WO2014088063A1 - 近赤外線カットフィルタ - Google Patents
近赤外線カットフィルタ Download PDFInfo
- Publication number
- WO2014088063A1 WO2014088063A1 PCT/JP2013/082683 JP2013082683W WO2014088063A1 WO 2014088063 A1 WO2014088063 A1 WO 2014088063A1 JP 2013082683 W JP2013082683 W JP 2013082683W WO 2014088063 A1 WO2014088063 A1 WO 2014088063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- resin
- infrared
- wavelength
- formula
- Prior art date
Links
- 230000000903 blocking effect Effects 0.000 title abstract 3
- 229920005989 resin Polymers 0.000 claims abstract description 136
- 239000011347 resin Substances 0.000 claims abstract description 136
- 238000002834 transmittance Methods 0.000 claims abstract description 83
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 76
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 18
- 125000001424 substituent group Chemical group 0.000 claims abstract description 12
- 238000010521 absorption reaction Methods 0.000 claims description 66
- -1 polyparaphenylene Polymers 0.000 claims description 44
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 30
- 229920006395 saturated elastomer Polymers 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 25
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 24
- 229920001225 polyester resin Polymers 0.000 claims description 22
- 239000004645 polyester resin Substances 0.000 claims description 22
- 125000003545 alkoxy group Chemical group 0.000 claims description 21
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 229920000178 Acrylic resin Polymers 0.000 claims description 17
- 239000004925 Acrylic resin Substances 0.000 claims description 17
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229920005668 polycarbonate resin Polymers 0.000 claims description 11
- 239000004431 polycarbonate resin Substances 0.000 claims description 11
- 229920005672 polyolefin resin Polymers 0.000 claims description 11
- 125000000962 organic group Chemical group 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 125000005843 halogen group Chemical group 0.000 claims description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 5
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 239000003822 epoxy resin Substances 0.000 claims description 5
- 229920000647 polyepoxide Polymers 0.000 claims description 5
- 229920000570 polyether Polymers 0.000 claims description 5
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 4
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 4
- 239000004962 Polyamide-imide Substances 0.000 claims description 3
- 239000004695 Polyether sulfone Substances 0.000 claims description 3
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 3
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 229920002312 polyamide-imide Polymers 0.000 claims description 3
- 229920001230 polyarylate Polymers 0.000 claims description 3
- 229920006393 polyether sulfone Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000009719 polyimide resin Substances 0.000 claims description 3
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 2
- 229920000412 polyarylene Polymers 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 4
- 125000003396 thiol group Chemical class [H]S* 0.000 claims 1
- 239000000975 dye Substances 0.000 abstract description 131
- 238000000411 transmission spectrum Methods 0.000 abstract description 26
- 150000001732 carboxylic acid derivatives Chemical class 0.000 abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 abstract description 4
- 125000006413 ring segment Chemical group 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 203
- 239000010408 film Substances 0.000 description 102
- 150000001875 compounds Chemical class 0.000 description 55
- 239000000758 substrate Substances 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 30
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 27
- 238000000034 method Methods 0.000 description 26
- 150000002430 hydrocarbons Chemical group 0.000 description 25
- 239000000463 material Substances 0.000 description 25
- 238000000576 coating method Methods 0.000 description 24
- 239000011521 glass Substances 0.000 description 24
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 24
- 238000004519 manufacturing process Methods 0.000 description 23
- 239000000049 pigment Substances 0.000 description 23
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- 239000011248 coating agent Substances 0.000 description 19
- 238000003384 imaging method Methods 0.000 description 19
- 239000002904 solvent Substances 0.000 description 18
- 230000003287 optical effect Effects 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- 239000007788 liquid Substances 0.000 description 13
- 235000002597 Solanum melongena Nutrition 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 239000003960 organic solvent Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 9
- 239000006096 absorbing agent Substances 0.000 description 8
- 230000031700 light absorption Effects 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- PWEBUXCTKOWPCW-UHFFFAOYSA-N squaric acid Chemical group OC1=C(O)C(=O)C1=O PWEBUXCTKOWPCW-UHFFFAOYSA-N 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- BKQXUNGELBDWLS-UHFFFAOYSA-N 9,9-diphenylfluorene Chemical group C1=CC=CC=C1C1(C=2C=CC=CC=2)C2=CC=CC=C2C2=CC=CC=C21 BKQXUNGELBDWLS-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000012044 organic layer Substances 0.000 description 6
- 229920000515 polycarbonate Polymers 0.000 description 6
- 239000004417 polycarbonate Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000010898 silica gel chromatography Methods 0.000 description 6
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 238000001723 curing Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 4
- 239000006078 metal deactivator Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 150000003573 thiols Chemical class 0.000 description 4
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000004611 light stabiliser Substances 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- PITHYUDHKJKJNQ-UHFFFAOYSA-N 2-propylpentanoyl chloride Chemical compound CCCC(C(Cl)=O)CCC PITHYUDHKJKJNQ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000005303 fluorophosphate glass Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000005365 phosphate glass Substances 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical group [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 2
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- JRNVQLOKVMWBFR-UHFFFAOYSA-N 1,2-benzenedithiol Chemical compound SC1=CC=CC=C1S JRNVQLOKVMWBFR-UHFFFAOYSA-N 0.000 description 1
- PUFWGUZSDHANBX-UHFFFAOYSA-N 1-phenyl-9h-fluorene Chemical class C=12CC3=CC=CC=C3C2=CC=CC=1C1=CC=CC=C1 PUFWGUZSDHANBX-UHFFFAOYSA-N 0.000 description 1
- UZUNCLSDTUBVCN-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-6-(2-phenylpropan-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol Chemical compound C=1C(C(C)(C)CC(C)(C)C)=CC(N2N=C3C=CC=CC3=N2)=C(O)C=1C(C)(C)C1=CC=CC=C1 UZUNCLSDTUBVCN-UHFFFAOYSA-N 0.000 description 1
- SITYOOWCYAYOKL-UHFFFAOYSA-N 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(3-dodecoxy-2-hydroxypropoxy)phenol Chemical compound OC1=CC(OCC(O)COCCCCCCCCCCCC)=CC=C1C1=NC(C=2C(=CC(C)=CC=2)C)=NC(C=2C(=CC(C)=CC=2)C)=N1 SITYOOWCYAYOKL-UHFFFAOYSA-N 0.000 description 1
- QSILYWCNPOLKPN-UHFFFAOYSA-N 3-chloro-3-methylbut-1-yne Chemical compound CC(C)(Cl)C#C QSILYWCNPOLKPN-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920004142 LEXAN™ Polymers 0.000 description 1
- 239000004418 Lexan Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004419 Panlite Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical group C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- GWXMDJKGVWQLBZ-UHFFFAOYSA-N di(propan-2-yl)carbamodithioic acid Chemical compound CC(C)N(C(C)C)C(S)=S GWXMDJKGVWQLBZ-UHFFFAOYSA-N 0.000 description 1
- ZICQBHNGXDOVJF-UHFFFAOYSA-N diamantane Chemical group C1C2C3CC(C4)CC2C2C4C3CC1C2 ZICQBHNGXDOVJF-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical class [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- FTWUXYZHDFCGSV-UHFFFAOYSA-N n,n'-diphenyloxamide Chemical compound C=1C=CC=CC=1NC(=O)C(=O)NC1=CC=CC=C1 FTWUXYZHDFCGSV-UHFFFAOYSA-N 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- TXIYCNRKHPXJMW-UHFFFAOYSA-N nickel;1-octyl-2-(2-octylphenyl)sulfanylbenzene Chemical compound [Ni].CCCCCCCCC1=CC=CC=C1SC1=CC=CC=C1CCCCCCCC TXIYCNRKHPXJMW-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 150000002832 nitroso derivatives Chemical class 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- BJQWBACJIAKDTJ-UHFFFAOYSA-N tetrabutylphosphanium Chemical compound CCCC[P+](CCCC)(CCCC)CCCC BJQWBACJIAKDTJ-UHFFFAOYSA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- BOXSVZNGTQTENJ-UHFFFAOYSA-L zinc dibutyldithiocarbamate Chemical compound [Zn+2].CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC BOXSVZNGTQTENJ-UHFFFAOYSA-L 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/281—Interference filters designed for the infrared light
- G02B5/282—Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/223—Absorbing filters containing organic substances, e.g. dyes, inks or pigments
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3415—Five-membered rings
- C08K5/3417—Five-membered rings condensed with carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/007—Squaraine dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B67/00—Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
- C09B67/0033—Blends of pigments; Mixtured crystals; Solid solutions
- C09B67/0034—Mixtures of two or more pigments or dyes of the same type
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
Definitions
- the present invention relates to a near-infrared cut filter having a near-infrared shielding effect.
- optical filters that sufficiently transmit light in the visible wavelength region but shield light in the near infrared wavelength region have been used for various applications.
- solid-state imaging devices CCD, CMOS, etc.
- CCD compact flash memory
- CMOS complementary metal-oxide-semiconductor
- An optical filter is disposed between the imaging lens and the solid-state imaging device in order to bring the sensitivity of the solid-state imaging device close to human visibility.
- a fluorophosphate glass or a glass filter obtained by adding CuO or the like to a phosphate glass so as to selectively absorb light in the near infrared wavelength region is known. It has been.
- the light absorption type glass filter is expensive, and if it is made thin, there is a possibility that the function based on the component of the glass may not be sufficiently exhibited, which is sufficient for the recent demand for downsizing and thinning of the imaging device. There was a problem that we could not respond.
- a silicon oxide (SiO 2 ) layer and a titanium oxide (TiO 2 ) layer are alternately stacked on a substrate, and reflection in which light in the near infrared wavelength region is reflected by light interference.
- An optical filter in which a layer and a resin layer containing a dye that absorbs near-infrared rays are laminated has been developed (see, for example, Patent Document 1).
- Patent Document 2 describes the use of squarylium dyes as near-infrared absorbing dyes.
- the dye described in Patent Document 2 has a high transmittance of 630 to 700 nm as compared with a conventional near-infrared absorbing dye, but the transmittance is not sufficiently high, and the solubility in a resin is low. Therefore, there was a problem in that the near-infrared absorbing layer could not be sufficiently thinned.
- the present invention has excellent near-infrared shielding properties, that is, the transmission spectrum has a steep slope near the boundary between the visible light region and the near-infrared region, so that both visible light transmittance and near-infrared shielding properties are provided at a high level,
- An object of the present invention is to provide a near-infrared cut filter that can be sufficiently reduced in size and thickness.
- the present invention provides a near-infrared cut filter having the following configuration.
- the symbols in formula (A1) are as follows.
- X is a divalent organic group represented by the following formula (1) or formula (2), wherein one or more hydrogen atoms may be independently substituted with an alkyl group or alkoxy group having 1 to 12 carbon atoms. is there.
- n1 is 2 or 3.
- n2 and n3 are each independently an integer of 0 to 2
- n2 + n3 is 1 or 2.
- R 1 may independently contain a saturated ring structure and may have a branched or saturated or unsaturated hydrocarbon group having 1 to 12 carbon atoms, saturated cyclic hydrocarbon group having 3 to 12 carbon atoms, carbon number An aryl group having 6 to 12 carbon atoms or an araryl group having 7 to 13 carbon atoms is shown.
- R 2 and R 3 independently represent a hydrogen atom, a halogen atom, or an alkyl or alkoxy group having 1 to 10 carbon atoms.
- one or more hydrogen atoms may be independently substituted with a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, or a cyano group, and an unsaturated bond, oxygen atom, saturated or A hydrocarbon group having 5 to 25 carbon atoms and having at least one or more branches which may contain a saturated ring structure.
- each R 11 is independently a C 1-6 alkyl group or alkoxy group which may have a branch
- each R 12 is independently a hydrogen atom or
- R 4 is a branched hydrocarbon group having 5 to 25 carbon atoms represented by the following formula (4) which does not have a substituent, and [1] to [4 ]
- the near-infrared cut off filter in any one of. —CH 3 ⁇ m R 13 m (4) (However, in the formula (4), m is 1, 2 or 3, and each R 13 independently includes an unsaturated bond, an oxygen atom, a saturated or unsaturated ring structure between carbon atoms.
- a chain or branched hydrocarbon group (provided that when m is 1, it is branched), and the total number of m carbon atoms of R 13 is 4 to 24.)
- the near-infrared absorbing layer has the following condition (ii-3):
- the shortest wavelength ⁇ a having a transmittance of 1% in the wavelength range of 650 to 800 nm is 675 nm ⁇ ⁇ a ⁇ 720 nm.
- the transparent resin (B) is an acrylic resin, epoxy resin, ene / thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether.
- the near-infrared ray according to any one of [1] to [9], further comprising a selective wavelength shielding layer having the following characteristics (iii-1) and (iii-2) on one side or both sides of the near-infrared absorbing layer: Infrared cut filter.
- the selective wavelength shielding layer includes a dielectric film having a refractive index of 1.45 or more and less than 1.55, and a dielectric having a refractive index of 2.2 to 2.5.
- the average transmittance in the wavelength range of 420 to 620 nm is 80% or more
- the transmittance in the wavelength range of 710 to 1100 nm is 2% or less
- In the wavelength range of 600 to 700 nm The value of the wavelength at which the transmittance of light incident from the direction orthogonal to the main surface is 20%, and the transmittance of light incident from a direction forming an angle of 30 degrees with respect to a line orthogonal to the main surface is 20%.
- the difference in wavelength value is 3nm or less
- the near-infrared cut filter of the present invention has a steep slope near the boundary between the visible light region and the near-infrared region in the light absorption curve of the near-infrared absorbing dye used, and has high solubility in the resin. Even if the near-infrared absorption layer formed with the transparent resin is a thin film, it has excellent near-infrared absorption characteristics, and the device can be reduced in size or thickness.
- the near-infrared cut filter of the present invention (hereinafter referred to as the present filter) has a near-infrared absorbing layer containing a near-infrared absorbing dye (A) and a transparent resin (B).
- the near-infrared absorbing layer in the present invention is a resin layer mainly composed of a transparent resin (B), and the near-infrared absorbing dye (A) is present in a dispersed state in the resin layer.
- the pigment (A) includes one or more selected from the pigment represented by the formula (A1) (hereinafter abbreviated as pigment (A1)), and the refractive index of the transparent resin (B) is 1.45. That's it.
- the refractive index means a refractive index (hereinafter also referred to as nd) at a wavelength of 589 nm at 20 ° C.
- This filter has a good near-infrared shielding function when the near-infrared absorbing layer is used alone or in combination with other selective wavelength shielding members, and the imaging device is sufficiently small, thin, and low-cost. Can be achieved.
- the near-infrared absorbing layer has a good near-infrared shielding function when the light absorption curve has a steep slope near the boundary between the visible light region and the near-infrared region (wavelength 630 to 700 nm) and near-infrared absorption. It means that there is almost no emergence of a wavelength range where the wavelength range is wide and absorption is not sufficient when used in combination with other selective wavelength shielding members.
- a near-infrared cut filter (hereinafter referred to as an NIR filter) generally uses a selective wavelength shielding member that can accurately shield light in the infrared region of 700 nm or more and has a capability of selecting a wide wavelength range for shielding.
- a selective wavelength shielding member a dielectric multilayer film in which dielectric films having different refractive indexes are alternately laminated is widely used.
- the dielectric multilayer film has an angle dependency because the absorption wavelength is shifted by the incident angle of light.
- the influence due to the angle dependency can be reduced, and the light in the necessary wavelength range can be sufficiently absorbed.
- the transmittance in the visible light region can be maintained high, and the transmittance in the inclined wavelength region of the spectrum can be maintained high because the slope near the boundary between the visible light region and the near infrared region is steep.
- a highly reliable NIR filter can be obtained by using the dye (A) having high heat resistance.
- X is a divalent organic group represented by the following formula (1) or formula (2), wherein one or more hydrogen atoms may be independently substituted with an alkyl group or alkoxy group having 1 to 12 carbon atoms. is there. -(CH 2 ) n1- (1)
- n1 is 2 or 3.
- n2 and n3 are each independently an integer of 0 to 2
- n2 + n3 is 1 or 2.
- R 1 may independently contain a saturated ring structure and may have a branched or saturated or unsaturated hydrocarbon group having 1 to 12 carbon atoms, saturated cyclic hydrocarbon group having 3 to 12 carbon atoms, carbon number An aryl group having 6 to 12 carbon atoms or an araryl group having 7 to 13 carbon atoms is shown.
- R 2 and R 3 independently represent a hydrogen atom, a halogen atom, or an alkyl or alkoxy group having 1 to 10 carbon atoms.
- one or more hydrogen atoms may be independently substituted with a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, or a cyano group, and an unsaturated bond, oxygen atom, saturated or A hydrocarbon group having 5 to 25 carbon atoms and having at least one or more branches which may contain a saturated ring structure.
- a saturated or unsaturated ring structure refers to a hydrocarbon ring and a heterocycle having an oxygen atom as a ring constituent atom. Further, a structure in which an alkyl group having 1 to 10 carbon atoms is bonded to carbon atoms constituting the ring is included in the category.
- an aryl group refers to a group bonded via a carbon atom constituting an aromatic ring of an aromatic compound, for example, a benzene ring, a naphthalene ring, a biphenyl, a furan ring, a thiophene ring, a pyrrole ring, or the like.
- Araryl group refers to a linear or branched saturated or unsaturated hydrocarbon group or saturated cyclic hydrocarbon group which may contain a saturated ring structure, which is substituted with one or more aryl groups.
- the dye (A1) has a squarylium skeleton at the center of the molecular structure, and one benzene ring is bonded to each side of the squarylium skeleton, and each benzene ring is bonded to a nitrogen atom at the 4-position. It has one fused ring structure on each of the left and right sides in which a heterocyclic ring containing carbon atoms at the 4th and 5th positions of the ring is formed. Further, the dye (A1) is bonded to —NHC ( ⁇ O) R 4 at the 2-position of each benzene ring on the left and right.
- the structure of the ring other than the benzene ring constituting the condensed ring structure that exists one by one on the left and right is determined by X, and is independently a heterocyclic ring having 5 or 6 members.
- the divalent group X constituting a part of the heterocyclic ring may have a skeleton composed of only carbon atoms as represented by the above formula (1), and may be composed of carbon atoms as represented by the above formula (2).
- an oxygen atom may be included.
- the position of the oxygen atom is not particularly limited. That is, a nitrogen atom and an oxygen atom may be bonded, or an oxygen atom may be directly bonded to the benzene ring. An oxygen atom may be positioned so as to be sandwiched between carbon atoms.
- the left and right Xs may be the same or different, but the same is preferable from the viewpoint of productivity.
- R 1 to R 4 may be the same or different on the left and right across the squarylium skeleton, but are preferably the same from the viewpoint of productivity.
- the pigment (A1) has the above structure and has high solubility in an organic solvent and a transparent resin (B) having a refractive index of 1.45 or more. Thereby, even if the near-infrared absorption layer is a thin film, it has excellent near-infrared absorption characteristics, and the element can be reduced in size or thickness. Further, when dissolved in the transparent resin (B), it has a near-infrared absorption characteristic in which the slope of the light absorption curve near the boundary between the visible light region and the near-infrared region becomes steep.
- dye (A1) and transparent resin (B) shows a high visible light transmittance
- the higher the solubility of a compound in an organic solvent the higher the compatibility with a resin. That is, the higher the solubility of the dye (A1) in the organic solvent, the higher the compatibility with the transparent resin (B).
- the angle dependency of the dielectric multilayer film can be sufficiently eliminated when the dielectric multilayer film is combined.
- the selection range of the solvent is widened, there is a manufacturing advantage that the adjustment of the coating conditions becomes easy.
- Dye (A1) is also excellent in heat resistance.
- this filter is manufactured by combining a near-infrared absorbing layer and another selective wavelength shielding member, heat treatment may be performed in the formation of the transparent resin (B) or the formation of the selective wavelength shielding layer. Since the dye (A1) has heat resistance, there is almost no deterioration in the performance of the dye (A1) due to heat treatment, which is advantageous in production. As a result, the degree of freedom of the type of the selective wavelength shielding layer used in combination with the near-infrared absorbing layer is increased, and a high-performance optical filter can be manufactured.
- X of the dye (A1) is preferably a divalent organic group represented by the following formula (3). -CR 11 2- (CR 12 2 ) n4- (3)
- Formula (3) shows the bivalent group which the left side couple
- n4 is 1 or 2, and n4 is preferably 1.
- R 11 is independently an alkyl group or alkoxy group having 1 to 12 carbon atoms which may have a branch, and an alkyl group or alkoxy group which may have a branch having 1 to 6 carbon atoms. preferable.
- each R 12 is independently a hydrogen atom or an alkyl or alkoxy group having 1 to 12 carbon atoms which may have a branch, and has a hydrogen atom or a branch having 1 to 6 carbon atoms. Preferred alkyl groups or alkoxy groups are preferred.
- X in the formula (A1) is particularly preferably any one of divalent organic groups represented by the following formulas (11-1) to (12-3).
- Formulas (11-1) to (12-3) represent a divalent group in which the left side is bonded to the benzene ring and the right side is bonded to N.
- any of groups (11-1) to (11-3) is preferable, and group (11-1) is more preferable.
- the structural formulas of the dye (A11) in which X is the group (11-1) both on the left and right and the dye (A12) in which the group (12-1) is the group are shown below.
- R 1 to R 4 have the same meaning as in the dye (A1).
- R 1 is preferably an alkyl group or an alkoxy group having 1 to 12 carbon atoms which may have a branch independently from the viewpoint of improving heat resistance and reliability. A good alkyl group or alkoxy group having 1 to 6 carbon atoms is more preferred. In order to improve the solubility in a transparent resin, a branched alkyl group having 1 to 6 carbon atoms is more preferable.
- R 2 and R 3 are preferably independently a hydrogen atom, a halogen atom, or an alkyl group or alkoxy group having 1 to 6 carbon atoms. R 2 and R 3 are more preferably hydrogen atoms.
- R 4 in the dye (A1) is preferably a branched hydrocarbon group having 5 to 25 carbon atoms represented by the following formula (4). —CH 3 ⁇ m R 13 m (4)
- m is 1, 2 or 3
- R 13 is each independently a straight chain which may contain an unsaturated bond, an oxygen atom, a saturated or unsaturated ring structure between carbon atoms.
- a branched hydrocarbon group (provided that when m is 1, it is branched), and the total number of m carbon atoms of R 13 is 4 to 24.
- m is preferably 2 or 3.
- Examples of the saturated ring structure that R 13 may have include cyclic ethers having 4 to 14 carbon atoms, cycloalkanes, adamantane rings, and diadamantane rings.
- Examples of the unsaturated ring structure include benzene, toluene, xylene, furan, and benzofuran.
- the carbon number of R 13 is represented by a number including the carbon number of the ring.
- R 4 is preferably a branched hydrocarbon group having 6 to 20 carbon atoms and independently having no substituent, from the viewpoint of solubility in an organic solvent and the transparent resin (B).
- R 4 preferably has 6 to 17 carbon atoms, and more preferably 6 to 14 carbon atoms.
- R 13 is a branched group having 4 to 24 carbon atoms which may contain an unsaturated bond, an oxygen atom, a saturated or unsaturated ring structure between carbon atoms. It is a hydrocarbon group. R 13 is preferably an oxygen atom or a saturated hydrocarbon group which may contain a saturated or unsaturated ring structure. The number of carbon atoms of R 13 is preferably 5 to 19, more preferably 5 to 16, and particularly preferably 5 to 13 from the viewpoint of improving solubility in an organic solvent and the transparent resin (B).
- the branched R 13 when m is 1 (hereinafter, the branched R 13 is referred to as “R 13b ” if necessary), specifically, the main chain has 4 to 23 carbon atoms. And R 13b having 1 to 5 methyl groups or ethyl groups, preferably methyl groups, in the side chain.
- the number of side chains is preferably one per carbon atom except for the terminal.
- the terminal of R 13b is preferably —C (CH 3 ) 3 .
- R 13b includes 1-methylpropyl group, 2-methylpropyl group, 1,1-dimethylethyl group, 1-methylbutyl group, 2-methylbutyl group, 1,3,3-trimethylbutyl group, 1,2,2 -Trimethylbutyl group, 3,5,5-trimethylhexyl group and the like are preferable. Among these, 1,3,3-trimethylbutyl group and 2-methylpropyl group are more preferable, and 2-methylpropyl group is particularly preferable.
- R 13b is an oxygen atom or a group containing a saturated or unsaturated ring structure, specifically, a group containing an oxygen atom or a ring structure between the carbon atoms of the main chain of R 13b exemplified above, or a carbon of the main chain Examples include a group containing both an oxygen atom and a ring structure between atoms.
- R 13b has both an oxygen atom and a ring structure, each may be present between different carbon atoms, for example, —O—Ph— (where Ph represents a benzene ring) and is continuous. May exist.
- R 13 is preferably an oxygen atom, or a saturated hydrocarbon group that may contain a saturated or unsaturated ring structure, and the carbon number thereof is preferably 1 to 18, and more preferably 1 to 10.
- the total carbon number of the two R 13 is preferably 5 to 19, more preferably 5 to 16, and particularly preferably 5 to 13.
- an oxygen atom or a saturated or unsaturated ring structure may be included between carbon atoms in the same manner as described in the case where m is 1.
- k3 of — (CH 2 ) k3 —CH 3 representing linear R 13 is preferably from 1 to 10, and more preferably from 2 to 8.
- the branched R 13b for example, a carbon atoms in the main chain 2-7, 1-5 methyl groups or an ethyl group in the side chain, and preferably is R 13b having a methyl group.
- the number of side chains is preferably one per carbon atom except for the terminal.
- the terminal of R 13b is preferably —C (CH 3 ) 3 .
- R 13b examples include 1-methylethyl group, 1-methylpropyl group, 2-methylpropyl group, 1,1-dimethylethyl group, 1-methylbutyl group, 2-methylbutyl group, 1,3,3- A trimethylbutyl group, 1,2,2-trimethylbutyl group, 3,5,5-trimethylhexyl group and the like are preferable.
- Examples of the group (31-c) include a group having two branched R 13b described above for the group (31-b).
- Preferred combinations of two R 13b include two combinations selected from 1-methylbutyl group, 2-methylbutyl group, 1,3,3-trimethylbutyl group and 3,5,5-trimethylhexyl group. .
- the three R 13 s may each independently contain an oxygen atom, a saturated or unsaturated ring structure, and a straight chain having 1 to 22 carbon atoms.
- a chain or branched saturated hydrocarbon group, and the total carbon number of three R 13 is 4 to 24.
- the number of carbon atoms of R 13 is preferably 1 to 14, and the total number of carbon atoms of three R 13 is preferably 5 to 18.
- a group (32-a) represented by the following formula (32-a) in which all three R 13 are linear saturated hydrocarbon groups.
- a group (32-b) in which two are linear and one is branched, both being saturated hydrocarbon groups, one is linear and two are both branched, saturated Examples include a group (32-c) which is a hydrocarbon group, and a group (32-d) which is a branched saturated hydrocarbon group of three.
- an oxygen atom or a saturated or unsaturated ring structure may be included between carbon atoms in the same manner as described in the case where m is 1.
- k4 to k6 may be the same or different.
- k4 is preferably 2 to 21 in order to enhance solubility in organic solvents and resins.
- k5 and k6 are both 1 or more, in order to increase the solubility in an organic solvent and a resin, it is preferable that k4 is 1 to 10 and k4 ⁇ k5 ⁇ k6 so that the symmetry is lowered.
- the terminal may be a -O-Ph (CH 3) group is -CH 3 instead of -CH 3.
- the groups (1b), (2a) to (2e), and (3b) are particularly preferable.
- the dye (A1) can be produced by a conventionally known method, for example, a method described in US Pat. No. 5,543,086. Specifically, the dye (A1) has a structure represented by the formula (A1) bonded to 3,4-dihydroxy-3-cyclobutene-1,2-dione (hereinafter also referred to as squaric acid) and squaric acid. It can be produced by reacting with a compound having a condensed ring that can be formed. For example, when the dye (A1) has a bilaterally symmetric structure, 2 equivalents of a compound having a condensed ring having a desired structure in the above range may be reacted with 1 equivalent of squaric acid.
- squaric acid 3,4-dihydroxy-3-cyclobutene-1,2-dione
- dye (A11) is shown as a specific example.
- squaric acid is represented by (s).
- an amino group is introduced into the benzene ring of compound (d) having the desired substituents (R 1 to R 3 ) on the indole skeleton (f), and the desired substituent R 4 is further introduced.
- Carboxylic acid chloride (g) having amide is reacted to obtain amide compound (h).
- the dye (A11) is obtained by reacting 2 equivalents of the amide compound (h) with 1 equivalent of squaric acid (s).
- R 1 to R 4 have the same meaning as in the formula (A1), Me represents a methyl group, and THF represents tetrahydrofuran.
- Me and THF are used in the same meaning as described above.
- the dye (A1) one kind selected from the dyes represented by the above formula (A1) may be used alone, or two or more kinds may be used in combination. Further, other near-infrared absorbing dyes can be used together with the dye (A1) as necessary, as long as the effect of the steepness of the light absorption curve in the near-infrared region is not impaired.
- the dye (A) is preferably substantially composed only of the dye (A1), and it is more preferable to use one kind of the dye (A1) alone.
- Transparent resin (B) The near-infrared absorption layer used for this filter contains the said pigment
- the refractive index of the transparent resin (B) is preferably 1.5 or more, and more preferably 1.6 or more. Although there is no upper limit in particular of the refractive index of transparent resin (B), about 1.72 is mentioned from easiness of acquisition.
- the glass transition temperature (Tg) of the transparent resin (B) is preferably 0 to 380 ° C., more preferably 40 to 370 ° C., and further preferably 100 ° C. to 360 ° C. If the glass transition temperature (Tg) of the transparent resin (B) is within the above range, deterioration and deformation due to heat can be suppressed within the above range.
- the transparent resin (B) is not particularly limited as long as it has a refractive index of 1.45 or more.
- acrylic resins having an index of refraction of 1.45 or more epoxy resins, ene / thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyparaphenylene resins, poly Examples include arylene ether phosphine oxide resin, polyimide resin, polyamideimide resin, polyolefin resin, cyclic olefin resin, and polyester resin. If the refractive index of the entire transparent resin is 1.45 or more, one kind of these resins may be used alone, or two or more kinds may be mixed and used.
- the transparent resin is an acrylic resin, a polyether resin, a polyester resin, a polycarbonate resin, an ene thiol resin, an epoxy resin, Or a cyclic olefin resin is preferable.
- the polyester resin polyethylene terephthalate resin, polyethylene naphthalate resin and the like are preferable.
- the transparent resin is more preferably an acrylic resin, a polyester resin, a polycarbonate resin, or a cyclic olefin resin. In applications where heat resistance is required, polyester resins and polycarbonate resins having a high Tg are preferable.
- the transparent resin (B) may be a polymer alloy in which a plurality of different polymers are combined as long as the refractive index is 1.45 or more.
- the transparent resin (B) can be used by adjusting the refractive index within the above range by adjusting the molecular structure of the raw material components.
- the main chain or side chain of the polymer of the raw material component has a specific structure.
- the structure of the polymer is not particularly limited, and examples thereof include a fluorene skeleton represented by the following formula (B1).
- a 9,9-bisphenylfluorene skeleton represented by the following formula (B2) is preferable in that higher refractive index and heat resistance can be obtained.
- the transparent resin (B) has a refractive index of 1.45 or more, and is preferably a resin that does not cause thermal deterioration or deformation of the resin when the dielectric multilayer film is formed by high-temperature vapor deposition performed at a vapor deposition temperature of 100 ° C. or higher. Further, a resin that does not cause deterioration of the dye by processing molding at 150 ° C. or higher is preferable.
- acrylic resin specifically, a resin obtained by curing OGSOL EA-F5003 (trade name, manufactured by Osaka Gas Chemical Co., Ltd., refractive index: 1.60), BR50 (refractive index: 1.56) and Examples thereof include a thermoplastic acrylic resin such as BR52 (trade name, manufactured by Mitsubishi Rayon Co., Ltd.).
- polyester resins include OKPH4HT (refractive index: 1.64), OKPH4 (refractive index: 1.61), B-OKP2 (refractive index: 1.64), all manufactured by Osaka Gas Chemical Co., Ltd. Byron 103 (manufactured by Toyobo Co., Ltd., refractive index: 1.55), LeXan ML9103 (manufactured by sabic, refractive index 1.59), SP3810 (manufactured by Teijin Chemicals Co., Ltd., refractive index 1.63), SP1516 (Teijin Kasei Co., Ltd.) , Refractive index 1.60), TS2020 (manufactured by Teijin Chemicals Ltd., refractive index 1.59), EP5000 (manufactured by Mitsubishi Gas Chemical Company, refractive index 1.63), Panlite AM-8 series (manufactured by Teijin Chemicals Ltd.) Is mentioned.
- the polymer alloy include xylex 7507 (man
- a cyclic olefin polymer having a high Tg may be used.
- Commercially available products include ARTON (trade name, manufactured by JSR, refractive index 1.51, Tg 165 ° C.), ZEONEX (trade name, manufactured by Nippon Zeon Co., Ltd., refractive index 1.53, Tg 138 ° C.).
- acrylic resin, polycarbonate resin, polyether resin and polyester resin are preferable. Moreover, you may make these resins contain the said fluorene skeleton by copolymerization. Polycarbonate resins and polyester resins are particularly preferable from the viewpoints of heat resistance, availability, and transparency.
- an acrylic resin having a fluorene skeleton for example, 9,9-bis, in which at least one substituent having a (meth) acryloyl group at the terminal is introduced into at least two phenyl groups of 9,9-bisphenylfluorene.
- An acrylic resin obtained by polymerizing a raw material component containing a phenylfluorene derivative is mentioned.
- (meth) acryloyl Korean Is a general term for “methacryloyl...” And “acryloyl.
- an acrylic resin obtained by polymerizing a compound in which a hydroxyl group is introduced into the 9,9-bisphenylfluorene derivative having the (meth) acryloyl group and a urethane (meth) acrylate compound may be used.
- a urethane (meth) acrylate compound a compound obtained as a reaction product of a (meth) acrylate compound having a hydroxyl group and a polyisocyanate compound, or a reaction product of a (meth) acrylate compound having a hydroxyl group, a polyisocyanate compound and a polyol compound The compound obtained is mentioned.
- polyester resin into which the fluorene skeleton is introduced examples include a polyester resin in which a 9,9-bisphenylfluorene derivative represented by the following formula (B2-1) is introduced as an aromatic diol.
- the kind of dicarboxylic acid to be reacted with the aromatic diol is not particularly limited.
- Such a polyester resin is suitably used as the transparent resin (B) from the viewpoint of the refractive index value and transparency in the visible light region.
- R 41 is an alkylene group having 2 to 4 carbon atoms
- R 42 , R 43 , R 44 and R 45 are each independently a hydrogen atom, having 1 to 7 carbon atoms. Represents a saturated hydrocarbon group or an aryl group having 6 to 7 carbon atoms.
- the near-infrared absorbing layer of the present filter is a layer containing a dye (A) and a transparent resin (B) having a refractive index of 1.45 or more, and the dye (A) contains one or more dyes (A1). To do.
- the preferable near-infrared absorption layer which this filter has contains the pigment
- the shortest wavelength ⁇ a having a transmittance of 1% in the wavelength range of 650 to 800 nm is 675 nm ⁇ ⁇ a ⁇ 720 nm.
- the wavelength range of lambda a in the (ii-1) is preferably 680nm ⁇ ⁇ a ⁇ 720nm.
- the transmittance of the near-infrared absorbing layer can be measured using an ultraviolet-visible spectrophotometer. For example, when a near-infrared absorption layer is provided on a glass substrate, the transmittance is calculated by subtracting the transmittance of only the glass substrate.
- the light transmittance of the near-infrared absorbing layer is the ratio of the light that has traveled straight through the interior of the specimen and transmitted to the opposite side with respect to the light incident from the direction orthogonal to the main surface of the specimen, unless otherwise specified.
- a straight line indicating the direction in which the light is incident on a line orthogonal to the main surface The angle formed by is called the incident angle.
- the layer can satisfy the condition (ii-3).
- the dye (A) is a suitable dye for the NIR filter. That is, if the near-infrared absorbing layer containing the dye (A) satisfying the above conditions is used in combination with the selective wavelength shielding member, particularly the dielectric multilayer film, the angle dependency of the dielectric multilayer film is sufficiently eliminated. This is preferable because it is possible.
- the use efficiency of light in the visible light wavelength region can be improved while shielding light in the near infrared wavelength region. Therefore, it is advantageous in terms of noise suppression in dark part imaging.
- I s value a value calculated by n d (B) ⁇ ( ⁇ a ⁇ c ) (hereinafter, this value may be referred to as “I s value”) is a near-infrared absorbing layer. Is a value serving as an index indicating the steepness of the absorption curve near the boundary between the visible light region and the near infrared region. If this value is 115 or less, the near-infrared absorption layer has a steep absorption curve near the boundary between the visible light region and the near-infrared region, which is suitable for an NIR filter.
- the transmission spectrum of near-infrared-absorbing layer the difference between the shortest wavelength lambda a the transmittance is 1%, the wavelength lambda c of transmittance is 70% in a short wavelength side than the lambda a in 650 ⁇ 800 nm
- ⁇ a - ⁇ c also depends on a wavelength width with a transmittance of 1% or less ( ⁇ b - ⁇ a ; ⁇ b is the longest wavelength with a transmittance of 1% in the wavelength range of 650 to 800 nm).
- ⁇ b - ⁇ a is fixed to 30 nm.
- ⁇ b - ⁇ a of the near-infrared absorbing layer of the present filter is not limited to 30 nm.
- I s values are subjected to a refractive index n d of the transparent resin (B) which near-infrared absorption layer contains (B) as coefficients ( ⁇ a - ⁇ c). This is to standardize the difference in steepness between resins.
- the transmission spectrum of the near-infrared absorbing layer will be specifically described with reference to FIGS.
- the solid line in FIG. 2 shows the transmission spectrum in the wavelength range of 340 to 800 nm of the near-infrared absorbing layer composed of the dye (A11-7) of Example (Example 7) and the polyester resin (refractive index 1.64).
- the solid line in FIG. 3 is an enlarged view of the transmission spectrum shown in FIG. 2 at 600 to 740 nm.
- the shortest wavelength ⁇ a-7 ( ⁇ a in the case of Example 7) having a transmittance of 1% in the wavelength region of 650 to 800 nm.
- the lambda a-7 and shown. hereinafter, the same applies for the ⁇ b, ⁇ c, I s .) is 700 nm, the transmittance in the wavelength range of 650 ⁇ 800 nm in the transparent over the spectral longest of 1%
- the wavelength ⁇ b-7 is 730 nm, and the difference ⁇ b-7 - ⁇ a-7 is 30 nm.
- the wavelength ⁇ c-7 at which the transmittance becomes 70% on the shorter wavelength side than ⁇ a-7 is 636 nm, and the difference ⁇ a-7 - ⁇ c-7 is 64 nm, and this is the refractive index.
- the I s-7 value calculated from (n d (B)) 1.64 is 105.0.
- the broken line shows the transmission spectrum of the near-infrared absorbing layer composed of the dye (A11-20) of the comparative example (Example 76) and the polyester resin (refractive index 1.64).
- ⁇ a-76 is 694 nm
- ⁇ b-76 is 724 nm
- ⁇ c-76 is 619 nm
- ⁇ b-76 - ⁇ a-76 30 nm
- ⁇ a-76 - ⁇ c-76 75 nm.
- the Is -76 value is 123.0.
- n d (B) ⁇ ( ⁇ a ⁇ ⁇ c ) is more preferably 110 or less.
- the film thickness of the near-infrared absorbing layer is not particularly limited, and is appropriately determined according to the use, that is, the arrangement space in the apparatus to be used, the required absorption characteristics, and the like.
- the film thickness is preferably 0.1 to 100 ⁇ m. If the film thickness is less than 0.1 ⁇ m, the near-infrared absorbing ability may not be sufficiently exhibited. On the other hand, if the film thickness exceeds 100 ⁇ m, the flatness of the film is lowered, and there is a possibility that the absorption rate varies.
- the film thickness is more preferably 0.5 to 50 ⁇ m. If it exists in this range, sufficient near-infrared absorptivity and flatness of a film thickness can be compatible.
- dye (A1) has high solubility with respect to transparent resin (B), when the content of pigment
- the content of the pigment (A1) in the near-infrared absorbing layer is preferably 0.1 to 20 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the transparent resin (B).
- the near-infrared absorbing layer may contain various optional components usually contained in the near-infrared absorbing layer as necessary within the range not inhibiting the effect of the present invention, in addition to the pigment (A) and the transparent resin (B). Good. Specific examples of optional components include near infrared or infrared absorbers, color tone correction dyes, ultraviolet absorbers, leveling agents, antistatic agents, thermal stabilizers, light stabilizers, antioxidants, dispersants, flame retardants, and lubricants. And plasticizers. The content of these optional components in the near-infrared absorbing layer is preferably 15 parts by mass or less for 100 parts by mass of the transparent resin (B). More preferred is 0.01 to 10 parts by mass, and still more preferred is 0.05 to 5 parts by mass.
- the light stabilizer is made of a material having a function of suppressing deterioration of a dye or a transparent resin due to light, and is contained for suppressing deterioration of the dye (A) or the transparent resin (B) in the near infrared absorption layer. Is an optional component. Specific examples of the light stabilizer include heavy metal deactivators, ultraviolet absorbers, and quenchers.
- the heavy metal deactivator is a material that stabilizes metal ions with a chelate and suppresses the generation of radicals from the metal ions by light irradiation.
- the heavy metal deactivator is contained as an optional component.
- Specific examples of the heavy metal deactivator include hydrazide and amide compounds.
- the ultraviolet absorber is preferably a material having a maximum absorption wavelength in the ultraviolet region of 400 nm or less and stable to heat and light.
- resin and organic compound dyes are easily deteriorated by ultraviolet rays. Therefore, from the viewpoint of suppressing deterioration of the pigment (A) and the transparent resin (B) due to ultraviolet rays, the ultraviolet absorber is preferably contained in the near infrared absorbing layer.
- Preferred examples of the ultraviolet absorber include benzotriazole, benzophenone, salicylate, cyanoacrylate, triazine, oxanilide, nickel complex, and inorganic compounds.
- the inorganic ultraviolet absorber include fine particles such as zinc oxide, titanium oxide, cerium oxide, zirconium oxide, mica, kaolin, and sericite.
- Examples of the benzotriazole-based compound include TINUVIN 928 (manufactured by Ciba).
- examples of the triazine compound include TINUVIN 400 (manufactured by Ciba), TINUVIN 405 (manufactured by Ciba), TINUVIN 460 (manufactured by Ciba), or TINUVIN 479 (manufactured by Ciba).
- the quencher is a compound that supplements singlet oxygen generated by light irradiation, and examples thereof include organometallic complexes and amine compounds. It is preferable that the near-infrared absorbing layer contains a quencher because deterioration of the dye (A) and the transparent resin (B) due to singlet oxygen can be suppressed.
- the organometallic complex of the quencher include a nickel complex compound, a copper complex compound, a cobalt complex compound, and a zinc complex compound.
- nickel complex compound examples include nickel bis (octylphenyl) sulfide, nickel complex-3,5-di-tert-butyl-4-hydroxybenzyl phosphate monoethylate, and nickel dibutyldithiocarbamate.
- zinc complex compound examples include Zn (II) bis (diisopropyl dithiocarbamate).
- Preferred examples of the quencher organometallic complex include a metal complex of benzenedithiol represented by the following formula (X1).
- M is a transition metal
- a + is a quaternary ammonium cation or a quaternary phosphonium cation
- R 51 to R 58 are each independently a hydrogen atom, a halogen atom, or a carbon number of 1 An alkyl group of ⁇ 6 or —SO 2 R 6 .
- the transition metal include nickel, cobalt, and copper.
- the quaternary ammonium cation of A + include a tetraethylammonium cation and a tetrabutylammonium cation.
- Examples of the quaternary phosphonium cation of A + include a tetraethylphosphonium cation and a tetrabutylphosphonium cation.
- the R 6 of said -SO 2 R 6, include groups selected from monovalent radicals and phenyl groups, represented by the following formula (Y1) ⁇ (Y7).
- R 61 is each independently an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a ring member having 5 to 7 ring members containing a nitrogen atom as a hetero atom.
- a valent heterocyclic group (such as a pyrimidyl group); n is an integer of 3 to 5.
- Z is an oxygen atom, a sulfur atom or an NH group.
- formulas (Y01) to (Y61) represent groups represented by the following formulas (Y01) to (Y61), respectively.
- Examples of the amine compound of the quencher include a bisimid salt represented by the following formula (X2) or the following formula (X3).
- R 8 each independently represents an alkyl group which may have 1 to 10 carbon atoms
- Q1 2 ⁇ represents a divalent anion
- Q2 ⁇ represents a monovalent Each anion is shown.
- each R 9 independently represents an alkyl group having 1 to 4 carbon atoms.
- near-infrared ray or infrared absorber those which do not impair the effect of the steepness of the light absorption curve in the near-infrared region by the dye (A1) are used.
- inorganic fine particles can be preferably used. Specific examples include ITO (Indium Tin Oxides), ATO (Antimony-doped TinidesOxides), cesium tungstate, lanthanum boride and the like. .
- ITO fine particles and cesium tungstate fine particles have a high light transmittance in the visible wavelength region and a wide range of light absorption including infrared wavelength regions exceeding 1200 nm. This is particularly preferable when shielding is required.
- the number average aggregate particle diameter of the inorganic fine particles is preferably 5 to 200 nm, more preferably 5 to 100 nm, and further preferably 5 to 70 nm from the viewpoint of suppressing scattering and maintaining transparency.
- the number average agglomerated particle size is a particle size measurement dispersion liquid in which specimen fine particles are dispersed in a dispersion medium such as water or alcohol, using a dynamic light scattering particle size distribution measurement device. The measured value.
- the near-infrared absorbing layer is a component added to the coating liquid used when forming the near-infrared absorbing layer described below, for example, a component derived from a silane coupling agent, heat or photopolymerization initiator, or polymerization catalyst. Etc. may be included.
- the kind of silane coupling agent to be used can be suitably selected according to the transparent resin (B) used in combination.
- the content of the silane coupling agent is preferably 1 to 20 parts by mass, more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the transparent resin (B) in the coating solution.
- the near-infrared absorbing layer is, for example, a coating liquid prepared by dispersing and dissolving the pigment (A) and the transparent resin (B) or the transparent resin (B) raw material components on a substrate, It can be produced by drying and further curing as necessary. By forming the near-infrared absorbing layer by such a method, it can be uniformly produced with a desired film thickness.
- the coloring matter (A1) is preferable because it has good solubility in both the transparent resin (B) and the solvent used in the coating solution, and it is easy to ensure the uniformity of the film.
- the base material may be a transparent base material that can be applied as a constituent member of the filter, or a base material that is used only when a near-infrared absorbing layer is formed, for example, a peelable base material. Also good.
- the solvent is not particularly limited as long as it is a dispersion medium or a solvent that can stably disperse the pigment (A) and the transparent resin (B) or the raw material components of the transparent resin (B).
- the term “solvent” is used in a concept including both a dispersion medium and a solvent.
- Specific examples of the solvent include ketones, ethers, esters, alcohols, hydrocarbons, acetonitrile, nitromethane, water and the like. Two or more of these may be used in combination.
- the amount of the solvent is preferably 10 to 5,000 parts by mass, particularly preferably 30 to 2,000 parts by mass with respect to 100 parts by mass of the transparent resin (B).
- the content of the non-volatile component (solid content) in the coating liquid is preferably 2 to 50% by mass, particularly preferably 5 to 40% by mass, based on the total amount of the coating liquid.
- a stirring device such as a magnetic stirrer, a rotation / revolution mixer, a bead mill, a planetary mill, or an ultrasonic homogenizer can be used.
- a stirring device such as a magnetic stirrer, a rotation / revolution mixer, a bead mill, a planetary mill, or an ultrasonic homogenizer.
- Stirring may be performed continuously or intermittently.
- a coating method such as a gravure coater method, a slit reverse coater method, a micro gravure method, an ink jet method, or a comma coater method can be used.
- a bar coater method, a screen printing method, a flexographic printing method, etc. can also be used.
- the releasable substrate on which the coating liquid is applied may be a film or a plate, and the material is not particularly limited as long as it has releasability. Specifically, from a glass plate or a release-treated plastic film such as polyester resin, polyolefin resin, acrylic resin, urethane resin, vinyl chloride resin, fluororesin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, etc. Film, stainless steel plate or the like is used.
- the transparent base material described later can be mentioned.
- the near-infrared absorbing layer is formed on the substrate by drying.
- the coating solution contains the raw material component of the transparent resin (B)
- a curing treatment is further performed.
- the reaction is thermosetting, drying and curing can be performed simultaneously.
- a curing process is provided separately from the drying.
- the near-infrared absorption layer formed on the peelable substrate is peeled off and used for manufacturing the present filter.
- the near-infrared absorbing layer according to the present filter can be manufactured into a film by extrusion, and a plurality of films thus manufactured are laminated to form a thermocompression bonding. May be integrated.
- the structure of this filter is not particularly limited except that it has a near infrared absorption layer.
- the NIR filter may be constituted by the near-infrared absorbing layer itself, or the NIR filter may be constituted together with other components. Examples of other components include a transparent substrate that holds the near-infrared absorbing layer, a selective wavelength shielding layer that controls transmission and shielding of light in a specific wavelength region, and the like.
- the selective wavelength shielding layer preferably has a wavelength selection characteristic that transmits light in the visible region and shields light having a wavelength other than the light shielding region of the near infrared absorption layer.
- the light shielding region of the selective wavelength shielding layer may include a light shielding region in the near infrared wavelength region of the near infrared absorption layer.
- the optical characteristics of the selective wavelength shielding layer preferably satisfy the following conditions (iii-1) and (iii-2).
- (Iii-1) The transmittance in the wavelength range of 420 to 695 nm is 90% or more.
- (Iii-2) The longest wavelength ⁇ b where the transmittance in the transmission spectrum in the wavelength range of 650 to 800 nm of the near infrared absorption layer is 1%. In the wavelength region from 1 to 1100 nm, the transmittance is 2% or less.
- the filter can shield light in the near infrared and infrared regions. Thereby, it is possible to suppress near-infrared light from entering the image sensor and to suppress noise.
- the transmittance in a specific wavelength region the transmittance of 90% or more means that the transmittance does not fall below 90% at all wavelengths in the wavelength region, and similarly the transmittance is For example, 2% or less means that the transmittance does not exceed 2% at all wavelengths in the wavelength region.
- the selective wavelength shielding layer further preferably has a light transmittance of 1% or less in the ultraviolet wavelength region of 400 nm or less, and particularly preferably has a transmittance of light of 410 nm or less of 1% or less.
- the selective wavelength shielding layer may shield light in a predetermined wavelength region by one layer, or may combine a plurality of layers to shield light in a predetermined wavelength region.
- the selective wavelength shielding layer may be disposed only on one side of the near infrared absorbing layer or may be disposed on both sides depending on the application of the filter. The number of selective wavelength shielding layers arranged is not limited.
- One or more selective wavelength shielding layers may be disposed only on one side, or an independent number of one or more selective wavelength shielding layers may be disposed on both sides.
- the stacking order of the components of the filter is not particularly limited. It is set appropriately according to the application of this filter.
- FIG. 1A is a cross-sectional view of an NIR filter 10A according to an embodiment of the present filter having a near-infrared absorbing layer 11 on a transparent substrate 12.
- FIG. 1B is a cross-sectional view of an NIR filter 10B according to another embodiment of the present filter in which the selective wavelength shielding layer 13 is disposed on both main surfaces of the near-infrared absorbing layer 11.
- FIG. 1A is a cross-sectional view of an NIR filter 10A according to an embodiment of the present filter having a near-infrared absorbing layer 11 on a transparent substrate 12.
- FIG. 1B is a cross-sectional view of an NIR filter 10B according to another embodiment of the present filter in which the selective wavelength shielding layer 13 is disposed on both main surfaces of the near-infrared absorbing layer 11.
- FIG. 1A is a cross-sectional view of an NIR filter 10A according to an embodiment of the present filter having a near-infrared absorbing layer 11 on a transparent
- 1C is a cross-sectional view of an NIR filter 10 ⁇ / b> C of still another embodiment of the present filter in which the selective wavelength shielding layer 13 is disposed on both sides of the configuration in which the near infrared absorption layer 11 is formed on the transparent substrate 12.
- the configuration shown in FIG. 1A is a method of directly forming the near infrared absorbing layer 11 on the transparent substrate 12, or a simple substance of the film-like near infrared absorbing layer 11 obtained by using the peelable substrate.
- the method etc. which are produced by sticking to either main surface of the film-like or plate-like transparent base material 12 via a pressure-sensitive adhesive layer (not shown) are exemplified.
- a configuration in which the near-infrared absorbing layer 11 is sandwiched between two transparent base materials 12 or a filter of the present filter in which the near-infrared absorbing layer 11 is formed or stuck on both main surfaces of the transparent base material 12 is used.
- the structure by which the reflection preventing layer was formed in the surface of the near-infrared absorption layer 11, or the surface of the selective wavelength shielding layer 13 formed on the near-infrared absorption layer 11 may be sufficient.
- the shape of the transparent substrate 12 is not particularly limited, and may be a block shape, a plate shape, or a film shape. Moreover, the material which comprises the transparent base material 12 will not be restrict
- crystals such as quartz, lithium niobate, sapphire, glass, polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyolefin resins such as polyethylene, polypropylene, ethylene vinyl acetate copolymer, norbornene resin, Examples thereof include acrylic resins such as polyacrylate and polymethyl methacrylate, urethane resins, vinyl chloride resins, fluorine resins, polycarbonate resins, polyvinyl butyral resins, and polyvinyl alcohol resins.
- PET polyethylene terephthalate
- PBT polybutylene terephthalate
- polyolefin resins such as polyethylene, polypropylene, ethylene vinyl acetate copolymer, norbornene resin
- acrylic resins such as polyacrylate and polymethyl methacrylate
- urethane resins vinyl chloride resins
- fluorine resins polycarbonate resins
- the transparent substrate 12 may be, for example, an absorption type glass filter in which CuO or the like is added to fluorophosphate glass or phosphate glass.
- Crystals such as quartz, lithium niobate, and sapphire are low-pass filters and wavelengths for reducing moiré and false color in imaging devices such as digital still cameras, digital video cameras, surveillance cameras, in-vehicle cameras, and webcams.
- these crystals are used as the material of the transparent substrate 12, the functions of a low-pass filter and a wave plate can be imparted to the NIR filter 10A according to the present embodiment. It is preferable because it can be further reduced in size and thickness.
- a cover for protecting the solid-state image sensor is hermetically sealed on the solid-state image sensor or the solid-state image sensor package of the image pickup apparatus. If this cover is used as the transparent substrate 12, an NIR filter that can be used as a cover can be obtained, and the imaging apparatus can be further reduced in size and thickness.
- the thickness of the glass plate is preferably in the range of 0.03 to 5 mm from the viewpoints of reducing the size and thickness of the apparatus and preventing damage during handling. From this point, the range of 0.05 to 1 mm is more preferable.
- the thickness is preferably in the range of 10 to 300 ⁇ m.
- a corona treatment or an easy adhesion treatment on the surface of the film.
- the other main surface of the transparent substrate 12 can be attached to a glass plate via an adhesive or an adhesive.
- the same materials as those exemplified as the material of the transparent substrate 12 can be used.
- borosilicate glass is preferable because it is easy to process and the generation of scratches and foreign matters on the optical surface is suppressed.
- the NIR filter 10A may be used by sticking the transparent substrate 12 side directly to, for example, a solid-state image sensor of an imaging device.
- the difference between the linear expansion coefficient of the transparent substrate 12 and the linear expansion coefficient of the adherend portion is preferably 30 ⁇ 10 ⁇ 7 / K or less from the viewpoint of suppressing peeling and the like after sticking.
- the material of the adherend is silicon
- the material having a linear expansion coefficient of 30 ⁇ 10 ⁇ 7 to 40 ⁇ 10 ⁇ 7 / K for example, AF33 manufactured by Schott, Tempax, manufactured by Asahi Glass Glass of SW-3, SW-Y, SW-YY, AN100, EN-A1, etc.
- the material for the transparent substrate 12 is suitable as the material for the transparent substrate 12.
- the material of the adherend is a ceramic such as alumina, a material whose linear expansion coefficient is in the vicinity of 50 ⁇ 10 ⁇ 7 to 80 ⁇ 10 ⁇ 7 / K, for example, D263 and B270 manufactured by Schott, manufactured by Asahi Glass Glasses such as FP1 and FP01eco are suitable as the material for the transparent substrate 12.
- the selective wavelength shielding layer 13 formed on both main surfaces of the near infrared absorption layer 11 may be a dielectric multilayer film, a near infrared or infrared absorber, a color correction dye, and an ultraviolet absorption. Examples include a layer that absorbs or reflects light of a specific wavelength containing at least one selected from agents.
- the two selected wavelength shielding layers 13 to be combined may be the same or different.
- the two selected wavelength shielding layers 13 are configured as the first selected wavelength shielding layer 13a and the second selected wavelength shielding layer 13b having different optical characteristics
- the selected wavelength shielding characteristics and the arrangement order thereof are determined depending on the optical device used. Is adjusted accordingly.
- the positional relationship among the near-infrared absorbing layer 11, the first selective wavelength shielding layer 13a, and the second selective wavelength shielding layer 13b is specifically the following (1x), (1y), (1z) A positional relationship is mentioned.
- the direction when the NIR filter 10B and the NIR filter 10C obtained in this way are installed in the apparatus is appropriately selected according to the design.
- the dielectric multilayer film is obtained by alternately laminating low refractive index dielectric films and high refractive index dielectric films. As a result, a function of controlling transmission and shielding of light in a specific wavelength region using light interference can be exhibited.
- a low refractive index and a high refractive index mean having a high refractive index and a low refractive index with respect to the refractive index of an adjacent layer.
- the high refractive index dielectric film is not particularly limited as long as the refractive index is higher than that of the low refractive index dielectric film.
- the refractive index of the high refractive index is preferably 1.6 or more. 2.2 to 2.5 is more preferable.
- As a dielectric material having such a refractive index Ta 2 O 5 (refractive index: 2.22), TiO 2 (refractive index: 2.41), Nb 2 O 5 (refractive index: 2.3). Etc. Of these, TiO 2 or the like is more preferable by comprehensively judging the film formability, refractive index, and the like including its reproducibility and stability.
- the refractive index of the low refractive index is preferably 1.45 or more and less than 1.55, and more preferably 1.45 to 1.47.
- the dielectric material having such a refractive index include SiO 2 (refractive index: 1.46), SiO x N y (refractive index: 1.46 to less than 1.55), and the like. Of these, SiO 2 is more preferable from the viewpoints of refractive index, reproducibility in film formability, stability, economy, and the like.
- the antireflection layer examples include a dielectric multilayer film, an intermediate refractive index medium, and a moth-eye structure in which the refractive index gradually changes.
- a dielectric multilayer film it is preferable to use a dielectric multilayer film from the viewpoint of optical efficiency and productivity.
- the dielectric multilayer film used for the antireflection layer is obtained by alternately laminating a low refractive index dielectric film and a high refractive index dielectric film similarly to the dielectric multilayer film used for the selective wavelength shielding layer 13. be able to.
- the filter preferably includes the selective wavelength shielding layer and the near-infrared absorbing layer, and satisfies the following conditions (iv-1) to (iv-3).
- the present filter preferably further includes an antireflection layer.
- the average transmittance in the wavelength range of 420 to 620 nm is 80% or more (iv-2)
- the transmittance in the wavelength range of 710 to 1100 nm is 2% or less (iv-3)
- the value of the wavelength at which the transmittance of light incident from the direction orthogonal to the main surface is 20%, and the transmittance of light incident from a direction forming an angle of 30 degrees with respect to a line orthogonal to the main surface is 20%.
- the difference in wavelength value is 3nm or less
- the visible light transmittance is sufficiently ensured by satisfying the above condition (iv-1), and further, the dielectric multilayer film has by satisfying the conditions (iv-2) and (iv-3).
- the angle dependency is eliminated, and the light shielding property in the near infrared region is sufficiently ensured in a wide wavelength region without being affected by the incident angle.
- the angle dependency is evaluated using the shift in wavelength at a transmittance of 20% when the incident angle is 0 degree and 30 degrees as an index. If this condition is satisfied, it can be said that wavelength shifts at other incident angles do not pose a problem for the present filter.
- the wavelength shift condition (iv-3) will be specifically described with reference to FIG.
- the solid line, the dotted line, and the broken line respectively indicate the NIR filter (antireflection layer (dielectric multilayer film) / near infrared ray) obtained in Example 110 as an example of the present invention.
- the wavelength of 20% transmittance ( ⁇ 20-0 ) when the incident angle is 0 degrees is 668 nm, and the incident angle is The wavelength of 20% transmittance ( ⁇ 20-30 ) at 30 degrees is 667 nm, and the difference is 1 nm.
- the wavelength of 20% transmittance ( ⁇ 20-40 ) is 665 nm, and the difference is 3 nm.
- the dielectric multilayer film is a total stack of a low refractive index dielectric film and a high refractive index dielectric film.
- the number is preferably 15 layers or more, more preferably 25 layers or more, and further preferably 30 layers or more.
- the first layer may be a low refractive index dielectric film or a high refractive index dielectric film.
- the thinner one is preferable from the viewpoint of reducing the thickness of the NIR filter while satisfying the preferable number of stacked layers.
- the film thickness of such a dielectric multilayer film is preferably 2 to 10 ⁇ m, depending on the selective wavelength shielding characteristics.
- the film thickness is preferably 0.1 to 1 ⁇ m.
- the warp is caused by the stress of the dielectric multilayer film. May occur. In order to suppress the occurrence of this warp, the difference in the thickness of the dielectric multilayer film formed on each surface should be as small as possible after forming the film so as to have a desired selective wavelength shielding characteristic. preferable.
- a vacuum film formation process such as a CVD method, a sputtering method, or a vacuum deposition method, or a wet film formation process such as a spray method or a dip method can be used.
- Examples of the layer that absorbs light of a specific wavelength containing at least one selected from near infrared rays or infrared absorbers, color tone correction dyes, and ultraviolet absorbers used as the selective wavelength shielding layer 13 include, for example, conventionally known ones. Examples thereof include a light absorption layer in which each absorbent is dispersed in a transparent resin. Transparent resins include polyester resins, acrylic resins, polyolefin resins, polycarbonate resins, polyamide resins, alkyd resins, and other thermoplastic resins, ene thiol resins, epoxy resins, thermosetting acrylic resins, photocurable acrylic resins, silsesquiskies. Examples thereof include resins that are cured by heat and light, such as oxane resin. The content of each absorbent in these light absorbing layers is appropriately adjusted in a range that does not impair the effects of the present invention, according to the light absorbing ability of each absorbent.
- This filter can be used as an imaging device such as a digital still camera, a digital video camera, a surveillance camera, an in-vehicle camera, a web camera, an NIR filter such as an automatic exposure meter, an NIR filter for PDP, or the like.
- This filter is suitably used in the above-described imaging device, and is disposed, for example, between an imaging lens and a solid-state imaging device.
- the filter can also be used by directly sticking to the solid-state image pickup device of the image pickup apparatus, the light receiving device of the automatic exposure meter, the image pickup lens, the PDP, or the like via an adhesive layer. Furthermore, it can also be directly attached to a glass window or lamp of a vehicle (automobile or the like) via an adhesive layer.
- Examples 1 to 75 and 110 are examples of the present invention, and examples 76 to 109 are comparative examples.
- the dye used in each example was synthesized by the following method. Dyes (A11-1) to (A11-19) are included in Dye (A11) and are used in the examples of the present invention. On the other hand, the dyes (A11-20) to (A11-27) have the same structure as that of the formula (A11) except for R 4 in the above formula (A11), and are used in the comparative example of the present invention. is there.
- R 4 in Table 2 corresponds to the above formulas (1a), (1b), (2a) to (2e), (3a) to (3e).
- Table 2 also shows the corresponding formula numbers.
- dyes (A11-1) to (A11-27) a total of two R 1 s, one each on the left and right, are the same on the left and right, and the same applies to R 2 to R 4 .
- Dyes (A11-1) to (A11-27) were synthesized according to the above reaction formula (F1).
- the dyes (A11-1) to (A11-27) are represented by the dye (A11).
- R 2 and R 3 in the reaction formula (F1) are hydrogen atoms.
- R 1 and R 4 represent the groups in Table 2 above.
- R 1 is a methyl group
- R 2 and R 3 are hydrogen atoms
- R 4 is outside the range of dye (A11) as shown in Table 2 (A11- 20) to (A11-27) were synthesized.
- Dyes (A11-1) to (A11-8) and Dye (A11-10) have high solubility in cyclohexane.
- the dyes (A11-2) to (A11-6) and the dye (A11-8) have high solubility in MIBK.
- the dyes (A11-1) and (A11-3) to (A11-8) have high solubility in toluene. Therefore, it can be said that the dyes (A11-1) to (A11-10) have high solubility in organic solvents.
- the comparative dyes (A11-20) to (A11-27) are generally less soluble in organic solvents than the dyes for the examples.
- the near-infrared absorbing layer 11 containing the pigments (A11-1) to (A11-27) obtained above and a transparent resin (B) having a refractive index of 1.45 or more is used as a transparent substrate.
- the NIR filter having the structure shown in FIG. 1A was manufactured.
- a glass plate (soda glass) having a thickness of 0.3 mm was used as the transparent substrate 12.
- any one of the dyes (A11-1) to (A11-19) and a 15% by mass cyclohexanone solution of polyester resin were mixed, and stirred and dissolved at room temperature to obtain a coating solution.
- the film thickness is 3 ⁇ m or less
- ( ⁇ b ⁇ a ) (absorption width when the transmittance is 1% or less) defined by the above condition (ii-2) is 30 nm.
- the pigments (A11-1) to (A11-19) were mixed in such a content as follows.
- B-OKP2 trade name, manufactured by Osaka Gas Chemical Co., Ltd., refractive index: 1.64
- the coating solution obtained above was applied onto a glass plate by spin coating and dried at 90 ° C. for 5 minutes, and then the obtained sample was further dried at 150 ° C. for 60 minutes. An NIR filter was obtained.
- the film thicknesses of the near infrared absorption layers of the obtained NIR filters 1 to 17 were all 2.7 ⁇ m.
- NIR filters 18 to 25 of Examples 18 to 25 were obtained.
- the film thicknesses of the near infrared absorption layers of the obtained NIR filters 18 to 25 were all 2.7 ⁇ m.
- polycarbonate made by Teijin Chemicals, trade name: TS2020, refractive index: 1.59 is used as the transparent resin (B), and the film thickness of the near-infrared absorbing layer is 0.6 ⁇ m. Except that, NIR filters 34 to 39 of Examples 34 to 39 were obtained in the same manner as Examples 1 to 10.
- NIR filters 40 to 45 of Examples 40 to 45 were obtained in the same manner as Examples 1 to 17 except that the thickness was 7 ⁇ m.
- NIR filters 46 to 51 of Examples 46 to 51 were obtained in the same manner as Examples 1 to 17.
- NIR filters 52 to 57 of Examples 52 to 57 were obtained in the same manner as Examples 1 to 17 except that the thickness was 4 ⁇ m.
- polycarbonate made by Teijin Chemicals, trade name: SP3810, refractive index: 1.63 is used as the transparent resin (B), and the film thickness of the near infrared absorbing layer is 2.8 ⁇ m. Except that, NIR filters 58 to 63 of Examples 58 to 63 were obtained in the same manner as Examples 1 to 17.
- NIR filters 64-69 of Examples 64-69 were obtained in the same manner as Examples 1-17.
- NIR filters 70 to 75 of Examples 70 to 75 were obtained in the same manner as Examples 1 to 17 except that the thickness was 3 ⁇ m.
- NIR filters 76 to 109 of Examples 76 to 109 were obtained using any one of the dyes (A11-20) to (A11-27) and the transparent resin (B). .
- the film thickness of the near-infrared absorbing layer of each NIR filter was set to the same film thickness as each example of the example using the same transparent resin (B).
- NIR filters 1 to 109 were measured using a UV-visible spectrophotometer (U-4100 type spectrophotometer manufactured by Hitachi High-Technologies Corporation). Was measured and calculated.
- NIR filters 1 to 25, 26 to 51, and 52 to 75 show the results of analysis of the transmission spectrum of the near infrared absorption layer of the NIR filter. The results are shown in Tables 4, 5 and 6, respectively.
- NIR filters 76 to 94 and 95 to 109 Are shown in Table 7 and Table 8, respectively.
- Tables 4 to 8 also show the ratio (parts by mass) of the pigment and the film thickness with respect to 100 parts by mass of the transparent resin (B) in the near infrared absorption layer.
- the reflection at the near-infrared absorbing layer-air interface is calculated by subtracting the effects of the absorption of the glass plate, the reflection at the glass plate-near-infrared absorbing layer interface, and the reflection at the glass plate-air interface.
- I s value of near-infrared-absorbing layer in the NIR filters 1-75 are examples of the present invention from Tables 4 to 6, by the action of the dye (A11-1) ⁇ (A11-19), is 115 or less. That is, it can be seen that the absorption curve near the boundary between the visible light region and the near infrared region is steep in the transmission spectrum of the near infrared absorption layer.
- Residual rate (%) absorption coefficient after heat resistance test at 680 nm ( ⁇ ) / initial extinction coefficient at 680 nm ( ⁇ ) ⁇ 100
- the dye residual rate after the heat resistance test of the NIR filter 7 (after 180 ° C., 5 hours) is 93%, whereas after the heat resistance test of the NIR filter 76 (after 180 ° C., 5 hours).
- the dye residual ratio was 58%. It has been shown that the heat resistance of the NIR filter is improved as an effect of the present invention.
- the transmittance of the NIR filter of Example 110 is from the direction of light incident from a direction orthogonal to the main surface, that is, the transmittance of light having an incident angle of 0 degrees, and the direction that forms an angle of 30 degrees with respect to a line orthogonal to the main surface.
- the transmittance of incident light that is, light having an incident angle of 30 degrees was measured using an ultraviolet-visible spectrophotometer (U-4100 spectrophotometer manufactured by Hitachi High-Technologies Corporation) to obtain a transmission spectrum.
- the 20% shift (30 degrees) is a wavelength value (shown as “ ⁇ 20-0 ”) at which the transmittance of light at an incident angle of 0 degrees is 20%, and the transmittance of light at an incident angle of 30 degrees is 20.
- a transmission spectrum of light having an incident angle of 40 degrees was obtained.
- the difference between the two was determined as a 20% shift (40 degrees).
- the selective wavelength shielding layer was formed by a vapor deposition method in a configuration in which a TiO 2 film as a high refractive index dielectric film and an SiO 2 film as a low refractive index dielectric film were alternately laminated.
- the selective wavelength shielding layer was determined by simulating to have desired optical characteristics using the number of laminated dielectric multilayer films, the thickness of the TiO 2 film, and the thickness of the SiO 2 film as parameters.
- the optical properties of the dielectric multilayer film as the selective wavelength shielding layer are as follows.
- the transmittance in the wavelength region of 420 to 715 nm is 90% or more, and the transmittance in the wavelength region of 730 to 1100 nm is 2% or less and 400 nm or less.
- the transmittance was 1% or less (FIG. 4).
- the antireflection layer was formed by a vapor deposition method in a configuration in which a TiO 2 film that is a high refractive index dielectric film and an SiO 2 film that is a low refractive index dielectric film are alternately laminated.
- the design of the antireflection layer was also determined by simulating to have desired optical characteristics using the number of dielectric multilayer films, the thickness of the TiO 2 film, and the thickness of the SiO 2 film as parameters (FIG. 5). .
- Example 110 In the same manner as in Example 7, except that a glass plate having a selective wavelength shielding layer formed on the surface opposite to the coating surface of the coating liquid for forming the near-infrared absorbing layer was used. An infrared absorption layer was formed. Further, an NIR filter 110 was obtained by forming an antireflection layer on the near infrared absorption layer. The total thickness of the selective wavelength shielding layer was about 8.9 ⁇ m, and the total thickness of the antireflection layer was about 0.34 ⁇ m. The transmittance of the obtained NIR filter 110 was measured, and 20% shift (30 degrees) and (40 degrees) were obtained. The results are shown in Table 9 together with the structure of the near infrared absorbing layer. FIG.
- FIG. 6 shows a transmission spectrum of light with an incident angle of 0 degrees and a transmission spectrum of light with incident angles of 30 degrees and 40 degrees in the wavelength region of 660 to 690 nm in the NIR filter 110 by a solid line, a dotted line, and a broken line, respectively.
- the 20% shift between the incident angle of 0 degrees and the incident angle of 30 degrees is 1 nm
- the incident angle of 40 degrees is within a 20% shift of 3 nm.
- This filter has good near-infrared shielding characteristics when used alone or in combination with other selective wavelength shielding members, and can be sufficiently reduced in size and thickness, so that an imaging device such as a digital still camera, It is useful for display devices such as plasma displays, glass windows for vehicles (automobiles, etc.), lamps and the like.
- 10A, 10B, 10C ... NIR filter, 12 ... transparent substrate, 11 ... near-infrared absorbing layer, 13 ... selective wavelength shielding layer, 13a ... first selective wavelength shielding layer, first derivative multilayer film, 13b ... second A selective wavelength shielding layer of the second derivative multilayer film.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Optical Filters (AREA)
Abstract
Description
[1]下記式(A1)で示される近赤外線吸収色素(A1)から選択される1種以上を含む近赤外線吸収色素(A)と、屈折率が1.45以上の透明樹脂(B)とを含有する近赤外線吸収層を有する近赤外線カットフィルタ。
Xは、独立して1つ以上の水素原子が炭素数1~12のアルキル基またはアルコキシ基で置換されていてもよい下記式(1)または式(2)で示される2価の有機基である。
-(CH2)n1- …(1)
式(1)中n1は、2または3である。
-(CH2)n2-O-(CH2)n3- …(2)
式(2)中、n2とn3はそれぞれ独立して0~2の整数であり、n2+n3は1または2である。
R1は、独立して飽和環構造を含んでもよく、分岐を有してもよい炭素数1~12の飽和もしくは不飽和炭化水素基、炭素数3~12の飽和環状炭化水素基、炭素数6~12のアリール基または炭素数7~13のアルアリール基を示す。
R2およびR3は、独立して水素原子、ハロゲン原子、または、炭素数1~10のアルキル基もしくはアルコキシ基を示す。
R4は、独立して1つ以上の水素原子がハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい、少なくとも1以上の分岐を有する炭素数5~25の炭化水素基である。
-CR11 2-(CR12 2)n4- …(3)
ただし、式(3)は、左側がベンゼン環に結合し右側がNに結合する2価の基を示し、式(3)中、n4は1または2である。
R11はそれぞれ独立して、分岐を有してもよい炭素数1~12のアルキル基またはアルコキシ基であり、R12はそれぞれ独立して、水素原子または、分岐を有してもよい炭素数1~12のアルキル基またはアルコキシ基である。
[3]前記式(3)において、R11はそれぞれ独立して、分岐を有してもよい炭素数1~6のアルキル基またはアルコキシ基であり、R12はそれぞれ独立して、水素原子または、分岐を有してもよい炭素数1~6のアルキル基またはアルコキシ基である[2]記載の近赤外線カットフィルタ。
-C(CH3)2-CH(CH3)- …(11-1)
-C(CH3)2-CH2- …(11-2)
-C(CH3)2-CH(C2H5)- …(11-3)
-C(CH3)2-CH2-CH2- …(12-1)
-C(CH3)2-CH2-CH(CH3)- …(12-2)
-C(CH3)2-CH(CH3)-CH2- …(12-3)
ただし、式(11-1)~(12-3)で示される基は、いずれも左側がベンゼン環に結合し右側がNに結合する。
[5]前記式(A1)中、R4が独立して置換基を有しない下記式(4)で示される炭素数5~25の分枝状の炭化水素基である[1]~[4]のいずれかに記載の近赤外線カットフィルタ。
-CH3-mR13 m …(4)
(ただし、式(4)中、mは1、2または3であり、R13はそれぞれ独立して、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでもよい直鎖状または分枝状の炭化水素基(ただし、mが1のときは分枝状である。)を示し、かつm個のR13の炭素数の合計は4~24である。)
[6]前記式(A1)におけるR4の炭素数は、独立して6~20である[1]~[5]のいずれかに記載の近赤外線カットフィルタ。
(ii-1)650~800nmの波長域において透過率が1%となる最も短い波長λaが、675nm≦λa≦720nm
(ii-2)650~800nmの波長域において透過率が1%となる最も長い波長λbと前記λaとの関係が、λb-λa=30nm
(ii-3)650~800nmの波長域において前記λaよりも短波長側で透過率が70%となる波長λcと、前記λaと、前記透明樹脂(B)の屈折率nd(B)との関係が、nd(B)×(λa-λc)≦115
[9]前記透明樹脂(B)100質量部に対する前記近赤外線吸収色素(A)の割合が0.1~20質量部である[1]~[8]のいずれかに記載の近赤外線カットフィルタ。
(iii-1)420~695nmの波長域において透過率が90%以上
(iii-2)前記近赤外線吸収層の650~800nmの波長域における透過率が1%となる最も長い波長λbから1100nmまでの波長域において透過率が2%以下
[11]前記選択波長遮蔽層は、屈折率が1.45以上1.55未満の誘電体膜と屈折率が2.2~2.5の誘電体膜とを交互に積層した誘電体多層膜からなる[10]に記載の近赤外線カットフィルタ。
[12]下記(iv-1)~(iv-3)の条件を満たす[10]または[11]記載の近赤外線カットフィルタ。
(iv-1)420~620nmの波長域における平均透過率が80%以上
(iv-2)710~1100nmの波長域における透過率が2%以下
(iv-3)600~700nmの波長域において、主面に直交する方向から入射した光の透過率が20%となる波長の値と、主面に直交する線に対して30度の角度をなす方向から入射した光の透過率が20%となる波長の値の差が3nm以下
本発明の近赤外線カットフィルタ(以下、本フィルタという)は、近赤外線吸収色素(A)と透明樹脂(B)とを含有する近赤外線吸収層を有する。本発明における近赤外線吸収層は透明樹脂(B)を主体とする樹脂層であり、近赤外線吸収色素(A)は該樹脂層中に分散された状態で存在する。前記色素(A)は、上記式(A1)で示される色素(以下、色素(A1)と略する)から選択される1種以上を含み、前記透明樹脂(B)の屈折率が1.45以上である。
ここで、本明細書においては、特に断りのない限り、屈折率とは、20℃において波長589nmにおける屈折率(以下、ndともいう)をいう。
なお、近赤外線吸収層が良好な近赤外線遮蔽機能を有するとは、光の吸収曲線において可視光領域と近赤外線領域の境界付近(波長630~700nm)の傾斜が急峻であり、かつ近赤外線吸収波長域が広く、他の選択波長遮蔽部材と組合せて用いた場合に吸収が十分でない波長域が出現することが殆どないことをいう。
本フィルタに使用する下記式(A1)で示される色素(A1)について説明する。本明細書において、式(1)で示される基を基(1)と略し、他の基についても同様とする。
Xは、独立して1つ以上の水素原子が炭素数1~12のアルキル基またはアルコキシ基で置換されていてもよい下記式(1)または式(2)で示される2価の有機基である。
-(CH2)n1- …(1)
式(1)中n1は、2または3である。
-(CH2)n2-O-(CH2)n3- …(2)
式(2)中、n2とn3はそれぞれ独立して0~2の整数であり、n2+n3は1または2である。
R1は、独立して飽和環構造を含んでもよく、分岐を有してもよい炭素数1~12の飽和もしくは不飽和炭化水素基、炭素数3~12の飽和環状炭化水素基、炭素数6~12のアリール基または炭素数7~13のアルアリール基を示す。
R2およびR3は、独立して水素原子、ハロゲン原子、または、炭素数1~10のアルキル基もしくはアルコキシ基を示す。
R4は、独立して1つ以上の水素原子がハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい、少なくとも1以上の分岐を有する炭素数5~25の炭化水素基である。
また、本明細書において、アリール基は芳香族化合物が有する芳香環、例えば、ベンゼン環、ナフタレン環、ビフェニル、フラン環、チオフェン環、ピロール環等を構成する炭素原子を介して結合する基をいう。アルアリール基は、1以上のアリール基で置換された、飽和環構造を含んでもよい直鎖状もしくは分枝状の飽和もしくは不飽和炭化水素基または飽和環状炭化水素基をいう。
-CR11 2-(CR12 2)n4- …(3)
ただし、式(3)は、左側がベンゼン環に結合し右側がNに結合する2価の基を示す。式(3)中、n4は1または2であり、n4は1が好ましい。また、R11はそれぞれ独立して、分岐を有してもよい炭素数1~12のアルキル基またはアルコキシ基であり、炭素数1~6の分岐を有してもよいアルキル基またはアルコキシ基が好ましい。さらに、R12はそれぞれ独立して、水素原子または、分岐を有してもよい炭素数1~12のアルキル基またはアルコキシ基であり、水素原子または、炭素数1~6の分岐を有してもよいアルキル基またはアルコキシ基が好ましい。
-C(CH3)2-CH(CH3)- …(11-1)
-C(CH3)2-CH2- …(11-2)
-C(CH3)2-CH(C2H5)- …(11-3)
-C(CH3)2-CH2-CH2- …(12-1)
-C(CH3)2-CH2-CH(CH3)- …(12-2)
-C(CH3)2-CH(CH3)-CH2- …(12-3)
以下に、Xが左右ともに基(11-1)である色素(A11)および、基(12-1)である色素(A12)の構造式を示す。なお、色素(A11)、(A12)中、R1~R4は色素(A1)におけるのと同じ意味である。
また、色素(A1)中、R2およびR3は、独立して、水素原子、ハロゲン原子または、炭素数1~6のアルキル基もしくはアルコキシ基が好ましい。R2およびR3は、いずれも水素原子がより好ましい。
-CH3-mR13 m …(4)
ただし、式(4)中、mは1、2または3であり、R13はそれぞれ独立して、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでもよい直鎖状または分枝状の炭化水素基(ただし、mが1のときは分枝状である。)を示し、かつm個のR13の炭素数の合計は4~24である。透明樹脂への溶解性の観点から、mは2または3が好ましい。
分枝状のR13bとしては、例えば、主鎖の炭素数が2~7であり、側鎖に1~5個のメチル基またはエチル基、好ましくはメチル基を有するR13bが挙げられる。側鎖の数は、末端以外は1個の炭素原子につき1個が好ましい。R13bの末端は-C(CH3)3が好ましい。R13bとして具体的には、1-メチルエチル基、1-メチルプロピル基、2-メチルプロピル基、1,1-ジメチルエチル基、1-メチルブチル基、2-メチルブチル基、1,3,3-トリメチルブチル基、1,2,2-トリメチルブチル基、3,5,5-トリメチルヘキシル基等が好ましい。
本フィルタに使用する近赤外線吸収層は、前記色素(A)と屈折率1.45以上の透明樹脂(B)とを含有する。透明樹脂(B)の屈折率は、1.5以上が好ましく、1.6以上がより好ましい。透明樹脂(B)の屈折率の上限は特にないが、入手のしやすさ等から1.72程度が挙げられる。
本フィルタが有する近赤外線吸収層は、色素(A)と屈折率が1.45以上の透明樹脂(B)を含有する層であり、色素(A)は、1以上の色素(A1)を含有する。
(ii-1)650~800nmの波長域において透過率が1%となる最も短い波長λaが、675nm≦λa≦720nm
(ii-2)650~800nmの波長域において透過率が1%となる最も長い波長λbと前記λaとの関係が、λb-λa=30nm
(ii-3)650~800nmの波長域において前記λaよりも短波長側で透過率が70%となる波長λcと、上記λaと、上記透明樹脂(B)の屈折率nd(B)との関係が、nd(B)×(λa-λc)≦115
前記トリアジン系の化合物としては、例えば、TINUVIN 400(Ciba社製)、TINUVIN 405(Ciba社製)、TINUVIN 460(Ciba社製)、または、TINUVIN 479(Ciba社製)が挙げられる。
前記クエンチャーの有機金属錯体としては、ニッケル錯体化合物、銅錯体化合物コバルト錯体化合物および亜鉛錯体化合物等が挙げられる。
ニッケル錯体化合物としては、例えば、ニッケルビス(オクチルフェニル)サルファイド、ニッケルコンプレクス-3,5-ジ-tert-ブチル-4-ヒドロキシベンジルリン酸モノエチラート、ニッケルジブチルジチオカーバメートが挙げられる。
亜鉛錯体化合物としては、例えば、Zn(II)ビス(ジイソプロプルジチオカルバメート)が挙げられる。
遷移金属としては、例えば、ニッケル、コバルト、銅が挙げられる。
A+の第4級アンモニウムカチオンとしては、テトラエチルアンモニウムカチオンおよびテトラブチルアンモニウムカチオン等が挙げられる。A+の第4級ホスホニウムカチオンとしては、テトラエチルホスホニウムカチオン、テトラブチルホスホニウムカチオン等が挙げられる。
前記-SO2R6のR6としては、下記式(Y1)~(Y7)で示される1価の基、およびフェニル基から選ばれる基が挙げられる。
本フィルタの構成は、近赤外線吸収層を有する以外は特に制限されない。近赤外線吸収層それ単独でNIRフィルタを構成してもよく、他の構成要素とともにNIRフィルタを構成してもよい。他の構成要素としては、近赤外線吸収層を保持する透明基材や、特定の波長域の光の透過と遮蔽を制御する選択波長遮蔽層等が挙げられる。
(iii-1)420~695nmの波長域において透過率が90%以上
(iii-2)上記近赤外線吸収層の波長域650~800nmの透過スペクトルにおける透過率が1%となる最も長い波長λbから1100nmまでの波長域において透過率が2%以下
条件(iii-1)を満たすことで、可視光領域の光の利用効率を高められる。すなわち、可視光領域の透過率は高いほど好ましく、95%以上がより好ましい。
条件(iii-2)を満たすことで、本フィルタが、近赤外および赤外領域の光を遮蔽できる。それにより、撮像素子への近赤外光の入射を抑制し、ノイズを抑制できる。
なお、本明細書において、特定の波長領域の透過率について、透過率が例えば90%以上とは、その波長領域の全波長において透過率が90%を下回らないことをいい、同様に透過率が例えば2%以下とは、その波長領域の全波長において透過率が2%を超えないことをいう。
また、選択波長遮蔽層は、一層で所定の波長領域の光を遮蔽してもよく、複数層を組み合わせて所定の波長領域の光を遮蔽してもよい。選択波長遮蔽層は、本フィルタの用途に応じて前記近赤外線吸収層の片側のみに配置してもよく、または両側に配置してもよい。配置される選択波長遮蔽層の数は制限されない。片側のみに1以上の選択波長遮蔽層を配置してもよく、両側にそれぞれ独立した数の1以上の選択波長遮蔽層を配置してもよい。本フィルタの各構成要素の積層順は特に制限されない。本フィルタの用途に応じて適宜設定される。
図1A~図1Cは、本フィルタの実施形態の例を概略的に示す断面図である。図1Aは、透明基材12上に近赤外線吸収層11を有する本フィルタの一実施形態のNIRフィルタ10Aの断面図である。また、図1Bは、近赤外線吸収層11の両方の主面に選択波長遮蔽層13が配置された本フィルタの別の実施形態のNIRフィルタ10Bの断面図である。図1Cは、透明基材12上に近赤外線吸収層11が形成された構成の両面に選択波長遮蔽層13が配置された本フィルタのさらに別の実施形態のNIRフィルタ10Cの断面図である。
(1y)近赤外線吸収層11、第1の選択波長遮蔽層13a、第2の選択波長遮蔽層13b
(1z)近赤外線吸収層11、第2の選択波長遮蔽層13b、第1の選択波長遮蔽層13a
上記(1y)(1z)の形態をとる場合には近赤外線吸収層上で反射による可視光透過率損失が発生するため近赤外線吸収層上に反射防止層を設けるのが好ましい。
(iv-1)420~620nmの波長域における平均透過率が80%以上
(iv-2)710~1100nmの波長域における透過率が2%以下
(iv-3)600~700nmの波長域において、主面に直交する方向から入射した光の透過率が20%となる波長の値と、主面に直交する線に対して30度の角度をなす方向から入射した光の透過率が20%となる波長の値の差が3nm以下
ここで、上記条件(iv-3)では、入射角が0度の場合と30度の場合の透過率20%における波長のシフトを指標として角度依存性を評価している。この条件を満たせば、他の入射角における波長シフトも本フィルタとして問題になることはないと言える。
以下の方法により、各例に使用する色素を合成した。色素(A11-1)~(A11-19)は、色素(A11)に含まれ、本発明の実施例に使用される。一方、色素(A11-20)~(A11-27)は、上記式(A11)において、R4以外は、式(A11)と構造が同じであり、本発明の比較例に使用される色素である。
以下の表2に示す構成の色素(A11-1)~(A11-27)を合成した。なお、表2で、R4については、式(4)におけるmの数とR13および炭素数を記載した。R13-1~R13-3は、カルボニル基に結合するα位の炭素原子に結合する1個~3個のR13を区別するものであって位置の区別はない。表2中、「-」は水素原子を意味する。表2中、n-は直鎖を示し、Phはベンゼン環を示す。i-C3H7は、1-メチルエチル基を示す。表2におけるR4の具体的な構造は、上記式(1a)、(1b)、(2a)~(2e)、(3a)~(3e)に対応する。表2には対応する式番号も示した。なお、色素(A11-1)~(A11-27)において、左右に1個ずつ計2個存在するR1は左右で同じであり、R2~R4についても同様である。
以下、反応式(F1)を用いて色素(A11-1)の製造例を具体的に説明する。なお、以下の説明において、原料成分(g)や中間生成物((b)~(h))におけるR1~R4について記載しないが、R1はメチル基、R2およびR3は水素原子であり、R4は基(2b)である。
500mlのナスフラスコに化合物(c)を(25g、0.14mol),メタノール360mlを加え、0℃で水素化ホウ素ナトリウム(9.0g、0.22mol)をゆっくり加えた。添加後、室温で3時間撹拌した。反応終了後、水をゆっくり加え、その後、炭酸水素ナトリウム水溶液と酢酸エチルで分液を行った、分液後、得られた有機層を硫酸マグネシウムで乾燥しロータリーエバポレーターを用いて溶媒を留去しシリカゲルカラムクロマトグラフィーにて精製を行った。展開溶媒は酢酸エチル:ヘキサン=1:4とした。結果、化合物(d)(23g、0.13mol、収率91%)が得られた。
2Lナスフラスコに化合物(d)(20g、0.11mol)、濃硫酸(80g、0.81mol)を加え、0℃に冷却した。その後、重量比で濃硝酸:濃硫酸=1:5の混合溶液を55g、ゆっくり滴下した。滴下終了後、反応温度を徐々に室温に戻し、同温度で16時間撹拌した。反応終了後、再び0℃に冷却して、水酸化ナトリウム水溶液をPHが9になるまでゆっくり加えた。沈殿物をろ過して、水とメタノールで十分洗浄した。洗浄後、得られた固形物をシリカゲルカラムクロマトグラフィーにて精製を行った。展開溶媒はジクロロメタン:ヘキサン=1:5とした。結果、化合物(e)が(17g、0.077mol、収率67%)得られた。
窒素雰囲気下、500mlのナスフラスコに、化合物(e)(15g、0.068mol)、150mlのメタノール、150mlのテトラヒドロフラン、ギ酸アンモニウム(23.5g、0.37mol)10wt%パラジウム炭素(12g)を加え、その後、反応系を開放して大気雰囲気下室温で12時間撹拌した。反応終了後、混合物のセライトろ過を行い、得られたろ液をロータリーエバポレーターを用いて濃縮した後、シリカゲルカラムクロマトグラフィーにて精製を行った(展開溶媒はヘキサン:酢酸エチル=1:4)。結果、化合物(f)が(9.7g、0.051mol 収率75%)得られた。
窒素雰囲気下、300mlのナスフラスコに、化合物(f)の2.0g(0.011mol)、50mlのジクロロメタン、2.12g(0.021mol)のトリエチルアミン、触媒量のジメチルアミノピリジンを加え、反応器を0℃に冷却してから、置換基R4を有するカルボン酸塩化物として2プロピルバレリルクロリド(g)の2.55g(0.016mol)を加え、その後、窒素雰囲気下同温度で30分撹拌した。反応終了後、混合物に50mlの飽和食塩水を加え、100mlのジクロロメタンで抽出を行った。得られた有機層を無水硫酸ナトリウムにて乾燥し、ロータリーエバポレーターを用いて溶媒を留去した後、シリカゲルカラムクロマトグラフィーにて精製を行った。(展開溶媒はヘキサン:酢酸エチル=4:1)。結果、化合物(h;R4=CH(n-C3H7)(n-C3H7))が(2.5g、0.0079mol、収率70%)得られた。
500mlのナスフラスコにDean-Stark管を取り付け、A11-1に用いる中間体である化合物(h)(2.0g、0.0063mol)、140mlのベンゼン、60mlの1-ブタノール、0.36g(0.0032mol)のスクアリン酸を加え、アゼオトロープ加熱還流条件下で3時間撹拌した。反応終了後、ロータリーエバポレーターを用いて反応溶媒を留去した後、シリカゲルカラムクロマトグラフィーにて精製を行った。展開溶媒はヘキサン:酢酸エチル=7:3)。結果、色素(A11-1)(2.9g、0.0041mol、収率65%)が得られた。
色素(A11-1)の製造において、置換基R4を有するカルボン酸塩化物(g)のR4を、それぞれ表2に示すR4とした以外は同様にして、色素(A11-2)~(A11-4)、(A11-9)~(A11-14)を製造した。
(化合物(c)((A11-5)~(A11-8)に用いる中間体)の製造)
色素(A11-5)~(A11-8)の製造においては、まず、反応式(F1)中の化合物(a)(ただし、R2、R3は水素原子)から、化合物(b)を経由して、化合物(c)(ただし、R1はC2H5、n-C3H7またはi-C3H7、R2、R3は水素原子)を以下のようにして製造した。
2Lのナスフラスコに化合物(a)(49g、0.31mol)を加え、0℃で水素化ホウ素ナトリウム(12.9g、0.34mol)を少しずつ添加した。添加後、p-トルエンスルホン酸(58.3g、0.34mol)を0℃でゆっくり、反応系中に添加した。1時間反応させた後、ナスフラスコを再度0℃に冷やし、水を少しずつ滴下し、反応を終了させた。ジクロロメタンを加え、有機層をエバポレーターを用いて濃縮した。濃縮液を酢酸エチル:ヘキサン=1:6の展開溶液でカラム精製を行い、反応式(F1)中の化合物(b)と同様の骨格を有する化合物(b’)(ただし、R1~R3は水素原子である。)を(46g、収率93%)得た。
式(F1)における式(A11)においてR1がメチル基、R2およびR3が水素原子であって、R4が表2に示されるとおり色素(A11)の範囲外である色素(A11-20)~(A11-27)を合成した。具体的には、色素(A11-1)の製造において、置換基R4を有するカルボン酸塩化物(g)のR4を、それぞれ表2に示すR4とした以外は同様にして、色素(A11-20)~(A11-27)を製造した。
上記で得られた色素(A11-1)~(A11-10)、(A11-20)~(A11-27)について、以下のとおり有機溶媒に対する溶解性を評価した。
溶解性試験では有機溶媒として、シクロヘキサノン、メチルイソブチルケトン(MIBK)、トルエンの3種を使用した。結果を表3に示す。なお、表3中において、%は、溶液全体の質量に対する色素の質量%である。また、溶解性試験における各有機溶媒の温度は50℃とした。
以下の例1~例109において、上記で得られた色素(A11-1)~(A11-27)と屈折率が1.45以上の透明樹脂(B)を含む近赤外線吸収層11を透明基板12上に形成して、図1Aに示す構成のNIRフィルタを製造した。なお、透明基板12として、厚さ0.3mmのガラス板(ソーダガラス)を用いた。
表4に示すとおり色素(A11-1)~(A11-19)のいずれかと、ポリエステル樹脂の15質量%シクロヘキサノン溶液とを混合し、室温にて撹拌・溶解することで塗工液を得た。いずれの例においてもポリエステル樹脂100質量部に対し、膜厚3μm以下で、上記条件(ii-2)に規定される(λb-λa)(透過率が1%以下における吸収幅)が30nmになる含有量で色素(A11-1)~(A11-19)を混合した。ポリエステル樹脂としては、B-OKP2(商品名、大阪ガスケミカル社製、屈折率1.64)を用いた。
表7および表8に示すとおり、色素(A11-20)~(A11-27)のいずれかと、透明樹脂(B)とを使用して、例76~例109のNIRフィルタ76~109を得た。それぞれのNIRフィルタの近赤外線吸収層の膜厚は、同じ透明樹脂(B)を使用する実施例の各例と同じ膜厚とした。
(1)吸光特性
上記で得られたNIRフィルタ1~109の透過率(%/nm)について、紫外可視分光光度計(日立ハイテクノロジーズ社製、U-4100型分光光度計)を用いて透過スペクトルを測定し、算出した。NIRフィルタが有する近赤外線吸収層の透過スペクトルの分析結果をNIRフィルタ1~25、26~51、52~75についてはそれぞれ表4、表5および表6に、NIRフィルタ76~94、95~109についてはそれぞれ表7および表8に示す。表4~表8には、近赤外線吸収層における透明樹脂(B)100質量部に対する色素の割合(質量部)および膜厚を併せて記載した。
上記のNIRフィルタ7と、比較例であるNIRフィルタ76について耐熱性試験を行い、耐熱性を評価した。
耐熱性試験はNIRフィルタを180℃で5時間加熱する試験とした。また、耐熱性試験後に上記同様にしてNIRフィルタが有する近赤外線吸収層における透過率を測定した。耐熱性の評価は、以下の式により、波長680nmにおける耐熱性試験前後の吸光係数の百分率(%)を色素の残存率(%)として見積もることで行った。
以下の例110により、図1Cに示す構成のNIRフィルタにおいて、選択波長遮蔽層13aの代わりに反射防止層を有する以外は同様の選択波長遮蔽層(選択波長遮蔽層13b)を有するNIRフィルタを製造した。
例110のNIRフィルタの透過率を、主面に直交する方向から入射した光、すなわち入射角0度の光の透過率、および主面に直交する線に対して30度の角度をなす方向から入射した光、すなわち入射角30度の光の透過率として、紫外可視分光光度計(日立ハイテクノロジーズ社製、U-4100型分光光度計)を用いて測定し、透過スペクトルを得た。20%シフト(30度)は、入射角0度の光の透過率が20%となる波長の値(「λ20-0」と示す。)と、入射角30度の光の透過率が20%となる波長の値(「λ20-30」と示す。)の差である。
さらに、同様にして入射角40度の光の透過スペクトルを得た。また、入射角0度の光の透過率が20%となる波長の値(λ20-0)と、入射角40度の光の透過率が20%となる波長の値(「λ20-40」と示す。)の差を、20%シフト(40度)として求めた。
選択波長遮蔽層は、高屈折率誘電体膜であるTiO2膜と低屈折率誘電体膜であるSiO2膜を交互に積層する構成において、蒸着法により成膜した。
選択波長遮蔽層は、誘電体多層膜の積層数、TiO2膜の膜厚およびSiO2膜の膜厚をパラメータとして、所望の光学特性を有するようにシミュレーションして構成を決定した。上記選択波長遮蔽層としての誘電体多層膜の光学特性は、420~715nmの波長域における透過率が90%以上、730~1100nmの波長域における透過率が2%以下、400nm以下の全領域に亘り透過率が1%以下とした(図4)。
近赤外線吸収層形成のための塗工液の塗工面の反対側の面に、選択波長遮蔽層を成膜したガラス板を用いたこと以外は、例7と同様にして、ガラス板上に近赤外線吸収層を形成した。さらに、近赤外線吸収層の上に反射防止層を成膜することによりNIRフィルタ110を得た。膜厚は、選択波長遮蔽層は全体で約8.9μm、反射防止層は全体で約0.34μmであった。得られたNIRフィルタ110の透過率を測定し、20%シフト(30度)、(40度)を求めた。その結果を近赤外線吸収層の構成とともに表9に示す。図6に、NIRフィルタ110における、660~690nmの波長領域の入射角0度の光の透過スペクトルと入射角30度および40度の光の透過スペクトルをそれぞれ実線と点線および破線で示す。表9からわかるように入射角0度と入射角30度の20%シフトは1nmであり、入射角40度においても3nmの20%シフトで収まっている。
Claims (12)
- 下記式(A1)で示される近赤外線吸収色素(A1)から選択される1種以上を含む近赤外線吸収色素(A)と、屈折率が1.45以上の透明樹脂(B)とを含有する近赤外線吸収層を有する近赤外線カットフィルタ。
Xは、独立して1つ以上の水素原子が炭素数1~12のアルキル基またはアルコキシ基で置換されていてもよい下記式(1)または式(2)で示される2価の有機基である。
-(CH2)n1- …(1)
式(1)中n1は、2または3である。
-(CH2)n2-O-(CH2)n3- …(2)
式(2)中、n2とn3はそれぞれ独立して0~2の整数であり、n2+n3は1または2である。
R1は、独立して飽和環構造を含んでもよく、分岐を有してもよい炭素数1~12の飽和もしくは不飽和炭化水素基、炭素数3~12の飽和環状炭化水素基、炭素数6~12のアリール基または炭素数7~13のアルアリール基を示す。
R2およびR3は、独立して水素原子、ハロゲン原子、または、炭素数1~10のアルキル基もしくはアルコキシ基を示す。
R4は、独立して1つ以上の水素原子がハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい、少なくとも1以上の分岐を有する炭素数5~25の炭化水素基である。 - 前記式(A1)中、Xが下記式(3)で示される2価の有機基である請求項1記載の近赤外線カットフィルタ。
-CR11 2-(CR12 2)n4- …(3)
ただし、式(3)は、左側がベンゼン環に結合し右側がNに結合する2価の基を示し、式(3)中、n4は1または2である。
R11はそれぞれ独立して、分岐を有してもよい炭素数1~12のアルキル基またはアルコキシ基であり、R12はそれぞれ独立して、水素原子または、分岐を有してもよい炭素数1~12のアルキル基またはアルコキシ基である。 - 前記式(3)において、R11はそれぞれ独立して、分岐を有してもよい炭素数1~6のアルキル基またはアルコキシ基であり、R12はそれぞれ独立して、水素原子または、分岐を有してもよい炭素数1~6のアルキル基またはアルコキシ基である請求項2記載の近赤外線カットフィルタ。
- 前記式(A1)中Xが下記式(11-1)~下記式(12-3)で示される2価の有機基のいずれかである請求項1記載の近赤外線カットフィルタ。
-C(CH3)2-CH(CH3)- …(11-1)
-C(CH3)2-CH2- …(11-2)
-C(CH3)2-CH(C2H5)- …(11-3)
-C(CH3)2-CH2-CH2- …(12-1)
-C(CH3)2-CH2-CH(CH3)- …(12-2)
-C(CH3)2-CH(CH3)-CH2- …(12-3)
ただし、式(11-1)~(12-3)で示される基は、いずれも左側がベンゼン環に結合し右側がNに結合する。 - 前記式(A1)中、R4が独立して置換基を有しない下記式(4)で示される炭素数5~25の分枝状の炭化水素基である請求項1~4のいずれか1項に記載の近赤外線カットフィルタ。
-CH3-mR13 m …(4)
(ただし、式(4)中、mは1、2または3であり、R13はそれぞれ独立して、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでもよい直鎖状または分枝状の炭化水素基(ただし、mが1のときは分枝状である。)を示し、かつm個のR13の炭素数の合計は4~24である。) - 前記式(A1)におけるR4の炭素数は、独立して6~20である請求項1~5のいずれか1項に記載の近赤外線カットフィルタ。
- 前記近赤外線吸収色素(A)を下記(ii-1)および(ii-2)の条件を満たす含有量で含有する場合に、前記近赤外線吸収層が下記(ii-3)の条件を満たす請求項1~6のいずれか1項に記載の近赤外線カットフィルタ。
(ii-1)650~800nmの波長域において透過率が1%となる最も短い波長λaが、675nm≦λa≦720nm。
(ii-2)650~800nmの波長域において透過率が1%となる最も長い波長λbと前記λaとの関係が、λb-λa=30nm。
(ii-3)650~800nmの波長域において前記λaよりも短波長側で透過率が70%となる波長λcと、前記λaと、前記透明樹脂(B)の屈折率nd(B)との関係が、nd(B)×(λa-λc)≦115。 - 前記透明樹脂(B)が、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂およびポリエステル樹脂からなる群より選択される少なくとも1種を含む、請求項1~7のいずれか1項に記載の近赤外線カットフィルタ。
- 前記透明樹脂(B)100質量部に対する前記近赤外線吸収色素(A)の割合が0.1~20質量部である請求項1~8のいずれか1項に記載の近赤外線カットフィルタ。
- 前記近赤外線吸収層の片側または両側に、下記(iii-1)および(iii-2)の特性を有する選択波長遮蔽層を有する請求項1~9のいずれか1項に記載の近赤外線カットフィルタ。
(iii-1)420~695nmの波長域において透過率が90%以上。
(iii-2)前記近赤外線吸収層の650~800nmの波長域における透過率が1%となる最も長い波長λbから1100nmまでの波長域において透過率が2%以下。 - 前記選択波長遮蔽層は、屈折率が1.45以上1.55未満の誘電体膜と屈折率が2.2~2.5の誘電体膜とを交互に積層した誘電体多層膜からなる請求項10に記載の近赤外線カットフィルタ。
- 下記(iv-1)~(iv-3)の条件を満たす請求項10または11記載の近赤外線カットフィルタ。
(iv-1)420~620nmの波長域における平均透過率が80%以上。
(iv-2)710~1100nmの波長域における透過率が2%以下。
(iv-3)600~700nmの波長域において、主面に直交する方向から入射した光の透過率が20%となる波長の値と、主面に直交する線に対して30度の角度をなす方向から入射した光の透過率が20%となる波長の値の差が3nm以下。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380063724.4A CN104838294B (zh) | 2012-12-06 | 2013-12-05 | 近红外线截止滤波器 |
JP2014551135A JP6248945B2 (ja) | 2012-12-06 | 2013-12-05 | 近赤外線カットフィルタ |
KR1020157015497A KR102102690B1 (ko) | 2012-12-06 | 2013-12-05 | 근적외선 차단 필터 |
US14/729,275 US10082611B2 (en) | 2012-12-06 | 2015-06-03 | Near-infrared cut filter |
US16/106,485 US10495796B2 (en) | 2012-12-06 | 2018-08-21 | Near-infrared cut filter |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012267054 | 2012-12-06 | ||
JP2012-267054 | 2012-12-06 | ||
JP2013120894 | 2013-06-07 | ||
JP2013-120894 | 2013-06-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/729,275 Continuation US10082611B2 (en) | 2012-12-06 | 2015-06-03 | Near-infrared cut filter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014088063A1 true WO2014088063A1 (ja) | 2014-06-12 |
Family
ID=50883475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/082683 WO2014088063A1 (ja) | 2012-12-06 | 2013-12-05 | 近赤外線カットフィルタ |
Country Status (5)
Country | Link |
---|---|
US (2) | US10082611B2 (ja) |
JP (1) | JP6248945B2 (ja) |
KR (1) | KR102102690B1 (ja) |
CN (1) | CN104838294B (ja) |
WO (1) | WO2014088063A1 (ja) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016043166A1 (ja) * | 2014-09-19 | 2016-03-24 | 旭硝子株式会社 | 光学フィルタ |
JP2016045219A (ja) * | 2014-08-19 | 2016-04-04 | 旭硝子株式会社 | 赤外遮蔽フィルタ |
WO2016136783A1 (ja) * | 2015-02-26 | 2016-09-01 | 富士フイルム株式会社 | 近赤外線吸収組成物、硬化膜、近赤外線カットフィルタ、固体撮像素子、赤外線センサ、および化合物 |
WO2016181987A1 (ja) * | 2015-05-12 | 2016-11-17 | 旭硝子株式会社 | 光学フィルタおよび撮像装置 |
KR20170007236A (ko) | 2015-02-18 | 2017-01-18 | 아사히 가라스 가부시키가이샤 | 광학 필터 및 촬상 장치 |
WO2017051867A1 (ja) * | 2015-09-25 | 2017-03-30 | 旭硝子株式会社 | 光学フィルタおよび撮像装置 |
WO2017094858A1 (ja) * | 2015-12-01 | 2017-06-08 | 旭硝子株式会社 | 光学フィルタおよび撮像装置 |
JP2017182043A (ja) * | 2016-03-28 | 2017-10-05 | 株式会社日本触媒 | 光選択透過フィルター |
CN107533170A (zh) * | 2015-05-20 | 2018-01-02 | 富士胶片株式会社 | 红外线吸收组合物、红外线截止滤波器、层叠体、图案形成方法及固体成像元件 |
JP2018002773A (ja) * | 2016-06-28 | 2018-01-11 | 株式会社日本触媒 | 発光用材料及び発光成型体 |
JP2018010296A (ja) * | 2015-07-28 | 2018-01-18 | Jsr株式会社 | 光学フィルター及び光学フィルターを具備する環境光センサー |
JPWO2017018202A1 (ja) * | 2015-07-29 | 2018-06-28 | 富士フイルム株式会社 | 樹脂組成物、樹脂膜、樹脂膜の製造方法、光学フィルタ、インク、装置、j会合体およびj会合体の製造方法 |
WO2018155634A1 (ja) * | 2017-02-24 | 2018-08-30 | 株式会社オプトラン | カメラ構造、撮像装置 |
JP2019031637A (ja) * | 2017-08-09 | 2019-02-28 | 株式会社日本触媒 | スクアリリウム化合物 |
JP2019031638A (ja) * | 2017-08-09 | 2019-02-28 | 株式会社日本触媒 | 樹脂組成物 |
US10228500B2 (en) | 2015-04-23 | 2019-03-12 | AGC Inc. | Optical filter and imaging device |
WO2019054281A1 (ja) | 2017-09-15 | 2019-03-21 | 富士フイルム株式会社 | 組成物、膜、積層体、赤外線透過フィルタ、固体撮像素子および赤外線センサ |
US10310150B2 (en) | 2015-01-14 | 2019-06-04 | AGC Inc. | Near-infrared cut filter and solid-state imaging device |
US10365417B2 (en) | 2015-01-14 | 2019-07-30 | AGC Inc. | Near-infrared cut filter and imaging device |
WO2019150908A1 (ja) * | 2018-02-01 | 2019-08-08 | 富士フイルム株式会社 | 硬化性組成物、近赤外線吸収剤、膜、近赤外線カットフィルタ、固体撮像素子、画像表示装置および赤外線センサ |
WO2019176409A1 (ja) | 2018-03-13 | 2019-09-19 | 富士フイルム株式会社 | 硬化膜の製造方法、固体撮像素子の製造方法 |
JP2019172575A (ja) * | 2018-03-26 | 2019-10-10 | 株式会社日本触媒 | 含窒素複素環化合物およびスクアリリウム化合物の製造方法 |
KR20200019559A (ko) * | 2018-08-14 | 2020-02-24 | 플래티넘 옵틱스 테크놀로지 인코포레이티드 | 적외선 대역 통과 필터 |
WO2020049930A1 (ja) | 2018-09-07 | 2020-03-12 | 富士フイルム株式会社 | 車両用ヘッドライトユニット、ヘッドライト用の遮光膜、ヘッドライト用の遮光膜の製造方法 |
WO2020059509A1 (ja) | 2018-09-20 | 2020-03-26 | 富士フイルム株式会社 | 硬化性組成物、硬化膜、赤外線透過フィルタ、積層体、固体撮像素子、センサ、及び、パターン形成方法 |
CN112255720A (zh) * | 2016-03-22 | 2021-01-22 | Jsr株式会社 | 光学滤波器、固体摄像装置及照相机模块 |
WO2021039253A1 (ja) | 2019-08-30 | 2021-03-04 | 富士フイルム株式会社 | 組成物、膜、光学フィルタ及びその製造方法、固体撮像素子、赤外線センサ、並びに、センサモジュール |
US11059977B2 (en) | 2016-02-02 | 2021-07-13 | AGC Inc. | Near-infrared-absorbing dye, optical filter, and imaging device |
WO2023157403A1 (ja) * | 2022-02-21 | 2023-08-24 | パナソニックIpマネジメント株式会社 | 光学フィルターおよび撮像装置 |
WO2023176609A1 (ja) * | 2022-03-18 | 2023-09-21 | 富士フイルム株式会社 | 組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、赤外線センサ、カメラモジュールおよび化合物 |
JP7552271B2 (ja) | 2020-11-11 | 2024-09-18 | Agc株式会社 | 光学フィルタ |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016061738A1 (en) * | 2014-10-20 | 2016-04-28 | Schott Glass Technologies (Suzhou) Co. Ltd. | Optical arrangement for a camera module, camera module with optical arrangement and method of manufacturing the optical arrangement |
WO2017130825A1 (ja) * | 2016-01-29 | 2017-08-03 | 富士フイルム株式会社 | 組成物、膜、近赤外線カットフィルタ、積層体、パターン形成方法、固体撮像素子、画像表示装置、赤外線センサおよびカラーフィルタ |
CN105732463B (zh) * | 2016-02-05 | 2018-04-17 | 江苏鼎龙科技有限公司 | 6‑硝基‑1,2,3,3‑四甲基吲哚的制备方法 |
KR101904500B1 (ko) * | 2016-02-24 | 2018-11-28 | 주식회사 엘엠에스 | 광학물품 및 이를 포함하는 광학필터 |
TWM525451U (zh) * | 2016-05-04 | 2016-07-11 | 白金科技股份有限公司 | 吸收式近紅外線濾光片及影像感測器 |
CN112596141B (zh) * | 2016-06-08 | 2022-11-15 | Jsr株式会社 | 光学滤波器及光学传感装置 |
TWI617451B (zh) * | 2016-06-17 | 2018-03-11 | 白金科技股份有限公司 | 薄膜型紅外線吸收式光學濾光片及其製造方法 |
JP6991706B2 (ja) * | 2016-11-30 | 2022-02-03 | キヤノン株式会社 | 光学素子およびそれを有する光学系 |
WO2018180128A1 (ja) * | 2017-03-30 | 2018-10-04 | 富士フイルム株式会社 | 積層体、建材、窓材及び放射冷却装置 |
DE102017004828B4 (de) * | 2017-05-20 | 2019-03-14 | Optics Balzers Ag | Optischer Filter und Verfahren zur Herstellung eines optischen Filters |
JP6273064B1 (ja) * | 2017-10-03 | 2018-01-31 | 日本板硝子株式会社 | 光学フィルタ及び撮像装置 |
JP6273063B1 (ja) * | 2017-10-03 | 2018-01-31 | 日本板硝子株式会社 | 光学フィルタ及び撮像装置 |
KR102476708B1 (ko) * | 2017-11-01 | 2022-12-09 | 삼성전자주식회사 | 광학 필터, 및 이를 포함하는 카메라 모듈 및 전자 장치 |
KR102673362B1 (ko) | 2018-03-27 | 2024-06-05 | 삼성전자주식회사 | 근적외선 흡수 필름, 광학 필터 및 전자 장치 |
US20190369312A1 (en) * | 2018-06-04 | 2019-12-05 | Hoya Candeo Optronics Corporation | Optical filter and imaging apparatus |
KR102131995B1 (ko) * | 2018-06-29 | 2020-07-08 | 주식회사 엘지화학 | 자외선 차단 필름 |
KR20210004749A (ko) | 2019-07-05 | 2021-01-13 | 삼성전자주식회사 | 광학 필터, 이미지 센서, 카메라 모듈 및 전자 장치 |
CN111053523B (zh) * | 2020-02-17 | 2022-04-22 | 青岛奥美克医疗科技有限公司 | 一种防雾内窥镜系统的装置 |
KR102677640B1 (ko) | 2020-06-12 | 2024-06-21 | 후지필름 가부시키가이샤 | 반도체막, 반도체막의 제조 방법, 광검출 소자 및 이미지 센서 |
US20220107449A1 (en) * | 2020-10-06 | 2022-04-07 | Viavi Solutions Inc. | Composite optical filter |
TWI752677B (zh) | 2020-11-12 | 2022-01-11 | 晶瑞光電股份有限公司 | 紅外截止濾光片結構 |
KR102377756B1 (ko) * | 2020-12-15 | 2022-03-23 | 주식회사 힘테크 | 근적외선 흡수색소 및 이를 이용한 근적외선 차단필터 |
CN115745999A (zh) * | 2021-11-19 | 2023-03-07 | 浙江奥洋新材料有限公司 | 一种可提高反应活性的纤维素碱性醚化、酯化反应溶剂叔丁五元二环胍的结构及其合成路线 |
WO2023157742A1 (ja) | 2022-02-18 | 2023-08-24 | 富士フイルム株式会社 | 分散液、量子ドット膜の製造方法、光検出素子の製造方法およびイメージセンサの製造方法 |
KR20240002005A (ko) | 2022-06-28 | 2024-01-04 | 주식회사 엘엠에스 | 적층체, 광학 필터 및 촬상 장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5543086A (en) * | 1987-08-12 | 1996-08-06 | Gentex Corporation | Squarylium dyestuffs and compostions containing same |
JP2011208101A (ja) * | 2010-03-30 | 2011-10-20 | Fujifilm Corp | スクアリリウム化合物及びその製造方法並びに赤外線吸収剤 |
JP2012008532A (ja) * | 2010-05-26 | 2012-01-12 | Jsr Corp | 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置 |
WO2013054864A1 (ja) * | 2011-10-14 | 2013-04-18 | Jsr株式会社 | 光学フィルターならびに該光学フィルターを用いた固体撮像装置およびカメラモジュール |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3716961B2 (ja) | 1998-07-27 | 2005-11-16 | 株式会社リコー | 光記録媒体 |
JP2001192350A (ja) | 1999-03-05 | 2001-07-17 | Mitsubishi Chemicals Corp | スクアリリウム系化合物、これを用いたプラズマディスプレイパネル用フィルター及びプラズマディスプレイパネル表示装置 |
EP1160230A4 (en) | 1999-03-05 | 2002-05-08 | Mitsubishi Chem Corp | SQARYLIUM CONNECTIONS THROUGH THESE FILTERS FOR PLASMA SCREENS AND PLASMA SCREENS |
KR100444332B1 (ko) * | 1999-12-20 | 2004-08-16 | 도요 보세키 가부시키가이샤 | 적외선 흡수필터 |
JP2002033339A (ja) | 2000-07-18 | 2002-01-31 | Matsushita Electric Ind Co Ltd | ボンディングペーストの塗布方法 |
AU2001282593A1 (en) * | 2000-09-04 | 2002-03-22 | Mitsubishi Chemical Corporation | Diphenylsquarylium compound and display filter containing the same |
WO2002101695A1 (en) * | 2001-06-12 | 2002-12-19 | Mitsubishi Chemical Corporation | Electronic display-use filter and electronic display unit using the filter |
JP2004238606A (ja) | 2002-12-10 | 2004-08-26 | Mitsubishi Chemicals Corp | スクアリリウム系化合物、スクアリリウム系色素及びそれらを使用した光学フィルター |
US7332257B2 (en) * | 2003-07-11 | 2008-02-19 | Asahi Glass Company, Limited | Composition for optical film, and optical film |
JP4277615B2 (ja) * | 2003-08-01 | 2009-06-10 | パナソニック電工株式会社 | 近赤外線吸収組成物及び近赤外線吸収フィルター |
JP4655476B2 (ja) * | 2003-12-26 | 2011-03-23 | 東洋紡績株式会社 | 近赤外線吸収フィルター |
JP2005258389A (ja) * | 2004-02-12 | 2005-09-22 | Mitsubishi Chemicals Corp | 光学フィルター |
JP2006030944A (ja) | 2004-06-18 | 2006-02-02 | Jsr Corp | 近赤外線カットフィルター |
JP4736373B2 (ja) * | 2004-08-03 | 2011-07-27 | 日油株式会社 | 近赤外線吸収材及びそれを用いた表示装置 |
JP4314532B2 (ja) * | 2006-01-31 | 2009-08-19 | 東洋紡績株式会社 | 近赤外線吸収フィルム |
JP2008051985A (ja) | 2006-08-24 | 2008-03-06 | Nidec Copal Corp | 近赤外線吸収フィルタ |
JP5324742B2 (ja) | 2006-10-31 | 2013-10-23 | キヤノン電子株式会社 | 光学フィルタ |
JP2008112032A (ja) | 2006-10-31 | 2008-05-15 | Canon Electronics Inc | 光学フィルタ |
JP4942540B2 (ja) * | 2007-04-20 | 2012-05-30 | 日本化薬株式会社 | 近赤外線吸収フィルム及びこれを用いたプラズマディスプレイパネル用光学フィルタ |
JP2009127016A (ja) | 2007-11-28 | 2009-06-11 | Toyo Ink Mfg Co Ltd | 近赤外線吸収材料、およびこれを含む積層体 |
US20100025641A1 (en) * | 2008-08-04 | 2010-02-04 | Fujifilm Corporation | Infrared region selective reflection coat and infrared region selective reflection film |
JP5612291B2 (ja) * | 2008-09-30 | 2014-10-22 | 富士フイルム株式会社 | 二色性色素組成物を用いた光吸収異方性膜を有する偏光素子 |
JP5489669B2 (ja) | 2008-11-28 | 2014-05-14 | Jsr株式会社 | 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置 |
CN101750654B (zh) * | 2008-11-28 | 2014-07-02 | Jsr株式会社 | 近红外线截止滤波器和使用近红外线截止滤波器的装置 |
JP5603673B2 (ja) * | 2010-06-23 | 2014-10-08 | 株式会社エーピーアイ コーポレーション | 近赤外線吸収色素及び近赤外線吸収色素含有粘着剤 |
JP5936299B2 (ja) | 2010-11-08 | 2016-06-22 | Jsr株式会社 | 近赤外線カットフィルター、およびそれを備える固体撮像素子ならびに固体撮像装置 |
CA2838581A1 (en) * | 2011-06-06 | 2012-12-13 | Asahi Glass Company, Limited | Optical filter, solid-state imaging element, imaging device lens and imaging device |
CN108761612B (zh) | 2012-08-23 | 2021-04-06 | Agc株式会社 | 近红外线截止滤波器和固体摄像装置 |
-
2013
- 2013-12-05 WO PCT/JP2013/082683 patent/WO2014088063A1/ja active Application Filing
- 2013-12-05 CN CN201380063724.4A patent/CN104838294B/zh active Active
- 2013-12-05 JP JP2014551135A patent/JP6248945B2/ja active Active
- 2013-12-05 KR KR1020157015497A patent/KR102102690B1/ko active IP Right Grant
-
2015
- 2015-06-03 US US14/729,275 patent/US10082611B2/en active Active
-
2018
- 2018-08-21 US US16/106,485 patent/US10495796B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5543086A (en) * | 1987-08-12 | 1996-08-06 | Gentex Corporation | Squarylium dyestuffs and compostions containing same |
JP2011208101A (ja) * | 2010-03-30 | 2011-10-20 | Fujifilm Corp | スクアリリウム化合物及びその製造方法並びに赤外線吸収剤 |
JP2012008532A (ja) * | 2010-05-26 | 2012-01-12 | Jsr Corp | 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置 |
WO2013054864A1 (ja) * | 2011-10-14 | 2013-04-18 | Jsr株式会社 | 光学フィルターならびに該光学フィルターを用いた固体撮像装置およびカメラモジュール |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016045219A (ja) * | 2014-08-19 | 2016-04-04 | 旭硝子株式会社 | 赤外遮蔽フィルタ |
WO2016043166A1 (ja) * | 2014-09-19 | 2016-03-24 | 旭硝子株式会社 | 光学フィルタ |
US10324240B2 (en) | 2014-09-19 | 2019-06-18 | AGC Inc. | Optical filter |
JP2019164349A (ja) * | 2014-09-19 | 2019-09-26 | Agc株式会社 | 光学フィルタ |
US11029457B2 (en) | 2014-09-19 | 2021-06-08 | AGC Inc. | Optical filter |
JPWO2016043166A1 (ja) * | 2014-09-19 | 2017-07-27 | 旭硝子株式会社 | 光学フィルタ |
US10365417B2 (en) | 2015-01-14 | 2019-07-30 | AGC Inc. | Near-infrared cut filter and imaging device |
US10310150B2 (en) | 2015-01-14 | 2019-06-04 | AGC Inc. | Near-infrared cut filter and solid-state imaging device |
KR20170007236A (ko) | 2015-02-18 | 2017-01-18 | 아사히 가라스 가부시키가이샤 | 광학 필터 및 촬상 장치 |
US10351718B2 (en) | 2015-02-18 | 2019-07-16 | AGC Inc. | Optical filter and imaging device |
US10745572B2 (en) | 2015-02-18 | 2020-08-18 | AGC Inc. | Squarylium-based dye for near-infrared optical filter |
JP2019095796A (ja) * | 2015-02-26 | 2019-06-20 | 富士フイルム株式会社 | 近赤外線吸収組成物、硬化膜、近赤外線カットフィルタ、固体撮像素子、赤外線センサ、および化合物 |
TWI695223B (zh) * | 2015-02-26 | 2020-06-01 | 日商富士軟片股份有限公司 | 近紅外線吸收組成物、硬化膜、近紅外線截止濾波器、固體攝像元件、紅外線感測器及化合物 |
WO2016136783A1 (ja) * | 2015-02-26 | 2016-09-01 | 富士フイルム株式会社 | 近赤外線吸収組成物、硬化膜、近赤外線カットフィルタ、固体撮像素子、赤外線センサ、および化合物 |
JPWO2016136783A1 (ja) * | 2015-02-26 | 2018-01-18 | 富士フイルム株式会社 | 近赤外線吸収組成物、硬化膜、近赤外線カットフィルタ、固体撮像素子、赤外線センサ、および化合物 |
US9879034B2 (en) | 2015-02-26 | 2018-01-30 | Fujifilm Corporation | Near-infrared absorption composition, cured film, near-infrared cut filter, solid-state imaging device, infrared sensor, and compound |
US10228500B2 (en) | 2015-04-23 | 2019-03-12 | AGC Inc. | Optical filter and imaging device |
CN107533171B (zh) * | 2015-05-12 | 2020-07-24 | Agc株式会社 | 光学滤波器以及摄像装置 |
JPWO2016181987A1 (ja) * | 2015-05-12 | 2018-03-29 | 旭硝子株式会社 | 光学フィルタおよび撮像装置 |
US11693163B2 (en) | 2015-05-12 | 2023-07-04 | AGC Inc. | Optical filter and imaging device |
CN111665583B (zh) * | 2015-05-12 | 2022-03-15 | Agc株式会社 | 近红外线吸收色素和吸收层 |
CN107533171A (zh) * | 2015-05-12 | 2018-01-02 | 旭硝子株式会社 | 光学滤波器以及摄像装置 |
CN111665583A (zh) * | 2015-05-12 | 2020-09-15 | Agc株式会社 | 近红外线吸收色素和吸收层 |
JP2020152915A (ja) * | 2015-05-12 | 2020-09-24 | Agc株式会社 | 近赤外線吸収色素および吸収層 |
US10809428B2 (en) | 2015-05-12 | 2020-10-20 | AGC Inc. | Optical filter and imaging device |
WO2016181987A1 (ja) * | 2015-05-12 | 2016-11-17 | 旭硝子株式会社 | 光学フィルタおよび撮像装置 |
CN107533170A (zh) * | 2015-05-20 | 2018-01-02 | 富士胶片株式会社 | 红外线吸收组合物、红外线截止滤波器、层叠体、图案形成方法及固体成像元件 |
CN107533170B (zh) * | 2015-05-20 | 2021-06-15 | 富士胶片株式会社 | 红外线吸收组合物、红外线截止滤波器、层叠体、图案形成方法及固体成像元件 |
JP2018010296A (ja) * | 2015-07-28 | 2018-01-18 | Jsr株式会社 | 光学フィルター及び光学フィルターを具備する環境光センサー |
JPWO2017018202A1 (ja) * | 2015-07-29 | 2018-06-28 | 富士フイルム株式会社 | 樹脂組成物、樹脂膜、樹脂膜の製造方法、光学フィルタ、インク、装置、j会合体およびj会合体の製造方法 |
JPWO2017051867A1 (ja) * | 2015-09-25 | 2017-10-19 | 旭硝子株式会社 | 光学フィルタおよび撮像装置 |
US10746908B2 (en) | 2015-09-25 | 2020-08-18 | AGC Inc. | Optical filter and imaging device |
KR20180019088A (ko) * | 2015-09-25 | 2018-02-23 | 아사히 가라스 가부시키가이샤 | 광학 필터 및 촬상 장치 |
WO2017051867A1 (ja) * | 2015-09-25 | 2017-03-30 | 旭硝子株式会社 | 光学フィルタおよび撮像装置 |
KR101887846B1 (ko) | 2015-09-25 | 2018-08-10 | 에이지씨 가부시키가이샤 | 광학 필터 및 촬상 장치 |
WO2017094858A1 (ja) * | 2015-12-01 | 2017-06-08 | 旭硝子株式会社 | 光学フィルタおよび撮像装置 |
US10598834B2 (en) | 2015-12-01 | 2020-03-24 | AGC Inc. | Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter |
JP6202230B1 (ja) * | 2015-12-01 | 2017-09-27 | 旭硝子株式会社 | 光学フィルタおよび撮像装置 |
US11059977B2 (en) | 2016-02-02 | 2021-07-13 | AGC Inc. | Near-infrared-absorbing dye, optical filter, and imaging device |
CN112255720A (zh) * | 2016-03-22 | 2021-01-22 | Jsr株式会社 | 光学滤波器、固体摄像装置及照相机模块 |
JP2021039369A (ja) * | 2016-03-22 | 2021-03-11 | Jsr株式会社 | 光学フィルターおよび光学フィルターを用いた装置 |
JP2017182043A (ja) * | 2016-03-28 | 2017-10-05 | 株式会社日本触媒 | 光選択透過フィルター |
JP2018002773A (ja) * | 2016-06-28 | 2018-01-11 | 株式会社日本触媒 | 発光用材料及び発光成型体 |
JP2020074366A (ja) * | 2017-02-24 | 2020-05-14 | 株式会社オプトラン | カメラ構造、撮像装置 |
JP7148981B2 (ja) | 2017-02-24 | 2022-10-06 | 株式会社オプトラン | カメラ構造、撮像装置 |
WO2018155634A1 (ja) * | 2017-02-24 | 2018-08-30 | 株式会社オプトラン | カメラ構造、撮像装置 |
JP2019031638A (ja) * | 2017-08-09 | 2019-02-28 | 株式会社日本触媒 | 樹脂組成物 |
JP2019031637A (ja) * | 2017-08-09 | 2019-02-28 | 株式会社日本触媒 | スクアリリウム化合物 |
WO2019054281A1 (ja) | 2017-09-15 | 2019-03-21 | 富士フイルム株式会社 | 組成物、膜、積層体、赤外線透過フィルタ、固体撮像素子および赤外線センサ |
WO2019150908A1 (ja) * | 2018-02-01 | 2019-08-08 | 富士フイルム株式会社 | 硬化性組成物、近赤外線吸収剤、膜、近赤外線カットフィルタ、固体撮像素子、画像表示装置および赤外線センサ |
JPWO2019150908A1 (ja) * | 2018-02-01 | 2021-02-04 | 富士フイルム株式会社 | 硬化性組成物、近赤外線吸収剤、膜、近赤外線カットフィルタ、固体撮像素子、画像表示装置および赤外線センサ |
US11886112B2 (en) | 2018-02-01 | 2024-01-30 | Fujifilm Corporation | Curable composition, near infrared absorber, film, near infrared cut filter, solid-state imaging element, image display device, and infrared sensor |
WO2019176409A1 (ja) | 2018-03-13 | 2019-09-19 | 富士フイルム株式会社 | 硬化膜の製造方法、固体撮像素子の製造方法 |
JP2019172575A (ja) * | 2018-03-26 | 2019-10-10 | 株式会社日本触媒 | 含窒素複素環化合物およびスクアリリウム化合物の製造方法 |
JP7149089B2 (ja) | 2018-03-26 | 2022-10-06 | 株式会社日本触媒 | 含窒素複素環化合物およびスクアリリウム化合物の製造方法 |
US11714219B2 (en) | 2018-08-14 | 2023-08-01 | Platinum Optics Technology Inc. | Infrared band pass filter having layers with refraction index greater than 3.5 |
KR20200019559A (ko) * | 2018-08-14 | 2020-02-24 | 플래티넘 옵틱스 테크놀로지 인코포레이티드 | 적외선 대역 통과 필터 |
KR102187048B1 (ko) | 2018-08-14 | 2020-12-07 | 플래티넘 옵틱스 테크놀로지 인코포레이티드 | 적외선 대역 통과 필터 |
WO2020049930A1 (ja) | 2018-09-07 | 2020-03-12 | 富士フイルム株式会社 | 車両用ヘッドライトユニット、ヘッドライト用の遮光膜、ヘッドライト用の遮光膜の製造方法 |
WO2020059509A1 (ja) | 2018-09-20 | 2020-03-26 | 富士フイルム株式会社 | 硬化性組成物、硬化膜、赤外線透過フィルタ、積層体、固体撮像素子、センサ、及び、パターン形成方法 |
WO2021039253A1 (ja) | 2019-08-30 | 2021-03-04 | 富士フイルム株式会社 | 組成物、膜、光学フィルタ及びその製造方法、固体撮像素子、赤外線センサ、並びに、センサモジュール |
JP7552271B2 (ja) | 2020-11-11 | 2024-09-18 | Agc株式会社 | 光学フィルタ |
WO2023157403A1 (ja) * | 2022-02-21 | 2023-08-24 | パナソニックIpマネジメント株式会社 | 光学フィルターおよび撮像装置 |
WO2023176609A1 (ja) * | 2022-03-18 | 2023-09-21 | 富士フイルム株式会社 | 組成物、膜、光学フィルタ、固体撮像素子、画像表示装置、赤外線センサ、カメラモジュールおよび化合物 |
KR20240144253A (ko) | 2022-03-18 | 2024-10-02 | 후지필름 가부시키가이샤 | 조성물, 막, 광학 필터, 고체 촬상 소자, 화상 표시 장치, 적외선 센서, 카메라 모듈 및 화합물 |
Also Published As
Publication number | Publication date |
---|---|
CN104838294A (zh) | 2015-08-12 |
KR102102690B1 (ko) | 2020-04-22 |
US20180356576A1 (en) | 2018-12-13 |
US20150260889A1 (en) | 2015-09-17 |
US10082611B2 (en) | 2018-09-25 |
CN104838294B (zh) | 2017-03-08 |
KR20150094631A (ko) | 2015-08-19 |
JPWO2014088063A1 (ja) | 2017-01-05 |
US10495796B2 (en) | 2019-12-03 |
JP6248945B2 (ja) | 2017-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6248945B2 (ja) | 近赤外線カットフィルタ | |
JP6183041B2 (ja) | 近赤外線カットフィルタ | |
JP6332403B2 (ja) | 光学フィルタおよび固体撮像素子 | |
JP6183255B2 (ja) | 近赤外線カットフィルタ | |
JP6504226B2 (ja) | 近赤外線カットフィルタおよび固体撮像装置 | |
JP6508247B2 (ja) | 光学フィルターならびに該光学フィルターを用いた固体撮像装置およびカメラモジュール | |
JP6662299B2 (ja) | 光学フィルタ及びこれを用いた装置 | |
JP6020746B2 (ja) | 光学フィルタ | |
KR101661088B1 (ko) | 광학 필터, 고체 촬상 장치 및 카메라 모듈 | |
JP6202230B1 (ja) | 光学フィルタおよび撮像装置 | |
TW201409091A (zh) | 固體攝影元件用光學濾波器及其用途 | |
JP5849906B2 (ja) | 近赤外線吸収フィルタおよび固体撮像装置 | |
TW201506462A (zh) | 濾光器及使用前述濾光器的裝置 | |
JPWO2020004641A1 (ja) | 光学フィルタおよび情報取得装置 | |
TW202015903A (zh) | 光學濾波器 | |
WO2019116843A1 (ja) | カバー部材および認証機能付き電子デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13860886 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014551135 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157015497 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13860886 Country of ref document: EP Kind code of ref document: A1 |