[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014084667A1 - Group iii nitride semiconductor laminate - Google Patents

Group iii nitride semiconductor laminate Download PDF

Info

Publication number
WO2014084667A1
WO2014084667A1 PCT/KR2013/011014 KR2013011014W WO2014084667A1 WO 2014084667 A1 WO2014084667 A1 WO 2014084667A1 KR 2013011014 W KR2013011014 W KR 2013011014W WO 2014084667 A1 WO2014084667 A1 WO 2014084667A1
Authority
WO
WIPO (PCT)
Prior art keywords
iii nitride
group iii
nitride semiconductor
axis direction
growth
Prior art date
Application number
PCT/KR2013/011014
Other languages
French (fr)
Korean (ko)
Inventor
황성민
김두수
Original Assignee
주식회사 소프트에피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130039355A external-priority patent/KR101504731B1/en
Application filed by 주식회사 소프트에피 filed Critical 주식회사 소프트에피
Priority to CN201380062428.2A priority Critical patent/CN104838473B/en
Priority to US14/648,021 priority patent/US20160013275A1/en
Publication of WO2014084667A1 publication Critical patent/WO2014084667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • H01L21/0265Pendeoepitaxy

Definitions

  • This disclosure relates generally to Group III nitride semiconductor laminates, and more particularly to Group III nitride semiconductor laminates having cavities.
  • the group III nitride semiconductor means a compound semiconductor layer made of Al (x) Ga (y) In (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the light emitting device may be used for manufacturing a light emitting device such as a light emitting diode and a light receiving device such as a photodiode, and may be applied to various fields such as the manufacture of diodes, transistors, and electrical devices in addition to optical devices.
  • the group nitride semiconductor layer 300 includes an active layer 400 grown on the n-type group III nitride semiconductor layer 300 and a p-type group III nitride semiconductor layer 500 grown on the active layer 400.
  • the protrusions 110 are formed on the substrate 100, and the protrusions 110 improve the grain quality of the group III nitride semiconductor layers 300, 400, and 500 grown on the substrate 100, and at the active layer 400. It functions as a scattering surface to improve the efficiency of emitting the generated light to the outside of the light emitting device.
  • FIGS. 2 and 3 are diagrams illustrating an example of the group III nitride semiconductor light emitting device shown in International Patent Publication No. 2010-110608, wherein the group III nitride semiconductor light emitting device is grown on the substrate 100 and the substrate 100.
  • the n-type group III nitride semiconductor layer 300, the active layer 400 grown on the n-type group III nitride semiconductor layer 300, and the p-type group III nitride semiconductor layer 500 grown on the active layer 400 are included.
  • a protrusion 120 is formed on the substrate 100, and a cavity 130 (cavity) is formed by growing the group III nitride semiconductor layers 300, 400, and 500 on the upper surface of the protrusion 120.
  • the scattering surface between the group III nitride semiconductor layers 300, 400, 500 and the substrate 100 is increased. It's a skill. However, as shown in FIG. 3, the group III nitride semiconductor layers 300, 400, and 500 actually grown on the protrusions 120, unlike the expectation, merely form the scattering surface 131 having a very small curvature. Meanwhile, in addition to using the cavity 130 thus formed as a scattering surface, the substrate 100 and the group III nitride semiconductor layers 300, 400, and 500 are used as a channel into which an etchant is input during separation by wet etching, or by laser separation. In the case of lift-off, the separation surface by the laser is reduced, and the impact caused by the group III nitride semiconductor layers 300, 400, and 500 can be reduced by using it as a movement path of the gas generated during the laser separation.
  • FIG. 4 is a diagram illustrating an example of a group III nitride semiconductor laminate disclosed in US Patent Publication No. 2005-0156175, wherein the group III nitride semiconductor laminate includes a c-plane sapphire substrate 100 and a c-plane sapphire substrate 100.
  • a Group III nitride semiconductor template 210 previously formed thereon, a growth prevention film 150 made of SiO 2 formed on the Group III nitride semiconductor template 210, and a Group III nitride semiconductor layer 310 selectively grown thereon.
  • the group III nitride semiconductor template 210 is conventionally formed by a method of growing a group III nitride semiconductor on the c-plane sapphire substrate 100.
  • a seed layer is formed at a growth temperature of about 550 ° C. and a hydrogen atmosphere, and then formed to a thickness of 1 to 3 ⁇ m by a method of growing GaN at a growth temperature of 1050 ° C.
  • Reference numeral 180 denotes defects, and development of defects under the growth prevention film 150 is blocked, resulting in an improvement in crystallinity as a whole.
  • this method requires the growth of the group III nitride semiconductor template 210 before the formation of the growth barrier film 150, and the lattice constant and thermal expansion coefficient between the group III nitride semiconductor template 210 and the c-plane sapphire substrate 100. This results in substrate bending due to the difference.
  • This substrate warpage then interferes with the photolithography process required to form the growth barrier film 150, and is typically on the c-side sapphire substrate 100 having diameters of 2 inches, 4 inches, 6 inches, and 8 inches. There is a problem that makes it difficult to uniformly proceed the process.
  • This attempt on m-plane substrates has been described in P. de Mierry et al., Improved semipolar (11-22) GaN quality using asymmetric lateral epitaxy, Applied Physics Letters 94, 191903 (2009).
  • FIG. 5 is a view showing another example of the group III nitride semiconductor laminate disclosed in US Patent Publication No. 2005-0156175, wherein the group III nitride semiconductor laminate is a c-plane sapphire substrate 100, a c-plane sapphire substrate 100 A growth prevention film 150 made of SiO 2 formed on the substrate), and a group III nitride semiconductor layer 310 selectively grown thereon. Since the group III nitride semiconductor layer 310 grown at about 1050 ° C. cannot be grown on the c-plane sapphire substrate 100 and the growth preventing film 150, the group III nitride semiconductor layer 310 is 550 ° C. as in the group III nitride semiconductor template 210 of FIG. 4.
  • the material forming the seed layer 200 may also be formed on the growth barrier 150.
  • GaN GaN polycrystals are formed, which makes it difficult to form the group III nitride semiconductor layer 310 having excellent crystallinity.
  • an m-plane substrate a growth prevention region on the m-plane substrate and having a plurality of windows for growth of the group III nitride semiconductor;
  • a seed layer formed on the m-plane substrate in an area corresponding to at least a plurality of windows;
  • a group III nitride semiconductor layer that is grown from the seed layer and developed in the a-axis direction and the c-axis direction to coalesce, wherein the group III nitride semiconductor that is developed in one window in the c-axis direction is over the growth prevention region.
  • a group III nitride semiconductor laminate is provided, including a group III nitride semiconductor layer that is formed to form a cavity with a group III nitride semiconductor that is developed in an a-axis direction in a neighboring window.
  • FIG. 1 is a view showing an example of a group III nitride semiconductor light emitting device shown in US Patent Publication No. 2003-0057444;
  • FIGS. 2 and 3 are views showing an example of a group III nitride semiconductor light emitting device shown in International Publication No. 2010-110608;
  • FIG. 4 is a view showing an example of a group III nitride semiconductor laminate shown in US Patent Publication No. 2005-0156175,
  • FIG. 5 is a view showing still another example of the group III nitride semiconductor laminate shown in US Patent Publication No. 2005-0156175,
  • FIG. 6 is a view showing an example of a group III nitride semiconductor laminate according to the present disclosure
  • FIG. 7 is a view showing an example of a method of growing a group III nitride semiconductor on the seed layer in accordance with the present disclosure
  • FIG. 8 illustrates another example of a method for growing a group III nitride semiconductor over a seed layer in accordance with the present disclosure
  • FIG. 10 is a view showing still another example of the group III nitride semiconductor laminate according to the present disclosure.
  • FIG. 11 is a view showing still another example of the group III nitride semiconductor laminate according to the present disclosure.
  • FIG. 12 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG.
  • FIG. 13 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown with the structure of FIG. 8, FIG.
  • 15 is a photograph showing a seed layer grown in accordance with the present disclosure.
  • 16 and 17 illustrate an example of a method for growing a group III nitride semiconductor according to the present disclosure.
  • FIG. 6 is a diagram illustrating an example of a group III nitride semiconductor laminate according to the present disclosure, wherein the group III nitride semiconductor laminate is positioned on an m-plane substrate 10 and an m-plane substrate 10.
  • a growth prevention film 15 having a plurality of windows 16a and 16b for growth, a seed layer 20 formed on the m surface substrate 10 in a region corresponding to the plurality of windows 16a and 16b, and a seed
  • a Group III nitride semiconductor layer 31 which is grown from the layer 20 and developed in the a-axis direction and the c-axis direction and coalesces, and is developed in the c-axis direction in one window 16a.
  • a group III nitride semiconductor layer 31 which forms a cavity 13 with the group III nitride semiconductor 31b that is developed above the growth preventing film 15 and extends in the a-axis direction in the adjacent window 16b. It includes.
  • a representative material of the m-plane substrate 10 is hexagonal sapphire.
  • the c plane is (0001)
  • the m plane is (1-100)
  • the a plane is (11-20).
  • the a axis is defined as an axis perpendicular to the a plane
  • the c axis is defined as an axis perpendicular to the c plane.
  • an accurate m-plane substrate 10 is used, but a substrate cut at an angle slightly off from the m-plane can be used, here collectively referred to as m-plane substrate 10.
  • Group III nitride semiconductors eg, GaN, InGaN, AlGaN, InN, AlN, InGaAlN
  • the group III nitride semiconductor may be doped with a material such as Si and Mg.
  • SiO 2 is mainly used as the growth prevention film 15, but SiN x and TiO 2 may be used, and any material may be used as long as it is a material for preventing the growth of the group III nitride semiconductor. It is also possible to form the growth preventing film 15 in a DBR structure of SiO 2 / TiO 2 . For example, a SiO 2 film of 100 nm to 300 nm thickness may be used.
  • the growth prevention film 15 may be formed as a stripe in the a plane direction of the m surface sapphire substrate, and the gap between the growth prevention film 15 and the window 16a may be appropriately adjusted.
  • the present inventors experimented using the mask (unit is um) of 17: 1, 16: 2, 13: 1, 14: 2, 7: 3, 6: 2 for the space
  • the planarization of the group III nitride semiconductor layer 31 is performed at 7 ⁇ m or less (that is, the height of the cavity 13 is 7 ⁇ m or less). . Therefore, according to the group III nitride semiconductor growth method according to the present disclosure, the group III nitride semiconductor layer 31 can be planarized before an excessive height (for example, 10 ⁇ m).
  • the seed layer 20 (eg, GaN) is formed at a high temperature of 650 ° C. or higher, preferably 800 ° C. or higher, unlike a GaN buffer layer formed at about 500 ° C. (eg, 550 ° C.). Generally not well formed. It is possible to form a better seed layer 20 at a temperature above 800 ° C., but to grow at a temperature above 900 ° C. for rapid transfer to growth conditions for the Group III nitride semiconductor layer 31 grown at a higher temperature. In this regard, it is desirable to grow at a temperature of 900 °C or more. As the carrier gas, N 2 is used instead of H 2 which is conventionally used.
  • FIG. 14 is a photograph showing seed layers grown at a low temperature and seed layers grown at a hydrogen atmosphere. When grown at a low temperature as shown in (a), the polycrystals cover the growth prevention layer, and (b) When grown in a hydrogen atmosphere at high temperatures as shown in FIG. 1, the growth is poor and some very large nuclei are formed.
  • the growth conditions of the seed layer 20 were as follows.
  • SiO 2 was deposited by PECVD, and then grown using MOCVD.
  • the atmosphere gas in the MOCVD reactor was changed to N 2 , and then injected into the reactor with a NH 3 flow rate of 8000 sccm (Standard Cubic Cm per Min.) From 450 ° C., and the temperature was increased to 1050 ° C. This was for the nitriding treatment of the sapphire surface.
  • GaN nuclei were grown at a rate of 0.5 nm / sec using TMGa at 1050 ° C. At this time, the pressure of the reactor was 100 mbar.
  • FIG. 7 is a view showing an example of a method for growing a group III nitride semiconductor on a seed layer according to the present disclosure, wherein the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are joined to a junction.
  • the group III nitride semiconductor 31e grown on the seed layer 20 of the m-plane substrate 10 is grown clockwise, having the c plane, the a plane, and the -c plane.
  • either side can be made wider or one side can be omitted, but the lateral development in the a-axis direction is basically suppressed relative to the lateral development in the c-axis direction.
  • crystal defects 32 (exactly stacking faults) develop in the a-axis direction. Therefore, the crystal is developed in the a-axis direction until the point 33 at which the group III nitride semiconductor 31a grown in the window 16a and the group III nitride semiconductor 31b grown in the adjacent window 16b is joined is determined.
  • the region n in which the defects 32 are formed is developed in the c-axis direction and formed narrower than the region m in which the crystal defects 32 are not formed, so that the crystals in the entire group III nitride semiconductors 31a and 31b are formed. The defects can be reduced.
  • the a surface of the group III nitride semiconductors 31a and 31b, which are developed in the a-axis direction, is gradually reduced, and optimum point bonding is achieved. Further, the group III nitride semiconductor developed in the a-axis direction is reduced by reducing the c plane of the group III nitride semiconductor 31a developed in the c-axis direction up to the point 33 to be joined, so that the point bonding is optimally performed. It helps to join or planarize the 31-nitride semiconductor 31a and 31b which are developed in the c-axis direction.
  • the bonding thereof is not easy or is not bonded, and growth is performed in parallel.
  • the group III nitride semiconductors 31a and 31b have a growth prevention region because the lateral growth development of the group III nitride semiconductor developed in the c-axis direction is faster than the lateral growth development of the group III nitride semiconductor developed in the a-axis direction.
  • the growth-developed sub-group III nitride semiconductor chunks 31f and 31g and / or both the a-plane and the c-plane are preliminarily formed and then grown.
  • the sub group III nitride semiconductor previously developed on the growth prevention film 15. It is good to make a mass (31f, 31g).
  • subgroup III nitride semiconductor agglomerates 31f and 31g in advance as a preliminary form for forming such a form.
  • the group III nitride semiconductor layer 31 is thick. Coalescence may be performed at 7 ⁇ m or less, where subgroup III nitride semiconductor agglomerates 31f and 31g are one useful tool for achieving this. After growing the seed layer 20, the atmosphere gas is changed to hydrogen.
  • the subgroup III nitride semiconductor agglomerates 31f and 31g of 500 nm to 1300 nm are grown at a rate of 4000 sccm, NH 3 at 100 mbar, temperature at 1050 ° C., and growth rate at 0.6 nm / sec. Thereafter, the temperature was lowered to 920 ° C., the pressure was 250 mbar, and NH 3 was grown to 12,000 sccm.
  • a structure as shown in FIG. 7 is formed, and the crystal defect 32 is formed by allowing the region n to have only about 5% of the entire surface.
  • the sub-group III nitride semiconductor agglomerates 31f and 31g by 1300 nm, a structure as shown in FIG. 8 to be described later is formed, and the crystal defects 32 can be prevented from penetrating the surface. Comparing the growth conditions of the two layers, when the subgroup III nitride semiconductor chunks 31f and 31g are grown at relatively low pressure and high temperature, the group III nitride after the subgroup III nitride semiconductor chunks 31f and 31g grow. In the case of the semiconductors 31a and 31b, the growth was relatively less sensitive to temperature.
  • FIG. 8 is a view showing another example of a method for growing a group III nitride semiconductor on a seed layer according to the present disclosure, wherein the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are different from each other until the junction.
  • the crystal defect 32 of the group III nitride semiconductor 31b developed in the a-axis direction is blocked by the group III nitride semiconductor 31a.
  • the point 3 is developed in the a-axis direction by optimum point bonding.
  • the bonding or planarization of the group nitride semiconductor 31a and the group III nitride semiconductor 31a developed in the c-axis direction is assisted, and the development of the defect 32 is prevented.
  • the seed layer 20 includes the growth prevention layer 15 and the m surface substrate. It is located between 10. That is, the seed layer 20 is first formed before the growth barrier 15 is formed. In the case of forming the semiconductor layer first, there may be a problem pointed out in relation to FIG. 4, but by limiting the height of the seed layer 20, it is possible to solve this problem. In the case of this embodiment, the seed layer 20 may be formed of a conventional buffer layer.
  • FIG. 10 is a view showing another example of the group III nitride semiconductor laminate according to the present disclosure, and unlike the group III nitride semiconductor laminate shown in FIG. 6, prior to the growth of the group III nitride semiconductor 31, a growth prevention film (15) is removed. Therefore, the region 15a of the m surface substrate 10 on which the seed layer 20 is not formed serves as a growth prevention region. Since there is no seed layer 20 in the region 15a, growth of the group III nitride semiconductor layer 31 does not occur. Therefore, the group III nitride semiconductor layer 31 is grown from the seed layer 20 as in FIG.
  • the group III nitride semiconductor 31a that is developed in the c-axis direction in the window 16a is developed above the region 15a, and the group III nitride semiconductor 31b that is developed in the a-axis direction in the adjacent window 16b. (13; Cavity) grows.
  • the growth prevention film 15 Prior to the growth of the group III nitride semiconductor layer 31, the growth prevention film 15 is removed, so that even when polycrystals are formed in the formation process of the seed layer 20 on the growth prevention film 15, the group III nitride semiconductor is not problematic. It is possible to grow the layer 31.
  • FIG. 11 is a view showing another example of the group III nitride semiconductor laminate according to the present disclosure, wherein the group III nitride semiconductor laminate has an additional growth prevention film 17, and has a cavity (on the additional growth prevention film 17). 13) is formed.
  • the growth of the group III nitride semiconductor 31c is stopped on the seed layer 20, and an additional growth prevention layer 17 is formed so that the surface 31d of the group III nitride semiconductor 31c developed in the c-axis direction is exposed again. Thereafter, the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are grown from the surfaces 31d and 31d to form the cavity 13.
  • the region where the Group III nitride semiconductor 31c is developed in the c-axis direction on the growth prevention film 15 is a region where there are almost no defects (see FIG. 12), and therefore the Group III nitride semiconductor layer formed thereon ( The crystal defect in 31 can be greatly reduced.
  • FIG. 12 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG. 8, the right side is a Scanning Transmission Electronic Microscope (STEM) image, and the left side is a Transmission Electronic Microscope (TEM) image.
  • STEM image it can be seen that the defect developed in the group III nitride semiconductor 31b is blocked by the group III nitride semiconductor 31a based on the bonding surface A, while the group III nitride semiconductor 31a, In other words, it can be seen that the Group III nitride semiconductor developed in the c-axis direction has almost no crystal defects. This property can be used for growth of the group III nitride semiconductor laminate shown in FIG. Through the TEM image, the blocking of defects can be seen better.
  • FIG. 13 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG. 8,
  • (a) is a cathode luminescence (CL) image
  • (b) is a scanning electron microscope (SEM) image
  • c) is an optical microscope image.
  • CL image what appears to be a groove tilted upwards is a defect, and you can see that it no longer develops.
  • the cavity is well shown in the SEM image and is formed across the substrate. What appears to be a defect in the upper right corner of the cavity is scratching while cutting the cross section.
  • the bright side is the cavity, and the surface is clean so that the inside of the group III nitride semiconductor layer can be seen.
  • the group III nitride semiconductor 312 has a plane a.
  • the growth is possible by making the growth rates in the direction and c plane direction similar, and making these growth rates relatively faster than the growth rates in the (11-22) plane direction.
  • the group III nitride semiconductor 313 can be grown by adjusting the growth rate in the order of (11-22) plane direction> c plane direction> a plane direction.
  • the group III nitride semiconductor 314 can be grown by controlling the growth rate in the order of (11-22) plane direction> a plane direction> c plane direction.
  • the group III nitride semiconductor 315 adjusts the growth rate in the order of c plane direction> (11-22) plane direction> a plane direction, but increases the growth rate in the c plane direction than the growth rate in the (11-22) plane direction. You can grow by controlling it slightly faster.
  • the group III nitride semiconductor 316 is controlled in the order of c plane direction> a plane direction> (11-22) plane direction, but growth is possible by controlling the growth rate in the c plane direction slightly faster than the growth rate in the a plane direction. . FIG.
  • FIG. 17 shows a process of incorporating a group III nitride semiconductor 312, a group III nitride semiconductor 315, and a group III nitride semiconductor 316 having a (11-22) plane which is easy to planarize.
  • the c surface remains after the coalescence, and therefore, it can be seen that the group III nitride semiconductor 312 and the group III nitride semiconductor 316 can be planarized at a low height.
  • the group III nitride semiconductor 312 and then growing the group III nitride semiconductor 315 that is, forming the region n shown in FIG. 7 to be narrower than the region m, and then It is also possible to block (n).
  • the substrate can be easily separated from the group III nitride semiconductor through wet etching or using a laser.
  • the substrate and the group III nitride semiconductor are mostly separated from each other, separation can be performed more easily.
  • the formation of a seed layer the formation of sub-group III nitride semiconductor mass, the formation of a group III nitride semiconductor, the incorporation of a group III nitride semiconductor, the formation of a cavity, a method of reducing crystal defects, a method of planarization at a low height
  • the present disclosure relates to the following.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present disclosure relates to a group III nitride semiconductor laminate comprising: an m-plane substrate; a growth prevention region which is formed on the m-plane substrate and which has a plurality of windows for the growth of group III nitride semiconductor; a seed layer formed on the m-plane substrate at least in the region of the plurality of windows; and a group III nitride semiconductor layer which is grown from the seed layer and deployed in an a-axis direction and c-axis direction and coalesced, wherein the group III nitride semiconductor layer cooperates with the group III nitride semiconductor that is deployed in the c-axis direction in a single window so as to be deployed over the growth prevention region and deployed in a-axis direction in the neighboring window, so as to form a cavity.

Description

3족 질화물 반도체 적층체Group III nitride semiconductor laminate
본 개시(Disclosure)는 전체적으로 3족 질화물 반도체 적층체에 관한 것으로, 특히 공동(Cavtiy)을 구비하는 3족 질화물 반도체 적층체에 관한 것이다.This disclosure relates generally to Group III nitride semiconductor laminates, and more particularly to Group III nitride semiconductor laminates having cavities.
여기서, 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물 반도체층을 의미하며, 발광다이오드와 같은 발광소자의 제조 및 포토다이오드와 같은 수광소자의 제조에 이용될 수 있으며, 광소자 이외에도, 다이오드, 트랜지스터와 전기 소자의 제조 등 다양한 분야에 적용될 수 있다.Here, the group III nitride semiconductor means a compound semiconductor layer made of Al (x) Ga (y) In (1-xy) N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). The light emitting device may be used for manufacturing a light emitting device such as a light emitting diode and a light receiving device such as a photodiode, and may be applied to various fields such as the manufacture of diodes, transistors, and electrical devices in addition to optical devices.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).This section provides background information related to the present disclosure which is not necessarily prior art.
도 1은 미국 공개특허공보 제2003-0057444호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 기판(100), 기판(100) 위에 성장되는 n형 3족 질화물 반도체층(300), n형 3족 질화물 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 3족 질화물 반도체층(500)을 포함한다. 기판(100)에는 돌기(110)가 형성되어 있으며, 돌기(110)는 기판(100) 위에 성장되는 3족 질화물 반도체층(300,400,500)의 결정질(Growth Quality)을 향상시키는 한편, 활성층(400)에서 생성되는 빛을 발광소자 외부로 방출하는 효율을 향상시키는 산란면으로 기능한다.1 is a view showing an example of a group III nitride semiconductor light emitting device shown in US Patent Publication No. 2003-0057444, in which the group III nitride semiconductor light emitting device is grown on a substrate 100 and the substrate 100. The group nitride semiconductor layer 300 includes an active layer 400 grown on the n-type group III nitride semiconductor layer 300 and a p-type group III nitride semiconductor layer 500 grown on the active layer 400. The protrusions 110 are formed on the substrate 100, and the protrusions 110 improve the grain quality of the group III nitride semiconductor layers 300, 400, and 500 grown on the substrate 100, and at the active layer 400. It functions as a scattering surface to improve the efficiency of emitting the generated light to the outside of the light emitting device.
도 2 및 도 3은 국제 공개특허공보 제2010-110608호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 기판(100), 기판(100) 위에 성장되는 n형 3족 질화물 반도체층(300), n형 3족 질화물 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 3족 질화물 반도체층(500)을 포함한다. 기판(100)에는 돌기(120)가 형성되어 있으며, 돌기(120)의 상면에서 3족 질화물 반도체층(300,400,500)을 성장시킴으로써, 공동(130; Cavity)을 형성하였다. 공동(130; 공기의 굴절률은 1임)을 이용함으로써, 3족 질화물 반도체층(300,400,500)과 기판(100; 사파이어 기판의 경우에 대략 1.7) 사이의 산란면을 이용하는 경우에 비해 산란의 효과를 높이고자 하는 기술이다. 그러나, 도 3에 도시된 바와 같이, 돌기(120) 위에서 실제 성장된 3족 질화물 반도체층(300,400,500)은 기대와 달리, 아주 작은 곡률을 가지는 산란면(131)을 형성시키는데 그친다. 한편, 이렇게 형성된 공동(130)을 산란면으로 이용하는 외에, 기판(100)과 3족 질화물 반도체층(300,400,500)의 습식 식각에 의한 분리시 식각액이 투입되는 채널로서 이용하거나, 레이저에 의한 분리(Laser Lift-off)시 레이저에 의한 분리면을 감소시키고, 레이저 분리시 발생하는 가스의 이동통로로 사용함으로써 3족 질화물 반도체층(300,400,500)이 받는 충격을 줄일 수 있다. 2 and 3 are diagrams illustrating an example of the group III nitride semiconductor light emitting device shown in International Patent Publication No. 2010-110608, wherein the group III nitride semiconductor light emitting device is grown on the substrate 100 and the substrate 100. The n-type group III nitride semiconductor layer 300, the active layer 400 grown on the n-type group III nitride semiconductor layer 300, and the p-type group III nitride semiconductor layer 500 grown on the active layer 400 are included. A protrusion 120 is formed on the substrate 100, and a cavity 130 (cavity) is formed by growing the group III nitride semiconductor layers 300, 400, and 500 on the upper surface of the protrusion 120. By using the cavity 130 (the refractive index of air is 1), the scattering surface between the group III nitride semiconductor layers 300, 400, 500 and the substrate 100 (approximately 1.7 in the case of the sapphire substrate) is increased. It's a skill. However, as shown in FIG. 3, the group III nitride semiconductor layers 300, 400, and 500 actually grown on the protrusions 120, unlike the expectation, merely form the scattering surface 131 having a very small curvature. Meanwhile, in addition to using the cavity 130 thus formed as a scattering surface, the substrate 100 and the group III nitride semiconductor layers 300, 400, and 500 are used as a channel into which an etchant is input during separation by wet etching, or by laser separation. In the case of lift-off, the separation surface by the laser is reduced, and the impact caused by the group III nitride semiconductor layers 300, 400, and 500 can be reduced by using it as a movement path of the gas generated during the laser separation.
도 4는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 c면 사파이어 기판(100), c면 사파이어 기판(100) 위에 미리 형성된 3족 질화물 반도체 템플릿(210), 3족 질화물 반도체 템플릿(210) 위에 형성된 SiO2로 된 성장 방지막(150), 그리고, 그 위에 선택 성장된(selectively grown) 3족 질화물 반도체층(310)을 포함한다. 3족 질화물 반도체 템플릿(210)은 종래에 c면 사파이어 기판(100)에 3족 질화물 반도체를 성장하는 방법에 의해 형성된다. 즉, 550℃ 부근의 성장온도와 수소 분위기에서, 씨앗층을 형성한 다음, 1050℃의 성장온도에서 GaN을 성장하는 방법에 의해 1~3um의 두께로 형성된다. 도면 부호 180은 결함(Defecsts)을 나타내며, 성장 방지막(150) 아래의 결함의 전개가 차단됨으로써, 전체적으로 결정성의 향상을 가져오게 된다. 그러나 이러한 방법은 성장 방지막(150)의 형성 이전에 3족 질화물 반도체 템플릿(210)의 성장을 필요로 하며, 3족 질화물 반도체 템플릿(210)과 c면 사파이어 기판(100) 간의 격자 상수 및 열팽창 계수 차이로 인한 기판 휨 현상(Bowing)을 가져온다. 이 기판 휨 현상은 이후 성장 방지막(150) 형성에 요구되는 포토리소그라피(Photolithography) 공정을 방해하며, 통상 2인치, 4인치, 6인치, 8인치의 직경을 가지는 c면 사파이어 기판(100) 위에서의 상기 공정의 균일한 진행을 어렵게 하는 문제점이 있다. m면 기판 위에서의 이러한 시도로 P. de Mierry 등의 논문(Improved semipolar (11-22) GaN quality using asymmetric lateral epitaxy, Applied Physics Letters 94, 191903 (2009))이 있다.4 is a diagram illustrating an example of a group III nitride semiconductor laminate disclosed in US Patent Publication No. 2005-0156175, wherein the group III nitride semiconductor laminate includes a c-plane sapphire substrate 100 and a c-plane sapphire substrate 100. A Group III nitride semiconductor template 210 previously formed thereon, a growth prevention film 150 made of SiO 2 formed on the Group III nitride semiconductor template 210, and a Group III nitride semiconductor layer 310 selectively grown thereon. ). The group III nitride semiconductor template 210 is conventionally formed by a method of growing a group III nitride semiconductor on the c-plane sapphire substrate 100. That is, a seed layer is formed at a growth temperature of about 550 ° C. and a hydrogen atmosphere, and then formed to a thickness of 1 to 3 μm by a method of growing GaN at a growth temperature of 1050 ° C. Reference numeral 180 denotes defects, and development of defects under the growth prevention film 150 is blocked, resulting in an improvement in crystallinity as a whole. However, this method requires the growth of the group III nitride semiconductor template 210 before the formation of the growth barrier film 150, and the lattice constant and thermal expansion coefficient between the group III nitride semiconductor template 210 and the c-plane sapphire substrate 100. This results in substrate bending due to the difference. This substrate warpage then interferes with the photolithography process required to form the growth barrier film 150, and is typically on the c-side sapphire substrate 100 having diameters of 2 inches, 4 inches, 6 inches, and 8 inches. There is a problem that makes it difficult to uniformly proceed the process. This attempt on m-plane substrates has been described in P. de Mierry et al., Improved semipolar (11-22) GaN quality using asymmetric lateral epitaxy, Applied Physics Letters 94, 191903 (2009).
도 5는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 c면 사파이어 기판(100), c면 사파이어 기판(100) 위에 형성된 SiO2로 된 성장 방지막(150), 그리고, 그 위에 선택 성장된(selectively grown) 3족 질화물 반도체층(310)을 포함한다. 1050℃ 정도에서 성장되는 3족 질화물 반도체층(310)은 c면 사파이어 기판(100) 및 성장 방지막(150) 위에서 성장이 불가능하므로, 도 4의 3족 질화물 반도체 템플릿(210)에서와 마찬가지로 550℃의 성장온도에서 먼저 씨앗층(200; 통상 버퍼층이라고도 불린다.)을 형성해야 한다. 그러나, 이렇게 실제 3족 질화물 반도체의 성장 온도(GaN의 경우에 통상 1000℃ 이상)보다 많이 낮은 온도에서 씨앗층(200)을 형성하면, 성장 방지막(150) 위에도 씨앗층(200)을 이루는 물질(주로, GaN)의 다결정이 형성되어, 결정성이 우수한 3족 질화물 반도체층(310)의 형성이 어렵게 되는 문제점이 있다.5 is a view showing another example of the group III nitride semiconductor laminate disclosed in US Patent Publication No. 2005-0156175, wherein the group III nitride semiconductor laminate is a c-plane sapphire substrate 100, a c-plane sapphire substrate 100 A growth prevention film 150 made of SiO 2 formed on the substrate), and a group III nitride semiconductor layer 310 selectively grown thereon. Since the group III nitride semiconductor layer 310 grown at about 1050 ° C. cannot be grown on the c-plane sapphire substrate 100 and the growth preventing film 150, the group III nitride semiconductor layer 310 is 550 ° C. as in the group III nitride semiconductor template 210 of FIG. 4. At the growth temperature of the first seed layer 200 (commonly referred to as buffer layer) must be formed. However, if the seed layer 200 is formed at a temperature much lower than the growth temperature of the Group III nitride semiconductor (in the case of GaN, in general, 1000 ° C. or more), the material forming the seed layer 200 may also be formed on the growth barrier 150. Mainly, GaN) polycrystals are formed, which makes it difficult to form the group III nitride semiconductor layer 310 having excellent crystallinity.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This is described later in the section titled 'Details of the Invention.'
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all, provided that this is a summary of the disclosure. of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), m면 기판; m면 기판 위에 위치하며, 3족 질화물 반도체의 성장을 위한 복수의 윈도우를 가지는 성장 방지 영역; 적어도 복수의 윈도우에 해당하는 영역에서 m면 기판 상에 형성되는 씨앗층; 그리고, 씨앗층으로부터 성장되며, a축 방향과 c축 방향으로 전개되어 합체(coalescence)되는 3족 질화물 반도체층;으로서, 하나의 윈도우에서 c축 방향으로 전개되는 3족 질화물 반도체가 성장 방지 영역 위로 전개되어 이웃한 윈도우에서 a축 방향으로 전개되는 3족 질화물 반도체와 공동(Cavity)을 형성하는 3족 질화물 반도체층;을 포함하는 것을 특징으로 하는 3족 질화물 반도체 적층체가 제공된다.According to one aspect of the present disclosure (According to one aspect of the present disclosure), an m-plane substrate; a growth prevention region on the m-plane substrate and having a plurality of windows for growth of the group III nitride semiconductor; A seed layer formed on the m-plane substrate in an area corresponding to at least a plurality of windows; And a group III nitride semiconductor layer that is grown from the seed layer and developed in the a-axis direction and the c-axis direction to coalesce, wherein the group III nitride semiconductor that is developed in one window in the c-axis direction is over the growth prevention region. A group III nitride semiconductor laminate is provided, including a group III nitride semiconductor layer that is formed to form a cavity with a group III nitride semiconductor that is developed in an a-axis direction in a neighboring window.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This is described later in the section titled 'Details of the Invention.'
도 1은 미국 공개특허공보 제2003-0057444호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,1 is a view showing an example of a group III nitride semiconductor light emitting device shown in US Patent Publication No. 2003-0057444;
도 2 및 도 3은 국제 공개특허공보 제2010-110608호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,2 and 3 are views showing an example of a group III nitride semiconductor light emitting device shown in International Publication No. 2010-110608;
도 4는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면,4 is a view showing an example of a group III nitride semiconductor laminate shown in US Patent Publication No. 2005-0156175,
도 5는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면,5 is a view showing still another example of the group III nitride semiconductor laminate shown in US Patent Publication No. 2005-0156175,
도 6은 본 개시에 따른 3족 질화물 반도체 적층체의 일 예를 나타내는 도면,6 is a view showing an example of a group III nitride semiconductor laminate according to the present disclosure;
도 7은 본 개시에 따라 씨앗층 위에 3족 질화물 반도체를 성장하는 방법의 일 예를 나타내는 도면,7 is a view showing an example of a method of growing a group III nitride semiconductor on the seed layer in accordance with the present disclosure,
도 8은 본 개시에 따라 씨앗층 위에 3족 질화물 반도체를 성장하는 방법의 다른 예를 나타내는 도면,8 illustrates another example of a method for growing a group III nitride semiconductor over a seed layer in accordance with the present disclosure;
도 9는 본 개시에 따른 3족 질화물 반도체 적층체의 다른 예를 나타내는 도면,9 shows another example of the group III nitride semiconductor laminate according to the present disclosure;
도 10은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면,10 is a view showing still another example of the group III nitride semiconductor laminate according to the present disclosure;
도 11은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면,11 is a view showing still another example of the group III nitride semiconductor laminate according to the present disclosure;
도 12는 도 8의 구조로 성장된 도 6의 3족 질화물 반도체 적층체의 단면 이미지들,12 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG.
도 13은 도 8의 구조로 성장된 도 6의 3족 질화물 반도체 적층체의 단면 이미지들,FIG. 13 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown with the structure of FIG. 8, FIG.
도 14는 낮은 온도에서 성장된 씨앗층 및 수소 분위기에서 성장된 씨앗층을 나타내는 사진,14 is a photograph showing the seed layer grown at a low temperature and the seed layer grown in a hydrogen atmosphere,
도 15는 본 개시에 따라 성장된 씨앗층을 나타내는 사진,15 is a photograph showing a seed layer grown in accordance with the present disclosure;
도 16 및 도 17은 본 개시에 따른 3족 질화물 반도체를 성장시키는 방법의 일 예를 설명하는 도면.16 and 17 illustrate an example of a method for growing a group III nitride semiconductor according to the present disclosure.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)). The present disclosure will now be described in detail with reference to the accompanying drawing (s).
도 6은 본 개시에 따른 3족 질화물 반도체 적층체의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 m면 기판(10), m면 기판(10) 위에 위치하며, 3족 질화물 반도체의 성장을 위한 복수의 윈도우(16a,16b)를 가지는 성장 방지막(15), 복수의 윈도우(16a,16b)에 해당하는 영역에서 m면 기판(10) 상에 형성되는 씨앗층(20) 그리고, 씨앗층(20)으로부터 성장되며, a축 방향과 c축 방향으로 전개되어 합체(coalescence)되는 3족 질화물 반도체층(31)으로서, 하나의 윈도우(16a)에서 c축 방향으로 전개되는 3족 질화물 반도체(31a)가 성장 방지막(15) 위로 전개되어 이웃한 윈도우(16b)에서 a축 방향으로 전개되는 3족 질화물 반도체(31b)와 공동(13; Cavity)을 형성하는 3족 질화물 반도체층(31)을 포함한다. FIG. 6 is a diagram illustrating an example of a group III nitride semiconductor laminate according to the present disclosure, wherein the group III nitride semiconductor laminate is positioned on an m-plane substrate 10 and an m-plane substrate 10. A growth prevention film 15 having a plurality of windows 16a and 16b for growth, a seed layer 20 formed on the m surface substrate 10 in a region corresponding to the plurality of windows 16a and 16b, and a seed A Group III nitride semiconductor layer 31 which is grown from the layer 20 and developed in the a-axis direction and the c-axis direction and coalesces, and is developed in the c-axis direction in one window 16a. A group III nitride semiconductor layer 31 which forms a cavity 13 with the group III nitride semiconductor 31b that is developed above the growth preventing film 15 and extends in the a-axis direction in the adjacent window 16b. It includes.
m면 기판(10)의 대표적인 물질은 육방정계인 사파이어이며, c면을 (0001)로 할 때, m면은 (1-100)이며, a면은 (11-20)이다. 여기서 a축은 a면에 수직한 축으로 정의하고, c축은 c면에 수직한 축으로 정의한다. 바람직하게는 정확한 m면 기판(10)이 사용되지만, m면으로부터 약간 off된 각으로 잘려진 기판이 사용될 수 있으며, 여기서 이들을 통칭하여 m면 기판(10)이라 한다. 사파이어 이외에도, 3족 질화물 반도체(예: GaN, InGaN, AlGaN, InN, AlN, InGaAlN)의 성장이 가능하고, m면을 가지는 물질이라면 사용이 가능하다. 3족 질화물 반도체는 Si, Mg과 같은 물질이 도핑될 수 있다.A representative material of the m-plane substrate 10 is hexagonal sapphire. When the c plane is (0001), the m plane is (1-100) and the a plane is (11-20). Here, the a axis is defined as an axis perpendicular to the a plane, and the c axis is defined as an axis perpendicular to the c plane. Preferably an accurate m-plane substrate 10 is used, but a substrate cut at an angle slightly off from the m-plane can be used, here collectively referred to as m-plane substrate 10. In addition to sapphire, Group III nitride semiconductors (eg, GaN, InGaN, AlGaN, InN, AlN, InGaAlN) can be grown, and m-plane materials can be used. The group III nitride semiconductor may be doped with a material such as Si and Mg.
성장 방지막(15)으로는 SiO2가 주로 사용되지만, SiNx, TiO2가 사용되어도 좋고, 이외에도 3족 질화물 반도체의 성장을 방지하는 물질이라면, 어떠한 물질이 사용되어도 좋다. 또한 성장 방지막(15)을 SiO2/TiO2의 DBR 구조로 형성하는 것도 가능하다. 예를 들어, 100nm~300nm 두께의 SiO2 막이 사용될 수 있다. 성장 방지막(15)은 m면 사파이어 기판의 a면 방향으로 스트라이프(stripe)로 형성될 수 있으며, 성장 방지막(15)과 윈도우(16a)와의 간격은 적절히 조절될 수 있다. 본 발명자들은 성장 방지막(15)과 윈도우(16a)의 간격을 17:1, 16:2, 13:1, 14:2, 7:3, 6:2 의 마스크(단위는 um)를 사용하여 실험해 보았으며, 성장 방지막(15)이 가장 넓은 17um의 경우에도 3족 질화물 반도체층(31; GaN)의 평탄화가 7um이하에서 이루어졌다(즉, 공동(13)의 높이가 7um이하가 된다.). 따라서 본 개시에 따른 3족 질화물 반도체 성장 방법에 의하면, 지나친 높이(예를 들어, 10um) 이전에 3족 질화물 반도체층(31)을 평탄화할 수 있게 된다.SiO 2 is mainly used as the growth prevention film 15, but SiN x and TiO 2 may be used, and any material may be used as long as it is a material for preventing the growth of the group III nitride semiconductor. It is also possible to form the growth preventing film 15 in a DBR structure of SiO 2 / TiO 2 . For example, a SiO 2 film of 100 nm to 300 nm thickness may be used. The growth prevention film 15 may be formed as a stripe in the a plane direction of the m surface sapphire substrate, and the gap between the growth prevention film 15 and the window 16a may be appropriately adjusted. The present inventors experimented using the mask (unit is um) of 17: 1, 16: 2, 13: 1, 14: 2, 7: 3, 6: 2 for the space | interval of the growth prevention film 15 and the window 16a. Even in the case of 17 um where the growth prevention film 15 is the widest, the planarization of the group III nitride semiconductor layer 31 (GaN) is performed at 7 μm or less (that is, the height of the cavity 13 is 7 μm or less). . Therefore, according to the group III nitride semiconductor growth method according to the present disclosure, the group III nitride semiconductor layer 31 can be planarized before an excessive height (for example, 10 μm).
씨앗층(20; 예: GaN)은 종래 500℃ 부근(예: 550℃)에서 형성되는 GaN 버퍼층과 달리, 650℃이상의 높은 온도, 바람직하게는 800℃이상의 온도에서 형성되며, 1150℃이상의 온도에서는 일반적으로 잘 형성되지 않는다. 800℃이상의 온도에서 더 좋은 씨앗층(20)의 형성이 가능하지만, 이후 더 높은 온도에서 성장되는 3족 질화물 반도체층(31)에 대한 성장 조건으로의 빠른 이동을 위해, 900℃이상의 온도에서 성장할 수 있으며, 이러한 관점에서 900℃이상의 온도에서 성장하는 것이 바람직하다. 그리고, 캐리어 가스로서 종래 사용되던 H2가 아니라 N2가 사용된다. 앞에서 지적하였듯이, 종래의 버퍼층과 같은 방식을 사용하면, 성장 방지막(15) 위에 다결정이 형성되어, 결정성이 좋은 3족 질화물 반도체층(31)을 얻는데 어려움이 생긴다. 따라서, 본 실시예의 씨앗층(20)은 종래 3족 질화물 반도체층의 성장에 사용되던 버퍼층과는 형성의 개념을 달리한다는 것을 알 수 있다. 도 14는 낮은 온도에서 성장된 씨앗층 및 수소 분위기에서 성장된 씨앗층을 나타내는 사진으로서, (a)에 도시된 바와 같이 낮은 온도에서 성장된 경우에, 다결정이 성장 방지막까지도 덮게 되고, (b)에 도시된 바와 같이 높은 온도로 수소 분위기에서 성장된 경우에, 성장이 잘 되지 않으며, 일부 아주 큰 핵들이 형성된다. 도 15는 본 개시에 따라 성장된 씨앗층을 나타내는 사진으로, 윈도우(16a)에만 씨앗층(20)이 형성되어 있음을 알 수 있다. 씨앗층(20)의 성장은 좁은 윈도우(16a) 영역에서 이루어지므로, 성장 막지막(15)이 없는 상태의 성장 조건을 사용하면, 윈도우(16a)에 지나치게 빠르게 씨앗층(20)이 형성될 수 있으므로, 윈도우(16a)의 크기에 맞추어 성장 속도를 조절할 필요가 있다. 씨앗층(20)은 Al(x)Ga(y)In(1-x-y)N (0=x=1, 0=y=1, 0=x+y=1)로 된 화합물 반도체, 바람직하게는 GaN으로 이루어진다. 도 15에서 씨앗층(20)의 성장 조건은 다음과 같았다. m면 사파이어 기판을 유기세정한 후 SiO2를 PECVD법으로 증착한 후, MOCVD를 이용하여 성장하였다. MOCVD 반응기 내의 분위기 기체를 N2로 한 후 450℃부터 NH3 유량을 8000sccm(Standard Cubic Cm per Min.)로 하여 반응기에 주입하였고, 1050℃까지 승온하였다. 이는 사파이어 표면의 질화 처리를 위해서였다. 1050℃에서 TMGa를 이용하여 GaN 핵을 0.5nm/sec의 속도로 성장시켰다. 이때 반응기의 압력은 100mbar로 하였다.The seed layer 20 (eg, GaN) is formed at a high temperature of 650 ° C. or higher, preferably 800 ° C. or higher, unlike a GaN buffer layer formed at about 500 ° C. (eg, 550 ° C.). Generally not well formed. It is possible to form a better seed layer 20 at a temperature above 800 ° C., but to grow at a temperature above 900 ° C. for rapid transfer to growth conditions for the Group III nitride semiconductor layer 31 grown at a higher temperature. In this regard, it is desirable to grow at a temperature of 900 ℃ or more. As the carrier gas, N 2 is used instead of H 2 which is conventionally used. As pointed out above, by using the same method as the conventional buffer layer, polycrystals are formed on the growth prevention film 15, which makes it difficult to obtain the Group 3 nitride semiconductor layer 31 having good crystallinity. Therefore, it can be seen that the seed layer 20 of the present embodiment differs from the concept of formation of the buffer layer used for the growth of the group III nitride semiconductor layer. FIG. 14 is a photograph showing seed layers grown at a low temperature and seed layers grown at a hydrogen atmosphere. When grown at a low temperature as shown in (a), the polycrystals cover the growth prevention layer, and (b) When grown in a hydrogen atmosphere at high temperatures as shown in FIG. 1, the growth is poor and some very large nuclei are formed. 15 is a photograph showing a seed layer grown according to the present disclosure, and it can be seen that the seed layer 20 is formed only in the window 16a. Since the growth of the seed layer 20 is performed in the narrow window 16a region, the growth of the seed layer 20 may be formed too quickly in the window 16a using growth conditions without the growth barrier 15. Therefore, it is necessary to adjust the growth rate in accordance with the size of the window 16a. The seed layer 20 is a compound semiconductor of Al (x) Ga (y) In (1-xy) N (0 = x = 1, 0 = y = 1, 0 = x + y = 1), preferably Made of GaN. In FIG. 15, the growth conditions of the seed layer 20 were as follows. After m-sapphire substrates were organically cleaned, SiO 2 was deposited by PECVD, and then grown using MOCVD. The atmosphere gas in the MOCVD reactor was changed to N 2 , and then injected into the reactor with a NH 3 flow rate of 8000 sccm (Standard Cubic Cm per Min.) From 450 ° C., and the temperature was increased to 1050 ° C. This was for the nitriding treatment of the sapphire surface. GaN nuclei were grown at a rate of 0.5 nm / sec using TMGa at 1050 ° C. At this time, the pressure of the reactor was 100 mbar.
도 7은 본 개시에 따라 씨앗층 위에 3족 질화물 반도체를 성장하는 방법의 일 예를 나타내는 도면으로서, 3족 질화물 반도체(31a)와 3족 질화물 반도체(31b)가 접합에 이르기까지의 과정의 일 예를 설명한다. 도 7의 좌측에서와 같이, m면 기판(10)의 씨앗층(20)에서 성장되는 3족 질화물 반도체(31e)는 시계 방향으로, c면, a면, 그리고 -c면을 가지면서 성장될 수 있다. 성장 조건에 따라, 어느 면을 넓게 하거나, 어느 면을 생략하거나 할 수 있지만, 기본적으로 a축 방향으로의 횡방향 전개는 c축 방향으로의 횡방향 전개에 비해 상대적으로 억제된다. 그리고 가운데 그림에 나타낸 바와 같이, 결정 결함(32; 정확히는 적층 결함(stacking faults))은 a축 방향으로 전개된다. 따라서, 윈도우(16a)에서 성장되는 3족 질화물 반도체(31a)와 이웃한 윈도우(16b)에서 성장되는 3족 질화물 반도체(31b)가 접합되는 지점(33)에 이르기까지 a축 방향으로 전개되어 결정 결함(32)이 형성되는 영역(n)을 c축 방향으로 전개되어 결정 결함(32)이 형성되지 않은 영역(m)에 비해 좁게 형성함으로써, 3족 질화물 반도체(31a,31b) 전체에 있어서 결정 결함을 줄일 수 있게 된다. 접합을 위해, a축 방향으로 전개되는 3족 질화물 반도체(31a,31b)의 a면은 점점 감소되며, 최적으로는 점 접합을 이루게 된다. 또한 접합되는 지점(33)에 이르기까지, c축 방향으로 전개되는 3족 질화물 반도체(31a)의 c면을 감소시킴으로써, 최적으로는 점 접합이 되게 함으로써, a축 방향으로 전개되는 3족 질화물 반도체(31b)와 c축 방향으로 전개되는 3족 질화물 반도체(31a)의 접합 내지는 평탄화를 돕는다. 접합되는 지점(33)에서, 3족 질화물 반도체(31b)의 -c면과 3족 질화물 반도체(31a)의 c면이 만나게 되면, 이들의 접합이 쉽지 않거나, 접합되지 않고, 평행하게 성장이 이루어진다. 바람직하게는 3족 질화물 반도체(31a,31b)는, c축 방향으로 전개되는 3족 질화물 반도체의 횡방향 성장전개가 a축 방향으로 전개되는 3족 질화물 반도체의 횡방향 성장전개보다 빨라 성장 방지 영역 위로 성장전개된 서브 3족 질화물 반도체 덩어리(31f,31g) 및/또는 a면과 c면이 모두 살아있는 서브 3족 질화물 반도체 덩어리(31f,31g)를 미리 형성한 다음에 성장된다. 성장의 초기부터 역사다리꼴 형태의 3족 질화물 반도체를 만드는 경우에, 접합되는 지점(33)에 이르기까지 지나치게 반도체의 높이가 높아질 수 있기 때문에, 미리 성장 방지막(15)에 전개된 서브 3족 질화물 반도체 덩어리(31f,31g)를 만들어 두는 것이 좋다. 또한 역사다리꼴로 3족 질화물 반도체(31a,31b)를 접합시키는 것이 쉽지 만은 않으므로, 이러한 형태를 만들기 위한 예비 형태로서, 서브 3족 질화물 반도체 덩어리(31f,31g)를 미리 만들어 두는 것이 바람직하다. 전술한 바와 같이, 본 개시에 따른 3족 질화물 반도체의 성장 방법에 의하면, 성장 방지막(15)과 윈도우(16a)의 폭을 17:1로 한 경우에도, 3족 질화물 반도체층(31)를 두께 7um이하에서 합체(coalescence)할 수 있으며, 여기에서 서브 3족 질화물 반도체 덩어리(31f,31g)는 이를 달성하는 유용한 도구의 하나이다. 씨앗층(20)을 성장시킨 후, 분위기 기체를 수소로 바꾼다. 그 후 NH3는 4000sccm, 압력은 100mbar, 온도는 1050℃, 성장속도는 0.6nm/sec의 속도로 500nm~1300nm정도의 서브 3족 질화물 반도체 덩어리(31f,31g)를 성장시킨다. 이후, 온도를 920℃로 낮춘 후 압력은 250mbar, NH3는 12,000sccm으로 하여 성장시켰다. 예를 들어, 서브 3족 질화물 반도체 덩어리(31f,31g)를 500nm 성장시킴으로써, 도 7에서와 같은 구조를 만들고, 영역(n)이 전체 표면의 5% 정도만을 갖게 함으로써, 결정 결함(32)을 현저히 줄일 수 있게 된다. 또한 서브 3족 질화물 반도체 덩어리(31f,31g)를 1300nm 성장시킴으로써, 후술할 도 8에서와 같은 구조를 만들고, 결정 결함(32)이 표면을 뚫고 나오지 못하게 차단할 수 있게 된다. 두 층의 성장 조건을 상대적으로 비교해 보면, 서브 3족 질화물 반도체 덩어리(31f,31g)가 상대적으로 낮은 압력과 높은 온도에서 성장되면, 서브 3족 질화물 반도체 덩어리(31f,31g) 성장 후의 3족 질화물 반도체(31a,31b)의 경우에 온도에 대해 상대적으로 덜 민감한 성장을 보였다.FIG. 7 is a view showing an example of a method for growing a group III nitride semiconductor on a seed layer according to the present disclosure, wherein the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are joined to a junction. Explain the example. As shown in the left side of FIG. 7, the group III nitride semiconductor 31e grown on the seed layer 20 of the m-plane substrate 10 is grown clockwise, having the c plane, the a plane, and the -c plane. Can be. Depending on the growth conditions, either side can be made wider or one side can be omitted, but the lateral development in the a-axis direction is basically suppressed relative to the lateral development in the c-axis direction. And as shown in the middle figure, crystal defects 32 (exactly stacking faults) develop in the a-axis direction. Therefore, the crystal is developed in the a-axis direction until the point 33 at which the group III nitride semiconductor 31a grown in the window 16a and the group III nitride semiconductor 31b grown in the adjacent window 16b is joined is determined. The region n in which the defects 32 are formed is developed in the c-axis direction and formed narrower than the region m in which the crystal defects 32 are not formed, so that the crystals in the entire group III nitride semiconductors 31a and 31b are formed. The defects can be reduced. For the bonding, the a surface of the group III nitride semiconductors 31a and 31b, which are developed in the a-axis direction, is gradually reduced, and optimum point bonding is achieved. Further, the group III nitride semiconductor developed in the a-axis direction is reduced by reducing the c plane of the group III nitride semiconductor 31a developed in the c-axis direction up to the point 33 to be joined, so that the point bonding is optimally performed. It helps to join or planarize the 31- nitride semiconductor 31a and 31b which are developed in the c-axis direction. At the point 33 to be bonded, when the -c surface of the group III nitride semiconductor 31b and the c surface of the group III nitride semiconductor 31a meet, the bonding thereof is not easy or is not bonded, and growth is performed in parallel. . Preferably, the group III nitride semiconductors 31a and 31b have a growth prevention region because the lateral growth development of the group III nitride semiconductor developed in the c-axis direction is faster than the lateral growth development of the group III nitride semiconductor developed in the a-axis direction. The growth-developed sub-group III nitride semiconductor chunks 31f and 31g and / or both the a-plane and the c-plane are preliminarily formed and then grown. In the case of making an inverted trapezoidal group III nitride semiconductor from the beginning of growth, since the height of the semiconductor can be too high up to the point 33 to be joined, the sub group III nitride semiconductor previously developed on the growth prevention film 15. It is good to make a mass (31f, 31g). In addition, since it is not easy to join group III nitride semiconductors 31a and 31b in an inverted trapezoid, it is preferable to make subgroup III nitride semiconductor agglomerates 31f and 31g in advance as a preliminary form for forming such a form. As described above, according to the method for growing a group III nitride semiconductor according to the present disclosure, even when the width of the growth prevention film 15 and the window 16a is set to 17: 1, the group III nitride semiconductor layer 31 is thick. Coalescence may be performed at 7 μm or less, where subgroup III nitride semiconductor agglomerates 31f and 31g are one useful tool for achieving this. After growing the seed layer 20, the atmosphere gas is changed to hydrogen. Subsequently, the subgroup III nitride semiconductor agglomerates 31f and 31g of 500 nm to 1300 nm are grown at a rate of 4000 sccm, NH 3 at 100 mbar, temperature at 1050 ° C., and growth rate at 0.6 nm / sec. Thereafter, the temperature was lowered to 920 ° C., the pressure was 250 mbar, and NH 3 was grown to 12,000 sccm. For example, by growing the subgroup III nitride semiconductor agglomerates 31f and 31g at 500 nm, a structure as shown in FIG. 7 is formed, and the crystal defect 32 is formed by allowing the region n to have only about 5% of the entire surface. Can be significantly reduced. Further, by growing the sub-group III nitride semiconductor agglomerates 31f and 31g by 1300 nm, a structure as shown in FIG. 8 to be described later is formed, and the crystal defects 32 can be prevented from penetrating the surface. Comparing the growth conditions of the two layers, when the subgroup III nitride semiconductor chunks 31f and 31g are grown at relatively low pressure and high temperature, the group III nitride after the subgroup III nitride semiconductor chunks 31f and 31g grow. In the case of the semiconductors 31a and 31b, the growth was relatively less sensitive to temperature.
도 8은 본 개시에 따라 씨앗층 위에 3족 질화물 반도체를 성장하는 방법의 다른 예를 나타내는 도면으로서, 3족 질화물 반도체(31a)와 3족 질화물 반도체(31b)가 접합에 이르기까지의 과정의 다른 예를 설명한다. a축 방향으로 전개되는 3족 질화물 반도체(31b)의 결정 결함(32)은 3족 질화물 반도체(31a)에 의해 차단된다. 마찬가지로, 접합이 완료되는 지점(33)에 이르기까지, c축 방향으로 전개되는 3족 질화물 반도체(31a)의 c면을 감소시킴으로써, 최적으로는 점 접합이 되게 함으로써, a축 방향으로 전개되는 3족 질화물 반도체(31b)와 c축 방향으로 전개되는 3족 질화물 반도체(31a)의 접합 내지는 평탄화를 도우며, 결함(32)의 전개를 막는다.8 is a view showing another example of a method for growing a group III nitride semiconductor on a seed layer according to the present disclosure, wherein the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are different from each other until the junction. Explain the example. The crystal defect 32 of the group III nitride semiconductor 31b developed in the a-axis direction is blocked by the group III nitride semiconductor 31a. Similarly, by reducing the c plane of the group III nitride semiconductor 31a developed in the c-axis direction until the point at which the bonding is completed, the point 3 is developed in the a-axis direction by optimum point bonding. The bonding or planarization of the group nitride semiconductor 31a and the group III nitride semiconductor 31a developed in the c-axis direction is assisted, and the development of the defect 32 is prevented.
도 9는 본 개시에 따른 3족 질화물 반도체 적층체의 다른 예를 나타내는 도면으로서, 도 6에 도시된 3족 질화물 반도체 적층체와 달리, 씨앗층(20)이 성장 방지막(15)과 m면 기판(10) 사이에 위치한다. 즉, 성장 방지막(15)을 형성하기에 앞서, 씨앗층(20)이 먼저 형성되어 있다. 반도체층을 먼저 형성하는 경우에, 도 4와 관련하여 지적된 문제점을 가질 수 있지만, 씨앗층(20)의 높이를 제한함으로써, 이러한 문제점을 해소하는 것이 가능하다. 이 실시예의 경우에, 씨앗층(20)은 종래의 버퍼층으로 형성하는 것도 가능하다.9 is a view illustrating another example of the group III nitride semiconductor laminate according to the present disclosure. Unlike the group III nitride semiconductor laminate illustrated in FIG. 6, the seed layer 20 includes the growth prevention layer 15 and the m surface substrate. It is located between 10. That is, the seed layer 20 is first formed before the growth barrier 15 is formed. In the case of forming the semiconductor layer first, there may be a problem pointed out in relation to FIG. 4, but by limiting the height of the seed layer 20, it is possible to solve this problem. In the case of this embodiment, the seed layer 20 may be formed of a conventional buffer layer.
도 10은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면으로서, 도 6에 도시된 3족 질화물 반도체 적층체와 달리, 3족 질화물 반도체(31)의 성장에 앞서, 성장 방지막(15)이 제거된다. 따라서, 씨앗층(20)이 형성되지 않은 m면 기판(10)의 영역(15a)이 성장 방지 영역으로 기능한다. 영역(15a)에는 씨앗층(20)이 없어 3족 질화물 반도체층(31)의 성장이 일어나지 않는다. 따라서 씨앗층(20)으로부터 3족 질화물 반도체층(31)이 도 6에서와 마찬가지로 성장된다. 즉, 윈도우(16a)에서 c축 방향으로 전개되는 3족 질화물 반도체(31a)가 영역(15a) 위로 전개되어 이웃한 윈도우(16b)에서 a축 방향으로 전개되는 3족 질화물 반도체(31b)와 공동(13; Cavity)을 형성하면서 성장된다. 3족 질화물 반도체층(31)의 성장에 앞서, 성장 방지막(15)이 제거되므로, 성장 방지막(15)에 씨앗층(20)의 형성 과정에서 다결정이 형성되는 경우에라도, 문제없이 3족 질화물 반도체층(31)을 성장하는 것이 가능해진다.FIG. 10 is a view showing another example of the group III nitride semiconductor laminate according to the present disclosure, and unlike the group III nitride semiconductor laminate shown in FIG. 6, prior to the growth of the group III nitride semiconductor 31, a growth prevention film (15) is removed. Therefore, the region 15a of the m surface substrate 10 on which the seed layer 20 is not formed serves as a growth prevention region. Since there is no seed layer 20 in the region 15a, growth of the group III nitride semiconductor layer 31 does not occur. Therefore, the group III nitride semiconductor layer 31 is grown from the seed layer 20 as in FIG. That is, the group III nitride semiconductor 31a that is developed in the c-axis direction in the window 16a is developed above the region 15a, and the group III nitride semiconductor 31b that is developed in the a-axis direction in the adjacent window 16b. (13; Cavity) grows. Prior to the growth of the group III nitride semiconductor layer 31, the growth prevention film 15 is removed, so that even when polycrystals are formed in the formation process of the seed layer 20 on the growth prevention film 15, the group III nitride semiconductor is not problematic. It is possible to grow the layer 31.
도 11은 본 개시에 따른 3족 질화물 반도체 적층체의 또 다른 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 추가의 성장 방지막(17)을 구비하며, 추가의 성장 방지막(17) 위에 공동(13)이 형성되어 있다. 씨앗층(20) 위에 3족 질화물 반도체(31c)를 성장시키다 중단하고, 다시 c축 방향으로 전개된 3족 질화물 반도체(31c)의 면(31d)이 노출되도록 추가의 성장 방지막(17)을 형성한 후, 면(31d,31d)으로부터 3족 질화물 반도체(31a)와 3족 질화물 반도체(31b)를 성장시켜 공동(13)을 형성한다. 전술 및 후술하는 바와 같이, 3족 질화물 반도체(31c)가 성장 방지막(15) 위에서 c축 방향으로 전개된 영역은 결함이 거의 없는 영역이므로(도 12 참조), 그 위에서 형성된 3족 질화물 반도체층(31)의 결정 결함을 크게 축소시킬 수 있게 된다.FIG. 11 is a view showing another example of the group III nitride semiconductor laminate according to the present disclosure, wherein the group III nitride semiconductor laminate has an additional growth prevention film 17, and has a cavity (on the additional growth prevention film 17). 13) is formed. The growth of the group III nitride semiconductor 31c is stopped on the seed layer 20, and an additional growth prevention layer 17 is formed so that the surface 31d of the group III nitride semiconductor 31c developed in the c-axis direction is exposed again. Thereafter, the group III nitride semiconductor 31a and the group III nitride semiconductor 31b are grown from the surfaces 31d and 31d to form the cavity 13. As described above and later, the region where the Group III nitride semiconductor 31c is developed in the c-axis direction on the growth prevention film 15 is a region where there are almost no defects (see FIG. 12), and therefore the Group III nitride semiconductor layer formed thereon ( The crystal defect in 31 can be greatly reduced.
도 12는 도 8의 구조로 성장된 도 6의 3족 질화물 반도체 적층체의 단면 이미지들로서, 우측은 STEM(Scanning Transmission Electronic Microscope) 이미지이며, 좌측은 TEM(Transmission Electronic Microscope) 이미지이다. STEM 이미지에서, 접합면(A)을 기준으로, 3족 질화물 반도체(31b)에서 전개된 결함이 3족 질화물 반도체(31a)에 의해 막혀 있는 것을 알 수 있는 한편, 3족 질화물 반도체(31a), 즉 c축 방향으로 전개된 3족 질화물 반도체에는 결정 결함이 거의 없음을 알 수 있다. 이러한 특성을 도 11에 도시된 3족 질화물 반도체 적층체의 성장에 이용할 수 있다. TEM 이미지를 통해, 결함의 차단을 더 잘 볼 수 있다.12 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG. 8, the right side is a Scanning Transmission Electronic Microscope (STEM) image, and the left side is a Transmission Electronic Microscope (TEM) image. In the STEM image, it can be seen that the defect developed in the group III nitride semiconductor 31b is blocked by the group III nitride semiconductor 31a based on the bonding surface A, while the group III nitride semiconductor 31a, In other words, it can be seen that the Group III nitride semiconductor developed in the c-axis direction has almost no crystal defects. This property can be used for growth of the group III nitride semiconductor laminate shown in FIG. Through the TEM image, the blocking of defects can be seen better.
도 13은 도 8의 구조로 성장된 도 6의 3족 질화물 반도체 적층체의 단면 이미지들로서, (a)는 CL(Cathod Luminescence) 이미지이며, (b)는 SEM(Scanning Electron Microscope) 이미지이고, (c)는 광학현미경 이미지이다. CL 이미지에서 우측 상방으로 기울어진 홈으로 보이는 것이 결함이며, 더 이상 전개되지 못하는 것을 볼 수 있다. SEM 이미지에 공동(Cavity)이 잘 나타나 있으며, 기판을 가로질러 형성된다. 공동 우측 상방에 결함처럼 보이는 것은 단면을 자르면서 생긴 흠집이다. 광학현미경 이미지에서 밝은 쪽이 공동이며, 표면이 깨끗해서 3족 질화물 반도체층 내부가 보인다.FIG. 13 is a cross-sectional image of the group III nitride semiconductor laminate of FIG. 6 grown in the structure of FIG. 8, (a) is a cathode luminescence (CL) image, (b) is a scanning electron microscope (SEM) image, and c) is an optical microscope image. In the CL image, what appears to be a groove tilted upwards is a defect, and you can see that it no longer develops. The cavity is well shown in the SEM image and is formed across the substrate. What appears to be a defect in the upper right corner of the cavity is scratching while cutting the cross section. In the light microscope image, the bright side is the cavity, and the surface is clean so that the inside of the group III nitride semiconductor layer can be seen.
도 16 및 도 17은 본 개시에 따라 3족 질화물 반도체를 성장시키는 방법의 일 예를 설명하는 도면으로서, 3족 질화물 반도체(311)를 기준으로 할 때, 3족 질화물 반도체(312)는 a면 방향 및 c면 방향의 성장 속도를 비슷하게 하고, 이들의 성장 속도를 (11-22)면 방향의 성장 속도보다 상대적으로 빠르게 함으로써 성장이 가능하다. 3족 질화물 반도체(313)는 (11-22)면 방향 > c면 방향 > a면 방향의 순으로 성장 속도를 조절함으로써 성장이 가능하다. 3족 질화물 반도체(314)는 (11-22)면 방향 > a면 방향 > c면 방향의 순으로 성장 속도를 조절함으로써 성장이 가능하다. 3족 질화물 반도체(315)는 c면 방향 > (11-22)면 방향 > a면 방향의 순으로 성장 속도를 조절하되, c면 방향의 성장 속도를 (11-22)면 방향의 성장 속도보다 약간 빠르게 조절함으로써 성장이 가능하다. 3족 질화물 반도체(316)는 c면 방향 > a면 방향 > (11-22)면 방향 순으로 조절하되, c면 방향의 성장 속도를 a면 방향의 성장 속도보다 약간 빠르게 조절함으로써 성장이 가능하다. 도 17은 평탄화가 용이한, 즉 (11-22)면을 가지는 3족 질화물 반도체(312), 3족 질화물 반도체(315), 3족 질화물 반도체(316)의 합체 과정을 나타내며, 3족 질화물 반도체(315)의 경우에는, 합체 후에도 c면이 남게 되며, 따라서, 3족 질화물 반도체(312)와 3족 질화물 반도체(316)가 낮은 높이에서 평탄화가 가능함을 알 수 있다. 또한 3족 질화물 반도체(312)을 형성한 다음, 3족 질화물 반도체(315)를 성장하는 방법에 의해, 즉, 도 7에 도시된 영역(n)을 영역(m)보다 좁게 형성한 다음, 영역(n)을 차단하는 것도 가능하다.16 and 17 illustrate an example of a method for growing a group III nitride semiconductor according to the present disclosure. When the group III nitride semiconductor 311 is referenced, the group III nitride semiconductor 312 has a plane a. The growth is possible by making the growth rates in the direction and c plane direction similar, and making these growth rates relatively faster than the growth rates in the (11-22) plane direction. The group III nitride semiconductor 313 can be grown by adjusting the growth rate in the order of (11-22) plane direction> c plane direction> a plane direction. The group III nitride semiconductor 314 can be grown by controlling the growth rate in the order of (11-22) plane direction> a plane direction> c plane direction. The group III nitride semiconductor 315 adjusts the growth rate in the order of c plane direction> (11-22) plane direction> a plane direction, but increases the growth rate in the c plane direction than the growth rate in the (11-22) plane direction. You can grow by controlling it slightly faster The group III nitride semiconductor 316 is controlled in the order of c plane direction> a plane direction> (11-22) plane direction, but growth is possible by controlling the growth rate in the c plane direction slightly faster than the growth rate in the a plane direction. . FIG. 17 shows a process of incorporating a group III nitride semiconductor 312, a group III nitride semiconductor 315, and a group III nitride semiconductor 316 having a (11-22) plane which is easy to planarize. In the case of 315, the c surface remains after the coalescence, and therefore, it can be seen that the group III nitride semiconductor 312 and the group III nitride semiconductor 316 can be planarized at a low height. Further, by forming the group III nitride semiconductor 312 and then growing the group III nitride semiconductor 315, that is, forming the region n shown in FIG. 7 to be narrower than the region m, and then It is also possible to block (n).
본 개시에 따른 하나의 3족 질화물 반도체 적층체에 의하면, 공동을 구비한 3족 질화물 반도체 적층체를 형성할 수 있게 된다. 3족 질화물 반도체 적층체로 발광 다이오드를 만드는 경우에, 이 공동은 광을 산란하는 산란면으로 기능할 수 있다. 이 공동을 길게 뻗은 채널 형태로 구성하여, 습식 식각을 통해 또는 레이저를 이용하여 기판을 3족 질화물 반도체와 쉽게 분리할 수 있게 된다. 특히 도 10의 형태와 같은 3족 질화물 반도체 적층체를 구성하는 경우에, 기판과 3족 질화물 반도체가 대부분 떨어져 있기 때문에 더욱 쉽게 분리가 가능하다. 도 6의 형태와 같이 3족 질화물 반도체 적층체를 구성하는 경우에도, 성장 방지막을 습식 식각으로 제거한 후에, 마찬가지로 쉽게 분리가 가능하다. 또한 기판이 분리되어 노출되는 면은 (11-22)면으로 습식 식각(wet etching)이 잘 되는 면이므로, c면 수직 구조 LED 비해 용이하게 거친 표면을 만들 수 있게 된다.According to one group III nitride semiconductor laminate according to the present disclosure, it is possible to form a group III nitride semiconductor laminate having a cavity. When a light emitting diode is made of a group III nitride semiconductor laminate, this cavity can function as a scattering surface for scattering light. By forming the cavity in the form of an elongated channel, the substrate can be easily separated from the group III nitride semiconductor through wet etching or using a laser. In particular, in the case of constituting the group III nitride semiconductor laminate as shown in FIG. 10, since the substrate and the group III nitride semiconductor are mostly separated from each other, separation can be performed more easily. Also in the case of constituting a group III nitride semiconductor laminate as in the embodiment of FIG. 6, after the growth prevention film is removed by wet etching, separation can be easily performed similarly. In addition, since the substrate is separated and exposed to the (11-22) surface, the surface is wet etched (wet etching) well, so that it is easier to make a rough surface than the c-plane vertical structure LED.
또한 본 개시에 따른 다른 3족 질화물 반도체 적층체에 의하면, m면 기판 위에 결정성이 우수한 3족 질화물 반도체를 성장할 수 있게 된다.Further, according to another group III nitride semiconductor laminate according to the present disclosure, it is possible to grow a group III nitride semiconductor having excellent crystallinity on the m-plane substrate.
본 개시에 있어서, 씨앗층의 형성, 서브 3족 질화물 반도체 덩어리의 형성, 3족 질화물 반도체의 형성, 3족 질화물 반도체의 합체, 공동의 형성, 결정 결함을 감소시키는 방법, 낮은 높이에서 평탄화하는 방법은 개별적으로 본 개시의 사상을 이루는 것으로 이해되어야 한다. 즉, 누군가 본 개시에 따른 씨앗층을 형성하는 방법을 다른 방법으로 씨앗층을 구현하는 경우에, 본 개시에 따른 다른 기술 사상들은 개별적으로 및/또는 조합된 형태로 이 다른 씨앗층에 결합될 수 있다는 것은 당업자는 이해할 수 있을 것이다. 이러한 관점에 본 개시는 다음과 같은 것에 관한 것이다.In the present disclosure, the formation of a seed layer, the formation of sub-group III nitride semiconductor mass, the formation of a group III nitride semiconductor, the incorporation of a group III nitride semiconductor, the formation of a cavity, a method of reducing crystal defects, a method of planarization at a low height Should be understood to individually form the spirit of the present disclosure. That is, when someone implements the seed layer in a different way than the method of forming the seed layer according to the present disclosure, other technical ideas according to the present disclosure may be combined with this other seed layer individually and / or in combination. It will be understood by those skilled in the art. In this regard, the present disclosure relates to the following.
(1) 성장 방지막이 형성된 m면 기판 위에, 씨앗층을 형성하는 방법 및 이를 구비하는 3족 질화물 반도체 적층체(1) A method of forming a seed layer on an m surface substrate on which a growth prevention film is formed, and a group III nitride semiconductor laminate comprising the same
(2) 성장 방지막이 형성된 m면 기판에 3족 질화물 반도체층을 합체 또는 평탄화시키는 방법 및 이를 이용하는 3족 질화물 반도체 적층체(2) A method of incorporating or planarizing a group III nitride semiconductor layer on an m surface substrate having a growth prevention film formed thereon, and a group III nitride semiconductor laminate using the same.
(3) 성장 방지막이 형성된 m면 기판 위에, 결정 결함이 감소된 3족 질화물 반도체를 성장하는 방법 및 이를 이용하는 3족 질화물 반도체 적층체(3) A method of growing a group III nitride semiconductor having reduced crystal defects on an m surface substrate having a growth prevention film formed thereon, and a group III nitride semiconductor laminate using the same.
(4) 성장 방지막이 형성된 m면 기판 위에, 공동이 구비된 3족 질화물 반도체를 성장하는 방법 및 이를 이용하는 3족 질화물 반도체 적층체, 특히, 평탄화에 이르까지, 공동을 형성하기까지 지나친 두께를 가지는 않은 형태 및/또는 공동을 구비하면서도 결정 결함이 감소된 형태.(4) A method of growing a group III nitride semiconductor with a cavity on an m-plane substrate on which a growth prevention film is formed, and a group III nitride semiconductor laminate using the same, in particular, having an excessive thickness until forming a cavity, until planarization Unshaven and / or cavities with reduced crystal defects.
(5) 상기 방법 및 적층체의 조합(5) Combination of the above method and laminate
(6) 상기 방법, 상기 적층체, 이들의 조합을 이용한 소자. 특히, pn접합을 이용하는 반도체 소자(예: 수직 구조 LED, 도 1 내지 도 4와 관련한 언급된 종래기술에 기술된 반도체 소자)(6) An element using the method, the laminate, or a combination thereof. In particular, semiconductor devices using pn junctions (e.g. vertical structure LEDs, semiconductor devices described in the prior art mentioned in connection with FIGS.

Claims (13)

  1. m면 기판;m surface substrate;
    m면 기판 위에 위치하며, 3족 질화물 반도체의 성장을 위한 복수의 윈도우를 가지는 성장 방지 영역;a growth prevention region on the m-plane substrate and having a plurality of windows for growth of the group III nitride semiconductor;
    적어도 복수의 윈도우에 해당하는 영역에서 m면 기판 상에 형성되는 씨앗층; 그리고,A seed layer formed on the m-plane substrate in an area corresponding to at least a plurality of windows; And,
    씨앗층으로부터 성장되며, a축 방향과 c축 방향으로 전개되어 합체(coalescence)되는 3족 질화물 반도체층;으로서, 하나의 윈도우에서 c축 방향으로 전개되는 3족 질화물 반도체가 성장 방지 영역 위로 전개되어 이웃한 윈도우에서 a축 방향으로 전개되는 3족 질화물 반도체와 공동(Cavity)을 형성하는 3족 질화물 반도체층;을 포함하는 것을 특징으로 하는 3족 질화물 반도체 적층체.A group III nitride semiconductor layer that is grown from the seed layer and that is coalesced in the a-axis direction and the c-axis direction, wherein the group III nitride semiconductor developed in the c-axis direction in one window is expanded over the growth prevention region; A group III nitride semiconductor laminate comprising a; group III nitride semiconductor layer forming a cavity with a group III nitride semiconductor that extends in an a-axis direction from a neighboring window.
  2. 청구항 1에 있어서,The method according to claim 1,
    성장 방지 영역에 성장 방지막이 구비되는 것을 특징으로 하는 3족 질화물 반도체 적층체.A group III nitride semiconductor laminate, wherein the growth prevention film is provided in the growth prevention region.
  3. 청구항 2에 있어서,The method according to claim 2,
    씨앗층은 성장 방지 영역과 m면 기판 사이에 위치하는 것을 특징으로 하는 3족 질화물 반도체 적층체.A group III nitride semiconductor laminate, wherein the seed layer is located between the growth prevention region and the m-plane substrate.
  4. 청구항 1에 있어서,The method according to claim 1,
    성장 방지 영역은 씨앗층이 형성되지 않은 m면 기판 영역인 것을 특징으로 하는 3족 질화물 반도체 적층체.The growth prevention region is a group III nitride semiconductor laminate, characterized in that the m-plane substrate region without a seed layer formed.
  5. 청구항 1에 있어서,The method according to claim 1,
    복수의 윈도우 상에 위치하는 추가의 성장 방지막;을 포함하며,An additional growth barrier layer positioned on the plurality of windows;
    공동은 추가의 성장 방지막 위에 형성되는 것을 특징으로 하는 3족 질화물 반도체 적층체.A cavity is formed on an additional growth preventing film, Group III nitride semiconductor laminate.
  6. 청구항 1에 있어서,The method according to claim 1,
    a축 방향으로 전개되는 3족 질화물 반도체의 a면은 합체(coalescence)에 이르기까지 감소되는 것을 특징으로 하는 3족 질화물 반도체 적층체.The a surface of the group III nitride semiconductor developed in the a-axis direction is reduced to coalescence. The group III nitride semiconductor laminate.
  7. 청구항 1에 있어서,The method according to claim 1,
    a축 방향으로 전개되는 3족 질화물 반도체의 결함은 c축 방향으로 전개되는 3족 질화물 반도체에 의해 차단되는 것을 특징으로 하는 3족 질화물 반도체 적층체.A group III nitride semiconductor laminate, wherein defects of the group III nitride semiconductor developed in the a-axis direction are blocked by the group III nitride semiconductor developed in the c-axis direction.
  8. 청구항 1에 있어서,The method according to claim 1,
    c축 방향으로 전개되는 3족 질화물 반도체의 c면은 합체(coalescence)에 이르기까지 감소되는 것을 특징으로 하는 3족 질화물 반도체 적층체.The c plane of the group III nitride semiconductor developed in the c-axis direction is reduced to coalescence.
  9. 청구항 6에 있어서,The method according to claim 6,
    c축 방향으로 전개되는 3족 질화물 반도체의 c면은 합체(coalescence)에 이르기까지 감소되는 것을 특징으로 하는 3족 질화물 반도체 적층체.The c plane of the group III nitride semiconductor developed in the c-axis direction is reduced to coalescence.
  10. 청구항 7에 있어서,The method according to claim 7,
    c축 방향으로 전개되는 3족 질화물 반도체의 c면은 합체(coalescence)에 이르기까지 감소되는 것을 특징으로 하는 3족 질화물 반도체 적층체.The c plane of the group III nitride semiconductor developed in the c-axis direction is reduced to coalescence.
  11. 청구항 1 내지 청구항 10 중의 어느 한 항에 있어서,The method according to any one of claims 1 to 10,
    하나의 윈도우에서 성장되는 3족 질화물 반도체 및 이웃한 윈도우에서 성장되는 3족 질화물 반도체 각각은, c축 방향으로 전개되는 3족 질화물 반도체의 횡방향 성장전개가 a축 방향으로 전개되는 3족 질화물 반도체의 횡방향 성장전개보다 빨라 성장 방지 영역 위로 성장전개된 서브 3족 질화물 반도체 덩어리를 구비하는 것을 특징으로 하는 3족 질화물 반도체 적층체.The group III nitride semiconductors grown in one window and the group III nitride semiconductors grown in a neighboring window each include a group III nitride semiconductor in which the lateral growth development of the group III nitride semiconductors developed in the c-axis direction is developed in the a-axis direction. A group III nitride semiconductor laminate comprising a sub-group III nitride semiconductor mass that is grown and developed over a growth prevention region faster than the lateral growth development of.
  12. 청구항 1에 있어서,The method according to claim 1,
    m면 기판은 사파이어로 이루어지는 것을 특징으로 하는 3족 질화물 반도체 적층체.A group III nitride semiconductor laminate, wherein the m-plane substrate is made of sapphire.
  13. 청구항 9에 있어서,The method according to claim 9,
    합체 이후, a축 방향으로 전개되는 3족 질화물 반도체의 결함은 c축 방향으로 전개되는 3족 질화물 반도체에 의해 차단되는 것을 특징으로 하는 3족 질화물 반도체 적층체.The group III nitride semiconductor laminate according to claim 1, wherein defects of the group III nitride semiconductor developed in the a-axis direction are blocked by the group III nitride semiconductor developed in the c-axis direction.
PCT/KR2013/011014 2012-11-30 2013-11-29 Group iii nitride semiconductor laminate WO2014084667A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380062428.2A CN104838473B (en) 2012-11-30 2013-11-29 III nitride semiconductor layer accumulates body
US14/648,021 US20160013275A1 (en) 2012-11-30 2013-11-29 Iii-nitride semiconductor stacked structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120137860 2012-11-30
KR10-2012-0137860 2012-11-30
KR1020130039355A KR101504731B1 (en) 2012-11-30 2013-04-10 Iii-nitride semiconductor stacked structure
KR10-2013-0039355 2013-04-10

Publications (1)

Publication Number Publication Date
WO2014084667A1 true WO2014084667A1 (en) 2014-06-05

Family

ID=50828209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011014 WO2014084667A1 (en) 2012-11-30 2013-11-29 Group iii nitride semiconductor laminate

Country Status (1)

Country Link
WO (1) WO2014084667A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018971A (en) * 2007-07-13 2009-01-29 Ngk Insulators Ltd Method for producing nonpolar group-iii nitride
JP2009184842A (en) * 2008-02-01 2009-08-20 Toyoda Gosei Co Ltd Method for producing group iii nitride compound semiconductor, wafer, and group iii nitride compound semiconductor element
JP2010037156A (en) * 2008-08-06 2010-02-18 Toyoda Gosei Co Ltd Method for producing group iii nitride compound semiconductor and gallium nitride self-supporting substrate
JP2011046544A (en) * 2009-08-25 2011-03-10 Toyoda Gosei Co Ltd Method for producing group iii nitride semiconductor crystal and group iii nitride semiconductor substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018971A (en) * 2007-07-13 2009-01-29 Ngk Insulators Ltd Method for producing nonpolar group-iii nitride
JP2009184842A (en) * 2008-02-01 2009-08-20 Toyoda Gosei Co Ltd Method for producing group iii nitride compound semiconductor, wafer, and group iii nitride compound semiconductor element
JP2010037156A (en) * 2008-08-06 2010-02-18 Toyoda Gosei Co Ltd Method for producing group iii nitride compound semiconductor and gallium nitride self-supporting substrate
JP2011046544A (en) * 2009-08-25 2011-03-10 Toyoda Gosei Co Ltd Method for producing group iii nitride semiconductor crystal and group iii nitride semiconductor substrate

Similar Documents

Publication Publication Date Title
KR101145755B1 (en) Technique for the growth of planar semi-polar gallium nitride
US6608327B1 (en) Gallium nitride semiconductor structure including laterally offset patterned layers
CA2331893C (en) Fabrication of gallium nitride semiconductor layers by lateral growth from trench sidewalls
KR101105868B1 (en) Method for preparing group iii-nitride substrate using chemical lift off
CA2321118C (en) Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth through masks, and gallium nitride semiconductor structures fabricated thereby
US20240063340A1 (en) METHOD FOR RELAXING SEMICONDUCTOR FILMS INCLUDING THE FABRICATION OF PSEUDO-SUBSTRATES AND FORMATION OF COMPOSITES ALLOWING THE ADDITION OF PREVIOUSLY UN-ACCESSIBLE FUNCTIONALITY OF GROUP lll-NITRIDES
US20110163295A1 (en) Semiconductor with low dislocation
WO2011046292A2 (en) High-quality nonpolar or semipolar semiconductor device on porous nitride semiconductor and fabrication method thereof
JP2000331947A (en) Semiconductor base material and manufacture thereof
KR101246832B1 (en) Non-polar or Semi-polar Group III-Nitride Based Light Emitting Diode and Fabrication Method Thereof
WO2014144993A9 (en) Enhanced performance active pixel array and epitaxial growth method for achieving the same
JP2014532612A (en) Suppression of relaxation by limited region epitaxy on non-c-plane (In, Al, B, Ga) N
JP2001345282A (en) Method of manufacturing nitride-based iii group compound semiconductor and nitride-based iii group compound semiconductor element
WO2014084667A1 (en) Group iii nitride semiconductor laminate
WO2022220124A1 (en) Semiconductor substrate, manufacturing method and manufacturing apparatus therefor, gan crystal, semiconductor device, and electronic machine
KR101152989B1 (en) Semiconductor Wafer including Gallium Nitride layer and Method for Manufacturing the same and Light Emitting Device
KR20140131891A (en) Iii-nitride semiconductor stacked structure
KR101504731B1 (en) Iii-nitride semiconductor stacked structure
WO2014168436A1 (en) Group iii nitride semiconductor stacked body
WO2014168435A1 (en) Group iii nitride semiconductor element
JP2022547670A (en) LED precursors incorporating strain-relaxed structures
US9142622B2 (en) Method of growing nitride semiconductor layer, nitride semiconductor device, and method of fabricating the same
JP2003151908A (en) Manufacturing method of nitride semiconductor substrate
Kawaguchi et al. Low‐dislocation density AlGaN layer by air‐bridged lateral epitaxial growth
JP2001156002A (en) Semiconductor base material and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14648021

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13858009

Country of ref document: EP

Kind code of ref document: A1