[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014083901A1 - Compressor, refrigeration cycle device, and heat pump hot-water supply device - Google Patents

Compressor, refrigeration cycle device, and heat pump hot-water supply device Download PDF

Info

Publication number
WO2014083901A1
WO2014083901A1 PCT/JP2013/073336 JP2013073336W WO2014083901A1 WO 2014083901 A1 WO2014083901 A1 WO 2014083901A1 JP 2013073336 W JP2013073336 W JP 2013073336W WO 2014083901 A1 WO2014083901 A1 WO 2014083901A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sealed container
compressor
oil
discharge passage
Prior art date
Application number
PCT/JP2013/073336
Other languages
French (fr)
Japanese (ja)
Inventor
野本 宗
謙作 畑中
啓輔 高山
酒井 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014550053A priority Critical patent/JP5892261B2/en
Priority to EP13859532.7A priority patent/EP2930449B1/en
Publication of WO2014083901A1 publication Critical patent/WO2014083901A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor

Definitions

  • the present invention relates to a compressor, a refrigeration cycle apparatus, and a heat pump hot water supply apparatus.
  • Patent Document 1 has a compression element and an electric element in a hermetic container and hermetically seals a suction pipe (first suction passage) that directly leads a low-pressure side refrigerant to the compression element and a high-pressure refrigerant compressed by the compression element.
  • a suction pipe first suction passage
  • a discharge pipe (first discharge passage) that discharges directly to the outside of the sealed container without releasing it into the container, and a refrigerant reintroduction pipe (first discharge pipe) that is discharged from the discharge pipe and guides the refrigerant after heat exchange back into the sealed container 2) and a refrigerant re-discharge pipe (second discharge passage) for re-introducing the refrigerant into the sealed container and discharging the refrigerant after passing through the electric element to the outside of the sealed container is disclosed.
  • refrigerating machine oil is supplied into a compression chamber of a compression element of a compressor in order to lubricate and seal a sliding portion and reduce friction and gap leakage.
  • Refrigerator oil is lubricating oil for a compressor of a refrigeration cycle apparatus.
  • a large amount of refrigeration oil flows out of the compressor from the first discharge passage together with the compressed high-pressure refrigerant gas.
  • the high-pressure refrigerant gas and the refrigerating machine oil form a gas-liquid two-phase flow and pass through an external heat exchanger.
  • An object of the present invention is to reduce the amount of refrigerating machine oil flowing out from the discharge passage together with the refrigerant with a simple configuration, and to provide a refrigeration cycle apparatus and a heat pump hot water supply apparatus provided with the compressor.
  • a compressor according to the present invention includes a hermetic container, a compression element provided in the hermetic container, a first suction passage that guides the sucked low-pressure refrigerant to the compression element without releasing it into the internal space of the hermetic container, A first discharge passage that directly discharges the high-pressure refrigerant compressed by the compression element to the outside of the sealed container without being discharged into the inner space of the sealed container, and provided downstream of the first discharge path and the first discharge path.
  • a second suction passage that guides the high-pressure refrigerant that has passed through the external heat exchanger to the inner space of the sealed container, a second discharge passage that discharges the high-pressure refrigerant in the inner space of the sealed container to the outside of the sealed container, An oil return passage for guiding the refrigeration oil flowing out from the compression element to the first discharge passage into the internal space of the sealed container or the second suction passage, and when the high-pressure refrigerant passes through the external heat exchanger.
  • the first pressure that is the pressure in the first discharge passage due to the pressure loss that occurs.
  • the second high pressure which is the pressure in the internal space of the sealed container and the second suction passage, is lowered, and the refrigerating machine oil moves in the oil return flow path due to the difference between the first high pressure and the second high pressure.
  • the amount of refrigerating machine oil flowing out together with the refrigerant from the first discharge passage is reduced. It can be reliably reduced with a simple configuration. As a result, it is possible to suppress heat transfer inhibition and an increase in pressure loss in the heat exchanger that exchanges heat with the refrigerant discharged from the first discharge passage, and to suppress a decrease in refrigerating machine oil inside the compressor. It becomes possible.
  • FIG. 1 It is a block diagram which shows the heat pump hot-water supply apparatus provided with the compressor of Embodiment 1 of this invention. It is a block diagram which shows the hot water storage type hot-water supply system provided with the heat pump hot-water supply apparatus shown in FIG. It is sectional drawing which shows the compressor of Embodiment 1 of this invention. It is sectional drawing which shows typically the flow state of refrigerant gas and refrigeration oil. It is sectional drawing which shows the oil return flow path with which the compressor of Embodiment 1 of this invention is provided. It is a cross-sectional view of the inner pipe of the 1st discharge passage with which the compressor of Embodiment 2 of the present invention is provided.
  • FIG. 1 is a configuration diagram illustrating a heat pump hot water supply apparatus including the compressor according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a hot water storage type hot water supply system including the heat pump hot water supply apparatus shown in FIG. 1. As shown in FIG.
  • the heat pump water heater 1 of the present embodiment includes a compressor 3, a first water refrigerant heat exchanger 4 (first heat exchanger), and a second water refrigerant heat exchanger 5 (first 2 heat exchanger), a refrigerant circuit including an expansion valve 6 (expansion means) and an evaporator 7, and a water flow path for circulating hot water through the first water refrigerant heat exchanger 4 and the second water refrigerant heat exchanger 5.
  • the evaporator 7 in the present embodiment is an air refrigerant heat exchanger that performs heat exchange between air and refrigerant.
  • the heat pump hot water supply apparatus 1 of the present embodiment further includes a blower 8 that blows air to the evaporator 7 and a high and low pressure heat exchanger 9 that performs heat exchange between the high pressure side refrigerant and the low pressure side refrigerant.
  • the compressor 3, the first water refrigerant heat exchanger 4, the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7 and the high and low pressure heat exchanger 9 are connected via a pipe through which the refrigerant passes, A refrigerant circuit is formed.
  • the heat pump water heater 1 operates the refrigeration cycle by operating the compressor 3 during the heating operation.
  • the heat pump hot water supply apparatus 1 of the present embodiment can be used as a hot water storage type hot water supply system by combining with the tank unit 2.
  • a hot water storage tank 2a for storing hot water and a water pump 2b are installed in the tank unit 2.
  • the heat pump hot water supply device 1 and the tank unit 2 are connected via a pipe 11 and a pipe 12 through which water flows, and an electric wiring (not shown).
  • One end of the pipe 11 is connected to the water inlet 1 a of the heat pump hot water supply apparatus 1.
  • the other end of the pipe 11 is connected to the lower part of the hot water storage tank 2 a in the tank unit 2.
  • a water pump 2 b is installed in the middle of the pipe 11 in the tank unit 2.
  • One end of the pipe 12 is connected to the hot water outlet 1 b of the heat pump hot water supply apparatus 1.
  • the other end of the pipe 12 is connected to the upper part of the hot water storage tank 2 a in the tank unit 2.
  • the water pump 2b may be disposed in the heat pump water heater 1.
  • the compressor 3 of the heat pump water heater 1 includes a sealed container 31, a compression element 32 and an electric element 33 provided in the sealed container 31, a first suction passage 34, and a first suction passage 34.
  • the discharge passage 35, the second suction passage 36, and the second discharge passage 37 are provided.
  • the low-pressure refrigerant sucked from the first suction passage 34 flows directly into the compression element 32 without being discharged into the internal space 311 of the sealed container 31.
  • the compression element 32 is driven by the electric element 33 to compress the low-pressure refrigerant into a high-pressure refrigerant.
  • the high-pressure refrigerant compressed by the compression element 32 is discharged directly outside the sealed container 31 through the first discharge passage 35 without being discharged into the internal space 311 of the sealed container 31.
  • the high-pressure refrigerant discharged from the first discharge passage 35 passes through the pipe 10 and reaches the first water refrigerant heat exchanger 4.
  • the high-pressure refrigerant that has passed through the first water-refrigerant heat exchanger 4 passes through the pipe 17 and reaches the second suction passage 36.
  • the second suction passage 36 guides the high-pressure refrigerant to the internal space 311 of the sealed container 31 of the compressor 3.
  • the high-pressure refrigerant that has flowed into the internal space 311 of the hermetic container 31 cools the electric element 33 by passing between the rotor and the stator of the electric element 33 and the like, and then is discharged from the second discharge passage 37 to the outside of the hermetic container 31. Is discharged.
  • the high-pressure refrigerant discharged from the second discharge passage 37 passes through the pipe 18 and reaches the second water refrigerant heat exchanger 5.
  • the high-pressure refrigerant that has passed through the second water-refrigerant heat exchanger 5 passes through the pipe 19 and reaches the expansion valve 6.
  • the high-pressure refrigerant passes through the expansion valve 6 and becomes a low-pressure refrigerant.
  • This low-pressure refrigerant flows into the evaporator 7 through the pipe 20.
  • the low-pressure refrigerant that has passed through the evaporator 7 reaches the first suction passage 34 through the pipe 21 and is sucked into the compressor 3.
  • the high / low pressure heat exchanger 9 exchanges heat between the high-pressure refrigerant passing through the pipe 19 and the low-pressure refrigerant passing through the pipe 21.
  • the heat pump water heater 1 includes a water flow path 23 connecting the water inlet 1a and the inlet of the second water refrigerant heat exchanger 5, an outlet of the second water refrigerant heat exchanger 5, and the first water refrigerant heat exchanger.
  • 4 is further provided with a water channel 24 that connects the four inlets, and a water channel 26 that connects the outlet of the first water refrigerant heat exchanger 4 and the hot water outlet 1b.
  • water flowing in from the water inlet 1 a flows into the second water refrigerant heat exchanger 5 through the water flow path 23 and is heated by the heat of the refrigerant in the second water refrigerant heat exchanger 5.
  • Hot water generated by being heated in the second water-refrigerant heat exchanger 5 flows into the first water-refrigerant heat exchanger 4 through the water flow path 24, and in the first water-refrigerant heat exchanger 4. Then, it is further heated by the heat of the refrigerant. Hot water that has been heated further by being further heated in the first water-refrigerant heat exchanger 4 reaches the outlet 1b through the water channel 26, and is sent to the tank unit 2 through the pipe 12.
  • a refrigerant capable of producing high temperature hot water for example, a refrigerant such as carbon dioxide, R410A, propane, propylene or the like is suitable, but is not particularly limited thereto.
  • the high-temperature and high-pressure refrigerant gas discharged from the first discharge passage 35 of the compressor 3 decreases in temperature while dissipating heat while passing through the first water-refrigerant heat exchanger 4. Due to the pressure loss that occurs in the first water-refrigerant heat exchanger 4, the pipes 10, 17, etc., the pressure of the high-pressure refrigerant in the second suction passage 36 is higher than the pressure of the high-pressure refrigerant in the first discharge passage 35. A little lower.
  • the high-pressure refrigerant whose temperature has decreased while passing through the first water refrigerant heat exchanger 4 is sucked into the sealed container 31 from the second suction passage 36 to cool the electric element 33, thereby The temperature of the element 33 and the surface temperature of the sealed container 31 can be lowered. As a result, the motor efficiency of the electric element 33 can be improved, and the heat dissipation loss from the surface of the sealed container 31 can be reduced.
  • the high-pressure refrigerant gas guided from the second suction passage 36 to the internal space 311 of the sealed container 31 is discharged from the second discharge passage 37 in a high-pressure state after the temperature rises by taking the heat of the electric element 33. .
  • the high-pressure refrigerant discharged from the second discharge passage 37 flows into the second water refrigerant heat exchanger 5 and decreases in temperature while releasing heat while passing through the second water refrigerant heat exchanger 5.
  • the high-pressure refrigerant whose temperature has been lowered passes through the expansion valve 6 after heating the low-pressure refrigerant while passing through the high-low pressure heat exchanger 9.
  • the high-pressure refrigerant is depressurized to a low-pressure gas-liquid two-phase state.
  • the low-pressure refrigerant that has passed through the expansion valve 6 absorbs heat from the outside air while passing through the evaporator 7 and is evaporated into gas.
  • the low-pressure refrigerant exiting the evaporator 7 is heated by the high-low pressure heat exchanger 9 and then sucked into the compressor 3 from the first suction passage 34.
  • the high-pressure side refrigerant pressure is equal to or higher than the critical pressure
  • the high-pressure refrigerant in the first water refrigerant heat exchanger 4 and the second water refrigerant heat exchanger 5 decreases in temperature without undergoing a gas-liquid phase transition in a supercritical state. To dissipate heat.
  • the high-pressure side refrigerant pressure is equal to or lower than the critical pressure
  • the high-pressure refrigerant radiates heat while liquefying.
  • the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, it is possible to reliably prevent the liquefied refrigerant from flowing into the internal space 311 of the sealed container 31 from the second suction passage 36. For this reason, it can prevent reliably that the liquefied refrigerant
  • a water supply pipe 13 is further connected to the lower part of the hot water storage tank 2 a of the tank unit 2.
  • Water supplied from an external water source such as water supply flows through the water supply pipe 13 into the hot water storage tank 2a and is stored.
  • the hot water storage tank 2a is always maintained in a full water state when water flows in from the water supply pipe 13.
  • a hot water supply mixing valve 2c is further provided.
  • the hot water supply mixing valve 2 c is connected to the upper part of the hot water storage tank 2 a through the hot water discharge pipe 14.
  • a water supply branch pipe 15 branched from the water supply pipe 13 is connected to the hot water supply mixing valve 2c.
  • One end of a hot water supply pipe 16 is further connected to the hot water supply mixing valve 2c.
  • the other end of the hot water supply pipe 16 is connected to a hot water supply terminal such as a faucet, a shower, or a bathtub.
  • the water stored in the hot water storage tank 2a is sent to the heat pump water heater 1 through the pipe 11 by the water pump 2b. Is heated to hot water.
  • the hot water generated in the heat pump hot water supply apparatus 1 returns to the tank unit 2 through the pipe 12, and flows into the hot water storage tank 2a from the upper part.
  • hot water in the hot water storage tank 2 a is supplied to the hot water supply mixing valve 2 c through the hot water supply pipe 14, and low temperature water is supplied to the hot water supply pipe through the water supply branch pipe 15. It is supplied to the mixing valve 2c.
  • the hot water and the low temperature water are mixed by the hot water supply mixing valve 2 c and then supplied to the hot water supply terminal through the hot water supply pipe 16.
  • the hot water supply mixing valve 2c has a function of adjusting the mixing ratio of the hot water and the low temperature water so that the hot water temperature set by the user is obtained.
  • This hot water storage type hot water supply system includes a control unit 50.
  • the control unit 50 is electrically connected to actuators and sensors (not shown) and a user interface device (not shown) included in the heat pump hot water supply device 1 and the tank unit 2, respectively. It functions as a control means for controlling the operation of the system.
  • the control unit 50 is installed in the heat pump hot water supply apparatus 1, but the installation location of the control unit 50 is not limited to the heat pump hot water supply apparatus 1.
  • the control unit 50 may be installed in the tank unit 2. Moreover, you may make it the structure which distribute
  • the controller 50 controls the temperature of the hot water supplied from the heat pump hot water supply apparatus 1 to the tank unit 2 (hereinafter referred to as “hot water temperature”) at the target hot water temperature during the heating operation.
  • the target hot water temperature is set to 65 ° C. to 90 ° C., for example.
  • the control part 50 controls the tapping temperature by adjusting the rotation speed of the water pump 2b.
  • the control unit 50 detects the tapping temperature with a temperature sensor (not shown) provided in the water flow path 26, and increases the rotation speed of the water pump 2b when the tapping temperature detected is higher than the target tapping temperature. If the hot water temperature is lower than the target hot water temperature, the rotational speed of the water pump 2b is corrected.
  • control unit 50 can perform control so that the tapping temperature matches the target tapping temperature.
  • the temperature of the hot water may be controlled by controlling the temperature of the refrigerant discharged from the first discharge passage 35 of the compressor 3 or the rotational speed of the compressor 3.
  • FIG. 3 is a cross-sectional view showing the compressor according to the first embodiment of the present invention.
  • the compressor 3 of the present embodiment will be further described with reference to FIG.
  • the sealed container 31 of the compressor 3 of the present embodiment has a substantially cylindrical shape.
  • An accumulator 27 is installed adjacent to the sealed container 31 of the compressor 3. The low-pressure refrigerant passes through the accumulator 27 and is then sucked into the compressor 3 from the first suction passage 34. Note that the accumulator 27 is not shown in FIG. 1 described above.
  • a compression element 32 is disposed below the electric element 33.
  • the electric element 33 drives the compression element 32 via the rotating shaft 331.
  • the compression element 32 includes a compression chamber 321, a muffler 322, and a frame 323.
  • the low-pressure refrigerant gas sucked from the first suction passage 34 flows into the compression chamber 321 and is compressed in the compression chamber 321 to become high-pressure refrigerant gas.
  • the high-pressure refrigerant gas compressed in the compression chamber 321 is discharged into the muffler 322.
  • the high-pressure refrigerant gas discharged into the muffler 322 passes through the frame 323, passes through the first discharge passage 35, and is discharged out of the sealed container 31.
  • the high-pressure refrigerant gas discharged from the first discharge passage 35 passes through the path passing through the first water-refrigerant heat exchanger 4, and passes through the second suction passage 36 to the internal space 311 of the sealed container 31. Inhaled.
  • the internal space 311 of the sealed container 31 becomes a high-pressure atmosphere filled with the high-pressure refrigerant gas flowing from the second suction passage 36.
  • the pressure in the internal space 311 of the sealed container 31, that is, the pressure in the second suction passage 36 is due to pressure loss generated in the first water refrigerant heat exchanger 4, the pipes 10 and 17, and the like.
  • the pressure in the muffler 322, that is, the pressure in the first discharge passage 35 is slightly lower.
  • the pressure in the muffler 322 and the first discharge passage 35 is referred to as a first high pressure
  • the pressure in the internal space 311 of the sealed container 31 and the second suction passage 36 is referred to as a second high pressure.
  • the pressure difference between the first high pressure and the second high pressure has a magnitude corresponding to the pressure loss that occurs when the high-pressure refrigerant passes through the first water-refrigerant heat exchanger 4 or the like.
  • the first suction passage 34, the first discharge passage 35, and the second suction passage 36 each protrude from the side surface of the sealed container 31.
  • the second suction passage 36 is disposed above the first discharge passage 35.
  • the outlet of the second suction passage 36 opens into a space below the electric element 33 in the internal space 311 of the sealed container 31. That is, the outlet of the second suction passage 36 is at a position lower than the electric element 33.
  • An oil reservoir 312 in which refrigeration oil (not shown) is stored is located below the internal space 311 of the sealed container 31.
  • the oil level of the refrigerating machine oil in the oil reservoir 312 in the sealed container 31 is lower than the opening at the outlet of the second suction passage 36.
  • the inlet of the second discharge passage 37 opens into a space above the electric element 33 in the internal space 311 of the sealed container 31.
  • the outlet of the second suction passage 36 and the inlet of the second discharge passage 37 are located on the opposite sides via the electric element 33.
  • the high-pressure refrigerant gas that has flowed from the second suction passage 36 into the space below the electric element 33 in the internal space 311 of the sealed container 31 passes through a gap such as between the rotor and the stator of the electric element 33. It passes through and moves to the space above the electric element 33 in the internal space 311. Thereafter, the high-pressure refrigerant gas is discharged out of the sealed container 31 through the second discharge passage 37.
  • the refrigerant discharged from the second discharge passage 37 passes through the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7, and the like, and then passes through the second passage of the compressor 3. Return to the first suction passage 34.
  • Refrigerator oil is supplied from the oil reservoir 312 into the compression chamber 321 in order to lubricate and seal the sliding portion of the compression element 32 and reduce friction and gap leakage.
  • the refrigerating machine oil supplied into the compression chamber 321 flows out to the first discharge passage 35 through the muffler 322 and the frame 323 together with the compressed high-pressure refrigerant gas.
  • This high-pressure refrigerant gas and refrigerating machine oil become a gas-liquid two-phase flow.
  • FIG. 4 is a cross-sectional view schematically showing the flow state of the refrigerant gas and the refrigerating machine oil.
  • the flow state of the refrigerant gas and the refrigerating machine oil is a state called an annular flow or an annular spray flow. That is, the refrigerating machine oil that is in the liquid phase flows as an annular liquid film along the tube wall, and the refrigerant gas that is in the gas phase flows in the center of the tube. Such a state is called an annular flow.
  • a part of the refrigerating machine oil may be scattered to form a spray. Such a state is called an annular spray flow.
  • the heat transfer in the first water refrigerant heat exchanger 4 is refrigerated.
  • the performance of the heat pump hot water supply apparatus 1 may be deteriorated by being obstructed by machine oil or increasing pressure loss. Further, when the amount of the refrigerating machine oil in the sealed container 31 is reduced, there is a possibility that the reliability may be affected.
  • the compressor 3 of the first embodiment uses the refrigerating machine oil that has flowed out from the compression element 32 to the first discharge passage 35.
  • An oil return channel that leads to the internal space 311 of the sealed container 31 is provided.
  • FIG. 5 is a cross-sectional view showing an oil return flow path provided in the compressor 3 according to the first embodiment of the present invention.
  • the first discharge passage 35 has an outer tube 351 and an inner tube 352 disposed inside the outer tube 351.
  • the upstream end of the outer tube 351 is airtightly fitted into a hole provided in the wall of the sealed container 31.
  • the upstream end surface of the outer tube 351 is in contact with the frame 323 of the compression element 32.
  • the inner tube 352 protrudes from the upstream end surface of the outer tube 351 and is inserted into a passage 324 formed in the frame 323.
  • the upstream end of the inner tube 352 is fitted in the passage 324 in an airtight manner.
  • a plurality of holes 353 through which refrigeration oil can pass are formed in the tube wall of the inner tube 352.
  • the hole 353 opens on the inner peripheral surface of the inner pipe 352 of the first discharge passage 35.
  • a gap is formed between the inner peripheral surface of the outer tube 351 and the outer peripheral surface of the inner tube 352.
  • This gap constitutes a first oil return channel 354 through which the refrigeration oil can pass.
  • a sealing member 355 is sealed between the outer peripheral surface of the downstream end of the inner tube 352 and the inner peripheral surface of the outer tube 351.
  • the frame 323 is formed with a second oil return channel 325 through which refrigeration oil can pass.
  • the second oil return channel 325 includes an annular groove that communicates with the first oil return channel 354 and a through channel that passes between the groove and the lower surface of the frame 323.
  • the hole 353 communicates with the internal space 311 of the sealed container 31 via the first oil return channel 354 and the second oil return channel 325.
  • the refrigerating machine oil supplied into the compression chamber 321 of the compression element 32 flows into the inner pipe 352 of the first discharge passage 35 through the muffler 322 and the passage 324 in the frame 323 together with the compressed high-pressure refrigerant gas. .
  • the high-pressure refrigerant gas and the refrigerating machine oil form an annular flow. That is, most of the refrigerating machine oil in the inner pipe 352 flows as an annular liquid film along the inner peripheral surface of the inner pipe 352.
  • the refrigerating machine oil that exists as a liquid film on the inner peripheral surface of the inner tube 352 is sucked into the hole 353 that opens on the inner peripheral surface of the inner tube 352 as shown by a thin arrow in FIG.
  • the refrigerating machine oil has a higher density than the refrigerant gas, the refrigerating machine oil that has flowed out from the outlet of the second oil return channel 325 falls due to gravity and enters the oil reservoir 312 below the inner space 311 of the sealed container 31.
  • the refrigerant gas passes through the inner pipe 352, reaches the outer pipe 351, and is sent to the first water refrigerant heat exchanger 4 side.
  • the oil return channel in the first embodiment includes the first oil return channel 354 provided on the outer peripheral side of the inner pipe 352 of the first discharge passage 35, the first oil return channel 354,
  • the second oil return flow path 325 is configured to communicate with the inner space 311 of the sealed container 31 inside the sealed container 31.
  • the compressor 3 by providing the compressor 3 with the oil return channel as described above, the refrigerating machine oil flowing out to the first discharge passage 35 can be guided to the internal space 311 of the sealed container 31. it can. For this reason, the quantity of the refrigerating machine oil which flows into the 1st water-refrigerant heat exchanger 4 from the 1st discharge channel 35 can be reduced reliably. As a result, an increase in pressure loss due to the refrigerating machine oil and heat transfer inhibition in the first water refrigerant heat exchanger 4 can be reliably suppressed. Thereby, the performance of the heat pump hot-water supply apparatus 1 can be improved.
  • the apparatus configuration can be simplified and reduced in size.
  • the first oil return channel 354 and the second oil return channel 325 can be integrally provided in the first discharge passage 35 or in the vicinity thereof. Therefore, the above effect can be achieved with a very simple and small configuration. For this reason, the manufacturing cost can be reduced, the weight can be reduced, and the space can be saved.
  • the second high pressure in the internal space 311 of the sealed container 31 is lower than the first high pressure in the first discharge passage 35.
  • the refrigeration oil in the 1st oil return flow path 354 and the 2nd oil return flow path 325 moves automatically by the force which the difference of a 1st high pressure and a 2nd high pressure brings.
  • the refrigerating machine oil in the first discharge passage 35 can be returned to the internal space 311 of the sealed container 31 efficiently and reliably.
  • the difference between the first high pressure and the second high pressure is a magnitude corresponding to the pressure loss generated in the first water refrigerant heat exchanger 4 or the like, so that it is not an excessive pressure difference but an appropriate pressure difference. .
  • the force provided to the refrigerating machine oil in the first oil return channel 354 and the second oil return channel 325 due to the difference between the first high pressure and the second high pressure moves the refrigerating machine oil at an appropriate speed.
  • the high-pressure refrigerant gas in the first discharge passage 35 passes through the oil return passage to the internal space 311 of the sealed container 31 without providing an on-off valve, a pressure reducing valve, a capillary tube, or the like in the middle of the oil return passage. It can be surely prevented from leaking. Therefore, it is not necessary to provide an on-off valve, a pressure reducing valve, a capillary tube, etc. in the middle of the oil return channel, and the configuration can be simplified.
  • the inner tube 352 since the refrigeration oil is sucked into the first oil return channel 354 from the plurality of holes 353 opened in the inner peripheral surface of the inner tube 352 of the first discharge passage 35, the inner tube 352 The refrigerating machine oil forming an annular liquid film along the inner peripheral surface can be efficiently introduced into the first oil return channel 354.
  • the amount of refrigerating machine oil flowing out from the compression element 32 to the first discharge passage 35 is examined in advance, and the size of the holes 353 and the number of the holes 353 are set according to the amount.
  • the inflow amount of the refrigerating machine oil from the hole 353 to the first oil return channel 354 can be controlled to an appropriate amount.
  • the compressor for compressing the refrigerant generally has a low-pressure shell type in which the low-pressure refrigerant gas before compression fills the internal space of the sealed container, and a high-pressure shell in which the high-pressure refrigerant gas after compression fills the internal space of the sealed container.
  • a “shell” is a sealed container.
  • the compressor 3 according to the first embodiment is a high-pressure shell type because the internal space 311 of the sealed container 31 is filled with the high-pressure refrigerant gas.
  • the oil separator in a general compressor having one refrigerant suction passage and one refrigerant passage, when the oil separator is provided on the discharge passage side of the compressor, the oil separator It is difficult to return the separated refrigeration oil directly to the internal space of the sealed container.
  • the refrigerant pressure on the discharge passage side is equal to the pressure in the inner space of the closed container (shell), so the refrigerating machine oil separated by the oil separator is separated from the closed container by the pressure difference. This is because it cannot be sent to the internal space.
  • an oil separator is provided on the discharge passage side, and an oil return pipe for connecting the oil separator and the sealed container is provided. It can be sent to the internal space of the sealed container by a pressure difference.
  • the pressure of the oil separator is equal to the pressure of the high-pressure refrigerant gas
  • the pressure of the internal space of the sealed container is equal to the pressure of the low-pressure refrigerant gas.
  • the difference from the space pressure is too large. For this reason, high-pressure refrigerant gas may flow into the internal space of the sealed container through the oil return pipe.
  • the oil separator when the oil separator is provided on the discharge passage side of the low-pressure shell compressor, the high-pressure refrigerant gas is prevented from leaking from the oil separator through the oil return pipe to the internal space of the sealed container. Therefore, it is necessary to provide an on-off valve, a pressure reducing valve, a capillary tube, etc. in the middle of the oil return pipe. If an on-off valve, a pressure reducing valve, a capillary tube, or the like is provided in the middle of the oil return pipe, there is a problem that the structure becomes complicated.
  • the present invention is not limited to the heat pump hot water supply apparatus, and various vapor compressions such as an air conditioner and a cold insulation apparatus are used. The same can be applied to the refrigeration cycle apparatus.
  • FIG. 6 is a cross-sectional view of the inner pipe 352 of the first discharge passage 35 provided in the compressor 3 according to Embodiment 2 of the present invention.
  • a groove 356 is formed along the longitudinal direction on the inner wall of the inner tube 352 of the first discharge passage 35.
  • a large number of grooves 356 are formed in parallel, and the grooves 356 are disposed on the inner circumference of the inner tube 352 over the entire circumference.
  • the second embodiment is the same as the first embodiment except that such a groove 356 is formed on the inner wall of the inner tube 352.
  • the refrigeration oil is more reliably captured on the inner wall of the inner tube 352 by the action of surface tension. For this reason, refrigeration oil can be made to flow more efficiently into the hole 353 formed in the inner pipe 352. Therefore, the refrigeration oil can be more reliably separated from the high-pressure refrigerant gas in the first discharge passage 35 and returned to the internal space 311 of the sealed container 31.
  • the cross-sectional shape of the groove 356 is substantially V-shaped.
  • the cross-sectional shape of the groove 356 may be a rectangular shape, a semicircular shape, or the like.
  • the groove 356 may not be completely parallel to the axial direction of the inner tube 352, and the groove 356 may be formed with a twist angle with respect to the axial direction of the inner tube 352.
  • FIG. 7 is a cross-sectional view showing an oil return flow path included in the compressor 3 according to Embodiment 3 of the present invention.
  • the third embodiment is the same as the first embodiment except that the configuration of the oil return channel is different.
  • the oil return flow path provided in the compressor 3 of the third embodiment will be described.
  • the first discharge passage 35 includes an outer tube 351 and an inner tube 352 disposed inside the outer tube 351.
  • the upstream end of the outer tube 351 is airtightly fitted into a hole provided in the wall of the sealed container 31.
  • the upstream end surface of the outer tube 351 is in contact with the frame 323 of the compression element 32.
  • the inner tube 352 protrudes from the upstream end surface of the outer tube 351 and is inserted into a passage 324 formed in the frame 323.
  • the upstream end of the inner tube 352 is fitted in the passage 324 in an airtight manner.
  • a plurality of holes 353 through which refrigeration oil can pass are formed in the side wall of the inner pipe 352.
  • the hole 353 opens on the inner peripheral surface of the inner pipe 352 of the first discharge passage 35.
  • a gap is formed between the inner peripheral surface of the outer tube 351 and the outer peripheral surface of the inner tube 352.
  • This gap constitutes a first oil return channel 354 through which the refrigeration oil can pass.
  • a sealing member 355 is sealed between the outer peripheral surface of the downstream end of the inner tube 352 and the inner peripheral surface of the outer tube 351.
  • the first oil return channel 354 communicates with the second suction passage 36 via the second oil return channel 357.
  • a hole formed in the tube wall of the outer tube 351 outside the first oil return channel 354 and a hole formed in the tube wall of the second suction passage 36 are connected by a tube.
  • the second oil return channel 357 is constituted by this pipe. In this way, the hole 353 communicates with the inside of the second suction passage 36 via the first oil return channel 354 and the second oil return channel 357.
  • the refrigerating machine oil supplied into the compression chamber 321 of the compression element 32 flows into the inner pipe 352 of the first discharge passage 35 through the muffler 322 and the passage 324 in the frame 323 together with the compressed high-pressure refrigerant gas. Form an annular flow.
  • the refrigerating machine oil that exists as a liquid film on the inner peripheral surface of the inner pipe 352 is sucked into the hole 353 that opens on the inner peripheral surface of the inner pipe 352 as shown by a thin arrow in FIG. 354 and the second oil return flow path 357 reach the second suction passage 36.
  • the refrigerating machine oil further flows out from the outlet of the second suction passage 36 into the internal space 311 of the sealed container 31, falls due to gravity, and returns to the oil reservoir 312 below the internal space 311 of the sealed container 31.
  • the high-pressure refrigerant gas in the inner pipe 352 passes through the inner pipe 352, reaches the outer pipe 351, and is sent to the first water refrigerant heat exchanger 4.
  • the oil return flow path in the third embodiment includes the first oil return flow path 354 provided on the outer peripheral side of the inner pipe 352 of the first discharge passage 35, the first oil return flow path 354, A second oil return passage 357 is provided that communicates with the second suction passage 36 outside the sealed container 31.
  • the oil return flow path as described above is provided in the compressor 3 so that the refrigeration oil flowing out to the first discharge passage 35 is guided to the second suction passage 36.
  • This refrigerating machine oil can be returned from the second suction passage 36 to the internal space 311 of the sealed container 31.
  • the quantity of the refrigerating machine oil which flows into the 1st water-refrigerant heat exchanger 4 from the 1st discharge channel 35 can be reduced reliably.
  • an increase in pressure loss due to the refrigerating machine oil and heat transfer inhibition in the first water refrigerant heat exchanger 4 can be reliably suppressed.
  • the performance of the heat pump hot-water supply apparatus 1 can be improved.
  • the apparatus configuration can be simplified and reduced in size.
  • the first oil return channel 354 and the second oil return channel 357 are arranged in the vicinity of the first discharge passage 35 and the second suction passage 36 of the compressor 3. And the structure is simple. For this reason, the manufacturing cost can be reduced, the weight can be reduced, and the space can be saved.
  • the first oil return flow channel 354 and the second oil return flow are generated by a force having an appropriate magnitude caused by the difference between the first high pressure and the second high pressure.
  • the refrigerating machine oil in the path 357 automatically moves at an appropriate speed.
  • a groove 356 may be formed on the inner wall of the inner tube 352 as in the second embodiment.
  • FIG. 8 is a longitudinal sectional view of the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to Embodiment 4 of the present invention.
  • FIG. 9 is a cross-sectional view of the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to Embodiment 4 of the present invention.
  • the refrigerating machine oil in the first discharge passage 35 is guided into the second suction passage 36 and flows into the sealed container 31 from the outlet of the second suction passage 36.
  • the refrigeration oil may be wound up by the flow of the high-pressure refrigerant gas ejected from the outlet of the second suction passage 36.
  • a part of the rolled up refrigerating machine oil is atomized and mixed in the high-pressure refrigerant gas.
  • the refrigerating machine oil mixed in the high-pressure refrigerant gas flows out from the second discharge passage 37 and circulates in the refrigerant circuit such as the second water refrigerant heat exchanger 5.
  • the heat transfer in the second water-refrigerant heat exchanger 5 may be impeded by the refrigerating machine oil, or the pressure loss may increase, so that the performance of the heat pump water heater 1 may deteriorate.
  • the compressor 3 of the fourth embodiment includes an oil separation means for separating the high-pressure refrigerant gas flowing from the second suction passage 36 and the refrigerating machine oil. Is further provided. Hereinafter, the structure of the oil separation means in the fourth embodiment will be described.
  • the compressor 3 of the fourth embodiment includes an inner pipe 38 inside the second suction passage 36.
  • the high-pressure refrigerant gas can pass through the inner pipe 38. That is, the inner pipe 38 has a flow path cross-sectional area through which the high-pressure refrigerant gas can smoothly pass.
  • the refrigerating machine oil introduced from the first discharge passage 35 into the second suction passage 36 can pass between the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38. . That is, a gap is formed between the inner wall of the second suction passage 36 and the outer wall of the inner tube 38 so as to have a flow path cross-sectional area through which the refrigerating machine oil can smoothly pass.
  • the downstream end of the inner pipe 38 protrudes from the downstream end of the second suction passage 36. That is, the position of the downstream end of the inner pipe 38 is a position protruding toward the inside of the sealed container 31 as compared with the position of the downstream end of the second suction passage 36.
  • such an inner pipe 38 is provided as oil separation means.
  • the refrigerating machine oil flows out from the downstream end of the second suction passage 36 and falls downward to the oil reservoir 312 in the lower part of the internal space 311 of the sealed container 31.
  • the high-pressure refrigerant gas is ejected from the downstream end of the inner pipe 38 to the internal space 311 of the sealed container 31.
  • the refrigeration oil flowing out from the downstream end of the second suction passage 36 does not collide with the flow of high-pressure refrigerant gas ejected from the downstream end of the inner pipe 38, the refrigeration oil is wound up by the flow of high-pressure refrigerant gas. Can be reliably prevented from being scattered.
  • the refrigeration oil flowing out from the downstream end of the second suction passage 36 is reliably dropped and separated in the oil reservoir 312 below the inner space 311 of the sealed container 31 in this way. Can do.
  • a groove 364 along the longitudinal direction is formed on the inner wall of the second suction passage 36 so that the refrigerator oil can pass through the groove 364. ing.
  • a large number of grooves 364 are formed in parallel, and the grooves 364 are arranged on the entire inner periphery of the second suction passage 36.
  • the cross-sectional shape of the groove 364 is substantially V-shaped, but the cross-sectional shape of the groove 364 may be rectangular, semicircular, or the like.
  • the groove 364 may not be completely parallel to the axial direction of the second suction passage 36, and the groove 364 may be formed with a twist angle with respect to the axial direction of the second suction passage 36. Good.
  • the fourth embodiment since such a groove 364 is formed on the inner wall of the second suction passage 36, the refrigeration oil flowing in the second suction passage 36 is reliably captured by the groove 364 by the surface tension. The For this reason, the refrigerating machine oil is reliably prevented from being scattered and atomized in the high-pressure refrigerant gas at the center of the second suction passage 36, and the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38 are Refrigerating machine oil can be more reliably guided to the gap.
  • the groove 364 on the inner wall of the second suction passage 36 may be omitted. That is, the inner wall of the second suction passage 36 may be smooth. In the fourth embodiment, it is only necessary to provide a gap through which the refrigerating machine oil can pass between the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38.
  • FIG. 10 is a view showing the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to the fifth embodiment of the present invention.
  • the compressor 3 in the fifth embodiment separates the high-pressure refrigerant gas flowing from the second suction passage 36 from the refrigerating machine oil in addition to the configuration of the third embodiment. Oil separation means is further provided. Hereinafter, the configuration of the oil separation means in the fifth embodiment will be described.
  • a cylindrical mesh member 39 is connected to the downstream end of the second suction passage 36 in the sealed container 31.
  • the mesh member 39 is made of, for example, a metal material and has substantially the same diameter as the second suction passage 36.
  • such a net member 39 is provided as an oil separating means.
  • the central axis of the mesh member 39 is substantially horizontal.
  • the refrigerating machine oil that has flowed out from the downstream end of the second suction passage 36 is captured by the mesh member 39, travels along the circumferential surface of the mesh member 39, gathers at the lower portion of the mesh member 39, and is located below the inner space 311 of the sealed container 31. It falls to the oil sump 312.
  • the end face of the mesh member 39 is open.
  • the high-pressure refrigerant gas is jetted into the internal space 311 of the sealed container 31 not through the mesh (pores) of the mesh member 39 but through the opening at the end face of the mesh member 39.
  • a groove 364 similar to that in the fourth embodiment is formed on the inner wall of the second suction passage 36.
  • the refrigerating machine oil flowing in the second suction passage 36 is reliably captured in the groove 364 by the surface tension.
  • mixing of the high-pressure refrigerant gas flowing into the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be more reliably suppressed, and both can be more reliably separated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The purpose of the present invention is to use a simple configuration and reduce the amount of refrigerator oil that flows out from a first discharge path in a compressor having a first intake path, the first discharge path, a second intake path, and a second discharge path. This compressor comprises: the first intake path that guides low-pressure refrigerant to a compression element without releasing same to an internal space of a sealed container; the first discharge path that discharges a high-pressure refrigerant compressed by the compression element, to outside the sealed container without releasing same to the internal space of the sealed container; the second intake path that guides the high-pressure refrigerant that has passed through an external heat exchanger to the internal space of the sealed container; the second discharge path that discharges the high-pressure refrigerant in the internal space of the sealed container, to outside the sealed container; and an oil return flow path that guides the refrigerator oil from the first discharge path either to the internal space of the sealed container or into the second intake path. The pressure inside the internal space of the sealed container and inside the second intake path is lower than the pressure inside the first discharge path, as a result of pressure loss in the external heat exchanger, and the refrigerator oil travels inside the oil return flow path as a result of this pressure difference.

Description

圧縮機、冷凍サイクル装置およびヒートポンプ給湯装置Compressor, refrigeration cycle device and heat pump hot water supply device
 本発明は、圧縮機、冷凍サイクル装置およびヒートポンプ給湯装置に関する。 The present invention relates to a compressor, a refrigeration cycle apparatus, and a heat pump hot water supply apparatus.
 特許文献1には、密閉容器内に圧縮要素および電動要素を有し、低圧側の冷媒を圧縮要素に直接導く吸入管(第1の吸入通路)と、圧縮要素で圧縮した高圧の冷媒を密閉容器内に放出することなく直接密閉容器外に吐出する吐出管(第1の吐出通路)と、吐出管より吐出され、熱交換後の冷媒を、密閉容器内に再度導く冷媒再導入管(第2の吸入通路)と、密閉容器内に再度導入し、電動要素を通過後の冷媒を密閉容器外に吐出する冷媒再吐出管(第2の吐出通路)とを備えた給湯用圧縮機が開示されている。 Patent Document 1 has a compression element and an electric element in a hermetic container and hermetically seals a suction pipe (first suction passage) that directly leads a low-pressure side refrigerant to the compression element and a high-pressure refrigerant compressed by the compression element. A discharge pipe (first discharge passage) that discharges directly to the outside of the sealed container without releasing it into the container, and a refrigerant reintroduction pipe (first discharge pipe) that is discharged from the discharge pipe and guides the refrigerant after heat exchange back into the sealed container 2) and a refrigerant re-discharge pipe (second discharge passage) for re-introducing the refrigerant into the sealed container and discharging the refrigerant after passing through the electric element to the outside of the sealed container is disclosed. Has been.
日本特開2006-132427号公報Japanese Unexamined Patent Publication No. 2006-132427
 一般に、圧縮機の圧縮要素の圧縮室内には、摺動部を潤滑およびシールし、摩擦および隙間漏れを軽減するために、冷凍機油が供給される。冷凍機油とは、冷凍サイクル装置の圧縮機の潤滑油のことである。特許文献1に開示された圧縮機の場合には、圧縮された高圧冷媒ガスとともに多量の冷凍機油が、第1の吐出通路から、圧縮機外部へ流出する。この高圧冷媒ガスと冷凍機油とは、気液二相流になり、外部の熱交換器を通過する。その結果、上記熱交換器での伝熱が冷凍機油によって阻害されたり、冷凍機油の影響で圧力損失が増加したりすることにより、冷凍サイクルの性能が低下するという問題がある。また、圧縮機内部の冷凍機油の量が減少するため、信頼性に影響が及ぶおそれもある。 Generally, refrigerating machine oil is supplied into a compression chamber of a compression element of a compressor in order to lubricate and seal a sliding portion and reduce friction and gap leakage. Refrigerator oil is lubricating oil for a compressor of a refrigeration cycle apparatus. In the case of the compressor disclosed in Patent Document 1, a large amount of refrigeration oil flows out of the compressor from the first discharge passage together with the compressed high-pressure refrigerant gas. The high-pressure refrigerant gas and the refrigerating machine oil form a gas-liquid two-phase flow and pass through an external heat exchanger. As a result, there is a problem that the performance of the refrigeration cycle is deteriorated because heat transfer in the heat exchanger is hindered by the refrigeration oil or pressure loss increases due to the influence of the refrigeration oil. In addition, since the amount of refrigerating machine oil inside the compressor is reduced, there is a possibility that reliability may be affected.
 本発明は、上述のような課題を解決するためになされたもので、第1の吸入通路、第1の吐出通路、第2の吸入通路および第2の吐出通路を有する圧縮機において、第1の吐出通路から冷媒とともに流出する冷凍機油の量を簡単な構成で低減することを目的とし、更に、当該圧縮機を備えた冷凍サイクル装置およびヒートポンプ給湯装置を提供することを目的とする。 The present invention has been made to solve the above-described problems. In the compressor having the first suction passage, the first discharge passage, the second suction passage, and the second discharge passage, An object of the present invention is to reduce the amount of refrigerating machine oil flowing out from the discharge passage together with the refrigerant with a simple configuration, and to provide a refrigeration cycle apparatus and a heat pump hot water supply apparatus provided with the compressor.
 本発明に係る圧縮機は、密閉容器と、密閉容器内に設けられた圧縮要素と、吸入される低圧冷媒を密閉容器の内部空間へ放出せずに圧縮要素へ導く第1の吸入通路と、圧縮要素により圧縮された高圧冷媒を密閉容器の内部空間へ放出せずに密閉容器外へ直接吐出する第1の吐出通路と、第1の吐出通路と第1の吐出通路の下流側に設けられた外部の熱交換器とを通過した高圧冷媒を密閉容器の内部空間へ導く第2の吸入通路と、密閉容器の内部空間にある高圧冷媒を密閉容器外へ吐出する第2の吐出通路と、圧縮要素から第1の吐出通路へ流出した冷凍機油を密閉容器の内部空間または第2の吸入通路内へ導く油戻し流路と、を備え、高圧冷媒が外部の熱交換器を通過するときに生ずる圧力損失により、第1の吐出通路内の圧力である第1高圧に比べて、密閉容器の内部空間および第2の吸入通路内の圧力である第2高圧が低くなり、第1高圧と第2高圧との差により、冷凍機油が油戻し流路内を移動するものである。 A compressor according to the present invention includes a hermetic container, a compression element provided in the hermetic container, a first suction passage that guides the sucked low-pressure refrigerant to the compression element without releasing it into the internal space of the hermetic container, A first discharge passage that directly discharges the high-pressure refrigerant compressed by the compression element to the outside of the sealed container without being discharged into the inner space of the sealed container, and provided downstream of the first discharge path and the first discharge path. A second suction passage that guides the high-pressure refrigerant that has passed through the external heat exchanger to the inner space of the sealed container, a second discharge passage that discharges the high-pressure refrigerant in the inner space of the sealed container to the outside of the sealed container, An oil return passage for guiding the refrigeration oil flowing out from the compression element to the first discharge passage into the internal space of the sealed container or the second suction passage, and when the high-pressure refrigerant passes through the external heat exchanger. The first pressure that is the pressure in the first discharge passage due to the pressure loss that occurs. Compared to the pressure, the second high pressure, which is the pressure in the internal space of the sealed container and the second suction passage, is lowered, and the refrigerating machine oil moves in the oil return flow path due to the difference between the first high pressure and the second high pressure. To do.
 本発明によれば、第1の吸入通路、第1の吐出通路、第2の吸入通路および第2の吐出通路を有する圧縮機において、第1の吐出通路から冷媒とともに流出する冷凍機油の量を簡単な構成で確実に低減することができる。その結果、第1の吐出通路から吐出された冷媒を熱交換させる熱交換器での伝熱阻害および圧力損失増加を抑制することが可能となり、また、圧縮機内部の冷凍機油の減少を抑制することが可能となる。 According to the present invention, in a compressor having a first suction passage, a first discharge passage, a second suction passage, and a second discharge passage, the amount of refrigerating machine oil flowing out together with the refrigerant from the first discharge passage is reduced. It can be reliably reduced with a simple configuration. As a result, it is possible to suppress heat transfer inhibition and an increase in pressure loss in the heat exchanger that exchanges heat with the refrigerant discharged from the first discharge passage, and to suppress a decrease in refrigerating machine oil inside the compressor. It becomes possible.
本発明の実施の形態1の圧縮機を備えるヒートポンプ給湯装置を示す構成図である。It is a block diagram which shows the heat pump hot-water supply apparatus provided with the compressor of Embodiment 1 of this invention. 図1に示すヒートポンプ給湯装置を備えた貯湯式給湯システムを示す構成図である。It is a block diagram which shows the hot water storage type hot-water supply system provided with the heat pump hot-water supply apparatus shown in FIG. 本発明の実施の形態1の圧縮機を示す断面図である。It is sectional drawing which shows the compressor of Embodiment 1 of this invention. 冷媒ガスおよび冷凍機油の流動状態を模式的に示す断面図である。It is sectional drawing which shows typically the flow state of refrigerant gas and refrigeration oil. 本発明の実施の形態1の圧縮機が備える油戻し流路を示す断面図である。It is sectional drawing which shows the oil return flow path with which the compressor of Embodiment 1 of this invention is provided. 本発明の実施の形態2の圧縮機が備える第1の吐出通路の内管の横断面図である。It is a cross-sectional view of the inner pipe of the 1st discharge passage with which the compressor of Embodiment 2 of the present invention is provided. 本発明の実施の形態3の圧縮機が備える油戻し流路を示す断面図である。It is sectional drawing which shows the oil return flow path with which the compressor of Embodiment 3 of this invention is provided. 本発明の実施の形態4の圧縮機が備える第2の吸入通路の下流端付近の縦断面図である。It is a longitudinal cross-sectional view of the downstream end vicinity of the 2nd suction passage with which the compressor of Embodiment 4 of this invention is provided. 本発明の実施の形態4の圧縮機が備える第2の吸入通路の下流端付近の横断面図である。It is a transverse cross section near the downstream end of the 2nd suction passage with which the compressor of Embodiment 4 of the present invention is provided. 本発明の実施の形態5の圧縮機が備える第2の吸入通路の下流端付近を示す図である。It is a figure which shows the downstream end vicinity of the 2nd suction passage with which the compressor of Embodiment 5 of this invention is provided.
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。
実施の形態1.
 図1は、本発明の実施の形態1の圧縮機を備えるヒートポンプ給湯装置を示す構成図である。図2は、図1に示すヒートポンプ給湯装置を備えた貯湯式給湯システムを示す構成図である。図1に示すように、本実施形態のヒートポンプ給湯装置1は、圧縮機3、第1の水冷媒熱交換器4(第1の熱交換器)、第2の水冷媒熱交換器5(第2の熱交換器)、膨張弁6(膨張手段)および蒸発器7を含む冷媒回路と、第1の水冷媒熱交換器4および第2の水冷媒熱交換器5に湯水を流通させる水流路とを備えている。本実施形態における蒸発器7は、空気と冷媒との熱交換を行う空気冷媒熱交換器で構成されている。また、本実施形態のヒートポンプ給湯装置1は、蒸発器7に送風する送風機8と、高圧側冷媒と低圧側冷媒との熱交換を行う高低圧熱交換器9とを更に備えている。圧縮機3、第1の水冷媒熱交換器4、第2の水冷媒熱交換器5、膨張弁6、蒸発器7および高低圧熱交換器9は、冷媒が通る管を介して接続され、冷媒回路を形成している。ヒートポンプ給湯装置1は、加熱運転時には、圧縮機3を作動させることにより、冷凍サイクルを稼動させる。
Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating a heat pump hot water supply apparatus including the compressor according to the first embodiment of the present invention. FIG. 2 is a configuration diagram showing a hot water storage type hot water supply system including the heat pump hot water supply apparatus shown in FIG. 1. As shown in FIG. 1, the heat pump water heater 1 of the present embodiment includes a compressor 3, a first water refrigerant heat exchanger 4 (first heat exchanger), and a second water refrigerant heat exchanger 5 (first 2 heat exchanger), a refrigerant circuit including an expansion valve 6 (expansion means) and an evaporator 7, and a water flow path for circulating hot water through the first water refrigerant heat exchanger 4 and the second water refrigerant heat exchanger 5. And. The evaporator 7 in the present embodiment is an air refrigerant heat exchanger that performs heat exchange between air and refrigerant. The heat pump hot water supply apparatus 1 of the present embodiment further includes a blower 8 that blows air to the evaporator 7 and a high and low pressure heat exchanger 9 that performs heat exchange between the high pressure side refrigerant and the low pressure side refrigerant. The compressor 3, the first water refrigerant heat exchanger 4, the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7 and the high and low pressure heat exchanger 9 are connected via a pipe through which the refrigerant passes, A refrigerant circuit is formed. The heat pump water heater 1 operates the refrigeration cycle by operating the compressor 3 during the heating operation.
 図2に示すように、本実施形態のヒートポンプ給湯装置1は、タンクユニット2と組み合わせることによって、貯湯式給湯システムとして用いることができる。タンクユニット2内には、湯水を貯留する貯湯タンク2aと、水ポンプ2bとが設置されている。ヒートポンプ給湯装置1と、タンクユニット2とは、水が流れる管11および管12と、図示しない電気配線とを介して接続される。管11の一端は、ヒートポンプ給湯装置1の入水口1aに接続されている。管11の他端は、タンクユニット2内で貯湯タンク2aの下部に接続されている。タンクユニット2内の管11の途中に水ポンプ2bが設置されている。管12の一端は、ヒートポンプ給湯装置1の出湯口1bに接続されている。管12の他端は、タンクユニット2内で貯湯タンク2aの上部に接続されている。図示の構成に代えて、水ポンプ2bをヒートポンプ給湯装置1内に配置してもよい。 As shown in FIG. 2, the heat pump hot water supply apparatus 1 of the present embodiment can be used as a hot water storage type hot water supply system by combining with the tank unit 2. In the tank unit 2, a hot water storage tank 2a for storing hot water and a water pump 2b are installed. The heat pump hot water supply device 1 and the tank unit 2 are connected via a pipe 11 and a pipe 12 through which water flows, and an electric wiring (not shown). One end of the pipe 11 is connected to the water inlet 1 a of the heat pump hot water supply apparatus 1. The other end of the pipe 11 is connected to the lower part of the hot water storage tank 2 a in the tank unit 2. A water pump 2 b is installed in the middle of the pipe 11 in the tank unit 2. One end of the pipe 12 is connected to the hot water outlet 1 b of the heat pump hot water supply apparatus 1. The other end of the pipe 12 is connected to the upper part of the hot water storage tank 2 a in the tank unit 2. Instead of the illustrated configuration, the water pump 2b may be disposed in the heat pump water heater 1.
 図1に示すように、ヒートポンプ給湯装置1の圧縮機3は、密閉容器31と、この密閉容器31内に設けられた圧縮要素32および電動要素33と、第1の吸入通路34と、第1の吐出通路35と、第2の吸入通路36と、第2の吐出通路37とを有している。第1の吸入通路34から吸入される低圧冷媒は、密閉容器31の内部空間311へ放出されることなく、直接、圧縮要素32内に流入する。圧縮要素32は、電動要素33により駆動され、低圧冷媒を圧縮して、高圧冷媒にする。圧縮要素32で圧縮された高圧冷媒は、密閉容器31の内部空間311へ放出されることなく、第1の吐出通路35を通って、直接、密閉容器31外へ吐出される。第1の吐出通路35から吐出された高圧冷媒は、管10を通って、第1の水冷媒熱交換器4に至る。第1の水冷媒熱交換器4を通過した高圧冷媒は、管17を通って、第2の吸入通路36に至る。第2の吸入通路36は、高圧冷媒を圧縮機3の密閉容器31の内部空間311へ導く。密閉容器31の内部空間311に流入した高圧冷媒は、電動要素33の回転子と固定子との間等を通ることで電動要素33を冷却した後、第2の吐出通路37から密閉容器31外へ吐出される。第2の吐出通路37から吐出された高圧冷媒は、管18を通って、第2の水冷媒熱交換器5に至る。第2の水冷媒熱交換器5を通過した高圧冷媒は、管19を通って、膨張弁6に至る。高圧冷媒は、膨張弁6を通過し、低圧冷媒となる。この低圧冷媒は、管20を通って、蒸発器7に流入する。蒸発器7を通過した低圧冷媒は、管21を通って第1の吸入通路34に至り、圧縮機3に吸入される。高低圧熱交換器9は、管19を通る高圧冷媒と、管21を通る低圧冷媒とを熱交換させる。 As shown in FIG. 1, the compressor 3 of the heat pump water heater 1 includes a sealed container 31, a compression element 32 and an electric element 33 provided in the sealed container 31, a first suction passage 34, and a first suction passage 34. The discharge passage 35, the second suction passage 36, and the second discharge passage 37 are provided. The low-pressure refrigerant sucked from the first suction passage 34 flows directly into the compression element 32 without being discharged into the internal space 311 of the sealed container 31. The compression element 32 is driven by the electric element 33 to compress the low-pressure refrigerant into a high-pressure refrigerant. The high-pressure refrigerant compressed by the compression element 32 is discharged directly outside the sealed container 31 through the first discharge passage 35 without being discharged into the internal space 311 of the sealed container 31. The high-pressure refrigerant discharged from the first discharge passage 35 passes through the pipe 10 and reaches the first water refrigerant heat exchanger 4. The high-pressure refrigerant that has passed through the first water-refrigerant heat exchanger 4 passes through the pipe 17 and reaches the second suction passage 36. The second suction passage 36 guides the high-pressure refrigerant to the internal space 311 of the sealed container 31 of the compressor 3. The high-pressure refrigerant that has flowed into the internal space 311 of the hermetic container 31 cools the electric element 33 by passing between the rotor and the stator of the electric element 33 and the like, and then is discharged from the second discharge passage 37 to the outside of the hermetic container 31. Is discharged. The high-pressure refrigerant discharged from the second discharge passage 37 passes through the pipe 18 and reaches the second water refrigerant heat exchanger 5. The high-pressure refrigerant that has passed through the second water-refrigerant heat exchanger 5 passes through the pipe 19 and reaches the expansion valve 6. The high-pressure refrigerant passes through the expansion valve 6 and becomes a low-pressure refrigerant. This low-pressure refrigerant flows into the evaporator 7 through the pipe 20. The low-pressure refrigerant that has passed through the evaporator 7 reaches the first suction passage 34 through the pipe 21 and is sucked into the compressor 3. The high / low pressure heat exchanger 9 exchanges heat between the high-pressure refrigerant passing through the pipe 19 and the low-pressure refrigerant passing through the pipe 21.
 ヒートポンプ給湯装置1は、入水口1aと第2の水冷媒熱交換器5の入口とを接続する水流路23と、第2の水冷媒熱交換器5の出口と第1の水冷媒熱交換器4の入口とを接続する水流路24と、第1の水冷媒熱交換器4の出口と出湯口1bとを接続する水流路26とを更に備えている。加熱運転時には、入水口1aから流入した水が水流路23を通って第2の水冷媒熱交換器5に流入し、第2の水冷媒熱交換器5内で冷媒の熱により加熱される。第2の水冷媒熱交換器5内で加熱されることで生成した湯は、水流路24を通って第1の水冷媒熱交換器4に流入し、第1の水冷媒熱交換器4内で冷媒の熱により更に加熱される。第1の水冷媒熱交換器4内で更に加熱されることで更に高温になった湯は、水流路26を通って出湯口1bに至り、管12を通ってタンクユニット2へ送られる。 The heat pump water heater 1 includes a water flow path 23 connecting the water inlet 1a and the inlet of the second water refrigerant heat exchanger 5, an outlet of the second water refrigerant heat exchanger 5, and the first water refrigerant heat exchanger. 4 is further provided with a water channel 24 that connects the four inlets, and a water channel 26 that connects the outlet of the first water refrigerant heat exchanger 4 and the hot water outlet 1b. During the heating operation, water flowing in from the water inlet 1 a flows into the second water refrigerant heat exchanger 5 through the water flow path 23 and is heated by the heat of the refrigerant in the second water refrigerant heat exchanger 5. Hot water generated by being heated in the second water-refrigerant heat exchanger 5 flows into the first water-refrigerant heat exchanger 4 through the water flow path 24, and in the first water-refrigerant heat exchanger 4. Then, it is further heated by the heat of the refrigerant. Hot water that has been heated further by being further heated in the first water-refrigerant heat exchanger 4 reaches the outlet 1b through the water channel 26, and is sent to the tank unit 2 through the pipe 12.
 冷媒としては、高温出湯ができる冷媒、例えば、二酸化炭素、R410A、プロパン、プロピレンなどの冷媒が適しているが、特にこれらに限定されるものではない。 As the refrigerant, a refrigerant capable of producing high temperature hot water, for example, a refrigerant such as carbon dioxide, R410A, propane, propylene or the like is suitable, but is not particularly limited thereto.
 圧縮機3の第1の吐出通路35から吐出された高温高圧の冷媒ガスは、第1の水冷媒熱交換器4を通過する間に放熱しながら温度低下する。第1の水冷媒熱交換器4、管10,17等で生じる圧力損失のため、第2の吸入通路36内の高圧冷媒の圧力は、第1の吐出通路35内の高圧冷媒の圧力に比べて、やや低くなる。本実施形態では、第1の水冷媒熱交換器4を通過する間に温度低下した高圧冷媒が第2の吸入通路36から密閉容器31内に吸入されて電動要素33を冷却することにより、電動要素33の温度および密閉容器31の表面温度を低下させることができる。その結果、電動要素33のモータ効率を向上することができ、また、密閉容器31の表面からの放熱ロスを低減することができる。第2の吸入通路36から密閉容器31の内部空間311へ導かれた高圧冷媒ガスは、電動要素33の熱を奪うことで温度上昇した後、高圧状態で第2の吐出通路37から吐出される。第2の吐出通路37から吐出された高圧冷媒は、第2の水冷媒熱交換器5に流入し、第2の水冷媒熱交換器5を通過する間に放熱しながら温度低下する。この温度低下した高圧冷媒は、高低圧熱交換器9を通過する間に低圧冷媒を加熱した後、膨張弁6を通過する。膨張弁6を通過することにより、高圧冷媒は、低圧気液二相の状態に減圧される。膨張弁6を通過した低圧冷媒は、蒸発器7を通過する間に外気から吸熱し、蒸発ガス化される。蒸発器7を出た低圧冷媒は、高低圧熱交換器9にて加熱された後、第1の吸入通路34から圧縮機3内に吸入される。 The high-temperature and high-pressure refrigerant gas discharged from the first discharge passage 35 of the compressor 3 decreases in temperature while dissipating heat while passing through the first water-refrigerant heat exchanger 4. Due to the pressure loss that occurs in the first water-refrigerant heat exchanger 4, the pipes 10, 17, etc., the pressure of the high-pressure refrigerant in the second suction passage 36 is higher than the pressure of the high-pressure refrigerant in the first discharge passage 35. A little lower. In the present embodiment, the high-pressure refrigerant whose temperature has decreased while passing through the first water refrigerant heat exchanger 4 is sucked into the sealed container 31 from the second suction passage 36 to cool the electric element 33, thereby The temperature of the element 33 and the surface temperature of the sealed container 31 can be lowered. As a result, the motor efficiency of the electric element 33 can be improved, and the heat dissipation loss from the surface of the sealed container 31 can be reduced. The high-pressure refrigerant gas guided from the second suction passage 36 to the internal space 311 of the sealed container 31 is discharged from the second discharge passage 37 in a high-pressure state after the temperature rises by taking the heat of the electric element 33. . The high-pressure refrigerant discharged from the second discharge passage 37 flows into the second water refrigerant heat exchanger 5 and decreases in temperature while releasing heat while passing through the second water refrigerant heat exchanger 5. The high-pressure refrigerant whose temperature has been lowered passes through the expansion valve 6 after heating the low-pressure refrigerant while passing through the high-low pressure heat exchanger 9. By passing through the expansion valve 6, the high-pressure refrigerant is depressurized to a low-pressure gas-liquid two-phase state. The low-pressure refrigerant that has passed through the expansion valve 6 absorbs heat from the outside air while passing through the evaporator 7 and is evaporated into gas. The low-pressure refrigerant exiting the evaporator 7 is heated by the high-low pressure heat exchanger 9 and then sucked into the compressor 3 from the first suction passage 34.
 高圧側冷媒圧力が臨界圧以上であれば、第1の水冷媒熱交換器4および第2の水冷媒熱交換器5内の高圧冷媒は、超臨界状態のまま気液相転移しないで温度低下して放熱する。また、高圧側冷媒圧力が臨界圧以下であれば、高圧冷媒は液化しながら放熱する。本実施形態では、冷媒として二酸化炭素等を用いることにより、高圧側冷媒圧力を臨界圧以上にすることが好ましい。高圧側冷媒圧力が臨界圧以上の場合には、液化した冷媒が第2の吸入通路36から密閉容器31の内部空間311へ流入することを確実に防止することができる。このため、液化した冷媒が電動要素33に付着することを確実に防止することができ、電動要素33の回転抵抗を低減することができる。また、液化した冷媒が第2の吸入通路36から密閉容器31の内部空間311へ流入しないことにより、冷凍機油が冷媒によって希釈されることを防止するという利点もある。 If the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, the high-pressure refrigerant in the first water refrigerant heat exchanger 4 and the second water refrigerant heat exchanger 5 decreases in temperature without undergoing a gas-liquid phase transition in a supercritical state. To dissipate heat. If the high-pressure side refrigerant pressure is equal to or lower than the critical pressure, the high-pressure refrigerant radiates heat while liquefying. In the present embodiment, it is preferable to set the high-pressure side refrigerant pressure to be equal to or higher than the critical pressure by using carbon dioxide or the like as the refrigerant. When the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, it is possible to reliably prevent the liquefied refrigerant from flowing into the internal space 311 of the sealed container 31 from the second suction passage 36. For this reason, it can prevent reliably that the liquefied refrigerant | coolant adheres to the electric element 33, and the rotational resistance of the electric element 33 can be reduced. Further, since the liquefied refrigerant does not flow into the internal space 311 of the sealed container 31 from the second suction passage 36, there is an advantage that the refrigeration oil is prevented from being diluted by the refrigerant.
 図2に示すように、タンクユニット2の貯湯タンク2aの下部には、給水管13が更に接続されている。水道等の外部の水源から供給される水が、給水管13を通って、貯湯タンク2a内に流入し、貯留される。貯湯タンク2a内は、給水管13から水が流入することにより、常に満水状態に維持される。タンクユニット2内には、更に、給湯用混合弁2cが設けられている。給湯用混合弁2cは、出湯管14を介して、貯湯タンク2aの上部と接続されている。また、給湯用混合弁2cには、給水管13から分岐した給水分岐管15が接続されている。給湯用混合弁2cには、給湯管16の一端が更に接続されている。給湯管16の他端は、図示を省略するが、例えば蛇口、シャワー、浴槽等の給湯端末に接続される。 As shown in FIG. 2, a water supply pipe 13 is further connected to the lower part of the hot water storage tank 2 a of the tank unit 2. Water supplied from an external water source such as water supply flows through the water supply pipe 13 into the hot water storage tank 2a and is stored. The hot water storage tank 2a is always maintained in a full water state when water flows in from the water supply pipe 13. In the tank unit 2, a hot water supply mixing valve 2c is further provided. The hot water supply mixing valve 2 c is connected to the upper part of the hot water storage tank 2 a through the hot water discharge pipe 14. In addition, a water supply branch pipe 15 branched from the water supply pipe 13 is connected to the hot water supply mixing valve 2c. One end of a hot water supply pipe 16 is further connected to the hot water supply mixing valve 2c. Although not shown, the other end of the hot water supply pipe 16 is connected to a hot water supply terminal such as a faucet, a shower, or a bathtub.
 貯湯タンク2a内に貯留された水を沸き上げる加熱運転時には、貯湯タンク2a内に貯留された水は、水ポンプ2bにより、管11を通ってヒートポンプ給湯装置1に送られ、ヒートポンプ給湯装置1内で加熱されて、高温湯になる。ヒートポンプ給湯装置1内で生成した高温湯は、管12を通ってタンクユニット2に戻り、上部から貯湯タンク2a内に流入する。このような加熱運転により、貯湯タンク2a内には、上側が高温湯になり、下側が低温水になるように、湯水が貯留される。 During the heating operation for boiling the water stored in the hot water storage tank 2a, the water stored in the hot water storage tank 2a is sent to the heat pump water heater 1 through the pipe 11 by the water pump 2b. Is heated to hot water. The hot water generated in the heat pump hot water supply apparatus 1 returns to the tank unit 2 through the pipe 12, and flows into the hot water storage tank 2a from the upper part. By such a heating operation, hot water is stored in the hot water storage tank 2a so that the upper side becomes hot water and the lower side becomes low temperature water.
 給湯管16から給湯端末に給湯する際には、貯湯タンク2a内の高温湯が出湯管14を通って給湯用混合弁2cに供給されるとともに、低温水が給水分岐管15を通って給湯用混合弁2cに供給される。この高温湯および低温水が給湯用混合弁2cで混合された上で、給湯管16を通って給湯端末に供給される。給湯用混合弁2cは、使用者により設定された給湯温度になるように、高温湯と低温水との混合比を調節する機能を有している。 When hot water is supplied from the hot water supply pipe 16 to the hot water supply terminal, hot water in the hot water storage tank 2 a is supplied to the hot water supply mixing valve 2 c through the hot water supply pipe 14, and low temperature water is supplied to the hot water supply pipe through the water supply branch pipe 15. It is supplied to the mixing valve 2c. The hot water and the low temperature water are mixed by the hot water supply mixing valve 2 c and then supplied to the hot water supply terminal through the hot water supply pipe 16. The hot water supply mixing valve 2c has a function of adjusting the mixing ratio of the hot water and the low temperature water so that the hot water temperature set by the user is obtained.
 本貯湯式給湯システムは、制御部50を備えている。制御部50は、ヒートポンプ給湯装置1およびタンクユニット2が備えるアクチュエータ類およびセンサ類(図示せず)、並びにユーザーインターフェース装置(図示せず)に対しそれぞれ電気的に接続されており、本貯湯式給湯システムの運転を制御する制御手段として機能する。なお、図2では、ヒートポンプ給湯装置1内に制御部50を設置しているが、制御部50の設置場所はヒートポンプ給湯装置1内に限定されるものではない。タンクユニット2内に制御部50を設置してもよい。また、制御部50をヒートポンプ給湯装置1内とタンクユニット2内とに分散して配置し、相互に通信可能に接続する構成にしてもよい。 This hot water storage type hot water supply system includes a control unit 50. The control unit 50 is electrically connected to actuators and sensors (not shown) and a user interface device (not shown) included in the heat pump hot water supply device 1 and the tank unit 2, respectively. It functions as a control means for controlling the operation of the system. In FIG. 2, the control unit 50 is installed in the heat pump hot water supply apparatus 1, but the installation location of the control unit 50 is not limited to the heat pump hot water supply apparatus 1. The control unit 50 may be installed in the tank unit 2. Moreover, you may make it the structure which distribute | arranges the control part 50 in the heat pump hot-water supply apparatus 1 and the tank unit 2, and is connected so that communication is mutually possible.
 制御部50は、加熱運転時に、ヒートポンプ給湯装置1からタンクユニット2へ供給される湯の温度(以下、「出湯温度」と称する)が、目標出湯温度になるように、制御する。目標出湯温度は、例えば、65℃~90℃に設定される。本実施形態では、制御部50は、水ポンプ2bの回転数を調整することによって出湯温度を制御する。制御部50は、水流路26に設けられた温度センサ(図示せず)により出湯温度を検出し、その検出された出湯温度が目標出湯温度より高い場合には水ポンプ2bの回転数を高くする方向に補正し、出湯温度が目標出湯温度より低い場合には水ポンプ2bの回転数を低くする方向に補正する。このようにして、制御部50は、出湯温度が目標出湯温度に一致するように制御することができる。ただし、圧縮機3の第1の吐出通路35から吐出される冷媒の温度、あるいは圧縮機3の回転数などを制御することによって、出湯温度を制御してもよい。 The controller 50 controls the temperature of the hot water supplied from the heat pump hot water supply apparatus 1 to the tank unit 2 (hereinafter referred to as “hot water temperature”) at the target hot water temperature during the heating operation. The target hot water temperature is set to 65 ° C. to 90 ° C., for example. In this embodiment, the control part 50 controls the tapping temperature by adjusting the rotation speed of the water pump 2b. The control unit 50 detects the tapping temperature with a temperature sensor (not shown) provided in the water flow path 26, and increases the rotation speed of the water pump 2b when the tapping temperature detected is higher than the target tapping temperature. If the hot water temperature is lower than the target hot water temperature, the rotational speed of the water pump 2b is corrected. In this way, the control unit 50 can perform control so that the tapping temperature matches the target tapping temperature. However, the temperature of the hot water may be controlled by controlling the temperature of the refrigerant discharged from the first discharge passage 35 of the compressor 3 or the rotational speed of the compressor 3.
 図3は、本発明の実施の形態1の圧縮機を示す断面図である。以下、図3を参照して、本実施形態の圧縮機3について更に説明する。図3に示すように、本実施形態の圧縮機3の密閉容器31は、略円筒形をなしている。圧縮機3の密閉容器31に隣接して、アキュムレータ27が設置されている。低圧冷媒は、アキュムレータ27を通過した後、第1の吸入通路34から圧縮機3内に吸入される。なお、前述した図1では、アキュムレータ27の図示を省略している。 FIG. 3 is a cross-sectional view showing the compressor according to the first embodiment of the present invention. Hereinafter, the compressor 3 of the present embodiment will be further described with reference to FIG. As shown in FIG. 3, the sealed container 31 of the compressor 3 of the present embodiment has a substantially cylindrical shape. An accumulator 27 is installed adjacent to the sealed container 31 of the compressor 3. The low-pressure refrigerant passes through the accumulator 27 and is then sucked into the compressor 3 from the first suction passage 34. Note that the accumulator 27 is not shown in FIG. 1 described above.
 密閉容器31内には、電動要素33の下側に圧縮要素32が配置されている。電動要素33は、回転軸331を介して、圧縮要素32を駆動する。圧縮要素32は、圧縮室321と、マフラー322と、フレーム323とを有している。第1の吸入通路34から吸入された低圧冷媒ガスは、圧縮室321に流入し、圧縮室321にて圧縮されることで高圧冷媒ガスになる。圧縮室321で圧縮された高圧冷媒ガスは、マフラー322内に吐出される。マフラー322内に吐出された高圧冷媒ガスは、フレーム323内を経由し、第1の吐出通路35を通って、密閉容器31外へ吐出される。第1の吐出通路35から吐出された高圧冷媒ガスは、前述したように、第1の水冷媒熱交換器4を経由する経路を通り、第2の吸入通路36から密閉容器31の内部空間311へ吸入される。密閉容器31の内部空間311は、第2の吸入通路36から流入した高圧冷媒ガスが充満した高圧力雰囲気となる。ただし、前述したように、密閉容器31の内部空間311の圧力、つまり第2の吸入通路36内の圧力は、第1の水冷媒熱交換器4、管10,17等で生じる圧力損失のため、マフラー322内の圧力、つまり第1の吐出通路35内の圧力に比べて、やや低くなる。 In the sealed container 31, a compression element 32 is disposed below the electric element 33. The electric element 33 drives the compression element 32 via the rotating shaft 331. The compression element 32 includes a compression chamber 321, a muffler 322, and a frame 323. The low-pressure refrigerant gas sucked from the first suction passage 34 flows into the compression chamber 321 and is compressed in the compression chamber 321 to become high-pressure refrigerant gas. The high-pressure refrigerant gas compressed in the compression chamber 321 is discharged into the muffler 322. The high-pressure refrigerant gas discharged into the muffler 322 passes through the frame 323, passes through the first discharge passage 35, and is discharged out of the sealed container 31. As described above, the high-pressure refrigerant gas discharged from the first discharge passage 35 passes through the path passing through the first water-refrigerant heat exchanger 4, and passes through the second suction passage 36 to the internal space 311 of the sealed container 31. Inhaled. The internal space 311 of the sealed container 31 becomes a high-pressure atmosphere filled with the high-pressure refrigerant gas flowing from the second suction passage 36. However, as described above, the pressure in the internal space 311 of the sealed container 31, that is, the pressure in the second suction passage 36 is due to pressure loss generated in the first water refrigerant heat exchanger 4, the pipes 10 and 17, and the like. The pressure in the muffler 322, that is, the pressure in the first discharge passage 35 is slightly lower.
 以下の説明では、マフラー322内および第1の吐出通路35内の圧力を第1高圧と呼び、密閉容器31の内部空間311および第2の吸入通路36内の圧力を第2高圧と呼ぶ。第1高圧と第2高圧との圧力差は、高圧冷媒が第1の水冷媒熱交換器4等を通過するときに生ずる圧力損失に相当する大きさになる。 In the following description, the pressure in the muffler 322 and the first discharge passage 35 is referred to as a first high pressure, and the pressure in the internal space 311 of the sealed container 31 and the second suction passage 36 is referred to as a second high pressure. The pressure difference between the first high pressure and the second high pressure has a magnitude corresponding to the pressure loss that occurs when the high-pressure refrigerant passes through the first water-refrigerant heat exchanger 4 or the like.
 第1の吸入通路34、第1の吐出通路35および第2の吸入通路36は、それぞれ、密閉容器31の側面から突出している。第2の吸入通路36は、第1の吐出通路35の上方に配置されている。第2の吸入通路36の出口は、密閉容器31の内部空間311のうち、電動要素33の下側の空間に開口する。すなわち、第2の吸入通路36の出口は、電動要素33より低い位置にある。密閉容器31の内部空間311の下部には、冷凍機油(図示せず)が貯留される油溜まり312がある。密閉容器31内の油溜まり312の冷凍機油の油面は、第2の吸入通路36の出口の開口部より低い位置にある。第2の吐出通路37の入口は、密閉容器31の内部空間311のうち、電動要素33の上側の空間に開口する。このように、第2の吸入通路36の出口と、第2の吐出通路37の入口とは、電動要素33を介して反対側に位置する。 The first suction passage 34, the first discharge passage 35, and the second suction passage 36 each protrude from the side surface of the sealed container 31. The second suction passage 36 is disposed above the first discharge passage 35. The outlet of the second suction passage 36 opens into a space below the electric element 33 in the internal space 311 of the sealed container 31. That is, the outlet of the second suction passage 36 is at a position lower than the electric element 33. An oil reservoir 312 in which refrigeration oil (not shown) is stored is located below the internal space 311 of the sealed container 31. The oil level of the refrigerating machine oil in the oil reservoir 312 in the sealed container 31 is lower than the opening at the outlet of the second suction passage 36. The inlet of the second discharge passage 37 opens into a space above the electric element 33 in the internal space 311 of the sealed container 31. Thus, the outlet of the second suction passage 36 and the inlet of the second discharge passage 37 are located on the opposite sides via the electric element 33.
 第2の吸入通路36から、密閉容器31の内部空間311のうちの電動要素33の下側の空間に流入した高圧冷媒ガスは、電動要素33の回転子と固定子との間などの隙間を通って、内部空間311のうちの電動要素33の上側の空間へ移行する。その後、高圧冷媒ガスは、第2の吐出通路37を通って密閉容器31外へ吐出される。第2の吐出通路37から吐出された冷媒は、前述したように、第2の水冷媒熱交換器5、膨張弁6、蒸発器7等を経由する経路を通った後、圧縮機3の第1の吸入通路34に戻る。 The high-pressure refrigerant gas that has flowed from the second suction passage 36 into the space below the electric element 33 in the internal space 311 of the sealed container 31 passes through a gap such as between the rotor and the stator of the electric element 33. It passes through and moves to the space above the electric element 33 in the internal space 311. Thereafter, the high-pressure refrigerant gas is discharged out of the sealed container 31 through the second discharge passage 37. As described above, the refrigerant discharged from the second discharge passage 37 passes through the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7, and the like, and then passes through the second passage of the compressor 3. Return to the first suction passage 34.
 圧縮要素32の摺動部を潤滑およびシールし、摩擦および隙間漏れを軽減するために、油溜まり312から圧縮室321内へ、冷凍機油が供給される。圧縮室321内に供給された冷凍機油は、圧縮された高圧冷媒ガスとともに、マフラー322およびフレーム323を経由し、第1の吐出通路35へ流出する。この高圧冷媒ガスおよび冷凍機油は、気液二相流になる。 Refrigerator oil is supplied from the oil reservoir 312 into the compression chamber 321 in order to lubricate and seal the sliding portion of the compression element 32 and reduce friction and gap leakage. The refrigerating machine oil supplied into the compression chamber 321 flows out to the first discharge passage 35 through the muffler 322 and the frame 323 together with the compressed high-pressure refrigerant gas. This high-pressure refrigerant gas and refrigerating machine oil become a gas-liquid two-phase flow.
 図4は、冷媒ガスおよび冷凍機油の流動状態を模式的に示す断面図である。図4に示すように、冷媒ガスおよび冷凍機油の流動状態は、環状流あるいは環状噴霧流と呼ばれる状態になる。すなわち、液相である冷凍機油は、管壁に沿った環状液膜として流れ、気相である冷媒ガスは、管の中心部を流れる。このような状態を環状流という。また、管の中心部の冷媒ガス中には、冷凍機油の一部が飛散して、噴霧を形成する場合がある。このような状態を環状噴霧流という。 FIG. 4 is a cross-sectional view schematically showing the flow state of the refrigerant gas and the refrigerating machine oil. As shown in FIG. 4, the flow state of the refrigerant gas and the refrigerating machine oil is a state called an annular flow or an annular spray flow. That is, the refrigerating machine oil that is in the liquid phase flows as an annular liquid film along the tube wall, and the refrigerant gas that is in the gas phase flows in the center of the tube. Such a state is called an annular flow. Moreover, in the refrigerant gas at the center of the pipe, a part of the refrigerating machine oil may be scattered to form a spray. Such a state is called an annular spray flow.
 圧縮要素32から高圧冷媒ガスとともに第1の吐出通路35へ流出した多量の冷凍機油が第1の水冷媒熱交換器4へ流入すると、第1の水冷媒熱交換器4での伝熱が冷凍機油によって阻害されたり、圧力損失が増加したりすることにより、ヒートポンプ給湯装置1の性能が低下する場合がある。また、密閉容器31内の冷凍機油の量が減少すると、信頼性に影響が及ぶおそれもある。そこで、第1の水冷媒熱交換器4への冷凍機油の流入を抑制するために、本実施の形態1の圧縮機3は、圧縮要素32から第1の吐出通路35へ流出した冷凍機油を密閉容器31の内部空間311へ導く油戻し流路を備えている。以下、図5を参照して、本実施形態の圧縮機3が備える油戻し流路について説明する。 When a large amount of refrigeration oil that has flowed out of the compression element 32 into the first discharge passage 35 together with the high-pressure refrigerant gas flows into the first water refrigerant heat exchanger 4, the heat transfer in the first water refrigerant heat exchanger 4 is refrigerated. The performance of the heat pump hot water supply apparatus 1 may be deteriorated by being obstructed by machine oil or increasing pressure loss. Further, when the amount of the refrigerating machine oil in the sealed container 31 is reduced, there is a possibility that the reliability may be affected. Therefore, in order to suppress the inflow of the refrigerating machine oil to the first water refrigerant heat exchanger 4, the compressor 3 of the first embodiment uses the refrigerating machine oil that has flowed out from the compression element 32 to the first discharge passage 35. An oil return channel that leads to the internal space 311 of the sealed container 31 is provided. Hereinafter, the oil return flow path provided in the compressor 3 of the present embodiment will be described with reference to FIG.
 図5は、本発明の実施の形態1の圧縮機3が備える油戻し流路を示す断面図である。図5に示すように、第1の吐出通路35は、外管351と、外管351の内側に配置された内管352とを有している。外管351の上流側の端部は、密閉容器31の壁に設けられた孔部に気密的に嵌合している。外管351の上流側の端面は、圧縮要素32のフレーム323に当接している。内管352は、外管351の上流側の端面から突出し、フレーム323に形成された通路324の内部に挿入している。内管352の上流側の端部は、通路324に気密的に嵌合している。内管352の管壁には、冷凍機油が通過可能な複数の孔353が形成されている。孔353は、第1の吐出通路35の内管352の内周面に開口している。外管351の内周面と、内管352の外周面との間には、隙間が形成される。この隙間は、冷凍機油が通過可能な第1油戻し流路354を構成する。内管352の下流側の端部の外周面と、外管351の内周面との間は、封止部材355により封止されている。フレーム323には、冷凍機油が通過可能な第2油戻し流路325が形成されている。第2油戻し流路325は、第1油戻し流路354に連通する環状の溝部と、この溝部とフレーム323の下面との間を貫通する貫通路とで構成されている。このように、孔353は、第1油戻し流路354および第2油戻し流路325を介して、密閉容器31の内部空間311に連通している。 FIG. 5 is a cross-sectional view showing an oil return flow path provided in the compressor 3 according to the first embodiment of the present invention. As shown in FIG. 5, the first discharge passage 35 has an outer tube 351 and an inner tube 352 disposed inside the outer tube 351. The upstream end of the outer tube 351 is airtightly fitted into a hole provided in the wall of the sealed container 31. The upstream end surface of the outer tube 351 is in contact with the frame 323 of the compression element 32. The inner tube 352 protrudes from the upstream end surface of the outer tube 351 and is inserted into a passage 324 formed in the frame 323. The upstream end of the inner tube 352 is fitted in the passage 324 in an airtight manner. A plurality of holes 353 through which refrigeration oil can pass are formed in the tube wall of the inner tube 352. The hole 353 opens on the inner peripheral surface of the inner pipe 352 of the first discharge passage 35. A gap is formed between the inner peripheral surface of the outer tube 351 and the outer peripheral surface of the inner tube 352. This gap constitutes a first oil return channel 354 through which the refrigeration oil can pass. A sealing member 355 is sealed between the outer peripheral surface of the downstream end of the inner tube 352 and the inner peripheral surface of the outer tube 351. The frame 323 is formed with a second oil return channel 325 through which refrigeration oil can pass. The second oil return channel 325 includes an annular groove that communicates with the first oil return channel 354 and a through channel that passes between the groove and the lower surface of the frame 323. Thus, the hole 353 communicates with the internal space 311 of the sealed container 31 via the first oil return channel 354 and the second oil return channel 325.
 圧縮要素32の圧縮室321内に供給された冷凍機油は、圧縮された高圧冷媒ガスとともに、マフラー322およびフレーム323内の通路324を通って、第1の吐出通路35の内管352に流入する。内管352の内部では、高圧冷媒ガスおよび冷凍機油が環状流を形成している。すなわち、内管352内の冷凍機油の大半は、内管352の内周面に沿って環状液膜として流れる。そのように内管352の内周面に液膜として存在する冷凍機油は、図5中の細い矢印で示すように、内管352の内周面に開口する孔353へ吸入され、第1油戻し流路354および第2油戻し流路325を通り、第2油戻し流路325の出口から密閉容器31の内部空間311へ流出する。冷凍機油は、冷媒ガスに比べて密度が高いため、第2油戻し流路325の出口から流出した冷凍機油は、重力によって落下して、密閉容器31の内部空間311の下部の油溜まり312へ戻る。一方、冷媒ガスは、内管352内を通過して外管351内に至り、第1の水冷媒熱交換器4側へ送られる。 The refrigerating machine oil supplied into the compression chamber 321 of the compression element 32 flows into the inner pipe 352 of the first discharge passage 35 through the muffler 322 and the passage 324 in the frame 323 together with the compressed high-pressure refrigerant gas. . Inside the inner pipe 352, the high-pressure refrigerant gas and the refrigerating machine oil form an annular flow. That is, most of the refrigerating machine oil in the inner pipe 352 flows as an annular liquid film along the inner peripheral surface of the inner pipe 352. The refrigerating machine oil that exists as a liquid film on the inner peripheral surface of the inner tube 352 is sucked into the hole 353 that opens on the inner peripheral surface of the inner tube 352 as shown by a thin arrow in FIG. It passes through the return channel 354 and the second oil return channel 325, and flows out from the outlet of the second oil return channel 325 to the internal space 311 of the sealed container 31. Since the refrigerating machine oil has a higher density than the refrigerant gas, the refrigerating machine oil that has flowed out from the outlet of the second oil return channel 325 falls due to gravity and enters the oil reservoir 312 below the inner space 311 of the sealed container 31. Return. On the other hand, the refrigerant gas passes through the inner pipe 352, reaches the outer pipe 351, and is sent to the first water refrigerant heat exchanger 4 side.
 このように、本実施の形態1における油戻し流路は、第1の吐出通路35の内管352の外周側に設けられた第1油戻し流路354と、第1油戻し流路354と密閉容器31の内部空間311とを密閉容器31の内側にて連通させる第2油戻し流路325とで構成されている。 As described above, the oil return channel in the first embodiment includes the first oil return channel 354 provided on the outer peripheral side of the inner pipe 352 of the first discharge passage 35, the first oil return channel 354, The second oil return flow path 325 is configured to communicate with the inner space 311 of the sealed container 31 inside the sealed container 31.
 本実施の形態1によれば、上述したような油戻し流路を圧縮機3に設けたことにより、第1の吐出通路35へ流出した冷凍機油を密閉容器31の内部空間311へ導くことができる。このため、第1の吐出通路35から第1の水冷媒熱交換器4へ流れる冷凍機油の量を確実に低減することができる。その結果、冷凍機油による圧力損失の増加および第1の水冷媒熱交換器4での伝熱阻害を確実に抑制することができる。これにより、ヒートポンプ給湯装置1の性能を向上することができる。また、密閉容器31内の冷凍機油の量が減少することを抑制することができるので、圧縮機3の信頼性を向上することができる。また、圧縮機3と第1の水冷媒熱交換器4とを結ぶ配管の途中に油分離器を設ける必要が無いので、装置構成を簡単且つ小型にすることができる。 According to the first embodiment, by providing the compressor 3 with the oil return channel as described above, the refrigerating machine oil flowing out to the first discharge passage 35 can be guided to the internal space 311 of the sealed container 31. it can. For this reason, the quantity of the refrigerating machine oil which flows into the 1st water-refrigerant heat exchanger 4 from the 1st discharge channel 35 can be reduced reliably. As a result, an increase in pressure loss due to the refrigerating machine oil and heat transfer inhibition in the first water refrigerant heat exchanger 4 can be reliably suppressed. Thereby, the performance of the heat pump hot-water supply apparatus 1 can be improved. Moreover, since it can suppress that the quantity of the refrigeration oil in the airtight container 31 reduces, the reliability of the compressor 3 can be improved. Moreover, since it is not necessary to provide an oil separator in the middle of the piping connecting the compressor 3 and the first water refrigerant heat exchanger 4, the apparatus configuration can be simplified and reduced in size.
 特に、本実施の形態1では、第1油戻し流路354および第2油戻し流路325を第1の吐出通路35またはその近傍に一体的に設けることができる。よって、極めて簡単且つ小型の構成で、上記の効果を達成することができる。このため、製造コストの低減、重量の軽減、および省スペース化が図れる。 In particular, in the first embodiment, the first oil return channel 354 and the second oil return channel 325 can be integrally provided in the first discharge passage 35 or in the vicinity thereof. Therefore, the above effect can be achieved with a very simple and small configuration. For this reason, the manufacturing cost can be reduced, the weight can be reduced, and the space can be saved.
 また、前述したように、第1の吐出通路35内の第1高圧に比べて密閉容器31の内部空間311の第2高圧が低い。このため、第1高圧と第2高圧との差がもたらす力により、第1油戻し流路354および第2油戻し流路325内の冷凍機油が自動的に移動する。このため、第1の吐出通路35内の冷凍機油を効率良く且つ確実に密閉容器31の内部空間311へ戻すことができる。また、第1高圧と第2高圧との差は、第1の水冷媒熱交換器4等で生ずる圧力損失に相当する大きさであるので、過大な圧力差ではなく、適度な圧力差になる。このため、第1高圧と第2高圧との差によって第1油戻し流路354および第2油戻し流路325内の冷凍機油にもたらされる力は、冷凍機油を適度な速度で移動させる。また、油戻し流路の途中に開閉弁、減圧弁、毛細管などを設けなくても、第1の吐出通路35内の高圧冷媒ガスが油戻し流路を通って密閉容器31の内部空間311へ漏れることを確実に防止できる。したがって、油戻し流路の途中に開閉弁、減圧弁、毛細管などを設ける必要がなく、構成を簡素化できる。 As described above, the second high pressure in the internal space 311 of the sealed container 31 is lower than the first high pressure in the first discharge passage 35. For this reason, the refrigeration oil in the 1st oil return flow path 354 and the 2nd oil return flow path 325 moves automatically by the force which the difference of a 1st high pressure and a 2nd high pressure brings. For this reason, the refrigerating machine oil in the first discharge passage 35 can be returned to the internal space 311 of the sealed container 31 efficiently and reliably. In addition, the difference between the first high pressure and the second high pressure is a magnitude corresponding to the pressure loss generated in the first water refrigerant heat exchanger 4 or the like, so that it is not an excessive pressure difference but an appropriate pressure difference. . For this reason, the force provided to the refrigerating machine oil in the first oil return channel 354 and the second oil return channel 325 due to the difference between the first high pressure and the second high pressure moves the refrigerating machine oil at an appropriate speed. Further, the high-pressure refrigerant gas in the first discharge passage 35 passes through the oil return passage to the internal space 311 of the sealed container 31 without providing an on-off valve, a pressure reducing valve, a capillary tube, or the like in the middle of the oil return passage. It can be surely prevented from leaking. Therefore, it is not necessary to provide an on-off valve, a pressure reducing valve, a capillary tube, etc. in the middle of the oil return channel, and the configuration can be simplified.
 また、本実施の形態1では、第1の吐出通路35の内管352の内周面に開口した複数の孔353から冷凍機油を第1油戻し流路354へ吸入するので、内管352の内周面に沿った環状液膜を形成している冷凍機油を効率良く第1油戻し流路354へ導入することができる。 In the first embodiment, since the refrigeration oil is sucked into the first oil return channel 354 from the plurality of holes 353 opened in the inner peripheral surface of the inner tube 352 of the first discharge passage 35, the inner tube 352 The refrigerating machine oil forming an annular liquid film along the inner peripheral surface can be efficiently introduced into the first oil return channel 354.
 なお、本実施の形態1では、圧縮要素32から第1の吐出通路35へ流出する冷凍機油の量を予め調べて、その量に応じて孔353の大きさおよび孔353の数を設定することにより、孔353から第1油戻し流路354への冷凍機油の流入量を適切な量に制御することができる。 In the first embodiment, the amount of refrigerating machine oil flowing out from the compression element 32 to the first discharge passage 35 is examined in advance, and the size of the holes 353 and the number of the holes 353 are set according to the amount. Thus, the inflow amount of the refrigerating machine oil from the hole 353 to the first oil return channel 354 can be controlled to an appropriate amount.
 ところで、冷媒を圧縮する圧縮機には、一般に、圧縮前の低圧冷媒ガスが密閉容器の内部空間に充満する低圧シェル式と、圧縮後の高圧冷媒ガスが密閉容器の内部空間に充満する高圧シェル式とがある。「シェル」とは、密閉容器のことである。前述したように、本実施の形態1の圧縮機3は、密閉容器31の内部空間311に高圧冷媒ガスが充満するので、高圧シェル式の一種である。高圧シェル式の圧縮機のうち、冷媒の吸入通路および吐出通路を一つずつ備える一般的な圧縮機においては、圧縮機の吐出通路側に油分離器を設けた場合には、油分離器で分離された冷凍機油を密閉容器の内部空間へ直接戻すことは困難である。一般的な高圧シェル式の圧縮機では、吐出通路側の冷媒圧力と、密閉容器(シェル)の内部空間の圧力とが等しいため、油分離器で分離された冷凍機油を圧力差によって密閉容器の内部空間へ送ることができないからである。このため、一般的な高圧シェル式の圧縮機の吐出通路側に油分離器を設けた場合には、油分離器で分離された冷凍機油を、低圧である圧縮機の吸入通路側へ戻さざるを得ない。それゆえ、圧縮機の吐出通路側に設けた油分離器と、吸入通路側とを接続する油戻し管が必要になる。これに対し、本実施の形態1の圧縮機3では、上述したように、第1高圧と第2高圧との差を利用して、冷凍機油を、第1の吐出通路35から密閉容器31の内部空間311へ、直接戻すことができる。このため、構造を極めて簡易にできるという利点がある。 By the way, the compressor for compressing the refrigerant generally has a low-pressure shell type in which the low-pressure refrigerant gas before compression fills the internal space of the sealed container, and a high-pressure shell in which the high-pressure refrigerant gas after compression fills the internal space of the sealed container. There is an expression. A “shell” is a sealed container. As described above, the compressor 3 according to the first embodiment is a high-pressure shell type because the internal space 311 of the sealed container 31 is filled with the high-pressure refrigerant gas. Of the high-pressure shell type compressors, in a general compressor having one refrigerant suction passage and one refrigerant passage, when the oil separator is provided on the discharge passage side of the compressor, the oil separator It is difficult to return the separated refrigeration oil directly to the internal space of the sealed container. In a general high-pressure shell type compressor, the refrigerant pressure on the discharge passage side is equal to the pressure in the inner space of the closed container (shell), so the refrigerating machine oil separated by the oil separator is separated from the closed container by the pressure difference. This is because it cannot be sent to the internal space. For this reason, when an oil separator is provided on the discharge passage side of a general high-pressure shell compressor, the refrigeration oil separated by the oil separator must be returned to the suction passage side of the low-pressure compressor. I do not get. Therefore, an oil return pipe that connects the oil separator provided on the discharge passage side of the compressor and the suction passage side is required. On the other hand, in the compressor 3 according to the first embodiment, as described above, the refrigerating machine oil is supplied from the first discharge passage 35 to the sealed container 31 using the difference between the first high pressure and the second high pressure. It can be returned directly to the internal space 311. For this reason, there is an advantage that the structure can be extremely simplified.
 一方、低圧シェル式の圧縮機において、吐出通路側に油分離器を設け、この油分離器と密閉容器とを接続する油戻し管を設けた構成の場合には、冷凍機油を油分離器から密閉容器の内部空間へ圧力差によって送ることが可能である。しかしながら、この構成の場合には、油分離器の圧力が高圧冷媒ガスの圧力に等しく、密閉容器の内部空間の圧力が低圧冷媒ガスの圧力に等しいため、油分離器の圧力と密閉容器の内部空間の圧力との差が大き過ぎる。このため、高圧冷媒ガスが油戻し管を通って密閉容器の内部空間へ流入してしまう可能性がある。したがって、低圧シェル式の圧縮機の吐出通路側に油分離器を設けた場合には、高圧冷媒ガスが油分離器から油戻し管を通って密閉容器の内部空間へ漏れてしまうことを防止するために、油戻し管の途中に、開閉弁、減圧弁、毛細管などを設ける必要がある。油戻し管の途中に、開閉弁、減圧弁、毛細管などを設けると、構造が複雑になるという問題がある。これに対し、本実施の形態1の圧縮機3では、上述したように、油戻し流路の途中に開閉弁、減圧弁、毛細管などを設ける必要がないので、構造を極めて簡易にできるという利点がある。 On the other hand, in a low-pressure shell type compressor, an oil separator is provided on the discharge passage side, and an oil return pipe for connecting the oil separator and the sealed container is provided. It can be sent to the internal space of the sealed container by a pressure difference. However, in this configuration, the pressure of the oil separator is equal to the pressure of the high-pressure refrigerant gas, and the pressure of the internal space of the sealed container is equal to the pressure of the low-pressure refrigerant gas. The difference from the space pressure is too large. For this reason, high-pressure refrigerant gas may flow into the internal space of the sealed container through the oil return pipe. Therefore, when the oil separator is provided on the discharge passage side of the low-pressure shell compressor, the high-pressure refrigerant gas is prevented from leaking from the oil separator through the oil return pipe to the internal space of the sealed container. Therefore, it is necessary to provide an on-off valve, a pressure reducing valve, a capillary tube, etc. in the middle of the oil return pipe. If an on-off valve, a pressure reducing valve, a capillary tube, or the like is provided in the middle of the oil return pipe, there is a problem that the structure becomes complicated. In contrast, in the compressor 3 according to the first embodiment, as described above, there is no need to provide an on-off valve, a pressure reducing valve, a capillary tube, or the like in the middle of the oil return flow path, so that the structure can be extremely simplified. There is.
 以上では、本発明の圧縮機を用いてヒートポンプ給湯装置を構成した場合の実施の形態について説明したが、本発明は、ヒートポンプ給湯装置に限らず、例えば空調装置、保冷装置など、各種の蒸気圧縮式冷凍サイクル装置にも同様に適用可能である。 The embodiment in the case where the heat pump hot water supply apparatus is configured using the compressor of the present invention has been described above. However, the present invention is not limited to the heat pump hot water supply apparatus, and various vapor compressions such as an air conditioner and a cold insulation apparatus are used. The same can be applied to the refrigeration cycle apparatus.
実施の形態2.
 次に、図6を参照して、本発明の実施の形態2について説明するが、前述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図6は、本発明の実施の形態2の圧縮機3が備える第1の吐出通路35の内管352の横断面図である。図6に示すように、本実施の形態2では、第1の吐出通路35の内管352の内壁に、長手方向に沿った溝356が形成されている。本実施形態では、多数の溝356が並行して形成されており、内管352の内周に全周に渡って溝356が配置されている。本実施の形態2は、内管352の内壁にこのような溝356が形成されていること以外は、実施の形態1と同様である。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. 6. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted. FIG. 6 is a cross-sectional view of the inner pipe 352 of the first discharge passage 35 provided in the compressor 3 according to Embodiment 2 of the present invention. As shown in FIG. 6, in the second embodiment, a groove 356 is formed along the longitudinal direction on the inner wall of the inner tube 352 of the first discharge passage 35. In the present embodiment, a large number of grooves 356 are formed in parallel, and the grooves 356 are disposed on the inner circumference of the inner tube 352 over the entire circumference. The second embodiment is the same as the first embodiment except that such a groove 356 is formed on the inner wall of the inner tube 352.
 本実施の形態2では、内管352の内壁に溝356を形成したことにより、表面張力の作用により、冷凍機油がより確実に内管352の内壁に捕捉される。このため、内管352に形成された孔353に冷凍機油をより効率良く流入させることができる。よって、第1の吐出通路35において冷凍機油をより確実に高圧冷媒ガスから分離して、密閉容器31の内部空間311へ戻すことができる。 In the second embodiment, since the groove 356 is formed on the inner wall of the inner tube 352, the refrigeration oil is more reliably captured on the inner wall of the inner tube 352 by the action of surface tension. For this reason, refrigeration oil can be made to flow more efficiently into the hole 353 formed in the inner pipe 352. Therefore, the refrigeration oil can be more reliably separated from the high-pressure refrigerant gas in the first discharge passage 35 and returned to the internal space 311 of the sealed container 31.
 図6に示す例では、溝356の断面形状は、略V字状をなしている。溝356の断面形状は、ほかに、長方形状、半円形状などでも良い。また、溝356は、内管352の軸方向に対して完全に平行でなくてもよく、溝356が内管352の軸方向に対してねじれ角をもって形成されていてもよい。 In the example shown in FIG. 6, the cross-sectional shape of the groove 356 is substantially V-shaped. In addition, the cross-sectional shape of the groove 356 may be a rectangular shape, a semicircular shape, or the like. Further, the groove 356 may not be completely parallel to the axial direction of the inner tube 352, and the groove 356 may be formed with a twist angle with respect to the axial direction of the inner tube 352.
実施の形態3.
 次に、図7を参照して、本発明の実施の形態3について説明するが、前述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図7は、本発明の実施の形態3の圧縮機3が備える油戻し流路を示す断面図である。本実施の形態3は、油戻し流路の構成が異なること以外は、実施の形態1と同様である。以下、図7を参照して、本実施の形態3の圧縮機3が備える油戻し流路について説明する。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG. 7. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted. FIG. 7 is a cross-sectional view showing an oil return flow path included in the compressor 3 according to Embodiment 3 of the present invention. The third embodiment is the same as the first embodiment except that the configuration of the oil return channel is different. Hereinafter, with reference to FIG. 7, the oil return flow path provided in the compressor 3 of the third embodiment will be described.
 図7に示すように、第1の吐出通路35は、外管351と、外管351の内側に配置された内管352とを有している。外管351の上流側の端部は、密閉容器31の壁に設けられた孔部に気密的に嵌合している。外管351の上流側の端面は、圧縮要素32のフレーム323に当接している。内管352は、外管351の上流側の端面から突出し、フレーム323に形成された通路324の内部に挿入している。内管352の上流側の端部は、通路324に気密的に嵌合している。内管352の側壁には、冷凍機油が通過可能な複数の孔353が形成されている。孔353は、第1の吐出通路35の内管352の内周面に開口している。外管351の内周面と、内管352の外周面との間には、隙間が形成される。この隙間は、冷凍機油が通過可能な第1油戻し流路354を構成する。内管352の下流側の端部の外周面と、外管351の内周面との間は、封止部材355により封止されている。第1油戻し流路354は、第2油戻し流路357を介して、第2の吸入通路36内に連通している。図示の構成では、第1油戻し流路354の外側の外管351の管壁に形成された孔と、第2の吸入通路36の管壁に形成された孔とが、管により接続されており、この管により第2油戻し流路357が構成されている。このようにして、孔353は、第1油戻し流路354および第2油戻し流路357を介して、第2の吸入通路36の内部に連通している。 As shown in FIG. 7, the first discharge passage 35 includes an outer tube 351 and an inner tube 352 disposed inside the outer tube 351. The upstream end of the outer tube 351 is airtightly fitted into a hole provided in the wall of the sealed container 31. The upstream end surface of the outer tube 351 is in contact with the frame 323 of the compression element 32. The inner tube 352 protrudes from the upstream end surface of the outer tube 351 and is inserted into a passage 324 formed in the frame 323. The upstream end of the inner tube 352 is fitted in the passage 324 in an airtight manner. A plurality of holes 353 through which refrigeration oil can pass are formed in the side wall of the inner pipe 352. The hole 353 opens on the inner peripheral surface of the inner pipe 352 of the first discharge passage 35. A gap is formed between the inner peripheral surface of the outer tube 351 and the outer peripheral surface of the inner tube 352. This gap constitutes a first oil return channel 354 through which the refrigeration oil can pass. A sealing member 355 is sealed between the outer peripheral surface of the downstream end of the inner tube 352 and the inner peripheral surface of the outer tube 351. The first oil return channel 354 communicates with the second suction passage 36 via the second oil return channel 357. In the illustrated configuration, a hole formed in the tube wall of the outer tube 351 outside the first oil return channel 354 and a hole formed in the tube wall of the second suction passage 36 are connected by a tube. The second oil return channel 357 is constituted by this pipe. In this way, the hole 353 communicates with the inside of the second suction passage 36 via the first oil return channel 354 and the second oil return channel 357.
 圧縮要素32の圧縮室321内に供給された冷凍機油は、圧縮された高圧冷媒ガスとともに、マフラー322およびフレーム323内の通路324を通って、第1の吐出通路35の内管352に流入し、環状流を形成する。内管352の内周面に液膜として存在する冷凍機油は、図7中の細い矢印で示すように、内管352の内周面に開口する孔353へ吸入され、第1油戻し流路354および第2油戻し流路357を通って第2の吸入通路36内に至る。この冷凍機油は、更に、第2の吸入通路36の出口から、密閉容器31の内部空間311へ流出して、重力により落下し、密閉容器31の内部空間311の下部の油溜まり312へ戻る。一方、内管352内の高圧冷媒ガスは、内管352内を通過して外管351内に至り、第1の水冷媒熱交換器4へ送られる。 The refrigerating machine oil supplied into the compression chamber 321 of the compression element 32 flows into the inner pipe 352 of the first discharge passage 35 through the muffler 322 and the passage 324 in the frame 323 together with the compressed high-pressure refrigerant gas. Form an annular flow. The refrigerating machine oil that exists as a liquid film on the inner peripheral surface of the inner pipe 352 is sucked into the hole 353 that opens on the inner peripheral surface of the inner pipe 352 as shown by a thin arrow in FIG. 354 and the second oil return flow path 357 reach the second suction passage 36. The refrigerating machine oil further flows out from the outlet of the second suction passage 36 into the internal space 311 of the sealed container 31, falls due to gravity, and returns to the oil reservoir 312 below the internal space 311 of the sealed container 31. On the other hand, the high-pressure refrigerant gas in the inner pipe 352 passes through the inner pipe 352, reaches the outer pipe 351, and is sent to the first water refrigerant heat exchanger 4.
 このように、本実施の形態3における油戻し流路は、第1の吐出通路35の内管352の外周側に設けられた第1油戻し流路354と、第1油戻し流路354と第2の吸入通路36とを密閉容器31の外側にて連通させる第2油戻し流路357とで構成されている。 Thus, the oil return flow path in the third embodiment includes the first oil return flow path 354 provided on the outer peripheral side of the inner pipe 352 of the first discharge passage 35, the first oil return flow path 354, A second oil return passage 357 is provided that communicates with the second suction passage 36 outside the sealed container 31.
 本実施の形態3の圧縮機3では、上述したような油戻し流路を圧縮機3に設けたことにより、第1の吐出通路35へ流出した冷凍機油を第2の吸入通路36へ導き、この冷凍機油を第2の吸入通路36から密閉容器31の内部空間311へ戻すことができる。このため、第1の吐出通路35から第1の水冷媒熱交換器4へ流れる冷凍機油の量を確実に低減することができる。その結果、冷凍機油による圧力損失の増加および第1の水冷媒熱交換器4での伝熱阻害を確実に抑制することができる。これにより、ヒートポンプ給湯装置1の性能を向上することができる。また、密閉容器31内の冷凍機油の量が減少することを抑制することができるので、圧縮機3の信頼性を向上することができる。また、圧縮機3と第1の水冷媒熱交換器4とを結ぶ配管の途中に油分離器を設ける必要が無いので、装置構成を簡単且つ小型にすることができる。 In the compressor 3 according to the third embodiment, the oil return flow path as described above is provided in the compressor 3 so that the refrigeration oil flowing out to the first discharge passage 35 is guided to the second suction passage 36. This refrigerating machine oil can be returned from the second suction passage 36 to the internal space 311 of the sealed container 31. For this reason, the quantity of the refrigerating machine oil which flows into the 1st water-refrigerant heat exchanger 4 from the 1st discharge channel 35 can be reduced reliably. As a result, an increase in pressure loss due to the refrigerating machine oil and heat transfer inhibition in the first water refrigerant heat exchanger 4 can be reliably suppressed. Thereby, the performance of the heat pump hot-water supply apparatus 1 can be improved. Moreover, since it can suppress that the quantity of the refrigeration oil in the airtight container 31 reduces, the reliability of the compressor 3 can be improved. Moreover, since it is not necessary to provide an oil separator in the middle of the piping connecting the compressor 3 and the first water refrigerant heat exchanger 4, the apparatus configuration can be simplified and reduced in size.
 また、本実施の形態3によれば、圧縮機3の第1の吐出通路35および第2の吸入通路36の付近に第1油戻し流路354および第2油戻し流路357を配置することができ、構造も簡単である。このため、製造コストの低減、重量の軽減、および省スペース化が図れる。 Further, according to the third embodiment, the first oil return channel 354 and the second oil return channel 357 are arranged in the vicinity of the first discharge passage 35 and the second suction passage 36 of the compressor 3. And the structure is simple. For this reason, the manufacturing cost can be reduced, the weight can be reduced, and the space can be saved.
 また、本実施の形態3では、実施の形態1と同様に、第1高圧と第2高圧との差がもたらす適度な大きさの力により、第1油戻し流路354および第2油戻し流路357内の冷凍機油が適度な速度で自動的に移動する。これにより、実施の形態1と同様の効果が得られる。なお、本実施の形態3では、実施の形態2と同様に、内管352の内壁に溝356を形成してもよい。 Further, in the present third embodiment, as in the first embodiment, the first oil return flow channel 354 and the second oil return flow are generated by a force having an appropriate magnitude caused by the difference between the first high pressure and the second high pressure. The refrigerating machine oil in the path 357 automatically moves at an appropriate speed. Thereby, the same effect as Embodiment 1 is acquired. In the third embodiment, a groove 356 may be formed on the inner wall of the inner tube 352 as in the second embodiment.
実施の形態4.
 次に、図8および図9を参照して、本発明の実施の形態4について説明するが、前述した実施の形態との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図8は、本発明の実施の形態4の圧縮機3が備える第2の吸入通路36の下流端付近の縦断面図である。図9は、本発明の実施の形態4の圧縮機3が備える第2の吸入通路36の下流端付近の横断面図である。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described with reference to FIG. 8 and FIG. 9. The difference from the above-described embodiment will be mainly described, and the same parts or corresponding parts will be denoted by the same reference numerals. The description is omitted. FIG. 8 is a longitudinal sectional view of the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to Embodiment 4 of the present invention. FIG. 9 is a cross-sectional view of the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to Embodiment 4 of the present invention.
 前述した実施の形態3では、第1の吐出通路35内の冷凍機油を、第2の吸入通路36内に導き、第2の吸入通路36の出口から密閉容器31内に流入させる。第2の吸入通路36の出口から冷凍機油が流出する際に、第2の吸入通路36の出口から噴出する高圧冷媒ガスの流れによって冷凍機油が巻き上げられる可能性がある。巻き上げられた冷凍機油の一部は、霧化して高圧冷媒ガス中に混合してしまう。このため、高圧冷媒ガス中に混合した冷凍機油が、第2の吐出通路37から流出し、第2の水冷媒熱交換器5等の冷媒回路に循環する。その結果、第2の水冷媒熱交換器5での伝熱が冷凍機油によって阻害されたり、圧力損失が増加したりすることにより、ヒートポンプ給湯装置1の性能が低下する場合がある。 In the third embodiment described above, the refrigerating machine oil in the first discharge passage 35 is guided into the second suction passage 36 and flows into the sealed container 31 from the outlet of the second suction passage 36. When the refrigeration oil flows out from the outlet of the second suction passage 36, the refrigeration oil may be wound up by the flow of the high-pressure refrigerant gas ejected from the outlet of the second suction passage 36. A part of the rolled up refrigerating machine oil is atomized and mixed in the high-pressure refrigerant gas. For this reason, the refrigerating machine oil mixed in the high-pressure refrigerant gas flows out from the second discharge passage 37 and circulates in the refrigerant circuit such as the second water refrigerant heat exchanger 5. As a result, the heat transfer in the second water-refrigerant heat exchanger 5 may be impeded by the refrigerating machine oil, or the pressure loss may increase, so that the performance of the heat pump water heater 1 may deteriorate.
 以上の事項に鑑みて、本実施の形態4の圧縮機3は、実施の形態3の構成に加えて、第2の吸入通路36から流入する高圧冷媒ガスと冷凍機油とを分離する油分離手段を更に備えている。以下、本実施の形態4における油分離手段の構成について説明する。 In view of the above matters, in addition to the configuration of the third embodiment, the compressor 3 of the fourth embodiment includes an oil separation means for separating the high-pressure refrigerant gas flowing from the second suction passage 36 and the refrigerating machine oil. Is further provided. Hereinafter, the structure of the oil separation means in the fourth embodiment will be described.
 図8に示すように、本実施の形態4の圧縮機3は、第2の吸入通路36の内側に、内管38を備えている。高圧冷媒ガスは、内管38の内部を通過可能になっている。すなわち、内管38は、高圧冷媒ガスが円滑に通過可能な流路断面積を有している。一方、第1の吐出通路35内から第2の吸入通路36内に導入された冷凍機油は、第2の吸入通路36の内壁と、内管38の外壁との間を通過可能になっている。すなわち、第2の吸入通路36の内壁と、内管38の外壁との間には、冷凍機油が円滑に通過可能な流路断面積になる隙間が形成されている。 As shown in FIG. 8, the compressor 3 of the fourth embodiment includes an inner pipe 38 inside the second suction passage 36. The high-pressure refrigerant gas can pass through the inner pipe 38. That is, the inner pipe 38 has a flow path cross-sectional area through which the high-pressure refrigerant gas can smoothly pass. On the other hand, the refrigerating machine oil introduced from the first discharge passage 35 into the second suction passage 36 can pass between the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38. . That is, a gap is formed between the inner wall of the second suction passage 36 and the outer wall of the inner tube 38 so as to have a flow path cross-sectional area through which the refrigerating machine oil can smoothly pass.
 内管38の下流端は、第2の吸入通路36の下流端から突出している。すなわち、内管38の下流端の位置は、第2の吸入通路36の下流端の位置に比べて、密閉容器31の内部に向かって突き出した位置にある。本実施の形態4では、このような内管38を、油分離手段として備えている。冷凍機油は、第2の吸入通路36の下流端から流出し、密閉容器31の内部空間311の下部の油溜まり312へ下部に落下する。高圧冷媒ガスは、内管38の下流端から密閉容器31の内部空間311へ噴き出す。このため、第2の吸入通路36の下流端から流出した冷凍機油が内管38の下流端から噴出する高圧冷媒ガスの流れに衝突することがないので、冷凍機油が高圧冷媒ガスの流れによって巻き上げられて飛散することを確実に防止することができる。本実施の形態4では、このようにして、第2の吸入通路36の下流端から流出した冷凍機油を、密閉容器31の内部空間311の下部の油溜まり312へ確実に落下させて分離することができる。このため、第2の吸入通路36から密閉容器31の内部空間311へ流入する高圧冷媒ガスと冷凍機油との混合を確実に抑制し、高圧冷媒ガスと冷凍機油とを確実に分離することができる。その結果、第2の吐出通路37から冷媒に混じって流出する冷凍機油の量を低減することができる。よって、第2の水冷媒熱交換器5、膨張弁6、蒸発器7等への冷凍機油の循環率を低下させることができ、冷凍機油による圧力損失の増加および第2の水冷媒熱交換器5での伝熱阻害を確実に抑制することができる。これにより、ヒートポンプ給湯装置1の性能を更に向上することができる。また、密閉容器31内の冷凍機油の量が減少することをより確実に抑制し、圧縮機3の信頼性を更に向上することができる。 The downstream end of the inner pipe 38 protrudes from the downstream end of the second suction passage 36. That is, the position of the downstream end of the inner pipe 38 is a position protruding toward the inside of the sealed container 31 as compared with the position of the downstream end of the second suction passage 36. In the fourth embodiment, such an inner pipe 38 is provided as oil separation means. The refrigerating machine oil flows out from the downstream end of the second suction passage 36 and falls downward to the oil reservoir 312 in the lower part of the internal space 311 of the sealed container 31. The high-pressure refrigerant gas is ejected from the downstream end of the inner pipe 38 to the internal space 311 of the sealed container 31. For this reason, since the refrigeration oil flowing out from the downstream end of the second suction passage 36 does not collide with the flow of high-pressure refrigerant gas ejected from the downstream end of the inner pipe 38, the refrigeration oil is wound up by the flow of high-pressure refrigerant gas. Can be reliably prevented from being scattered. In the fourth embodiment, the refrigeration oil flowing out from the downstream end of the second suction passage 36 is reliably dropped and separated in the oil reservoir 312 below the inner space 311 of the sealed container 31 in this way. Can do. For this reason, mixing of the high-pressure refrigerant gas flowing into the internal space 311 of the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be reliably suppressed, and the high-pressure refrigerant gas and the refrigerating machine oil can be reliably separated. . As a result, the amount of refrigerating machine oil flowing out from the second discharge passage 37 mixed with the refrigerant can be reduced. Therefore, the circulation rate of the refrigerating machine oil to the second water refrigerant heat exchanger 5, the expansion valve 6, the evaporator 7 and the like can be reduced, and the increase in pressure loss due to the refrigerating machine oil and the second water refrigerant heat exchanger The heat transfer inhibition at 5 can be reliably suppressed. Thereby, the performance of the heat pump hot water supply apparatus 1 can be further improved. Moreover, it can suppress more reliably that the quantity of the refrigerating machine oil in the airtight container 31 reduces, and the reliability of the compressor 3 can further be improved.
 また、本実施の形態4では、図9に示すように、第2の吸入通路36の内壁に、長手方向に沿った溝364が形成されており、溝364内を冷凍機油が通過可能になっている。本実施の形態4では、多数の溝364が並行して形成されており、第2の吸入通路36の内周に全周に渡って溝364が配置されている。図示の構成では、溝364の断面形状は略V字状をなしているが、溝364の断面形状は、ほかに、長方形状、半円形状などでも良い。また、溝364は、第2の吸入通路36の軸方向に対して完全に平行でなくてもよく、溝364が第2の吸入通路36の軸方向に対してねじれ角をもって形成されていてもよい。本実施の形態4では、第2の吸入通路36の内壁にこのような溝364を形成したことにより、第2の吸入通路36内を流れる冷凍機油は、表面張力によって溝364に確実に捕捉される。このため、第2の吸入通路36の中心部の高圧冷媒ガス中に冷凍機油が飛散して噴霧化することを確実に抑制し、第2の吸入通路36の内壁と内管38の外壁との隙間に冷凍機油をより確実に導くことができる。これにより、第2の吸入通路36から密閉容器31の内部空間311へ流入する高圧冷媒ガスと冷凍機油との混合をより確実に抑制し、高圧冷媒ガスと冷凍機油とをより確実に分離することができる。ただし、本実施の形態4では、第2の吸入通路36の内壁の溝364は無くても良い。すなわち、第2の吸入通路36の内壁が平滑でも良い。本実施の形態4では、第2の吸入通路36の内壁と内管38の外壁との間に、冷凍機油が通過可能な隙間が設けられていれば良い。 In the fourth embodiment, as shown in FIG. 9, a groove 364 along the longitudinal direction is formed on the inner wall of the second suction passage 36 so that the refrigerator oil can pass through the groove 364. ing. In the fourth embodiment, a large number of grooves 364 are formed in parallel, and the grooves 364 are arranged on the entire inner periphery of the second suction passage 36. In the configuration shown in the drawing, the cross-sectional shape of the groove 364 is substantially V-shaped, but the cross-sectional shape of the groove 364 may be rectangular, semicircular, or the like. Further, the groove 364 may not be completely parallel to the axial direction of the second suction passage 36, and the groove 364 may be formed with a twist angle with respect to the axial direction of the second suction passage 36. Good. In the fourth embodiment, since such a groove 364 is formed on the inner wall of the second suction passage 36, the refrigeration oil flowing in the second suction passage 36 is reliably captured by the groove 364 by the surface tension. The For this reason, the refrigerating machine oil is reliably prevented from being scattered and atomized in the high-pressure refrigerant gas at the center of the second suction passage 36, and the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38 are Refrigerating machine oil can be more reliably guided to the gap. Thereby, mixing of the high-pressure refrigerant gas flowing into the internal space 311 of the sealed container 31 from the second suction passage 36 and the refrigerating machine oil is more reliably suppressed, and the high-pressure refrigerant gas and the refrigerating machine oil are more reliably separated. Can do. However, in the fourth embodiment, the groove 364 on the inner wall of the second suction passage 36 may be omitted. That is, the inner wall of the second suction passage 36 may be smooth. In the fourth embodiment, it is only necessary to provide a gap through which the refrigerating machine oil can pass between the inner wall of the second suction passage 36 and the outer wall of the inner pipe 38.
実施の形態5.
 次に、図10を参照して、本発明の実施の形態5について説明するが、前述した実施の形態3および4との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図10は、本発明の実施の形態5の圧縮機3が備える第2の吸入通路36の下流端付近を示す図である。
Embodiment 5 FIG.
Next, a fifth embodiment of the present invention will be described with reference to FIG. 10. The description will focus on the differences from the third and fourth embodiments described above, and the same or corresponding parts will be denoted by the same reference numerals. The description is omitted. FIG. 10 is a view showing the vicinity of the downstream end of the second suction passage 36 provided in the compressor 3 according to the fifth embodiment of the present invention.
 本実施の形態5の圧縮機3は、実施の形態4と同様の理由により、実施の形態3の構成に加えて、第2の吸入通路36から流入する高圧冷媒ガスと冷凍機油とを分離する油分離手段を更に備えている。以下、本実施の形態5における油分離手段の構成について説明する。 For the same reason as in the fourth embodiment, the compressor 3 in the fifth embodiment separates the high-pressure refrigerant gas flowing from the second suction passage 36 from the refrigerating machine oil in addition to the configuration of the third embodiment. Oil separation means is further provided. Hereinafter, the configuration of the oil separation means in the fifth embodiment will be described.
 図10に示すように、本実施の形態5の圧縮機3では、密閉容器31内において、第2の吸入通路36の下流端に、筒状の網状部材39が接続されている。網状部材39は、例えば金属材料等で構成され、第2の吸入通路36とほぼ同じ直径を有している。本実施の形態5では、このような網状部材39を、油分離手段として備えている。網状部材39の中心軸は、ほぼ水平になっている。第2の吸入通路36の下流端から流出した冷凍機油は、網状部材39に捕捉され、網状部材39の周面を伝って網状部材39の下部に集まり、密閉容器31の内部空間311の下部の油溜まり312へ落下する。また、網状部材39の端面は、開口している。高圧冷媒ガスは、網状部材39の網目(細孔)ではなく、網状部材39の端面の開口を通って、密閉容器31の内部空間311へ噴き出す。このような構成により、本実施の形態5では、第2の吸入通路36の下流端から流出した冷凍機油が高圧冷媒ガスの流れによって巻き上げられて飛散することを確実に防止することができる。このため、第2の吸入通路36から密閉容器31の内部空間311へ流入する高圧冷媒ガスと冷凍機油との混合を確実に抑制し、高圧冷媒ガスと冷凍機油とを確実に分離することができる。このため、実施の形態4と同様の効果が得られる。 As shown in FIG. 10, in the compressor 3 of the fifth embodiment, a cylindrical mesh member 39 is connected to the downstream end of the second suction passage 36 in the sealed container 31. The mesh member 39 is made of, for example, a metal material and has substantially the same diameter as the second suction passage 36. In the fifth embodiment, such a net member 39 is provided as an oil separating means. The central axis of the mesh member 39 is substantially horizontal. The refrigerating machine oil that has flowed out from the downstream end of the second suction passage 36 is captured by the mesh member 39, travels along the circumferential surface of the mesh member 39, gathers at the lower portion of the mesh member 39, and is located below the inner space 311 of the sealed container 31. It falls to the oil sump 312. Further, the end face of the mesh member 39 is open. The high-pressure refrigerant gas is jetted into the internal space 311 of the sealed container 31 not through the mesh (pores) of the mesh member 39 but through the opening at the end face of the mesh member 39. With such a configuration, in the fifth embodiment, it is possible to reliably prevent the refrigeration oil flowing out from the downstream end of the second suction passage 36 from being wound up and scattered by the flow of the high-pressure refrigerant gas. For this reason, mixing of the high-pressure refrigerant gas flowing into the internal space 311 of the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be reliably suppressed, and the high-pressure refrigerant gas and the refrigerating machine oil can be reliably separated. . For this reason, the effect similar to Embodiment 4 is acquired.
 また、本実施の形態5では、第2の吸入通路36の内壁に、実施の形態4と同様の溝364が形成されていることが望ましい。これにより、第2の吸入通路36内を流れる冷凍機油は、表面張力によって溝364に確実に捕捉される。このため、第2の吸入通路36の中心部の高圧冷媒ガス中に冷凍機油が飛散して噴霧化することを確実に抑制し、冷凍機油を液膜として網状部材39まで確実に導くことができる。これにより、第2の吸入通路36から密閉容器31内に流入する高圧冷媒ガスと冷凍機油との混合をより確実に抑制し、両者をより確実に分離することができる。 In the fifth embodiment, it is desirable that a groove 364 similar to that in the fourth embodiment is formed on the inner wall of the second suction passage 36. Thereby, the refrigerating machine oil flowing in the second suction passage 36 is reliably captured in the groove 364 by the surface tension. For this reason, it is possible to reliably prevent the refrigerating machine oil from being scattered and atomized in the high-pressure refrigerant gas at the center of the second suction passage 36, and to reliably lead the refrigerating machine oil to the mesh member 39 as a liquid film. . Thereby, mixing of the high-pressure refrigerant gas flowing into the sealed container 31 from the second suction passage 36 and the refrigerating machine oil can be more reliably suppressed, and both can be more reliably separated.
1 ヒートポンプ給湯装置、1a 入水口、1b 出湯口、2 タンクユニット、2a 貯湯タンク、2b 水ポンプ、2c 給湯用混合弁、3 圧縮機、4 第1の水冷媒熱交換器、5 第2の水冷媒熱交換器、6 膨張弁、7 蒸発器、8 送風機、9 高低圧熱交換器、10,11,12 管、13 給水管、14 出湯管、15 給水分岐管、16 給湯管、17,18,19,20,21 管、23,24,26 水流路、27 アキュムレータ、31 密閉容器、32 圧縮要素、33 電動要素、34 第1の吸入通路、35 第1の吐出通路、36 第2の吸入通路、37 第2の吐出通路、38 内管、39 網状部材、50 制御部、311 内部空間、312 油溜まり、321 圧縮室、322 マフラー、323 フレーム、324 通路、325 第2油戻し流路、331 回転軸、351 外管、352 内管、353 孔、354 第1油戻し流路、355 封止部材、356 溝、357 第2油戻し流路、364 溝 1 Heat pump water heater, 1a water inlet, 1b hot water outlet, 2 tank unit, 2a hot water storage tank, 2b water pump, 2c hot water mixing valve, 3 compressor, 4 first water refrigerant heat exchanger, 5 second water Refrigerant heat exchanger, 6 expansion valve, 7 evaporator, 8 blower, 9 high / low pressure heat exchanger, 10, 11, 12 pipe, 13 water supply pipe, 14 hot water supply pipe, 15 water supply branch pipe, 16 hot water supply pipe, 17, 18 , 19, 20, 21 pipe, 23, 24, 26 water flow path, 27 accumulator, 31 sealed container, 32 compression element, 33 electric element, 34 first suction passage, 35 first discharge passage, 36 second suction Passage, 37 second discharge passage, 38 inner pipe, 39 mesh member, 50 control unit, 311 internal space, 312 oil reservoir, 321 compression chamber, 322 muffler, 323 Frame, 324 passage, 325 second oil return flow path, 331 rotating shaft, 351 outer pipe, 352 inner pipe, 353 hole, 354 first oil return flow path, 355 sealing member, 356 groove, 357 second oil return flow Road, 364 groove

Claims (11)

  1.  密閉容器と、
     前記密閉容器内に設けられた圧縮要素と、
     吸入される低圧冷媒を前記密閉容器の内部空間へ放出せずに前記圧縮要素へ導く第1の吸入通路と、
     前記圧縮要素により圧縮された高圧冷媒を前記密閉容器の内部空間へ放出せずに前記密閉容器外へ直接吐出する第1の吐出通路と、
     前記第1の吐出通路と、前記第1の吐出通路の下流側に設けられた外部の熱交換器とを通過した前記高圧冷媒を前記密閉容器の内部空間へ導く第2の吸入通路と、
     前記密閉容器の内部空間にある前記高圧冷媒を前記密閉容器外へ吐出する第2の吐出通路と、
     前記圧縮要素から前記第1の吐出通路へ流出した冷凍機油を前記密閉容器の内部空間または前記第2の吸入通路内へ導く油戻し流路と、
     を備え、
     前記高圧冷媒が前記外部の熱交換器を通過するときに生ずる圧力損失により、前記第1の吐出通路内の圧力である第1高圧に比べて、前記密閉容器の内部空間および前記第2の吸入通路内の圧力である第2高圧が低くなり、
     前記第1高圧と前記第2高圧との差により、前記冷凍機油が前記油戻し流路内を移動する圧縮機。
    A sealed container;
    A compression element provided in the sealed container;
    A first suction passage that guides the suctioned low-pressure refrigerant to the compression element without releasing it into the internal space of the sealed container;
    A first discharge passage for discharging the high-pressure refrigerant compressed by the compression element directly to the outside of the sealed container without discharging into the inner space of the sealed container;
    A second suction passage that guides the high-pressure refrigerant that has passed through the first discharge passage and an external heat exchanger provided downstream of the first discharge passage to the internal space of the sealed container;
    A second discharge passage for discharging the high-pressure refrigerant in the inner space of the sealed container to the outside of the sealed container;
    An oil return passage that guides refrigeration oil that has flowed out of the compression element into the first discharge passage into the internal space of the sealed container or the second suction passage;
    With
    Due to the pressure loss that occurs when the high-pressure refrigerant passes through the external heat exchanger, the internal space of the sealed container and the second suction are compared with the first high-pressure that is the pressure in the first discharge passage. The second high pressure, which is the pressure in the passage, becomes lower,
    A compressor in which the refrigerating machine oil moves in the oil return channel due to a difference between the first high pressure and the second high pressure.
  2.  前記第1の吐出通路の内周面に開口する複数の孔を有し、前記第1の吐出通路内の前記冷凍機油が前記複数の孔へ吸入される請求項1記載の圧縮機。 The compressor according to claim 1, wherein the compressor has a plurality of holes opened on an inner peripheral surface of the first discharge passage, and the refrigerating machine oil in the first discharge passage is sucked into the plurality of holes.
  3.  前記油戻し流路は、前記第1の吐出通路の外周側に設けられた第1油戻し流路と、前記第1油戻し流路と前記密閉容器の内部空間とを前記密閉容器の内側にて連通させる第2油戻し流路とを有する請求項1または2記載の圧縮機。 The oil return flow path includes a first oil return flow path provided on an outer peripheral side of the first discharge passage, the first oil return flow path, and an internal space of the sealed container inside the sealed container. The compressor according to claim 1, further comprising a second oil return channel that communicates with each other.
  4.  前記油戻し流路は、前記第1の吐出通路の外周側に設けられた第1油戻し流路と、前記第1油戻し流路と前記第2の吸入通路とを前記密閉容器の外側にて連通させる第2油戻し流路とを有する請求項1または2記載の圧縮機。 The oil return flow path includes a first oil return flow path provided on an outer peripheral side of the first discharge passage, the first oil return flow path, and the second suction passage outside the sealed container. The compressor according to claim 1, further comprising a second oil return channel that communicates with each other.
  5.  前記第1の吐出通路の内壁に、長手方向に沿った溝が形成されている請求項1乃至4の何れか1項記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein a groove along a longitudinal direction is formed on an inner wall of the first discharge passage.
  6.  前記第2の吸入通路から前記密閉容器の内部空間へ流入する前記高圧冷媒と前記冷凍機油とを分離する油分離手段を更に備える請求項1乃至5の何れか1項記載の圧縮機。 The compressor according to any one of claims 1 to 5, further comprising oil separation means for separating the high-pressure refrigerant flowing from the second suction passage into the internal space of the sealed container and the refrigerating machine oil.
  7.  前記第2の吸入通路の内側に設けられた内管を、前記油分離手段として備え、
     前記内管の下流端は、前記第2の吸入通路の下流端から突出しており、
     前記内管の内部を前記高圧冷媒が通過可能であり、
     前記第2の吸入通路の内壁と前記内管の外壁との間を前記冷凍機油が通過可能である請求項6記載の圧縮機。
    An inner pipe provided inside the second suction passage is provided as the oil separating means,
    A downstream end of the inner pipe protrudes from a downstream end of the second suction passage;
    The high-pressure refrigerant can pass through the inner pipe,
    The compressor according to claim 6, wherein the refrigerating machine oil can pass between an inner wall of the second suction passage and an outer wall of the inner pipe.
  8.  前記第2の吸入通路の下流端に接続された筒状の網状部材を、前記油分離手段として備える請求項6記載の圧縮機。 The compressor according to claim 6, comprising a cylindrical mesh member connected to the downstream end of the second suction passage as the oil separating means.
  9.  前記冷媒の高圧側の圧力が臨界圧を超える圧力になる請求項1乃至8の何れか1項記載の圧縮機。 The compressor according to any one of claims 1 to 8, wherein a pressure on a high pressure side of the refrigerant exceeds a critical pressure.
  10.  請求項1乃至9の何れか1項記載の圧縮機と、
     前記圧縮機の前記第1の吐出通路から吐出された前記高圧冷媒を放熱させる、前記外部の熱交換器としての第1の熱交換器と、
     前記圧縮機の前記第2の吐出通路から吐出された前記高圧冷媒を放熱させる第2の熱交換器と、
     を備える冷凍サイクル装置。
    A compressor according to any one of claims 1 to 9,
    A first heat exchanger as the external heat exchanger that radiates heat from the high-pressure refrigerant discharged from the first discharge passage of the compressor;
    A second heat exchanger that radiates heat from the high-pressure refrigerant discharged from the second discharge passage of the compressor;
    A refrigeration cycle apparatus comprising:
  11.  請求項1乃至9の何れか1項記載の圧縮機と、
     前記圧縮機の前記第1の吐出通路から吐出された前記高圧冷媒と水との熱交換を行う、前記外部の熱交換器としての第1の水冷媒熱交換器と、
     前記圧縮機の前記第2の吐出通路から吐出された前記高圧冷媒と水との熱交換を行う第2の水冷媒熱交換器と、
     を備えるヒートポンプ給湯装置。
    A compressor according to any one of claims 1 to 9,
    A first water refrigerant heat exchanger as the external heat exchanger that exchanges heat between the high-pressure refrigerant discharged from the first discharge passage of the compressor and water;
    A second water refrigerant heat exchanger for exchanging heat between the high-pressure refrigerant discharged from the second discharge passage of the compressor and water;
    A heat pump hot water supply device comprising:
PCT/JP2013/073336 2012-11-30 2013-08-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device WO2014083901A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014550053A JP5892261B2 (en) 2012-11-30 2013-08-30 Refrigeration cycle apparatus and heat pump water heater
EP13859532.7A EP2930449B1 (en) 2012-11-30 2013-08-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/081031 2012-11-30
PCT/JP2012/081031 WO2014083674A1 (en) 2012-11-30 2012-11-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device

Publications (1)

Publication Number Publication Date
WO2014083901A1 true WO2014083901A1 (en) 2014-06-05

Family

ID=50827346

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/081031 WO2014083674A1 (en) 2012-11-30 2012-11-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device
PCT/JP2013/073336 WO2014083901A1 (en) 2012-11-30 2013-08-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081031 WO2014083674A1 (en) 2012-11-30 2012-11-30 Compressor, refrigeration cycle device, and heat pump hot-water supply device

Country Status (2)

Country Link
EP (1) EP2930449B1 (en)
WO (2) WO2014083674A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108980876A (en) * 2018-08-16 2018-12-11 江苏天楹环保能源成套设备有限公司 Plasma heating furnace tail portion high temperature corrosive gas changeover portion liquid film seal structure
EP3318821A4 (en) * 2015-07-03 2019-03-06 Mitsubishi Electric Corporation Heat pump device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097612A1 (en) * 2017-11-15 2019-05-23 三菱電機株式会社 Oil separator and refrigeration cycle device
CN110657488B (en) * 2019-10-14 2021-01-05 华育昌(肇庆)智能科技研究有限公司 Energy-saving environment-friendly air conditioning device
CN110657598A (en) * 2019-10-14 2020-01-07 华育昌(肇庆)智能科技研究有限公司 Energy-saving and environment-friendly heat pump
EP4083541A4 (en) * 2019-12-27 2022-12-07 Mitsubishi Electric Corporation Gas-liquid separation device and refrigeration cycle device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320707Y2 (en) * 1985-11-13 1991-05-02
JPH03114585U (en) * 1990-03-09 1991-11-25
JPH0462359A (en) * 1990-06-29 1992-02-27 Toshiba Corp Oil separator for air conditioner
JPH0517459U (en) * 1991-08-02 1993-03-05 三菱重工業株式会社 Refrigerant circuit oil separator
JPH06323697A (en) * 1993-05-18 1994-11-25 Hitachi Ltd Oil separator for refrigerator
JPH10148422A (en) * 1996-11-15 1998-06-02 Sanyo Electric Co Ltd Oil separator
JPH11173707A (en) * 1997-12-10 1999-07-02 Mitsubishi Electric Corp Refrigeration cycle apparatus and oil separator therefor
JP2003013858A (en) * 2001-06-27 2003-01-15 Mitsubishi Heavy Ind Ltd Compressor
JP2006132427A (en) 2004-11-05 2006-05-25 Mitsubishi Electric Corp Compressor for hot-water supply and hot-water supply cycle device
KR100619785B1 (en) * 2005-05-16 2006-09-06 엘지전자 주식회사 Oil seperator
US20090071188A1 (en) * 2007-09-19 2009-03-19 Denso Corporation Oil separator and refrigerant compressor having the same
JP2009109102A (en) * 2007-10-31 2009-05-21 Nippon Soken Inc Oil separator and refrigerant compressor provided with it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133585A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
CN201954824U (en) * 2011-02-21 2011-08-31 大连三洋冷链有限公司 Integral design of oil cooler and gas cooler of supercritical CO2 refrigeration condensation set

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320707Y2 (en) * 1985-11-13 1991-05-02
JPH03114585U (en) * 1990-03-09 1991-11-25
JPH0462359A (en) * 1990-06-29 1992-02-27 Toshiba Corp Oil separator for air conditioner
JPH0517459U (en) * 1991-08-02 1993-03-05 三菱重工業株式会社 Refrigerant circuit oil separator
JPH06323697A (en) * 1993-05-18 1994-11-25 Hitachi Ltd Oil separator for refrigerator
JPH10148422A (en) * 1996-11-15 1998-06-02 Sanyo Electric Co Ltd Oil separator
JPH11173707A (en) * 1997-12-10 1999-07-02 Mitsubishi Electric Corp Refrigeration cycle apparatus and oil separator therefor
JP2003013858A (en) * 2001-06-27 2003-01-15 Mitsubishi Heavy Ind Ltd Compressor
JP2006132427A (en) 2004-11-05 2006-05-25 Mitsubishi Electric Corp Compressor for hot-water supply and hot-water supply cycle device
KR100619785B1 (en) * 2005-05-16 2006-09-06 엘지전자 주식회사 Oil seperator
CN1865818A (en) * 2005-05-16 2006-11-22 Lg电子株式会社 Oil separator and air conditioner having the same
EP1724537A1 (en) * 2005-05-16 2006-11-22 LG Electronics Inc. Oil separator and air conditioner having the same
JP2006322701A (en) * 2005-05-16 2006-11-30 Lg Electronics Inc Oil separator and air conditioner having the same
US20090071188A1 (en) * 2007-09-19 2009-03-19 Denso Corporation Oil separator and refrigerant compressor having the same
DE102008047447A1 (en) * 2007-09-19 2009-04-23 Denso Corp., Kariya-shi Oil separator and refrigerant compressor with this
JP2009109102A (en) * 2007-10-31 2009-05-21 Nippon Soken Inc Oil separator and refrigerant compressor provided with it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2930449A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3318821A4 (en) * 2015-07-03 2019-03-06 Mitsubishi Electric Corporation Heat pump device
US10495360B2 (en) 2015-07-03 2019-12-03 Mitsubishi Electric Corporation Heat pump device
CN108980876A (en) * 2018-08-16 2018-12-11 江苏天楹环保能源成套设备有限公司 Plasma heating furnace tail portion high temperature corrosive gas changeover portion liquid film seal structure
CN108980876B (en) * 2018-08-16 2024-04-19 江苏天楹环保能源成套设备有限公司 Liquid film sealing structure for high-temperature corrosive gas transition section at tail part of plasma furnace

Also Published As

Publication number Publication date
EP2930449A4 (en) 2016-09-28
EP2930449A1 (en) 2015-10-14
WO2014083674A1 (en) 2014-06-05
EP2930449B1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US9897360B2 (en) Refrigeration apparatus
WO2014083901A1 (en) Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP4816220B2 (en) Refrigeration equipment
JP4967435B2 (en) Refrigeration equipment
JP2007285681A (en) Refrigerating appliance
US9664191B2 (en) Rotary compressor with increased heating ability and refrigerant circuit for an air conditioner
JP6727420B2 (en) Air conditioner
WO2014083900A1 (en) Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP4591402B2 (en) Refrigeration equipment
JP6075451B2 (en) Heat pump equipment
JP4381458B2 (en) Oil separator
JP5599514B2 (en) Two-stage compressor and heat pump device
KR101275921B1 (en) Hermetic type compressor
JP4963971B2 (en) Heat pump type equipment
JP6061044B2 (en) Scroll compressor
JP5892261B2 (en) Refrigeration cycle apparatus and heat pump water heater
JP2017186924A (en) Compressor
JP4720594B2 (en) Refrigeration equipment
JP4720593B2 (en) Refrigeration equipment
WO2020057452A1 (en) Scroll compressor and air-conditioning system comprising same
JP4055264B2 (en) Air conditioner
JP2023006134A (en) Compressor comprising oil equalizing seat
JP2011012895A (en) Heat pump device
JP2013083334A (en) Three-way control valve and freezing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550053

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013859532

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE