WO2014091554A1 - 熱延鋼板およびその製造方法 - Google Patents
熱延鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2014091554A1 WO2014091554A1 PCT/JP2012/082059 JP2012082059W WO2014091554A1 WO 2014091554 A1 WO2014091554 A1 WO 2014091554A1 JP 2012082059 W JP2012082059 W JP 2012082059W WO 2014091554 A1 WO2014091554 A1 WO 2014091554A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- martensite
- steel sheet
- less
- rolled steel
- hot
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a hot-rolled steel sheet and a manufacturing method thereof. More specifically, the present invention relates to a high-strength hot-rolled steel sheet excellent in elongation and hole-expandability and a method for producing the same.
- Automobile undercarriage members often have complicated shapes to ensure high rigidity. Therefore, since a plurality of processes such as burring, stretch flange process, and stretch process are performed in press forming, the hot-rolled steel sheet as a raw material is required to have workability corresponding to these. In general, burring workability and stretch flange workability are correlated with the hole expansion rate measured in the hole expansion test, and many studies have been made to increase the hole expansion rate.
- DP steel ⁇ Dual Phase steel
- DP steel ⁇ Dual Phase steel
- Patent Document 1 proposes a steel sheet that has bainite or bainitic ferrite as a main phase to ensure strength and greatly improve hole expansibility.
- the strain and stress concentration as described above do not occur, and a high hole expansion rate can be obtained.
- it becomes difficult to ensure high elongation by using single-structure steel of bainite or bainitic ferrite it is not easy to achieve both elongation and hole expansion at a high level.
- Patent Documents 2 and 3 steel sheets have been proposed that use ferrite having excellent elongation as the structure of a single-structure steel and increase the strength using carbides such as Ti and Mo (for example, Patent Documents 2 and 3).
- the steel sheet proposed in Patent Document 2 contains a large amount of Mo
- the steel sheet proposed in Patent Document 3 contains a large amount of V.
- Patent Document 4 proposes a composite structure steel plate in which martensite in DP steel is bainite and the hole expanding property is enhanced by reducing the difference in strength between the structures with ferrite.
- martensite in DP steel is bainite
- the hole expanding property is enhanced by reducing the difference in strength between the structures with ferrite.
- patent document 5 in order to have hole expansibility and a moldability, in addition to quenching and tempering of the martensite after quenching, the amount of solid solution C in the ferrite before quenching was controlled, and excellent.
- a high-strength steel sheet excellent in hole expansibility and formability that achieves both strength and hole expansibility using ductile ferrite and tempered martensite is disclosed.
- the present inventors have conducted a detailed investigation on the relationship between the structure of a DP steel having high strength and high elongation, and the relationship between elongation and hole expansibility, and a method for improving both elongation and hole expansibility with respect to conventional steel types.
- the inventors have found a technique for improving the hole expandability while maintaining high elongation of DP steel by controlling the dispersion state of martensite. That is, even in a DP structure such as ferrite and martensite that has a large strength difference and generally has low hole expansibility, the martensite area ratio and average diameter are controlled, and R / D M 2 described later.
- the relationship of ⁇ 1.00 it has been clarified that the hole expandability can be enhanced while maintaining high elongation.
- the present invention has been made on the basis of such knowledge, and the gist thereof is as follows.
- R average martensite interval ( ⁇ m) defined by the following formula (B)
- D M martensite average diameter ( ⁇ m)
- R ⁇ 12.5 ⁇ ( ⁇ / 6V M ) 0.5 ⁇ (2/3) 0.5 ⁇ ⁇ D M
- V M Martensite area ratio (%)
- D M Martensite average diameter ( ⁇ m) (2)
- the chemical composition is at least one of Nb: 0.005 to 0.06% and Ti: 0.02 to 0.20% by mass%. You may contain.
- the chemical composition is mass%, V: 0.02 to 0.20%, W: 0.1 to 0.5%, and Mo: At least one of 0.05 to 0.40% may be contained.
- the chemical composition is, in mass%, Cr: 0.01 to 1.0%, Cu: 0.1 to It may contain at least one of 1.2%, Ni: 0.05 to 0.6% and B: 0.0001 to 0.005%.
- the chemical composition is% by mass, REM: 0.0005 to 0.01%, and Ca: 0.0005 to You may contain at least 1 sort (s) of 0.01%.
- the slab having the chemical composition according to any one of (1) to (5) above is subjected to multi-pass rough rolling after having been set to 1150 to 1300 ° C.
- a rough rolling step in which four passes or more are rolled in a temperature range of 1000 to 1050 ° C. and a total rolling reduction of 30% or more to form a rough bar; and when rolling starts on the rough bar within 60 seconds after completion of the rough rolling
- the average is a diagram showing the relationship between divided by R / D M 2 and the hole expanding ratio by the square of the martensite intervals R martensite average diameter D M (%). It is a diagram showing the relationship between the martensite number above the circle equivalent diameter 3 ⁇ m at a depth position of 1/4 of the sheet thickness of the steel sheet from the steel sheet surface density N M (pieces / 10000 2) and hole expansion ratio (%).
- DP steel is a steel sheet in which hard martensite is dispersed in soft ferrite, and it achieves high elongation despite its high strength.
- strain and stress concentration due to the difference in strength between ferrite and martensite occurs, and voids that cause ductile fracture are likely to be generated. For this reason, the hole expandability is very low.
- no detailed investigation on void formation behavior has been conducted, and the relationship between the microstructure and ductile fracture of DP steel has not always been clear.
- the present inventors conducted a detailed investigation on the relationship between the structure and void generation behavior and the relationship between void generation behavior and hole expansibility in DP steel having various structural configurations.
- the martensite dispersion state which is a hard second phase structure, has a great influence on the hole expandability of DP steel.
- the value obtained by dividing the average martensite interval obtained by the formula (1) by the square of the average diameter of martensite to 1.00 or more, even in a structure having a large inter-structure strength difference such as DP steel. It has been found that high hole expandability can be obtained.
- the void formation is delayed due to the refinement of the martensite size. This is thought to be due to the fact that martensite becomes smaller and the strain and stress concentration areas formed in the vicinity thereof become narrower. Moreover, when the space
- FIG. 1 showing the relationship between the martensite average diameter ( ⁇ m) D M and martensite area fraction V M (%), by controlling the area ratio and the size of the martensite in a range It was found that high hole expandability can be obtained.
- the numerical value in a parenthesis shows a hole expansion rate (%).
- R average martensite interval ( ⁇ m) defined by the following formula (2)
- D M martensite average diameter ( ⁇ m)
- R ⁇ 12.5 ⁇ ( ⁇ / 6V M ) 0.5 ⁇ (2/3) 0.5 ⁇ ⁇ D M
- V M Martensite area ratio (%)
- D M Martensite average diameter ( ⁇ m)
- Equation (1) represents the difficulty of void formation and connection
- the average martensite spacing R obtained by equation (2) is divided by the square of the average diameter of martensite from the area ratio and average diameter of martensite. It has a shape.
- the average diameter of martensite means the arithmetic average of martensite having an equivalent circle diameter of 1.0 ⁇ m or more. This is because martensite having a thickness of less than 1.0 ⁇ m does not affect the formation and connection of voids. As the distance between martensites increases, voids generated from martensite become harder to be connected, and void generation and connection are suppressed due to the refinement of martensite.
- FIG. 3 shows the relationship between the martensite number density N M (pieces / 10000 ⁇ m 2 ) having an equivalent circle diameter of 3 ⁇ m or more and the hole expansion ratio (%) at a depth position of 1 ⁇ 4 of the thickness of the steel sheet from the steel sheet surface.
- N M pieces / 10000 ⁇ m 2
- the hole expansion ratio (%) at a depth position of 1 ⁇ 4 of the thickness of the steel sheet from the steel sheet surface.
- the martensite number density of the circle equivalent diameter of 3 ⁇ m or more at the 1/4 thickness position of the plate thickness needs to be 5.0 pieces / 10,000 ⁇ m 2 or less.
- C 0.030-0.10% C is an important element that generates martensite and contributes to strengthening. If the C content is less than 0.030%, it is difficult to generate martensite. Therefore, the C content is 0.030% or more. Preferably it is 0.04% or more. On the other hand, if the C content exceeds 0.10%, the area ratio of martensite increases and the hole expansibility decreases. Therefore, the C content is 0.10% or less. Preferably it is 0.07% or less.
- Si and Al are important elements involved in strengthening ferrite and producing ferrite. If the total content of Si and Al is less than 0.100%, the generation of ferrite becomes insufficient, and it becomes difficult to obtain the target microstructure. Therefore, the total content of Si and Al is 0.100% or more. Preferably it is 0.5% or more, More preferably, it is 0.8% or more. On the other hand, even if the total content of Si and Al exceeds 2.5%, the effect is saturated and the cost increases. Therefore, the total content of Si and Al is 2.5% or less. Preferably it is 1.5% or less, More preferably, it is 1.3% or less.
- Si has higher ferrite strengthening ability than Al, and can strengthen ferrite more efficiently.
- the Si content is preferably 0.30% or more. More preferably, it is 0.60% or more.
- the Si content is preferably 2.0% or less. More preferably, it is 1.5% or less.
- Al has the effect of promoting the strengthening of ferrite and the formation of ferrite in the same manner as Si, and therefore it is possible to suppress the Si content by increasing the Al content. It becomes easy to suppress generation. Therefore, from such a viewpoint, the Al content is preferably 0.010% or more. More preferably, it is 0.040% or more.
- the Al content is preferably less than 0.300%. More preferably, it is less than 0.200%.
- P 0.04% or less
- P is an element generally contained as an impurity, and when it exceeds 0.04%, embrittlement of the weld becomes significant. Therefore, the P content is 0.04% or less.
- the lower limit of the P content is not particularly defined, it is economically disadvantageous to make it less than 0.0001%. Therefore, the P content is preferably 0.0001% or more.
- Nb and Ti are elements related to precipitation strengthening of ferrite. Therefore, you may contain 1 type or 2 types of these elements. However, if Nb is contained in excess of 0.06%, the ferrite transformation is significantly delayed and the elongation deteriorates. Therefore, the Nb content is 0.06% or less. Preferably it is 0.03% or less, More preferably, it is 0.025% or less. Further, when Ti is contained in an amount exceeding 0.20%, ferrite is excessively strengthened and high elongation cannot be obtained. Therefore, the Ti content is 0.20% or less. Preferably it is 0.16% or less, More preferably, it is 0.14% or less.
- the Nb content is preferably 0.005% or more, more preferably 0.01% or more, and particularly preferably 0.015% or more.
- the Ti content is preferably 0.02% or more, more preferably 0.06% or more, and particularly preferably 0.08% or more.
- Cr Cr: 0 to 1.0%) (Cu: 0 to 1.2%) (Ni: 0-0.6%) (B: 0 to 0.005%)
- Cr, Cu, Ni, and B are elements that have the effect of increasing the strength of steel. Therefore, at least one of these elements may be contained. However, when it contains excessively, moldability may be deteriorated. Therefore, the Cr content is 1.0% or less, the Cu content is 1.2% or less, the Ni content is 0.6% or less, and the B content is 0.005% or less. In order to more reliably obtain the effect of increasing the strength, the Cr content is preferably 0.01% or more, the Cu content is preferably 0.01% or more, and the Ni content is 0.01%. % Or more, and the B content is preferably 0.0001% or more.
- Martensite 3 to 15.0%
- Martensite is an important organization for securing strength and elongation.
- the area ratio of martensite is less than 3%, it is difficult to ensure excellent uniform elongation. Therefore, the martensite area ratio is set to 3% or more.
- the martensite area ratio exceeds 15%, the hole expandability deteriorates. Therefore, the martensite area ratio is set to 15.0% or less.
- the number density of martensite having an average diameter of 3 ⁇ m or more is set to 5.0 / 10,000 ⁇ m 2 or less.
- the hot-rolled steel sheet of the present invention preferably has a tensile strength of 590 MPa or more. More preferably, it is 630 MPa or more, and particularly preferably 740 MPa or more.
- steel is melted by a conventional method, and a slab is manufactured by casting, and in some cases, rolling in pieces. Casting is preferably continuous casting from the viewpoint of productivity.
- the slab is subjected to multi-pass rough rolling, and the final four passes or more are rolled into a rough bar at a temperature range of 1000 to 1050 ° C. and a total reduction of 30% or more.
- it is important to refine austenite in the hot rolling process. For this purpose, it is effective to recrystallize austenite repeatedly in the rough rolling step before finish rolling.
- the grain growth after recrystallization is remarkably fast, so it is difficult to make austenite fine.
- the next reduction is performed without being completely recrystallized, and the grain sizes in the non-recrystallized portion and the recrystallized portion become nonuniform.
- the number density of martensite having an average diameter of 3 ⁇ m or more increases.
- the total rolling reduction is less than 30%, it cannot be sufficiently miniaturized.
- the austenite grain size becomes non-uniform, and as a result, coarse martensite is generated. Therefore, the above slab is rolled into a rough bar by multi-pass rough rolling by rolling the final four passes or more at a temperature range of 1000 to 1050 ° C. and a total rolling reduction of 30% or more.
- the rough bar starts rolling within 60 seconds after completion of the rough rolling, and is subjected to finish rolling that completes rolling in a temperature range of 850 to 950 ° C. to obtain a finish rolled steel sheet.
- finish rolling that completes rolling in a temperature range of 850 to 950 ° C. to obtain a finish rolled steel sheet.
- austenite becomes coarse. Therefore, the time from the completion of rough rolling to the start of finish rolling is within 60 seconds.
- the finishing temperature exceeds 950 ° C., the austenite after finishing rolling is coarsened, so that the number of ferrite transformation nucleation sites decreases and the ferrite transformation is significantly delayed. Therefore, the finishing temperature is 950 ° C. or lower.
- the finishing temperature is less than 850 ° C., the rolling load increases. Therefore, the finishing temperature is 850 ° C. or higher.
- the secondary cooling rate is an average cooling rate of 30 ° C./s or more. If the secondary cooling rate is less than 30 ° C./s, the bainite transformation proceeds excessively during cooling, and the area ratio of ferrite cannot be obtained sufficiently, so the uniform elongation deteriorates.
- the upper limit is not particularly defined, but if it exceeds 100 ° C./s, the equipment cost becomes excessive, which is not preferable.
- a sample was collected from the obtained steel plate, and the metal structure at a thickness of 1/4 was observed using an optical microscope.
- the plate thickness cross section in the rolling direction was polished as an observation surface and etched with a Nital reagent and a repeller reagent.
- the area ratio of ferrite and the area ratio of pearlite were determined by image analysis from an optical micrograph at a magnification of 500 times etched with a Nital reagent. Further, the area ratio and average diameter of martensite were determined by image analysis from an optical micrograph having a magnification of 500 times etched with a repeller reagent.
- the average diameter is the number average of equivalent circle diameters of each martensite grain. Martensite grains of less than 1.0 ⁇ m were excluded from the count.
- the area ratio of bainite was determined as the balance of ferrite, pearlite, and martensite.
- Tensile strength (TS) was evaluated in accordance with JIS Z 2241: 2011 using a JIS Z 2201: 1998 No. 5 test piece taken in a direction perpendicular to the rolling direction from a 1/4 position in the sheet width direction. Uniform elongation (u-El) and total elongation (t-El) were measured along with tensile strength (TS). The hole expansion test was evaluated according to the test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996. Tables 5 and 6 show the structure and mechanical properties of the steel sheet. Table 5 In Table 6, V F is ferrite, V B is bainite, V P pearlite, V M is the respective area ratio% of martensite. D M is martensite average diameter ( ⁇ m), N M is martensite number density of 2 per 10000 ⁇ m above circle equivalent diameter 3 ⁇ m in 1/4 of the depth position of the sheet thickness of the steel sheet from the steel sheet surface.
- Experimental Examples 3 to 8, 16, 18, 19, 21, 22, 24, 26 to 28, 30 to 32, 37, 39, 40, and 42 to 48 are examples of the present invention.
- the chemical composition, production conditions, and microstructure of the steel composition satisfy the requirements of the present invention, and both the elongation and the hole expandability are excellent.
- Experimental Examples 1, 2, 9 to 15, 17, 20, 23, 25, 29, 33 to 36, 38, and 41 are comparative examples. In these comparative examples, the effect could not be obtained for the following reason.
- Example 11 the ferrite transformation did not proceed sufficiently due to the air cooling time being too short. For this reason, the ferrite fraction was less than 80% and the uniform elongation was low.
- Experimental Example 17 is a steel No. with a high C content. Due to the use of I, the martensite area ratio was high. For this reason, the hole expandability was low.
- Experimental Example 23 is a steel No. having a low Si + Al content. Due to the use of O, the ferrite transformation did not proceed sufficiently. For this reason, the uniform elongation was low.
- Experimental example 38 is steel No. with low C content. Due to the use of Y, the area ratio of martensite was less than 3%. For this reason, the uniform elongation was low.
- Experimental example 41 is a steel No. with a low Mn content. Martensite was not generated due to the use of AC. For this reason, the uniform elongation was low.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
(1)本発明の第一の態様は、質量%で、C:0.030~0.10%、Mn:0.5~2.5%、Si+Al:0.100~2.5%、P:0.04%以下、S:0.01%以下、N:0.01%以下、Nb:0~0.06%、Ti:0~0.20%、V:0~0.20%、W:0~0.5%、Mo:0~0.40%、Cr:0~1.0%、Cu:0~1.2%、Ni:0~0.6%、B:0~0.005%、REM:0~0.01%、Ca:0~0.01%、を含有し、残部がFeおよび不純物からなる化学組成を有し、面積率で、フェライト:80%以上、マルテンサイト:3~15.0%、パーライト:3.0%未満を有し、鋼板表面から鋼板の板厚の1/4の深さ位置における円相当直径3μm以上のマルテンサイトの個数密度が5.0個/10000μm2以下であり、さらに下記式(A)を満たすミクロ組織を有する熱延鋼板である。
R/DM 2≧1.00 ・・・式(A)
ここで、R:下記式(B)で規定する平均マルテンサイト間隔(μm)、DM:マルテンサイト平均直径(μm)
R={12.5×(π/6VM)0.5-(2/3)0.5}×DM ・・・式(B)
ここで、VM:マルテンサイト面積率(%)、DM:マルテンサイト平均直径(μm)
(2)上記(1)に記載の熱延鋼板では、前記化学組成が、質量%で、Nb:0.005~0.06%およびTi:0.02~0.20%の少なくとも1種を含有してもよい。
(3)上記(1)又は(2)に記載の熱延鋼板では、前記化学組成が、質量%で、V:0.02~0.20%、W:0.1~0.5%およびMo:0.05~0.40%の少なくとも1種を含有してもよい。
(4)上記(1)~(3)のいずれか一項に記載の熱延鋼板では、前記化学組成が、質量%で、Cr:0.01~1.0%、Cu:0.1~1.2%、Ni:0.05~0.6%およびB:0.0001~0.005%の少なくとも1種を含有してもよい。
(5)上記(1)~(4)のいずれか一項に記載の熱延鋼板では、前記化学組成が、質量%で、REM:0.0005~0.01%およびCa:0.0005~0.01%の少なくとも1種を含有してもよい。
(6)本発明の第二の態様は、上記(1)~(5)のいずれか一項に記載の化学組成を有するスラブを1150~1300℃とした後に多パス粗圧延に供し、最終の4パス以上を1000~1050℃の温度域かつ30%以上の合計圧下率で圧延して粗バーとする粗圧延工程と;前記粗バーに、前記粗圧延完了後60秒間以内に圧延を開始するととともに、850~950℃の温度域で圧延を完了する仕上圧延を施して仕上圧延鋼板を得る仕上圧延工程と;前記仕上圧延鋼板を50℃/s以上の平均冷却速度で600~750℃の温度域に冷却し、5~10秒間空冷した後、30℃/s以上の平均冷却速度で400℃以下の温度域まで冷却して巻き取り、熱延鋼板を得る冷却及び巻取工程と;を有する熱延鋼板の製造方法である。
R/DM 2≧1.00 ・・・式(1)
ここで、R:下記式(2)で規定する平均マルテンサイト間隔(μm)、DM:マルテンサイト平均直径(μm)
R={12.5×(π/6VM)0.5-(2/3)0.5}×DM ・・・式(2)
ここで、VM:マルテンサイト面積率(%)、DM:マルテンサイト平均直径(μm)
Cはマルテンサイトを生成させ、強化に寄与する重要な元素である。C含有量が0.030%未満では、マルテンサイトを生成させることが困難となる。したがって、C含有量は0.030%以上とする。好ましくは0.04%以上である。一方、C含有量が0.10%を超えると、マルテンサイトの面積率が高まり、穴広げ性が低下する。したがって、C含有量は0.10%以下とする。好ましくは0.07%以下である。
Mnはフェライトの強化および焼き入れ性に関わる重要な元素である。Mn含有量が0.5%未満では、焼き入れ性を高め、マルテンサイトを生成させることが困難である。したがって、Mn含有量は0.5%以上とする。好ましくは0.8%以上、さらに好ましくは1.0%以上である。一方、Mn含有量が2.5%を超えると、フェライトを十分に生成させることが困難となる。したがって、Mn含有量は2.5%以下とする。好ましくは2.0%以下、さらに好ましくは1.5%以下である。
SiおよびAlはフェライトの強化およびフェライトの生成に関わる重要な元素である。SiおよびAlの合計含有量が0.100%未満では、フェライトの生成が不十分となり、目的とするミクロ組織を得ることが困難となる。したがって、SiおよびAlの合計含有量は0.100%以上とする。好ましくは0.5%以上、さらに好ましくは0.8%以上である。一方、SiおよびAlの合計含有量を2.5%超としても、その効果が飽和し、コストが増大する。したがって、SiおよびAlの合計含有量は2.5%以下とする。好ましくは1.5%以下、さらに好ましくは1.3%以下である。
ここで、SiはAlに比してフェライトの強化能が高く、フェライトをより効率的に強化することが可能である。したがって、フェライトの効率的な強化を図る観点からは、Si含有量は0.30%以上とすることが好ましい。さらに好ましくは0.60%以上である。一方、Si含有量が高いと、鋼板表面に赤色スケールが生成し、美観性が失われる場合がある。したがって、赤色スケールの生成を抑制する観点からは、Si含有量は2.0%以下とすることが好ましい。さらに好ましくは1.5%以下である。
また、Alは、Siと同様にフェライトの強化およびフェライトの生成を促進する作用を有することから、Al含有量を高めることによりSi含有量を抑制することが可能となり、その結果、上記赤色スケールの生成を抑制することが容易になる。したがって、斯かる観点より、Al含有量は0.010%以上とすることが好ましい。さらに好ましくは0.040%以上である。一方、上述したようにフェライトの強化を図る観点からはSi含有量を高めることが好ましい。したがって、斯かる観点からはAl含有量は0.300%未満とすることが好ましい。さらに好ましくは0.200%未満である。
Pは、一般に不純物として含有される元素であり、0.04%を超えると溶接部の脆化が顕著になる。したがって、P含有量は0.04%以下とする。P含有量の下限値は特に定めないが、0.0001%未満とすることは、経済的に不利である。したがって、P含有量は0.0001%以上とすることが好ましい。
Sは、一般に不純物として含有される元素であり、溶接性、鋳造時および熱延時の製造性に悪影響を及ぼす。したがって、S含有量は0.01%以下とする。また、Sを過剰に含有すると、粗大なMnSを形成し、穴広げ性を低下させることから、穴広げ性向上のためには、S含有量を低減することが好ましい。S含有量の下限値は特に定めないが、0.0001%未満とすることは、経済的に不利である。したがって、S含有量は0.0001%以上とすることが好ましい。
Nは、一般に不純物として含有される元素であり、N含有量が0.01%を超えると、粗大な窒化物を形成し、曲げ性や穴広げ性を劣化させる。したがって、N含有量は0.01%以下とする。また、Nの含有量が増加すると、溶接時のブローホール発生の原因になることから低減することが好ましい。N含有量の下限は、少ない方が望ましく特に定めないが、N含有量を0.0005%未満とするには、製造コストが上昇する。したがって、N含有量は0.0005%以上とすることが好ましい。
(Ti:0~0.20%)
NbおよびTiはフェライトの析出強化に関する元素である。したがって、これらの元素の1種または2種を含有させてもよい。しかし、Nbを0.06%を超えて含有させるとフェライト変態が大幅に遅延し、伸びが劣化してしまう。したがって、Nb含有量は0.06%以下とする。好ましくは0.03%以下、さらに好ましくは0.025%以下である。また、Tiを0.20%を超えて含有させるとフェライトが過剰に強化され、高い伸びが得られなくなる。したがって、Ti含有量は0.20%以下とする。好ましくは0.16%以下、さらに好ましくは0.14%以下である。フェライトをより確実に強化するには、Nb含有量は0.005%以上とすることが好ましく、0.01%以上とすることがさらに好ましく、0.015%以上とすることが特に好ましい。また、Ti含有量は0.02%以上とすることが好ましく、0.06%以上とすることがさらに好ましく、0.08%以上とすることが特に好ましい。
(W:0~0.5%)
(Mo:0~0.40%)
V、WおよびMoは強化に寄与する元素である。したがって、これらの元素の少なくとも1種を含有させてもよい。しかし、過剰に含有すると成形性が劣化する場合がある。したがって、V含有量は0.20%以下、W含有量は0.5%以下、Mo含有量は0.40%以下とする。高強度化の効果をより確実に得るにはV含有量は0.02%以上とすることが好ましく、W含有量は0.02%以上とすることが好ましく、Mo含有量は0.01%以上とすることが好ましい。
(Cu:0~1.2%)
(Ni:0~0.6%)
(B:0~0.005%)
Cr、Cu、NiおよびBは鋼を高強度化する作用を有する元素である。したがって、これらの元素の少なくとも1種を含有させてもよい。しかし、過剰に含有すると成形性の劣化を招く場合がある。したがって、Cr含有量は1.0%以下、Cu含有量は1.2%以下、Ni含有量は0.6%以下、B含有量は0.005%以下とする。高強度化の効果をより確実に得るには、Cr含有量は0.01%以上とすることが好ましく、Cu含有量は0.01%以上とすることが好ましく、Ni含有量は0.01%以上とすることが好ましく、B含有量は0.0001%以上とすることが好ましい。
(Ca:0~0.01%)
REMおよびCaは、酸化物や硫化物の形態の制御に有効な元素である。したがって、これらの元素の1種または2種を含有させてもよい。しかし、いずれの元素もその含有量が過剰になると成形性を損なう場合がある。したがって、REM含有量は0.01%以下、Ca含有量は0.01%以下とする。酸化物や硫化物の形態をより確実に制御するには、REM含有量は0.0005%以上とすることが好ましく、Ca含有量は0.0005%以上とすることが好ましい。なお本発明において、REMとはLaおよびランタノイド系列の元素を指すものであり、ミッシュメタルにて添加されることが多く、LaやCe等の系列の元素を複合で含有する。金属Laや金属Ceを含有してもよい。
残部はFeおよび不純物である。
(フェライト:80%以上)
フェライトは伸びを確保する上で最も重要な組織である。フェライトの面積率が80%未満では従来のDP鋼が有する高い伸びを実現することができない。したがって、フェライトの面積率は80%以上とする。一方、フェライト面積率の上限は、後述するようにマルテンサイトの面積率によって決定され、フェライト面積率が97%を超えると、マルテンサイトが過少となるため、マルテンサイトによる強化を活用することが困難となる。なお、その他の手法、たとえば析出強化量を高めることで強度を確保したとしても均一伸びが低下してしまうため、高い伸びを得ることが困難である。
(平均直径3μm以上のマルテンサイトの個数密度:5.0個/10000μm2以下)
マルテンサイトは強度および伸びを確保する上で重要な組織である。マルテンサイトの面積率が3%未満になると、優れた均一伸びを確保することが難しい。したがって、マルテンサイト面積率は3%以上とする。一方、マルテンサイト面積率が15%を超えると穴広げ性が劣化する。したがって、マルテンサイト面積率は15.0%以下とする。
また、粗大なマルテンサイトが存在すると、局所的に破壊が進行し、穴広げ性が低下する。これを抑制するために平均直径3μm以上のマルテンサイトの個数密度を5.0個/10000μm2以下とする。
パーライトは穴広げ性を劣化させるため、存在しないことが好ましい。ただし、面積率3.0%未満であれば実害はないため、これを上限として許容する。
その他の組織としてベイナイトが存在しても良い。ベイナイトは必須ではなく、面積率0%でも構わない。ベイナイトは高強度化に寄与する組織である。但し、多量に活用して高強度化すると、上記フェライト面積率を確保することが困難となり、高い伸びを達成することができなくなる。
粗大なマルテンサイトの生成を抑制するには、熱延工程においてオーステナイトを微細化することが重要である。これには仕上圧延前の粗圧延工程においてオーステナイトを繰り返し再結晶させることが効果的である。ここで、1050℃超の温度域の圧延では再結晶後の粒成長が著しく速いため、オーステナイトを微細化することが困難である。一方、1000℃未満の温度域の圧延では完全に再結晶しないまま次の圧下が行われ、未再結晶部分と再結晶部分での粒径が不均一となる。その結果、平均直径3μm以上のマルテンサイト個数密度が増加する。また、合計圧下率が30%未満では十分に微細化することができない。また、30%以上の合計圧下率で圧延を行っても、圧下パス数が4回未満ではオーステナイト粒径が不均一になり、その結果、粗大なマルテンサイトが生成する。
したがって、上記スラブは多パス粗圧延により、最終の4パス以上を1000~1050℃の温度域かつ30%以上の合計圧下率で圧延して粗バーとする。
上述したように、粗大なマルテンサイトの生成を抑制するには、熱延工程においてオーステナイトを微細化することが重要であるところ、上記粗圧延を行っても、粗圧延完了後仕上圧延開始までの時間が60秒間を超えるとオーステナイトが粗大化してしまう。したがって、粗圧延完了後仕上圧延開始までの時間は60秒間以内とする。
仕上温度が950℃を超えると仕上圧延完了後のオーステナイトが粗大化するため、フェライト変態の核生成サイトが減少し、フェライト変態が大幅に遅延する。したがって、仕上温度は950℃以下とする。一方、仕上温度が850℃未満では圧延負荷が大きくなる。したがって、仕上温度は850℃以上とする。
Claims (6)
- 質量%で、
C:0.030~0.10%、
Mn:0.5~2.5%、
Si+Al:0.100~2.5%、
P:0.04%以下、
S:0.01%以下、
N:0.01%以下、
Nb:0~0.06%、
Ti:0~0.20%、
V:0~0.20%、
W:0~0.5%、
Mo:0~0.40%、
Cr:0~1.0%、
Cu:0~1.2%、
Ni:0~0.6%、
B:0~0.005%、
REM:0~0.01%、
Ca:0~0.01%、
を含有し、残部がFeおよび不純物からなる化学組成を有し、
面積率で、フェライト:80%以上、マルテンサイト:3~15.0%、パーライト:3.0%未満を有し、鋼板表面から鋼板の板厚の1/4の深さ位置における円相当直径3μm以上のマルテンサイトの個数密度が5.0個/10000μm2以下であり、さらに下記式(1)を満たすミクロ組織を有する
ことを特徴とする熱延鋼板。
R/DM 2≧1.00 ・・・式(1)
ここで、R:下記式(2)で規定する平均マルテンサイト間隔(μm)、DM:マルテンサイト平均直径(μm)
R={12.5×(π/6VM)0.5-(2/3)0.5}×DM ・・・式(2)
ここで、VM:マルテンサイト面積率(%)、DM:マルテンサイト平均直径(μm) - 前記化学組成が、質量%で、
Nb:0.005~0.06%および
Ti:0.02~0.20%
の少なくとも1種を含有することを特徴とする請求項1に記載の熱延鋼板。 - 前記化学組成が、質量%で、
V:0.02~0.20%、
W:0.1~0.5%および
Mo:0.05~0.40%
の少なくとも1種を含有することを特徴とする請求項1または請求項2に記載の熱延鋼板。 - 前記化学組成が、質量%で、
Cr:0.01~1.0%、
Cu:0.1~1.2%、
Ni:0.05~0.6%および
B:0.0001~0.005%
の少なくとも1種を含有することを特徴とする請求項1~請求項3のいずれか一項に記載の熱延鋼板。 - 前記化学組成が、質量%で、
REM:0.0005~0.01%および
Ca:0.0005~0.01%
の少なくとも1種を含有することを特徴とする請求項1~請求項4のいずれか一項に記載の熱延鋼板。 - 請求項1~5のいずれか一項に記載の化学組成を有するスラブを1150~1300℃とした後に多パス粗圧延に供し、最終の4パス以上を1000~1050℃の温度域かつ30%以上の合計圧下率で圧延して粗バーとする粗圧延工程と;
前記粗バーに、前記粗圧延完了後60秒間以内に圧延を開始するととともに、850~950℃の温度域で圧延を完了する仕上圧延を施して仕上圧延鋼板を得る仕上圧延工程と;
前記仕上圧延鋼板を50℃/s以上の平均冷却速度で600~750℃の温度域に冷却し、5~10秒間空冷した後、30℃/s以上の平均冷却速度で400℃以下の温度域まで冷却して巻き取り、熱延鋼板を得る冷却及び巻取工程と;
を有することを特徴とする熱延鋼板の製造方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014551765A JPWO2014091554A1 (ja) | 2012-12-11 | 2012-12-11 | 熱延鋼板およびその製造方法 |
CN201280077560.6A CN104838026B (zh) | 2012-12-11 | 2012-12-11 | 热轧钢板及其制造方法 |
US14/650,086 US10273566B2 (en) | 2012-12-11 | 2012-12-11 | Hot-rolled steel sheet and method for producing same |
MX2015007274A MX2015007274A (es) | 2012-12-11 | 2012-12-11 | Hoja de acero laminada en caliente y metodo de produccion de la misma. |
ES12890068.5T ES2689230T3 (es) | 2012-12-11 | 2012-12-11 | Chapa de acero laminado en caliente y método de producción de la misma |
PL12890068T PL2933346T3 (pl) | 2012-12-11 | 2012-12-11 | Blacha stalowa cienka walcowana na gorąco i sposób jej wytwarzania |
BR112015013061-5A BR112015013061B1 (pt) | 2012-12-11 | 2012-12-11 | chapa de aço laminada a quente e método de produção da mesma |
PCT/JP2012/082059 WO2014091554A1 (ja) | 2012-12-11 | 2012-12-11 | 熱延鋼板およびその製造方法 |
EP12890068.5A EP2933346B1 (en) | 2012-12-11 | 2012-12-11 | Hot-rolled steel sheet and production method therefor |
KR1020157016246A KR101744429B1 (ko) | 2012-12-11 | 2012-12-11 | 열연 강판 및 그 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/082059 WO2014091554A1 (ja) | 2012-12-11 | 2012-12-11 | 熱延鋼板およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014091554A1 true WO2014091554A1 (ja) | 2014-06-19 |
Family
ID=50933881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082059 WO2014091554A1 (ja) | 2012-12-11 | 2012-12-11 | 熱延鋼板およびその製造方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US10273566B2 (ja) |
EP (1) | EP2933346B1 (ja) |
JP (1) | JPWO2014091554A1 (ja) |
KR (1) | KR101744429B1 (ja) |
CN (1) | CN104838026B (ja) |
BR (1) | BR112015013061B1 (ja) |
ES (1) | ES2689230T3 (ja) |
MX (1) | MX2015007274A (ja) |
PL (1) | PL2933346T3 (ja) |
WO (1) | WO2014091554A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107614722A (zh) * | 2015-05-07 | 2018-01-19 | 新日铁住金株式会社 | 高强度钢板及其制造方法 |
KR20180014092A (ko) * | 2015-07-06 | 2018-02-07 | 제이에프이 스틸 가부시키가이샤 | 고강도 박강판 및 그 제조 방법 |
CN113046633A (zh) * | 2016-11-24 | 2021-06-29 | 安赛乐米塔尔公司 | 用于热压印的热轧涂覆钢板、热压印涂覆钢部件以及用于制造其的方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112018008873A8 (pt) * | 2015-11-19 | 2019-02-26 | Nippon Steel & Sumitomo Metal Corp | chapa de aço laminada a quente de alta resistência e método de fabricação da mesma |
RU2609155C1 (ru) * | 2015-12-07 | 2017-01-30 | Юлия Алексеевна Щепочкина | Сталь |
WO2017111303A1 (ko) * | 2015-12-23 | 2017-06-29 | 주식회사 포스코 | 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법 |
CN105821301A (zh) * | 2016-04-21 | 2016-08-03 | 河北钢铁股份有限公司邯郸分公司 | 一种800MPa级热轧高强度扩孔钢及其生产方法 |
CN106011618B (zh) * | 2016-06-06 | 2018-07-03 | 日照宝华新材料有限公司 | 基于esp薄板坯连铸连轧流程生产dp780钢的方法 |
KR20190003649A (ko) * | 2016-08-30 | 2019-01-09 | 신닛테츠스미킨 카부시키카이샤 | 익스팬더블 튜블러용 유정관 |
CN106498287B (zh) * | 2016-12-15 | 2018-11-06 | 武汉钢铁有限公司 | 一种ct90级连续管用热轧钢带及其生产方法 |
CN108277441B (zh) * | 2018-04-11 | 2019-12-03 | 东北大学 | 一种600MPa级Ti微合金化热轧双相钢板及其制备方法 |
CN108315663B (zh) * | 2018-04-11 | 2019-12-03 | 东北大学 | 一种540MPa级Ti微合金化热轧双相钢板及其制备方法 |
CN108411206B (zh) * | 2018-04-11 | 2020-01-21 | 东北大学 | 一种抗拉强度540MPa级薄规格热轧双相钢及其制造方法 |
CN108411207B (zh) * | 2018-04-11 | 2020-01-07 | 东北大学 | 一种抗拉强度600MPa级薄规格热轧双相钢及其制造方法 |
KR102529040B1 (ko) * | 2018-10-19 | 2023-05-10 | 닛폰세이테츠 가부시키가이샤 | 열연 강판 및 그 제조 방법 |
CN111519107B (zh) * | 2020-06-03 | 2021-11-19 | 首钢集团有限公司 | 一种增强扩孔性能的热轧酸洗低合金高强钢及其生产方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089848A (ja) | 2001-09-18 | 2003-03-28 | Nkk Corp | 加工性に優れた超高張力鋼板ならびにその製造方法および加工方法 |
JP2003193190A (ja) | 2001-12-28 | 2003-07-09 | Nippon Steel Corp | 溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板およびその製造方法 |
JP2004204326A (ja) | 2002-12-26 | 2004-07-22 | Nippon Steel Corp | 穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板及びその製造方法 |
JP2007063668A (ja) | 2005-08-05 | 2007-03-15 | Jfe Steel Kk | 高張力鋼板ならびにその製造方法 |
JP2007302918A (ja) | 2006-05-09 | 2007-11-22 | Nippon Steel Corp | 穴拡げ性と成形性に優れた高強度鋼板及びその製造方法 |
JP2010024547A (ja) * | 2008-06-16 | 2010-02-04 | Nippon Steel Corp | 穴広げ性に優れた熱延鋼板及びその製造方法 |
JP2011184788A (ja) * | 2010-03-11 | 2011-09-22 | Nippon Steel Corp | 伸びと穴拡げ性のバランスに優れた鋼板及びその製造方法 |
WO2012128228A1 (ja) * | 2011-03-18 | 2012-09-27 | 新日本製鐵株式会社 | 熱延鋼板及びその製造方法 |
JP2013019048A (ja) * | 2011-06-14 | 2013-01-31 | Nippon Steel & Sumitomo Metal Corp | 伸びと穴広げ性に優れた高強度熱延鋼板およびその製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60116765T2 (de) | 2000-01-24 | 2006-11-02 | Jfe Steel Corp. | Feuerverzinktes stahlblech und herstellungsverfahren dafür |
WO2001064967A1 (fr) | 2000-02-29 | 2001-09-07 | Kawasaki Steel Corporation | Tole d'acier laminee a froid a haute resistance presentant d'excellentes proprietes de durcissement par vieillissement par l'ecrouissage |
ATE315112T1 (de) | 2000-04-07 | 2006-02-15 | Jfe Steel Corp | Warm-, kaltgewalzte und schmelz-galvanisierte stahlplatte mit exzellentem reckalterungsverhalten |
JP3821036B2 (ja) | 2002-04-01 | 2006-09-13 | 住友金属工業株式会社 | 熱延鋼板並びに熱延鋼板及び冷延鋼板の製造方法 |
JP4304421B2 (ja) | 2002-10-23 | 2009-07-29 | 住友金属工業株式会社 | 熱延鋼板 |
TWI290586B (en) * | 2003-09-24 | 2007-12-01 | Nippon Steel Corp | Hot rolled steel sheet and method of producing the same |
JP3876879B2 (ja) | 2003-12-08 | 2007-02-07 | Jfeスチール株式会社 | 耐衝撃性に優れる自動車用高張力熱延鋼板 |
JP4404004B2 (ja) * | 2005-05-11 | 2010-01-27 | 住友金属工業株式会社 | 高張力熱延鋼板とその製造方法 |
JP4539484B2 (ja) * | 2005-08-03 | 2010-09-08 | 住友金属工業株式会社 | 高強度熱延鋼板及びその製造方法 |
JP2008138231A (ja) * | 2006-11-30 | 2008-06-19 | Nippon Steel Corp | 穴広げ性に優れた熱延複合組織鋼板およびその製造方法 |
CN101713046B (zh) * | 2009-12-14 | 2013-09-18 | 钢铁研究总院 | 纳米析出相强化及控制的超细晶粒马氏体钢的制备方法 |
WO2011135700A1 (ja) | 2010-04-28 | 2011-11-03 | 住友金属工業株式会社 | 動的強度に優れた複相熱延鋼板およびその製造方法 |
JP5765092B2 (ja) | 2010-07-15 | 2015-08-19 | Jfeスチール株式会社 | 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法 |
TWI415954B (zh) | 2010-10-27 | 2013-11-21 | China Steel Corp | High strength steel and its manufacturing method |
CN102703824A (zh) | 2012-04-20 | 2012-10-03 | 东北大学 | 屈服强度高于900MPa的非调质态热轧带钢及其制备方法 |
-
2012
- 2012-12-11 WO PCT/JP2012/082059 patent/WO2014091554A1/ja active Application Filing
- 2012-12-11 ES ES12890068.5T patent/ES2689230T3/es active Active
- 2012-12-11 EP EP12890068.5A patent/EP2933346B1/en active Active
- 2012-12-11 BR BR112015013061-5A patent/BR112015013061B1/pt not_active IP Right Cessation
- 2012-12-11 US US14/650,086 patent/US10273566B2/en active Active
- 2012-12-11 KR KR1020157016246A patent/KR101744429B1/ko active IP Right Grant
- 2012-12-11 PL PL12890068T patent/PL2933346T3/pl unknown
- 2012-12-11 MX MX2015007274A patent/MX2015007274A/es unknown
- 2012-12-11 JP JP2014551765A patent/JPWO2014091554A1/ja active Pending
- 2012-12-11 CN CN201280077560.6A patent/CN104838026B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089848A (ja) | 2001-09-18 | 2003-03-28 | Nkk Corp | 加工性に優れた超高張力鋼板ならびにその製造方法および加工方法 |
JP2003193190A (ja) | 2001-12-28 | 2003-07-09 | Nippon Steel Corp | 溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板およびその製造方法 |
JP2004204326A (ja) | 2002-12-26 | 2004-07-22 | Nippon Steel Corp | 穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板及びその製造方法 |
JP2007063668A (ja) | 2005-08-05 | 2007-03-15 | Jfe Steel Kk | 高張力鋼板ならびにその製造方法 |
JP2007302918A (ja) | 2006-05-09 | 2007-11-22 | Nippon Steel Corp | 穴拡げ性と成形性に優れた高強度鋼板及びその製造方法 |
JP2010024547A (ja) * | 2008-06-16 | 2010-02-04 | Nippon Steel Corp | 穴広げ性に優れた熱延鋼板及びその製造方法 |
JP2011184788A (ja) * | 2010-03-11 | 2011-09-22 | Nippon Steel Corp | 伸びと穴拡げ性のバランスに優れた鋼板及びその製造方法 |
WO2012128228A1 (ja) * | 2011-03-18 | 2012-09-27 | 新日本製鐵株式会社 | 熱延鋼板及びその製造方法 |
JP2013019048A (ja) * | 2011-06-14 | 2013-01-31 | Nippon Steel & Sumitomo Metal Corp | 伸びと穴広げ性に優れた高強度熱延鋼板およびその製造方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107614722A (zh) * | 2015-05-07 | 2018-01-19 | 新日铁住金株式会社 | 高强度钢板及其制造方法 |
CN107614722B (zh) * | 2015-05-07 | 2019-08-27 | 日本制铁株式会社 | 高强度钢板及其制造方法 |
KR20180014092A (ko) * | 2015-07-06 | 2018-02-07 | 제이에프이 스틸 가부시키가이샤 | 고강도 박강판 및 그 제조 방법 |
EP3321387A4 (en) * | 2015-07-06 | 2018-05-16 | JFE Steel Corporation | High-strength thin steel sheet and method for manufacturing same |
US10526678B2 (en) | 2015-07-06 | 2020-01-07 | Jfe Steel Corporation | High-strength thin steel sheet and method for manufacturing the same |
KR102064147B1 (ko) | 2015-07-06 | 2020-01-08 | 제이에프이 스틸 가부시키가이샤 | 고강도 박강판 및 그 제조 방법 |
CN113046633A (zh) * | 2016-11-24 | 2021-06-29 | 安赛乐米塔尔公司 | 用于热压印的热轧涂覆钢板、热压印涂覆钢部件以及用于制造其的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2933346A4 (en) | 2016-01-20 |
KR20150086354A (ko) | 2015-07-27 |
BR112015013061A2 (pt) | 2017-07-11 |
CN104838026A (zh) | 2015-08-12 |
CN104838026B (zh) | 2017-05-17 |
BR112015013061B1 (pt) | 2018-11-21 |
MX2015007274A (es) | 2015-08-12 |
KR101744429B1 (ko) | 2017-06-07 |
ES2689230T3 (es) | 2018-11-12 |
PL2933346T3 (pl) | 2019-02-28 |
EP2933346A1 (en) | 2015-10-21 |
US10273566B2 (en) | 2019-04-30 |
EP2933346B1 (en) | 2018-09-05 |
JPWO2014091554A1 (ja) | 2017-01-05 |
US20150315683A1 (en) | 2015-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014091554A1 (ja) | 熱延鋼板およびその製造方法 | |
JP5780210B2 (ja) | 伸びと穴広げ性に優れた高強度熱延鋼板およびその製造方法 | |
KR101912512B1 (ko) | 고강도 냉연 강판 및 그 제조 방법 | |
US10428409B2 (en) | Hot-rolled steel sheet with excellent press formability and production method thereof | |
JP5858174B2 (ja) | 低降伏比高強度冷延鋼板およびその製造方法 | |
JP4161935B2 (ja) | 熱延鋼板およびその製造方法 | |
WO2012036308A1 (ja) | 打抜き加工性に優れた高強度熱延鋼板およびその製造方法 | |
KR101626233B1 (ko) | 고항복비 고강도 냉연 강판과 그 제조 방법 | |
JP5860343B2 (ja) | 強度および延性のばらつきの小さい高強度冷延鋼板およびその製造方法 | |
WO2015162939A1 (ja) | 厚鋼板及びその製造方法 | |
JP6047983B2 (ja) | 伸びおよび伸びフランジ性に優れる高強度冷延鋼板の製造方法 | |
JP6260198B2 (ja) | 伸びと穴拡げ性のバランスに優れた高強度熱延鋼板及びその製造方法 | |
JP2007270197A (ja) | ハイドロフォーム加工用鋼板およびハイドロフォーム加工用鋼管と、これらの製造方法 | |
US10513749B2 (en) | Hot-rolled steel sheet and production method of therefor | |
JP2013181208A (ja) | 伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板及びその製造方法 | |
JP5878829B2 (ja) | 曲げ性に優れた高強度冷延鋼板およびその製造方法 | |
JP2011184788A (ja) | 伸びと穴拡げ性のバランスに優れた鋼板及びその製造方法 | |
WO2012020847A1 (ja) | 加工性に優れた高強度熱延鋼板およびその製造方法 | |
JP5483562B2 (ja) | 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板 | |
JP2008266792A (ja) | 熱延鋼板 | |
TWI507539B (zh) | 熱軋鋼板及其製造方法 | |
KR101674283B1 (ko) | 신장과 신장 플랜지성이 우수한 저항복비 고강도 냉연 강판 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12890068 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014551765 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14650086 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/007274 Country of ref document: MX Ref document number: 2012890068 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015013061 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20157016246 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201503933 Country of ref document: ID |
|
ENP | Entry into the national phase |
Ref document number: 112015013061 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150603 |