[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014084226A1 - 樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板 - Google Patents

樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板 Download PDF

Info

Publication number
WO2014084226A1
WO2014084226A1 PCT/JP2013/081841 JP2013081841W WO2014084226A1 WO 2014084226 A1 WO2014084226 A1 WO 2014084226A1 JP 2013081841 W JP2013081841 W JP 2013081841W WO 2014084226 A1 WO2014084226 A1 WO 2014084226A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
parts
resin composition
group
Prior art date
Application number
PCT/JP2013/081841
Other languages
English (en)
French (fr)
Inventor
友 千葉
博史 高橋
英祐 志賀
禎啓 加藤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020157016366A priority Critical patent/KR102124753B1/ko
Priority to CN201380062306.3A priority patent/CN104837922B/zh
Priority to US14/647,272 priority patent/US10178767B2/en
Priority to EP13857760.6A priority patent/EP2927278B1/en
Priority to JP2014550206A priority patent/JP6332036B2/ja
Priority to SG11201503925QA priority patent/SG11201503925QA/en
Publication of WO2014084226A1 publication Critical patent/WO2014084226A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • C08G73/0655Preparatory processes from polycyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2463/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2951Coating or impregnation contains epoxy polymer or copolymer or polyether

Definitions

  • the present invention relates to a resin composition, a prepreg, a laminate, a metal foil-clad laminate, and a printed wiring board.
  • Patent Document 1 describes that the thermal expansion coefficient of a cured product (laminate) obtained from a thermosetting resin composition is reduced by increasing the inorganic filler fraction.
  • Patent Document 2 uses a silicone rubber as a rubber elastic powder and a fused silica as an inorganic filler, so that a laminate having higher flame retardancy and low thermal expansion in the surface direction can be realized. It is described that a simple resin composition can be obtained.
  • the present invention realizes a cured product having various properties such as high flame retardancy required as a printed wiring board material, excellent moldability, excellent chemical resistance in a desmear process, and a low thermal expansion coefficient. It is an object of the present invention to provide a possible resin composition, a prepreg containing the resin composition, a laminate including the prepreg, a metal foil-clad laminate including the prepreg, and a printed wiring board including the prepreg.
  • the present inventors have disclosed a resin composition comprising an acrylic-silicone copolymer, a non-halogen epoxy resin, a cyanate ester compound and / or a phenol resin, and an inorganic filler, or an acrylic-silicone copolymer. Then, the present inventors have found that the above problems can be solved by a resin composition containing a BT resin and an inorganic filler, and have completed the present invention.
  • a resin comprising an acrylic-silicone copolymer (A), a non-halogen epoxy resin (B), a cyanate ester compound (C) and / or a phenol resin (D), and an inorganic filler (E) Composition.
  • the acrylic-silicone copolymer (A) is fine particles, The resin composition according to item [1], wherein the average primary particle size of the acrylic-silicone copolymer (A) fine particles is 0.10 to 1.0 ⁇ m.
  • the non-halogen epoxy resin (B) is represented by the following formula (2): a phenol phenylaralkyl novolak type epoxy resin represented by the following formula (2); a phenol biphenyl aralkyl type epoxy resin represented by the following formula (3); A naphthol aralkyl type epoxy resin, an anthraquinone type epoxy resin represented by the following formula (5), and a polyoxynaphthylene type epoxy resin represented by the following formula (6) and the following formula (7)
  • each R 3 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • R 4 each independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • each R 5 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • each R 6 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group.
  • each R 7 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group.
  • the cyanate ester compound (C) is a naphthol aralkyl cyanate ester compound represented by the following formula (8), a novolac cyanate ester compound represented by the following formula (9), and the following formula (10):
  • each R 8 each independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • each R 9 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • each R 10 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • the phenol resin (D) includes one or more selected from the group consisting of a cresol novolac type phenol resin, a naphthol aralkyl type phenol resin, a biphenyl aralkyl type phenol resin, an aminotriazine novolac type phenol resin, and a naphthalene type phenol resin.
  • [6] The resin composition according to any one of [1] to [5], further comprising a maleimide compound (F).
  • the maleimide compound (F) includes a compound represented by the following formula (13).
  • each R 13 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • the content of the acrylic-silicone copolymer (A) is When the maleimide compound (F) is not included, 3 to 50 masses with respect to a total of 100 mass parts of the non-halogen epoxy resin (B), the cyanate ester compound (C), and the phenol resin (D).
  • the total amount of the non-halogen epoxy resin (B), the cyanate ester compound (C), the phenol resin (D), and the maleimide compound (F) is 100 parts by mass.
  • the content of the non-halogen epoxy resin (B) is When the maleimide compound (F) is not included, 5 to 60 masses with respect to 100 mass parts in total of the non-halogen epoxy resin (B), the cyanate ester compound (C), and the phenol resin (D).
  • the total amount of the non-halogen epoxy resin (B), the cyanate ester compound (C), the phenol resin (D), and the maleimide compound (F) is 100 parts by mass.
  • the total content of the cyanate ester compound (C) and the phenol resin (D) is When the maleimide compound (F) is not included, 10 to 50 masses with respect to a total of 100 mass parts of the non-halogen epoxy resin (B), the cyanate ester compound (C), and the phenol resin (D).
  • the total amount of the non-halogen epoxy resin (B), the cyanate ester compound (C), the phenol resin (D), and the maleimide compound (F) is 100 parts by mass.
  • the content of the inorganic filler (E) is When the maleimide compound (F) is not included, 50 to 500 mass with respect to a total of 100 mass parts of the non-halogen epoxy resin (B), the cyanate ester compound (C), and the phenol resin (D).
  • the total amount of the non-halogen epoxy resin (B), the cyanate ester compound (C), the phenol resin (D), and the maleimide compound (F) is 100 parts by mass.
  • the content of the maleimide compound (F) is 100 parts by mass in total of the non-halogen epoxy resin (B), the cyanate ester compound (C), the phenol resin (D), and the maleimide compound (F).
  • the cyanate ester compound (C) is a naphthol aralkyl cyanate ester compound represented by the following formula (8), a novolac cyanate ester compound represented by the following formula (9), and the following formula (10):
  • each R 13 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
  • the content of the acrylic-silicone copolymer (A) is 3 to 50 parts by mass with respect to 100 parts by mass in total of the non-halogen epoxy resin (B) and the BT resin (G).
  • the content of the non-halogen epoxy resin (B) is 5 to 60 parts by mass with respect to 100 parts by mass in total of the non-halogen epoxy resin (B) and the BT resin (G).
  • a prepreg comprising: a base material; and the resin composition according to any one of items [1] to [22] impregnated or coated on the base material.
  • the base material contains one or more selected from the group consisting of E glass cloth, T glass cloth, S glass cloth, Q glass cloth and organic fibers.
  • a laminate comprising one or more prepregs according to [23] or [24] above.
  • a metal foil-clad laminate comprising the prepreg according to [23] or [24] above and a metal foil laminated on one or both sides of the prepreg.
  • the cured product has various properties such as high flame retardancy required as a printed wiring board material, and also has excellent moldability, excellent chemical resistance in a desmear process, and a low coefficient of thermal expansion.
  • a prepreg containing the resin composition a laminate provided with the prepreg, a metal foil-clad laminate provided with the prepreg, and a printed wiring board provided with the prepreg.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.
  • the resin composition of one embodiment of the present invention includes an acrylic-silicone copolymer (A), a non-halogen epoxy resin (B), a cyanate ester compound (C) and / or a phenol resin (D), and an inorganic filling. And a material (E).
  • Another aspect of the present invention is a resin composition
  • a resin composition comprising a prepolymer of an acrylic-silicone copolymer (A), a non-halogen epoxy resin (B), a cyanate ester compound (C), and a maleimide compound (F).
  • the BT resin (G) formed and the inorganic filler (E) are contained.
  • a prepreg composed of the resin composition and a base material, a laminate including the prepreg, a metal foil-clad laminate, and a printed wiring board are also provided.
  • the acrylic-silicone copolymer (A) used in the present embodiment is not particularly limited.
  • a (meth) acrylic acid ester monomer (a) unit and a radical polymerizable silicone macromonomer (b) unit are included.
  • the copolymer include.
  • the “monomer unit” refers to a repeating unit of a polymer derived from a predetermined monomer.
  • the (meth) acrylic acid ester monomer (a) is not particularly limited, but for example, esters of alcohols or phenols having 1 to 18 carbon atoms with acrylic acid or methacrylic acid are preferred.
  • Such (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobutyl (meth) acrylate, hexyl (meth) acrylate, octyl Alkyl (meth) acrylates such as (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, alkoxyalkyl (meth) acrylates such as methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, cyclohexyl ( Examples include meth) acrylate, pheny
  • a monomer copolymerizable with the (meth) acrylic acid ester monomer (a) is further added as necessary.
  • the monomer copolymerizable with the (meth) acrylic acid ester monomer (a) is not particularly limited. For example, styrene, ⁇ -methylstyrene, vinyltoluene, acrylonitrile, vinyl chloride, vinylidene chloride, vinyl acetate, vinyl propionate And vinyl versatate.
  • Monomers copolymerizable with the (meth) acrylic acid ester monomer (a) may be used alone or in combination of two or more.
  • radically polymerizable silicone macromonomer (b) the compound shown by following General formula (1) is mentioned.
  • the radically polymerizable silicone macromonomer (b) represented by the following general formula (1) is not particularly limited, but for example, a method disclosed in Japanese Patent Application Laid-Open No. 59-78236 or Japanese Patent Application Laid-Open No. 6-228316.
  • the compound which can be manufactured by is mentioned.
  • radically polymerizable silicone macromonomer (b) may be used individually by 1 type, or may be used in combination of 2 or more type.
  • each R independently represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and the ratio of R representing a methyl group out of all R is 50 mol.
  • X represents a radical polymerizable functional group-containing organic group, and n represents an integer of 5 or more and 200 or less.
  • the unsubstituted or substituted monovalent hydrocarbon group represented by R and having 1 to 12 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • An aryl group such as a phenyl group, a tolyl group, and a naphthyl group; an aralkyl group such as an ⁇ -phenethyl group and a benzyl group; and a hydrogen atom bonded to a carbon atom of the alkyl group, aryl group, and aralkyl group is a halogen atom And a group substituted with an atom or the like.
  • a methyl group, a butyl group, and a phenyl group are preferable from an industrial viewpoint.
  • the proportion of R representing a methyl group in all R is 50 mol% or more, preferably 70 mol% or more.
  • the upper limit of the ratio of R which represents a methyl group among all R is not specifically limited, 100 mol% is preferable.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a divalent organic group having 3 to 20 carbon atoms that may contain a hetero atom.
  • the divalent organic group having 3 to 20 carbon atoms that can contain a heteroatom represented by R 2 is not particularly limited.
  • n represents an integer of 5 to 200, more preferably an integer of 10 to 180.
  • the content of the (meth) acrylic acid ester monomer (a) unit in the acrylic-silicone copolymer (A) is that of the (meth) acrylic acid ester monomer (a) unit and the radical polymerizable silicone macromonomer (b) unit.
  • the total content is preferably from 30 to 95% by mass, more preferably from 40 to 93% by mass, based on 100% by mass.
  • the content of the radical polymerizable silicone macromonomer (b) unit in the acrylic-silicone copolymer (A) is the sum of the (meth) acrylate monomer (a) unit and the radical polymerizable silicone macromonomer (b) unit.
  • the content is preferably 5 to 70% by mass and more preferably 7 to 60% by mass with respect to the content of 100% by mass.
  • Methods for obtaining an acrylic-silicone copolymer (A) by copolymerizing the (meth) acrylic acid ester monomer (a) and the radical polymerizable silicone macromonomer (b) include emulsion polymerization, suspension polymerization, solution A known polymerization method such as a polymerization method and a bulk polymerization method can be used, and is not particularly limited. Among these, the emulsion polymerization method is preferable from the viewpoint of danger, environmental conservation, and ease of fine particle size adjustment.
  • a normal radical polymerization initiator can be used and is not particularly limited. Specific examples thereof include benzoyl peroxide, dicumyl peroxide, lauroyl peroxide, 2,2′-azobis- (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, and t- Oil-soluble radical polymerization initiators such as butyl peroxy-2-ethylhexanoate; potassium persulfate, ammonium persulfate, hydrogen peroxide, t-butyl hydroperoxide, t-butyl peroxypivalate, and 2,2 And water-soluble radical polymerization initiators such as' -azobis- (2-N-benzylamidino) propane hydrochloride. Further, a redox polymerization initiator combined with a reducing agent such as acidic sodium sulfite, Rongalite, L-ascorbic acid can be used as necessary.
  • a reducing agent such as acidic sodium sulfit
  • the surfactant used in the emulsion polymerization method is not particularly limited.
  • alkylbenzene sulfonate such as sodium dodecylbenzene sulfonate
  • alkyl naphthalene sulfonate alkyl sulfosuccinate, polyoxyethylene alkylphenyl ether sodium sulfate
  • anionic surfactants such as sodium lauryl sulfate
  • nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, sorbitan fatty acid esters, and ethylene oxide-propylene oxide block copolymers
  • alkyltrimethyl Quaternary ammonium salts such as ammonium chloride and alkylbenzyl ammonium chloride, and cationic surfactants such as alkylamine salts are listed. It is.
  • the surfactant used in the emulsion polymerization method is not particularly limited.
  • a reactive cationic surfactant having a quaternary ammonium salt or tertiary amine salt and a radical polymerizable group is also included.
  • the suspending agent used in the suspension polymerization method is not particularly limited, and examples thereof include polyvinyl alcohol, carboxymethyl cellulose, polyalkylene oxide, polyacrylic acid, and polyacrylate.
  • the polymerization temperature is not particularly limited, but is preferably 10 to 150 ° C, more preferably 30 to 90 ° C. When the polymerization temperature is within the above range, the polymerization reaction can be completed in about 3 to 10 hours.
  • the emulsion of the acrylic-silicone copolymer (A) after polymerization is coagulated, washed with water, dehydrated, and dried, or directly dried with a spray dryer to form spherical fine particles.
  • An acrylic-silicone copolymer (A) can be obtained.
  • the emulsion of the acrylic-silicone copolymer (A) after polymerization is dehydrated, washed with water, and dried to obtain spherical acrylic acrylic-silicone copolymer (A ) Can be obtained.
  • the acrylic-silicone copolymer (A) is precipitated in a poor solvent, and the precipitated acrylic-silicone copolymer (A) is filtered and dried, or the poor solvent
  • the acryl-silicone copolymer (A) in the form of spherical fine particles can be obtained by directly drying the precipitated acrylic-silicone copolymer (A) containing slag with a spray dryer.
  • the (meth) acrylic acid ester monomer (a) is polymerized by emulsion polymerization or suspension polymerization, or the (meth) acrylic acid ester monomer (a) and the radical polymerizable silicone macromonomer (b) are combined.
  • Acrylic-silicone having a high distribution density of dimethylpolysiloxanyl groups on the surface layer by polymerizing in advance to produce core fine particles and reacting an emulsion of radical polymerizable silicone macromonomer (b) on the surface of the core fine particles Fine particles of the copolymer (A) may be produced.
  • fine particles of the acrylic-silicone copolymer (A) can be obtained by drying a solution containing the fine particles of the acrylic-silicone copolymer (A).
  • the acrylic-silicone copolymer (A) is preferably fine particles.
  • the shape of the fine particles of the acrylic-silicone copolymer (A) is not particularly limited, but is preferably spherical from the viewpoint of dispersibility in other resins used in the present embodiment.
  • the average particle diameter (D50) of the acrylic-silicone copolymer (A) fine particles is not particularly limited, but is preferably 20 to 20 from the viewpoint of obtaining a cured product having a lower coefficient of thermal expansion and better chemical resistance. It is 400 ⁇ m, more preferably 20 to 40 ⁇ m, still more preferably 25 to 35 ⁇ m.
  • “D50” is a median diameter (median diameter), and is a particle size distribution of a powder obtained by combining primary particles that are measured single crystals and particles that are aggregates of secondary particles or more. The number or mass on the large side and the number or mass on the small side when divided into two are the particle diameters when 50% of that of the total powder.
  • the average particle diameter (D50) can be generally measured by a wet laser diffraction / scattering method.
  • the average primary particle size of the acryl-silicone copolymer (A) is preferably 0.10 to 1. From the viewpoint of obtaining a cured product having better moldability and chemical resistance, and a lower coefficient of thermal expansion.
  • the thickness is 0 ⁇ m, more preferably 0.20 to 0.50 ⁇ m, and still more preferably 0.20 to 0.30 ⁇ m.
  • the average primary particle diameter of the acrylic-silicone copolymer (A) is not particularly limited, and can be measured by a method using an electron microscope, for example.
  • the particles of the acrylic-silicone copolymer (A) include smaller particles (primary particles), particles whose primary particles are aggregated and whose apparent particle size is larger (secondary particles or more). Can be included.
  • a commercially available product can also be used as the acrylic-silicone copolymer (A) used in the present embodiment.
  • Examples of commercially available products include Charine R-170, R-170S, R-1700S (manufactured by Nissin Chemical Industry Co., Ltd.).
  • the content of the acrylic-silicone copolymer (A) in the resin composition of one embodiment of the present invention is not particularly limited, but when the maleimide compound (F) is not included, the non-halogen epoxy resin (B),
  • the total amount of the cyanate ester compound (C) and the phenol resin (D) is preferably 3 to 50 parts by mass, more preferably 5 to 40 parts by mass, including the maleimide compound (F). In such a case, the amount is preferably 3 to 100 parts by mass with respect to a total of 100 parts by mass of the non-halogen epoxy resin (B), the cyanate ester compound (C), the phenol resin (D), and the maleimide compound (F) contained as an optional component. 50 parts by mass, more preferably 5 to 40 parts by mass.
  • the content of the acrylic-silicone copolymer (A) in the resin composition according to another aspect of the present invention is not particularly limited, but a total of 100 masses of the non-halogen epoxy resin (B) and the BT resin (G).
  • the amount is preferably 3 to 50 parts by weight, more preferably 5 to 40 parts by weight with respect to parts.
  • the content of the acrylic-silicone copolymer (A) is 3 parts by mass or more, the elastic modulus and thermal expansion of the obtained cured product tend to be further reduced. Further, when the content of the acrylic-silicone copolymer (A) is 50 parts by mass or less, the chemical resistance and the moldability of the resin composition in the desmear process of the obtained cured product tend to be further improved.
  • Non-halogen epoxy resin (B) The non-halogen epoxy resin (B) in the resin composition of the present embodiment is not particularly limited as long as it does not contain a halogen atom in the molecular structure. Specific examples thereof include a phenol phenyl aralkyl novolak type epoxy resin represented by the following formula (2), a phenol biphenyl aralkyl type epoxy resin represented by the following formula (3), and a naphthol aralkyl represented by the following formula (4).
  • Type epoxy resin anthraquinone type epoxy resin represented by the following formula (5), polyoxynaphthylene type epoxy resin represented by the following formula (6) and the following formula (7), bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, aralkylno Bora Type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, glycidylamine, glycidyl ester, compound obtained by epoxidizing double bond such as butadiene, compound obtained by reaction of hydroxyl group-containing silicone resin and epichlorohydrin, etc.
  • Type epoxy resin, naphthol aralkyl type epoxy resin represented by the following formula (4), anthraquinone type epoxy resin represented by the following formula (5), and the following formula (6) and the following formula (7) One or more selected from the group consisting of polyoxynaphthylene type epoxy resins are preferred.
  • anthraquinone type epoxy resin represented by following formula (5) is preferable from a viewpoint of making the thermal expansion coefficient of the hardened
  • These non-halogen epoxy resins (B) may be used singly or in combination of two or more.
  • each R 3 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • n shows an integer greater than or equal to 1.
  • the upper limit of n is usually 10, preferably 7.
  • each R 4 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • n shows an integer greater than or equal to 1.
  • the upper limit of n is usually 10, preferably 7.
  • R 5 represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable.
  • n shows an integer greater than or equal to 1.
  • the upper limit of n is usually 10, preferably 7.
  • each R 6 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group.
  • each R 7 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group.
  • the commercially available products can be used as the polyoxynaphthylene type epoxy resin represented by the above formula (6) and the above formula (7).
  • the commercially available products are not particularly limited, but for example, EXA-7311, EXA-731-G3, EXA-731-G4, EXA-731-G4S, EXA-7311L, and HP-6000 manufactured by DIC Corporation are available. Can be mentioned.
  • phosphorus-containing epoxy resins and brominated epoxy resins can be used in combination depending on the intended use.
  • the phosphorus-containing epoxy resin is not particularly limited as long as it is a phosphorus atom-containing compound having two or more epoxy groups in one molecule. Specific examples thereof include methyl diglycidyl phosphonate, ethyl diglycidyl phosphonate, propyl diglycidyl phosphonate, butyl diglycidyl phosphonate, vinyl diglycidyl phosphonate, phenyl diglycidyl phosphonate, biphenyl diglycidyl phosphonate, phosphoric acid.
  • the content of the non-halogen epoxy resin (B) in the resin composition of one embodiment of the present invention is not particularly limited, but when the maleimide compound (F) is not included, the non-halogen epoxy resin (B), cyanic acid
  • the total amount of the ester compound (C) and the phenol resin (D) is 100 parts by mass, preferably 5 to 60 parts by mass, more preferably 10 to 40 parts by mass, when the maleimide compound (F) is contained.
  • the content of the non-halogen epoxy resin (B) in the resin composition according to another aspect of the present invention is not particularly limited, but is 100 parts by mass in total of the non-halogen epoxy resin (B) and the BT resin (G). On the other hand, it is preferably 5 to 60 parts by mass, more preferably 10 to 40 parts by mass.
  • the curability of the resin composition is further improved.
  • the flame retardancy is further improved and the glass transition temperature is further improved.
  • the water absorption rate tends to decrease and the elastic modulus tends to decrease.
  • Cyclone ester compound (C) By using the cyanate ester compound (C), the chemical resistance and adhesiveness of the resulting cured product are further improved.
  • cyanate ester compound (C) For example, the naphthol aralkyl type cyanate ester compound represented by following formula (8), the novolak type cyanate ester compound represented by following formula (9), A biphenylaralkyl-type cyanate compound represented by the following formula (10), bis (3,5-dimethyl4-cyanatophenyl) methane, bis (4-cyanatophenyl) methane, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanaton
  • a naphthol aralkyl type represented by the following formula (8) A cyanate ester compound, a novolak type cyanate ester compound represented by the following formula (9), and a biphenylaralkyl type cyanate ester compound represented by the following formula (10) are preferred.
  • a cyanate ester compound (C) may be used individually by 1 type, or may be used in combination of 2 or more type.
  • each R 8 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • n shows an integer greater than or equal to 1.
  • the upper limit of n is usually 10, preferably 7, and more preferably 6.
  • each R 9 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • n shows an integer greater than or equal to 1.
  • the upper limit of n is usually 10, preferably 7.
  • each R 10 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • n shows an integer greater than or equal to 1.
  • the upper limit of n is usually 10, preferably 7.
  • the method for producing these cyanate ester compounds (C) is not particularly limited, and any method existing as cyanate ester synthesis may be used.
  • the production method of the naphthol aralkyl type cyanate ester compound represented by the above formula (8) is specifically exemplified, the naphthol aralkyl type phenol resin represented by the following formula (11) and cyanogen halide are inactivated.
  • the cyanate ester compound (C) can be obtained by reacting in the presence of a basic compound in an organic solvent.
  • a salt of a naphthol aralkyl type phenol resin represented by the following formula (11) and a basic compound is formed in a solution containing water, and then the obtained salt and cyanogen halide are two-phase systems.
  • the cyanate ester compound (C) can also be obtained by an interfacial reaction.
  • Another cyanate ester compound (C) can also be obtained by reacting a compound in which the cyano group of the target cyanate ester compound is substituted with a hydroxyl group and cyanogen halide by the same method. .
  • R 11 each independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable.
  • n represents an integer of 1 or more. The upper limit of n is usually 10, preferably 7, and more preferably 6.
  • the naphthol aralkyl cyanate ester compound includes naphthols such as ⁇ -naphthol and ⁇ -naphthol, p-xylylene glycol, ⁇ , ⁇ '-dimethoxy-p-xylene, 1,4-di (2-hydroxy). It can be selected from those obtained by condensing naphthol aralkyl resin obtained by reaction with -2-propyl) benzene or the like and cyanic acid.
  • the ratio of the number of cyanate groups of the cyanate ester compound (C) and the number of epoxy groups of the epoxy resin in the resin composition (CN / Ep) is not particularly limited, but the heat resistance, flame retardancy, and water absorption of the resulting cured product are not particularly limited. From the viewpoint of rate, it is preferably 0.7 to 2.5, and more preferably 0.7 to 1.5.
  • Phenolic resin (D) As a phenol resin (D) used for this embodiment, if it is resin which has two or more phenolic hydroxyl groups in 1 molecule, a well-known thing can be used suitably, The kind is not specifically limited. Specific examples thereof include, for example, a cresol novolak type phenol resin, a naphthol aralkyl type phenol resin represented by the following formula (11), a biphenyl aralkyl type phenol resin represented by the following formula (12), and an aminotriazine novolak type phenol resin.
  • Naphthalene type phenol resin Naphthalene type phenol resin, phenol novolak resin, alkylphenol novolak resin, bisphenol A type novolak resin, dicyclopentadiene type phenol resin, zylock type phenol resin, terpene modified phenol resin, and polyvinylphenols.
  • a cresol novolac type phenol resin a naphthol aralkyl type phenol resin represented by the following formula (11), and a biphenyl represented by the following formula (12)
  • Aralkyl-type phenol resins, aminotriazine novolac-type phenol resins, and naphthalene-type phenol resins are preferable.
  • a phenol resin (D) may be used individually by 1 type according to the objective, or may be used in combination of 2 or more type.
  • the ratio of the number of phenol groups of the phenol resin (D) to the number of epoxy groups of the epoxy resin (OH / Ep) is preferably 0.7 to 2.5, More preferably, it is 0.7 to 1.5.
  • the ratio (OH / Ep) is 0.7 or more, the glass transition temperature of the obtained cured product tends to be further improved.
  • (OH / Ep) is 2.5 or less, the flame retardancy of the obtained cured product tends to be further improved.
  • R 11 each independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable.
  • n represents an integer of 1 or more. The upper limit of n is usually 10, preferably 7, and more preferably 6.
  • each R 12 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • n shows an integer greater than or equal to 1. The upper limit of n is usually 10, preferably 7.
  • the contents of the cyanate ester compound (C) and the phenol resin (D) in the resin composition of the present embodiment are calculated by adding together because the functions in the resin composition work as a curing agent.
  • the total amount of the cyanate ester compound (C) and the phenol resin (D) is preferably 100 to 50 parts by mass, more preferably 20 to 40 parts by mass, including the maleimide compound (F). In this case, it is preferably 10 to 100 parts by mass with respect to a total of 100 parts by mass of the non-halogen epoxy resin (B), the cyanate ester compound (C), the phenol resin (D), and the maleimide compound (F) contained as an optional component. 50 parts by mass, more preferably 20 to 40 parts by mass.
  • the resin composition according to another aspect of the present invention may further include a cyanate ester compound (C) and / or a phenol resin (D).
  • the cyanate ester compound (C) and The total content of the phenol resin (D) is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass with respect to 100 parts by mass in total of the non-halogen epoxy resin (B) and the BT resin (G). It is.
  • the curability of the resin composition is further improved, and the flame retardancy in the resulting cured product is further improved.
  • the glass transition temperature is further improved, the water absorption is further decreased, and the elastic modulus is further decreased.
  • the inorganic filler (E) used in the present embodiment is not particularly limited as long as it is normally used in the industry.
  • Specific examples include silicas such as natural silica, fused silica, amorphous silica, and hollow silica; aluminum hydroxide, aluminum hydroxide heat-treated product (a product obtained by heat-treating aluminum hydroxide and reducing a portion of crystal water) ), Metal hydrates such as boehmite and magnesium hydroxide; molybdenum compounds such as molybdenum oxide and zinc molybdate; zinc borate, zinc stannate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, Examples include mica, short glass fibers (glass fine powders such as E glass and D glass), hollow glass, and spherical glass.
  • silicas, boehmite, magnesium hydroxide, alumina, and talc are preferable, and silicas and boehmite are more preferable from the viewpoint of further reducing the thermal expansion coefficient of the obtained cured product and further improving the flame resistance.
  • a molybdenum compound or a molybdate compound coated with an inorganic oxide is preferable.
  • an inorganic filler (E) may be used individually by 1 type, or may use 2 or more types together.
  • the average particle diameter (D50) of the inorganic filler (E) is not particularly limited, but is preferably 0.2 to 5 ⁇ m, more preferably 0.2 to 3 ⁇ m from the viewpoint of dispersibility.
  • the content of the inorganic filler (E) in the resin composition of one embodiment of the present invention is not particularly limited.
  • the maleimide compound (F) when the maleimide compound (F) is not included, the non-halogen epoxy resin (B), cyanate ester
  • the total amount of the compound (C) and the phenol resin (D) is 100 parts by mass, it is preferably 50 to 500 parts by mass, more preferably 80 to 300 parts by mass, and when the maleimide compound (F) is contained.
  • the non-halogen epoxy resin (B), the cyanate ester compound (C), the phenol resin (D), and the maleimide compound (F) contained as an optional component is preferably 50 to 500 parts by mass. More preferably, it is 80 to 300 parts by mass.
  • the content of the inorganic filler (E) in the resin composition of another aspect of the present invention is not particularly limited, but is 100 parts by mass in total of the non-halogen epoxy resin (B) and the BT resin (G).
  • the amount is preferably 50 to 500 parts by mass, and more preferably 80 to 300 parts by mass.
  • the inorganic filler (E) In order to improve the dispersibility of the inorganic filler (E) and the adhesive strength between the resin and the inorganic filler (E) or the glass cloth, the inorganic filler (E), a silane coupling agent and / or a wet dispersant May be used in combination.
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for inorganic surface treatment.
  • Specific examples include aminosilane compounds such as ⁇ -aminopropyltriethoxysilane and N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane; epoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane.
  • silane coupling agent may be used individually by 1 type, or may use 2 or more types together.
  • the wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for paints. Specific examples thereof include Disperbyk-110, 111, 180, 161, BYK-W996, W9010, and W903 manufactured by Big Chemie Japan.
  • a wetting dispersant may be used individually by 1 type, or may use 2 or more types together.
  • the resin composition may contain a maleimide compound (F).
  • the maleimide compound (F) that can be used in the resin composition of the present embodiment is not particularly limited as long as it is a compound having one or more maleimide groups in one molecule.
  • N-phenylmaleimide N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3,5 -Dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, represented by the following formula (13) Maleimide compounds, prepolymers of these maleimide compounds, and prepolymers of the maleimide compounds and amine compounds.
  • a maleimide compound represented by the following formula (13) is preferable, and a maleimide compound exemplified by the following formula (13) is more preferable.
  • a maleimide compound (F) may be used individually by 1 type, or may use 2 or more types together.
  • each R 13 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
  • n shows an integer greater than or equal to 1. The upper limit of n is usually 10, preferably 7.
  • the content of the maleimide compound (F) in the resin composition of one embodiment of the present invention is not particularly limited, but the non-halogen epoxy resin (B), the cyanate ester compound (C), the phenol resin (D), and any
  • the amount is preferably 3 to 50 parts by weight, more preferably 10 to 40 parts by weight, based on 100 parts by weight of the total maleimide compound (F) contained as a component.
  • the resin composition according to another aspect of the present invention may further contain a maleimide compound (F).
  • the content of the maleimide compound (F) is not particularly limited, but is a non-halogen epoxy resin.
  • the amount is preferably 3 to 50 parts by mass, more preferably 10 to 40 parts by mass with respect to 100 parts by mass in total of (B) and BT resin (G).
  • the curability of the resin composition is further improved, the flame retardancy of the resulting cured product is further improved, the glass transition temperature is further improved, and the water absorption is improved. There exists a tendency for a rate to fall more and for an elasticity modulus to fall more.
  • the BT resin (G) used in this embodiment is a prepolymerized cyanate ester compound (C) and maleimide compound (F).
  • the prepolymerization method is not particularly limited, for example, a cyanate ester compound (C) and a maleimide compound (F) are mixed with no solvent or organic such as methyl ethyl ketone, N methyl pyrodrine, dimethylformamide, dimethylacetamide, toluene, and xylene.
  • dissolving in a solvent and heating and mixing is mentioned.
  • the cyanate ester compound (C) is not particularly limited, and the same compounds as described above can be used. Among these, naphthol aralkyl represented by the above formula (8) from the viewpoint of further improving the curability of the resin composition, further improving the flame retardancy of the resulting cured product, and further reducing the thermal expansion coefficient. Preferred are a cyanate ester compound, a novolak cyanate ester compound represented by the above formula (9), and a biphenylaralkyl cyanate ester compound represented by the above formula (10).
  • a cyanate ester compound (C) may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the maleimide compound (F) is not particularly limited, and the same compound as described above can be used. Among these, from the viewpoint of heat resistance, bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3-ethyl-5-methyl-4-) Maleimide phenyl) methane and a maleimide compound represented by the above formula (13) are preferred, and a maleimide compound represented by the above formula (13) is more preferred.
  • a maleimide compound (F) may be used individually by 1 type, or may use 2 or more types together.
  • the ratio of the maleimide compound (F) in the BT resin (G) is not particularly limited, but is preferably 5 to 75% by mass with respect to the total amount of the BT resin (G) from the viewpoint of glass transition temperature, flame retardancy, and curability. More preferably, it is 10 to 70% by mass.
  • the number average molecular weight of the prepolymer BT resin (G) is not particularly limited, but is preferably 100 to 100,000, more preferably 100 to 80 from the viewpoints of handling properties, glass transition temperature, and curability. , 000.
  • the content of the BT resin (G) in the resin composition of another aspect of the present invention is not particularly limited, but is preferably 20 with respect to a total of 100 parts by mass of the non-halogen epoxy resin (B) and the BT resin (G). -80 parts by mass, more preferably 30-70 parts by mass.
  • the curability of the resin composition is further improved, the flame retardancy of the obtained cured product is further improved, the glass transition temperature is further improved, and the water absorption is improved. There exists a tendency for a rate to fall more and for an elasticity modulus to fall more.
  • the resin composition of the present embodiment may include an imidazole compound (H) represented by the following formula (14).
  • the imidazole compound (H) has an effect of accelerating curing and has an effect of increasing the glass transition temperature of the cured product.
  • each Ar independently represents a phenyl group, a naphthalene group, a biphenyl group, an anthracene group, or a hydroxyl group-modified group of a phenyl group, a naphthalene group, a biphenyl group, or an anthracene group
  • R 14 Represents a hydrogen atom, an alkyl group, a hydroxyl group-modified group of an alkyl group, or an aryl group such as a phenyl group.
  • the imidazole substituent Ar in the formula (14) represents a phenyl group, a naphthalene group, a biphenyl group, an anthracene group or a hydroxyl group-modified group thereof, and among them, a phenyl group is preferable.
  • the imidazole substituent R 14 represents a hydrogen atom, an alkyl group or a hydroxyl group-modified group of an alkyl group, or an aryl group such as a phenyl group, and among these, a phenyl group is preferable. Furthermore, it is more preferable that both Ar and R 14 are phenyl groups.
  • the imidazole compound (H) is not particularly limited, but for example, 2,4,5-triphenylimidazole is preferable. By using 2,4,5-triphenylimidazole, the Tg of the cured product tends to be further improved.
  • the content of the imidazole compound (H) in the resin composition of one embodiment of the present invention is not particularly limited.
  • the maleimide compound (F) when the maleimide compound (F) is not included, the non-halogen epoxy resin (B), the cyanate ester compound ( C) and the total amount of phenol resin (D) is 100 to 10 parts by mass, preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and the maleimide compound (F) is contained.
  • the non-halogen epoxy resin (B), the cyanate ester compound (C), the phenol resin (D), and the maleimide compound (F) contained as an optional component are preferably 0.01 parts by weight in total. Is 10 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the content of the imidazole compound (H) in the resin composition according to another aspect of the present invention is not particularly limited, but is preferably based on 100 parts by mass in total of the non-halogen epoxy resin (B) and the BT resin (G). Is 0.01 to 5 parts by mass, and more preferably 10 to 40 parts by mass.
  • the content of the imidazole compound (H) is within the above range, the curability of the resin composition is further improved, the glass transition temperature of the resulting cured product is further improved, the water absorption is further decreased, and the elastic modulus is increased. Tend to be lower.
  • the said imidazole compound (H) in addition to the said imidazole compound (H), it is also possible to use another hardening accelerator together as needed.
  • examples of such compounds include, but are not limited to, organic peroxides exemplified by benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate, and the like.
  • Azobisnitrile azo compound N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline , N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, tertiary amines such as N-methylpiperidine; phenols such as phenol, xylenol, cresol, resorcin, catechol; lead naphthenate, stearic acid lead Organic metal salts such as zinc naphthenate, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate and acetylacetone iron; these organic metal salts are dissolved in hydroxyl-containing compounds such as phenol and bisphenol Inorganic metal salts such as
  • the resin composition of the present embodiment may contain a solvent as necessary.
  • a solvent for example, when an organic solvent is used, the viscosity at the time of preparing the resin composition is lowered, the handling property is improved, and the impregnation property to a substrate such as glass cloth tends to be further improved.
  • the kind of solvent can dissolve non-halogen epoxy resin (B), cyanate ester compound (C) and / or phenol resin (D), or non-halogen epoxy resin (B) and BT resin (G). If it is a thing, it will not specifically limit.
  • ketones such as acetone, methyl ethyl ketone and methyl cellosolve
  • aromatic hydrocarbons such as toluene and xylene
  • amides such as dimethylformamide
  • propylene glycol methyl ether and acetate thereof are examples thereof.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the resin composition of the present embodiment can be prepared according to a conventional method.
  • the preparation method of a resin composition will not be specifically limited.
  • the acrylic-silicone copolymer (A), the cyanate ester compound (B), and the inorganic filler (D) are blended sequentially in the solvent, the other components are blended as appropriate, and the mixture is stirred thoroughly.
  • the resin composition in the form can be easily prepared.
  • an organic solvent can be used as necessary.
  • the kind of organic solvent can dissolve non-halogen epoxy resin (B), cyanate ester compound (C) and / or phenol resin (D), or a mixture of non-halogen epoxy resin (B) and BT resin (G). If it is a thing, it will not specifically limit. Specific examples thereof are as described above.
  • the dispersibility of the inorganic filler (E) with respect to the resin composition can be achieved by performing the stirring and dispersing treatment using a stirrer equipped with a stirrer having an appropriate stirring ability Enhanced.
  • the above stirring, mixing, and kneading treatment can be appropriately performed using, for example, a known apparatus such as an apparatus for mixing such as a ball mill or a bead mill, or a revolving and / or rotating mixing apparatus.
  • the prepreg of this embodiment has a base material and the resin composition impregnated or coated on the base material.
  • the manufacturing method of a prepreg can be performed according to a conventional method, and is not specifically limited. For example, after impregnating or applying the resin composition in the present embodiment to a base material, it is semi-cured (B stage) by heating in a dryer at 100 to 200 ° C. for 1 to 30 minutes.
  • the prepreg of this embodiment can be manufactured.
  • the amount of the resin composition (including the inorganic filler) relative to the total amount of the prepreg of the present embodiment is not particularly limited, but is preferably 30 to 90% by mass, more preferably 30 to 80% by mass. .
  • known materials used for various printed wiring board materials can be appropriately selected and used depending on the intended use and performance, and are not particularly limited.
  • Specific examples thereof include glass fibers such as E glass cloth, D glass cloth, S glass cloth, Q glass cloth, spherical glass cloth, NE glass cloth, and T glass cloth; inorganic fibers other than glass such as quartz; All of polyparaphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont) and copolyparaphenylene 3,4'oxydiphenylene terephthalamide (Technola (registered trademark), manufactured by Teijin Techno Products) Aromatic polyamides; polyesters such as 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid (Vectran (registered trademark), manufactured by Kuraray Co., Ltd.); and polyparaphenylene benzoxazole (Zylon (registered trademark), Toyobo Co., Ltd.
  • E glass cloth, T glass cloth, S glass cloth, Q glass cloth, and organic fiber are preferable from the viewpoint of low thermal expansion.
  • These base materials may be used individually by 1 type, or may use 2 or more types together.
  • a woven fabric, a nonwoven fabric, roving, a chopped strand mat, a surfacing mat, etc. are mentioned.
  • a weaving method of the woven fabric a plain weave, a nanako weave, a twill weave and the like are known, and these can be appropriately selected and used according to the intended use and performance.
  • a woven fabric that has been subjected to fiber opening treatment or a glass woven fabric that has been surface treated with a silane coupling agent or the like is preferably used.
  • the thickness of the substrate is not particularly limited, but is preferably about 0.01 to 0.3 mm.
  • the base material is preferably a glass woven fabric having a thickness of 200 ⁇ m or less and a mass of 250 g / m 2 or less, and more preferably a glass woven fabric made of E-glass glass fibers.
  • the laminate of this embodiment includes one or more prepregs.
  • the laminate is not particularly limited as long as it includes one or more prepregs, and may have any other layer.
  • a manufacturing method of a laminated board a well-known method can be applied suitably, and it is not specifically limited.
  • a laminated board can be obtained by laminating the above prepregs and heating and pressing.
  • the heating temperature is not particularly limited, but is preferably 65 to 300 ° C, more preferably 120 to 270 ° C.
  • the pressure to be applied is not particularly limited, but is preferably 2 to 5 MPa, more preferably 2.5 to 4 MPa.
  • the laminated board of this embodiment can be used suitably as a metal foil tension laminated board mentioned later by providing the layer which consists of metal foil.
  • the metal foil tension laminate sheet of this embodiment is provided with the above-mentioned prepreg and metal foil laminated on one side or both sides of the prepreg. Specifically, one or a plurality of the prepregs described above are stacked, and a metal foil such as copper or aluminum is arranged on one or both sides as desired, and this is laminated and formed as necessary.
  • the metal foil-clad laminate of this embodiment can be produced.
  • the metal foil used here will not be specifically limited if it is used for printed wiring board material, Well-known copper foils, such as a rolled copper foil and an electrolytic copper foil, are preferable.
  • the thickness of the metal foil is not particularly limited, but is preferably 2 to 70 ⁇ m, more preferably 2 to 35 ⁇ m.
  • a multi-stage press machine, a multi-stage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. can be used for forming a metal foil-clad laminate.
  • cm 2 and the heating time is generally in the range of 0.05 to 5 hours.
  • post-curing can be performed at a temperature of 150 to 300 ° C., if necessary.
  • a multilayer board can be formed by combining and molding the prepreg of the present embodiment and a separately prepared wiring board for an inner layer.
  • the metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board described later by forming a predetermined wiring pattern.
  • the metal foil-clad laminate of this embodiment has a low coefficient of thermal expansion, good moldability and chemical resistance, and is particularly effective as a printed wiring board for semiconductor packages that require such performance. Can be used.
  • the printed wiring board of the present embodiment includes an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the resin composition.
  • the printed wiring board in this embodiment can be manufactured by the following method, for example. First, a metal foil clad laminate such as a copper clad laminate is prepared. An inner layer circuit is formed by etching the surface of the metal foil-clad laminate to produce an inner layer substrate. The inner layer circuit surface of the inner layer substrate is subjected to a surface treatment to increase the adhesive strength as necessary, then the required number of prepregs of the present embodiment are stacked on the inner layer circuit surface, and the outer layer circuit metal foil is further provided on the outer surface.
  • the prepreg of the present embodiment (the base material and the resin composition of the present embodiment impregnated or coated thereon), the resin composition layer of the metal foil-clad laminate (the resin composition of the present embodiment). Layer) constitutes an insulating layer containing the resin composition.
  • Example 1 25 parts by mass of an acrylic-silicone copolymer (R-170S, average particle size: 30 ⁇ m, average primary particle size: 0.2 to 0.3 ⁇ m, manufactured by Nissin Chemical Industry Co., Ltd.), the above formula (3) 49 parts by mass of phenol biphenyl aralkyl type epoxy resin (NC-3000-FH, epoxy equivalent: 320 g / eq., Manufactured by Nippon Kayaku Co., Ltd.) in which R 4 is all hydrogen atoms Naphthol aralkyl type phenolic resin 11 (SN-495, manufactured by Nippon Steel Chemical Co., Ltd., hydroxyl equivalent: 236 g / eq.) In which 11 is a hydrogen atom, 36 parts by mass of bis (3-ethyl-5-methyl-4) -Maleimidophenyl) methane (BMI-70, manufactured by Kay Kasei Co., Ltd.) 15 parts by mass, silane coupling agent
  • This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm-thick Q glass woven fabric, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 50% by mass.
  • Example 2 25 parts by mass of the acrylic-silicone copolymer (R-170S) used in Example 1 and 44 polyoxynaphthylene type epoxy resin (HP-6000, epoxy equivalent: 250 g / eq., Manufactured by DIC Corporation) Parts by mass, 18 parts by mass of naphthalene, biphenylaralkyl type phenol resin (KAYAHARD GPH-103, manufactured by Nippon Kayaku Co., Ltd., hydroxyl equivalent: 231 g / eq.)
  • R 12 is all hydrogen atoms in the above formula (12)
  • Type phenol resin EPICLON EXB-9500, manufactured by DIC Corporation, hydroxyl equivalent: 153 g / eq.
  • 18 parts by mass, aminotriazine novolac resin PHENOLITE LA-3018-50P, hydroxyl equivalent: 151 g / eq.
  • DIC 3 parts by mass, bis (3-ethyl-5-methyl-4-male
  • This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm-thick Q glass woven fabric, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 50% by mass.
  • Example 3 instead of the acrylic-silicone copolymer used in Example 2, acrylic-silicone copolymers having different average particle diameters (R-170S, average particle diameter: 20 ⁇ m, average primary particle diameter: 0.2-0.3 ⁇ m) A prepreg was obtained in the same manner as in Example 2 except that 25 parts by mass of Nissin Chemical Industry Co., Ltd. was used.
  • Example 4 Same as Example 3 except that 17 parts by weight of maleimide compound (BMI-2300) used in Synthesis Example 2 was used instead of bis (3-ethyl-5-methyl-4maleimidophenyl) methane (BMI-70) To obtain a prepreg.
  • maleimide compound BMI-2300
  • BMI-70 bis (3-ethyl-5-methyl-4maleimidophenyl) methane
  • Example 5 25 parts by mass of acrylic-silicone copolymer used in Example 2, 60 parts by mass of polyoxynaphthylene type epoxy resin (HP-6000), ⁇ -naphthol aralkyl type cyanate ester resin obtained in Synthesis Example 1 (Cyanate equivalent: 261 g / eq.) 40 parts by mass, silane coupling agent (Z6040) 5 parts by mass, wetting dispersant 1 (disperbyk-161) 1 part by mass, wetting dispersant 2 (disperbyk-111, big 2 parts by mass of Chemie Japan Co., Ltd.) and 200 parts by mass of spherical fused silica (SC2500-SQ) were mixed to obtain a varnish.
  • silane coupling agent Z6040
  • This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm-thick Q glass woven fabric, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 50% by mass.
  • Example 6 Other than using 40 parts by mass of 2,2-bis (4-cyanatephenyl) propane prepolymer (CA210, cyanate equivalent weight 139, manufactured by Mitsubishi Gas Chemical Co., Ltd.) instead of ⁇ -naphthol aralkyl type cyanate resin Were operated in the same manner as in Example 5 to obtain a prepreg.
  • CA210 2,2-bis (4-cyanatephenyl) propane prepolymer
  • ⁇ -naphthol aralkyl type cyanate resin Were operated in the same manner as in Example 5 to obtain a prepreg.
  • Example 7 instead of ⁇ -naphthol aralkyl type cyanate ester resin, novolak type cyanate ester resin in which R 9 is all hydrogen atoms in the above formula (9) (Primerset PT-30, manufactured by Lonza Japan KK, cyanate equivalent: 124 g / Eq.) was used in the same manner as in Example 5 except that 40 parts by mass was used to obtain a prepreg.
  • Novolak type cyanate ester resin in which R 9 is all hydrogen atoms in the above formula (9) (Primerset PT-30, manufactured by Lonza Japan KK, cyanate equivalent: 124 g / Eq.) was used in the same manner as in Example 5 except that 40 parts by mass was used to obtain a prepreg.
  • Example 8 25 parts by mass of acrylic-silicone copolymer used in Example 2, 38 parts by mass of polyoxynaphthylene type epoxy resin (HP-6000), ⁇ -naphthol aralkyl type cyanate ester resin obtained in Synthesis Example 1 (Cyanate equivalent: 261 g / eq.), 36 parts by mass of maleimide compound (BMI-2300) used in Synthesis Example 2, 26 parts by mass of silane coupling agent (Z6040), and wetting dispersant 1 (disperbyk) -161), 2 parts by weight of wetting dispersant 2 (disperbyk-111), and 200 parts by weight of spherical fused silica (SC2500-SQ) were mixed to obtain a varnish.
  • polyoxynaphthylene type epoxy resin HP-6000
  • ⁇ -naphthol aralkyl type cyanate ester resin obtained in Synthesis Example 1 (Cyanate equivalent: 261 g / eq.)
  • This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm-thick Q glass woven fabric, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 50% by mass.
  • Example 9 Other than using 26 parts by mass of bis (3-ethyl-5-methyl-4maleimidophenyl) methane (BMI-70) used in Example 1 instead of the maleimide compound (BMI-2300) used in Synthesis Example 2. Were operated in the same manner as in Example 8 to obtain a prepreg.
  • Example 10 The same operation as in Example 8 except that 38 parts by mass of the phenol biphenyl aralkyl type epoxy resin (NC-3000-FH) used in Example 1 was used instead of the polyoxynaphthylene type epoxy resin (HP-6000). To obtain a prepreg.
  • Example 11 Instead of the phenol biphenyl aralkyl type epoxy resin (NC-3000-FH) used in Example 10, naphthalene-modified epoxy resin (ESN-175V, epoxy equivalent: 255 g / eq., Manufactured by Nippon Steel Chemical Co., Ltd.) was used. A prepreg was obtained by operating in the same manner as in Example 8 except that parts by mass were used.
  • Example 12 Polyoxyethylene naphthylene type epoxy resin (HP-6000) phenol phenyl aralkyl novolak type epoxy resin (NC-2000-L in the above formula (2) is instead R 3 are all hydrogen atoms, epoxy equivalent: 226 g / eq. , Nippon Kayaku Co., Ltd.) was used in the same manner as in Example 8 except that 38 parts by mass was used to obtain a prepreg.
  • HP-6000 phenol phenyl aralkyl novolak type epoxy resin
  • Nippon Kayaku Co., Ltd. was used in the same manner as in Example 8 except that 38 parts by mass was used to obtain a prepreg.
  • Example 13 A prepreg was obtained in the same manner as in Example 8 except that 0.01 parts by mass of 2-ethyl-4-methylimidazole (2E4MZ) was further added during preparation of the varnish.
  • Example 14 Example 8 except that 62 parts by mass of the BT resin 1 obtained in Synthesis Example 2 was added in place of the ⁇ -naphthol aralkyl cyanate ester resin obtained in Synthesis Example 1 and the maleimide compound used in Synthesis Example 2.
  • a prepreg was obtained by operating in the same manner as above.
  • Example 15 Example 8 except that 62 parts by mass of the BT resin 2 obtained in Synthesis Example 3 was added in place of the ⁇ -naphthol aralkyl cyanate ester resin obtained in Synthesis Example 1 and the maleimide compound used in Synthesis Example 2.
  • a prepreg was obtained by operating in the same manner as above.
  • Example 16 The prepreg was prepared in the same manner as in Example 14 except that the addition amount of BT resin 1 obtained in Synthesis Example 2 was 59 parts by mass and 3 parts by mass of naphthol aralkyl type phenol resin (SN-495) was added. Obtained.
  • Example 2 except that 25 parts by mass of silicone rubber powder (silicone composite powder X-52-7030, manufactured by Shin-Etsu Chemical Co., Ltd.) whose surface was coated with a silicone resin instead of an acrylic-silicone copolymer was used. The same operation was performed to obtain a prepreg.
  • silicone rubber powder silicone composite powder X-52-7030, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 4 A prepreg was obtained in the same manner as in Example 2 except that 25 parts by mass of a silicone elastomer (EP-2600, manufactured by Toray Dow Corning Co., Ltd.) was used instead of the acrylic-silicone copolymer.
  • a silicone elastomer EP-2600, manufactured by Toray Dow Corning Co., Ltd.
  • Example 5 A prepreg was obtained in the same manner as in Example 2 except that 25 parts by mass of a silicone elastomer (EP-2601, manufactured by Toray Dow Corning Co., Ltd.) was used instead of the acrylic-silicone copolymer.
  • a silicone elastomer EP-2601, manufactured by Toray Dow Corning Co., Ltd.
  • Example 6 A prepreg was obtained in the same manner as in Example 2 except that 25 parts by mass of a silicone elastomer (EP-2720, manufactured by Toray Dow Corning Co., Ltd.) was used instead of the acrylic-silicone copolymer.
  • EP-2720 manufactured by Toray Dow Corning Co., Ltd.
  • Example 7 A prepreg was obtained in the same manner as in Example 2 except that 25 parts by mass of a silicone elastomer (Trefil E-606, manufactured by Toray Dow Corning Co., Ltd.) was used instead of the acrylic-silicone copolymer.
  • a silicone elastomer Tefil E-606, manufactured by Toray Dow Corning Co., Ltd.
  • Example 8 is the same as Example 8 except that 25 parts by mass of silicone rubber powder (silicone composite powder X-52-7030, manufactured by Shin-Etsu Chemical Co., Ltd.) whose surface was coated with a silicone resin instead of an acrylic-silicone copolymer was used. The same operation was performed to obtain a prepreg.
  • silicone rubber powder silicone composite powder X-52-7030, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 9 The same as in Example 8 except that 25 parts by mass of silicone rubber powder (silicone composite powder KMP-605M, manufactured by Shin-Etsu Chemical Co., Ltd.) whose surface was coated with a silicone resin instead of the acrylic-silicone copolymer was used. The prepreg was obtained by operating.
  • silicone rubber powder silicon composite powder KMP-605M, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the prepreg was obtained by operating.
  • Example 10 A prepreg was obtained in the same manner as in Example 8 except that 25 parts by mass of a silicone elastomer (EP-2600, manufactured by Toray Dow Corning Co., Ltd.) was used instead of the acrylic-silicone copolymer.
  • a silicone elastomer EP-2600, manufactured by Toray Dow Corning Co., Ltd.
  • Example 11 A prepreg was obtained in the same manner as in Example 8 except that 25 parts by mass of a silicone elastomer (EP-2601, manufactured by Toray Dow Corning Co., Ltd.) was used instead of the acrylic-silicone copolymer.
  • a silicone elastomer EP-2601, manufactured by Toray Dow Corning Co., Ltd.
  • Example 12 A prepreg was obtained in the same manner as in Example 8 except that 25 parts by mass of a silicone elastomer (EP-2720, manufactured by Toray Dow Corning Co., Ltd.) was used instead of the acrylic-silicone copolymer.
  • EP-2720 manufactured by Toray Dow Corning Co., Ltd.
  • Example 13 A prepreg was obtained in the same manner as in Example 8 except that 25 parts by mass of a silicone elastomer (Trefyl E-606, manufactured by Toray Dow Corning Co., Ltd.) was used instead of the acrylic-silicone copolymer.
  • a silicone elastomer Tefyl E-606, manufactured by Toray Dow Corning Co., Ltd.
  • the resin composition of the present invention has industrial applicability as a resin composition for producing a prepreg used for metal foil-clad laminates and printed wiring boards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

 プリント配線板材料として求められる高度な難燃性等の種々の特性を有する上、優れた成形性、デスミア工程における優れた耐薬品性、及び低い熱膨張率を有する硬化物を実現可能な樹脂組成物、該樹脂組成物を含むプリプレグ、該プリプレグを備える積層板、前記プリプレグを備える金属箔張積層板、及び前記プリプレグを備えるプリント配線板を提供することを課題とする。アクリル-シリコーン共重合体(A)と、非ハロゲンエポキシ樹脂(B)と、シアン酸エステル化合物(C)及び/又はフェノール樹脂(D)と、無機充填材(E)と、を含有する、樹脂組成物。

Description

樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板
 本発明は、樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板に関する。
 近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体の高集積化、高機能化、及び高密度実装化はますます加速しており、以前にもまして半導体プラスチックパッケージ用積層板に対する特性、高信頼性への要求が高まっている。
 特に、近年では半導体プラスチックパッケージ用積層板の面方向の熱膨張率低減及び積層板の耐薬品性向上を両立させることが強く求められている。
 面方向の熱膨張率低減が求められる理由としては、半導体素子又は半導体プラスチックパッケージと、半導体プラスチックパッケージ用プリント配線板等の積層板と、の熱膨張率の差が大きい場合、熱衝撃が加わったときに熱膨張率差により積層板に反りが発生し、半導体素子又は半導体プラスチックパッケージと、積層板と、の間で接続不良が生じるためである。
 このような課題に対し、例えば、特許文献1には、無機質充填材分率を高めることにより熱硬化性樹脂組成物から得られる硬化物(積層板)の低熱膨張率化を図ることが記載されている。また、特許文献2には、ゴム弾性パウダーとしてシリコーンゴムを用い、無機充填材として溶融シリカを用いることで、より高度な難燃性を有し、面方向の熱膨張が低い積層板が実現可能な樹脂組成物が得られることが記載されている。
 また、積層板の耐薬品性向上が求められる理由としては、プリント配線板等の積層板を製造する工程としては、エッチング、デスミア、めっきなど、積層板が多種の薬液に晒される工程があり、積層板の耐薬品性が低い場合、積層板の品質低下及び生産性低下が生じるためである。具体的には、積層板の耐薬品性が不十分であると積層板中のプラスチック層が薬液に溶出することで薬液の汚染が生じ、汚染された薬液を使用することで積層板の品質の低下に繋がる。
 このような積層板の品質の低下を防ぐために頻繁に薬液交換を行うとコストアップや生産量の減少に繋がり、積層板の生産性を著しく低下させる原因ともなる。
 特にデスミア工程においては、メカニカルドリル加工やレーザードリル加工で生じるスミアを除去するため強いアルカリ性の薬品が用いられるので、積層板の耐薬品性が不十分であると、スミア以外のスルーホール内壁やプラスチック層の表面も溶出され、薬液が比較的に汚染されやすい傾向にある。
特開2000-080285号公報 特開2009-035728号公報
 しかしながら、特許文献1のように無機フィラーの充填量を単に向上させた場合、デスミア工程等の際にスルーホール内壁やプラスチック層表面に存在する無機フィラーの脱落量が多くなり、耐薬品性が低下するという問題がある。その上、脱落した無機フィラーにより薬液がさらに汚染されやすくなる。
 また、特許文献2のように単にシリコーンゴムを用いた場合、シリコーンゴム自体の耐薬品性が不十分であることから、無機フィラーと同様に、デスミア工程等の際にシリコーンゴムの脱落が生じ、耐薬品性が低下するという問題がある。
 さらに、積層板の低熱膨張化の他の手法としてシリコーン樹脂、シロキサン変性樹脂、エポキシ変性シリコーン樹脂を使用したとしても、何れも耐薬品性を満足させるものではなかった。したがって、積層板等の樹脂組成物の硬化物の面方向の熱膨張率低減及び耐薬品性向上を両立させることが望まれている。
 本発明は、プリント配線板材料として求められる高度な難燃性等の種々の特性を有する上、優れた成形性、デスミア工程における優れた耐薬品性、及び低い熱膨張率を有する硬化物を実現可能な樹脂組成物、該樹脂組成物を含むプリプレグ、該プリプレグを備える積層板、前記プリプレグを備える金属箔張積層板、及び前記プリプレグを備えるプリント配線板を提供することを課題とする。
 本発明者らは、アクリル-シリコーン共重合体と、非ハロゲンエポキシ樹脂と、シアン酸エステル化合物及び/又はフェノール樹脂と、無機充填材と、を含む樹脂組成物、又は、アクリル-シリコーン共重合体と、BT樹脂と、無機充填材と、を含む樹脂組成物であれば上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
〔1〕
 アクリル-シリコーン共重合体(A)と、非ハロゲンエポキシ樹脂(B)と、シアン酸エステル化合物(C)及び/又はフェノール樹脂(D)と、無機充填材(E)と、を含有する、樹脂組成物。
〔2〕
 前記アクリル-シリコーン共重合体(A)が微粒子であり、
 該アクリル-シリコーン共重合体(A)微粒子の平均1次粒子径が、0.10~1.0μmである、前項〔1〕に記載の樹脂組成物。
〔3〕
 前記非ハロゲンエポキシ樹脂(B)が、下記式(2)で表されるフェノールフェニルアラルキルノボラック型エポキシ樹脂、下記式(3)で表されるフェノールビフェニルアラルキル型エポキシ樹脂、下記式(4)で表されるナフトールアラルキル型エポキシ樹脂、下記式(5)で表されるアントラキノン型エポキシ樹脂、並びに、下記式(6)及び下記式(7)で表されるポリオキシナフチレン型エポキシ樹脂からなる群より選ばれる一種以上を含む、前項〔1〕又は〔2〕に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000016
(式(2)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000017
(式(3)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000018
(式中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(式(6)中、Rは、各々独立して、水素原子、炭素原子数1~4のアルキル基、又はアラルキル基を示す。)
Figure JPOXMLDOC01-appb-C000021
(式(7)中、Rは、各々独立して、水素原子、炭素原子数1~4のアルキル基、又はアラルキル基を示す。)
〔4〕
 前記シアン酸エステル化合物(C)が、下記式(8)で表されるナフトールアラルキル型シアン酸エステル化合物、下記式(9)で表されるノボラック型シアン酸エステル化合物、及び下記式(10)で表されるビフェニルアラルキル型シアン酸エステル化合物からなる群より選ばれる一種以上を含む、前項〔1〕~〔3〕のいずれか一項に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000022
(式(8)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000023
(式(9)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000024
(式(10)中、R10は、各々独立して、水素原子又はメチル基を表し、nは1以上の整数を示す。)
〔5〕
 前記フェノール樹脂(D)が、クレゾールノボラック型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、アミノトリアジンノボラック型フェノール樹脂、及びナフタレン型フェノール樹脂からなる群より選ばれる一種以上を含む、前項〔1〕~〔4〕のいずれか一項に記載の樹脂組成物。
〔6〕
 さらにマレイミド化合物(F)を含有する、前項〔1〕~〔5〕のいずれか一項に記載の樹脂組成物。
〔7〕
 前記マレイミド化合物(F)が、下記式(13)で表される化合物を含む、前項〔6〕に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000025
(式(13)中、R13は、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
〔8〕
 前記アクリル-シリコーン共重合体(A)の含有量が、
 前記マレイミド化合物(F)を含まない場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、及び前記フェノール樹脂(D)の合計100質量部に対し、3~50質量部であり、
 前記マレイミド化合物(F)を含む場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、前記フェノール樹脂(D)、及び前記マレイミド化合物(F)の合計100質量部に対し、3~50質量部である、前項〔1〕~〔7〕いずれか一項に記載の樹脂組成物。
〔9〕
 前記非ハロゲンエポキシ樹脂(B)の含有量が、
 前記マレイミド化合物(F)を含まない場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、及び前記フェノール樹脂(D)の合計100質量部に対し、5~60質量部であり、
 前記マレイミド化合物(F)を含む場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、前記フェノール樹脂(D)、及び前記マレイミド化合物(F)の合計100質量部に対し、5~60質量部である、前項〔1〕~〔8〕のいずれか一項に記載の樹脂組成物。
〔10〕
 前記シアン酸エステル化合物(C)及び前記フェノール樹脂(D)の合計含有量が、
 前記マレイミド化合物(F)を含まない場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、及び前記フェノール樹脂(D)の合計100質量部に対し、10~50質量部であり、
 前記マレイミド化合物(F)を含む場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、前記フェノール樹脂(D)、及び前記マレイミド化合物(F)の合計100質量部に対し、10~50質量部である、前項〔1〕~〔9〕のいずれか一項に記載の樹脂組成物。
〔11〕
 前記無機充填材(E)の含有量が、
 前記マレイミド化合物(F)を含まない場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、及び前記フェノール樹脂(D)の合計100質量部に対し、50~500質量部であり、
 前記マレイミド化合物(F)を含む場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、前記フェノール樹脂(D)、及び前記マレイミド化合物(F)の合計100質量部に対し、50~500質量部である、前項〔1〕~〔10〕のいずれか一項に記載の樹脂組成物。
〔12〕
 前記マレイミド化合物(F)の含有量が、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、前記フェノール樹脂(D)、及び前記マレイミド化合物(F)の合計100質量部に対し、3~50質量部である、前項〔6〕~〔11〕のいずれか一項に記載の樹脂組成物。
〔13〕
 アクリル-シリコーン共重合体(A)と、非ハロゲンエポキシ樹脂(B)と、シアン酸エステル化合物(C)及びマレイミド化合物(F)をプレポリマー化してなるBT樹脂(G)と、無機充填材(E)と、を含有する、樹脂組成物。
〔14〕
 前記シアン酸エステル化合物(C)が、下記式(8)で表されるナフトールアラルキル型シアン酸エステル化合物、下記式(9)で表されるノボラック型シアン酸エステル化合物、及び下記式(10)で表されるビフェニルアラルキル型シアン酸エステル化合物からなる群より選ばれる一種以上を含む、前項〔13〕に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000026
(式(8)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000027
(式(9)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000028
(式(10)中、R10は、各々独立して、水素原子又はメチル基を表し、nは1以上の整数を示す。)
〔15〕
 前記マレイミド化合物(F)が、下記式(13)で表される化合物を含む、前項〔13〕又は〔14〕に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000029
(式(13)中、R13は、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
〔16〕
 前記アクリル-シリコーン共重合体(A)の含有量が、前記非ハロゲンエポキシ樹脂(B)及び前記BT樹脂(G)の合計100質量部に対し、3~50質量部である、前項〔13〕~〔15〕のいずれか一項に記載の樹脂組成物。
〔17〕
 前記非ハロゲンエポキシ樹脂(B)の含有量が、前記非ハロゲンエポキシ樹脂(B)及び前記BT樹脂(G)の合計100質量部に対し、5~60質量部である、前項〔13〕~〔16〕のいずれか一項に記載の樹脂組成物。
〔18〕
 前記BT樹脂(G)の含有量が、前記非ハロゲンエポキシ樹脂(B)及び前記BT樹脂(G)の合計100質量部に対し、20~80質量部である、前項〔13〕~〔17〕のいずれか一項に記載の樹脂組成物。
〔19〕
 前記無機充填材(E)の含有量が、前記非ハロゲンエポキシ樹脂(B)及び前記BT樹脂(G)の合計100質量部に対し、50~400質量部である、前項〔13〕~〔18〕のいずれか一項に記載の樹脂組成物。
〔20〕
 さらに下記式(14)で表されるイミダゾール化合物(H)を含む、前項〔1〕~〔19〕のいずれか一項に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000030
(式(14)中、Arは、各々独立して、フェニル基、ナフタレン基、ビフェニル基、アントラセン基、又は、フェニル基、ナフタレン基、ビフェニル基、若しくはアントラセン基の水酸基変性基を示し、R14は、水素原子、アルキル基若しくはアルキル基の水酸基変性基、又はアリール基を示す。)
〔21〕
 前記イミダゾール化合物(H)が、2,4,5-トリフェニルイミダゾールを含む、前項〔20〕に記載の樹脂組成物。
〔22〕
 前記無機充填材(E)が、シリカ類及び/又はベーマイトを含む、前項〔1〕~〔21〕のいずれか一項に記載の樹脂組成物。
〔23〕
 基材と、該基材に含浸又は塗布した前項〔1〕~〔22〕のいずれか一項に記載の樹脂組成物と、を有する、プリプレグ。
〔24〕
 前記基材が、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス及び有機繊維からなる群より選ばれる一種以上を含む、前項〔23〕に記載のプリプレグ。
〔25〕
 前項〔23〕又は〔24〕に記載のプリプレグを1枚以上備える、積層板。
〔26〕
 前項〔23〕又は〔24〕に記載のプリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を備える、金属箔張積層板。
〔27〕
 絶縁層と、該絶縁層の表面に形成された導体層と、を備え、
 前記絶縁層が、前項〔1〕~〔22〕のいずれか一項に記載の樹脂組成物を含む、プリント配線板。
 本発明によれば、プリント配線板材料として求められる高度な難燃性等の種々の特性を有する上、優れた成形性、デスミア工程における優れた耐薬品性、及び低い熱膨張率を有する硬化物を実現可能な樹脂組成物、該樹脂組成物を含むプリプレグ、該プリプレグを備える積層板、前記プリプレグを備える金属箔張積層板、及び前記プリプレグを備えるプリント配線板を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
〔樹脂組成物〕
 本発明の一態様の樹脂組成物は、アクリル-シリコーン共重合体(A)と、非ハロゲンエポキシ樹脂(B)と、シアン酸エステル化合物(C)及び/又はフェノール樹脂(D)と、無機充填材(E)と、を含有する。
 また、本発明の別の態様の樹脂組成物は、アクリル-シリコーン共重合体(A)と、非ハロゲンエポキシ樹脂(B)と、シアン酸エステル化合物(C)及びマレイミド化合物(F)をプレポリマー化してなるBT樹脂(G)と、無機充填材(E)と、を含有する。
 さらに、本発明の別の態様においては、前記樹脂組成物と基材とからなるプリプレグ、該プリプレグを備える、積層板、金属箔張積層板、及びプリント配線板も提供される。
 以下、各態様の樹脂組成物を構成する成分について詳説する。
〔アクリル-シリコーン共重合体(A)〕
 本実施形態で用いるアクリル-シリコーン共重合体(A)としては、特に限定されないが、例えば、(メタ)アクリル酸エステルモノマー(a)単位と、ラジカル重合性シリコーンマクロモノマー(b)単位と、を含む共重合体が挙げられる。ここで、「モノマー単位」とは、所定のモノマーに由来する重合体の繰り返し単位をいう。
 (メタ)アクリル酸エステルモノマー(a)としては、特に限定されないが、例えば、炭素数1~18のアルコール類又はフェノール類と、アクリル酸又はメタクリル酸とのエステルが好ましい。このような(メタ)アクリル酸エステルにはメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート類、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート類、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、及びベンジル(メタ)アクリレート等が例示される。(メタ)アクリル酸エステルモノマー(a)は、1種類単独で用いても又は2種類以上を組み合わせて用いてもよい。
 また、本実施形態における他の樹脂成分との組み合わせにおける分散性、相溶性等をより確実にするため、必要に応じて、(メタ)アクリル酸エステルモノマー(a)と共重合可能なモノマーをさらに用いることができる。(メタ)アクリル酸エステルモノマー(a)と共重合可能なモノマーとしては、特に限定されないが、例えば、スチレン、α-メチルスチレン、ビニルトルエン、アクリロニトリル、塩化ビニル、塩化ビニリデン、酢酸ビニル、プロピオン酸ビニル、及びバーサチック酸ビニルなどが挙げられる。(メタ)アクリル酸エステルモノマー(a)と共重合可能なモノマーは、1種類単独で用いても又は2種類以上を組み合わせて用いてもよい。
 ラジカル重合性シリコーンマクロモノマー(b)としては、特に限定されないが、例えば、下記一般式(1)で示される化合物が挙げられる。下記一般式(1)で示されるラジカル重合性シリコーンマクロモノマー(b)としては、特に限定されないが、例えば、特開昭59-78236号公報又は特開平6-228316号公報に開示されている方法により製造できる化合物が挙げられる。なお、ラジカル重合性シリコーンマクロモノマー(b)は、1種類単独で用いても又は2種類以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000031
(上記式(1)中、Rは、各々独立して、炭素数1~12の、非置換又は置換の1価炭化水素基を表し、全Rのうちメチル基を表すRの割合が50モル%以上であり、Xはラジカル重合性官能基含有有機基を表し、nは5以上200以下の整数を表す。)
 上記式(1)中、Rで表される、炭素数1~12の、非置換又は置換の1価炭化水素基としては、特に限定されないが、例えば、メチル基、エチル基、及びプロピル基等のアルキル基;フェニル基、トリル基、及びナフチル基等のアリール基;α―フェネチル基及びベンジル基等のアラルキル基;並びにアルキル基、アリール基、及びアラルキル基の炭素原子に結合した水素原子がハロゲン原子等で置換された基等が挙げられる。このなかでも、工業的観点からメチル基、ブチル基、及びフェニル基が好ましい。なお、すべり性や耐ブロッキング性等の特性付与の観点から、全Rのうちメチル基を表すRの割合が、50モル%以上であり、好ましくは70モル%以上である。全Rのうちメチル基を表すRの割合の上限は、特に限定されないが、100モル%が好ましい。
 上記式(1)中、Xで表される、ラジカル重合性官能基含有有機基としては、特に限定されないが、例えば、下記式(1a)及び(1b)が挙げられる。
Figure JPOXMLDOC01-appb-C000032
(上記式(1a)中、Rは水素原子又はメチル基を表し、Rはヘテロ原子を含み得る炭素数3~20の二価の有機基を表す。)
 上記式(1a)中、Rで表される、ヘテロ原子を含み得る炭素数3~20の二価の有機基としては、特に限定されないが、例えば、-(CH-、-(CHO(CH-、-(CHS(CH-、-(CH-、-(CHCHO)(CH-、-CHCH(CH)O(CH-、及び-[CHCH(CH)O](CH-等が挙げられる。
 上記式(1a)中、nは5以上200以下の整数を表し、より好ましくは10以上180以下の整数を表す。
 アクリル-シリコーン共重合体(A)中の(メタ)アクリル酸エステルモノマー(a)単位の含有量は、(メタ)アクリル酸エステルモノマー(a)単位及びラジカル重合性シリコーンマクロモノマー(b)単位の合計含有量100質量%に対して、好ましくは30~95質量%であり、より好ましくは40~93質量%である。(メタ)アクリル酸エステルモノマー(a)単位の含有量が上記範囲内であることにより、生産性がより向上する傾向にある。
 アクリル-シリコーン共重合体(A)中のラジカル重合性シリコーンマクロモノマー(b)単位の含有量は、(メタ)アクリル酸エステルモノマー(a)単位及びラジカル重合性シリコーンマクロモノマー(b)単位の合計含有量100質量%に対して、好ましくは5~70質量%であり、より好ましくは7~60質量%である。ラジカル重合性シリコーンマクロモノマー(b)単位の含有量が上記範囲内であることにより、生産性がより向上する傾向にある。
 (メタ)アクリル酸エステルモノマー(a)及びラジカル重合性シリコーンマクロモノマー(b)を共重合させてアクリル-シリコーン共重合体(A)を得る方法としては、乳化重合法、懸濁重合法、溶液重合法、及び塊状重合法など公知の重合法を使用することができ、特に限定されない。このなかでも、危険性、環境保全性及び微粒子径調節の容易さから乳化重合法が好ましい。
 共重合させるための重合開始剤としては、通常のラジカル重合開始剤を用いることができ、特に限定されない。その具体例としては、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ラウロイルパーオキサイド、2,2’-アゾビス-(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、及びt-ブチルパーオキシ-2-エチルヘキサノエート等の油溶性ラジカル重合開始剤;過硫酸カリウム、過硫酸アンモニウム、過酸化水素水、t-ブチルハイドロパーオキサイド、t-ブチルパーオキシピバレート、及び2,2’-アゾビス-(2-N-ベンジルアミジノ)プロパン塩酸塩等の水溶性ラジカル重合開始剤などが挙げられる。更に必要に応じて、酸性亜硫酸ナトリウム、ロンガリット、L-アスコルビン酸等の還元剤を併用したレドックス系重合開始剤も使用することができる。
 乳化重合法で用いる界面活性剤としては、特に限定されないが、例えば、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸塩、アルキルスルホコハク酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム、及びラウリル硫酸ナトリウムなどのアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタン脂肪酸エステル、及びエチレンオキサイド-プロピレンオキサイドブロック共重合体などのノニオン性界面活性剤;並びにアルキルトリメチルアンモニウムクロライド及びアルキルベンジルアンモニウムクロライド等の第4級アンモニウム塩や、アルキルアミン塩などのカチオン性界面活性剤が挙げられる。
 また、乳化重合法で用いる界面活性剤としては、特に限定されないが、例えば、特開昭54-144317、特開昭55-115419、特開昭62-34947、特開昭58-203960、特開平4-53802、特開昭62-104802、特開昭49-40388、特開昭52-134658、及び特公昭49-46291各号公報に記載されている反応性アニオン性界面活性剤;特開昭53-126093、特開昭56-28208、特開平4-50204、特開昭62-104802、及び特開昭50-98484各号公報に記載されている反応性ノニオン性界面活性剤;並びに第4級アンモニウム塩や第3級アミン塩とラジカル重合性基とを有する反応性カチオン性界面活性剤も挙げられる。
 懸濁重合法で用いる懸濁剤としては、特に限定されないが、例えば、ポリビニルアルコール、カルボキシメチルセルロース、ポリアルキレンオキサイド、ポリアクリル酸、及びポリアクリル酸塩等が挙げられる。
 重合温度は、特に限定されないが、好ましくは10~150℃であり、より好ましくは30~90℃である。重合温度が上記範囲内であることにより、3~10時間程度で重合反応を完結することができる。
 乳化重合法を用いた場合には、重合後のアクリル-シリコーン共重合体(A)のエマルジョンを凝析、水洗、脱水、及び乾燥するか、又はスプレードライヤーで直接乾燥することにより、球形微粒子状のアクリル-シリコーン共重合体(A)を得ることができる。
 また、懸濁重合法を用いた場合には、重合後のアクリル-シリコーン共重合体(A)のエマルジョンを脱水、水洗、及び乾燥することにより、球形微粒子状のアクリル-シリコーン共重合体(A)を得ることができる。
 さらに、溶液重合法を用いた場合には、貧溶剤中にアクリル-シリコーン共重合体(A)を析出させ、析出したアクリル-シリコーン共重合体(A)を濾過及び乾燥するか、又は貧溶剤を含む析出したアクリル-シリコーン共重合体(A)をスプレードライヤーで直接乾燥することにより、球形微粒子状のアクリル-シリコーン共重合体(A)を得ることができる。
 また、乳化重合法又は懸濁重合法により、(メタ)アクリル酸エステルモノマー(a)を重合させて、又は(メタ)アクリル酸エステルモノマー(a)及びラジカル重合性シリコーンマクロモノマー(b)を共重合させて予めコア微粒子を製造し、該コア微粒子表面にラジカル重合性シリコーンマクロモノマー(b)の乳化物を反応させることにより、表層のジメチルポリシロキサニル基の分布密度を高くしたアクリル-シリコーン共重合体(A)の微粒子を製造してもよい。この方法を用いる場合には、アクリル-シリコーン共重合体(A)の微粒子を含む溶液を乾燥することにより、アクリル-シリコーン共重合体(A)の微粒子を得ることができる。
 より低い熱膨張率、及びより優れた耐薬品性を有する硬化物を得る観点から、アクリル-シリコーン共重合体(A)は微粒子であることが好ましい。アクリル-シリコーン共重合体(A)微粒子の形状は特に限定されないが、本実施形態で用いる他の樹脂中への分散性等の観点から球状であることが好ましい。
 アクリル-シリコーン共重合体(A)微粒子の平均粒子径(D50)は、特に限定されないが、より低い熱膨張率、及びより優れた耐薬品性を有する硬化物を得る観点から、好ましくは20~400μmであり、より好ましくは20~40μmであり、さらに好ましくは25~35μmである。ここで、「D50」とは、メジアン径(メディアン径)であり、測定した単一結晶である1次粒子とその集合体である2次粒子以上の粒子とを併せた粉体の粒度分布を2つに分けたときの大きい側の個数又は質量と小さい側の個数又は質量が全粉体のそれの50%をしめるときの粒子径である。平均粒子径(D50)は、一般的には湿式レーザー回折・散乱法により測定することができる。
 アクリル-シリコーン共重合体(A)の平均1次粒子径は、より優れた成形性及び耐薬品性、並びにより低い熱膨張率を有する硬化物を得る観点から、好ましくは0.10~1.0μmであり、より好ましくは0.20~0.50μmであり、さらに好ましくは0.20~0.30μmである。アクリル-シリコーン共重合体(A)の平均1次粒子径は、特に制限されず、例えば電子顕微鏡などを用いた方法により測定することができる。なお、アクリル-シリコーン共重合体(A)の粒子は、より小さい粒子(1次粒子)と、1次粒子が凝集して見かけの粒径が大きくなった粒子(2次粒子以上の粒子)とを含みうる。
 本実施形態で用いるアクリル-シリコーン共重合体(A)として、市販品を用いることもできる。市販品としては、例えば、シャリーヌR-170、R-170S、R-1700S(以上、日信化学工業株式会社製)が挙げられる。
 本発明の一態様の樹脂組成物における、アクリル-シリコーン共重合体(A)の含有量は、特に限定されないが、マレイミド化合物(F)を含まない場合には、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、及びフェノール樹脂(D)の合計100質量部に対し、好ましくは3~50質量部であり、より好ましくは5~40質量部であり、マレイミド化合物(F)を含む場合には、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、フェノール樹脂(D)、及び任意成分として含有されるマレイミド化合物(F)の合計100質量部に対し、好ましくは3~50質量部であり、より好ましくは5~40質量部である。
 また、本発明の別の態様の樹脂組成物における、アクリル-シリコーン共重合体(A)の含有量は、特に限定されないが、非ハロゲンエポキシ樹脂(B)及びBT樹脂(G)の合計100質量部に対し、好ましくは3~50質量部であり、より好ましくは5~40質量部である
 アクリル-シリコーン共重合体(A)の含有量が3質量部以上であることにより、得られる硬化物の弾性率及び熱膨張がより低下する傾向にある。また、アクリル-シリコーン共重合体(A)の含有量が50質量部以下であることにより、得られる硬化物のデスミア工程における耐薬品性及び樹脂組成物の成形性がより向上する傾向にある。
〔非ハロゲンエポキシ樹脂(B)〕
 本実施形態の樹脂組成物における非ハロゲンエポキシ樹脂(B)としてはハロゲン原子を分子構造に含まないものであれば特に限定されない。その具体例としては、下記式(2)で表されるフェノールフェニルアラルキルノボラック型エポキシ樹脂、下記式(3)で表されるフェノールビフェニルアラルキル型エポキシ樹脂、下記式(4)で表されるナフトールアラルキル型エポキシ樹脂、下記式(5)で表されるアントラキノン型エポキシ樹脂、並びに、下記式(6)及び下記式(7)で表されるポリオキシナフチレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、及び水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。この中でも、得られる硬化物の特性のうち特に難燃性を向上させる観点から、下記式(2)で表されるフェノールフェニルアラルキルノボラック型エポキシ樹脂、下記式(3)で表されるフェノールビフェニルアラルキル型エポキシ樹脂、下記式(4)で表されるナフトールアラルキル型エポキシ樹脂、下記式(5)で表されるアントラキノン型エポキシ樹脂、並びに、下記式(6)及び下記式(7)で表されるポリオキシナフチレン型エポキシ樹脂からなる群より選ばれる一種以上が好ましい。また、得られる硬化物の熱膨張率をより低くする観点から、下記式(5)で表されるアントラキノン型エポキシ樹脂が好ましい。
 これらの非ハロゲンエポキシ樹脂(B)は、1種単独で用いても、2種以上を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000033
 上記式(2)中、Rは、各々独立して、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、上記式(2)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7である。
Figure JPOXMLDOC01-appb-C000034
 上記式(3)中、Rは、各々独立して、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、上記式(3)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7である。
Figure JPOXMLDOC01-appb-C000035
 上記式(4)中、Rは水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、上記式(4)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7である。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
(6)
 上記式(6)中、Rは、各々独立して、水素原子、炭素原子数1~4のアルキル基、又はアラルキル基を表す。
Figure JPOXMLDOC01-appb-C000038
 上記式(7)中、Rは、各々独立して、水素原子、炭素原子数1~4のアルキル基、又はアラルキル基を表す。
 上記式(6)及び上記式(7)で表されるポリオキシナフチレン型エポキシ樹脂は市販品を用いることができる。その市販品としては、特に限定されないが、例えば、DIC株式会社製の、EXA-7311、EXA-7311―G3、EXA-7311―G4、EXA-7311―G4S、EXA-7311L、及びHP-6000が挙げられる。
 さらに求められる用途によりリン含有エポキシ樹脂やブロム化エポキシ樹脂も併用することができる。リン含有エポキシ樹脂とは、1分子中に2個以上のエポキシ基を有するリン原子含有化合物であれば特に限定されない。その具体例としては、ホスホン酸メチルジグリシジル、ホスホン酸エチルジグリシジル、ホスホン酸プロピルジグリシジル、ホスホン酸ブチルジグリシジル、ホスホン酸ビニルジグリシジル、ホスホン酸フェニルジグリシジル、ホスホン酸ビフェニルジグリシジル、リン酸メチルジグリシジル、リン酸エチルジグリシジル、リン酸n-プロピルジグリシジル、リン酸n-ブチルジグリシジル、リン酸イソブチルジグリシジル、リン酸アリルジグリシジル、リン酸フェニルジグリシジル、リン酸p-メトキシフェニルジグリシジル、リン酸p-エトキシフェニルジグリシジル、リン酸p-プロピルオキシフェニルジグリシジル、リン酸p-イソプロピルオキシフェニルジグリシジル、リン酸フェニルチオジグリシジル、リン酸トリグリシジル、リン酸トリス(グリシジルエチル)、リン酸p-グリシジル-フェニルエチルグリシジル、及びチオリン酸ベンジルジグリシジルなどが挙げられる。また、ブロム化エポキシ樹脂とは、1分子中に2個以上のエポキシ基を有する臭素原子含有化合物であれば特に限定されない。その具体例としては、ブロム化ビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂などが挙げられる。
 本発明の一態様の樹脂組成物における、非ハロゲンエポキシ樹脂(B)の含有量は、特に限定されないが、マレイミド化合物(F)を含まない場合には、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、及びフェノール樹脂(D)の合計100質量部に対し、好ましくは5~60質量部であり、より好ましくは10~40質量部であり、マレイミド化合物(F)を含む場合には、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、フェノール樹脂(D)、及び任意成分として含有されるマレイミド化合物(F)の合計100質量部に対し、好ましくは5~60質量部であり、より好ましくは10~40質量部である。
 また、本発明の別の態様の樹脂組成物における、非ハロゲンエポキシ樹脂(B)の含有量は、特に限定されないが、非ハロゲンエポキシ樹脂(B)及びBT樹脂(G)の合計100質量部に対し、好ましくは5~60質量部であり、より好ましくは10~40質量部である。
 非ハロゲンエポキシ樹脂(B)の含有量が上記範囲内であることにより、樹脂組成物の硬化性がより向上し、得られる硬化物においては難燃性がより向上し、ガラス転移温度がより向上し、吸水率がより低下し、かつ弾性率がより低下する傾向にある。
〔シアン酸エステル化合物(C)〕
 シアン酸エステル化合物(C)を用いることにより、得られる硬化物の耐薬品性及び接着性がより向上する。シアン酸エステル化合物(C)としては、特に限定されないが、例えば、下記式(8)で表されるナフトールアラルキル型シアン酸エステル化合物、下記式(9)で表されるノボラック型シアン酸エステル化合物、下記式(10)で表されるビフェニルアラルキル型シアン酸エステル化合物、ビス(3,5-ジメチル4-シアナトフェニル)メタン、ビス(4-シアナトフェニル)メタン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、及び2、2-ビス(4-シアナトフェニル)プロパン等が挙げられる。
 この中でも、樹脂組成物の硬化性がより向上し、得られる硬化物の難燃性がより向上し、かつ熱膨張係数がより低下する観点から、下記式(8)で表されるナフトールアラルキル型シアン酸エステル化合物、下記式(9)で表されるノボラック型シアン酸エステル化合物、及び下記式(10)で表されるビフェニルアラルキル型シアン酸エステル化合物が好ましい。シアン酸エステル化合物(C)は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000039
 上記式(8)中、Rは、各々独立して、水素原子又はメチル基を表し、このなかでも水素原子が好ましい。また、上記式(8)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7であり、より好ましくは6である。
Figure JPOXMLDOC01-appb-C000040
 上記式(9)中、Rは、各々独立して、水素原子又はメチル基を表し、このなかでも水素原子が好ましい。また、上記式(9)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7である。
Figure JPOXMLDOC01-appb-C000041
 上記式(10)中、R10は、各々独立して、水素原子又はメチル基を表し、このなかでも水素原子が好ましい。また、上記式(10)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7である。
 これらのシアン酸エステル化合物(C)の製法は、特に限定されず、シアン酸エステル合成として現存するいかなる方法で製造してもよい。上記式(8)で表されるナフトールアラルキル型シアン酸エステル化合物の製造方法を具体的に例示すると、下記式(11)で表されるナフトールアラルキル型フェノール樹脂と、ハロゲン化シアンと、を不活性有機溶媒中で、塩基性化合物存在下反応させることにより、シアン酸エステル化合物(C)を得ることができる。また、下記式(11)で表されるナフトールアラルキル型フェノール樹脂と塩基性化合物による塩を、水を含有する溶液中にて形成させ、その後、得られた塩とハロゲン化シアンとを2相系界面反応させることによっても、シアン酸エステル化合物(C)を得ることができる。また、他のシアン酸エステル化合物(C)も、目的とするシアン酸エステル化合物のシアノ基が水酸基で置換された化合物と、ハロゲン化シアンと、を同様の方法により反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000042
 上記式(11)中、R11は、各々独立して、水素原子又はメチル基を表し、このなかでも水素原子が好ましい。また、上記式(11)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7であり、より好ましくは6である。
 また、ナフトールアラルキル型シアン酸エステル化合物は、α-ナフトールあるいはβ-ナフトール等のナフトール類と、p-キシリレングリコール、α,α’-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等と、の反応により得られるナフトールアラルキル樹脂と、シアン酸とを縮合させて得られるものから選択することができる。
 また、シアン酸エステル化合物(C)のシアネート基数と樹脂組成物中におけるエポキシ樹脂のエポキシ基数の比(CN/Ep)は、特に限定されないが、得られる硬化物の耐熱性、難燃性、吸水率の観点から、好ましくは0.7~2.5であり、より好ましくは0.7~1.5である。
〔フェノール樹脂(D)〕
 本実施形態に用いるフェノール樹脂(D)としては、1分子中にフェノール性水酸基を2個以上有する樹脂であれば、公知のものを適宜用いることができ、その種類は特に限定されない。その具体例としては、例えば、クレゾールノボラック型フェノール樹脂、下記式(11)で表されるナフトールアラルキル型フェノール樹脂、下記式(12)で表されるビフェニルアラルキル型フェノール樹脂、アミノトリアジンノボラック型フェノール樹脂、ナフタレン型フェノール樹脂、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ビスフェノールA型ノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、ザイロック型フェノール樹脂、テルペン変性フェノール樹脂、及びポリビニルフェノール類等が挙げられる。これらのなかでも、得られる硬化物の吸水性及び耐熱性の観点から、クレゾールノボラック型フェノール樹脂、下記式(11)で表されるナフトールアラルキル型フェノール樹脂、下記式(12)で表されるビフェニルアラルキル型フェノール樹脂、アミノトリアジンノボラック型フェノール樹脂、及びナフタレン型フェノール樹脂が好ましく、クレゾールノボラック型フェノール樹脂、下記式(11)で表されるナフトールアラルキル型フェノール樹脂、下記式(12)で表されるビフェニルアラルキル型フェノール樹脂がより好ましい。フェノール樹脂(D)は、目的に応じて1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 樹脂組成物がフェノール樹脂(D)を含有する場合において、フェノール樹脂(D)のフェノール基数とエポキシ樹脂のエポキシ基数の比(OH/Ep)は、好ましくは0.7~2.5であり、より好ましくは0.7~1.5である。比(OH/Ep)が0.7以上であることにより、得られる硬化物のガラス転移温度がより向上する傾向にある。また、(OH/Ep)が2.5以下であることにより、得られる硬化物の難燃性がより向上する傾向にある。
Figure JPOXMLDOC01-appb-C000043
 上記式(11)中、R11は、各々独立して、水素原子又はメチル基を表し、このなかでも水素原子が好ましい。また、上記式(11)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7であり、より好ましくは6である。
Figure JPOXMLDOC01-appb-C000044
 上記式(12)中、R12は、各々独立して、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、上記式(12)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7である。
 本実施形態の樹脂組成物におけるシアン酸エステル化合物(C)及びフェノール樹脂(D)の含有量は、両者とも樹脂組成物における機能が硬化剤として働くため合算して計算する。
 本発明の一態様の樹脂組成物における、シアン酸エステル化合物(C)及びフェノール樹脂(D)の合計含有量は、マレイミド化合物(F)を含まない場合には、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、及びフェノール樹脂(D)の合計100質量部に対し、好ましくは10~50質量部であり、より好ましくは20~40質量部であり、マレイミド化合物(F)を含む場合には、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、フェノール樹脂(D)、及び任意成分として含有されるマレイミド化合物(F)の合計100質量部に対し、好ましくは10~50質量部であり、より好ましくは20~40質量部である。
 また、本発明の別の態様の樹脂組成物において、シアン酸エステル化合物(C)及び/又はフェノール樹脂(D)をさらに含んでいてもよく、この場合には、シアン酸エステル化合物(C)及びフェノール樹脂(D)の合計含有量は、非ハロゲンエポキシ樹脂(B)及びBT樹脂(G)の合計100質量部に対し、好ましくは5~50質量部であり、より好ましくは10~40質量部である。
 シアン酸エステル化合物(C)及びフェノール樹脂(D)の合計含有量が上記範囲内であることにより、樹脂組成物の硬化性がより向上し、得られる硬化物における難燃性がより向上し、ガラス転移温度がより向上し、吸水率がより低下し、弾性率がより低下する傾向にある。
〔無機充填材(E)〕
 本実施形態で用いる無機充填材(E)としては、当業界において通常用いられるものであれば特に限定されない。その具体例としては、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類;水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物;酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物;ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラスなどのガラス微粉末類)、中空ガラス、球状ガラスなどが挙げられる。このなかでも、得られる硬化物の熱膨張率がより低下し、耐燃性がより向上する観点から、シリカ類、ベーマイト、水酸化マグネシウム、アルミナ、タルクが好ましく、シリカ類及びベーマイトがより好ましい。また、ドリル加工性がより向上する観点から、モリブデン化合物や無機酸化物をコートしたモリブデン酸化合物が好ましい。なお、無機充填材(E)は1種単独で用いても2種以上を併用してもよい。
 無機充填材(E)の平均粒子径(D50)は特に限定されないが、分散性の観点から、好ましくは0.2~5μmであり、より好ましくは0.2~3μmである。
 本発明の一態様の樹脂組成物における、無機充填材(E)の含有量は、特に限定されないが、マレイミド化合物(F)を含まない場合には、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、及びフェノール樹脂(D)の合計100質量部に対し、好ましくは50~500質量部であり、より好ましくは80~300質量部であり、マレイミド化合物(F)を含む場合には、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、フェノール樹脂(D)、及び任意成分として含有されるマレイミド化合物(F)の合計100質量部に対し、好ましくは50~500質量部であり、より好ましくは80~300質量部である。
 また、本発明の別の態様の樹脂組成物における、無機充填材(E)の含有量は、特に限定されないが、非ハロゲンエポキシ樹脂(B)及びBT樹脂(G)の合計100質量部に対し、好ましくは50~500質量部であり、より好ましくは80~300質量部である。
 無機充填材(E)の含有量が上記範囲内であることにより、難燃性、成形性、ドリル加工性により優れた硬化物が得られる傾向にある。
 無機充填材(E)の分散性、樹脂と無機充填材(E)やガラスクロスの接着強度を向上させるために、上記無機充填材(E)と、シランカップリング剤及び/又は湿潤分散剤とを併用してもよい。
 シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されない。その具体例としては、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系化合物;γ-グリシドキシプロピルトリメトキシシランなどのエポキシシラン系化合物;γ-メタアクリロキシプロピルトリメトキシシランなどのビニルシラン系化合物;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系化合物;フェニルシラン系化合物などが挙げられる。なお、シランカップリング剤は、1種単独で用いても2種以上を併用してもよい。
 また、湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されない。その具体例としては、ビッグケミージャパン(株)製のDisperbyk-110、111、180、161、BYK-W996、W9010、W903等が挙げられる。なお、湿潤分散剤は、1種単独で用いても2種以上を併用してもよい。
〔マレイミド化合物(F)〕
 樹脂組成物は、マレイミド化合物(F)を含有してもよい。本実施形態の樹脂組成物で用い得るマレイミド化合物(F)としては、1分子中に1個以上のマレイミド基を有する化合物であれば、特に限定されない。その具体例としては、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、下記式(13)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、及び、上記マレイミド化合物とアミン化合物のプレポリマーなどが挙げられる。このなかでも、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び下記式(13)で表されるマレイミド化合物が好ましく、下記式(13)に例示されるマレイミド化合物がより好ましい。マレイミド化合物(F)は、1種単独で用いても2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000045
 上記式(13)中、R13は、各々独立して、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、上記式(13)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7である。
 本発明の一態様の樹脂組成物における、マレイミド化合物(F)の含有量は、特に限定されないが、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、フェノール樹脂(D)、及び任意成分として含有されるマレイミド化合物(F)の合計100質量部に対し、好ましくは3~50質量部であり、より好ましくは10~40質量部である。
 また、本発明の別の態様の樹脂組成物においてマレイミド化合物(F)をさらに含んでいてもよく、この場合には、マレイミド化合物(F)の含有量は、特に限定されないが、非ハロゲンエポキシ樹脂(B)及びBT樹脂(G)の合計100質量部に対し、好ましくは3~50質量部であり、より好ましくは10~40質量部である。
 マレイミド化合物(F)の含有量が上記範囲内にあることにより、樹脂組成物の硬化性がより向上し、得られる硬化物の難燃性がより向上し、ガラス転移温度がより向上し、吸水率がより低下し、弾性率がより低下する傾向にある。
〔BT樹脂(G)〕
 本実施形態で用いるBT樹脂(G)は、シアン酸エステル化合物(C)及びマレイミド化合物(F)を、プレポリマー化したものである。プレポリマー化方法は、特に限定されないが、例えば、シアン酸エステル化合物(C)及びマレイミド化合物(F)を、無溶剤又はメチルエチルケトン、Nメチルピロドリン、ジメチルホルムアミド、ジメチルアセトアミド、トルエン、キシレン等の有機溶剤に溶解して加熱混合する方法が挙げられる。
 シアン酸エステル化合物(C)は特に限定されず、上記同様の化合物を用いることができる。このなかでも、樹脂組成物の硬化性がより向上し、得られる硬化物の難燃性がより向上し、かつ熱膨張係数がより低下する観点から、上記式(8)で表されるナフトールアラルキル型シアン酸エステル化合物、上記式(9)で表されるノボラック型シアン酸エステル化合物、及び上記式(10)で表されるビフェニルアラルキル型シアン酸エステル化合物が好ましい。シアン酸エステル化合物(C)は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 また、マレイミド化合物(F)も特に限定されず、上記同様の化合物を用いることができる。このなかでも、耐熱性の観点から、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び上記式(13)で表されるマレイミド化合物が好ましく、上記式(13)で表されるマレイミド化合物がより好ましい。マレイミド化合物(F)は、1種単独で用いても2種以上を併用してもよい。
 BT樹脂(G)におけるマレイミド化合物(F)の割合は特に限定されないが、ガラス転移温度、難燃性、硬化性の観点から、BT樹脂(G)の総量に対し、好ましくは5~75質量%であり、より好ましくは10~70質量%である。
 また、プレポリマーであるBT樹脂(G)の数平均分子量は特に限定されないが、ハンドリング性、ガラス転移温度、硬化性の観点から、好ましくは100~100,000であり、より好ましくは100~80,000である。
 本発明の別の態様の樹脂組成物における、BT樹脂(G)の含有量は特に限定されないが、非ハロゲンエポキシ樹脂(B)及びBT樹脂(G)の合計100質量部に対し、好ましくは20~80質量部であり、より好ましくは30~70質量部である。BT樹脂(G)の含有量が上記範囲内であることにより、樹脂組成物の硬化性がより向上し、得られる硬化物の難燃性がより向上し、ガラス転移温度がより向上し、吸水率がより低下し、弾性率がより低下する傾向にある。
〔イミダゾール化合物(H)〕
 本実施形態の樹脂組成物は、下記式(14)で表されるイミダゾール化合物(H)を含んでもよい。イミダゾール化合物(H)は硬化促進の作用を有し、硬化物のガラス転移温度を上げる作用を有する。
Figure JPOXMLDOC01-appb-C000046
 上記式(14)中、Arは、各々独立して、フェニル基、ナフタレン基、ビフェニル基、アントラセン基、又は、フェニル基、ナフタレン基、ビフェニル基、若しくはアントラセン基の水酸基変性基を示し、R14は、水素原子、アルキル基若しくはアルキル基の水酸基変性基、フェニル基等のアリール基を示す。
 上記式(14)中のイミダゾール置換基Arは、フェニル基、ナフタレン基、ビフェニル基、アントラセン基又はその水酸基変性基を示し、このなかでもフェニル基が好ましい。また、上記式(14)中イミダゾール置換基R14は水素原子、アルキル基若しくはアルキル基の水酸基変性基、フェニル基等のアリール基を示し、このなかでもフェニル基が好ましい。さらに、Ar、R14ともにフェニル基であることがより好ましい。
 イミダゾール化合物(H)としては、特に限定されないが、例えば、2,4,5-トリフェニルイミダゾールが好ましい。2,4,5-トリフェニルイミダゾールを用いることにより硬化物のTgがより向上する傾向にある。
 本発明の一態様の樹脂組成物における、イミダゾール化合物(H)の含有量は特に限定されないが、マレイミド化合物(F)を含まない場合には、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、及びフェノール樹脂(D)の合計100質量部に対し、好ましくは0.01~10質量部であり、より好ましくは0.1~5質量部であり、マレイミド化合物(F)を含む場合には、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)、フェノール樹脂(D)、及び任意成分として含有されるマレイミド化合物(F)の合計100質量部に対し、好ましくは0.01~10質量部であり、より好ましくは0.1~5質量部である。
 また、本発明の別の態様の樹脂組成物における、イミダゾール化合物(H)の含有量は特に限定されないが、非ハロゲンエポキシ樹脂(B)及びBT樹脂(G)の合計100質量部に対し、好ましくは0.01~5質量部であり、より好ましくは10~40質量部である。
 イミダゾール化合物(H)の含有量が上記範囲内であることにより、樹脂組成物の硬化性がより向上し、得られる硬化物のガラス転移温度がより向上し、吸水率がより低下し、弾性率がより低下する傾向にある。
(他の硬化促進剤)
 また、本実施形態においては、必要に応じて、前記イミダゾール化合物(H)に加え、他の硬化促進剤を併用することも可能である。このような化合物としては、特に限定されないが、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等で例示される有機過酸化物;アゾビスニトリル当のアゾ化合物;N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどのフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物などが挙げられる。
(溶剤)
 さらに、本実施形態の樹脂組成物は、必要に応じて溶剤を含有していてもよい。例えば、有機溶剤を用いると、樹脂組成物の調製時における粘度が下がり、ハンドリング性を向上されるとともにガラスクロス等の基材への含浸性がより向上する傾向にある。溶剤の種類は、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)及び/又はフェノール樹脂(D)の混合物もしくは非ハロゲンエポキシ樹脂(B)及びBT樹脂(G)の混合物を溶解可能なものであれば、特に限定されない。その具体例としては、例えば、アセトン、メチルエチルケトン、メチルセルソルブなどのケトン類;トルエン、キシレンなどの芳香族炭化水素類;ジメチルホルムアミドなどのアミド類;プロピレングリコールメチルエーテル及びそのアセテートなどが挙げられるが、これらに特に限定されない。溶剤は、1種を単独で或いは2種以上を組み合わせて使用することができる。
 本実施形態の樹脂組成物は、常法にしたがって調製することができる。アクリル-シリコーン共重合体(A)、シアン酸エステル化合物(B)及び/又はフェノール樹脂(C)、無機充填材(D)及び上述したその他の任意成分、もしくはアクリル-シリコーン共重合体(A)、BT樹脂(G)、無機充填材(D)及び上述したその他の任意成分を均一に含有する樹脂組成物が得られる方法であれば、樹脂組成物の調製方法は、特に限定されない。例えば、アクリル-シリコーン共重合体(A)、シアン酸エステル化合物(B)、無機充填材(D)を順次溶剤に配合し、その他の成分を適宜配合して、十分に攪拌することで本実施形態の樹脂組成物を容易に調製することができる。
 本実施形態の樹脂組成物の調製時において、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、非ハロゲンエポキシ樹脂(B)、シアン酸エステル化合物(C)及び/又はフェノール樹脂(D)、又は非ハロゲンエポキシ樹脂(B)及びBT樹脂(G)の混合物を溶解可能なものであれば、特に限定されない。その具体例は、上述したとおりである。
 なお、樹脂組成物の調製時に、各成分を均一に溶解或いは分散させるための公知の処理(攪拌、混合、混練処理など)を行うことができる。例えば、無機充填材(E)の均一分散にあたり、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、樹脂組成物に対する無機充填材(E)の分散性が高められる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミルなどの混合を目的とした装置、又は、公転及び/又は自転型の混合装置などの公知の装置を用いて適宜行うことができる。
〔プリプレグ〕
 本実施形態のプリプレグは、基材と、該基材に含浸又は塗布した上記樹脂組成物と、を有する。プリプレグの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、本実施形態における樹脂組成物を基材に含浸又は塗布させた後、100~200℃の乾燥機中で1~30分加熱するなどして半硬化(Bステ-ジ化)させることで、本実施形態のプリプレグを製造することができる。なお、本実施形態のプリプレグの総量に対する樹脂組成物(無機充填剤を含む。)の量は、特に限定されないが、好ましくは30~90質量%であり、より好ましくは30~80質量%である。
 本実施形態で用いる基材としては、各種プリント配線板材料に用いられている公知のものを、目的とする用途や性能により適宜選択して使用することができ、特に限定されない。その具体例としては、例えば、Eガラスクロス、Dガラスクロス、Sガラスクロス、Qガラスクロス、球状ガラスクロス、NEガラスクロス、及びTガラスクロス等のガラス繊維;クォーツ等のガラス以外の無機繊維;ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、及びコポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ株式会社製)等の全芳香族ポリアミド;2,6-ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、株式会社クラレ製)等のポリエステル;並びに、ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、及びポリイミドなどの有機繊維が挙げられるが、これらに特に限定されない。これらの中でも低熱膨張性の観点から、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及び有機繊維が好ましい。これら基材は、1種を単独で用いても2種以上を併用してもよい。
 基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマットなどが挙げられる。また、織布の織り方としては、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、織布を開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さは、特に限定されないが、好ましくは0.01~0.3mm程度である。とりわけ、強度と吸水性の観点から、基材は、厚み200μm以下、質量250g/m以下のガラス織布が好ましく、Eガラスのガラス繊維からなるガラス織布がより好ましい。
〔積層板〕
 本実施形態の積層板は、上記プリプレグを1枚以上備える。積層板はプリプレグを1枚以上備えるものであれば特に限定されず、他のいかなる層を有していてもよい。積層板の製造方法としては、一般に公知の方法を適宜適用でき、特に限定されない。例えば、上記のプリプレグ同士を積層し、加熱加圧成形することで積層板を得ることができる。このとき、加熱する温度は、特に限定されないが、65~300℃が好ましく、120~270℃がより好ましい。また、加圧する圧力は、特に限定されないが、2~5MPaが好ましく、2.5~4MPaがより好ましい。本実施形態の積層板は、金属箔からなる層を備えることにより、後述する金属箔張積層板として好適に用いることができる。
〔金属箔張積層板〕
 本実施形態の金属箔張積層板は、上記プリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を備える。具体的には、前述のプリプレグを1枚あるいは複数枚以上を重ね、所望によりその片面もしくは両面に銅やアルミニウムなどの金属箔を配置した構成とし、これを必要に応じて積層成形することにより、本実施形態の金属箔張積層板を作製することができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔などの公知の銅箔が好ましい。また、金属箔の厚みは、特に限定されないが、好ましくは2~70μmであり、より好ましくは2~35μmである。金属箔張積層板の成形方法及びその成形条件についても、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができ、また、温度は100~300℃、圧力は面圧2~100kgf/cm、加熱時間は0.05~5時間の範囲が一般的である。さらに、必要に応じて、150~300℃の温度で後硬化を行うこともできる。また、本実施形態のプリプレグと、別途作製した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることも可能である。
 本実施形態の金属箔張積層板は、所定の配線パターンを形成することにより、後述するプリント配線板として好適に用いることができる。そして、本実施形態の金属箔張積層板は、低い熱膨張率、良好な成形性及び耐薬品性を有し、そのような性能が要求される半導体パッケージ用プリント配線板として、殊に有効に用いることができる。
〔プリント配線板〕
 本実施形態のプリント配線板は、絶縁層と、該絶縁層の表面に形成された導体層と、を備え、前記絶縁層が、上記樹脂組成物を含む。本実施形態におけるプリント配線板は、例えば、以下の方法により製造することができる。まず、銅張積層板等の金属箔張積層板を用意する。金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に本実施形態のプリプレグを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の金属箔張積層板が製造される。次いで、この多層の金属箔張積層板にスルーホールやバイアホール用の穴あけ加工を施した後、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアを除去するためデスミア処理が行われる。その後、この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成し、プリント配線板が製造される。
 この態様においては、本実施形態のプリプレグ(基材及びこれに含浸又は塗布された本実施形態の樹脂組成物)、金属箔張積層板の樹脂組成物層(本実施形態の樹脂組成物からなる層)が、樹脂組成物を含む絶縁層を構成することになる。
 以下に、合成例、実施例、及び比較例を示し、本発明を詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
〔合成例1 α-ナフトールアラルキル型シアン酸エステル樹脂の合成〕
 温度計、攪拌器、滴下漏斗及び還流冷却器を取りつけた反応器を予めブラインにより0~5℃に冷却しておき、そこへ塩化シアン7.47g(0.122mol)、35%塩酸9.75g(0.0935mol)、水76mL、及び塩化メチレン44mLを仕込んだ。
 この反応器内の温度を-5~+5℃、pHを1以下に保ちながら、撹拌下、上記式(11)においてR11がすべて水素原子であるα-ナフトールアラルキル型フェノール樹脂(SN485、OH基当量:214g/eq.軟化点:86℃、新日鐵化学(株)製)20g(0.0935mol)、及びトリエチルアミン14.16g(0.14mol)を塩化メチレン92mLに溶解した溶液を滴下漏斗により1時間かけて滴下した。溶液の滴下終了後、更にトリエチルアミン4.72g(0.047mol)を15分間かけて滴下した。
 トリエチルアミンの滴下終了後、同温度で反応液を15分間撹拌し、反応液を分液し、有機層を分取した。得られた有機層を水100mLで2回洗浄した後、エバポレーターにより減圧下で有機層から塩化メチレンを留去し、最終的に80℃で1時間濃縮乾固させて、α-ナフトールアラルキル型フェノール樹脂のシアン酸エステル化物(α-ナフトールアラルキル型シアン酸エステル樹脂)23.5gを得た。
〔合成例2 BT樹脂1の合成〕
 合成例1で作製したα-ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:261g/eq.)36質量部と、上記式(13)においてR13がすべて水素原子であり、nが0~1であるマレイミド化合物(BMI-2300、大和化成工業(株)製)24質量部と、をジメチルアセトアミドに溶解し、150℃で攪拌しながら反応させ、BT樹脂1を得た。
〔合成例3 BT樹脂2の合成〕
 合成例1で作製したα-ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:261g/eq.)30質量部と、合成例2で使用したマレイミド化合物(BMI-2300)30質量部と、をジメチルアセトアミドに溶解し、150℃で攪拌しながら反応させ、BT樹脂2を得た。
〔実施例1〕
 アクリル-シリコーン共重合体(R-170S、平均粒径:30μm、平均1次粒子径:0.2~0.3μm、日信化学工業(株)製)を25質量部、上記式(3)においてRがすべて水素原子であるフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH,エポキシ当量:320g/eq.、日本化薬(株)製)を49質量部、上記式(11)においてR11がすべて水素原子であるナフトールアラルキル型フェノール樹脂(SN-495、新日鐵化学(株)製、水酸基当量:236g/eq.)を36質量部、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン(BMI-70、ケイ・アイ化成(株)製)を15質量部、シランカップリング剤(東レ・ダウコーティング(株)製)5質量部、湿潤分散剤1(disperbyk-161、ビッグケミージャパン(株)製)を1質量部、球状溶融シリカ(SC2500-SQ、粒径:0.5μm、アドマテックス(株)製)を200質量部、及び2-エチル-4-メチルイミダゾール(2E4MZ、四国化成工業(株)製)0.02質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのQガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
〔実施例2〕
 実施例1で使用したアクリル-シリコーン共重合体(R-170S)を25質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000,エポキシ当量:250g/eq.、DIC(株)製)を44質量部、上記式(12)においてR12がすべて水素原子であるビフェニルアラルキル型フェノール樹脂(KAYAHARD GPH-103、日本化薬(株)製、水酸基当量:231g/eq.)を18質量部、ナフタレン型フェノール樹脂(EPICLON EXB-9500、DIC(株)製、水酸基当量:153g/eq.)を18質量部、アミノトリアジンノボラック樹脂(PHENOLITE LA-3018-50P、水酸基当量:151g/eq.、DIC(株)製)を3質量部、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン(BMI-70)を17質量部、シランカップリング剤(Z6040、東レ・ダウコーティング(株)製)を5質量部、湿潤分散剤1(disperbyk-161)を1質量部、球状溶融シリカ(SC2500-SQ)を200質量部、及び実施例1で使用したイミダゾール化合物(2E4MZ)を0.02質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのQガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
〔実施例3〕
 実施例2で使用したアクリル-シリコーン共重合体の代わりに平均粒径の異なるアクリル-シリコーン共重合体(R-170S、平均粒径:20μm、平均1次粒子径:0.2~0.3μm、日信化学工業(株)製)を25質量部使用したこと以外は実施例2と同様に操作してプリプレグを得た。
〔実施例4〕
 ビス(3-エチル-5-メチル-4マレイミドフェニル)メタン(BMI-70)の代わりに合成例2で使用したマレイミド化合物(BMI-2300)を17質量部使用したこと以外は実施例3と同様に操作してプリプレグを得た。
〔実施例5〕
 実施例2で使用したアクリル-シリコーン共重合体を25質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を60質量部、合成例1で得られたα-ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:261g/eq.)を40質量部、シランカップリング剤(Z6040)を5質量部、湿潤分散剤1(disperbyk-161)を1質量部、湿潤分散剤2(disperbyk-111、ビッグケミージャパン(株)製)2質量部、及び球状溶融シリカ(SC2500-SQ)を200質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのQガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
〔実施例6〕
 α-ナフトールアラルキル型シアン酸エステル樹脂の代わりに2,2-ビス(4-シアネートフェニル)プロパンのプレポリマー(CA210、シアネート当量139、三菱ガス化学(株)製)を40質量部使用したこと以外は実施例5と同様に操作してプリプレグを得た。
〔実施例7〕
 α-ナフトールアラルキル型シアン酸エステル樹脂の代わりに上記式(9)においてRがすべて水素原子であるノボラック型シアン酸エステル樹脂(プリマセットPT-30、ロンザジャパン(株)製、シアネート当量:124g/eq.)を40質量部使用したこと以外は実施例5と同様に操作してプリプレグを得た。
〔実施例8〕
 実施例2で使用したアクリル-シリコーン共重合体を25質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を38質量部、合成例1で得られたα-ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:261g/eq.)を36質量部、合成例2で使用したマレイミド化合物(BMI-2300)を26質量部、シランカップリング剤(Z6040)を5質量部、湿潤分散剤1(disperbyk-161)を1質量部、及び湿潤分散剤2(disperbyk-111)を2質量部、球状溶融シリカ(SC2500-SQ)を200質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのQガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
〔実施例9〕
 合成例2で使用したマレイミド化合物(BMI-2300)の代わりに実施例1で使用したビス(3-エチル-5-メチル-4マレイミドフェニル)メタン(BMI-70)を26質量部使用したこと以外は実施例8と同様に操作してプリプレグを得た。
〔実施例10〕
 ポリオキシナフチレン型エポキシ樹脂(HP-6000)の代わりに実施例1で使用したフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH)を38質量部使用したこと以外は実施例8と同様に操作してプリプレグを得た。
〔実施例11〕
 実施例10で使用したフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH)の代わりにナフタレン変性エポキシ樹脂(ESN-175V、エポキシ当量:255g/eq.、新日鐵化学(株)製)を38質量部使用したこと以外は実施例8と同様に操作してプリプレグを得た。
〔実施例12〕
 ポリオキシナフチレン型エポキシ樹脂(HP-6000)の代わりに上記式(2)においてRがすべて水素原子であるフェノールフェニルアラルキルノボラック型エポキシ樹脂(NC-2000-L,エポキシ当量:226g/eq.、日本化薬(株)製)を38質量部使用したこと以外は実施例8と同様に操作してプリプレグを得た。
〔実施例13〕
 ワニス調製の際に、2-エチル-4-メチルイミダゾール(2E4MZ)を0.01質量部さらに加えたこと以外は実施例8と同様に操作してプリプレグを得た。
〔実施例14〕
 合成例1で得られたα-ナフトールアラルキル型シアン酸エステル樹脂及び合成例2で使用したマレイミド化合物の代わりに合成例2で得られたBT樹脂1を62質量部加えたこと以外は実施例8と同様に操作してプリプレグを得た。
〔実施例15〕
 合成例1で得られたα-ナフトールアラルキル型シアン酸エステル樹脂及び合成例2で使用したマレイミド化合物の代わりに合成例3で得られたBT樹脂2を62質量部加えたこと以外は実施例8と同様に操作してプリプレグを得た。
〔実施例16〕
 合成例2で得られたBT樹脂1の添加量を59質量部とし、さらにナフトールアラルキル型フェノール樹脂(SN-495)を3質量部加えたこと以外は実施例14と同様に操作してプリプレグを得た。
〔比較例1〕
 アクリル-シリコーン共重合体を使用しないこと以外は実施例2と同様に操作してプリプレグを得た。
〔比較例2〕
 アクリル-シリコーン共重合体の代わりにシリコーンレジンで表面を被覆したシリコーンゴムパウダー(シリコーン複合パウダーX-52-7030、信越化学工業(株)製)を25質量部使用したこと以外は実施例2と同様に操作してプリプレグを得た。
〔比較例3〕
 アクリル-シリコーン共重合体の代わりにシリコーンレジンで表面を被覆したシリコーンゴムパウダー(シリコーン複合パウダーKMP-605M、信越化学工業(株)製)を25質量部使用したこと以外は実施例2と同様に操作してプリプレグを得た。
〔比較例4〕
 アクリル-シリコーン共重合体の代わりにシリコーンエラストマー(EP-2600、東レダウコーニング(株)製)を25質量部使用したこと以外は実施例2と同様に操作してプリプレグを得た。
〔比較例5〕
 アクリル-シリコーン共重合体の代わりにシリコーンエラストマー(EP-2601、東レダウコーニング(株)製)を25質量部使用したこと以外は実施例2と同様に操作してプリプレグを得た。
〔比較例6〕
 アクリル-シリコーン共重合体の代わりにシリコーンエラストマー(EP-2720、東レダウコーニング(株)製)を25質量部使用したこと以外は実施例2と同様に操作してプリプレグを得た。
〔比較例7〕
 アクリル-シリコーン共重合体の代わりにシリコーンエラストマー(トレフィルE-606、東レダウコーニング(株)製)を25質量部使用したこと以外は実施例2と同様に操作してプリプレグを得た。
〔比較例8〕
 アクリル-シリコーン共重合体の代わりにシリコーンレジンで表面を被覆したシリコーンゴムパウダー(シリコーン複合パウダーX-52-7030、信越化学工業(株)製)を25質量部使用したこと以外は実施例8と同様に操作してプリプレグを得た。
〔比較例9〕
 アクリル-シリコーン共重合体の代わりにシリコーンレジンで表面を被覆したシリコーンゴムパウダー(シリコーン複合パウダーKMP-605M、信越化学工業(株)製)を25質量部使用したこと以外は実施例8と同様に操作してプリプレグを得た。
〔比較例10〕
 アクリル-シリコーン共重合体の代わりにシリコーンエラストマー(EP-2600、東レダウコーニング(株)製)を25質量部使用したこと以外は実施例8と同様に操作してプリプレグを得た。
〔比較例11〕
 アクリル-シリコーン共重合体の代わりにシリコーンエラストマー(EP-2601、東レダウコーニング(株)製)を25質量部使用したこと以外は実施例8と同様に操作してプリプレグを得た。
〔比較例12〕
 アクリル-シリコーン共重合体の代わりにシリコーンエラストマー(EP-2720、東レダウコーニング(株)製)を25質量部使用したこと以外は実施例8と同様に操作してプリプレグを得た。
〔比較例13〕
 アクリル-シリコーン共重合体の代わりにシリコーンエラストマー(トレフィルE-606、東レダウコーニング(株)製)を25質量部使用したこと以外は実施例8と同様に操作してプリプレグを得た。
〔銅張積層板の作製〕
 実施例1~16及び比較例1~13で得られたプリプレグをそれぞれ2枚重ねて積層体とし、その積層体の両面に、12μm厚の電解銅箔(3EC-III、三井金属鉱業(株)製)を配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.2mmの銅張積層板を得た。
 得られた銅張積層板を用いて、成形性、耐デスミア性、面方向の熱膨張率の評価を行った。その結果を表1、表2に示す。
〔銅張積層板の物性評価方法〕
 成形性、耐熱性、面方向の熱膨張率は下記方法にて行った。
(成形性)
 銅張積層板の銅箔をエッチングにより除去したのちに、銅箔が除去された積層板表面のボイドの有無を観察した。観察されたボイドの有無に基づいて成形性を評価した。
(耐薬品性)
 デスミア工程での耐薬品性を評価するため、銅張積層板の銅箔をエッチングにより除去し、得られた積層板の質量を測定した。その後、積層板を、膨潤液である、アトテックジャパン(株)のスウェリングディップセキュリガントPに80℃で10分間浸漬し、次に、粗化液である、アトテックジャパン(株)のコンセントレートコンパクトCPに80℃で5分間浸漬し、最後に中和液である、アトテックジャパン(株)のリダクションコンディショナーセキュリガントP500に45℃で10分間浸漬した。この処理を3回行った後の積層板の質量を測定し、処理前後の積層板の質量減少量(wt%)を算出した。得られた質量減少量に基づいて耐薬品性を評価した。
(面方向の熱膨張率)
 銅張積層板の銅箔をエッチングにより除去したのちに、熱機械分析装置(TAインスツルメント製)で40℃から340℃まで毎分10℃で昇温し、60℃から120℃での面方向の線膨張係数を測定した。測定方向は積層板のガラスクロスの縦方向(Warp)とした。
Figure JPOXMLDOC01-appb-T000047
成形性 ○:ボイド無し ×:ボイドあり
単位 耐薬品性:wt% 熱膨張率:ppm/℃
Figure JPOXMLDOC01-appb-T000048
成形性 ○:ボイド無し ×:ボイドあり
単位 耐薬品性:wt% 熱膨張率:ppm/℃
 本出願は、2012年11月28日に日本国特許庁へ出願された日本特許出願(特願2012-260236)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の樹脂組成物は、金属箔張積層板及びプリント配線板などに用いられるプリプレグを作製するための樹脂組成物として産業上の利用可能性を有する。

Claims (27)

  1.  アクリル-シリコーン共重合体(A)と、非ハロゲンエポキシ樹脂(B)と、シアン酸エステル化合物(C)及び/又はフェノール樹脂(D)と、無機充填材(E)と、を含有する、樹脂組成物。
  2.  前記アクリル-シリコーン共重合体(A)が微粒子であり、
     該アクリル-シリコーン共重合体(A)微粒子の平均1次粒子径が、0.10~1.0μmである、請求項1に記載の樹脂組成物。
  3.  前記非ハロゲンエポキシ樹脂(B)が、下記式(2)で表されるフェノールフェニルアラルキルノボラック型エポキシ樹脂、下記式(3)で表されるフェノールビフェニルアラルキル型エポキシ樹脂、下記式(4)で表されるナフトールアラルキル型エポキシ樹脂、下記式(5)で表されるアントラキノン型エポキシ樹脂、及び、下記式(6)又は下記式(7)で表されるポリオキシナフチレン型エポキシ樹脂からなる群より選ばれる一種以上を含む、請求項1又は2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(2)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (式(6)中、Rは、各々独立して、水素原子、炭素原子数1~4のアルキル基、又はアラルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(7)中、Rは、各々独立して、水素原子、炭素原子数1~4のアルキル基、又はアラルキル基を示す。)
  4.  前記シアン酸エステル化合物(C)が、下記式(8)で表されるナフトールアラルキル型シアン酸エステル化合物、下記式(9)で表されるノボラック型シアン酸エステル化合物、及び下記式(10)で表されるビフェニルアラルキル型シアン酸エステル化合物からなる群より選ばれる一種以上を含む、請求項1~3のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(8)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(9)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
    Figure JPOXMLDOC01-appb-C000009
    (式(10)中、R10は、各々独立して、水素原子又はメチル基を表し、nは1以上の整数を示す。)
  5.  前記フェノール樹脂(D)が、クレゾールノボラック型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、アミノトリアジンノボラック型フェノール樹脂、及びナフタレン型フェノール樹脂からなる群より選ばれる一種以上を含む、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  さらにマレイミド化合物(F)を含有する、請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  前記マレイミド化合物(F)が、下記式(13)で表される化合物を含む、請求項6に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000010
    (式(13)中、R13は、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
  8.  前記アクリル-シリコーン共重合体(A)の含有量が、
     前記マレイミド化合物(F)を含まない場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、及び前記フェノール樹脂(D)の合計100質量部に対し、3~50質量部であり、
     前記マレイミド化合物(F)を含む場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、前記フェノール樹脂(D)、及び前記マレイミド化合物(F)の合計100質量部に対し、3~50質量部である、請求項1~7のいずれか一項に記載の樹脂組成物。
  9.  前記非ハロゲンエポキシ樹脂(B)の含有量が、
     前記マレイミド化合物(F)を含まない場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、及び前記フェノール樹脂(D)の合計100質量部に対し、5~60質量部であり、
     前記マレイミド化合物(F)を含む場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、前記フェノール樹脂(D)、及び前記マレイミド化合物(F)の合計100質量部に対し、5~60質量部である、請求項1~8のいずれか一項に記載の樹脂組成物。
  10.  前記シアン酸エステル化合物(C)及び前記フェノール樹脂(D)の合計含有量が、
     前記マレイミド化合物(F)を含まない場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、及び前記フェノール樹脂(D)の合計100質量部に対し、10~50質量部であり、
     前記マレイミド化合物(F)を含む場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、前記フェノール樹脂(D)、及び前記マレイミド化合物(F)の合計100質量部に対し、10~50質量部である、請求項1~9のいずれか一項に記載の樹脂組成物。
  11.  前記無機充填材(E)の含有量が、
     前記マレイミド化合物(F)を含まない場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、及び前記フェノール樹脂(D)の合計100質量部に対し、50~500質量部であり、
     前記マレイミド化合物(F)を含む場合には、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、前記フェノール樹脂(D)、及び前記マレイミド化合物(F)の合計100質量部に対し、50~500質量部である、請求項1~10のいずれか一項に記載の樹脂組成物。
  12.  前記マレイミド化合物(F)の含有量が、前記非ハロゲンエポキシ樹脂(B)、前記シアン酸エステル化合物(C)、前記フェノール樹脂(D)、及び前記マレイミド化合物(F)の合計100質量部に対し、3~50質量部である、請求項6~11のいずれか一項に記載の樹脂組成物。
  13.  アクリル-シリコーン共重合体(A)と、非ハロゲンエポキシ樹脂(B)と、シアン酸エステル化合物(C)及びマレイミド化合物(F)をプレポリマー化してなるBT樹脂(G)と、無機充填材(E)と、を含有する、樹脂組成物。
  14.  前記シアン酸エステル化合物(C)が、下記式(8)で表されるナフトールアラルキル型シアン酸エステル化合物、下記式(9)で表されるノボラック型シアン酸エステル化合物、及び下記式(10)で表されるビフェニルアラルキル型シアン酸エステル化合物からなる群より選ばれる一種以上を含む、請求項13に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000011
    (式(8)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
    Figure JPOXMLDOC01-appb-C000012
    (式(9)中、Rは、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
    Figure JPOXMLDOC01-appb-C000013
    (式(10)中、R10は、各々独立して、水素原子又はメチル基を表し、nは1以上の整数を示す。)
  15.  前記マレイミド化合物(F)が、下記式(13)で表される化合物を含む、請求項13又は14に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000014
    (式(13)中、R13は、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
  16.  前記アクリル-シリコーン共重合体(A)の含有量が、前記非ハロゲンエポキシ樹脂(B)及び前記BT樹脂(G)の合計100質量部に対し、3~50質量部である、請求項13~15のいずれか一項に記載の樹脂組成物。
  17.  前記非ハロゲンエポキシ樹脂(B)の含有量が、前記非ハロゲンエポキシ樹脂(B)及び前記BT樹脂(G)の合計100質量部に対し、5~60質量部である、請求項13~16のいずれか一項に記載の樹脂組成物。
  18.  前記BT樹脂(G)の含有量が、前記非ハロゲンエポキシ樹脂(B)及び前記BT樹脂(G)の合計100質量部に対し、20~80質量部である、請求項13~17のいずれか一項に記載の樹脂組成物。
  19.  前記無機充填材(E)の含有量が、前記非ハロゲンエポキシ樹脂(B)及び前記BT樹脂(G)の合計100質量部に対し、50~400質量部である、請求項13~18のいずれか一項に記載の樹脂組成物。
  20.  さらに下記式(14)で表されるイミダゾール化合物(H)を含む、請求項1~19のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000015
    (式(14)中、Arは、各々独立して、フェニル基、ナフタレン基、ビフェニル基、アントラセン基、又は、フェニル基、ナフタレン基、ビフェニル基、若しくはアントラセン基の水酸基変性基を示し、R14は、水素原子、アルキル基若しくはアルキル基の水酸基変性基、又はアリール基を示す。)
  21.  前記イミダゾール化合物(H)が、2,4,5-トリフェニルイミダゾールを含む、請求項20に記載の樹脂組成物。
  22.  前記無機充填材(E)が、シリカ類及び/又はベーマイトを含む、請求項1~21のいずれか一項に記載の樹脂組成物。
  23.  基材と、該基材に含浸又は塗布した請求項1~22のいずれか一項に記載の樹脂組成物と、を有する、プリプレグ。
  24.  前記基材が、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス及び有機繊維からなる群より選ばれる一種以上を含む、請求項23に記載のプリプレグ。
  25.  請求項23又は24に記載のプリプレグを1枚以上備える、積層板。
  26.  請求項23又は24に記載のプリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を備える、金属箔張積層板。
  27.  絶縁層と、該絶縁層の表面に形成された導体層と、を備え、
     前記絶縁層が、請求項1~22のいずれか一項に記載の樹脂組成物を含む、プリント配線板。
PCT/JP2013/081841 2012-11-28 2013-11-27 樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板 WO2014084226A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157016366A KR102124753B1 (ko) 2012-11-28 2013-11-27 수지 조성물, 프리프레그, 적층판, 금속박 피복 적층판, 및 프린트 배선판
CN201380062306.3A CN104837922B (zh) 2012-11-28 2013-11-27 树脂组合物、预浸料、层叠板、覆金属箔层叠板、以及印刷电路板
US14/647,272 US10178767B2 (en) 2012-11-28 2013-11-27 Resin composition, prepreg, laminate, metallic foil clad laminate, and printed circuit board
EP13857760.6A EP2927278B1 (en) 2012-11-28 2013-11-27 Resin composition, prepreg, laminated plate, metal foil-clad laminated plate, and printed circuit board
JP2014550206A JP6332036B2 (ja) 2012-11-28 2013-11-27 樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板
SG11201503925QA SG11201503925QA (en) 2012-11-28 2013-11-27 Resin composition, prepreg, laminate, metallic foil clad laminate, and printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-260236 2012-11-28
JP2012260236 2012-11-28

Publications (1)

Publication Number Publication Date
WO2014084226A1 true WO2014084226A1 (ja) 2014-06-05

Family

ID=50827862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081841 WO2014084226A1 (ja) 2012-11-28 2013-11-27 樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板

Country Status (8)

Country Link
US (1) US10178767B2 (ja)
EP (1) EP2927278B1 (ja)
JP (1) JP6332036B2 (ja)
KR (1) KR102124753B1 (ja)
CN (1) CN104837922B (ja)
SG (1) SG11201503925QA (ja)
TW (1) TWI593745B (ja)
WO (1) WO2014084226A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105201394A (zh) * 2015-09-30 2015-12-30 国家电网公司 一种电力维修用绝缘梯
KR20170032243A (ko) * 2014-07-18 2017-03-22 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 및 프린트 배선판
KR101762102B1 (ko) 2015-02-03 2017-08-04 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 복합 시트, 및 프린트 배선판
JP2018039956A (ja) * 2016-09-09 2018-03-15 信越化学工業株式会社 熱硬化性エポキシ樹脂組成物および半導体装置
JP2020533473A (ja) * 2017-12-29 2020-11-19 廣東生益科技股▲ふん▼有限公司Shengyi Technology Co.,Ltd. 樹脂組成物、プリプレグ、積層板および金属張積層板

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6069070B2 (ja) * 2013-03-28 2017-01-25 日東電工株式会社 軟磁性熱硬化性接着フィルム、磁性フィルム積層回路基板、および、位置検出装置
DE102016203313A1 (de) * 2016-03-01 2017-09-07 Siemens Aktiengesellschaft Bindersystem zur Herstellung eines Schlickers und mit dem Schlicker hergestelltes Bauteil
WO2018105070A1 (ja) * 2016-12-07 2018-06-14 日立化成株式会社 樹脂ワニス、プリプレグ、積層板及びプリント配線板
CN107629374A (zh) * 2017-09-29 2018-01-26 镇江市星耀智能装备有限公司 一种环保的发泡板材的制备方法
JP6681055B2 (ja) * 2017-12-27 2020-04-15 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板及び多層プリント配線板
JP7074278B2 (ja) * 2018-04-10 2022-05-24 エルジー・ケム・リミテッド 半導体パッケージ用熱硬化性樹脂組成物、プリプレグおよび金属箔積層板
US11499005B2 (en) * 2018-07-26 2022-11-15 Mitsubishi Gas Chemical Company, Inc. Curable composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
CN109749682A (zh) * 2018-12-25 2019-05-14 中国人民解放军海军工程大学 一种船用阻燃环氧胶粘剂
JP7428981B2 (ja) * 2021-08-05 2024-02-07 三菱瓦斯化学株式会社 硬化性組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940388A (ja) 1972-08-26 1974-04-15
JPS4946291A (ja) 1972-09-06 1974-05-02
JPS5098484A (ja) 1973-12-29 1975-08-05
JPS52134658A (en) 1976-05-07 1977-11-11 Seiko Kagaku Kogyo Co Ltd Polymer aqueous composition and process for production thereof
JPS53126093A (en) 1977-04-12 1978-11-02 Japan Exlan Co Ltd Preparation of aqueous polymer emulsion having modified stability
JPS54144317A (en) 1978-05-04 1979-11-10 Nippon Oil & Fats Co Ltd Sulfonate and emulsion polymerization emulsifier
JPS55115419A (en) 1979-02-26 1980-09-05 Saiden Kagaku Kk Manufacture of stable copolymer emulsion
JPS5628208A (en) 1979-08-16 1981-03-19 Sekisui Chem Co Ltd Preparation of latex for diagnostic reagent
JPS58203960A (ja) 1982-05-21 1983-11-28 Kao Corp 新規なスルホコハク酸ジエステル塩およびその製造法並びにこれを含有する反応性界面活性剤組成物
JPS5978236A (ja) 1982-10-28 1984-05-07 Toagosei Chem Ind Co Ltd ビニル重合反応性直鎖シリコ−ン高分子量モノマ−の製造法
JPS6234947A (ja) 1985-08-08 1987-02-14 Sanyo Chem Ind Ltd 水分散型樹脂組成物
JPS62104802A (ja) 1985-07-24 1987-05-15 Asahi Denka Kogyo Kk 乳化重合用乳化剤
JPS63228649A (ja) * 1987-03-17 1988-09-22 Nitto Electric Ind Co Ltd 半導体装置
JPH02228319A (ja) * 1989-03-01 1990-09-11 Toshiba Chem Corp 封止用樹脂組成物
JPH03106960A (ja) * 1989-09-20 1991-05-07 Hitachi Chem Co Ltd エポキシ樹脂成形材料
JPH0450204A (ja) 1990-06-19 1992-02-19 Dai Ichi Kogyo Seiyaku Co Ltd 乳化重合用乳化剤
JPH0453802A (ja) 1990-06-20 1992-02-21 Dai Ichi Kogyo Seiyaku Co Ltd 乳化重合用乳化剤
JPH06228316A (ja) 1993-01-29 1994-08-16 Shin Etsu Chem Co Ltd 片末端ビニル重合性シリコーンの製造方法
JPH07206949A (ja) * 1994-01-12 1995-08-08 Shin Etsu Chem Co Ltd 熱硬化性樹脂組成物
JP2000080285A (ja) 1998-09-07 2000-03-21 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物及びその半導体装置
JP2002088224A (ja) * 2000-09-13 2002-03-27 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2003502484A (ja) * 1999-06-17 2003-01-21 ヘンケル ロックタイト コーポレイション ヘテロ原子炭素環式またはエポキシ樹脂および硬化剤の制御可能な分解性組成物
JP2003531941A (ja) * 2000-04-21 2003-10-28 ヘンケル ロックタイト コーポレイション レオロジー調整したエポキシ系組成物
JP2006193619A (ja) * 2005-01-13 2006-07-27 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2006193607A (ja) * 2005-01-13 2006-07-27 Mitsubishi Gas Chem Co Inc 樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2009035728A (ja) 2007-07-12 2009-02-19 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP2010044998A (ja) * 2008-08-18 2010-02-25 Sekisui Chem Co Ltd 絶縁シート及び積層構造体
JP2010100803A (ja) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd エポキシ系樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板及び多層積層板
WO2011005925A1 (en) * 2009-07-10 2011-01-13 Dow Global Technologies Inc. Core/shell rubbers for use in electrical laminate compositions
JP2011195673A (ja) * 2010-03-18 2011-10-06 Sekisui Chem Co Ltd 樹脂組成物、樹脂シート、樹脂シートの製造方法及び積層構造体
WO2011132674A1 (ja) * 2010-04-21 2011-10-27 三菱瓦斯化学株式会社 熱硬化性組成物
WO2012029690A1 (ja) * 2010-08-31 2012-03-08 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、および積層板
WO2012099162A1 (ja) * 2011-01-20 2012-07-26 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、および積層板
WO2012121224A1 (ja) * 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 樹脂組成物ならびにこれを用いたプリプレグおよび積層板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3825371B2 (ja) * 2002-05-30 2006-09-27 関西ペイント株式会社 塗料組成物
TWI441866B (zh) * 2006-02-17 2014-06-21 Hitachi Chemical Co Ltd A thermosetting resin composition of a semi-IPN type composite and a varnish, a prepreg and a metal laminate

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940388A (ja) 1972-08-26 1974-04-15
JPS4946291A (ja) 1972-09-06 1974-05-02
JPS5098484A (ja) 1973-12-29 1975-08-05
JPS52134658A (en) 1976-05-07 1977-11-11 Seiko Kagaku Kogyo Co Ltd Polymer aqueous composition and process for production thereof
JPS53126093A (en) 1977-04-12 1978-11-02 Japan Exlan Co Ltd Preparation of aqueous polymer emulsion having modified stability
JPS54144317A (en) 1978-05-04 1979-11-10 Nippon Oil & Fats Co Ltd Sulfonate and emulsion polymerization emulsifier
JPS55115419A (en) 1979-02-26 1980-09-05 Saiden Kagaku Kk Manufacture of stable copolymer emulsion
JPS5628208A (en) 1979-08-16 1981-03-19 Sekisui Chem Co Ltd Preparation of latex for diagnostic reagent
JPS58203960A (ja) 1982-05-21 1983-11-28 Kao Corp 新規なスルホコハク酸ジエステル塩およびその製造法並びにこれを含有する反応性界面活性剤組成物
JPS5978236A (ja) 1982-10-28 1984-05-07 Toagosei Chem Ind Co Ltd ビニル重合反応性直鎖シリコ−ン高分子量モノマ−の製造法
JPS62104802A (ja) 1985-07-24 1987-05-15 Asahi Denka Kogyo Kk 乳化重合用乳化剤
JPS6234947A (ja) 1985-08-08 1987-02-14 Sanyo Chem Ind Ltd 水分散型樹脂組成物
JPS63228649A (ja) * 1987-03-17 1988-09-22 Nitto Electric Ind Co Ltd 半導体装置
JPH02228319A (ja) * 1989-03-01 1990-09-11 Toshiba Chem Corp 封止用樹脂組成物
JPH03106960A (ja) * 1989-09-20 1991-05-07 Hitachi Chem Co Ltd エポキシ樹脂成形材料
JPH0450204A (ja) 1990-06-19 1992-02-19 Dai Ichi Kogyo Seiyaku Co Ltd 乳化重合用乳化剤
JPH0453802A (ja) 1990-06-20 1992-02-21 Dai Ichi Kogyo Seiyaku Co Ltd 乳化重合用乳化剤
JPH06228316A (ja) 1993-01-29 1994-08-16 Shin Etsu Chem Co Ltd 片末端ビニル重合性シリコーンの製造方法
JPH07206949A (ja) * 1994-01-12 1995-08-08 Shin Etsu Chem Co Ltd 熱硬化性樹脂組成物
JP2000080285A (ja) 1998-09-07 2000-03-21 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物及びその半導体装置
JP2003502484A (ja) * 1999-06-17 2003-01-21 ヘンケル ロックタイト コーポレイション ヘテロ原子炭素環式またはエポキシ樹脂および硬化剤の制御可能な分解性組成物
JP2003531941A (ja) * 2000-04-21 2003-10-28 ヘンケル ロックタイト コーポレイション レオロジー調整したエポキシ系組成物
JP2002088224A (ja) * 2000-09-13 2002-03-27 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2006193619A (ja) * 2005-01-13 2006-07-27 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2006193607A (ja) * 2005-01-13 2006-07-27 Mitsubishi Gas Chem Co Inc 樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2009035728A (ja) 2007-07-12 2009-02-19 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP2010044998A (ja) * 2008-08-18 2010-02-25 Sekisui Chem Co Ltd 絶縁シート及び積層構造体
JP2010100803A (ja) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd エポキシ系樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板及び多層積層板
WO2011005925A1 (en) * 2009-07-10 2011-01-13 Dow Global Technologies Inc. Core/shell rubbers for use in electrical laminate compositions
JP2011195673A (ja) * 2010-03-18 2011-10-06 Sekisui Chem Co Ltd 樹脂組成物、樹脂シート、樹脂シートの製造方法及び積層構造体
WO2011132674A1 (ja) * 2010-04-21 2011-10-27 三菱瓦斯化学株式会社 熱硬化性組成物
WO2012029690A1 (ja) * 2010-08-31 2012-03-08 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、および積層板
WO2012099162A1 (ja) * 2011-01-20 2012-07-26 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、および積層板
WO2012121224A1 (ja) * 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 樹脂組成物ならびにこれを用いたプリプレグおよび積層板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927278A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170032243A (ko) * 2014-07-18 2017-03-22 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 및 프린트 배선판
KR102238207B1 (ko) 2014-07-18 2021-04-08 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 및 프린트 배선판
KR101762102B1 (ko) 2015-02-03 2017-08-04 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 복합 시트, 및 프린트 배선판
CN105201394A (zh) * 2015-09-30 2015-12-30 国家电网公司 一种电力维修用绝缘梯
JP2018039956A (ja) * 2016-09-09 2018-03-15 信越化学工業株式会社 熱硬化性エポキシ樹脂組成物および半導体装置
JP2020533473A (ja) * 2017-12-29 2020-11-19 廣東生益科技股▲ふん▼有限公司Shengyi Technology Co.,Ltd. 樹脂組成物、プリプレグ、積層板および金属張積層板

Also Published As

Publication number Publication date
KR20150089040A (ko) 2015-08-04
TW201425453A (zh) 2014-07-01
SG11201503925QA (en) 2015-06-29
TWI593745B (zh) 2017-08-01
EP2927278B1 (en) 2021-09-15
KR102124753B1 (ko) 2020-06-19
JP6332036B2 (ja) 2018-05-30
US20150319853A1 (en) 2015-11-05
EP2927278A1 (en) 2015-10-07
CN104837922A (zh) 2015-08-12
US10178767B2 (en) 2019-01-08
CN104837922B (zh) 2019-05-10
JPWO2014084226A1 (ja) 2017-01-05
EP2927278A4 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6332036B2 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板、及びプリント配線板
JP6314830B2 (ja) 樹脂組成物、プリプレグ、積層板、及びプリント配線板
JP6414799B2 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板
US7056585B2 (en) Prepreg and laminate
JP6249345B2 (ja) 樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6388147B1 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
WO2011152402A1 (ja) 樹脂組成物およびこれを用いたプリプレグ及び積層板
JP7025729B2 (ja) プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
JP7116370B2 (ja) 樹脂組成物、プリプレグ、レジンシート、積層板、及びプリント配線板
US11769607B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed circuit board
JP6115225B2 (ja) 樹脂組成物、プリプレグ、積層板及びプリント配線板
JP6452083B2 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
WO2013065694A1 (ja) 樹脂組成物、プリプレグ及び積層板
JP6681052B2 (ja) プリプレグ、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
WO2015119121A1 (ja) プリント配線板用樹脂組成物、プリプレグ、金属箔張り積層板、樹脂複合シート、及びプリント配線板
TW202024223A (zh) 熱硬化性樹脂組成物、預浸體、樹脂片、覆金屬箔疊層板及印刷配線板
JP2015168704A (ja) プリント配線板用樹脂組成物
JP2014084327A (ja) 樹脂組成物、プリプレグ、積層板及びプリント配線板
JP2018104631A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550206

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013857760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14647272

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157016366

Country of ref document: KR

Kind code of ref document: A