用い、その値が1E-3(1.0×10-3)を良否の基準とした。 Subsequently, 1-7PP (Parity preserve / Prohibit repeated minimum transition length) is used for the recording layer of the optical recording medium manufactured as described above, using an optical disc drive unit “ODU-1000” manufactured by Pulstec Industrial Co., Ltd. ) Format data was recorded by the modulation method. At this time, the optical recording medium is rotated at a linear velocity of 9.84 m / s, and a laser beam (guide light) having a wavelength of 650 nm and an output of 0.3 mW is condensed on the in-groove portion, and tracking tracking control is performed. A laser beam (recording light) having a wavelength of 405 nm and an output of 20 mW was focused on a recording layer region corresponding to the in-groove portion to form a recording pit. Then, after forming recording pits (recording marks) in the region of the recording layer corresponding to the in-groove portion, track deviation was evaluated for the recording pits with laser light (reproducing light) having a wavelength of 405 nm and an output of 80 mW. The track deviation was evaluated based on the degree of deterioration of the reproduction signal. A measured value of SER (Symbol Error Rate) was used as an evaluation index, and the value of 1E-3 (1.0 × 10 −3 ) was used as a criterion for quality.
 評価の結果、SERの値は4.2E-4(4.2×10-4)であり、良好な結果が得られた。 As a result of the evaluation, the value of SER was 4.2E-4 (4.2 × 10 −4 ), and a good result was obtained.
 (実施例2)
 イングルーブ部の溝幅(InW)を360nm、溝深さ(InD)を75nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は2.3E-4(2.3×10-4)であり、良好な結果が得られた。
(Example 2)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 75 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 2.3E-4 (2.3 × 10 −4 ), and a good result was obtained.
 (実施例3)
 イングルーブ部の溝幅(InW)を400nm、溝深さ(InD)を75nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は3.4E-4(3.4×10-4)であり、良好な結果が得られた。
(Example 3)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 75 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 3.4E-4 (3.4 × 10 −4 ), and a good result was obtained.
 (実施例4)
 イングルーブ部の溝幅(InW)を330nm、溝深さ(InD)を80nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は2.5E-4(2.5×10-4)であり、良好な結果が得られた。
Example 4
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 80 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 2.5E-4 (2.5 × 10 −4 ), and a good result was obtained.
 (実施例5)
 イングルーブ部の溝幅(InW)を360nm、溝深さ(InD)を80nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.9E-4(1.9×10-4)であり、良好な結果が得られた。
(Example 5)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 80 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 1.9E-4 (1.9 × 10 −4 ), and a good result was obtained.
 (実施例6)
 イングルーブ部の溝幅(InW)を400nm、溝深さ(InD)を80nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は2.0E-4(2.0×10-4)であり、良好な結果が得られた。
(Example 6)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 80 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 2.0E-4 (2.0 × 10 −4 ), and a good result was obtained.
 (実施例7)
 イングルーブ部の溝幅(InW)を330nm、溝深さ(InD)を85nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は5.6E-4(5.6×10-4)であり、良好な結果が得られた。
(Example 7)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 85 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 5.6E-4 (5.6 × 10 −4 ), and a good result was obtained.
 (実施例8)
 イングルーブ部の溝幅(InW)を360nm、溝深さ(InD)を85nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は4.1E-4(4.1×10-4)であり、良好な結果が得られた。
(Example 8)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 85 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 4.1E-4 (4.1 × 10 −4 ), and a good result was obtained.
 (実施例9)
 イングルーブ部の溝幅(InW)を400nm、溝深さ(InD)を85nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は5.1E-4(5.1×10-4)であり、良好な結果が得られた。
Example 9
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 85 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 5.1E-4 (5.1 × 10 −4 ), and a good result was obtained.
 (実施例10)
 イングルーブ部の溝幅(InW)を280nm、溝深さ(InD)を65nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は8.2E-4(8.2×10-4)であり、良好な結果が得られた。
(Example 10)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 65 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 8.2E-4 (8.2 × 10 −4 ), and a good result was obtained.
 (実施例11)
 イングルーブ部の溝幅(InW)を300nm、溝深さ(InD)を65nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は7.1E-4(7.1×10-4)であり、良好な結果が得られた。
(Example 11)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 65 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 7.1E-4 (7.1 × 10 −4 ), and a good result was obtained.
 (実施例12)
 イングルーブ部の溝幅(InW)を330nm、溝深さ(InD)を65nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は6.4E-4(6.4×10-4)であり、良好な結果が得られた。
Example 12
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 65 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 6.4E-4 (6.4 × 10 −4 ), and a good result was obtained.
 (実施例13)
 イングルーブ部の溝幅(InW)を360nm、溝深さ(InD)を65nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は4.7E-4(4.7×10-4)であり、良好な結果が得られた。
(Example 13)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 65 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 4.7E-4 (4.7 × 10 −4 ), and a good result was obtained.
 (実施例14)
 イングルーブ部の溝幅(InW)を400nm、溝深さ(InD)を65nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は5.5E-4(5.5×10-4)であり、良好な結果が得られた。
(Example 14)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 65 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 5.5E-4 (5.5 × 10 −4 ), and a good result was obtained.
 (実施例15)
 イングルーブ部の溝幅(InW)を430nm、溝深さ(InD)を65nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は8.9E-4(8.9×10-4)であり、良好な結果が得られた。
(Example 15)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 65 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 8.9E-4 (8.9 × 10 −4 ), and a good result was obtained.
 (実施例16)
 イングルーブ部の溝幅(InW)を280nm、溝深さ(InD)を75nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は7.7E-4(7.7×10-4)であり、良好な結果が得られた。
(Example 16)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 75 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 7.7E-4 (7.7 × 10 −4 ), and a good result was obtained.
 (実施例17)
 イングルーブ部の溝幅(InW)を300nm、溝深さ(InD)を75nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は5.5E-4(5.5×10-4)であり、良好な結果が得られた。
(Example 17)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 75 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 5.5E-4 (5.5 × 10 −4 ), and a good result was obtained.
 (実施例18)
 イングルーブ部の溝幅(InW)を430nm、溝深さ(InD)を75nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は7.4E-4(7.4×10-4)であり、良好な結果が得られた。
(Example 18)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 75 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 7.4E-4 (7.4 × 10 −4 ), and a good result was obtained.
 (実施例19)
 イングルーブ部の溝幅(InW)を280nm、溝深さ(InD)を80nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は6.0E-4(6.0×10-4)であり、良好な結果が得られた。
(Example 19)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 80 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 6.0E-4 (6.0 × 10 −4 ), and a good result was obtained.
 (実施例20)
 イングルーブ部の溝幅(InW)を300nm、溝深さ(InD)を80nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は3.1E-4(3.1×10-4)であり、良好な結果が得られた。
(Example 20)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 80 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 3.1E-4 (3.1 × 10 −4 ), and a good result was obtained.
 (実施例21)
 イングルーブ部の溝幅(InW)を430nm、溝深さ(InD)を80nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は7.7E-4(7.7×10-4)であり、良好な結果が得られた。
(Example 21)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 80 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 7.7E-4 (7.7 × 10 −4 ), and a good result was obtained.
 (実施例22)
 イングルーブ部の溝幅(InW)を280nm、溝深さ(InD)を85nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は7.0E-4(7.0×10-4)であり、良好な結果が得られた。
(Example 22)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 85 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 7.0E-4 (7.0 × 10 −4 ), and a good result was obtained.
 (実施例23)
 イングルーブ部の溝幅(InW)を300nm、溝深さ(InD)を85nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は6.1E-4(6.1×10-4)であり、良好な結果が得られた。
(Example 23)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 85 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 6.1E-4 (6.1 × 10 −4 ), and a good result was obtained.
 (実施例24)
 イングルーブ部の溝幅(InW)を430nm、溝深さ(InD)を85nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は5.3E-4(5.3×10-4)であり、良好な結果が得られた。
(Example 24)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 85 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 5.3E-4 (5.3 × 10 −4 ), and a good result was obtained.
 (実施例25)
 イングルーブ部の溝幅(InW)を280nm、溝深さ(InD)を90nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は9.0E-4(9.0×10-4)であり、良好な結果が得られた。
(Example 25)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 90 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 9.0E-4 (9.0 × 10 −4 ), and a good result was obtained.
 (実施例26)
 イングルーブ部の溝幅(InW)を300nm、溝深さ(InD)を90nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は8.1E-4(8.1×10-4)であり、良好な結果が得られた。
(Example 26)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 90 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 8.1E-4 (8.1 × 10 −4 ), and a good result was obtained.
 (実施例27)
 イングルーブ部の溝幅(InW)を330nm、溝深さ(InD)を90nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は5.6E-4(5.6×10-4)であり、良好な結果が得られた。
(Example 27)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 90 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 5.6E-4 (5.6 × 10 −4 ), and a good result was obtained.
 (実施例28)
 イングルーブ部の溝幅(InW)を360nm、溝深さ(InD)を90nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は5.5E-4(5.5×10-4)であり、良好な結果が得られた。
(Example 28)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 90 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 5.5E-4 (5.5 × 10 −4 ), and a good result was obtained.
 (実施例29)
 イングルーブ部の溝幅(InW)を400nm、溝深さ(InD)を90nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は6.3E-4(6.3×10-4)であり、良好な結果が得られた。
(Example 29)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 90 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 6.3E-4 (6.3 × 10 −4 ), and a good result was obtained.
 (実施例30)
 イングルーブ部の溝幅(InW)を430nm、溝深さ(InD)を90nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は6.9E-4(6.9×10-4)であり、良好な結果が得られた。
(Example 30)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 90 nm. When this optical recording medium was measured for SER by the same evaluation method as in Example 1, the evaluation value was 6.9E-4 (6.9 × 10 −4 ), and a good result was obtained.
 (比較例1)
 イングルーブ部の溝幅(InW)を260nm、溝深さ(InD)を60nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は3.2E-3(3.2×10-3)であり、基準を超える結果が得られた。
(Comparative Example 1)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 260 nm and the groove depth (InD) was 60 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 3.2E-3 (3.2 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例2)
 イングルーブ部の溝幅(InW)を280nm、溝深さ(InD)を60nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.9E-3(1.9×10-3)であり、基準を超える結果が得られた。
(Comparative Example 2)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 60 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.9E-3 (1.9 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例3)
 イングルーブ部の溝幅(InW)を300nm、溝深さ(InD)を60nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.6E-3(1.6×10-3)であり、基準を超える結果が得られた。
(Comparative Example 3)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 60 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.6E-3 (1.6 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例4)
 イングルーブ部の溝幅(InW)を330nm、溝深さ(InD)を60nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.1E-3(1.1×10-3)であり、基準を超える結果が得られた。
(Comparative Example 4)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 60 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.1E-3 (1.1 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例5)
 イングルーブ部の溝幅(InW)を360nm、溝深さ(InD)を60nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.1E-3(1.1×10-3)であり、基準を超える結果が得られた。
(Comparative Example 5)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 60 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.1E-3 (1.1 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例6)
 イングルーブ部の溝幅(InW)を400nm、溝深さ(InD)を60nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.3E-3(1.3×10-3)であり、基準を超える結果が得られた。
(Comparative Example 6)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 60 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.3E-3 (1.3 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例7)
 イングルーブ部の溝幅(InW)を430nm、溝深さ(InD)を60nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.5E-3(1.5×10-3)であり、基準を超える結果が得られた。
(Comparative Example 7)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 60 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.5E-3 (1.5 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例8)
 イングルーブ部の溝幅(InW)を450nm、溝深さ(InD)を60nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.7E-3(1.7×10-3)であり、基準を超える結果が得られた。
(Comparative Example 8)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 450 nm and the groove depth (InD) was 60 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.7E-3 (1.7 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例9)
 イングルーブ部の溝幅(InW)を260nm、溝深さ(InD)を65nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は2.3E-3(2.3×10-3)であり、基準を超える結果が得られた。
(Comparative Example 9)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 260 nm and the groove depth (InD) was 65 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 2.3E-3 (2.3 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例10)
 イングルーブ部の溝幅(InW)を450nm、溝深さ(InD)を65nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.3E-3(1.3×10-3)であり、基準を超える結果が得られた。
(Comparative Example 10)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 450 nm and the groove depth (InD) was 65 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.3E-3 (1.3 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例11)
 イングルーブ部の溝幅(InW)を260nm、溝深さ(InD)を75nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.9E-3(1.9×10-3)であり、基準を超える結果が得られた。
(Comparative Example 11)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 260 nm and the groove depth (InD) was 75 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.9E-3 (1.9 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例12)
 イングルーブ部の溝幅(InW)を450nm、溝深さ(InD)を75nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.3E-3(1.3×10-3)であり、基準を超える結果が得られた。
(Comparative Example 12)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 450 nm and the groove depth (InD) was 75 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.3E-3 (1.3 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例13)
 イングルーブ部の溝幅(InW)を260nm、溝深さ(InD)を80nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.4E-3(1.4×10-3)であり、基準を超える結果が得られた。
(Comparative Example 13)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 260 nm and the groove depth (InD) was 80 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.4E-3 (1.4 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例14)
 イングルーブ部の溝幅(InW)を450nm、溝深さ(InD)を80nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.2E-3(1.2×10-3)であり、基準を超える結果が得られた。
(Comparative Example 14)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 450 nm and the groove depth (InD) was 80 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.2E-3 (1.2 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例15)
 イングルーブ部の溝幅(InW)を260nm、溝深さ(InD)を85nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.8E-3(1.8×10-3)であり、基準を超える結果が得られた。
(Comparative Example 15)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 260 nm and the groove depth (InD) was 85 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.8E-3 (1.8 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例16)
 イングルーブ部の溝幅(InW)を450nm、溝深さ(InD)を85nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.2E-3(1.2×10-3)であり、基準を超える結果が得られた。
(Comparative Example 16)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 450 nm and the groove depth (InD) was 85 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.2E-3 (1.2 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例17)
 イングルーブ部の溝幅(InW)を260nm、溝深さ(InD)を90nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は2.2E-3(2.2×10-3)であり、基準を超える結果が得られた。
(Comparative Example 17)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 260 nm and the groove depth (InD) was 90 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 2.2E-3 (2.2 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例18)
 イングルーブ部の溝幅(InW)を450nm、溝深さ(InD)を90nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.1E-3(1.1×10-3)であり、基準を超える結果が得られた。
(Comparative Example 18)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 450 nm and the groove depth (InD) was 90 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.1E-3 (1.1 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例19)
 イングルーブ部の溝幅(InW)を260nm、溝深さ(InD)を100nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は2.5E-3(2.5×10-3)であり、基準を超える結果が得られた。
(Comparative Example 19)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 260 nm and the groove depth (InD) was 100 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 2.5E-3 (2.5 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例20)
 イングルーブ部の溝幅(InW)を280nm、溝深さ(InD)を100nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は2.5E-3(2.5×10-3)であり、基準を超える結果が得られた。
(Comparative Example 20)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 280 nm and the groove depth (InD) was 100 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 2.5E-3 (2.5 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例21)
 イングルーブ部の溝幅(InW)を300nm、溝深さ(InD)を100nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.7E-3(1.7×10-3)であり、基準を超える結果が得られた。
(Comparative Example 21)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 300 nm and the groove depth (InD) was 100 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.7E-3 (1.7 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例22)
 イングルーブ部の溝幅(InW)を330nm、溝深さ(InD)を100nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.2E-3(1.2×10-3)であり、基準を超える結果が得られた。
(Comparative Example 22)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 330 nm and the groove depth (InD) was 100 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.2E-3 (1.2 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例23)
 イングルーブ部の溝幅(InW)を360nm、溝深さ(InD)を100nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.1E-3(1.1×10-3)であり、基準を超える結果が得られた。
(Comparative Example 23)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 360 nm and the groove depth (InD) was 100 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.1E-3 (1.1 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例24)
 イングルーブ部の溝幅(InW)を400nm、溝深さ(InD)を100nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.1E-3(1.1×10-3)であり、基準を超える結果が得られた。
(Comparative Example 24)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 400 nm and the groove depth (InD) was 100 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.1E-3 (1.1 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例25)
 イングルーブ部の溝幅(InW)を430nm、溝深さ(InD)を100nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.2E-3(1.2×10-3)であり、基準を超える結果が得られた。
(Comparative Example 25)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 430 nm and the groove depth (InD) was 100 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.2E-3 (1.2 × 10 −3 ), and a result exceeding the standard was obtained.
 (比較例26)
 イングルーブ部の溝幅(InW)を450nm、溝深さ(InD)を100nmとした以外は、実施例1と同様の条件で光記録媒体を作製した。この光記録媒体を実施例1と同一の評価方法でSERを測定したところ、評価値は1.5E-3(1.5×10-3)であり、基準を超える結果が得られた。
(Comparative Example 26)
An optical recording medium was manufactured under the same conditions as in Example 1 except that the groove width (InW) of the in-groove portion was 450 nm and the groove depth (InD) was 100 nm. When SER was measured for this optical recording medium by the same evaluation method as in Example 1, the evaluation value was 1.5E-3 (1.5 × 10 −3 ), and a result exceeding the standard was obtained.
 以上の結果を表1にまとめて示す。表1は、イングルーブ部の溝幅および深さとSER評価値との関係を示している。 The above results are summarized in Table 1. Table 1 shows the relationship between the groove width and depth of the in-groove portion and the SER evaluation value.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、280nm≦InW≦430nm、かつ、65nm≦InD≦90nmの条件を満たす実施例1~30によれば、SER評価値が基準値(1E-3)を下回る(10のマイナス4乗オーダである)ことが確認された。これに対して上記条件を満足しない比較例1~26においては、いずれもSER評価値が基準値(1E-3)を越える結果となった。SER評価値が1E-3を越えると、再生時のエラー訂正が困難となり、再生特性が悪化する。したがって実施例1~30によれば、イングルーブ部のトラッキング追従性が高く、トラックずれを効果的に抑制することができる。 As shown in Table 1, according to Examples 1 to 30 that satisfy the conditions of 280 nm ≦ InW ≦ 430 nm and 65 nm ≦ InD ≦ 90 nm, the SER evaluation value is lower than the reference value (1E-3) (10 minus) 4th order). On the other hand, in Comparative Examples 1 to 26 that did not satisfy the above conditions, the SER evaluation value exceeded the reference value (1E-3). If the SER evaluation value exceeds 1E-3, error correction during reproduction becomes difficult and reproduction characteristics deteriorate. Therefore, according to the first to thirty-first embodiments, the tracking followability of the in-groove portion is high, and track deviation can be effectively suppressed.
 また、実施例1~9、11~14、16~24、27~30によれば、8E-4以下のSER評価値を得られることから、上記基準値(1E-3)に対して所定のマージンを確保でき、安定した記録再生特性を得ることが可能となる。 In addition, according to Examples 1 to 9, 11 to 14, 16 to 24, and 27 to 30, a SER evaluation value of 8E-4 or less can be obtained. Therefore, a predetermined value with respect to the reference value (1E-3) is obtained. A margin can be secured and stable recording / reproduction characteristics can be obtained.
 さらに、330nm≦InW≦400nm、かつ、75nm≦InD≦85nmの条件を満たす実施例1~9によれば、5.6E-4以下のSER評価値が得られることから、高精度な記録再生特性を安定して確保することができる。 Furthermore, according to Examples 1 to 9 that satisfy the conditions of 330 nm ≦ InW ≦ 400 nm and 75 nm ≦ InD ≦ 85 nm, a SER evaluation value of 5.6E-4 or less can be obtained. Can be secured stably.
 図16は、ガイド光の波長650nmにおけるイングルーブ部の溝幅および深さとNPP特性との関係を示しており、NPP値の大きさを等高線で表した図である。図中の矩形S11で囲まれた領域(280nm≦InW≦430nm、65nm≦InD≦90nm)は実施例1~30に対応し、S11内の矩形S12で囲まれた領域(330nm≦InW≦400nm、75nm≦InD≦85nm)は特にNPP値の高い領域を示しており、この範囲は実施例1~9に対応する。表1および図16から明らかなように、NPP値が高いほどSER評価値を低く抑えることができる。 FIG. 16 shows the relationship between the groove width and depth of the in-groove portion at the wavelength of 650 nm of the guide light and the NPP characteristics, and is a diagram showing the magnitude of the NPP value with contour lines. The region surrounded by the rectangle S11 in the figure (280 nm ≦ InW ≦ 430 nm, 65 nm ≦ InD ≦ 90 nm) corresponds to Examples 1 to 30, and the region surrounded by the rectangle S12 in S11 (330 nm ≦ InW ≦ 400 nm, (75 nm ≦ InD ≦ 85 nm) indicates a region having a particularly high NPP value, and this range corresponds to Examples 1 to 9. As is apparent from Table 1 and FIG. 16, the higher the NPP value, the lower the SER evaluation value.
 (実施例31)
 実施例1~30と同様にイングルーブ部の溝幅(InW)あるいは深さ(InD)が異なる複数の光記録媒体のサンプルを作製し、各サンプルについて、波長600nm、出力0.3mWのレーザ光(ガイド光)をイングルーブ部に集光し、その回折光に基づいて取得されるNPP信号の出力値を測定した。その結果を図17に示す。
(Example 31)
As in Examples 1 to 30, a plurality of samples of optical recording media having different groove widths (InW) or depths (InD) of the in-groove portions were prepared, and laser light having a wavelength of 600 nm and an output of 0.3 mW was produced for each sample. (Guide light) was condensed on the in-groove portion, and the output value of the NPP signal acquired based on the diffracted light was measured. The result is shown in FIG.
 図17において矩形S21で囲まれた領域は、280nm≦InW≦430nm、かつ、55nm≦InD≦80nmの条件を満たし、S21内の矩形S22で囲まれた領域は、330nm≦InW≦400nm、かつ、65nm≦InD≦75nmの条件を満たす。領域S21でのSER評価値は、実施例1~30と同様に、1E-3よりも低く、良好な結果が得られた。また領域S22は、S21の中でも特にNPP値の高い領域を示しており、8E-4以下のSER評価値が得られることが確認された。 In FIG. 17, the region surrounded by the rectangle S21 satisfies the conditions of 280 nm ≦ InW ≦ 430 nm and 55 nm ≦ InD ≦ 80 nm, the region surrounded by the rectangle S22 in S21 is 330 nm ≦ InW ≦ 400 nm, and The condition of 65 nm ≦ InD ≦ 75 nm is satisfied. The SER evaluation value in the region S21 was lower than 1E-3, as in Examples 1 to 30, and good results were obtained. The region S22 is a region having a particularly high NPP value in S21, and it has been confirmed that a SER evaluation value of 8E-4 or less can be obtained.
 (実施例32)
 実施例1~30と同様にイングルーブ部の溝幅(InW)あるいは深さ(InD)が異なる複数の光記録媒体のサンプルを作製し、各サンプルについて、波長700nm、出力0.3mWのレーザ光(ガイド光)をイングルーブ部に集光し、その回折光に基づいて取得されるNPP信号の出力値を測定した。その結果を図18に示す。
(Example 32)
Similar to Examples 1 to 30, a plurality of samples of optical recording media having different groove widths (InW) or depths (InD) of the in-groove portions were prepared, and laser light having a wavelength of 700 nm and an output of 0.3 mW was produced for each sample. (Guide light) was condensed on the in-groove portion, and the output value of the NPP signal acquired based on the diffracted light was measured. The result is shown in FIG.
 図18において矩形S31で囲まれた領域は、280nm≦InW≦430nm、かつ、75nm≦InD≦100nmの条件を満たし、S31内の矩形S32で囲まれた領域は、330nm≦InW≦400nm、かつ、85nm≦InD≦95nmの条件を満たす。領域S31でのSER評価値は、実施例1~30と同様に、1E-3よりも低く、良好な結果が得られた。また矩形S32で囲まれた領域は、S31の中でも特にNPP値の高い領域を示しており、8E-4以下のSER評価値が得られることが確認された。 In FIG. 18, the region surrounded by the rectangle S31 satisfies the conditions of 280 nm ≦ InW ≦ 430 nm and 75 nm ≦ InD ≦ 100 nm, the region surrounded by the rectangle S32 in S31 is 330 nm ≦ InW ≦ 400 nm, and The condition of 85 nm ≦ InD ≦ 95 nm is satisfied. The SER evaluation value in the region S31 was lower than 1E-3, as in Examples 1 to 30, and good results were obtained. The region surrounded by the rectangle S32 is a region having a particularly high NPP value in S31, and it has been confirmed that a SER evaluation value of 8E-4 or less can be obtained.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.
 例えば以上の実施形態では、複数の記録層113を有するガイド層分離型光記録媒体を例に挙げて説明したが、例えば単一の記録層を有するガイド層分離型光記録媒体に対しても本発明は適用可能である。 For example, in the above embodiment, the guide layer separation type optical recording medium having a plurality of recording layers 113 has been described as an example. However, for example, the present invention is also applied to a guide layer separation type optical recording medium having a single recording layer. The invention is applicable.
 また以上の実施形態では、図1に示した光記録システム1によって本発明に係る光記録媒体が駆動される例を説明したが、光記録システムは上記の例に限定されず、他の方式の光記録システムにも本発明は適用可能である。 In the above embodiment, the example in which the optical recording medium according to the present invention is driven by the optical recording system 1 shown in FIG. 1 is described. However, the optical recording system is not limited to the above example, The present invention can also be applied to an optical recording system.
 さらに以上の実施形態では、0.32μmのトラックピッチを有するガイドトラックを例に挙げて説明したが、トラックピッチはこれに限定されず、ランド間ピッチ(あるいはグルーブ間ピッチ)に応じて適宜のトラックピッチが適用可能である。 Further, in the above embodiment, the guide track having a track pitch of 0.32 μm has been described as an example, but the track pitch is not limited to this, and an appropriate track according to the pitch between lands (or pitch between grooves). Pitch is applicable.
 11…多層光ディスク
 110…基材
 112…ガイド層
 113…記録層
 114…中間層
 115…保護層
 121…ガイドトラック
 121G…オングルーブ部
 121L…イングルーブ部
DESCRIPTION OF SYMBOLS 11 ... Multilayer optical disk 110 ... Base material 112 ... Guide layer 113 ... Recording layer 114 ... Intermediate layer 115 ... Protective layer 121 ... Guide track 121G ... On-groove part 121L ... In-groove part

Claims (4)

  1.  イングルーブ部とオングルーブ部とを含むガイドトラックを有するガイド層と、
     前記イングルーブ部および前記オングルーブ部に対応する領域に情報を記録されることが可能な1以上の記録層と
     を具備し、
     前記イングルーブ部は、前記イングルーブ部の溝幅(前記イングルーブ部の底幅と前記イングルーブ部の開口幅との和の半値)をInW[nm]、前記イングルーブ部の深さをInD[nm]、前記ガイドトラックに集光されるレーザ光の波長をλ[nm]としたとき、
     280≦InW≦430、
     (0.2λ-65)≦InD≦(0.2λ-40)、かつ、
     600≦λ≦700
    の関係を満たす
     ガイド層分離型光記録媒体。
    A guide layer having a guide track including an in-groove portion and an on-groove portion;
    Comprising one or more recording layers capable of recording information in areas corresponding to the in-groove part and the on-groove part,
    The in-groove portion has a groove width of the in-groove portion (half value of the sum of the bottom width of the in-groove portion and the opening width of the in-groove portion) InW [nm], and the depth of the in-groove portion is InD [Nm], when the wavelength of the laser beam focused on the guide track is λ [nm],
    280 ≦ InW ≦ 430,
    (0.2λ−65) ≦ InD ≦ (0.2λ−40), and
    600 ≦ λ ≦ 700
    Guide layer separation type optical recording medium satisfying the above relationship.
  2.  請求項1に記載のガイド層分離型光記録媒体であって、
     前記イングルーブ部の溝幅InW[nm]は、
     330≦InW≦400
    の関係を満たす
     ガイド層分離型光記録媒体。
    The guide layer separation type optical recording medium according to claim 1,
    The groove width InW [nm] of the in-groove portion is
    330 ≦ InW ≦ 400
    Guide layer separation type optical recording medium satisfying the above relationship.
  3.  請求項1又は2に記載のガイド層分離型光記録媒体であって、
     前記イングルーブ部の深さInD[nm]は、
     (0.2λ-55)≦InD≦(0.2λ-45)
    の関係を満たす
     ガイド層分離型光記録媒体。
    The guide layer separation type optical recording medium according to claim 1 or 2,
    The depth InD [nm] of the in-groove portion is
    (0.2λ−55) ≦ InD ≦ (0.2λ−45)
    Guide layer separation type optical recording medium satisfying the above relationship.
  4.  請求項1から3のいずれか1項に記載のガイド層分離型光記録媒体であって、
     前記イングルーブ部の溝幅は、前記オングルーブ部の溝幅(前記オングルーブ部の最小幅と前記オングルーブ部の最大幅との和の半値)よりも広い
     ガイド層分離型光記録媒体。
    The guide layer separation type optical recording medium according to any one of claims 1 to 3,
    The guide layer separation type optical recording medium, wherein the groove width of the in-groove portion is wider than the groove width of the on-groove portion (half the sum of the minimum width of the on-groove portion and the maximum width of the on-groove portion).
PCT/JP2013/080199 2012-12-14 2013-11-08 Guide layer separation type optical recording medium WO2014091845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012273428A JP2014120182A (en) 2012-12-14 2012-12-14 Guide-layer separated optical recording medium
JP2012-273428 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091845A1 true WO2014091845A1 (en) 2014-06-19

Family

ID=50934143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080199 WO2014091845A1 (en) 2012-12-14 2013-11-08 Guide layer separation type optical recording medium

Country Status (3)

Country Link
JP (1) JP2014120182A (en)
TW (1) TW201435865A (en)
WO (1) WO2014091845A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097723A (en) * 2006-10-12 2008-04-24 Sony Corp Optical disk device, tracking control method, and optical disk
JP2008135112A (en) * 2006-11-28 2008-06-12 Ricoh Co Ltd Multilayer optical information recording medium and its manufacturing method
JP2009048686A (en) * 2007-08-16 2009-03-05 Ricoh Co Ltd Single-sided two layer optical recording medium
JP2011170936A (en) * 2010-02-22 2011-09-01 Tdk Corp Optical recording medium, optical recording and reproducing method
JP2012226809A (en) * 2011-04-21 2012-11-15 Mitsubishi Electric Corp Optical recording medium and drive unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097723A (en) * 2006-10-12 2008-04-24 Sony Corp Optical disk device, tracking control method, and optical disk
JP2008135112A (en) * 2006-11-28 2008-06-12 Ricoh Co Ltd Multilayer optical information recording medium and its manufacturing method
JP2009048686A (en) * 2007-08-16 2009-03-05 Ricoh Co Ltd Single-sided two layer optical recording medium
JP2011170936A (en) * 2010-02-22 2011-09-01 Tdk Corp Optical recording medium, optical recording and reproducing method
JP2012226809A (en) * 2011-04-21 2012-11-15 Mitsubishi Electric Corp Optical recording medium and drive unit

Also Published As

Publication number Publication date
JP2014120182A (en) 2014-06-30
TW201435865A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
US7221642B2 (en) Optical data storage medium and use of such medium
US20100027406A1 (en) Optical storage medium comprising tracks with different width and respective production method
JP2004213720A (en) Optical recording medium
WO2004093070A1 (en) Optical recording medium and recording/reproducing method therefor
JP2011081865A (en) Optical recording medium and recording method
US8339908B2 (en) Optical recording-reading method and optical recording medium
US8427932B2 (en) Optical recording medium and optical recording-reading method
US8213279B2 (en) Optical recording medium and optical recording-reading method
EP1968050A2 (en) Optical storage medium and apparatus for reading of respective data
US8588045B2 (en) Information recording method and information recording apparatus
US8913476B2 (en) Optical information recording medium having super-resolution film
JP2014017031A (en) Optical information recording medium
US8164989B2 (en) Information recording method and information recording apparatus
WO2003085658A1 (en) Optical information recording medium, and method and device for optical information recording/reproduction using same
WO2014091845A1 (en) Guide layer separation type optical recording medium
US20100097913A1 (en) Information recording method and information recording apparatus
JP2005071561A (en) Optical information recording medium and recording/reproducing device therefor
JP2012164380A (en) Optical recording and reproducing method
JP2008097794A (en) Single-side double-layer optical recording medium
WO2015019927A1 (en) Optical recording medium
JP4372776B2 (en) Optical information recording medium and optical information recording medium reproducing apparatus
JP5191198B2 (en) Optical recording medium, optical recording / reproducing system
JP4326532B2 (en) Multilayer optical recording medium
WO2014171401A1 (en) Optical recording device and maximum recording speed determination method
WO2014030545A1 (en) Optical recording device and optical recording method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862061

Country of ref document: EP

Kind code of ref document: A1