[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014083844A1 - Resin composition, and cured product (2) thereof - Google Patents

Resin composition, and cured product (2) thereof Download PDF

Info

Publication number
WO2014083844A1
WO2014083844A1 PCT/JP2013/006963 JP2013006963W WO2014083844A1 WO 2014083844 A1 WO2014083844 A1 WO 2014083844A1 JP 2013006963 W JP2013006963 W JP 2013006963W WO 2014083844 A1 WO2014083844 A1 WO 2014083844A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin composition
group
meth
acrylate
Prior art date
Application number
PCT/JP2013/006963
Other languages
French (fr)
Japanese (ja)
Inventor
伸彦 内藤
潤 木戸場
雄一朗 松尾
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50827505&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014083844(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201380062296.3A priority Critical patent/CN104822729A/en
Priority to KR1020157012283A priority patent/KR102031575B1/en
Publication of WO2014083844A1 publication Critical patent/WO2014083844A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • low moisture permeability materials are important materials in various industries. Particularly in the vicinity of electric and electronic displays, it is an indispensable material for maintaining quality, and a higher performance low moisture permeability material is desired.
  • thin displays called flat panel displays (FPD), in particular, plasma displays (PDP) and liquid crystal displays (LCD) have been put on the market and are widely used.
  • organic EL displays OLEDs are expected as next-generation self-luminous thin film displays, and some commercial products have already been put into practical use.
  • An organic EL element of an organic EL display has a structure in which an element body composed of a thin film laminate including a light emitting layer sandwiched between a cathode and an anode is formed on a glass substrate on which a driving circuit such as a TFT is formed.
  • a layer such as a light emitting layer or an electrode of the element portion is easily deteriorated by moisture or oxygen, and the deterioration of brightness, life, and discoloration occurs due to the deterioration. Therefore, the organic EL element is sealed so as to block moisture or impurities from entering from the outside.
  • a higher-performance sealing material is desired, and various sealing techniques have been studied.
  • Patent Document 1 As a typical sealing method of an organic EL element, a method of fixing a metal or glass sealing cap in which a desiccant is inserted in advance to a substrate of an organic EL element using a sealing adhesive has been studied.
  • Patent Document 1 an adhesive is applied to the outer peripheral portion of the substrate of the organic EL element, a sealing cap is placed thereon, and then the adhesive is solidified to fix the substrate and the sealing cap. It is sealed.
  • sealing with a glass sealing cap is the mainstream.
  • a glass sealing cap is produced by processing a digging for inserting a desiccant into a flat glass substrate, and thus tends to be expensive.
  • the sealing with the sealing cap cannot extract light from the sealing cap side.
  • the light emitted from the light source is extracted from the substrate side of the element, and is limited to the bottom emission type element.
  • a bottom emission type element there are problems of a decrease in aperture ratio due to the drive circuit portion formed on the substrate and a decrease in extraction efficiency due to light being partially blocked by the drive circuit portion. Therefore, development of a sealing method applicable to a top emission type element that extracts light from the opposite side of the substrate of the organic EL element is desired.
  • the thin film sealing method is a method in which a thin film made of an inorganic or organic material is laminated on an organic EL element to form a passivation film (Patent Document 2).
  • Patent Document 2 In order to impart sufficient moisture resistance to the device by this method, it is necessary to sequentially stack a number of thin films on the device. Therefore, in the thin film sealing method, the film forming process is long and expensive, and the initial investment tends to be high due to the introduction of a large vacuum system required for film formation.
  • the solid sealing method is a method in which a passivation film is provided so as to cover the entire element portion of the organic EL element, and a sealing transparent substrate is provided thereon via a sealing material.
  • a passivation film is formed by vapor deposition or sputtering of an inorganic material, and it is often an incomplete film having pinholes or a film having low mechanical strength. Therefore, in the solid sealing method, after providing a passivation film on the element, a sealing transparent substrate such as a glass substrate is provided through a sealing adhesive to improve sealing reliability.
  • a technique for enhancing the reliability of sealing by filling the air gap with heat or photo-curing resin has been studied. Such a solid sealing method is attracting attention as a method capable of sealing a top emission type element simply and at low cost.
  • a heat or photo-curing resin as a sealing adhesive or a surface sealing adhesive. This is very important because it can significantly affect the productivity of the sealing operation. For example, if the water vapor transmission rate of the sealing adhesive is not sufficient, it may enter the element portion from the pinhole of the passivation film and cause deterioration of the element. Further, if the curing reaction of the sealing material is slow, the curing process takes time, and the productivity of the sealing work may be reduced.
  • the sealing adhesive used for these has high transmittance in the visible light region, light resistance that can withstand light emission, stable moldability, low curing shrinkage for suppressing residual stress, and light emitting elements in moisture. For example, a low water vapor transmission rate for protecting from water is required.
  • a sealing adhesive that can be suitably used in the solid sealing method is desired.
  • An object of the present invention is to provide a sealing material for an organic EL device, particularly a resin composition suitable for surface sealing, and excellent in visible light transmittance, light resistance and curability, high Tg, curing shrinkage rate, water vapor transmission rate. It provides a cured product having a low viscosity.
  • the present invention relates to the inventions described in the following (1) to (19).
  • Resin composition for surface sealing of an organic EL device containing an alicyclic compound (A) having an oxetanyl group or an epoxy group, a cyclic compound (B) having an oxetanyl group or an epoxy group and satisfying the following conditions object, Conditions for the cyclic compound (B):
  • the ring in the cyclic compound (B) is an aliphatic ring or a heterocycle, and when the ring is an aliphatic ring, the cyclic compound is a compound used as the alicyclic compound (A). It is a compound having a different structure.
  • A-1 Tricyclodecane, isobornyl, adamantane, cyclopentane, cyclohexane, hydrogenated bisphenol A, hydrogenated bisphenol F, and hydrogenated bisphenol S.
  • the above alicyclic compound (A) is an oxetane compound or an epoxy compound having a skeleton selected from the group consisting of tricyclodecane, adamantane, cyclohexane and hydrogenated bisphenol A as an aliphatic ring (1 ) Or (2).
  • B-1 Tricyclodecane, isobornyl, adamantane, cyclopentane, cyclohexane, hydrogenated bisphenol A, hydrogenated bisphenol F, and hydrogenated bisphenol S.
  • the cyclic compound (B) is an oxetane compound or an epoxy compound having a skeleton selected from the group consisting of tricyclodecane, adamantane, cyclohexane and hydrogenated bisphenol A as an aliphatic ring.
  • the resin composition as described.
  • B-3 Morpholine, tetrahydrofuran, oxane, dioxane, triazine, carbazole, pyrrolidine and piperidine.
  • C-1 sulfonium salt, iodonium salt, phosphonium salt, ammonium salt and antimonate.
  • thermosetting resin composition according to (8) wherein the curing agent (C) is a thermosetting agent and the resin composition is a thermosetting resin composition.
  • C-2 Amine compound, acid anhydride compound, amide compound, phenol compound, carboxylic acid compound, imidazole compound, isocyanuric acid adduct, metal compound, sulfonium salt, ammonium salt, antimonate, phosphonium Salt and microcapsule type curing agents.
  • the resin composition for surface sealing of the organic EL device of the present invention (hereinafter simply referred to as “surface sealing resin composition” or “resin composition” in the present specification) has a low viscosity, and The cured product is excellent in visible light transmittance and light resistance, has a high Tg, and has a low curing shrinkage rate and low water vapor transmission rate. Therefore, the cured product is particularly suitable for a surface sealing material for an organic EL element.
  • alicyclic compound (A) having an oxetanyl group or an epoxy group contained in the resin composition of the present invention also referred to as “alicyclic compound (A)” or “component (A)” in this specification.
  • Any compound can be used as long as it has at least one aliphatic ring and at least one oxetanyl group or epoxy group in the molecule.
  • the alicyclic compound (A) include an oxetane compound having an aliphatic ring exemplified below or an epoxy compound having an aliphatic ring.
  • Examples of the alicyclic compound (A) contained in the resin composition of the present invention include an alicyclic hydrocarbon skeleton or a cycloalkylene skeleton having a bridge structure (without a bridge structure), an oxetanyl group, and an epoxy.
  • a cyclic compound having a group; or an alicyclic epoxy compound having at least one alicyclic epoxy skeleton in the molecule can be used. Examples of these specific structures will be described in detail below.
  • the alicyclic hydrocarbon skeleton or cycloalkylene skeleton having the above bridge structure may or may not have a substituent.
  • the substituent include an alkyl group, an alkoxy group, and an alkenyl group. It is preferably 1 to 4.
  • the compound is extremely excellent. A cured product having an effect of moisture resistance can be obtained. This is because the skeleton serves as a sufficient barrier against moisture and prevents moisture permeation.
  • the alicyclic hydrocarbon group having a bridge structure refers to an aliphatic ring in which a polycyclic skeleton is formed by a bridge structure.
  • an adamantane skeleton, a tricyclodecane skeleton Preferred examples include a dicyclopentadiene skeleton) and an isobornyl skeleton.
  • these groups may have a substituent selected from an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and an alkenyl group having 1 to 4 carbon atoms.
  • a tricyclodecane skeleton is particularly preferable.
  • cycloalkylene skeletons examples include cycloalkylene skeletons preferably having 4 to 7 carbon atoms, more preferably 5 or 6 carbon atoms, and specific examples include cyclopentane skeleton, cyclohexane skeleton and cycloheptane skeleton. Etc.
  • a cyclohexane skeleton is particularly preferable.
  • Y represents a direct bond, a sulfur atom or an alkylene group having 1 to 10 carbon atoms, an alkylene group having an ether bond or an alkylene group having an ester bond, and each R 3 independently represents a hydrogen atom or 1 carbon atom.
  • a skeleton represented by t represents an integer of 1 to 4.
  • Y is preferably a direct bond or an alkylene group having 1 to 10 carbon atoms, and Y is a direct bond, a methylene group or propane-2,2- Those that are diyl groups are more preferred, and those in which Y is a direct bond are particularly preferred.
  • the alicyclic hydrocarbon skeleton having the bridge structure, the cycloalkylene skeleton (including the formula (AA) skeleton), and the oxetanyl group or the epoxy group may be directly or by a linking group containing a hydrocarbon group. It is preferable that it is connected.
  • Examples of the linking group in the case where the skeleton and the oxetanyl group or the epoxy group are linked by a linking group containing the hydrocarbon group include a hydrocarbon group that may include an ether bond or an ester bond, Examples thereof include an alkylene group having 1 to 10 carbon atoms, an alkylene group having 1 to 10 carbon atoms having an ether bond, and an alkylene group having 1 to 10 carbon atoms having an ester bond.
  • hydrocarbon group containing an ether bond examples include a C1-C4 alkylene-oxy-C1-C4 alkylene group, more preferably a C1-C3 alkylene-oxy-C1-C3 alkylene group, An alkylene group having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms containing an ether bond between carbon atoms; and a C1-C4 alkylene group having an ether bond such as an -oxymethyl group at the terminal of the alkylene group (- An oxy-C1-C4 alkylene group), more preferably an -oxy-C1-C3 alkylene group.
  • the oxy group is usually bonded to the aliphatic ring and the alkyl group is bonded to the oxetane ring or the epoxy ring.
  • specific examples of the hydrocarbon group containing an ester bond include a C1-C6 alkylene group having an ester bond at one end (ester bond-C1-C6 alkylene group), more preferably an ester bond-C1.
  • ester bond-C1-C6 alkylene (more preferably C2-C5 alkylene) -C1-C6 alkylene group having an ester bond at both ends, such as an ester bond
  • the hydrocarbon group containing an ester bond has an ester bond at the end, usually, in the ester bond, a carbonyl group is bonded to an aliphatic ring and an ether group is bonded to an alkylene group.
  • the linking group include a C1-C3 alkylene-oxy-C1-C3 alkylene group, an oxy-C1-C3 alkylene group, and an ester bond-C1-C3 alkylene group.
  • the alicyclic epoxy compound is a compound having an aliphatic ring in which an alicyclic epoxy group is formed, and can be used as the alicyclic compound (A) in the present invention.
  • An alicyclic epoxy group refers to an epoxy group formed directly on an aliphatic ring by bonding one oxygen atom to two carbon atoms constituting the aliphatic ring.
  • Examples of the aliphatic ring in which the alicyclic epoxy group in the alicyclic epoxy compound is formed include the cycloalkylene skeleton or the alicyclic hydrocarbon skeleton having a bridge structure, and more specifically, cyclopentane.
  • the alicyclic epoxy compound may have two or more alicyclic epoxy groups, and is preferably a compound having two or more aliphatic rings formed with one alicyclic epoxy group.
  • an aliphatic ring in which two or more alicyclic epoxy groups are formed is preferably linked directly or by a linking group containing the hydrocarbon group.
  • the alicyclic epoxy compound may have an oxetanyl group or an epoxy group in addition to the alicyclic epoxy group, and the aliphatic ring formed with the alicyclic epoxy group and the oxetanyl group or the epoxy group, It may be a compound formed by being linked directly or by a linking group containing the above-mentioned hydrocarbon group.
  • Suitable examples of the alicyclic epoxy compound include compounds having a skeleton selected from a cyclopentane skeleton, a cyclohexane skeleton, and a tricyclodecane skeleton, and an alicyclic epoxy group formed on the skeleton.
  • a compound having a cyclohexane skeleton in which an alicyclic epoxy group is formed is more preferable, and a compound in which two 1,2-epoxycyclohexane skeletons are linked directly or via an alkylene group having 1 to 3 carbon atoms having an ester bond is Further preferred.
  • Examples of the aliphatic ring (including those formed with an alicyclic epoxy group) included in the alicyclic compound (A) of the present invention include the groups described in the following (A-1): A-1: Tricyclodecane skeleton, isobornyl skeleton, adamantane skeleton, cyclopentane skeleton, cyclohexane skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton and hydrogenated bisphenol S skeleton.
  • a skeleton selected from is more preferable.
  • preferred examples of the oxetane compounds having an aliphatic ring include 3 (4), 8 (9) -bis [(1-ethyl-3-oxetanyl) methoxymethyl]- And tricyclo [5.2.2.1.6] decane.
  • alicyclic compound (A) preferred specific examples of the epoxy compound having an aliphatic ring are shown in the groups described in (a-1a), (a-1b) and (a-1c) described later.
  • Alicyclic epoxy compounds; bisphenol A type epoxy compounds such as hydrogenated bisphenol A diglycidyl ether, brominated hydrogenated bisphenol A diglycidyl ether; hydrogenated bisphenol F diglycidyl ether, brominated hydrogenated bisphenol F diglycidyl ether, etc.
  • Bisphenol F type epoxy compounds hydrogenated bisphenol S type diglycidyl ethers, hydrogenated bisphenol S type epoxy compounds such as brominated hydrogenated bisphenol S diglycidyl ethers; diepoxy tricyclodecane, tricyclodecane dimethanol diglycidyl ether, etc.
  • alicyclic compound (A) contained in the resin composition of the present invention among the compounds, a skeleton selected from the group consisting of an alicyclic epoxy compound, or a hydrogenated bisphenol A skeleton and a tricyclodecane skeleton.
  • Oxetane compounds or epoxy compounds having the following are preferred:
  • a compound having two or more oxetanyl groups or epoxy groups is more preferable, and a compound having two functions is more preferable.
  • the content of the component (A) of the present invention is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts per 100 parts by mass of the total amount of the component (A) and the component (B) which are reactive compounds. Part by mass.
  • the functional group equivalent of component (A) is preferably 10 to 500 g / eq, and preferably 50 to 250 g / eq. Is more preferable.
  • the cyclic compound (B) having an oxetanyl group or an epoxy group (also referred to as “cyclic compound (B)” or “component (B)” in the present specification) contained in the resin composition of the present invention has the following conditions. Meet. Conditions of the cyclic compound (B): “As the ring contained in the cyclic compound (B), there is an aliphatic ring or a heterocycle. When the ring is an aliphatic ring, the cyclic compound (B) A compound having a structure different from the compound used as the alicyclic compound (A) is used.
  • the resin composition of the present invention contains an oxetane compound having two different types of aliphatic rings or an epoxy compound having an aliphatic ring.
  • the cyclic compounds (B) as the compound whose ring is an aliphatic ring, the compounds listed as the alicyclic compound (A) can be used.
  • Preferred examples of the compound in which the ring is an aliphatic ring among the cyclic compounds (B) include compounds that are preferred in the description of the alicyclic compound (A). The same applies to more preferable compounds.
  • the cyclic compound (B) when a compound whose ring is an aliphatic ring is used as the cyclic compound (B), it is more preferable to use a compound having a skeleton different from the compound used as the alicyclic compound (A). .
  • the aliphatic ring when the ring is an aliphatic ring, the aliphatic ring (including those formed with an alicyclic epoxy group) is the group described in the following (B-1): B-1: Tricyclodecane skeleton, isobornyl skeleton, adamantane skeleton, cyclopentane skeleton, cyclohexane skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton and hydrogenated bisphenol S skeleton.
  • a skeleton selected from is preferable, and the group described in (B-2) below: B-2: Tricyclodecane skeleton, adamantane skeleton, cyclohexane skeleton and hydrogenated bisphenol A skeleton.
  • B-2 Tricyclodecane skeleton, adamantane skeleton, cyclohexane skeleton and hydrogenated bisphenol A skeleton.
  • a skeleton selected from is more preferable.
  • the specific example of the compound whose ring is an aliphatic ring among cyclic compounds (B) is demonstrated.
  • oxetane compound having an aliphatic ring examples include 3 (4), 8 (9) -bis [(1-ethyl-3-oxetanyl) methoxymethyl] -tricyclo [5 2.1.2.6] decane and the like.
  • cyclic compounds (B) preferred specific examples of the epoxy compound having an aliphatic ring include alicyclic rings shown in the group described in (b-1a), (b-1b) and (b-1c) described later.
  • the tricyclodecane skeleton Epoxy compounds having an adamantane skeleton such as an adamantane glycidyl ether; epoxy compounds.
  • the oxetane compound or epoxy compound in which the ring is an aliphatic ring is a compound different from the alicyclic compound (A) among the compounds, and among them, the alicyclic An epoxy compound or an epoxy compound having a skeleton selected from the group consisting of the tricyclodecane skeleton, the adamantane skeleton, and the hydrogenated bisphenol A skeleton is preferable.
  • the oxetane compound and epoxy compound whose ring is an aliphatic ring are low in viscosity and moisture permeability and excellent in light transmittance, and thus the alicyclic epoxy compound and the tricyclo compound.
  • Epoxy compounds having a decane skeleton or the adamantane skeleton are particularly preferred.
  • the compound which has an oxetanyl group or an epoxy group bifunctional or more is preferable, and the compound which is bifunctional is more preferable.
  • the preferable content of the cyclic compound (B) when the ring is an aliphatic ring is 100 parts by mass in total of the component (A) and the component (B) which are reactive compounds.
  • the amount is 20 to 80 parts by mass, and more preferably 30 to 70 parts by mass.
  • the functional group equivalent of the cyclic compound (B) when the ring is an aliphatic ring is 10 to 1000 g / eq. Is more preferable, and 50 to 500 g / eq is more preferable.
  • the cyclic compounds (B) as a compound having a ring as a heterocycle, at least one heterocycle composed of a carbon atom and a hetero atom other than a carbon atom, and at least an oxetanyl group or an epoxy group in the molecule. Any compound that has one compound can be used.
  • the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the heterocyclic ring contained in the cyclic compound (B) in which the ring is a heterocyclic ring include the skeleton described in the following (B-3).
  • B-3 morpholine skeleton, tetrahydrofuran skeleton, oxane skeleton, dioxane skeleton, triazine skeleton (including isocyanurate ring), carbazole skeleton, pyrrolidine skeleton and piperidine skeleton.
  • the heterocycle may have a substituent or may not have a substituent. Examples of the substituent in the case where the heterocycle has a substituent include an alkyl group, an alkoxy group, and an alkenyl group, and these groups all preferably have 1 to 4 carbon atoms.
  • the substituent present in the heterocyclic skeleton is more preferably an alkyl group having 1 to 3 carbon atoms or an alkenyl group having 1 to 3 carbon atoms.
  • the group described in the following (B-4) B-4: Oxane skeleton, dioxane skeleton and triazine skeleton (including isocyanurate ring) And a compound having a skeleton selected from: and an oxetanyl group or an epoxy group.
  • a cyclic compound (B) whose ring is a heterocyclic ring the compound which has 2 or more oxetanyl group or an epoxy group is preferable, and the compound which is bifunctional is more preferable.
  • the heterocyclic skeleton and the oxetanyl group or epoxy group are usually linked directly or by a linking group containing a hydrocarbon group, and are preferably linked by the linking group.
  • Examples of the linking group in the case where the skeleton and the oxetanyl group or the epoxy group are linked by a linking group containing the hydrocarbon group include a hydrocarbon group that may include an ether bond. Or an alkylene group having 1 to 10 carbon atoms having an ether bond. More preferable examples of the linking group include a C1-C4 alkylene group and a C1-C4 alkylene group having an ether bond at the terminal of the alkylene group (-oxy-C1-C4 alkylene group).
  • oxetane compound having a heterocycle examples include a reaction product of isocyanuric acid (CIC acid) and oxetane alcohol.
  • the epoxy compound having a heterocycle include 1,3,5-triglycidyl isocyanurate and 1-allyl-3,5-diglycidyl isocyanurate.
  • an epoxy compound such as a compound having an isocyanurate skeleton, and a compound having a dioxane glycol skeleton such as dioxane glycol diglycidyl ether.
  • skeleton is preferable among the said compounds.
  • a compound having 2 or 3 epoxy groups together with the isocyanurate skeleton is particularly preferable.
  • the preferable content of the cyclic compound (B) when the ring is a heterocycle is 100 parts by mass in total of the component (A) and the component (B) which are reactive compounds. On the other hand, it is 20 to 80 parts by mass, more preferably 30 to 70 parts by mass.
  • the functional group equivalent of the cyclic compound (B) in which the ring is a heterocycle is preferably 10 to 1000 g / eq, More preferably, it is 50 to 500 g / eq.
  • the present invention is a curable resin composition containing the component (A) and the component (B).
  • the component (A) or the component (B) has a weight average molecular weight of 2000 or less, more preferably 1000 or less, and particularly preferably 500 or less to obtain a curable resin composition. It is preferable.
  • the resin composition has a low viscosity while ensuring low hygroscopicity of the cured product, and tends to spread after coating. Therefore, a composition excellent in the production of OLED can be obtained.
  • both the component (A) and the component (B) are the low molecular weight compounds.
  • the resin composition of the present invention is cured by thermosetting, it is also preferable that either one of the component (A) and the component (B) is an oxetane compound. It is because the resin composition excellent in sclerosis
  • the preferred use ratio of component (A) to component (B) in the resin composition of the present invention is such that (A) / (B) is 8/2 to 2/8 in terms of mass ratio, and 7/3 to 3 / 7 is more preferable.
  • a compound having a dicyclopentadiene skeleton, an isobornyl skeleton or an adamantane skeleton is used as the component (A) or the component (B). It is good to introduce.
  • the alicyclic epoxy compound when used as the component (A) or the component (B), since the alicyclic epoxy compound has a low viscosity, a resin composition having good processability and excellent curing speed is obtained. It is done. In this respect, it is preferable to use the alicyclic epoxy compound in the resin composition of the present invention.
  • the alicyclic epoxy compounds bifunctional alicyclic epoxy compounds are more preferable, and 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate is particularly preferable.
  • the viscosity of the resin composition (viscosity measured at 25 ° C.
  • the same shall apply hereinafter) is 15 Pa ⁇ s or less, more preferably 3500 mPa ⁇ s or less, still more preferably 1000 mPa ⁇ s or less, particularly preferably It is preferable to prepare the resin composition of the present invention by selecting the component (A) and the component (B) so as to be 500 mPa ⁇ s or less, most preferably 300 mPa ⁇ s or less.
  • the curing agent (C) contained in the resin composition of the present invention has reactivity with the epoxy compound and the oxetane compound.
  • a compound that initiates a curing reaction with energy rays such as heat or light can be used.
  • any curing agent can be used, but a curing agent (C) that initiates a curing reaction with energy rays is usually preferred.
  • the curing agent (C) that initiates the curing reaction with energy rays such as light can be used without limitation as long as it is a compound that generates cations upon receiving ultraviolet rays (wavelength of about 200 to 400 nm).
  • Examples of the curing agent (C) that initiates a curing reaction with an energy beam such as light include a cationic polymerization initiator that generates a cation upon receiving an energy beam such as light (hereinafter also referred to as a photocation polymerization initiator).
  • a photocation polymerization initiator examples include sulfonium salts, iodonium salts, phosphonium salts, ammonium salts, and antimonates.
  • sulfonium salt used as the photocationic polymerization initiator examples include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [diphenylsulfonio Diphenyl sulfide-bishexafluorophosphate, 4,4′-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenyl sulfide-bishexafluoroantimonate, 7- [di (p-toluyl) sulfonio] -2- Isopropylthioxanthone hexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxan
  • Examples of the iodonium salt used as the photocationic polymerization initiator include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, and , (Tricumyl) iodonium tetrakis (pentafluorophenyl) borate and the like.
  • Examples of the phosphonium salt used as the photocationic polymerization initiator include tri-n-butyl (2,5-dihydroxyphenyl) phosphonium bromide and hexadecyltributylphosphonium chloride.
  • ammonium salts used as the photocationic polymerization initiator include benzyltrimethylammonium chloride, phenyltributylammonium chloride, and benzyltrimethylammonium bromide.
  • Antimonates used as photocationic polymerization initiators include triphenylsulfonium hexafluoroantimonate, p- (phenylthio) phenyldiphenylsulfonium hexafluoroantimonate, 4-chlorophenyldiphenylsulfonium hexafluoroantimonate, and bis Examples include [4- (diphenylsulfonio) phenyl] sulfide bishexafluoroantimonate and diallyliodonium hexafluoroantimonate.
  • the iodonium salt and the sulfonium salt are preferable, and among them, it is highly sensitive and easily available from the market (Tricumyl).
  • the antimony element-free (tricumyl) iodonium tetrakis (pentafluorophenyl) borate as the curing agent (C) that initiates the curing reaction with the energy rays.
  • Diphenyl [4- (phenylthio) phenyl] sulfonium trifluorotrispentafluoroethyl phosphate, or tris [4- (4-acetylphenylsulfanyl) phenyl] sulfonium tris [(trifluoromethyl) sulfonyl] methanide Is most preferred.
  • the preferred content when using the cationic photopolymerization initiator is 0.05 to 5 parts by mass with respect to 100 parts by mass as the total of component (A) and component (B).
  • the amount is preferably 0.1 to 3 parts by mass.
  • a photocationic polymerization initiator may be used independently and may be used in mixture of multiple types.
  • thermosetting agent that initiates a curing reaction with the epoxy compound and the oxetane compound by heat can be used as the curing agent (C).
  • thermosetting agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, carboxylic acid compounds, and the like.
  • thermosetting agents that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, a polyamide resin synthesized from linolenic acid and ethylenediamine, imidazole, trifluoroborane- Amines and amide compounds such as amine complexes and guanidine derivatives; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride , Nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride,
  • an acid anhydride having excellent transparency after curing for surface sealing in a sealing material particularly an organic EL element, and among them, methyltetrahydrophthalic anhydride, methyl nadic anhydride, Nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1 ]
  • An acid anhydride having an alicyclic skeleton such as heptane-2,3-dicarboxylic acid anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride is preferred.
  • the curing agent that can be used in this case is not particularly limited as long as it is liquid and has a low viscosity.
  • commercially available curing agents include methyl nadic acid anhydride and Guatemalacid HNA-100 containing Nadic anhydride (manufactured by Shin Nippon Rika Co., Ltd.), and Ricacid containing hexahydrophthalic anhydride and methylhexahydrophthalic anhydride.
  • Examples of the curing agent include MH700 (manufactured by Shin Nippon Rika Co., Ltd.).
  • a cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride and another curing agent are used in combination as a thermosetting agent
  • a solid or semi-solid cyclohexane-1,3,4-tricarboxylic acid is used in advance.
  • the heating condition at this time is preferably 150 ° C. or less, more preferably 120 ° C., in order to prevent volatilization of the curing agent.
  • the use ratio of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride in the total curing agent is 20 to 90 mass. %, More preferably in the range of 30 to 80% by mass or less.
  • the mixing ratio exceeds 90% by weight, workability as a curing agent is extremely inferior.
  • the amount is less than 20% by mass, the improvement effect may be reduced in terms of the depression of the sealing material.
  • the compounding ratio of the thermosetting agent is the functional group equivalent contained in the said epoxy compound or the said oxetane compound, and the functional group which this thermosetting agent has. It is determined by the equivalent of (for example, a carboxyl group of a carboxylic acid curing agent).
  • the functional group of the thermosetting agent such as a carboxyl group is 0.2 to 5 equivalents, more preferably 0 to 1 equivalent of the epoxy group and oxetanyl group which are the functional groups of the component (A) and the component (B). .5 to 2 equivalents.
  • a curing catalyst (also referred to as a curing accelerator) can be used in combination with the thermosetting agent, and the curing catalyst can be used alone without using the thermosetting agent. it can.
  • the curing accelerator that can be used in the resin composition of the present invention include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1 -Benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino -6 (2′-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-
  • the curing accelerator is preferably a thermal cation initiator, and particularly preferably a phosphonium salt-based thermal cation initiator.
  • a preferable content of the curing accelerator such as a thermal cation initiator is usually in the range of 0.001 to 15 parts by mass, more preferably 0.01 to 100 parts by mass of the total amount of the component (A) and the component (B). Is 5 parts by mass.
  • the resin composition of the present invention is also effective in combination with a cleavage type photopolymerization initiator used in a radical polymerization system and cured by a redox reaction.
  • a cleavage type photopolymerization initiator used in combination, the ease of the one-electron transfer reaction determines the reactivity.
  • the iodonium salt having a low level of LUMO lowest orbital: a measure of the ease with which an electron transfer reaction occurs
  • an iodonium salt may be used as the curing agent (C). preferable.
  • any cleavage photopolymerization initiator can be used, and examples thereof include 2-hydroxy-2-methyl-phenylpropan-1-one and 1-hydroxycyclohexyl-phenylketone. .
  • thermosetting agent used in the resin composition of the present invention is preferably a thermosetting agent that initiates thermosetting at 100 ° C. or less in consideration of the reaction rate and the thermal history of the constituent members. More preferably used. In the present invention, it is preferable to use a photocationic polymerization initiator that does not require heat energy in terms of the heat history of the constituent members.
  • the resin composition of this invention can contain other components other than the said component (A), the said component (B), and the said component (C) as needed.
  • the other components include fine particles, a dispersant, reactive compounds other than the components (A) and (B) (for example, oxetane compounds or epoxy compounds having an aromatic ring, (meth) acrylates, etc.), photocationic polymerization. Examples include photopolymerization initiators other than the initiator, other additives, and the like. Fine particles can be used in combination with the resin composition of the present invention as necessary. Examples of the fine particles include organic fine particles and inorganic fine particles. Further, the fine particles can be used alone or in admixture of plural kinds in consideration of light transmittance, hardness, scratch resistance, curing shrinkage rate and refractive index required for the cured product.
  • organic fine particles examples include polystyrene resin beads, acrylic resin beads, urethane resin beads, polycarbonate resin beads, and other organic polymer beads; porous polystyrene resin beads, porous acrylic resin beads, porous Porous organic polymer beads such as urethane resin beads and porous polycarbonate resin beads; resin powder of benzoguanamine-formalin condensate, resin powder of benzoguanamine-melamine-formalin condensate, resin powder of urea-formalin condensate, aspartic acid ester derivative Powder, zinc stearate powder, stearamide powder, epoxy resin powder, polyethylene powder and the like.
  • crosslinked polymethyl methacrylate resin beads crosslinked polymethyl methacrylate / styrene resin beads, and the like are preferable.
  • These organic fine particles can be easily obtained as a commercial product, and can also be prepared with reference to known literature.
  • inorganic fine particles examples include conductive metal oxides, transparent metal oxides, and other inorganic fillers.
  • Examples of the conductive metal oxide that can be used in the present invention include zinc antimonate, tin oxide-doped indium oxide (ITO), antimony-doped tin oxide (ATO), antimony pentoxide, tin oxide, aluminum-doped zinc oxide, and gallium. Examples thereof include doped zinc oxide and fluorine-doped tin oxide.
  • transparent metal oxide examples include silica, titanium oxide, zirconium oxide, cerium oxide, zinc oxide, iron oxide, titanium oxide / zirconium oxide / tin oxide / antimony pentoxide composite, and zirconium oxide. / Tin oxide / antimony pentoxide composite and titanium oxide / zirconium oxide / tin oxide composite.
  • inorganic fillers that can be used in the present invention include calcium oxide, calcium chloride, zeolite and silica gel.
  • the fine particles that can be used in the present invention are preferably fine particles having excellent hardness and scratch resistance and a high refractive index, such as titanium oxide, zirconium oxide, cerium oxide, zinc oxide, iron oxide, titanium oxide / zirconium oxide / oxidation.
  • a tin / antimony pentoxide composite, a zirconium oxide / tin oxide / antimony pentoxide composite, and a titanium oxide / zirconium oxide / tin oxide composite are preferably used.
  • the primary particle diameter of the fine particles is preferably 100 nm or less.
  • the preferred blending ratio is 1 to 30 parts by weight, more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the total amount of component (A) and component (B). Part.
  • a fine particle dispersant a polycarboxylic acid-based dispersant; a silicone-based dispersant such as a silane coupling agent, a titanate-based coupling agent, or a modified silicone oil; or an organic copolymer system It is also possible to use a dispersant or the like in combination.
  • a preferable blending ratio when the above dispersant is blended with the resin composition of the present invention is about 0.001 to 30% by mass, more preferably 0.05 to 5% by mass with respect to the total mass of the resin composition of the present invention. %.
  • the primary particle size means the smallest particle size of the particles when the aggregation is broken. That is, in the case of elliptical fine particles, the minor axis is the primary particle diameter.
  • the primary particle size can be measured by a dynamic light scattering method, observation with an electron microscope, or the like. Specifically, the primary particle size of the fine particles can be measured using a JSM-7700F field emission scanning electron microscope manufactured by JEOL Ltd. under the condition of an acceleration voltage of 30 kV.
  • these fine particles can be used by being dispersed in a solvent.
  • the inorganic fine particles are readily available as commercial products in a form dispersed in water or an organic solvent.
  • organic solvent used include hydrocarbon solvents, ester solvents, ether solvents, and ketone solvents.
  • the hydrocarbon solvent include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and tetramethylbenzene; aliphatic hydrocarbon solvents such as hexane, octane and decane; and petroleum ether, white which is a mixture thereof.
  • Examples include gasoline and solvent naphtha.
  • ester solvents include alkyl acetates such as ethyl acetate, propyl acetate, and butyl acetate, and cyclic esters such as ⁇ -butyrolactone; ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, triethylene (Mono or poly) alkylene glycol monoalkyl ether monoacetates such as glycol monoethyl ether monoacetate, diethylene glycol monobutyl ether monoacetate, propylene glycol monomethyl ether monoacetate and butylene glycol monomethyl ether monoacetate; dialkyl glutarate, dialkyl succinate and Alkyl polycarboxylates such as dialkyl adipates Ester, and the like can be mentioned.
  • alkyl acetates such as ethyl acetate, propyl acetate, and butyl acetate
  • cyclic esters
  • ether solvents include alkyl ethers such as diethyl ether and ethyl butyl ether; glycols such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether.
  • Ethers cyclic ethers such as tetrahydrofuran and the like.
  • the ketone solvent include acetone, methyl ethyl ketone, cyclohexanone, and isophorone.
  • an oxetane compound or an epoxy compound having an aromatic ring can be used as an optional component.
  • oxetane compounds having an aromatic ring that can be used as optional components include 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, 3-ethyl-3-phenoxymethyloxetane, 1,4 -Bis [(3-ethyloxetane-3-yl) methoxy] benzene, 1,3-bis [(3-ethyloxetane-3-yl) methoxy] benzene, 1,2-bis [(3-ethyloxetane-3 -Yl) methoxy] benzene, 4,4′-bis [(3-ethyloxetane-3-yl) methoxy] biphenyl, 2,2′-bis [(3-ethyl-3-oxetanyl) methoxy] biphenyl, 3, 3 ′, 5,5′-tetramethyl [4,4′-bis (3-ethyloxe
  • Examples of the epoxy compound having an aromatic ring that can be used as an optional component include epoxy compounds having a phenyl skeleton such as styrene oxide, phenyl glycidyl ether, and p-tert-butylphenyl glycidyl ether; biphenyl glycidyl ether, biphenyl diglycidyl ether, 3, Epoxy compounds having a biphenyl skeleton such as 3 ′, 5,5′-tetramethyl-4,4′-bis (glycidyloxy) -1,1′-biphenyl and biphenyl aralkyl type epoxy compounds; phenol novolac type epoxy compounds and cresols Novolak type epoxy compounds such as novolak type epoxy compounds; Bisphenol A type epoxy compounds such as bisphenol A diglycidyl ether and brominated bisphenol A diglycidyl ether; Bisphenol F type epoxy compounds such as phenol F diglycidyl ether and brominated bisphenol F dig
  • an epoxy compound having a skeleton selected from the group consisting of phenyl, biphenyl, bisphenol A, bisphenol F, bisphenol S and naphthalene is preferable.
  • An epoxy compound having a skeleton selected from the group consisting of biphenyl, bisphenol A and naphthalene is particularly preferable in that the viscosity of the resin composition is low, the moisture permeability of the cured product is low, and the light transmittance is excellent.
  • preferable content is 20 with respect to 100 mass parts of total amounts of the component (A) and component (B) which are reactive compounds. -80 parts by mass, more preferably 30-70 parts by mass.
  • the functional group equivalent of the oxetane compound or epoxy compound having an aromatic ring is preferably 10 to 1000 g / eq, and more preferably 50 to 500 g / eq.
  • an oxetane compound or an epoxy compound having a condensed aromatic ring structure such as fluorene or carbazole is also preferably used.
  • These oxetane compounds or epoxy compounds may be used alone or in combination of two or more.
  • the component (A), the component (B) and the oxetane compound having the aromatic ring or A reactive compound may be used in addition to the epoxy compound.
  • the reactive compound include (meth) acrylate.
  • the (meth) acrylate monofunctional (meth) acrylate, bifunctional (meth) acrylate, polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in the molecule, polyester (meth) acrylate, and epoxy (Meth) acrylate or the like can be used.
  • Examples of the monofunctional (meth) acrylate include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and cyclohexyl (meth).
  • Alicyclic (meth) acrylates such as acrylate; Tetrahydrofurfuryl (meth) acrylate, Caprolactone-modified tetrahydrofurfuryl (meth) acrylate and morpholine (meth) acrylate and other (meth) acrylates; benzyl (meth) acrylate , Ethoxy modified cresol (meth) acrylate, propoxy modified cresol (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, o-phenylphenol (meth) Acrylate, o-phenylphenol monoethoxy (meth) acrylate, o-phenylphenol polyethoxy (meth) acrylate, p-phenylphenol (meth) acrylate, p-phenylphenol monoethoxy (meth) acrylate, p-phenylphenol polyethoxy (Meth) acrylates having aromatic rings such as (meth) acryl
  • Examples of the (meth) acrylate monomer having the above two functional groups include (meth) acrylate having a heterocycle such as hydropivalaldehyde-modified trimethylolpropane di (meth) acrylate; (poly) ethoxy-modified bisphenol A di (meta) ) Acrylate, (poly) propoxy modified bisphenol A di (meth) acrylate, (poly) ethoxy modified bisphenol F di (meth) acrylate, (poly) propoxy modified bisphenol F di (meth) acrylate, (poly) ethoxy modified bisphenol S di (Meth) acrylates having aromatic rings such as (meth) acrylate, (poly) propoxy-modified bisphenol S di (meth) acrylate, hexahydrophthalic acid di (meth) acrylate and bisphenoxy (poly) ethoxyfluorene A (meth) acrylate having a heteroaromatic ring such as bipheny
  • polyfunctional (meth) acrylate monomers include polyfunctional (meth) acrylates having an isocyanurate ring such as tris (acryloxyethyl) isocyanurate and (poly) caprolactone-modified tris (acryloxyethyl) isocyanurate; pentaerythritol tris (Meth) acrylate, pentaerythritol tetra (meth) acrylate, (poly) ethoxy modified pentaerythritol tetra (meth) acrylate, (poly) propoxy modified pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, (poly ) Caprolactone-modified dipentaerythritol penta (meth) acrylate, (poly) ethoxy-modified dipentaerythritol penta (meth) acryl
  • urethane (meth) acrylate for example, a polyester diol which is a reaction product of a diol compound or the diol compound and a dibasic acid or an anhydride thereof, and an organic polyisocyanate are reacted, and then a hydroxyl group-containing (meth) The reaction product etc. which added the acrylate are mentioned.
  • diol compound examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1,8- Octanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-butyl-2 -Ethyl-1,3-propanediol, cyclohexane-1,4-dimethanol, polyethylene glycol, polypropylene glycol, bisphenol A polyethoxydiol, bisphenol A polypropoxydiol, and the like.
  • dibasic acid or anhydride thereof examples include dibasic acids such as succinic acid, adipic acid, azelaic acid, dimer acid, isophthalic acid, terephthalic acid, and phthalic acid; or anhydrides thereof.
  • organic polyisocyanate examples include chain saturated hydrocarbon isocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate and 2,4,4-trimethylhexamethylene diisocyanate; isophorone diisocyanate, Cyclic saturated hydrocarbon isocyanates such as norbornane diisocyanate, dicyclohexylmethane diisocyanate, methylenebis (4-cyclohexylisocyanate), hydrogenated diphenylmethane diisocyanate, hydrogenated xylene diisocyanate and hydrogenated toluene diisocyanate; 2,4-tolylene diisocyanate, 1,3-xylylene Range isocyanate, p-phenylene diisocyanate, 3,3'-dimethyl-4,4'-di Isocyanate, aromatic polyisocyanates such as 6-isopropyl-1,3-
  • polyester (meth) acrylate examples include a polyester diol which is a reaction product of a diol compound and a dibasic acid or an anhydride thereof, and a reaction product of (meth) acrylic acid.
  • (meth) acrylate that can be used for the resin composition of the present invention, a material having a low curing shrinkage rate is suitably used.
  • (meth) acrylate having a ring structure is preferable, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, Cyclohexyl (meth) acrylate, p-cumylphenol (poly) ethoxy (meth) acrylate, naphthol (poly) ethoxy (meth) acrylate, naphthol (poly) propoxy (meth) acrylate, phenylphenol (poly) ethoxy (meth) acrylate , Phenylphenol (poly) propoxy (meth) acrylate, benzyl (meth) acrylate, tricyclode
  • phenylphenol (poly) ethoxy (meth) acrylate Particularly preferred are phenylphenol (poly) ethoxy (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, hydropivalaldehyde-modified trimethylolpropane di (meth) acrylate having a high Tg of the cured product and a low cure shrinkage rate. And biphenyldimethanol di (meth) acrylate.
  • the resin composition of this invention when using the said (meth) acrylate which is another component, it may be used independently and may be used in mixture of multiple types.
  • a preferable blending amount when (meth) acrylate is used in the resin composition of the present invention is 10 to 200 parts by mass, more preferably 100 parts by mass with respect to the total amount of component (A) and component (B). 50 to 150 parts by mass.
  • photoinitiators other than the said photocationic polymerization initiator include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether and benzoin isobutyl ether; acetophenone, 2,2-diethoxy-2- Phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl-phenylketone, 2- Acetophenones such as methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one and oligo [2-hydroxy-2-methyl-1- [4-
  • Preferred photopolymerization initiators other than the cationic photopolymerization initiator are preferably acetophenones, and more preferably 2-hydroxy-2-methyl-phenylpropan-1-one and 1-hydroxycyclohexyl-phenyl ketone. it can.
  • the amount is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the (meth) acrylate component. More preferably, it is 1 to 5 parts by mass.
  • a photoinitiator may be used independently and may be used in mixture of multiple types.
  • each component of the resin composition of the present invention is determined in consideration of a desired refractive index, durability, viscosity, adhesion, and the like.
  • the content of component (A) is 20 to 80 parts by mass, preferably 30 to 70 parts by mass.
  • the content of (B) is 20 to 80 parts by mass, preferably 30 to 70 parts by mass.
  • the content of the component (C) is usually 0.05 to 5 parts by mass, preferably 0.1 to 3 parts by mass in the case of a photocationic polymerization initiator or a thermal cationic polymerization initiator. .
  • the total amount of the component (A) and the component (B) is preferably 50 to 99% by mass, more preferably 70 to 99% by mass, and still more preferably based on the total amount of the resin composition of the present invention. 80 to 99% by mass, optionally 90 to 99% by mass, and further 95 to 99% by mass.
  • the balance is the above component (C) and optional additive components.
  • the resin composition of the present invention includes a mold release agent, an antifoaming agent, a leveling agent, a light stabilizer, an antioxidant, a polymerization inhibitor, and a plasticizer in order to improve convenience during handling.
  • a mold release agent an antifoaming agent
  • a leveling agent e.g., a light stabilizer
  • an antioxidant e.g., a titanium dioxide
  • a polymerization inhibitor e.g., titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium dioxide, titanium sulf
  • a plasticizer may be used in order to obtain durability and flexibility.
  • the plasticizer material used is selected depending on the desired viscosity, durability, transparency, flexibility, and the like. Specific examples include olefin polymers such as polyethylene and polypropylene; dimethyl phthalate, diethyl phthalate, dibutyl phthalate, bis (2-ethylhexyl) phthalate, diisodecyl phthalate, butyl benzyl phthalate, diisononyl phthalate, dicyclohexyl phthalate, ethyl phthalyl ethyl glycolate.
  • Phthalates such as butyl phthalyl butyl glycolate; trimellitic esters such as tris (2-ethylhexyl) trimellitate; dibutyl adipate, diisobutyl adipate, bis (2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis (2 -(2-butoxyethoxy) ethyl) adipate, bis (2-ethylhexyl) azelate, dibutyl sebacate , Aliphatic dibasic acid esters such as bis (2-ethylhexyl) sebacate and diethyl succinate; trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (2-ethylhexyl) phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl Orthophosphate
  • Preferred plasticizers include (poly) ethylene glycol dibenzoate, (poly) propylene glycol dibenzoate, binaphthol, (poly) ethoxy modified binaphthol, (poly) propoxy modified binaphthol and diphenyl sulfide.
  • a coupling agent may be added to the resin composition of the present invention for the purpose of improving the adhesive force.
  • a silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, 3-amino Propyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane,
  • Coupling agents other than silane coupling agents include isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate, tetraisopropyl di (dioctyl phosphite) titanate, Titanium coupling agents such as neoalkoxytri (pN- ( ⁇ -aminoethyl) aminophenyl) titanate; Zr-acetylacetonate, Zr-methacrylate, Zr-propionate, neoalkoxyzirconate, neoalkoxytrisneodeca Noyl zirconate, neoalkoxy tris (dodecanoyl) benzenesulfonyl zirconate, neoalkoxy tris (ethylenediaminoethyl) zir
  • coupling agents may be used alone or in combination of two or more. Of these coupling agents, silane coupling agents are preferred, and aminosilane coupling agents or epoxysilane coupling agents are more preferred.
  • a coupling agent By using a coupling agent, it is possible to obtain a sealing material that is excellent in moisture resistance reliability and has little decrease in adhesive strength after moisture absorption.
  • the coupling agent is used in the resin composition of the present invention, the content is about 0.05 to 3 parts by mass with respect to 100 parts by mass of the total amount of the resin composition.
  • polymers such as acrylic polymer, polyester elastomer, urethane polymer and nitrile rubber can be further added as necessary.
  • a weight average molecular weight is 10,000 g / mol from a compatible point.
  • An organometallic compound such as alkylaluminum can also be added to reduce the water vapor permeability.
  • a solvent can also be added, what does not add a solvent is preferable.
  • the resin composition of the present invention is preferably a resin composition having a weight average molecular weight of 10,000 g / mol or less, and more preferably 5,000 g / mol or less. Since a component having a large weight average molecular weight does not dissolve with other components, the prepared resin composition becomes a turbid liquid. This is incompatible because it is essential that the resin composition used in the display is uniformly transparent. Further, the resin composition of the present invention is required to have excellent properties with respect to transmittance. Specifically, when the resin composition of the present invention is cured to obtain a cured product having a film thickness of 100 ⁇ m, the light transmittance of each wavelength at a wavelength of 380 to 780 nm of the cured product is preferably 90% or more. The light transmittance can be measured with a measuring instrument such as a spectrophotometer U-3900H manufactured by Hitachi High-Technologies Corporation.
  • the resin composition of the present invention can be prepared by mixing and dissolving each component according to a conventional method.
  • each component can be charged into a round bottom flask equipped with a stirrer and a thermometer and stirred at 40 to 80 ° C. for 0.5 to 6 hours.
  • the viscosity of the resin composition of the present invention is preferably a viscosity suitable for workability in processability when producing a display or the like, particularly a viscosity suitable for surface sealing in an organic EL device.
  • the organic EL element is usually surrounded by a dam material, on a substrate such as glass, in order from the substrate side, a metal electrode (lower electrode), an organic EL layer including at least an organic light emitting layer, an ITO electrode ( Upper electrode) and a passivation film are stacked, and the passivation film is filled with a fill material (surface sealing resin composition), and the top is further sealed with a sealing substrate such as glass. It has become.
  • the fill material fills the space between the metal electrode side substrate and the sealing substrate on the opposite side and protects the organic light emitting layer from external moisture and the like, and is usually a curable resin.
  • a composition is used. After filling the filling material which is the curable resin composition and placing a sealing substrate such as glass, the resin composition is cured to seal the organic light emitting layer.
  • the resin composition used as the filling material is a resin composition for surface sealing. Therefore, it is preferable that the resin composition for surface sealing has a low viscosity so that the space between the substrates can be completely sealed.
  • the viscosity of the resin composition for surface sealing of the organic EL device of the present invention is preferably 15 Pa ⁇ s measured at 25 ° C.
  • E-type viscometer (TV-200: manufactured by Toki Sangyo Co., Ltd.). Below, more preferably 3500 mPa ⁇ s or less, still more preferably 1000 mPa ⁇ s or less, particularly preferably 500 mPa ⁇ s or less, and most preferably 300 mPa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but is about 50 mPa ⁇ s.
  • a resin composition containing a curing agent that initiates a curing reaction with energy rays as the curing agent (C) can be easily cured with energy rays.
  • energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, X-rays, gamma rays and laser rays; particle rays such as alpha rays, beta rays and electron rays. Of these, ultraviolet rays, laser beams, visible rays, or electron beams are preferred in the present invention.
  • the cured product of the present invention can be obtained by irradiating the resin composition of the present invention with the energy beam.
  • the liquid refractive index of the resin composition of the present invention is usually 1.45 to 1.70, preferably 1.50 to 1.65.
  • the refractive index can be measured with an Abbe refractometer (model number: DR-M2, manufactured by Atago Co., Ltd.).
  • the resin composition of the present invention preferably has a smaller shrinkage ratio (curing shrinkage ratio) at the time of curing, preferably 5% or less, more preferably 4% or less, and still more preferably 3.5%. It is as follows.
  • the cured product of the resin composition of the present invention preferably has a water vapor transmission rate of 45 g / m 2 ⁇ 24 h (measured at 60 ° C. and a humidity of 90%, the same hereinafter) in order to protect the organic light emitting layer from external moisture and the like ) Or less, and more preferably 35 g / m 2 ⁇ 24 h or less.
  • the glass transition temperature (Tg) of the cured product is preferably higher to some extent. In the resin composition of the present invention, the Tg is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and most preferably 100 ° C. or higher.
  • a resin composition for surface sealing of an organic EL device comprising an alicyclic compound (A), a cyclic compound (B) and a curing agent (C),
  • Component (A) is a compound having a skeleton selected from the group described in (A-1) above and an epoxy group or oxetanyl group
  • Component (B) is an aliphatic ring skeleton selected from the group described in (B-1) above or a heterocyclic skeleton selected from the group described in (B-3) above, and an epoxy group or oxetanyl group
  • the component (A) is an alicyclic epoxy compound, or an oxetane compound or an epoxy compound having a hydrogenated bisphenol A skeleton or a tricyclodecane skeleton, or an alicyclic having a cyclohexane skeleton in which an epoxy group is formed.
  • the resin composition according to (I) or (II) which is an epoxy compound.
  • the component (B) is a compound having an aliphatic ring skeleton selected from the group described in the above (B-2) or a heterocyclic skeleton selected from the group described in the above (B-4)
  • the resin composition according to any one of (I) to (V).
  • the component (B) is an alicyclic epoxy compound or an epoxy compound having a tricyclodecane skeleton, an adamantane skeleton, or an isocyanurate skeleton, according to any one of the above (I) to (VI) Resin composition.
  • (XII) The resin composition according to any one of (I) to (XI) above, wherein the curing agent (C) is a photocationic polymerization initiator or a thermal cationic polymerization initiator.
  • (XIII) The resin composition according to any one of (I) to (XII), wherein the curing agent (C) is a photocationic polymerization initiator selected from the group (C-1).
  • (XIV) The resin composition according to any one of (I) to (XIII) above, wherein the curing agent (C) is a sulfonium salt.
  • (XVII) The resin composition according to any one of (I) to (XVI) above, wherein the glass transition point (Tg) of the cured product of the resin composition is 80 ° C. or higher, more preferably 100 ° C. or higher.
  • (XVIII) The resin composition according to any one of (I) to (XVII), which has a curing shrinkage rate of 4% or less.
  • (XIX) The resin composition according to any one of (I) to (XVIII) above, wherein the liquid refractive index of the resin composition is 1.45 to 1.7.
  • the content of the component (A) is 20 to 80 parts by mass and the content of the component (B) is 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B).
  • the organic EL device solid sealing method includes a step of forming a passivation film on an organic EL device formed on a substrate, a surface sealing resin composition is applied on the passivation film, and sealing is performed. And a step of curing the surface sealing resin composition, and using the curable resin composition according to the present invention described above as the surface sealing resin composition. To do.
  • the organic EL element to be surface-sealed includes a substrate, a lower electrode, an organic EL layer including at least a light emitting layer, and an element unit body including an upper electrode.
  • the substrate is a flat substrate made of an electrically insulating material such as a glass substrate, a transparent organic material made of cycloolefin, polycarbonate, polymethyl methacrylate, or the like, or an organic / inorganic hybrid transparent substrate made of the transparent organic material made of high-rigidity glass fiber or the like.
  • an electrically insulating material such as a glass substrate, a transparent organic material made of cycloolefin, polycarbonate, polymethyl methacrylate, or the like, or an organic / inorganic hybrid transparent substrate made of the transparent organic material made of high-rigidity glass fiber or the like.
  • an organic / inorganic hybrid transparent substrate made of the transparent organic material made of high-rigidity glass fiber or the like.
  • a lower electrode made of an Al—Li alloy or the like is deposited on one side of a substrate by resistance heating vapor deposition.
  • an organic EL layer an electron transport layer composed of an oxadiazole derivative or a triazole derivative, a light emitting layer, TPD (N, N′-diphenyl-N, N′-bis (3-methylphenyl) ) -1,1-biphenyl-4,4'-diamine), etc., and the upper electrode (anode) are sequentially stacked by thin film formation methods such as resistance heating vapor deposition or ion beam sputtering. Is possible.
  • the layer structure or material of the organic EL element is not particularly limited as long as it functions as a display element.
  • the solid sealing method according to the present invention can be applied to any structure of organic EL elements.
  • the passivation film is formed so as to cover the organic EL element.
  • the passivation film can be formed by a method such as vapor deposition or sputtering of an inorganic material such as silicon nitride or silicon oxide.
  • the passivation film is provided to prevent moisture, ionic impurities, and the like from entering the organic EL element.
  • the thickness of the passivation film is preferably in the range of 10 nm to 100 ⁇ m, and more preferably in the range of 100 nm to 10 ⁇ m.
  • the passivation film may be laminated for the purpose of improving reliability.
  • Passivation films are generally incomplete films with pinholes or films with low mechanical strength, although depending on the deposition method. Therefore, in the solid sealing method, the reliability of sealing is improved by further applying an adhesive on the passivation film, press-bonding using a transparent substrate for sealing, and curing the adhesive.
  • the resin composition of the present invention having the composition shown in Table 1 below, the resin composition of Comparative Example 1 and the resin composition of Reference Example 1 were prepared, and cured products of the respective resin compositions were obtained by the following methods. .
  • the obtained resin composition and cured product (cured film) were evaluated by the following evaluation methods and evaluation criteria.
  • Viscosity Using an E-type viscometer (TV-200: manufactured by Toki Sangyo Co., Ltd.), the viscosity at 25 ° C. (unit: mPa ⁇ s) of each resin composition described in Table 1 below was measured. .
  • Liquid refractive index The refractive index (25 ° C.) of each resin composition described in Table 1 below was measured with an Abbe refractometer (DR-M2: manufactured by Atago Co., Ltd.).
  • Tg glass transition point, unit: ° C.
  • Viscoelasticity measurement system EXSTAR DMS-6000 (SII NanoTechnology Co., Ltd.) is used to determine the Tg point of the cured product obtained by curing in the same manner as (3) above. (Manufactured by the company), tensile mode, frequency 1 Hz.
  • Curing shrinkage rate A resin layer made of each resin composition described in Table 1 below was applied on a substrate.
  • the resin compositions of Example 1, Example 2, Comparative Example 1 and Reference Example 1 by irradiating ultraviolet rays with an integrated irradiation amount of 3000 mJ / cm 2 with a high pressure mercury lamp (80 W / cm, ozone-less)
  • the resin composition of Example 3 was cured by heating at 100 ° C. for 1 hour in a drier to produce a cured product for film specific gravity measurement. This was measured based on JIS K7112 B method, and the specific gravity (DS) of the cured product was measured.
  • EP-4088S manufactured by ADEKA Corporation, dicyclopentadiene dimethanol diglycidyl ether SEJ-01R: manufactured by Nippon Kayaku Co., Ltd., 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate OXT-121 : Toagosei Co., Ltd., xylylene bisoxetane MA-DGIC: Shikoku Kasei Kogyo Co., Ltd., monoallyl diglycidyl isocyanurate GSID 26-1: BASF Japan Ltd., (Tris [4- (4-acetylphenylsulfanyl) ) Phenyl] sulfonium tris [(trifluoromethyl) sulfonyl] methanide sunaide SI-100 main agent: Benzylmethyl-p-hydroxyphenylsulfonium hexafluoroantimonate epolite 80 manufactured by San
  • the cured product obtained from the resin composition of the present invention having a specific composition has a high Tg, a curing shrinkage rate and a water vapor transmission rate. The degree is low. Therefore, the hardened
  • the resin composition of the present invention and its cured product are excellent in visible light transmittance and light resistance, have a high Tg, and have a low curing shrinkage and water vapor permeability. Suitable for fastening materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epoxy Resins (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyethers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

The present invention relates to a resin composition for sealing a surface of an organic electroluminescent (EL) element, said resin composition including: an alicyclic compound (A) having an oxetanyl group or an epoxy group; and a cyclic compound (B) which has an oxetanyl group or an epoxy group, and which satisfies the following condition (condition for cyclic compound (B): that the ring in cyclic compound (B) be either an aliphatic ring or a heterocycle, and in cases when the ring is an aliphatic ring, that the cyclic compound have a structure different to that of the compound used as alicyclic compound (A)). This resin composition for sealing a surface of an organic EL element exhibits an excellent liquid refractive index, and is cured by heat or energy rays such as light to obtain a cured product exhibiting excellent visible light transmission, excellent light resistance, a high Tg, low cure shrinkage, and a low water vapour transmission rate, and thus is particularly suitable as a surface sealant for an organic EL element.

Description

樹脂組成物及びその硬化物(2)Resin composition and cured product thereof (2)
昨今、低透湿性材料は種々の産業において重要な材料である。特に電気電子、ディスプレイ周辺においては、品質を維持するために必要不可欠な材料であり、また、より高性能な低透湿性材料が望まれている。
 近年、ディスプレイはフラットパネルディスプレイ(FPD)と称される薄型のディスプレイ、特にプラズマディスプレイ(PDP)、液晶ディスプレイ(LCD)が市場投入され広く普及している。また、次世代の自発光型薄膜ディスプレイとして有機ELディスプレイ(OLED)が期待されており、一部製商品では既に実用化されている。有機ELディスプレイの有機EL素子は、TFT等の駆動回路が形成されたガラス等の基板上に、陰極および陽極によって挟持された発光層を含む薄膜積層体からなる素子部本体が形成された構造を有している。素子部の発光層または電極といった層は、水分または酸素により劣化し易く、劣化によって輝度やライフの低下、変色が発生する。その為、有機EL素子は、外部からの水分または不純物の浸入を遮断するように封止されている。高品質で高信頼性の有機EL素子の実現に向けて、より高性能な封止材料が望まれており、従来から種々封止技術が検討されている。
Nowadays, low moisture permeability materials are important materials in various industries. Particularly in the vicinity of electric and electronic displays, it is an indispensable material for maintaining quality, and a higher performance low moisture permeability material is desired.
In recent years, thin displays called flat panel displays (FPD), in particular, plasma displays (PDP) and liquid crystal displays (LCD) have been put on the market and are widely used. In addition, organic EL displays (OLEDs) are expected as next-generation self-luminous thin film displays, and some commercial products have already been put into practical use. An organic EL element of an organic EL display has a structure in which an element body composed of a thin film laminate including a light emitting layer sandwiched between a cathode and an anode is formed on a glass substrate on which a driving circuit such as a TFT is formed. Have. A layer such as a light emitting layer or an electrode of the element portion is easily deteriorated by moisture or oxygen, and the deterioration of brightness, life, and discoloration occurs due to the deterioration. Therefore, the organic EL element is sealed so as to block moisture or impurities from entering from the outside. In order to realize a high-quality and high-reliability organic EL element, a higher-performance sealing material is desired, and various sealing techniques have been studied.
 有機EL素子の代表的な封止方法として、予め乾燥剤を挿入した金属製またはガラス製の封止キャップを、封止用接着剤を用いて有機EL素子の基板に固定する方法が検討されている(特許文献1)。この方法は、有機EL素子の基板外周部に接着剤を塗布し、その上に封止キャップを設置、次いで接着剤を固化させることによって、基板と封止キャップとを固定し、有機EL素子を密閉している。このような方法では、ガラス製の封止キャップによる封止が主流となっている。しかし、ガラス製の封止キャップは、平坦なガラス基板に乾燥剤を挿入するための掘り込みを加工することによって作製されるため、高コストとなる傾向がある。また、封止キャップによる封止は、封止キャップの内側に乾燥剤が挿入されることになるため、封止キャップ側から光を取り出すことはできない。即ち、光源から放たれた光は素子の基板側から取り出されることになり、ボトムエミッション型の素子に制限される。ボトムエミッション型の素子の場合、基板に形成された駆動回路部による開口率の低下、および駆動回路部によって光が一部遮られることによる取り出し効率の低下の問題がある。そのため、有機EL素子の基板の反対側から光を取り出すトップエミッション型の素子に適用可能な封止方法の開発が望まれている。 As a typical sealing method of an organic EL element, a method of fixing a metal or glass sealing cap in which a desiccant is inserted in advance to a substrate of an organic EL element using a sealing adhesive has been studied. (Patent Document 1). In this method, an adhesive is applied to the outer peripheral portion of the substrate of the organic EL element, a sealing cap is placed thereon, and then the adhesive is solidified to fix the substrate and the sealing cap. It is sealed. In such a method, sealing with a glass sealing cap is the mainstream. However, a glass sealing cap is produced by processing a digging for inserting a desiccant into a flat glass substrate, and thus tends to be expensive. Moreover, since the desiccant is inserted inside the sealing cap, the sealing with the sealing cap cannot extract light from the sealing cap side. In other words, the light emitted from the light source is extracted from the substrate side of the element, and is limited to the bottom emission type element. In the case of a bottom emission type element, there are problems of a decrease in aperture ratio due to the drive circuit portion formed on the substrate and a decrease in extraction efficiency due to light being partially blocked by the drive circuit portion. Therefore, development of a sealing method applicable to a top emission type element that extracts light from the opposite side of the substrate of the organic EL element is desired.
 トップエミッション型の素子に適用可能な代表的な封止方法として、薄膜封止法および固体封止法がある。薄膜封止法は、有機EL素子の上に無機または有機材料からなる薄膜を多層積層してパッシベーション膜とする方法である(特許文献2)。この方法によって素子に十分な防湿性を付与するには、素子上に何層もの薄膜を順次積層する必要がある。そのため、薄膜封止法では成膜工程が長く高コストとなり、また成膜に必要とされる大型の真空系設備の導入によって初期投資が高くなる傾向がある。 As a typical sealing method applicable to a top emission type element, there are a thin film sealing method and a solid sealing method. The thin film sealing method is a method in which a thin film made of an inorganic or organic material is laminated on an organic EL element to form a passivation film (Patent Document 2). In order to impart sufficient moisture resistance to the device by this method, it is necessary to sequentially stack a number of thin films on the device. Therefore, in the thin film sealing method, the film forming process is long and expensive, and the initial investment tends to be high due to the introduction of a large vacuum system required for film formation.
 一方、固体封止法は、有機EL素子の素子部全体を覆うようにパッシベーション膜を設け、その上に封止材料を介して封止用透明基板を設ける方法である。一般に、パッシベーション膜は、無機材料を蒸着またはスパッタリングすることによって形成されるが、それはピンホールを有する不完全な膜であるか、機械的強度の弱い膜であることが多い。そのため、固体封止法では、素子上にパッシベーション膜を設けた後に、封止用接着剤を介してガラス基板などの封止用透明基板を設けることによって封止の信頼性を高めている。また、エアギャップに熱あるいは光硬化型の樹脂を充填することで封止の信頼性を高める手法も検討されている。このような固体封止法は、簡便かつ低コストでトップエミッション型の素子の封止を実施可能な方法として注目を集めている。 On the other hand, the solid sealing method is a method in which a passivation film is provided so as to cover the entire element portion of the organic EL element, and a sealing transparent substrate is provided thereon via a sealing material. In general, a passivation film is formed by vapor deposition or sputtering of an inorganic material, and it is often an incomplete film having pinholes or a film having low mechanical strength. Therefore, in the solid sealing method, after providing a passivation film on the element, a sealing transparent substrate such as a glass substrate is provided through a sealing adhesive to improve sealing reliability. In addition, a technique for enhancing the reliability of sealing by filling the air gap with heat or photo-curing resin has been studied. Such a solid sealing method is attracting attention as a method capable of sealing a top emission type element simply and at low cost.
有機EL素子の固体封止法による封止では、熱または光硬化性樹脂を封止用接着剤、面封止用接着剤として使用することが可能であるが、それらの特性は素子の性能および封止作業の生産性に著しい影響を及ぼす可能性があるため非常に重要である。例えば、封止用接着剤の水蒸気透過率が十分でないとパッシベーション膜のピンホールから素子部に浸入し、素子の劣化を招く可能性がある。また、封止材料の硬化反応が遅ければ、硬化工程に時間がかかり、封止作業の生産性が低下する可能性がある。 In sealing an organic EL element by a solid sealing method, it is possible to use a heat or photo-curing resin as a sealing adhesive or a surface sealing adhesive. This is very important because it can significantly affect the productivity of the sealing operation. For example, if the water vapor transmission rate of the sealing adhesive is not sufficient, it may enter the element portion from the pinhole of the passivation film and cause deterioration of the element. Further, if the curing reaction of the sealing material is slow, the curing process takes time, and the productivity of the sealing work may be reduced.
これらに用いられる封止用接着剤には、可視光領域での高い透過率の他、発光に耐えうる耐光性、安定した成形性や残留応力抑制のための低硬化収縮性、発光素子を湿気から保護するための低水蒸気透過率などが求められる。有機EL素子の封止用接着剤として周知の接着剤を使用して固体封止法による封止を実施することは可能であるが、信頼性および生産性の双方で満足できる結果を得ることは難しいのが現状であり、固体封止法に好適に使用可能な封止用接着剤の開発が望まれている。 The sealing adhesive used for these has high transmittance in the visible light region, light resistance that can withstand light emission, stable moldability, low curing shrinkage for suppressing residual stress, and light emitting elements in moisture. For example, a low water vapor transmission rate for protecting from water is required. Although it is possible to perform sealing by a solid sealing method using a known adhesive as an organic EL element sealing adhesive, it is possible to obtain satisfactory results in both reliability and productivity. The current situation is difficult, and development of a sealing adhesive that can be suitably used in the solid sealing method is desired.
特許第4876609Patent No. 4876609 特開2012-059553JP2012-059553A 特許第4655172Patent No. 4655172 特開2001-81182号公報JP 2001-81182 A 特開2011-225773号公報JP 2011-225773 A 特許第4850231Japanese Patent No. 4850231
 本発明の目的は、有機EL素子の封止材、特に面封止に適した樹脂組成物と、可視光透過率、耐光性、硬化性に優れ、Tgが高く、硬化収縮率、水蒸気透過度の低い硬化物を提供するものである。 An object of the present invention is to provide a sealing material for an organic EL device, particularly a resin composition suitable for surface sealing, and excellent in visible light transmittance, light resistance and curability, high Tg, curing shrinkage rate, water vapor transmission rate. It provides a cured product having a low viscosity.
 本発明者らは、前記課題を解決するため鋭意研究の結果、特定の組成を有する樹脂組成物及びその硬化物が前記課題を解決することを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that a resin composition having a specific composition and a cured product thereof can solve the above problems, and have completed the present invention.
 即ち、本発明は、下記(1)~(19)に記載の発明に関する。
(1)オキセタニル基またはエポキシ基を有する脂環式化合物(A)、オキセタニル基またはエポキシ基を有し、下記の条件を満たす環状化合物(B)を含有する有機EL素子の面封止用樹脂組成物、
該環状化合物(B)の条件:
該環状化合物(B)における環は、脂肪族環またはヘテロ環であって、該環が脂肪族環である場合、該環状化合物は、前記脂環式化合物(A)として使用される化合物とは異なる構造を有する化合物である。
(2)前記脂環式化合物(A)が下記(A-1)に記載の群から選択される骨格を有する上記(1)に記載の樹脂組成物、
That is, the present invention relates to the inventions described in the following (1) to (19).
(1) Resin composition for surface sealing of an organic EL device containing an alicyclic compound (A) having an oxetanyl group or an epoxy group, a cyclic compound (B) having an oxetanyl group or an epoxy group and satisfying the following conditions object,
Conditions for the cyclic compound (B):
The ring in the cyclic compound (B) is an aliphatic ring or a heterocycle, and when the ring is an aliphatic ring, the cyclic compound is a compound used as the alicyclic compound (A). It is a compound having a different structure.
(2) The resin composition according to (1), wherein the alicyclic compound (A) has a skeleton selected from the group described in (A-1) below,
A-1:トリシクロデカン、イソボルニル、アダマンタン、シクロペンタン、シクロヘキサン、水添ビスフェノールA、水添ビスフェノールF及び水添ビスフェノールS。 A-1: Tricyclodecane, isobornyl, adamantane, cyclopentane, cyclohexane, hydrogenated bisphenol A, hydrogenated bisphenol F, and hydrogenated bisphenol S.
(3)前記脂環式化合物(A)が、脂肪族環として、トリシクロデカン、アダマンタン、シクロヘキサン及び水添ビスフェノールAからなる群から選択される骨格を有するオキセタン化合物またはエポキシ化合物である上記(1)または(2)に記載の樹脂組成物。 (3) The above alicyclic compound (A) is an oxetane compound or an epoxy compound having a skeleton selected from the group consisting of tricyclodecane, adamantane, cyclohexane and hydrogenated bisphenol A as an aliphatic ring (1 ) Or (2).
(4)前記環状化合物(B)が下記(B-1)に記載の群から選択される骨格を有する上記(1)乃至(3)の何れか一項に記載の樹脂組成物、 (4) The resin composition according to any one of (1) to (3), wherein the cyclic compound (B) has a skeleton selected from the group described in (B-1) below,
B-1:トリシクロデカン、イソボルニル、アダマンタン、シクロペンタン、シクロヘキサン、水添ビスフェノールA、水添ビスフェノールF及び水添ビスフェノールS。 B-1: Tricyclodecane, isobornyl, adamantane, cyclopentane, cyclohexane, hydrogenated bisphenol A, hydrogenated bisphenol F, and hydrogenated bisphenol S.
(5)前記環状化合物(B)が、脂肪族環として、トリシクロデカン、アダマンタン、シクロヘキサン及び水添ビスフェノールAからなる群から選択される骨格を有するオキセタン化合物またはエポキシ化合物である上記(4)に記載の樹脂組成物。 (5) In the above (4), the cyclic compound (B) is an oxetane compound or an epoxy compound having a skeleton selected from the group consisting of tricyclodecane, adamantane, cyclohexane and hydrogenated bisphenol A as an aliphatic ring. The resin composition as described.
(6)前記環状化合物(B)が下記(B-3)に記載の群から選択される骨格を有する上記(1)乃至(3)の何れか一項に記載の樹脂組成物、 (6) The resin composition according to any one of (1) to (3), wherein the cyclic compound (B) has a skeleton selected from the group described in (B-3) below,
B-3:モルホリン、テトラヒドロフラン、オキサン、ジオキサン、トリアジン、カルバゾール、ピロリジン及びピペリジン。 B-3: Morpholine, tetrahydrofuran, oxane, dioxane, triazine, carbazole, pyrrolidine and piperidine.
(7)前記環状化合物(B)が、ヘテロ環として、オキサン、ジオキサン及びトリアジンからなる群から選択される骨格を有するオキセタン化合物またはエポキシ化合物である上記(6)に記載の樹脂組成物。
(8)さらに硬化剤(C)を含有する上記(1)乃至(7)の何れか一項に記載の樹脂組成物。
(9)硬化剤(C)が光カチオン重合開始剤であり、樹脂組成物がエネルギー線硬化型樹脂組成物である上記(8)に記載の樹脂組成物。
(10)前記光カチオン重合開始剤が下記(C-1)に記載の群から選択される化合物である上記(9)に記載のエネルギー線硬化型樹脂組成物、
(7) The resin composition according to (6), wherein the cyclic compound (B) is an oxetane compound or an epoxy compound having a skeleton selected from the group consisting of oxane, dioxane, and triazine as a heterocyclic ring.
(8) The resin composition according to any one of (1) to (7), further including a curing agent (C).
(9) The resin composition according to (8), wherein the curing agent (C) is a photocationic polymerization initiator and the resin composition is an energy ray curable resin composition.
(10) The energy ray curable resin composition according to (9), wherein the photocationic polymerization initiator is a compound selected from the group described in (C-1) below,
C-1:スルホニウム塩、ヨードニウム塩、ホスホニウム塩、アンモニウム塩及びアンチモン酸塩。 C-1: sulfonium salt, iodonium salt, phosphonium salt, ammonium salt and antimonate.
(11)硬化剤(C)が熱硬化剤であり、樹脂組成物が熱硬化型樹脂組成物である上記(8)に記載の熱硬化型樹脂組成物。
(12)前記熱硬化剤が下記(C-2)に記載の群から選択される化合物である上記(11)に記載の熱硬化型樹脂組成物、
(11) The thermosetting resin composition according to (8), wherein the curing agent (C) is a thermosetting agent and the resin composition is a thermosetting resin composition.
(12) The thermosetting resin composition according to (11), wherein the thermosetting agent is a compound selected from the group described in (C-2) below,
C-2:アミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物、イミダゾール系化合物、イソシアヌル酸付加物、金属化合物、スルホニウム塩、アンモニウム塩、アンチモン酸塩、ホスホニウム塩及びマイクロカプセル型硬化剤。 C-2: Amine compound, acid anhydride compound, amide compound, phenol compound, carboxylic acid compound, imidazole compound, isocyanuric acid adduct, metal compound, sulfonium salt, ammonium salt, antimonate, phosphonium Salt and microcapsule type curing agents.
(13)前記脂環式化合物(A)と前記環状化合物(B)の総量100質量部に対して、前記脂環式化合物(A)を20~80質量部含有する上記(1)乃至(12)の何れか一項に記載の樹脂組成物。
(14)前記脂環式化合物(A)と前記環状化合物(B)の総量100質量部に対して、前記環状化合物(B)を20~80質量部含有する上記(1)乃至(13)の何れか一項に記載の樹脂組成物。
(15)前記脂環式化合物(A)と前記環状化合物(B)の総量100質量部に対して、硬化剤(C)を0.1~5質量部含有する上記(1)乃至(14)の何れか一項に記載の樹脂組成物。
(16)25℃で測定した粘度が15Pa・s以下である上記(1)乃至(15)の何れか一項に記載の樹脂組成物。
(17)上記(1)乃至(16)の何れか一項に記載の樹脂組成物を硬化せしめて得られる硬化物で面封止された有機ELディスプレイ。
(18)上記(1)乃至(16)の何れか一項に記載の樹脂組成物を基材上に塗布、硬化させてなるバリア性能を有する有機ELディスプレイの面封止用フィルム。
(19)上記(1)乃至(16)の何れか一項に記載の樹脂組成物の有機EL素子の面封止のための使用。
(13) The above (1) to (12) containing 20 to 80 parts by mass of the alicyclic compound (A) with respect to 100 parts by mass of the total amount of the alicyclic compound (A) and the cyclic compound (B). The resin composition as described in any one of).
(14) The above-mentioned (1) to (13) containing 20 to 80 parts by mass of the cyclic compound (B) with respect to 100 parts by mass of the total amount of the alicyclic compound (A) and the cyclic compound (B). The resin composition as described in any one.
(15) Said (1) thru | or (14) which contains 0.1-5 mass parts of hardening | curing agents (C) with respect to 100 mass parts of total amounts of the said alicyclic compound (A) and the said cyclic compound (B). The resin composition according to any one of the above.
(16) The resin composition according to any one of (1) to (15), wherein the viscosity measured at 25 ° C. is 15 Pa · s or less.
(17) An organic EL display whose surface is sealed with a cured product obtained by curing the resin composition according to any one of (1) to (16).
(18) A surface sealing film for an organic EL display having a barrier performance obtained by applying and curing the resin composition according to any one of (1) to (16) on a substrate.
(19) Use of the resin composition according to any one of (1) to (16) for surface sealing of an organic EL element.
 本発明の有機EL素子の面封止用樹脂組成物(以下、本明細書において単に「面封止用樹脂組成物」または「樹脂組成物」という。)は、低粘度であり、且つ、その硬化物は、可視光透過率及び耐光性に優れ、Tgが高く、硬化収縮率及び水蒸気透過度が低いことから、特に有機EL素子の面封止材に適している。 The resin composition for surface sealing of the organic EL device of the present invention (hereinafter simply referred to as “surface sealing resin composition” or “resin composition” in the present specification) has a low viscosity, and The cured product is excellent in visible light transmittance and light resistance, has a high Tg, and has a low curing shrinkage rate and low water vapor transmission rate. Therefore, the cured product is particularly suitable for a surface sealing material for an organic EL element.
 本発明の樹脂組成物に含有されるオキセタニル基またはエポキシ基を有する脂環式化合物(A)(本明細書において「脂環式化合物(A)」又は「成分(A)」ともいう。)としては、分子中に、脂肪族環を少なくとも一つ有し、且つ、オキセタニル基またはエポキシ基を少なくとも一つ有する化合物であれば何れも使用することができる。脂環式化合物(A)としては、例えば、以下に例示される脂肪族環を有するオキセタン化合物または脂肪族環を有するエポキシ化合物が挙げられる。 As an alicyclic compound (A) having an oxetanyl group or an epoxy group contained in the resin composition of the present invention (also referred to as “alicyclic compound (A)” or “component (A)” in this specification). Any compound can be used as long as it has at least one aliphatic ring and at least one oxetanyl group or epoxy group in the molecule. Examples of the alicyclic compound (A) include an oxetane compound having an aliphatic ring exemplified below or an epoxy compound having an aliphatic ring.
本発明の樹脂組成物に含有される脂環式化合物(A)としては、橋架け構造を有する脂環式炭化水素骨格またはシクロアルキレン骨格(橋架け構造を有しない)、及び、オキセタニル基またはエポキシ基を有する環状化合物;または、分子中に少なくとも1つの脂環式エポキシ骨格を有する脂環式エポキシ化合物を使用することができる。これらの具体的な構造の例を、以下詳細に説明する。
 上記の橋架け構造を有する脂環式炭化水素骨格またはシクロアルキレン骨格は、置換基を有していても、有していなくてもよい。該脂環式炭化水素骨格または該シクロアルキレン骨格が置換基を有している場合の該置換基としてはアルキル基、アルコキシ基又はアルケニル基を挙げることができ、これらの基はいずれも炭素数が1~4であることが好ましい。
このような化合物を前記のオキセタニル基またはエポキシ基を有する環状化合物(B)(本明細書において「環状化合物(B)」又は「成分(B)」ともいう。)と組み合わせることで、極めて優れた耐湿性の効果を有する硬化物を得ることができる。上記の骨格が水分に対して十分なバリアとなり、透湿を防ぐためである。
Examples of the alicyclic compound (A) contained in the resin composition of the present invention include an alicyclic hydrocarbon skeleton or a cycloalkylene skeleton having a bridge structure (without a bridge structure), an oxetanyl group, and an epoxy. A cyclic compound having a group; or an alicyclic epoxy compound having at least one alicyclic epoxy skeleton in the molecule can be used. Examples of these specific structures will be described in detail below.
The alicyclic hydrocarbon skeleton or cycloalkylene skeleton having the above bridge structure may or may not have a substituent. In the case where the alicyclic hydrocarbon skeleton or the cycloalkylene skeleton has a substituent, examples of the substituent include an alkyl group, an alkoxy group, and an alkenyl group. It is preferably 1 to 4.
By combining such a compound with the above-mentioned cyclic compound (B) having an oxetanyl group or an epoxy group (also referred to as “cyclic compound (B)” or “component (B)” in this specification), the compound is extremely excellent. A cured product having an effect of moisture resistance can be obtained. This is because the skeleton serves as a sufficient barrier against moisture and prevents moisture permeation.
 上記橋架け構造を有する脂環式炭化水素基とは、脂肪族環のうち、橋架け構造により多環系骨格が形成されたものをいい、具体的には、アダマンタン骨格、トリシクロデカン骨格(ジシクロペンタジエン骨格ともいう)及びイソボルニル骨格が好適なものとして挙げられる。上記の通り、これらの基は、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基及び炭素数1~4のアルケニル基から選ばれる置換基を有していてもよい。上記橋架け構造を有する脂環式炭化水素基としては、トリシクロデカン骨格が特に好ましい。 The alicyclic hydrocarbon group having a bridge structure refers to an aliphatic ring in which a polycyclic skeleton is formed by a bridge structure. Specifically, an adamantane skeleton, a tricyclodecane skeleton ( Preferred examples include a dicyclopentadiene skeleton) and an isobornyl skeleton. As described above, these groups may have a substituent selected from an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and an alkenyl group having 1 to 4 carbon atoms. As the alicyclic hydrocarbon group having the bridge structure, a tricyclodecane skeleton is particularly preferable.
 上記シクロアルキレン骨格としては、好ましくは炭素数が4~7、より好ましくは炭素数が5又は6であるシクロアルキレン骨格が挙げられ、好ましい具体例としては、シクロペンタン骨格、シクロヘキサン骨格及びシクロヘプタン骨格等が挙げられる。上記シクロアルキレン骨格としては、シクロヘキサン骨格が特に好ましい。
上記シクロアルキレン骨格は、直接結合又は連結器を介して2つのシクロヘキサン骨格が結合して、下記式(A-A)

Figure JPOXMLDOC01-appb-I000001

(上記式中、Yは直接結合、硫黄原子または炭素数1~10のアルキレン基、エーテル結合を有するアルキレン基またはエステル結合を有するアルキレン基を表し、Rはそれぞれ独立に水素原子または炭素数1~4のアルキル基を表し、tは1~4の整数を示す。)で表される骨格であっても良い。
 上記式(A-A)で表される骨格において好ましいものは、Yが直接結合または炭素数1~10のアルキレン基であるものであり、Yが直接結合、メチレン基またはプロパン-2,2-ジイル基であるものがより好ましく、Yが直接結合であるものが特に好ましい。
Examples of the cycloalkylene skeleton include cycloalkylene skeletons preferably having 4 to 7 carbon atoms, more preferably 5 or 6 carbon atoms, and specific examples include cyclopentane skeleton, cyclohexane skeleton and cycloheptane skeleton. Etc. As the cycloalkylene skeleton, a cyclohexane skeleton is particularly preferable.
In the cycloalkylene skeleton, two cyclohexane skeletons are bonded via a direct bond or a coupler, and the following formula (AA)

Figure JPOXMLDOC01-appb-I000001

(In the above formula, Y represents a direct bond, a sulfur atom or an alkylene group having 1 to 10 carbon atoms, an alkylene group having an ether bond or an alkylene group having an ester bond, and each R 3 independently represents a hydrogen atom or 1 carbon atom. Or a skeleton represented by t represents an integer of 1 to 4.
In the skeleton represented by the formula (AA), Y is preferably a direct bond or an alkylene group having 1 to 10 carbon atoms, and Y is a direct bond, a methylene group or propane-2,2- Those that are diyl groups are more preferred, and those in which Y is a direct bond are particularly preferred.
 前記橋架け構造を有する脂環式炭化水素骨格、前記シクロアルキレン骨格(前記式(A-A)骨格を含む)と、オキセタニル基またはエポキシ基とは、直接または炭化水素基を含有する連結基によって連結されていることが好ましい。
 上記骨格とオキセタニル基またはエポキシ基が上記炭化水素基を含有する連結基により連結されている場合の該連結基としては、エーテル結合又はエステル結合を含んでも良い炭化水素基が挙げられ、好ましくは、炭素数1~10のアルキレン基、エーテル結合を有する炭素数1~10のアルキレン基またはエステル結合を有する炭素数1~10のアルキレン基が挙げられる。
 上記連結基のうち、エーテル結合を含む炭化水素基の具体例としては、C1~C4アルキレン-オキシ-C1~C4アルキレン基、より好ましくはC1~C3アルキレン-オキシ-C1~C3アルキレン基等の、エーテル結合を炭素原子間に含む炭素数2~10、より好ましくは炭素数2~6のアルキレン基;及び、-オキシメチル基などのエーテル結合をアルキレン基の末端に有するC1~C4アルキレン基(-オキシ-C1~C4アルキレン基)、より好ましくは-オキシ-C1~C3アルキレン基等を挙げることができる。該アルキレン基がエーテル結合を末端に有する場合、通常、オキシ基が脂肪族環に結合し、アルキル基がオキセタン環またはエポキシ環に結合する。
 上記連結基のうち、エステル結合を含む炭化水素基の具体例としては、エステル結合を一方の末端に有するC1~C6アルキレン基(エステル結合-C1~C6アルキレン基)、より好ましくはエステル結合-C1~C3アルキレン基;エステル結合-C1~C6アルキレン(より好ましくはC2~C5アルキレン)-エステル結合等の、エステル結合を両末端に有するC1~C6アルキレン基;及び、C1~C4アルキレン-エステル結合-C1~C4アルキレン基、及び、C1~C3のアルキレン-エステル結合-C1~C6アルキレン-エステル結合-C1~C3アルキレン基等の、炭素原子間にエステル結合を含む炭素数2~10(より好ましくは炭素数2~8)のアルキレン基等を挙げることができる。該エステル結合を含む炭化水素基がエステル結合を末端に有する場合、通常、エステル結合においては、カルボニル基が脂肪族環に結合し、エーテル基がアルキレン基に結合する。
 上記連結基のうちより好ましいものとしては、C1~C3アルキレン-オキシ-C1~C3アルキレン基、オキシ-C1~C3アルキレン基、及び、エステル結合-C1~C3アルキレン基が挙げられる。
The alicyclic hydrocarbon skeleton having the bridge structure, the cycloalkylene skeleton (including the formula (AA) skeleton), and the oxetanyl group or the epoxy group may be directly or by a linking group containing a hydrocarbon group. It is preferable that it is connected.
Examples of the linking group in the case where the skeleton and the oxetanyl group or the epoxy group are linked by a linking group containing the hydrocarbon group include a hydrocarbon group that may include an ether bond or an ester bond, Examples thereof include an alkylene group having 1 to 10 carbon atoms, an alkylene group having 1 to 10 carbon atoms having an ether bond, and an alkylene group having 1 to 10 carbon atoms having an ester bond.
Among the linking groups, specific examples of the hydrocarbon group containing an ether bond include a C1-C4 alkylene-oxy-C1-C4 alkylene group, more preferably a C1-C3 alkylene-oxy-C1-C3 alkylene group, An alkylene group having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms containing an ether bond between carbon atoms; and a C1-C4 alkylene group having an ether bond such as an -oxymethyl group at the terminal of the alkylene group (- An oxy-C1-C4 alkylene group), more preferably an -oxy-C1-C3 alkylene group. When the alkylene group has an ether bond at the terminal, the oxy group is usually bonded to the aliphatic ring and the alkyl group is bonded to the oxetane ring or the epoxy ring.
Among the above linking groups, specific examples of the hydrocarbon group containing an ester bond include a C1-C6 alkylene group having an ester bond at one end (ester bond-C1-C6 alkylene group), more preferably an ester bond-C1. -C3 alkylene group; ester bond-C1-C6 alkylene (more preferably C2-C5 alkylene) -C1-C6 alkylene group having an ester bond at both ends, such as an ester bond; and C1-C4 alkylene-ester bond- A C1-C4 alkylene group, a C1-C3 alkylene-ester bond, a C1-C6 alkylene-ester bond, a C1-C3 alkylene group and the like, containing 2 to 10 carbon atoms (more preferably Examples thereof include alkylene groups having 2 to 8 carbon atoms. When the hydrocarbon group containing an ester bond has an ester bond at the end, usually, in the ester bond, a carbonyl group is bonded to an aliphatic ring and an ether group is bonded to an alkylene group.
More preferable examples of the linking group include a C1-C3 alkylene-oxy-C1-C3 alkylene group, an oxy-C1-C3 alkylene group, and an ester bond-C1-C3 alkylene group.
 脂環式エポキシ化合物は、脂環式エポキシ基が形成された脂肪族環を有する化合物であり、本発明において脂環式化合物(A)として使用することができる。脂環式エポキシ基とは、脂肪族環を構成する2つの炭素原子に1つの酸素原子が結合することにより、脂肪族環に直接形成されたエポキシ基をいう。脂環式エポキシ化合物における脂環式エポキシ基が形成される脂肪族環としては、前記のシクロアルキレン骨格または橋架け構造を有する脂環式炭化水素骨格が挙げられ、より具体的には、シクロペンタン骨格及びシクロヘキサン骨格等の炭素数5~7のシクロアルキレン骨格、アダマンタン骨格、トリシクロデカン骨格及びイソボルニル骨格が挙げられる。
 上記脂環式エポキシ化合物は、脂環式エポキシ基を2つ以上有していてもよく、1つの脂環式エポキシ基が形成された脂肪族環を2つ以上有する化合物であることが好ましい。この場合、2つ以上の該脂環式エポキシ基が形成された脂肪族環が、直接または前記の炭化水素基を含有する連結基によって連結されてなるものが好ましい。
 上記脂環式エポキシ化合物は、脂環式エポキシ基以外にオキセタニル基またはエポキシ基を有していてもよく、該脂環式エポキシ基が形成された脂肪族環とオキセタニル基またはエポキシ基とが、直接または前記の炭化水素基を含有する連結基によって連結されてなる化合物であってもよい。
 上記脂環式エポキシ化合物の好適な化合物としては、シクロペンタン骨格、シクロヘキサン骨格及びトリシクロデカン骨格から選択される骨格を有し、該骨格上に脂環式エポキシ基が形成された化合物が挙げられ、脂環式エポキシ基が形成されたシクロヘキサン骨格を有する化合物はより好ましく、2つの1,2-エポキシシクロヘキサン骨格が直接又はエステル結合を有する炭素数1~3のアルキレン基によって連結されてなる化合物は更に好ましい。
The alicyclic epoxy compound is a compound having an aliphatic ring in which an alicyclic epoxy group is formed, and can be used as the alicyclic compound (A) in the present invention. An alicyclic epoxy group refers to an epoxy group formed directly on an aliphatic ring by bonding one oxygen atom to two carbon atoms constituting the aliphatic ring. Examples of the aliphatic ring in which the alicyclic epoxy group in the alicyclic epoxy compound is formed include the cycloalkylene skeleton or the alicyclic hydrocarbon skeleton having a bridge structure, and more specifically, cyclopentane. Examples thereof include a cycloalkylene skeleton having 5 to 7 carbon atoms such as a skeleton and a cyclohexane skeleton, an adamantane skeleton, a tricyclodecane skeleton, and an isobornyl skeleton.
The alicyclic epoxy compound may have two or more alicyclic epoxy groups, and is preferably a compound having two or more aliphatic rings formed with one alicyclic epoxy group. In this case, an aliphatic ring in which two or more alicyclic epoxy groups are formed is preferably linked directly or by a linking group containing the hydrocarbon group.
The alicyclic epoxy compound may have an oxetanyl group or an epoxy group in addition to the alicyclic epoxy group, and the aliphatic ring formed with the alicyclic epoxy group and the oxetanyl group or the epoxy group, It may be a compound formed by being linked directly or by a linking group containing the above-mentioned hydrocarbon group.
Suitable examples of the alicyclic epoxy compound include compounds having a skeleton selected from a cyclopentane skeleton, a cyclohexane skeleton, and a tricyclodecane skeleton, and an alicyclic epoxy group formed on the skeleton. A compound having a cyclohexane skeleton in which an alicyclic epoxy group is formed is more preferable, and a compound in which two 1,2-epoxycyclohexane skeletons are linked directly or via an alkylene group having 1 to 3 carbon atoms having an ester bond is Further preferred.
 本発明の脂環式化合物(A)が有する脂肪族環(脂環式エポキシ基が形成されたものを含む)としては、下記(A-1)に記載の群:
A-1:トリシクロデカン骨格、イソボルニル骨格、アダマンタン骨格、シクロペンタン骨格、シクロヘキサン骨格、水添ビスフェノールA骨格、水添ビスフェノールF骨格及び水添ビスフェノールS骨格。
から選択される骨格が好ましく、下記(A-2)に記載の群:
A-2:トリシクロデカン骨格、アダマンタン骨格、シクロヘキサン骨格及び水添ビスフェノールA骨格。
から選択される骨格がより好ましい。
 脂環式化合物(A)のうち、前記脂肪族環を有するオキセタン化合物の好ましい具体例としては、3(4),8(9)-ビス[(1-エチル-3-オキセタニル)メトキシメチル]-トリシクロ[5.2.1.2.6]デカン等が挙げられる。
Examples of the aliphatic ring (including those formed with an alicyclic epoxy group) included in the alicyclic compound (A) of the present invention include the groups described in the following (A-1):
A-1: Tricyclodecane skeleton, isobornyl skeleton, adamantane skeleton, cyclopentane skeleton, cyclohexane skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton and hydrogenated bisphenol S skeleton.
Preferred is a skeleton selected from the group described in the following (A-2):
A-2: a tricyclodecane skeleton, an adamantane skeleton, a cyclohexane skeleton, and a hydrogenated bisphenol A skeleton.
A skeleton selected from is more preferable.
Among the alicyclic compounds (A), preferred examples of the oxetane compounds having an aliphatic ring include 3 (4), 8 (9) -bis [(1-ethyl-3-oxetanyl) methoxymethyl]- And tricyclo [5.2.2.1.6] decane.
 脂環式化合物(A)のうち、前記脂肪族環を有するエポキシ化合物の好ましい具体例としては、後述する(a-1a)、(a-1b)及び(a-1c)に記載の群に示される脂環式エポキシ化合物;水添ビスフェノールAジグリシジルエーテル、臭素化水添ビスフェノールAジグリシジルエーテル等のビスフェノールA型エポキシ化合物;水添ビスフェノールFジグリシジルエーテル、臭素化水添ビスフェノールFジグリシジルエーテル等のビスフェノールF型エポキシ化合物;水添ビスフェノールSジグリシジルエーテル、臭素化水添ビスフェノールSジグリシジルエーテル等の水添ビスフェノールS型エポキシ化合物;ジエポキシトリシクロデカン、トリシクロデカンジメタノールジグリシジルエーテル等のトリシクロデカン骨格を有するエポキシ化合物;アダマンタングリシジルエーテル等のアダマンタン骨格を有するエポキシ化合物等が挙げられる。 Of the alicyclic compound (A), preferred specific examples of the epoxy compound having an aliphatic ring are shown in the groups described in (a-1a), (a-1b) and (a-1c) described later. Alicyclic epoxy compounds; bisphenol A type epoxy compounds such as hydrogenated bisphenol A diglycidyl ether, brominated hydrogenated bisphenol A diglycidyl ether; hydrogenated bisphenol F diglycidyl ether, brominated hydrogenated bisphenol F diglycidyl ether, etc. Bisphenol F type epoxy compounds; hydrogenated bisphenol S type diglycidyl ethers, hydrogenated bisphenol S type epoxy compounds such as brominated hydrogenated bisphenol S diglycidyl ethers; diepoxy tricyclodecane, tricyclodecane dimethanol diglycidyl ether, etc. Has tricyclodecane skeleton That an epoxy compound, epoxy compound having an adamantane skeleton such as an adamantane glycidyl ether.
式(a-1a):
Figure JPOXMLDOC01-appb-I000002
式(a-1b):
Figure JPOXMLDOC01-appb-I000003
式(a-1c):
Figure JPOXMLDOC01-appb-I000004
(nは平均値で1~5の正数を表す。)
Formula (a-1a):
Figure JPOXMLDOC01-appb-I000002
Formula (a-1b):
Figure JPOXMLDOC01-appb-I000003
Formula (a-1c):
Figure JPOXMLDOC01-appb-I000004
(N is an average value and represents a positive number from 1 to 5.)
 本発明の樹脂組成物に含有される脂環式化合物(A)としては、前記化合物の中でも、脂環式エポキシ化合物、または、水添ビスフェノールA骨格及びトリシクロデカン骨格からなる群から選ばれる骨格を有するオキセタン化合物またはエポキシ化合物が好ましい。
 本発明の脂環式化合物(A)としては、オキセタニル基又はエポキシ基を2官能以上有する化合物がより好ましく、2官能である化合物は更に好ましい。
 本発明の成分(A)の好ましい含有量は、反応性化合物である成分(A)及び成分(B)の総量100質量部に対して、20~80質量部であり、より好ましくは30~70質量部である。本発明の樹脂組成物から得られる硬化物の低透湿度を達成する為には、成分(A)の官能基当量が10~500g/eqであることが好ましく、50~250g/eqであることがさらに好ましい。
As the alicyclic compound (A) contained in the resin composition of the present invention, among the compounds, a skeleton selected from the group consisting of an alicyclic epoxy compound, or a hydrogenated bisphenol A skeleton and a tricyclodecane skeleton. Oxetane compounds or epoxy compounds having the following are preferred:
As the alicyclic compound (A) of the present invention, a compound having two or more oxetanyl groups or epoxy groups is more preferable, and a compound having two functions is more preferable.
The content of the component (A) of the present invention is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts per 100 parts by mass of the total amount of the component (A) and the component (B) which are reactive compounds. Part by mass. In order to achieve low moisture permeability of the cured product obtained from the resin composition of the present invention, the functional group equivalent of component (A) is preferably 10 to 500 g / eq, and preferably 50 to 250 g / eq. Is more preferable.
 本発明の樹脂組成物に含有されるオキセタニル基またはエポキシ基を有する環状化合物(B)(本明細書において「環状化合物(B)」又は「成分(B)」ともいう。)は、下記の条件を満たす。
環状化合物(B)の条件:「環状化合物(B)に含まれる環として、脂肪族環又はヘテロ環を有する。ここで、該環が脂肪族環である場合、環状化合物(B)は、前記脂環式化合物(A)として使用される化合物とは異なる構造を有する化合物を用いる。」
即ち、環が脂肪族環である環状化合物(B)を使用する場合、本発明の樹脂組成物中には、異なる2種類の脂肪族環を有するオキセタン化合物または脂肪族環を有するエポキシ化合物が含有されることとなる。
 環状化合物(B)のうち、環が脂肪族環である化合物としては、前記脂環式化合物(A)として挙げられている化合物を使用できる。環状化合物(B)のうち環が脂肪族環である化合物の好ましいものとしては、前記脂環式化合物(A)に関する説明において好ましいとされた化合物が挙げられる。より好ましい化合物等についても同様である。本発明の樹脂組成物において、環状化合物(B)として環が脂肪族環である化合物を使用する場合、脂環式化合物(A)として使用する化合物と骨格が異なる化合物を使用することがさらに好ましい。
The cyclic compound (B) having an oxetanyl group or an epoxy group (also referred to as “cyclic compound (B)” or “component (B)” in the present specification) contained in the resin composition of the present invention has the following conditions. Meet.
Conditions of the cyclic compound (B): “As the ring contained in the cyclic compound (B), there is an aliphatic ring or a heterocycle. When the ring is an aliphatic ring, the cyclic compound (B) A compound having a structure different from the compound used as the alicyclic compound (A) is used. "
That is, when using the cyclic compound (B) whose ring is an aliphatic ring, the resin composition of the present invention contains an oxetane compound having two different types of aliphatic rings or an epoxy compound having an aliphatic ring. Will be.
Among the cyclic compounds (B), as the compound whose ring is an aliphatic ring, the compounds listed as the alicyclic compound (A) can be used. Preferred examples of the compound in which the ring is an aliphatic ring among the cyclic compounds (B) include compounds that are preferred in the description of the alicyclic compound (A). The same applies to more preferable compounds. In the resin composition of the present invention, when a compound whose ring is an aliphatic ring is used as the cyclic compound (B), it is more preferable to use a compound having a skeleton different from the compound used as the alicyclic compound (A). .
 環状化合物(B)において、環が脂肪族環である場合の当該脂肪族環(脂環式エポキシ基が形成されたものを含む)としては、下記(B-1)に記載の群:
B-1:トリシクロデカン骨格、イソボルニル骨格、アダマンタン骨格、シクロペンタン骨格、シクロヘキサン骨格、水添ビスフェノールA骨格、水添ビスフェノールF骨格及び水添ビスフェノールS骨格。
から選択される骨格が好ましく、下記(B-2)に記載の群:
B-2:トリシクロデカン骨格、アダマンタン骨格、シクロヘキサン骨格及び水添ビスフェノールA骨格。
から選択される骨格がより好ましい。
 以下、環状化合物(B)のうち、環が脂肪族環である化合物の具体例を説明する。
In the cyclic compound (B), when the ring is an aliphatic ring, the aliphatic ring (including those formed with an alicyclic epoxy group) is the group described in the following (B-1):
B-1: Tricyclodecane skeleton, isobornyl skeleton, adamantane skeleton, cyclopentane skeleton, cyclohexane skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton and hydrogenated bisphenol S skeleton.
A skeleton selected from is preferable, and the group described in (B-2) below:
B-2: Tricyclodecane skeleton, adamantane skeleton, cyclohexane skeleton and hydrogenated bisphenol A skeleton.
A skeleton selected from is more preferable.
Hereinafter, the specific example of the compound whose ring is an aliphatic ring among cyclic compounds (B) is demonstrated.
 環状化合物(B)のうち、脂肪族環を有するオキセタン化合物の好ましい具体例としては、3(4),8(9)-ビス[(1-エチル-3-オキセタニル)メトキシメチル]-トリシクロ[5.2.1.2.6]デカン等が挙げられる。 Among the cyclic compounds (B), preferred specific examples of the oxetane compound having an aliphatic ring include 3 (4), 8 (9) -bis [(1-ethyl-3-oxetanyl) methoxymethyl] -tricyclo [5 2.1.2.6] decane and the like.
 環状化合物(B)のうち、脂肪族環を有するエポキシ化合物の好ましい具体例としては、後述する(b-1a)、(b-1b)及び(b-1c)に記載の群に示される脂環式エポキシ化合物;水添ビスフェノールAジグリシジルエーテル、臭素化水添ビスフェノールAジグリシジルエーテル等の水添ビスフェノールA型エポキシ化合物;水添ビスフェノールFジグリシジルエーテル、臭素化水添ビスフェノールFジグリシジルエーテル等の水添ビスフェノールF型エポキシ化合物;水添ビスフェノールSジグリシジルエーテル、臭素化水添ビスフェノールSジグリシジルエーテル等の水添ビスフェノールS型エポキシ化合物;ジエポキシトリシクロデカン、トリシクロデカンジメタノールジグリシジルエーテル等のトリシクロデカン骨格を有するエポキシ化合物;アダマンタングリシジルエーテル等のアダマンタン骨格を有するエポキシ化合物等が挙げられる。 Among the cyclic compounds (B), preferred specific examples of the epoxy compound having an aliphatic ring include alicyclic rings shown in the group described in (b-1a), (b-1b) and (b-1c) described later. Formula epoxy compounds; Hydrogenated bisphenol A type epoxy compounds such as hydrogenated bisphenol A diglycidyl ether and brominated hydrogenated bisphenol A diglycidyl ether; Hydrogenated bisphenol F diglycidyl ether, Brominated hydrogenated bisphenol F diglycidyl ether and the like Hydrogenated bisphenol F type epoxy compounds; hydrogenated bisphenol S type epoxy compounds such as hydrogenated bisphenol S diglycidyl ether and brominated hydrogenated bisphenol S diglycidyl ether; diepoxy tricyclodecane, tricyclodecane dimethanol diglycidyl ether, etc. The tricyclodecane skeleton Epoxy compounds having an adamantane skeleton such as an adamantane glycidyl ether; epoxy compounds.
式(b-1a):
Figure JPOXMLDOC01-appb-I000005
式(b-1b):
Figure JPOXMLDOC01-appb-I000006
式(b-1c):
Figure JPOXMLDOC01-appb-I000007
(nは平均値で1~5の正数を表す。)
Formula (b-1a):
Figure JPOXMLDOC01-appb-I000005
Formula (b-1b):
Figure JPOXMLDOC01-appb-I000006
Formula (b-1c):
Figure JPOXMLDOC01-appb-I000007
(N is an average value and represents a positive number from 1 to 5.)
 本発明の環状化合物(B)のうち、環が脂肪族環であるオキセタン化合物またはエポキシ化合物としては、前記化合物の中でも脂環式化合物(A)とは異なる化合物であり、中でも、前記脂環式エポキシ化合物、または、前記トリシクロデカン骨格、前記アダマンタン骨格及び前記水添ビスフェノールA骨格からなる群から選ばれる骨格を有するエポキシ化合物が好ましい。
 環状化合物(B)のうち、環が脂肪族環であるオキセタン化合物及びエポキシ化合物としては、粘度及び透湿度が低く、光線透過率に優れる点で、前記脂環式エポキシ化合物、及び、前記トリシクロデカン骨格または前記アダマンタン骨格を有するエポキシ化合物が特に好ましい。
 また、環が脂肪族環である環状化合物(B)としては、オキセタニル基またはエポキシ基を2官能以上有する化合物が好ましく、2官能である化合物はより好ましい。
 本発明の環状化合物(B)のうち、環が脂肪族環である場合の環状化合物(B)の好ましい含有量は、反応性化合物である成分(A)及び成分(B)の総量100質量部に対して、20~80質量部であり、より好ましくは30~70質量部である。本発明の樹脂組成物から得られる硬化物について低透湿度を達成する為には、当該環が脂肪族環である場合の環状化合物(B)の官能基当量が10~1000g/eqであることが好ましく、50~500g/eqであることがさらに好ましい。
Among the cyclic compounds (B) of the present invention, the oxetane compound or epoxy compound in which the ring is an aliphatic ring is a compound different from the alicyclic compound (A) among the compounds, and among them, the alicyclic An epoxy compound or an epoxy compound having a skeleton selected from the group consisting of the tricyclodecane skeleton, the adamantane skeleton, and the hydrogenated bisphenol A skeleton is preferable.
Among the cyclic compounds (B), the oxetane compound and epoxy compound whose ring is an aliphatic ring are low in viscosity and moisture permeability and excellent in light transmittance, and thus the alicyclic epoxy compound and the tricyclo compound. Epoxy compounds having a decane skeleton or the adamantane skeleton are particularly preferred.
Moreover, as a cyclic compound (B) whose ring is an aliphatic ring, the compound which has an oxetanyl group or an epoxy group bifunctional or more is preferable, and the compound which is bifunctional is more preferable.
Of the cyclic compound (B) of the present invention, the preferable content of the cyclic compound (B) when the ring is an aliphatic ring is 100 parts by mass in total of the component (A) and the component (B) which are reactive compounds. The amount is 20 to 80 parts by mass, and more preferably 30 to 70 parts by mass. In order to achieve low moisture permeability for the cured product obtained from the resin composition of the present invention, the functional group equivalent of the cyclic compound (B) when the ring is an aliphatic ring is 10 to 1000 g / eq. Is more preferable, and 50 to 500 g / eq is more preferable.
 環状化合物(B)のうち、環がヘテロ環である化合物としては、分子中に、炭素原子と炭素原子以外の異項原子からなるヘテロ環を少なくとも一つ、及び、オキセタニル基またはエポキシ基を少なくとも一つ有する化合物であれば、いずれの化合物も使用できる。上記異項原子としては、例えば、窒素原子、酸素原子及び硫黄原子が挙げられる。
 環がヘテロ環である環状化合物(B)が有するヘテロ環の例としては、下記(B-3)に記載の骨格が挙げられる。
B-3:モルホリン骨格、テトラヒドロフラン骨格、オキサン骨格、ジオキサン骨格、トリアジン骨格(イソシアヌレート環を含む)、カルバゾール骨格、ピロリジン骨格及びピペリジン骨格。
上記ヘテロ環は、置換基を有していても、置換基を有していなくてもよい。上記ヘテロ環が置換基を有する場合の置換基としては、アルキル基、アルコキシ基又はアルケニル基が挙げられ、これらの基はいずれも炭素数が1~4であることが好ましい。また、上記ヘテロ環骨格に存在する置換基としては、炭素数1~3のアルキル基または炭素数1~3のアルケニル基が更に好ましい。
環がヘテロ環である環状化合物(B)としては、上記ヘテロ環の中でも、下記(B-4)に記載の群:
B-4:オキサン骨格、ジオキサン骨格及びトリアジン骨格(イソシアヌレート環を含む)
から選択される骨格、及び、オキセタニル基またはエポキシ基を有する化合物が好ましい。
 また、環がヘテロ環である環状化合物(B)としては、オキセタニル基またはエポキシ基を2官能以上有する化合物が好ましく、2官能である化合物はより好ましい。
Among the cyclic compounds (B), as a compound having a ring as a heterocycle, at least one heterocycle composed of a carbon atom and a hetero atom other than a carbon atom, and at least an oxetanyl group or an epoxy group in the molecule. Any compound that has one compound can be used. Examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
Examples of the heterocyclic ring contained in the cyclic compound (B) in which the ring is a heterocyclic ring include the skeleton described in the following (B-3).
B-3: morpholine skeleton, tetrahydrofuran skeleton, oxane skeleton, dioxane skeleton, triazine skeleton (including isocyanurate ring), carbazole skeleton, pyrrolidine skeleton and piperidine skeleton.
The heterocycle may have a substituent or may not have a substituent. Examples of the substituent in the case where the heterocycle has a substituent include an alkyl group, an alkoxy group, and an alkenyl group, and these groups all preferably have 1 to 4 carbon atoms. Further, the substituent present in the heterocyclic skeleton is more preferably an alkyl group having 1 to 3 carbon atoms or an alkenyl group having 1 to 3 carbon atoms.
As the cyclic compound (B) in which the ring is a heterocycle, among the above heterocycles, the group described in the following (B-4):
B-4: Oxane skeleton, dioxane skeleton and triazine skeleton (including isocyanurate ring)
And a compound having a skeleton selected from: and an oxetanyl group or an epoxy group.
Moreover, as a cyclic compound (B) whose ring is a heterocyclic ring, the compound which has 2 or more oxetanyl group or an epoxy group is preferable, and the compound which is bifunctional is more preferable.
 上記ヘテロ環骨格と、オキセタニル基またはエポキシ基とは、通常、直接または炭化水素基を含有する連結基によって連結されており、該連結基によって連結されていることが好ましい。
 上記骨格とオキセタニル基またはエポキシ基が上記炭化水素基を含有する連結基によって連結されている場合の該連結基としては、エーテル結合を含んでも良い炭化水素基が挙げられ、好ましくは、炭素数1~10のアルキレン基または、エーテル結合を有する炭素数1~10のアルキレン基が挙げられる。当該連結基として、より好ましくは、C1~C4アルキレン基、及び、エーテル結合をアルキレン基の末端に有するC1~C4アルキレン基(-オキシ-C1~C4アルキレン基)が挙げられる。
The heterocyclic skeleton and the oxetanyl group or epoxy group are usually linked directly or by a linking group containing a hydrocarbon group, and are preferably linked by the linking group.
Examples of the linking group in the case where the skeleton and the oxetanyl group or the epoxy group are linked by a linking group containing the hydrocarbon group include a hydrocarbon group that may include an ether bond. Or an alkylene group having 1 to 10 carbon atoms having an ether bond. More preferable examples of the linking group include a C1-C4 alkylene group and a C1-C4 alkylene group having an ether bond at the terminal of the alkylene group (-oxy-C1-C4 alkylene group).
 環がヘテロ環である環状化合物(B)のうち、ヘテロ環を有するオキセタン化合物の好ましい具体例としては、イソシアヌル酸(CIC酸)とオキセタンアルコールの反応生成物等が挙げられる。 Among the cyclic compound (B) in which the ring is a heterocycle, preferred specific examples of the oxetane compound having a heterocycle include a reaction product of isocyanuric acid (CIC acid) and oxetane alcohol.
 環がヘテロ環である環状化合物(B)のうち、ヘテロ環を有するエポキシ化合物の好ましい具体例としては、1,3,5-トリグリシジルイソシアヌレート及び1-アリル-3,5-ジグリシジルイソシアヌレート等のイソシアヌレート骨格を有する化合物、及び、ジオキサングリコールジグリシジルエーテル等のジオキサングリコール骨格を有する化合物等のエポキシ化合物が挙げられる。 Among the cyclic compounds (B) in which the ring is a heterocycle, preferred specific examples of the epoxy compound having a heterocycle include 1,3,5-triglycidyl isocyanurate and 1-allyl-3,5-diglycidyl isocyanurate. And an epoxy compound such as a compound having an isocyanurate skeleton, and a compound having a dioxane glycol skeleton such as dioxane glycol diglycidyl ether.
 本発明の環状化合物(B)としてヘテロ環を有するオキセタン化合物またはエポキシ化合物を使用する場合は、前記化合物の中でもイソシアヌレート骨格を有するエポキシ化合物が好ましい。中でも、当該イソシアヌレート骨格とともに、2個又は3個のエポキシ基を有する化合物が特に好ましい。
 本発明の環状化合物(B)のうち、環がヘテロ環である場合の環状化合物(B)の好ましい含有量は、反応性化合物である成分(A)及び成分(B)の総量100質量部に対して、20~80質量部であり、より好ましくは30~70質量部である。本発明の樹脂組成物から得られる硬化物について低透湿度を達成する為には、当該環がヘテロ環である環状化合物(B)の官能基当量が10~1000g/eqであることが好ましく、50~500g/eqであることがさらに好ましい。
When using the oxetane compound or epoxy compound which has a heterocyclic ring as the cyclic compound (B) of this invention, the epoxy compound which has an isocyanurate frame | skeleton is preferable among the said compounds. Among these, a compound having 2 or 3 epoxy groups together with the isocyanurate skeleton is particularly preferable.
Of the cyclic compound (B) of the present invention, the preferable content of the cyclic compound (B) when the ring is a heterocycle is 100 parts by mass in total of the component (A) and the component (B) which are reactive compounds. On the other hand, it is 20 to 80 parts by mass, more preferably 30 to 70 parts by mass. In order to achieve low moisture permeability for the cured product obtained from the resin composition of the present invention, the functional group equivalent of the cyclic compound (B) in which the ring is a heterocycle is preferably 10 to 1000 g / eq, More preferably, it is 50 to 500 g / eq.
 本発明は、上記成分(A)、上記成分(B)を含有する硬化性樹脂組成物である。以下、これらの成分の好適な組み合わせについて説明する。
 好ましい組み合わせとしては、上記成分(A)または上記成分(B)のいずれかが重量平均分子量2000以下、より好ましくは1000以下、特に好ましくは500以下のものを使用して硬化性樹脂組成物とすることが好ましい。このような低分子量のものを成分(A)及び成分(B)のいずれか一方に使用することで、硬化物の低吸湿性を確保しつつ、樹脂組成物が低粘度となり、塗布後に広がりやすくなるため、OLEDの製造に優れた組成物を得ることができるためである。成分(A)と成分(B)の両者が上記低分子量の化合物である場合、より好ましい。
 また、特に熱硬化により本発明の樹脂組成物を硬化させる場合、成分(A)と成分(B)のいずれか一方をオキセタン化合物とすることも好ましい。いずれか一方をオキセタン化合物とすることで、低吸湿性を確保しつつ、短時間での硬化性に優れた樹脂組成物を得ることができるためである。
 本発明の樹脂組成物における成分(A)と成分(B)の好適な使用比率は、(A)/(B)が質量比で8/2~2/8であり、7/3~3/7がより好ましい。
 本発明の樹脂組成物から得られる硬化物について、Tg(ガラス転移点)を向上させたい場合、成分(A)または成分(B)として、ジシクロペンタジエン骨格、イソボルニル骨格またはアダマンタン骨格を有する化合物を導入すると良い。
The present invention is a curable resin composition containing the component (A) and the component (B). Hereinafter, suitable combinations of these components will be described.
As a preferable combination, the component (A) or the component (B) has a weight average molecular weight of 2000 or less, more preferably 1000 or less, and particularly preferably 500 or less to obtain a curable resin composition. It is preferable. By using such a low molecular weight component for either component (A) or component (B), the resin composition has a low viscosity while ensuring low hygroscopicity of the cured product, and tends to spread after coating. Therefore, a composition excellent in the production of OLED can be obtained. It is more preferable when both the component (A) and the component (B) are the low molecular weight compounds.
In particular, when the resin composition of the present invention is cured by thermosetting, it is also preferable that either one of the component (A) and the component (B) is an oxetane compound. It is because the resin composition excellent in sclerosis | hardenability in a short time can be obtained, ensuring low hygroscopicity by making either one into an oxetane compound.
The preferred use ratio of component (A) to component (B) in the resin composition of the present invention is such that (A) / (B) is 8/2 to 2/8 in terms of mass ratio, and 7/3 to 3 / 7 is more preferable.
When it is desired to improve the Tg (glass transition point) of the cured product obtained from the resin composition of the present invention, a compound having a dicyclopentadiene skeleton, an isobornyl skeleton or an adamantane skeleton is used as the component (A) or the component (B). It is good to introduce.
 また、成分(A)または成分(B)として、前記脂環式エポキシ化合物を使用すると、該脂環式エポキシ化合物は粘度が低いことから、加工性が良く、硬化速度に優れる樹脂組成物が得られる。この点で、本発明の樹脂組成物において、該脂環式エポキシ化合物を使用することが好ましい。脂環式エポキシ化合物の中でも2官能の脂環式エポキシ化合物がより好ましく、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレートが特に好ましい。
 本発明では、樹脂組成物の粘度(E型粘度計により25℃で測定した粘度、以下同じ)が、15Pa・s以下、より好ましくは3500mPa・s以下、更に好ましくは1000mPa・s以下、特に好ましくは500mPa・s以下、最も好ましくは300mPa・s以下となるように、成分(A)及び成分(B)を選択して、本発明の樹脂組成物を調製することが好ましい。
Further, when the alicyclic epoxy compound is used as the component (A) or the component (B), since the alicyclic epoxy compound has a low viscosity, a resin composition having good processability and excellent curing speed is obtained. It is done. In this respect, it is preferable to use the alicyclic epoxy compound in the resin composition of the present invention. Among the alicyclic epoxy compounds, bifunctional alicyclic epoxy compounds are more preferable, and 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate is particularly preferable.
In the present invention, the viscosity of the resin composition (viscosity measured at 25 ° C. with an E-type viscometer, the same shall apply hereinafter) is 15 Pa · s or less, more preferably 3500 mPa · s or less, still more preferably 1000 mPa · s or less, particularly preferably It is preferable to prepare the resin composition of the present invention by selecting the component (A) and the component (B) so as to be 500 mPa · s or less, most preferably 300 mPa · s or less.
 本発明の樹脂組成物に含有される硬化剤(C)は、前記エポキシ化合物及び前記オキセタン化合物と反応性を有する。硬化剤には熱または光等のエネルギー線で硬化反応を開始する化合物を使用することができる。本発明においてはいずれの硬化剤も使用できるが、通常、エネルギー線で硬化反応を開始する硬化剤(C)が好ましい。 The curing agent (C) contained in the resin composition of the present invention has reactivity with the epoxy compound and the oxetane compound. As the curing agent, a compound that initiates a curing reaction with energy rays such as heat or light can be used. In the present invention, any curing agent can be used, but a curing agent (C) that initiates a curing reaction with energy rays is usually preferred.
光等のエネルギー線で硬化反応を開始する硬化剤(C)としては、紫外線(波長200~400nm程度)を受けることによりカチオンを発生する化合物であれば制限なく使用できる。光等のエネルギー線で硬化反応を開始する硬化剤(C)としては、例えば光等のエネルギー線を受けてカチオンを発生するカチオン重合開始剤(以下、光カチオン重合開始剤ともいう。)が挙げられ、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、アンモニウム塩、アンチモン酸塩が例示される。 The curing agent (C) that initiates the curing reaction with energy rays such as light can be used without limitation as long as it is a compound that generates cations upon receiving ultraviolet rays (wavelength of about 200 to 400 nm). Examples of the curing agent (C) that initiates a curing reaction with an energy beam such as light include a cationic polymerization initiator that generates a cation upon receiving an energy beam such as light (hereinafter also referred to as a photocation polymerization initiator). Examples thereof include sulfonium salts, iodonium salts, phosphonium salts, ammonium salts, and antimonates.
 光カチオン重合開始剤として使用されるスルホニウム塩としては、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4,4’-ビス[ジフェニルスルホニオ]ジフェニルスルフィド-ビスヘキサフルオロホスフェート、4,4’-ビス[ジ(β-ヒドロキシエトキシ)フェニルスルホニオ]ジフェニルスルフィド-ビスヘキサフルオロアンチモネート、7-[ジ(p-トルイル)スルホニオ]-2-イソプロピルチオキサントンヘキサフルオロホスフェート、7-[ジ(p-トルイル)スルホニオ]-2-イソプロピルチオキサントンヘキサフルオロアンチモネート、7-[ジ(p-トルイル)スルホニオ]-2-イソプロピルテトラキス(ペンタフルオロフェニル)ボレート、フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロホスフェート、フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロアンチモネート、4-tert-ブチルフェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロホスフェート、4-tert-ブチルフェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロアンチモネート、4-tert-ブチルフェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-テトラキス(ペンタフルオロフェニル)ボレート、チオフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、チオフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-{4-(2-クロロベンゾイル)フェニルチオ}フェニルビス(4-フルオロフェニル)スルホニウムヘキサフルオロアンチモネート、チオフェニルジフェニルスルホニウムヘキサフルオロアンチモネートのハロゲン化物、4,4’,4’’-トリ(β-ヒドロキシエトキシフェニル)スルホニウムヘキサフルオロアンチモネート、4,4’-ビス[ジフェニルスルホニオ]ジフェニルスルフィド-ビスヘキサフルオロアンチモネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムトリフルオロトリスペンタフルオロエチルホスファート、及び、トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムトリス[(トリフルオロメチル)スルホニル]メタニド等を挙げることができる。 Examples of the sulfonium salt used as the photocationic polymerization initiator include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [diphenylsulfonio Diphenyl sulfide-bishexafluorophosphate, 4,4′-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenyl sulfide-bishexafluoroantimonate, 7- [di (p-toluyl) sulfonio] -2- Isopropylthioxanthone hexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate, 7- [di (p-toluyl) Sulfonio] -2-isopropyltetrakis (pentafluorophenyl) borate, phenylcarbonyl-4'-diphenylsulfonio-diphenyl sulfide-hexafluorophosphate, phenylcarbonyl-4'-diphenylsulfonio-diphenyl sulfide-hexafluoroantimonate, 4 -Tert-butylphenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide-hexafluorophosphate, 4-tert-butylphenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide-hexafluoroantimonate, 4-tert-butylphenyl Carbonyl-4'-diphenylsulfonio-diphenyl sulfide-tetrakis (pentafluorophenyl) borate, thiophenyl diphe Nylsulfonium hexafluoroantimonate, thiophenyldiphenylsulfonium hexafluorophosphate, 4- {4- (2-chlorobenzoyl) phenylthio} phenylbis (4-fluorophenyl) sulfonium hexafluoroantimonate, thiophenyldiphenylsulfonium hexafluoroantimonate 4,4 ′, 4 ″ -tri (β-hydroxyethoxyphenyl) sulfonium hexafluoroantimonate, 4,4′-bis [diphenylsulfonio] diphenyl sulfide-bishexafluoroantimonate, diphenyl [4 -(Phenylthio) phenyl] sulfonium trifluorotrispentafluoroethyl phosphate and tris [4- (4-acetylphenylsulfanyl) phenyl Sulfonyl] sulfonium tris [(trifluoromethyl) sulfonyl] methanide and the like.
 光カチオン重合開始剤として使用されるヨードニウム塩としては、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェート、及び、(トリクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。 Examples of the iodonium salt used as the photocationic polymerization initiator include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, and , (Tricumyl) iodonium tetrakis (pentafluorophenyl) borate and the like.
光カチオン重合開始剤として使用されるホスホニウム塩としては、トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、及び、ヘキサデシルトリブチルホスホニウムクロライド等が挙げられる。 Examples of the phosphonium salt used as the photocationic polymerization initiator include tri-n-butyl (2,5-dihydroxyphenyl) phosphonium bromide and hexadecyltributylphosphonium chloride.
光カチオン重合開始剤として使用されるアンモニウム塩としては、ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド、及び、ベンジルトリメチルアンモニウムブロマイド等が挙げられる。 Examples of ammonium salts used as the photocationic polymerization initiator include benzyltrimethylammonium chloride, phenyltributylammonium chloride, and benzyltrimethylammonium bromide.
 光カチオン重合開始剤として使用されるアンチモン酸塩としては、トリフェニルスルホニウムヘキサフルオロアンチモネート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、及び、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート及びジアリルヨードニウムヘキサフルオロアンチモネート等が挙げられる。 Antimonates used as photocationic polymerization initiators include triphenylsulfonium hexafluoroantimonate, p- (phenylthio) phenyldiphenylsulfonium hexafluoroantimonate, 4-chlorophenyldiphenylsulfonium hexafluoroantimonate, and bis Examples include [4- (diphenylsulfonio) phenyl] sulfide bishexafluoroantimonate and diallyliodonium hexafluoroantimonate.
本発明で使用される光等のエネルギー線で硬化反応を開始する硬化剤(C)としては、上記ヨードニウム塩と上記スルホニウム塩が好ましく、中でも、高感度でありかつ市場から入手しやすい(トリクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、チオフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、4-{4-(2-クロロベンゾイル)フェニルチオ}フェニルビス(4-フルオロフェニル)スルホニウムヘキサフルオロアンチモネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムトリフルオロトリスペンタフルオロエチルホスファート、及び、トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムトリス[(トリフルオロメチル)スルホニル]メタニド等がより好ましい。
  さらに、環境及び人体への有害性、ならびに各国の規制を鑑みると、上記エネルギー線で硬化反応を開始する硬化剤(C)として、アンチモン元素を含有しない(トリクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムトリフルオロトリスペンタフルオロエチルホスファート、又は、トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムトリス[(トリフルオロメチル)スルホニル]メタニドを使用することが最も好ましい。
 本発明の樹脂組成物において、光カチオン重合開始剤を使用する場合の好ましい含有量は、成分(A)及び成分(B)の総量100質量部に対して、0.05~5質量部であり、好ましくは0.1~3質量部である。なお、本発明の樹脂組成物においては、光カチオン重合開始剤は単独で用いてもよいし、複数種を混合して用いてもよい。
As the curing agent (C) that initiates the curing reaction with an energy beam such as light used in the present invention, the iodonium salt and the sulfonium salt are preferable, and among them, it is highly sensitive and easily available from the market (Tricumyl). Iodonium tetrakis (pentafluorophenyl) borate, thiophenyldiphenylsulfonium hexafluoroantimonate, 4- {4- (2-chlorobenzoyl) phenylthio} phenylbis (4-fluorophenyl) sulfonium hexafluoroantimonate, diphenyl [4- ( Phenylthio) phenyl] sulfonium trifluorotrispentafluoroethyl phosphate and tris [4- (4-acetylphenylsulfanyl) phenyl] sulfonium tris [(trifluoromethyl) sulfonyl] methanide It is more preferable.
Furthermore, in view of the harmfulness to the environment and the human body and the regulations of each country, the antimony element-free (tricumyl) iodonium tetrakis (pentafluorophenyl) borate as the curing agent (C) that initiates the curing reaction with the energy rays. , Diphenyl [4- (phenylthio) phenyl] sulfonium trifluorotrispentafluoroethyl phosphate, or tris [4- (4-acetylphenylsulfanyl) phenyl] sulfonium tris [(trifluoromethyl) sulfonyl] methanide Is most preferred.
In the resin composition of the present invention, the preferred content when using the cationic photopolymerization initiator is 0.05 to 5 parts by mass with respect to 100 parts by mass as the total of component (A) and component (B). The amount is preferably 0.1 to 3 parts by mass. In addition, in the resin composition of this invention, a photocationic polymerization initiator may be used independently and may be used in mixture of multiple types.
 本発明の樹脂組成物には、硬化剤(C)として、熱により前記エポキシ化合物及び前記オキセタン化合物と硬化反応を開始する熱硬化剤を使用することができる。該熱硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。
 使用できる熱硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、イミダゾール、トリフルオロボラン-アミン錯体、及び、グアニジン誘導体等のアミン系化合物及びアミド系化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、及び、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物等の酸無水物系化合物;ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン又は1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、及び、テルペンとフェノール類の縮合物等のフェノール系化合物;などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
In the resin composition of the present invention, a thermosetting agent that initiates a curing reaction with the epoxy compound and the oxetane compound by heat can be used as the curing agent (C). Examples of the thermosetting agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, carboxylic acid compounds, and the like.
Specific examples of thermosetting agents that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, a polyamide resin synthesized from linolenic acid and ethylenediamine, imidazole, trifluoroborane- Amines and amide compounds such as amine complexes and guanidine derivatives; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride , Nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methyl Acid anhydride compounds such as cyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride; bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [1,1′-biphenyl] -4, 4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenol, alkyl-substituted phenol, naphthol, Alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde , Acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, Polycondensates with 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1,4′-bis (chloromethyl) benzene or 1,4′-bis (methoxymethyl) benzene, and the like Modified compounds, halogenated bisphenols such as tetrabromobisphenol A, and phenolic compounds such as condensates of terpenes and phenols are included, but are not limited thereto. These may be used alone or in combination of two or more.
  また、封止材料、特に有機EL素子における面封止には、硬化後に透明性にすぐれた酸無水物を使用することが好ましい場合が多く、中でも、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、及び、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物等の脂環式骨格を有する酸無水物が好ましい。これら脂環式骨格を有する酸無水物は、市販品を使用することが可能であり、例えば三菱瓦斯化学株式会社などから、H-TMAシリーズとして、該脂環式骨格を有する酸無水物の固形品または液状品(ただし液状品と記載されているが室温においては半固形状態であり、作業性が非常に劣る)を入手することができる。
  また、熱硬化剤としてシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物を使用する場合、単独の使用では、固形または粘度が高い半固形状態のため作業性が極端に悪くなる場合がある。そのため、他の硬化剤、好ましくは脂環式骨格を有する酸無水物と併用することが望ましい。この場合に併用することができる硬化剤としては液状で、粘度が低い物であれば特に限定されるものではない。例えば市販されている硬化剤としては、無水メチルナジック酸及び無水ナジック酸を含有するリカシッドHNA-100(新日本理化株式会社製)や、ヘキサヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸を含有するリカシッドMH700(新日本理化株式会社製)などの硬化剤が挙げられる。熱硬化剤として、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物と他の硬化剤を併用する際には、あらかじめ固体または半固形状のシクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物と粘度の低い硬化剤を室温または加温条件下で均一になるまで混合することで作業性のよい状態にすることが可能である。このときの加温条件としては、硬化剤の揮発を防ぐために好ましくは150℃以下、より好ましくは120℃である。また、取り扱い作業性と硬化後における封止材の凹みの観点から、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物の全硬化剤中における使用比率としては、20~90質量%、より好ましくは、30~80質量%以下の範囲である。混合割合が90重量%を超えると、極端に硬化剤としての作業性に劣る。また20質量%を下回ると封止材の凹みの点で改善効果が薄くなるおそれがある。
In addition, it is often preferable to use an acid anhydride having excellent transparency after curing for surface sealing in a sealing material, particularly an organic EL element, and among them, methyltetrahydrophthalic anhydride, methyl nadic anhydride, Nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1 ] An acid anhydride having an alicyclic skeleton such as heptane-2,3-dicarboxylic acid anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride is preferred. As these acid anhydrides having an alicyclic skeleton, commercially available products can be used. For example, H-TMA series, such as Mitsubishi Gas Chemical Co., Ltd. Products or liquid products (however, they are described as liquid products but are semi-solid at room temperature and workability is very inferior).
In addition, when cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride is used as a thermosetting agent, workability becomes extremely poor due to the solid or semi-solid state with high viscosity when used alone. There is a case. Therefore, it is desirable to use in combination with another curing agent, preferably an acid anhydride having an alicyclic skeleton. The curing agent that can be used in this case is not particularly limited as long as it is liquid and has a low viscosity. For example, commercially available curing agents include methyl nadic acid anhydride and Ricacid HNA-100 containing Nadic anhydride (manufactured by Shin Nippon Rika Co., Ltd.), and Ricacid containing hexahydrophthalic anhydride and methylhexahydrophthalic anhydride. Examples of the curing agent include MH700 (manufactured by Shin Nippon Rika Co., Ltd.). When a cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride and another curing agent are used in combination as a thermosetting agent, a solid or semi-solid cyclohexane-1,3,4-tricarboxylic acid is used in advance. By mixing the acid-3,4-anhydride and a curing agent having a low viscosity until it becomes uniform at room temperature or under heating conditions, it is possible to obtain a good workability state. The heating condition at this time is preferably 150 ° C. or less, more preferably 120 ° C., in order to prevent volatilization of the curing agent. Further, from the viewpoint of handling workability and the depression of the sealing material after curing, the use ratio of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride in the total curing agent is 20 to 90 mass. %, More preferably in the range of 30 to 80% by mass or less. When the mixing ratio exceeds 90% by weight, workability as a curing agent is extremely inferior. On the other hand, when the amount is less than 20% by mass, the improvement effect may be reduced in terms of the depression of the sealing material.
 本発明において、硬化剤(C)として熱硬化剤を使用する場合の熱硬化剤の配合比は、前記エポキシ化合物または前記オキセタン化合物に含有される官能基当量と、該熱硬化剤が有する官能基(例えば、カルボン酸系硬化剤のカルボキシル基)の当量により決定される。好ましくは成分(A)及び成分(B)の官能基であるエポキシ基及びオキセタニル基1当量に対し、カルボキシル基等の熱硬化剤の官能基が0.2~5当量であり、より好ましくは0.5~2当量である。この範囲を超える場合は、硬化反応が充分に進行せず、また過剰の官能基の残留が生じるために、硬化物の強靭性や、耐熱性が充分に発揮できない。 In this invention, when using a thermosetting agent as a hardening | curing agent (C), the compounding ratio of the thermosetting agent is the functional group equivalent contained in the said epoxy compound or the said oxetane compound, and the functional group which this thermosetting agent has. It is determined by the equivalent of (for example, a carboxyl group of a carboxylic acid curing agent). Preferably, the functional group of the thermosetting agent such as a carboxyl group is 0.2 to 5 equivalents, more preferably 0 to 1 equivalent of the epoxy group and oxetanyl group which are the functional groups of the component (A) and the component (B). .5 to 2 equivalents. When exceeding this range, the curing reaction does not proceed sufficiently, and excess functional groups remain, so that the toughness and heat resistance of the cured product cannot be fully exhibited.
  本発明の樹脂組成物においては、上記熱硬化剤とともに硬化触媒(硬化促進剤ともいう。)を併用することができ、また、上記熱硬化剤を使用せず硬化触媒を単独で使用することができる。
 本発明の樹脂組成物に用い得る硬化促進剤の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類;これらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類;ジシアンジアミド等のアミド類;1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類;テトラブチルアンモニウムブロマイド、セチルトリメチルアンモニウムブロマイド、トリオクチルメチルアンモニウムブロマイド等のアンモニウム塩系熱カチオン開始剤;トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類系又はホスホニウム化合物系熱カチオン開始剤;1-ナフチルメチルメチル-p-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ベンジルメチル-p-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ジメチル-p-アセトキシフェニルスルホニウムヘキサフルオロアンチモネート等のアンチモン酸塩系熱カチオン開始剤;1-ナフチルメチルメチル-p-ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート、ベンジルメチル-p-ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート、ジメチル-p-アセトキシフェニルスルホニウムヘキサフルオロホスフェート等のホスホニウム塩系熱カチオン開始剤;2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等;及び、これら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。
 これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化促進剤として、好ましくは熱カチオン開始剤であり、特に好ましくはホスホニウム塩系熱カチオン開始剤である。熱カチオン開始剤等の硬化促進剤の好ましい含有量は、成分(A)及び成分(B)の総量100質量部に対し通常0.001~15質量部の範囲であり、より好ましくは0.01~5質量部である。
In the resin composition of the present invention, a curing catalyst (also referred to as a curing accelerator) can be used in combination with the thermosetting agent, and the curing catalyst can be used alone without using the thermosetting agent. it can.
Specific examples of the curing accelerator that can be used in the resin composition of the present invention include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1 -Benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino -6 (2′-methylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino- 6 (2′-ethyl, 4-methylimidazole (1 ′)) ethyl-s-triazine, 2,4 Diamino-6 (2′-methylimidazole (1 ′)) ethyl-s-triazine / isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl -3,5-dihydroxymethylimidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole imidazoles; these imidazoles and phthalic acid , Isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, maleic acid, salts with polyvalent carboxylic acids such as oxalic acid; amides such as dicyandiamide; 1,8-diaza-bicyclo (5.4) 0.0) Diaza compounds such as undecene-7 and the like Salts such as tetraphenylborate and phenol novolak, salts with the above polycarboxylic acids, or phosphinic acids; ammonium salt-based thermal cation initiators such as tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide; Phosphine-based or phosphonium compound-based thermal cation initiators such as triphenylphosphine, tri (toluyl) phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate; 1-naphthylmethylmethyl-p-hydroxyphenylsulfonium hexafluoroantimonate Benzylmethyl-p-hydroxyphenylsulfonium hexafluoroantimonate, dimethyl-p-acetoxyphenylsulfate Antimonate-based thermal cation initiators such as nium hexafluoroantimonate; 1-naphthylmethylmethyl-p-hydroxyphenylsulfonium hexafluorophosphate, benzylmethyl-p-hydroxyphenylsulfonium hexafluorophosphate, dimethyl-p-acetoxyphenylsulfonium Phosphonium salt thermal cation initiators such as hexafluorophosphate; phenols such as 2,4,6-trisaminomethylphenol; metal compounds such as amine adducts and tin octylate; and these curing accelerators in microcapsules And a microcapsule type curing accelerator.
Which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions. The curing accelerator is preferably a thermal cation initiator, and particularly preferably a phosphonium salt-based thermal cation initiator. A preferable content of the curing accelerator such as a thermal cation initiator is usually in the range of 0.001 to 15 parts by mass, more preferably 0.01 to 100 parts by mass of the total amount of the component (A) and the component (B). Is 5 parts by mass.
 本発明の樹脂組成物は、ラジカル重合系に使用される開裂型光重合開始剤を併用し、レドックス反応により硬化させることも有効である。開裂型光重合開始剤を併用する場合、一電子移動反応の生じ易さが反応性を決定する。この場合、LUMO(最低空軌道:電子移動反応の生じ易さの目安となる)の準位が低いヨードニウム塩の反応性が良好であるため、硬化剤(C)としてヨードニウム塩を使用することが好ましい。開裂型光重合開始剤を併用する場合、どの開裂型光重合開始剤でも使用できるが、例えば、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシル-フェニルケトンが挙げられる。 The resin composition of the present invention is also effective in combination with a cleavage type photopolymerization initiator used in a radical polymerization system and cured by a redox reaction. When the cleavage type photopolymerization initiator is used in combination, the ease of the one-electron transfer reaction determines the reactivity. In this case, the iodonium salt having a low level of LUMO (lowest orbital: a measure of the ease with which an electron transfer reaction occurs) has good reactivity, so that an iodonium salt may be used as the curing agent (C). preferable. When a cleavage photopolymerization initiator is used in combination, any cleavage photopolymerization initiator can be used, and examples thereof include 2-hydroxy-2-methyl-phenylpropan-1-one and 1-hydroxycyclohexyl-phenylketone. .
 本発明の樹脂組成物に使用される熱硬化剤としては、反応速度及び構成部材への熱履歴を考慮し、100℃以下で熱硬化を開始する熱硬化剤が好ましく、熱カチオン重合開始剤がより好適に用いられる。本発明においては、構成部材への熱履歴という点で、熱エネルギーを必要としない光カチオン重合開始剤の使用は好ましい。 The thermosetting agent used in the resin composition of the present invention is preferably a thermosetting agent that initiates thermosetting at 100 ° C. or less in consideration of the reaction rate and the thermal history of the constituent members. More preferably used. In the present invention, it is preferable to use a photocationic polymerization initiator that does not require heat energy in terms of the heat history of the constituent members.
 本発明の樹脂組成物は、前記成分(A)、前記成分(B)及び前記成分(C)以外のその他の成分を、必要に応じて含有することができる。該その他の成分としては、微粒子、分散剤、前記成分(A)及び成分(B)以外の反応性化合物(例えば、芳香環を有するオキセタン化合物またはエポキシ化合物、(メタ)アクリレート等)、光カチオン重合開始剤以外の光重合開始剤、及び、その他の添加剤等を挙げることが出来る。
 本発明の樹脂組成物には必要に応じて微粒子を併用することができる。該微粒子としては、有機微粒子、無機微粒子が挙げられる。また、微粒子は、硬化物において必要とされる光線透過率、硬度、耐擦傷性、硬化収縮率及び屈折率を考慮し、単独で、または複数種を混合して用いることができる。
The resin composition of this invention can contain other components other than the said component (A), the said component (B), and the said component (C) as needed. The other components include fine particles, a dispersant, reactive compounds other than the components (A) and (B) (for example, oxetane compounds or epoxy compounds having an aromatic ring, (meth) acrylates, etc.), photocationic polymerization. Examples include photopolymerization initiators other than the initiator, other additives, and the like.
Fine particles can be used in combination with the resin composition of the present invention as necessary. Examples of the fine particles include organic fine particles and inorganic fine particles. Further, the fine particles can be used alone or in admixture of plural kinds in consideration of light transmittance, hardness, scratch resistance, curing shrinkage rate and refractive index required for the cured product.
 本発明に使用することができる有機微粒子としては、ポリスチレン樹脂ビーズ、アクリル系樹脂ビーズ、ウレタン樹脂ビーズ、ポリカーボネート樹脂ビーズ等の有機ポリマービーズ;多孔質ポリスチレン樹脂ビーズ、多孔質アクリル系樹脂ビーズ、多孔質ウレタン樹脂ビーズ、多孔質ポリカーボネート樹脂ビーズ等の多孔質有機ポリマービーズ;ベンゾグアナミン-ホルマリン縮合物の樹脂粉末、ベンゾグアナミン-メラミン-ホルマリン縮合物の樹脂粉末、尿素-ホルマリン縮合物の樹脂粉末、アスパラギン酸エステル誘導体の粉末、ステアリン酸亜鉛の粉末、ステアリン酸アミドの粉末、エポキシ樹脂パウダー、ポリエチレンパウダー等が挙げられる。中でも、架橋ポリメチルメタクリレート樹脂ビーズや架橋ポリメチルメタクリレート・スチレン樹脂ビーズ等が好ましい。これら有機微粒子は市販品として容易に入手することができ、又、公知文献を参考に調製することもできる。 Examples of organic fine particles that can be used in the present invention include polystyrene resin beads, acrylic resin beads, urethane resin beads, polycarbonate resin beads, and other organic polymer beads; porous polystyrene resin beads, porous acrylic resin beads, porous Porous organic polymer beads such as urethane resin beads and porous polycarbonate resin beads; resin powder of benzoguanamine-formalin condensate, resin powder of benzoguanamine-melamine-formalin condensate, resin powder of urea-formalin condensate, aspartic acid ester derivative Powder, zinc stearate powder, stearamide powder, epoxy resin powder, polyethylene powder and the like. Among these, crosslinked polymethyl methacrylate resin beads, crosslinked polymethyl methacrylate / styrene resin beads, and the like are preferable. These organic fine particles can be easily obtained as a commercial product, and can also be prepared with reference to known literature.
本発明に使用することができる無機微粒子としては導電性金属酸化物、透明性金属酸化物及びその他無機フィラー等が挙げられる。 Examples of inorganic fine particles that can be used in the present invention include conductive metal oxides, transparent metal oxides, and other inorganic fillers.
 本発明に使用することができる導電性金属酸化物としては、アンチモン酸亜鉛、酸化錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、五酸化アンチモン、酸化錫、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛及びフッ素ドープ酸化錫等が挙げられる。 Examples of the conductive metal oxide that can be used in the present invention include zinc antimonate, tin oxide-doped indium oxide (ITO), antimony-doped tin oxide (ATO), antimony pentoxide, tin oxide, aluminum-doped zinc oxide, and gallium. Examples thereof include doped zinc oxide and fluorine-doped tin oxide.
 本発明に使用することができる透明性金属酸化物としては、シリカ、酸化チタン、酸化ジルコニウム、酸化セリウム、酸化亜鉛、酸化鉄、酸化チタン/酸化ジルコニウム/酸化錫/五酸化アンチモン複合物、酸化ジルコニウム/酸化錫/五酸化アンチモン複合物及び酸化チタン/酸化ジルコニウム/酸化錫複合物等が挙げられる。 Examples of the transparent metal oxide that can be used in the present invention include silica, titanium oxide, zirconium oxide, cerium oxide, zinc oxide, iron oxide, titanium oxide / zirconium oxide / tin oxide / antimony pentoxide composite, and zirconium oxide. / Tin oxide / antimony pentoxide composite and titanium oxide / zirconium oxide / tin oxide composite.
 本発明に使用することができるその他無機フィラーとしては、酸化カルシウム、塩化カルシウム、ゼオライト及びシリカゲル等が挙げられる。 Other inorganic fillers that can be used in the present invention include calcium oxide, calcium chloride, zeolite and silica gel.
 本発明に使用することができる微粒子としては、硬度と耐擦傷性に優れ、屈折率の高い微粒子が好ましく、酸化チタン、酸化ジルコニウム、酸化セリウム、酸化亜鉛、酸化鉄、酸化チタン/酸化ジルコニウム/酸化錫/五酸化アンチモン複合物、酸化ジルコニウム/酸化錫/五酸化アンチモン複合物及び酸化チタン/酸化ジルコニウム/酸化錫複合物が好適に用いられる。また、ディスプレイに用いられる光学シートは高い光線透過率が要求される為、微粒子の一次粒径は100nm以下が好ましい。
 本発明の樹脂組成物に微粒子を配合する場合の好ましい配合割合は、成分(A)及び成分(B)の総量100質量部に対して1~30質量部であり、より好ましくは5~20質量部である。
The fine particles that can be used in the present invention are preferably fine particles having excellent hardness and scratch resistance and a high refractive index, such as titanium oxide, zirconium oxide, cerium oxide, zinc oxide, iron oxide, titanium oxide / zirconium oxide / oxidation. A tin / antimony pentoxide composite, a zirconium oxide / tin oxide / antimony pentoxide composite, and a titanium oxide / zirconium oxide / tin oxide composite are preferably used. Moreover, since the optical sheet used for the display is required to have a high light transmittance, the primary particle diameter of the fine particles is preferably 100 nm or less.
When the fine particles are blended in the resin composition of the present invention, the preferred blending ratio is 1 to 30 parts by weight, more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the total amount of component (A) and component (B). Part.
 本発明において微粒子を併用する場合、微粒子の分散剤として、ポリカルボン酸系の分散剤;シランカップリング剤、チタネート系カップリング剤、変性シリコーンオイル等のシリコーン系分散剤;又は、有機共重合体系の分散剤等を併用することも可能である。
 本発明の樹脂組成物に上記分散剤を配合する場合の好ましい配合割合は、本発明の樹脂組成物の全質量に対して0.001~30質量%程度、より好ましくは0.05~5質量%程度である。
When fine particles are used together in the present invention, as a fine particle dispersant, a polycarboxylic acid-based dispersant; a silicone-based dispersant such as a silane coupling agent, a titanate-based coupling agent, or a modified silicone oil; or an organic copolymer system It is also possible to use a dispersant or the like in combination.
A preferable blending ratio when the above dispersant is blended with the resin composition of the present invention is about 0.001 to 30% by mass, more preferably 0.05 to 5% by mass with respect to the total mass of the resin composition of the present invention. %.
 なお、一次粒径とは凝集を崩したときの、その粒子が持つ一番小さい粒径を意味する。即ち、楕円形状の微粒子では短径を一次粒径とする。一次粒径は動的光散乱法や電子顕微鏡観察等により測定することができる。具体的には、日本電子株式会社製JSM-7700F電界放出形走査電子顕微鏡を使用し、加速電圧30kVの条件下で、上記微粒子の一次粒径を測定できる。 The primary particle size means the smallest particle size of the particles when the aggregation is broken. That is, in the case of elliptical fine particles, the minor axis is the primary particle diameter. The primary particle size can be measured by a dynamic light scattering method, observation with an electron microscope, or the like. Specifically, the primary particle size of the fine particles can be measured using a JSM-7700F field emission scanning electron microscope manufactured by JEOL Ltd. under the condition of an acceleration voltage of 30 kV.
 これら微粒子は溶媒に分散し使用することができる。特に無機微粒子は水または有機溶媒に分散された形で市販品を入手し易い。使用される有機溶媒としては、炭化水素溶剤、エステル系溶剤、エーテル系溶剤及びケトン系溶剤が挙げられる。
 炭化水素系溶剤としては、トルエン、キシレン、エチルベンゼン及びテトラメチルベンゼン等の芳香族系炭化水素溶剤;ヘキサン、オクタン及びデカン等の脂肪族系炭化水素溶剤;及び、それらの混合物である石油エーテル、ホワイトガソリン、ソルベントナフサ等が挙げられる。
 エステル系溶剤としては、酢酸エチル、酢酸プロピル、酢酸ブチル等のアルキルアセテート類及びγ-ブチロラクトン等の環状エステル類;エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルモノアセテート、ジエチレングリコールモノエチルエーテルモノアセテート、トリエチレングリコールモノエチルエーテルモノアセテート、ジエチレングリコールモノブチルエーテルモノアセテート、プロピレングリコールモノメチルエーテルモノアセテート及びブチレングリコールモノメチルエーテルモノアセテート等の(モノ又はポリ)アルキレングリコールモノアルキルエーテルモノアセテート類;グルタル酸ジアルキル、コハク酸ジアルキル及びアジピン酸ジアルキル等のポリカルボン酸アルキルエステル類等が挙げられる。
 エーテル系溶剤としては、ジエチルエーテル及びエチルブチルエーテル等のアルキルエーテル類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル及びトリエチレングリコールジエチルエーテル等のグリコールエーテル類;テトラヒドロフラン等の環状エーテル類等が挙げられる。
 ケトン系溶剤としては、アセトン、メチルエチルケトン、シクロヘキサノン及びイソホロン等が挙げられる。
These fine particles can be used by being dispersed in a solvent. In particular, the inorganic fine particles are readily available as commercial products in a form dispersed in water or an organic solvent. Examples of the organic solvent used include hydrocarbon solvents, ester solvents, ether solvents, and ketone solvents.
Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and tetramethylbenzene; aliphatic hydrocarbon solvents such as hexane, octane and decane; and petroleum ether, white which is a mixture thereof. Examples include gasoline and solvent naphtha.
Examples of ester solvents include alkyl acetates such as ethyl acetate, propyl acetate, and butyl acetate, and cyclic esters such as γ-butyrolactone; ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, triethylene (Mono or poly) alkylene glycol monoalkyl ether monoacetates such as glycol monoethyl ether monoacetate, diethylene glycol monobutyl ether monoacetate, propylene glycol monomethyl ether monoacetate and butylene glycol monomethyl ether monoacetate; dialkyl glutarate, dialkyl succinate and Alkyl polycarboxylates such as dialkyl adipates Ester, and the like can be mentioned.
Examples of ether solvents include alkyl ethers such as diethyl ether and ethyl butyl ether; glycols such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether. Ethers: cyclic ethers such as tetrahydrofuran and the like.
Examples of the ketone solvent include acetone, methyl ethyl ketone, cyclohexanone, and isophorone.
 本発明においては、任意成分として、芳香環を有するオキセタン化合物またはエポキシ化合物を使用することができる。 In the present invention, an oxetane compound or an epoxy compound having an aromatic ring can be used as an optional component.
 任意成分として使用できる、芳香環を有するオキセタン化合物としては、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、3-エチル-3-フェノキシメチルオキセタン、1,4-ビス[(3-エチルオキセタン-3-イル)メトキシ]ベンゼン、1,3-ビス[(3-エチルオキセタン-3-イル)メトキシ]ベンゼン、1,2-ビス[(3-エチルオキセタン-3-イル)メトキシ]ベンゼン、4,4’-ビス[(3-エチルオキセタン-3-イル)メトキシ]ビフェニル、2,2’-ビス[(3-エチル-3-オキセタニル)メトキシ]ビフェニル、3,3’,5,5’-テトラメチル[4,4’-ビス(3-エチルオキセタン-3-イル)メトキシ]ビフェニル、2,7-ビス[(3-エチルオキセタン-3-イル)メトキシ]ナフタレン及び4,4’-ビス[(1-エチル-3-オキセタニル)メチル]チオジベンゼンチオエーテル酸等が挙げられる。 Examples of oxetane compounds having an aromatic ring that can be used as optional components include 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, 3-ethyl-3-phenoxymethyloxetane, 1,4 -Bis [(3-ethyloxetane-3-yl) methoxy] benzene, 1,3-bis [(3-ethyloxetane-3-yl) methoxy] benzene, 1,2-bis [(3-ethyloxetane-3 -Yl) methoxy] benzene, 4,4′-bis [(3-ethyloxetane-3-yl) methoxy] biphenyl, 2,2′-bis [(3-ethyl-3-oxetanyl) methoxy] biphenyl, 3, 3 ′, 5,5′-tetramethyl [4,4′-bis (3-ethyloxetane-3-yl) methoxy] biphenyl, 2,7-bis [(3-ethyloxy 3-yl) methoxy] naphthalene and 4,4'-bis [(1-ethyl-3-oxetanyl) methyl] such thiodiglycol benzene thioether acid.
 任意成分として使用できる、芳香環を有するエポキシ化合物としては、スチレンオキサイド、フェニルグリシジルエーテル及びp-tert-ブチルフェニルグリシジルエーテル等のフェニル骨格を有するエポキシ化合物;ビフェニルグリシジルエーテル、ビフェニルジグリシジルエーテル、3,3’,5,5’-テトラメチル-4,4’-ビス(グリシジルオキシ)-1,1’-ビフェニル及びビフェニルアラルキル型エポキシ化合物等のビフェニル骨格を有するエポキシ化合物;フェノールノボラック型エポキシ化合物及びクレゾールノボラック型エポキシ化合物等のノボラック型エポキシ化合物;ビスフェノールAジグリシジルエーテル及び臭素化ビスフェノールAジグリシジルエーテル等のビスフェノールA型エポキシ化合物;ビスフェノールFジグリシジルエーテル及び臭素化ビスフェノールFジグリシジルエーテル等のビスフェノールF型エポキシ化合物;ビスフェノールSジグリシジルエーテル及び臭素化ビスフェノールSジグリシジルエーテル等のビスフェノールS型エポキシ化合物;1,3-ビス(4’-グリシジロキシフェニル)アダマンタン及び2,2-ビス(4’-グリシジロキシフェニル)アダマンタン等の芳香環で置換されたアダマンタン骨格を有するエポキシ化合物;ビスフェニルフルオレンジグリシジルエーテル及びビスフェニルフルオレンエタノールジグリシジルエーテル等のフルオレン骨格を有するエポキシ化合物;グリシジルオキシナフタレン、1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン、ビナフタレングリシジルエーテル、ビナフタレンジグリシジルエーテル及びビナフトールエタノールジグリシジルエーテル等のナフタレン骨格を有するエポキシ化合物等が挙げられる。 Examples of the epoxy compound having an aromatic ring that can be used as an optional component include epoxy compounds having a phenyl skeleton such as styrene oxide, phenyl glycidyl ether, and p-tert-butylphenyl glycidyl ether; biphenyl glycidyl ether, biphenyl diglycidyl ether, 3, Epoxy compounds having a biphenyl skeleton such as 3 ′, 5,5′-tetramethyl-4,4′-bis (glycidyloxy) -1,1′-biphenyl and biphenyl aralkyl type epoxy compounds; phenol novolac type epoxy compounds and cresols Novolak type epoxy compounds such as novolak type epoxy compounds; Bisphenol A type epoxy compounds such as bisphenol A diglycidyl ether and brominated bisphenol A diglycidyl ether; Bisphenol F type epoxy compounds such as phenol F diglycidyl ether and brominated bisphenol F diglycidyl ether; Bisphenol S type epoxy compounds such as bisphenol S diglycidyl ether and brominated bisphenol S diglycidyl ether; 1,3-bis (4 ′ -Epoxy compounds having an adamantane skeleton substituted with an aromatic ring such as glycidyloxyphenyl) adamantane and 2,2-bis (4'-glycidyloxyphenyl) adamantane; bisphenyl fluorenediglycidyl ether and bisphenylfluoreneethanoldi Epoxy compounds having a fluorene skeleton such as glycidyl ether; glycidyloxynaphthalene, 1,6-bis (2,3-epoxypropan-1-yloxy) naphthalene, binaphthalene Ether, epoxy compounds and the like having a naphthalene skeleton such as bi-naphthalene diglycidyl ether and binaphthol ethanol diglycidyl ether.
 上記芳香環を有するオキセタン化合物またはエポキシ化合物としては、フェニル、ビフェニル、ビスフェノールA、ビスフェノールF、ビスフェノールS及びナフタレンからなる群から選択される骨格を有するエポキシ化合物が好ましい。樹脂組成物の粘度が低く、硬化物の透湿度が低く、光線透過率に優れる点で、ビフェニル、ビスフェノールA及びナフタレンからなる群から選択される骨格を有するエポキシ化合物が特に好ましい。本発明の樹脂組成物に芳香環を有するオキセタン化合物またはエポキシ化合物を使用する場合の好ましい含有量は、反応性化合物である成分(A)及び成分(B)の総量100質量部に対して、20~80質量部であり、より好ましくは30~70質量部である。硬化物の低透湿度を達成する為には、芳香環を有するオキセタン化合物またはエポキシ化合物の官能基当量が10~1000g/eqであることが好ましく、50~500g/eqであることがさらに好ましい。
 また、本発明の樹脂組成物には、塗膜に剛性を付与することができるため、フルオレンやカルバゾール等の縮合芳香環構造を有するオキセタン化合物またはエポキシ化合物も好適に用いられる。これらオキセタン化合物またはエポキシ化合物は単独で用いてもよく、2種以上を用いてもよい。
As the oxetane compound or epoxy compound having an aromatic ring, an epoxy compound having a skeleton selected from the group consisting of phenyl, biphenyl, bisphenol A, bisphenol F, bisphenol S and naphthalene is preferable. An epoxy compound having a skeleton selected from the group consisting of biphenyl, bisphenol A and naphthalene is particularly preferable in that the viscosity of the resin composition is low, the moisture permeability of the cured product is low, and the light transmittance is excellent. When using the oxetane compound or epoxy compound which has an aromatic ring for the resin composition of this invention, preferable content is 20 with respect to 100 mass parts of total amounts of the component (A) and component (B) which are reactive compounds. -80 parts by mass, more preferably 30-70 parts by mass. In order to achieve low moisture permeability of the cured product, the functional group equivalent of the oxetane compound or epoxy compound having an aromatic ring is preferably 10 to 1000 g / eq, and more preferably 50 to 500 g / eq.
In addition, since the resin composition of the present invention can impart rigidity to the coating film, an oxetane compound or an epoxy compound having a condensed aromatic ring structure such as fluorene or carbazole is also preferably used. These oxetane compounds or epoxy compounds may be used alone or in combination of two or more.
 また本発明の樹脂組成物には、得られる本発明の樹脂組成物の粘度、屈折率、密着性などを考慮して、成分(A)、成分(B)及び上記芳香環を有するオキセタン化合物またはエポキシ化合物以外に反応性の化合物を使用しても良い。該反応性化合物として、具体的には、(メタ)アクリレートが挙げられる。
 該(メタ)アクリレートとしては、単官能(メタ)アクリレート、2官能(メタ)アクリレート、分子内に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート、ポリエステル(メタ)アクリレート及びエポキシ(メタ)アクリレート等を使用することができる。
In addition, in the resin composition of the present invention, in consideration of the viscosity, refractive index, adhesion and the like of the resin composition of the present invention to be obtained, the component (A), the component (B) and the oxetane compound having the aromatic ring or A reactive compound may be used in addition to the epoxy compound. Specific examples of the reactive compound include (meth) acrylate.
As the (meth) acrylate, monofunctional (meth) acrylate, bifunctional (meth) acrylate, polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in the molecule, polyester (meth) acrylate, and epoxy (Meth) acrylate or the like can be used.
 上記単官能(メタ)アクリレートとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレート等の脂環式(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート及びモルホリン(メタ)アクリレート等のヘテロ環を有する(メタ)アクリレート;ベンジル(メタ)アクリレート、エトキシ変性クレゾール(メタ)アクリート、プロポキシ変性クレゾール(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、o-フェニルフェノール(メタ)アクリレート、o-フェニルフェノールモノエトキシ(メタ)アクリレート、o-フェニルフェノールポリエトキシ(メタ)アクリレート、p-フェニルフェノール(メタ)アクリレート、p-フェニルフェノールモノエトキシ(メタ)アクリレート、p-フェニルフェノールポリエトキシ(メタ)アクリレート、o-フェニルベンジルアクリレート及びp-フェニルベンジルアクリレート等の芳香環を有する(メタ)アクリレート;カルバゾール(ポリ)エトキシ(メタ)アクリレート、カルバゾール(ポリ)プロポキシ(メタ)アクリレート及び(ポリ)カプロラクトン変性カルバゾール(メタ)アクリレート等の複素芳香環を有する(メタ)アクリレート;ナフチル(メタ)アクリレート、ナフチル(ポリ)エトキシ(メタ)アクリレート、ナフチル(ポリ)プロポキシ(メタ)アクリレート、(ポリ)カプロラクトン変性ナフチル(メタ)アクリレート、ビナフトール(メタ)アクリレート、ビナフトール(ポリ)エトキシ(メタ)アクリレート、ビナフトール(ポリ)プロポキシ(メタ)アクリレート、(ポリ)カプロラクトン変性ビナフトール(メタ)アクリレート、ナフトール(メタ)アクリレート、ナフトール(ポリ)エトキシ(メタ)アクリレート、ナフトール(ポリ)プロポキシ(メタ)アクリレート及び(ポリ)カプロラクトン変性ナフトール(メタ)アクリレート等の縮合環を有する(メタ)アクリレート;イミド環構造を有するイミド(メタ)アクリレート;ブタンジオールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート及びジプロピレングリコール(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、カプロラクトン(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート及びラウリル(メタ)アクリレート等のアルキル基を有する(メタ)アクリレート;エトキシジエチレングリコール(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート及びポリプロピレングリコール(メタ)アクリレート等の多価アルコールの(メタ)アクリレート等を挙げることができる。 Examples of the monofunctional (meth) acrylate include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and cyclohexyl (meth). Alicyclic (meth) acrylates such as acrylate; Tetrahydrofurfuryl (meth) acrylate, Caprolactone-modified tetrahydrofurfuryl (meth) acrylate and morpholine (meth) acrylate and other (meth) acrylates; benzyl (meth) acrylate , Ethoxy modified cresol (meth) acrylate, propoxy modified cresol (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, o-phenylphenol (meth) Acrylate, o-phenylphenol monoethoxy (meth) acrylate, o-phenylphenol polyethoxy (meth) acrylate, p-phenylphenol (meth) acrylate, p-phenylphenol monoethoxy (meth) acrylate, p-phenylphenol polyethoxy (Meth) acrylates having aromatic rings such as (meth) acrylate, o-phenylbenzyl acrylate and p-phenylbenzyl acrylate; carbazole (poly) ethoxy (meth) acrylate, carbazole (poly) propoxy (meth) acrylate and (poly) (Meth) acrylate having a heteroaromatic ring such as caprolactone-modified carbazole (meth) acrylate; naphthyl (meth) acrylate, naphthyl (poly) ethoxy (meth) acrylate Naphthyl (poly) propoxy (meth) acrylate, (poly) caprolactone modified naphthyl (meth) acrylate, binaphthol (meth) acrylate, binaphthol (poly) ethoxy (meth) acrylate, binaphthol (poly) propoxy (meth) acrylate, ( Poly) caprolactone-modified binaphthol (meth) acrylate, naphthol (meth) acrylate, naphthol (poly) ethoxy (meth) acrylate, naphthol (poly) propoxy (meth) acrylate, and (poly) caprolactone modified naphthol (meth) acrylate (Meth) acrylate having imide ring structure; imide (meth) acrylate having imide ring structure; butanediol mono (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- (Meth) acrylate having a hydroxyl group such as hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and dipropylene glycol (meth) acrylate; dimethylaminoethyl (meth) acrylate, Butoxyethyl (meth) acrylate, caprolactone (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, octafluoropentyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) ) Acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, iso (Meth) acrylates having alkyl groups such as listyl (meth) acrylate and lauryl (meth) acrylate; ethoxydiethylene glycol (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, polyethylene glycol (meth) acrylate and polypropylene glycol (meth) ) (Meth) acrylates of polyhydric alcohols such as acrylates.
 上記の2つの官能基を有する(メタ)アクリレートモノマーとしては、ヒドロピバルアルデヒド変性トリメチロールプロパンジ(メタ)アクリレート等のヘテロ環を有する(メタ)アクリレート;(ポリ)エトキシ変性ビスフェノールAジ(メタ)アクリレート、(ポリ)プロポキシ変性ビスフェノールAジ(メタ)アクリレート、(ポリ)エトキシ変性ビスフェノールFジ(メタ)アクリレート、(ポリ)プロポキシ変性ビスフェノールFジ(メタ)アクリレート、(ポリ)エトキシ変性ビスフェノールSジ(メタ)アクリレート、(ポリ)プロポキシ変性ビスフェノールSジ(メタ)アクリレート、ヘキサヒドロフタル酸ジ(メタ)アクリレート及びビスフェノキシ(ポリ)エトキシフルオレン等の芳香環を有する(メタ)アクリレート;ビフェニルジメタノールジ(メタ)アクリレート等の複素芳香環を有する(メタ)アクリレート;ビナフトールジ(メタ)アクリレート、ビナフトール(ポリ)エトキシジ(メタ)アクリレート、ビナフトール(ポリ)プロポキシジ(メタ)アクリレート及び(ポリ)カプロラクトン変性ビナフトールジ(メタ)アクリレート等の縮合環を有する(メタ)アクリレート;ビスフェノールフルオレンジ(メタ)アクリレート、ビスフェノキシメタノールフルオレンジ(メタ)アクリレート、ビスフェノキシエタノールフルオレンジ(メタ)アクリレート及びビスフェノキシカプロラクトンフルオレンジ(メタ)アクリレート等の多環芳香族を有する(メタ)アクリレート;ジアクリル化イソシアヌレート等のイソシアネートのアクリル化物;1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート及びポリテトラメチレングリコールジ(メタ)アクリレート等の直鎖メチレン構造を有する(メタ)アクリレート;トリシクロデカンジメタノール(メタ)アクリレート等の脂環式(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート及びポリプロピレンジ(メタ)アクリレート等の多価アルコールのジ(メタ)アクリレート等を挙げることができる。 Examples of the (meth) acrylate monomer having the above two functional groups include (meth) acrylate having a heterocycle such as hydropivalaldehyde-modified trimethylolpropane di (meth) acrylate; (poly) ethoxy-modified bisphenol A di (meta) ) Acrylate, (poly) propoxy modified bisphenol A di (meth) acrylate, (poly) ethoxy modified bisphenol F di (meth) acrylate, (poly) propoxy modified bisphenol F di (meth) acrylate, (poly) ethoxy modified bisphenol S di (Meth) acrylates having aromatic rings such as (meth) acrylate, (poly) propoxy-modified bisphenol S di (meth) acrylate, hexahydrophthalic acid di (meth) acrylate and bisphenoxy (poly) ethoxyfluorene A (meth) acrylate having a heteroaromatic ring such as biphenyldimethanol di (meth) acrylate; binaphthol di (meth) acrylate, binaphthol (poly) ethoxydi (meth) acrylate, binaphthol (poly) propoxy di (meth) acrylate and (poly ) Caprolactone-modified (meth) acrylate having a condensed ring such as binaphthol di (meth) acrylate; bisphenol full orange (meth) acrylate, bisphenoxymethanol full orange (meth) acrylate, bisphenoxyethanol full orange (meth) acrylate and bisphenoxycaprolactone (Meth) acrylates having polycyclic aromatics such as full orange (meth) acrylate; acrylates of isocyanates such as diacrylated isocyanurates Linear methylene such as 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate and polytetramethylene glycol di (meth) acrylate (Meth) acrylate having a structure; alicyclic (meth) acrylate such as tricyclodecane dimethanol (meth) acrylate; ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate And di (meth) acrylates of polyhydric alcohols such as polypropylene di (meth) acrylate.
 上記多官能(メタ)アクリレートモノマーとしては、トリス(アクリロキシエチル)イソシアヌレート及び(ポリ)カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等のイソシアヌレート環を有する多官能(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、(ポリ)エトキシ変性ペンタエリスリトールテトラ(メタ)アクリレート、(ポリ)プロポキシ変性ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、(ポリ)カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、(ポリ)エトキシ変性ジペンタエリスリトールペンタ(メタ)アクリレート、(ポリ)プロポキシ変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、(ポリ)カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、(ポリ)エトキシ変性ジペンタエリスリトールヘキサ(メタ)アクリレート、(ポリ)プロポキシ変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ポリペンタエリスリトールポリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、(ポリ)エトキシ変性トリメチロールプロパントリ(メタ)アクリレート、(ポリ)プロポキシ変性トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート及びグリセロールトリ(メタ)アクリレート等の多価アルコールの多官能(メタ)アクリレート;リン酸トリ(メタ)アクリレート等の含リンの多官能(メタ)アクリレート;トリメチロールプロパンベンゾエート(メタ)アクリレート等の芳香族を有する多官能(メタ)アクリレート;2,2,2-トリスアクリロイロキシメチルコハク酸等の酸変性された多官能(メタ)アクリレート;シリコーンヘキサ(メタ)アクリレート等のシリコーン骨格を有する多官能(メタ)アクリレート等を挙げることができる。 Examples of the polyfunctional (meth) acrylate monomers include polyfunctional (meth) acrylates having an isocyanurate ring such as tris (acryloxyethyl) isocyanurate and (poly) caprolactone-modified tris (acryloxyethyl) isocyanurate; pentaerythritol tris (Meth) acrylate, pentaerythritol tetra (meth) acrylate, (poly) ethoxy modified pentaerythritol tetra (meth) acrylate, (poly) propoxy modified pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, (poly ) Caprolactone-modified dipentaerythritol penta (meth) acrylate, (poly) ethoxy-modified dipentaerythritol penta (meth) acrylate, (poly) pro Xyl modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, (poly) caprolactone modified dipentaerythritol hexa (meth) acrylate, (poly) ethoxy modified dipentaerythritol hexa (meth) acrylate, (poly ) Propoxy-modified dipentaerythritol hexa (meth) acrylate, polypentaerythritol poly (meth) acrylate, trimethylolpropane tri (meth) acrylate, (poly) ethoxy modified trimethylolpropane tri (meth) acrylate, (poly) propoxy modified tri Multivalent alcohols such as methylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate and glycerol tri (meth) acrylate Polyfunctional (meth) acrylates of alcohol; polyfunctional (meth) acrylates containing phosphorus such as tri (meth) acrylate phosphate; polyfunctional (meth) acrylates having aromatics such as trimethylolpropane benzoate (meth) acrylate; Examples include acid-modified polyfunctional (meth) acrylates such as 2,2,2-trisacryloyloxymethyl succinic acid; polyfunctional (meth) acrylates having a silicone skeleton such as silicone hexa (meth) acrylate. .
 上記ウレタン(メタ)アクリレートとしては、例えば、ジオール化合物又は該ジオール化合物と二塩基酸若しくはその無水物との反応生成物であるポリエステルジオールと、有機ポリイソシアネートとを反応させ、次いで水酸基含有(メタ)アクリレートを付加した反応生成物等が挙げられる。
 上記ジオール化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、シクロヘキサン-1,4-ジメタノール、ポリエチレングリコール、ポリプロピレングリコール、ビスフェノールAポリエトキシジオール及びビスフェノールAポリプロポキシジオール等が挙げられる。
 上記二塩基酸若しくはその無水物としては、例えば、コハク酸、アジピン酸、アゼライン酸、ダイマー酸、イソフタル酸、テレフタル酸及びフタル酸などの二塩基酸;若しくはこれらの無水物等が挙げられる。
 上記有機ポリイソシアネートとしては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート及び2,4,4-トリメチルヘキサメチレンジイソシアネート等の鎖状飽和炭化水素イソシアネート;イソホロンジイソシアネート、ノルボルナンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、水添ジフェニルメタンジイソシアネート、水添キシレンジイソシアネート及び水添トルエンジイソシアネート等の環状飽和炭化水素イソシアネート;2,4-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、p-フェニレンジイソシアネート、3,3’-ジメチル-4,4’-ジイソシアネート、6-イソプロピル-1,3-フェニルジイソシアネート及び1,5-ナフタレンジイソシアネート等の芳香族ポリイソシアネート等が挙げられる。
As the urethane (meth) acrylate, for example, a polyester diol which is a reaction product of a diol compound or the diol compound and a dibasic acid or an anhydride thereof, and an organic polyisocyanate are reacted, and then a hydroxyl group-containing (meth) The reaction product etc. which added the acrylate are mentioned.
Examples of the diol compound include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1,8- Octanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-butyl-2 -Ethyl-1,3-propanediol, cyclohexane-1,4-dimethanol, polyethylene glycol, polypropylene glycol, bisphenol A polyethoxydiol, bisphenol A polypropoxydiol, and the like.
Examples of the dibasic acid or anhydride thereof include dibasic acids such as succinic acid, adipic acid, azelaic acid, dimer acid, isophthalic acid, terephthalic acid, and phthalic acid; or anhydrides thereof.
Examples of the organic polyisocyanate include chain saturated hydrocarbon isocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate and 2,4,4-trimethylhexamethylene diisocyanate; isophorone diisocyanate, Cyclic saturated hydrocarbon isocyanates such as norbornane diisocyanate, dicyclohexylmethane diisocyanate, methylenebis (4-cyclohexylisocyanate), hydrogenated diphenylmethane diisocyanate, hydrogenated xylene diisocyanate and hydrogenated toluene diisocyanate; 2,4-tolylene diisocyanate, 1,3-xylylene Range isocyanate, p-phenylene diisocyanate, 3,3'-dimethyl-4,4'-di Isocyanate, aromatic polyisocyanates such as 6-isopropyl-1,3-phenyl diisocyanate, and 1,5-naphthalene diisocyanate.
 上記ポリエステル(メタ)アクリレートとしては、ジオール化合物と二塩基酸又はその無水物との反応生成物であるポリエステルジオールと、(メタ)アクリル酸の反応生成物等が挙げられる。 Examples of the polyester (meth) acrylate include a polyester diol which is a reaction product of a diol compound and a dibasic acid or an anhydride thereof, and a reaction product of (meth) acrylic acid.
  中でも本発明の樹脂組成物に使用することのできる(メタ)アクリレートとしては、硬化収縮率が低い材料が好適に用いられる。具体的には、環構造を有する(メタ)アクリレートが好ましく、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、p-クミルフェノール(ポリ)エトキシ(メタ)アクリレート、ナフトール(ポリ)エトキシ(メタ)アクリレート、ナフトール(ポリ)プロポキシ(メタ)アクリレート、フェニルフェノール(ポリ)エトキシ(メタ)アクリレート、フェニルフェノール(ポリ)プロポキシ(メタ)アクリレート、ベンジル(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、ヒドロピバルアルデヒド変性トリメチロールプロパンジ(メタ)アクリレート及びビフェニルジメタノールジ(メタ)アクリレート等が挙げられる。特に好ましくは、硬化物のTgが高く、硬化収縮率の低いフェニルフェノール(ポリ)エトキシ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、ヒドロピバルアルデヒド変性トリメチロールプロパンジ(メタ)アクリレート及びビフェニルジメタノールジ(メタ)アクリレートである。
 なお、本発明の樹脂組成物においては、その他の成分である上記(メタ)アクリレートを使用する場合は単独で用いてもよいし、複数種を混合して用いてもよい。本発明の樹脂組成物に(メタ)アクリレートを使用する場合の好ましい配合量は、成分(A)及び成分(B)の総量100質量部に対して、10~200質量部であり、より好ましくは50~150質量部である。
Among them, as the (meth) acrylate that can be used for the resin composition of the present invention, a material having a low curing shrinkage rate is suitably used. Specifically, (meth) acrylate having a ring structure is preferable, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, Cyclohexyl (meth) acrylate, p-cumylphenol (poly) ethoxy (meth) acrylate, naphthol (poly) ethoxy (meth) acrylate, naphthol (poly) propoxy (meth) acrylate, phenylphenol (poly) ethoxy (meth) acrylate , Phenylphenol (poly) propoxy (meth) acrylate, benzyl (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, hydropivalaldehyde-modified trimethylolpropane di (meth) Acrylate and biphenyl dimethanol di (meth) acrylate. Particularly preferred are phenylphenol (poly) ethoxy (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, hydropivalaldehyde-modified trimethylolpropane di (meth) acrylate having a high Tg of the cured product and a low cure shrinkage rate. And biphenyldimethanol di (meth) acrylate.
In addition, in the resin composition of this invention, when using the said (meth) acrylate which is another component, it may be used independently and may be used in mixture of multiple types. A preferable blending amount when (meth) acrylate is used in the resin composition of the present invention is 10 to 200 parts by mass, more preferably 100 parts by mass with respect to the total amount of component (A) and component (B). 50 to 150 parts by mass.
 また、本発明の樹脂組成物において上記(メタ)アクリレートを使用する場合は、前記光カチオン重合開始剤以外の光重合開始剤を用いることが好ましい。
 光カチオン重合開始剤以外の光重合開始剤として、具体的には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル及びベンゾインイソブチルエーテル等のベンゾイン類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン及びオリゴ[2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン]等のアセトフェノン類;2-エチルアントラキノン、2-tert-ブチルアントラキノン、2-クロロアントラキノン及び2-アミルアントラキノン等のアントラキノン類;2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン及び2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール及びベンジルジメチルケタール等のケタール類;ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド及び4,4’-ビスメチルアミノベンゾフェノン等のベンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド及びジフェニル-(2,4,6-トリメチルベンゾイル)フォスフィンオキシド等のホスフィンオキサイド類等を挙げることができる。光カチオン重合開始剤以外の光重合開始剤として、好ましくは、アセトフェノン類であり、さらに好ましくは2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン及び1-ヒドロキシシクロヘキシル-フェニルケトンを挙げることができる。本発明の樹脂組成物において光重合開始剤を使用する場合は、(メタ)アクリレート成分100質量部に対して0.1~10質量部が好ましい。さらに好ましくは1~5質量部である。なお、本発明の樹脂組成物においては、光重合開始剤は単独で用いてもよいし、複数種を混合して用いてもよい。
Moreover, when using the said (meth) acrylate in the resin composition of this invention, it is preferable to use photoinitiators other than the said photocationic polymerization initiator.
Specific examples of photopolymerization initiators other than the cationic photopolymerization initiator include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether and benzoin isobutyl ether; acetophenone, 2,2-diethoxy-2- Phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl-phenylketone, 2- Acetophenones such as methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one and oligo [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone] Class; 2 Anthraquinones such as ethyl anthraquinone, 2-tert-butylanthraquinone, 2-chloroanthraquinone and 2-amylanthraquinone; thioxanthones such as 2,4-diethylthioxanthone, 2-isopropylthioxanthone and 2-chlorothioxanthone; acetophenone dimethyl ketal and benzyl Ketals such as dimethyl ketal; benzophenones such as benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide and 4,4′-bismethylaminobenzophenone; 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2, Phosphines such as 4,6-trimethylbenzoyl) -phenylphosphine oxide and diphenyl- (2,4,6-trimethylbenzoyl) phosphine oxide And oxides. Preferred photopolymerization initiators other than the cationic photopolymerization initiator are preferably acetophenones, and more preferably 2-hydroxy-2-methyl-phenylpropan-1-one and 1-hydroxycyclohexyl-phenyl ketone. it can. When a photopolymerization initiator is used in the resin composition of the present invention, the amount is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the (meth) acrylate component. More preferably, it is 1 to 5 parts by mass. In addition, in the resin composition of this invention, a photoinitiator may be used independently and may be used in mixture of multiple types.
 本発明の樹脂組成物の各成分の使用割合は、所望の屈折率や耐久性や粘度や密着性等を考慮して決められる。通常、成分(A)及び成分(B)の総量を100質量部とした場合に、成分(A)の含有量は、20~80質量部であり、好ましくは30~70質量部であり、成分(B)の含有量は20~80質量部であり、好ましくは30~70質量部である。このときの成分(C)の含有量は、光カチオン重合開始剤又は熱カチオン重合開始剤であれば、通常、0.05~5質量部であり、好ましくは0.1~3質量部である。
 本発明の樹脂組成物の総量に対して、通常、成分(A)及び成分(B)の合計量は、50~99質量%が好ましく、より好ましくは70~99質量%であり、更に好ましくは80~99質量%であり、場合により、90~99質量%、更には95~99質量%であっても良い。残部は上記の成分(C)及び任意の添加成分である。
The use ratio of each component of the resin composition of the present invention is determined in consideration of a desired refractive index, durability, viscosity, adhesion, and the like. Usually, when the total amount of component (A) and component (B) is 100 parts by mass, the content of component (A) is 20 to 80 parts by mass, preferably 30 to 70 parts by mass. The content of (B) is 20 to 80 parts by mass, preferably 30 to 70 parts by mass. In this case, the content of the component (C) is usually 0.05 to 5 parts by mass, preferably 0.1 to 3 parts by mass in the case of a photocationic polymerization initiator or a thermal cationic polymerization initiator. .
Usually, the total amount of the component (A) and the component (B) is preferably 50 to 99% by mass, more preferably 70 to 99% by mass, and still more preferably based on the total amount of the resin composition of the present invention. 80 to 99% by mass, optionally 90 to 99% by mass, and further 95 to 99% by mass. The balance is the above component (C) and optional additive components.
 本発明の樹脂組成物には、前記成分以外に取り扱い時の利便性等を改善するために、離型剤、消泡剤、レベリング剤、光安定剤、酸化防止剤、重合禁止剤、可塑剤、帯電防止剤等のその他の添加剤を状況に応じて併用して含有することができる。 In addition to the above components, the resin composition of the present invention includes a mold release agent, an antifoaming agent, a leveling agent, a light stabilizer, an antioxidant, a polymerization inhibitor, and a plasticizer in order to improve convenience during handling. In addition, other additives such as an antistatic agent can be used in combination depending on the situation.
 本発明の樹脂組成物には、耐久性や可撓性を得るために可塑剤を使用してもよい。使用される可塑剤の材料は、所望の粘度、耐久性、透明性や可撓性等により選択される。具体的には、ポリエチレン及びポリプロピレン等のオレフィン系ポリマー;ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ビス(2-エチルヘキシル)フタレート、ジイソデシルフタレート、ブチルベンジルフタレート、ジイソノニルフタレート、ジシクロヘキシルフタレート、エチルフタリルエチルグリコレート及びブチルフタリルブチルグリコレート等のフタル酸エステル;トリス(2-エチルヘキシル)トリメリテート等のトリメリット酸エステル;ジブチルアジペート、ジイソブチルアジペート、ビス(2-エチルヘキシル)アジペート、ジイソノニルアジペート、ジイソデシルアジペート、ビス(2-(2-ブトキシエトキシ)エチル)アジペート、ビス(2-エチルヘキシル)アゼレート、ジブチルセバケート、ビス(2-エチルヘキシル)セバケート及びジエチルサクシネート等の脂肪族二塩基酸エステル;トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート及び2-エチルヘキシルジフェニルホスフェート等の正リン酸エステル;メチルアセチルリシノレート等のリシノール酸エステル;ポリ(1,3-ブタンジオールアジペート)等のポリエステル;グリセリルトリアセテート等の酢酸エステル;N-ブチルベンゼンスルホンアミド等のスルホンアミド;ポリエチレングリコールベンゾエート、ポリエチレングリコールジベンゾエート、ポリプロピレングリコールベンゾエート、ポリプロピレングリコールジベンゾエート、ポリテロラメチレングリコールベンゾエート及びポリテトラメチレングリコールベンゾエート等のポリアルキレンオキサイド(ジ)ベンゾエート;ポリプロピレングリコール、ポリエチレングリコール及びポリテトラメチレングリコール等のポリエーテル;ポリエトキシ変性ビスフェノールA及びポリプロポキシ変性ビスフェノールA等のポリアルコキシ変性ビスフェノールA;ポリエトキシ変性ビスフェノールF及びポリプロポキシ変性ビスフェノールF等のポリアルコキシ変性ビスフェノールF;ナフタレン、フェナントレン及びアントラセン等の多環芳香族炭化水素;(ビ)ナフトール、(ポリ)エトキシ変性(ビ)ナフトール、(ポリ)プロポキシ変性(ビ)ナフトール、(ポリ)テトラメチレングリコール変性(ビ)ナフトール及び(ポリ)カプロラクトン変性(ビ)ナフトール等のナフトール誘導体;ジフェニルスルフィド、ジフェニルポリスルフィド、ベンゾチアゾリルジスルフィド、ジフェニルチオ尿素、モルホリノジチオベンゾチアゾール、シクロヘキシルベンゾチアゾール-2-スルフェンアミン、テトラメチルチウラムジスルフィド、テトラエチルチウラジスルフィド、テトラブチルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド、テトラメチルチウラムモノスルフィド及びジペンタメチレンチウラムテトラスルフィド等の含硫黄化合物が挙げられる。好ましい可塑剤としては、(ポリ)エチレングリコールジベンゾエート、(ポリ)プロピレングリコールジベンゾエート、ビナフトール、(ポリ)エトキシ変性ビナフトール、(ポリ)プロポキシ変性ビナフトール及びジフェニルスルフィドが挙げられる。 In the resin composition of the present invention, a plasticizer may be used in order to obtain durability and flexibility. The plasticizer material used is selected depending on the desired viscosity, durability, transparency, flexibility, and the like. Specific examples include olefin polymers such as polyethylene and polypropylene; dimethyl phthalate, diethyl phthalate, dibutyl phthalate, bis (2-ethylhexyl) phthalate, diisodecyl phthalate, butyl benzyl phthalate, diisononyl phthalate, dicyclohexyl phthalate, ethyl phthalyl ethyl glycolate. Phthalates such as butyl phthalyl butyl glycolate; trimellitic esters such as tris (2-ethylhexyl) trimellitate; dibutyl adipate, diisobutyl adipate, bis (2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis (2 -(2-butoxyethoxy) ethyl) adipate, bis (2-ethylhexyl) azelate, dibutyl sebacate , Aliphatic dibasic acid esters such as bis (2-ethylhexyl) sebacate and diethyl succinate; trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (2-ethylhexyl) phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl Orthophosphates such as phosphate, cresyl diphenyl phosphate and 2-ethylhexyl diphenyl phosphate; ricinoleate such as methylacetylricinoleate; polyester such as poly (1,3-butanediol adipate); acetate such as glyceryl triacetate; Sulfonamides such as N-butylbenzenesulfonamide; polyethylene glycol benzoate, polyethylene glycol dibenzoate, polyp Polyalkylene oxide (di) benzoates such as pyrene glycol benzoate, polypropylene glycol dibenzoate, polyteroramethylene glycol benzoate and polytetramethylene glycol benzoate; polyethers such as polypropylene glycol, polyethylene glycol and polytetramethylene glycol; polyethoxy modified bisphenol A and Polyalkoxy modified bisphenol A such as polypropoxy modified bisphenol A; polyalkoxy modified bisphenol F such as polyethoxy modified bisphenol F and polypropoxy modified bisphenol F; polycyclic aromatic hydrocarbons such as naphthalene, phenanthrene and anthracene; (bi) naphthol, (Poly) ethoxy modified (bi) naphthol, (poly) propoxy modified ( Bi) naphthol, (poly) tetramethylene glycol modified (bi) naphthol and (poly) caprolactone modified (bi) naphthol derivatives such as naphthol; diphenyl sulfide, diphenyl polysulfide, benzothiazolyl disulfide, diphenylthiourea, morpholino dithiobenzothiazole Sulfur-containing compounds such as cyclohexylbenzothiazole-2-sulfenamine, tetramethylthiuram disulfide, tetraethylthiuramdisulfide, tetrabutylthiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethylthiuram monosulfide and dipentamethylenethiuram tetrasulfide Compounds. Preferred plasticizers include (poly) ethylene glycol dibenzoate, (poly) propylene glycol dibenzoate, binaphthol, (poly) ethoxy modified binaphthol, (poly) propoxy modified binaphthol and diphenyl sulfide.
 本発明の樹脂組成物には、接着力を向上させる目的でカップリング剤を添加しても良い。用いるカップリング剤に特段の限定はないが、シランカップリング剤を含有することが好ましい。
 シランカップリング剤としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等が挙げられる。
 シランカップリング剤以外のカップリング剤としては、イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニュウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート及びAl-プロピオネート等のジルコニウム或いはアルミニウム系カップリング剤が挙げられる。
 これらのカップリング剤は、単独で用いても2種以上混合して用いても良い。これらのカップリング剤のうち好ましくはシラン系カップリング剤であり、更に好ましくはアミノシラン系カップリング剤又はエポキシシラン系カップリング剤である。カップリング剤を使用する事により耐湿信頼性が優れ、吸湿後の接着強度の低下が少ない封止材料が得られる。本発明の樹脂組成物にカップリング剤を使用する場合の含有量は、樹脂組成物の総量100質量部に対して0.05~3質量部程度である。
A coupling agent may be added to the resin composition of the present invention for the purpose of improving the adhesive force. Although there is no special limitation in the coupling agent to be used, it is preferable to contain a silane coupling agent.
Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, 3-amino Propyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3 -Black Propyl methyl dimethoxy silane, 3-chloropropyl trimethoxy silane, and the like.
Coupling agents other than silane coupling agents include isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate, tetraisopropyl di (dioctyl phosphite) titanate, Titanium coupling agents such as neoalkoxytri (pN- (β-aminoethyl) aminophenyl) titanate; Zr-acetylacetonate, Zr-methacrylate, Zr-propionate, neoalkoxyzirconate, neoalkoxytrisneodeca Noyl zirconate, neoalkoxy tris (dodecanoyl) benzenesulfonyl zirconate, neoalkoxy tris (ethylenediaminoethyl) zirconate, neoalkoxy Tris (m-aminophenyl) zirconate, ammonium zirconium carbonate, Al- acetylacetonate, zirconium or aluminum coupling agents such as Al- methacrylate and Al- propionate and the like.
These coupling agents may be used alone or in combination of two or more. Of these coupling agents, silane coupling agents are preferred, and aminosilane coupling agents or epoxysilane coupling agents are more preferred. By using a coupling agent, it is possible to obtain a sealing material that is excellent in moisture resistance reliability and has little decrease in adhesive strength after moisture absorption. When the coupling agent is used in the resin composition of the present invention, the content is about 0.05 to 3 parts by mass with respect to 100 parts by mass of the total amount of the resin composition.
 本発明の樹脂組成物には、更に、必要に応じて、アクリルポリマー、ポリエステルエラストマー、ウレタンポリマー及びニトリルゴム等のポリマー類も添加することができる。反応性基を有しない成分については、相溶性の点から重量平均分子量が10,000g/molであることが好ましい。また、水蒸気透過度を低下させるためにアルキルアルミニウム等の有機金属化合物を加えることもできる。溶剤を加えることもできるが、溶剤を添加しないものが好ましい。 In the resin composition of the present invention, polymers such as acrylic polymer, polyester elastomer, urethane polymer and nitrile rubber can be further added as necessary. About the component which does not have a reactive group, it is preferable that a weight average molecular weight is 10,000 g / mol from a compatible point. An organometallic compound such as alkylaluminum can also be added to reduce the water vapor permeability. Although a solvent can also be added, what does not add a solvent is preferable.
 本発明の樹脂組成物としては、含有する各成分の重量平均分子量が10,000g/mol以下である樹脂組成物が好ましく、5,000g/mol以下である場合さらに好ましい。重量平均分子量の大きい成分は他の成分と溶解しない為、調製された樹脂組成物は濁った液体となる。これは、ディスプレイに使用される樹脂組成物は均一に透明であることが不可欠である為、不適合である。
 また、本発明の樹脂組成物は、透過率に関しても優れた特性が求められる。具体的には、本発明の樹脂組成物を硬化させて膜厚100μmの硬化物としたとき、該硬化物の波長380~780nmにおける各波長の光線透過率が90%以上であることが好ましい。光線透過率は、株式会社日立ハイテクノロジーズ製分光光度計U-3900H等の測定機器により測定できる。
The resin composition of the present invention is preferably a resin composition having a weight average molecular weight of 10,000 g / mol or less, and more preferably 5,000 g / mol or less. Since a component having a large weight average molecular weight does not dissolve with other components, the prepared resin composition becomes a turbid liquid. This is incompatible because it is essential that the resin composition used in the display is uniformly transparent.
Further, the resin composition of the present invention is required to have excellent properties with respect to transmittance. Specifically, when the resin composition of the present invention is cured to obtain a cured product having a film thickness of 100 μm, the light transmittance of each wavelength at a wavelength of 380 to 780 nm of the cured product is preferably 90% or more. The light transmittance can be measured with a measuring instrument such as a spectrophotometer U-3900H manufactured by Hitachi High-Technologies Corporation.
 本発明の樹脂組成物は、各成分を常法に従い混合溶解することにより調製することができる。例えば、撹拌装置、温度計のついた丸底フラスコに各成分を仕込み、40~80℃にて0.5~6時間撹拌することにより得ることができる。 The resin composition of the present invention can be prepared by mixing and dissolving each component according to a conventional method. For example, each component can be charged into a round bottom flask equipped with a stirrer and a thermometer and stirred at 40 to 80 ° C. for 0.5 to 6 hours.
 本発明の樹脂組成物の粘度は、ディスプレイ等を製造する際の加工性の作業性に適した粘度、特に、有機EL素子における面封止に適した粘度であることが好ましい。有機EL素子は、通常、ダム材で囲われた中に、ガラス等の基板上に、該基板側から、順に、金属電極(下部電極)、少なくとも有機発光層を含む有機EL層、ITO電極(上部電極)、及び、パッシベーション膜が積層され、該パッシベーション膜上を、フィル材(面封止用樹脂組成物)で充填し、その上を、更にガラス等の封止基板で封止した構造になっている。該フィル材は、上記の金属電極側の基板とその反対側の封止基板との間の空間を埋め、有機発光層を外部の湿気などから保護する役目を果たすものであり、通常硬化性樹脂組成物が使用される。該硬化性樹脂組成物であるフィル材を充填し、ガラスなどの封止基板を載せた後、該樹脂組成物を硬化させ、有機発光層を封止する。該フィル材として使用される樹脂組成物が、面封止用樹脂組成物である。従って、該面封止用樹脂組成物は、上記の基板間の空間を完全に封止できるように、低粘度であることが好ましい。
 本発明の有機EL素子の面封止用樹脂組成物の粘度は、好ましくは、E型粘度計(TV-200:東機産業株式会社製)を用いて25℃で測定した粘度が15Pa・s以下、より好ましくは3500mPa・s以下、更に好ましくは1000mPa・s以下、特に好ましくは500mPa・s以下、最も好ましくは300mPa・s以下である。該粘度の下限は特に無いが、50mPa・s程度である。
The viscosity of the resin composition of the present invention is preferably a viscosity suitable for workability in processability when producing a display or the like, particularly a viscosity suitable for surface sealing in an organic EL device. The organic EL element is usually surrounded by a dam material, on a substrate such as glass, in order from the substrate side, a metal electrode (lower electrode), an organic EL layer including at least an organic light emitting layer, an ITO electrode ( Upper electrode) and a passivation film are stacked, and the passivation film is filled with a fill material (surface sealing resin composition), and the top is further sealed with a sealing substrate such as glass. It has become. The fill material fills the space between the metal electrode side substrate and the sealing substrate on the opposite side and protects the organic light emitting layer from external moisture and the like, and is usually a curable resin. A composition is used. After filling the filling material which is the curable resin composition and placing a sealing substrate such as glass, the resin composition is cured to seal the organic light emitting layer. The resin composition used as the filling material is a resin composition for surface sealing. Therefore, it is preferable that the resin composition for surface sealing has a low viscosity so that the space between the substrates can be completely sealed.
The viscosity of the resin composition for surface sealing of the organic EL device of the present invention is preferably 15 Pa · s measured at 25 ° C. using an E-type viscometer (TV-200: manufactured by Toki Sangyo Co., Ltd.). Below, more preferably 3500 mPa · s or less, still more preferably 1000 mPa · s or less, particularly preferably 500 mPa · s or less, and most preferably 300 mPa · s or less. The lower limit of the viscosity is not particularly limited, but is about 50 mPa · s.
 本発明において、硬化剤(C)としてエネルギー線で硬化反応を開始する硬化剤を含む樹脂組成物は、エネルギー線によって容易に硬化させることができる。ここでエネルギー線の具体例としては、紫外線、可視光線、赤外線、X線、ガンマー線及びレーザー光線等の電磁波;アルファー線、ベータ線及び電子線等の粒子線等が挙げられる。本発明においては、これらのうち、紫外線、レーザー光線、可視光線、または電子線が好ましい。 In the present invention, a resin composition containing a curing agent that initiates a curing reaction with energy rays as the curing agent (C) can be easily cured with energy rays. Specific examples of energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, X-rays, gamma rays and laser rays; particle rays such as alpha rays, beta rays and electron rays. Of these, ultraviolet rays, laser beams, visible rays, or electron beams are preferred in the present invention.
 常法に従い、本発明の樹脂組成物に前記エネルギー線を照射することにより、本発明の硬化物を得ることができる。本発明の樹脂組成物の液屈折率は通常1.45~1.70であり、好ましくは1.50~1.65である。屈折率はアッベ屈折率計(型番:DR-M2、株式会社アタゴ製)等で測定することができる。
 また、本発明の樹脂組成物は、硬化時の収縮率(硬化収縮率)が小さい方が好ましく、好ましくは5%以下であり、より好ましくは4%以下であり、更に好ましくは3.5%以下である。
 また、本発明の樹脂組成物の硬化物は、有機発光層を外部の湿気などから保護するため、水蒸気透過率が好ましくは45g/m・24h(60℃、湿度90%で測定、以下同じ)以下であり、35g/m・24h以下であることが更に好ましい。
 また、硬化物のガラス転位温度(Tg)はある程度高い方が好ましい。本発明の樹脂組成物においては、該Tgが80℃以上が好ましく、より好ましくは90℃以上であり、最も好ましくは100℃以上である。
According to a conventional method, the cured product of the present invention can be obtained by irradiating the resin composition of the present invention with the energy beam. The liquid refractive index of the resin composition of the present invention is usually 1.45 to 1.70, preferably 1.50 to 1.65. The refractive index can be measured with an Abbe refractometer (model number: DR-M2, manufactured by Atago Co., Ltd.).
The resin composition of the present invention preferably has a smaller shrinkage ratio (curing shrinkage ratio) at the time of curing, preferably 5% or less, more preferably 4% or less, and still more preferably 3.5%. It is as follows.
Further, the cured product of the resin composition of the present invention preferably has a water vapor transmission rate of 45 g / m 2 · 24 h (measured at 60 ° C. and a humidity of 90%, the same hereinafter) in order to protect the organic light emitting layer from external moisture and the like ) Or less, and more preferably 35 g / m 2 · 24 h or less.
The glass transition temperature (Tg) of the cured product is preferably higher to some extent. In the resin composition of the present invention, the Tg is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and most preferably 100 ° C. or higher.
 以下に、本発明の樹脂組成物の好ましい態様を例示する。
(I)脂環式化合物(A)、環状化合物(B)及び硬化剤(C)を含有する有機EL素子の面封止用樹脂組成物であって、
成分(A)が、前記(A-1)に記載の群から選択される骨格、及び、エポキシ基又はオキセタニル基を有する化合物であり、
成分(B)が、前記(B-1)に記載の群から選択される脂肪族環骨格または前記(B-3)に記載の群から選択されるヘテロ環骨格、及び、エポキシ基又はオキセタニル基を有する化合物であり、成分(A)として使用される化合物と異なる構造を有する化合物である樹脂組成物。
(II)成分(A)が前記(A-2)に記載の群から選択される骨格、及び、エポキシ基又はオキセタニル基を有する化合物である上記(I)に記載の樹脂組成物。
(III)成分(A)が、脂環式エポキシ化合物、または、水添ビスフェノールA骨格またはトリシクロデカン骨格を有するオキセタン化合物またはエポキシ化合物、または、エポキシ基が形成されたシクロヘキサン骨格を有する脂環式エポキシ化合物である上記(I)又は(II)に記載の樹脂組成物。
(IV)成分(A)として、トリシクロデカン骨格を有するエポキシ化合物、または、シクロヘキサン骨格を有する脂環式エポキシ化合物を含有する上記(I)~(III)のいずれか一項に記載の樹脂組成物。
(V)成分(A)として、ジシクロペンタジエンジメタノールジグリシジルエーテルまたは3,4-エポキシシクロヘキセニルメチル-3’,4’エポキシシクロヘキセンカルボキシレートを含有する上記(I)~(IV)のいずれか一項に記載の樹脂組成物。
Below, the preferable aspect of the resin composition of this invention is illustrated.
(I) A resin composition for surface sealing of an organic EL device comprising an alicyclic compound (A), a cyclic compound (B) and a curing agent (C),
Component (A) is a compound having a skeleton selected from the group described in (A-1) above and an epoxy group or oxetanyl group,
Component (B) is an aliphatic ring skeleton selected from the group described in (B-1) above or a heterocyclic skeleton selected from the group described in (B-3) above, and an epoxy group or oxetanyl group The resin composition which is a compound which is a compound which has a structure different from the compound used as a component (A).
(II) The resin composition according to the above (I), wherein the component (A) is a compound having a skeleton selected from the group described in the above (A-2) and an epoxy group or an oxetanyl group.
(III) The component (A) is an alicyclic epoxy compound, or an oxetane compound or an epoxy compound having a hydrogenated bisphenol A skeleton or a tricyclodecane skeleton, or an alicyclic having a cyclohexane skeleton in which an epoxy group is formed. The resin composition according to (I) or (II), which is an epoxy compound.
(IV) The resin composition according to any one of the above (I) to (III), which contains an epoxy compound having a tricyclodecane skeleton or an alicyclic epoxy compound having a cyclohexane skeleton as the component (A) object.
(V) Any of the above (I) to (IV) containing dicyclopentadiene dimethanol diglycidyl ether or 3,4-epoxycyclohexenylmethyl-3 ′, 4 ′ epoxycyclohexene carboxylate as component (A) The resin composition according to one item.
(VI)成分(B)が前記(B-2)に記載の群から選択される脂肪族環骨格または前記(B-4)に記載の群から選択されるヘテロ環骨格を有する化合物である上記(I)~(V)のいずれか一項に記載の樹脂組成物。
(VII)成分(B)として、脂環式エポキシ化合物、または、トリシクロデカン骨格、アダマンタン骨格またはイソシアヌレート骨格を有するエポキシ化合物を含有する上記(I)~(VI)のいずれか一項に記載の樹脂組成物。
(VIII)成分(B)として、前記(b-1a)、前記(b-1b)及び前記(b-1c)に記載の群から選択される脂環式エポキシ化合物を含有する上記(I)~(VII)のいずれか一項に記載の樹脂組成物。
(IX)成分(B)として、シクロヘキサン骨格を有する脂環式エポキシ化合物を有するエポキシ化合物を含有する上記(I)~(VIII)のいずれか一項に記載の樹脂組成物。
(X)成分(A)または成分(B)として含有される化合物がいずれも、2官能のオキセタン化合物または2官能のエポキシ化合物である上記(I)~(IX)のいずれか一項に記載の樹脂組成物。
(XI)成分(A)としてジシクロペンタジエンジメタノールジグリシジルエーテルを含有し、成分(B)として3,4-エポキシシクロヘキセニルメチル-3’,4’エポキシシクロヘキセンカルボキシレートを含有する上記(I)~(X)のいずれか一項に記載の樹脂組成物。
(VI) The component (B) is a compound having an aliphatic ring skeleton selected from the group described in the above (B-2) or a heterocyclic skeleton selected from the group described in the above (B-4) The resin composition according to any one of (I) to (V).
(VII) The component (B) is an alicyclic epoxy compound or an epoxy compound having a tricyclodecane skeleton, an adamantane skeleton, or an isocyanurate skeleton, according to any one of the above (I) to (VI) Resin composition.
(VIII) The above (I) to (I) containing an alicyclic epoxy compound selected from the group described in (b-1a), (b-1b) and (b-1c) as component (B) The resin composition according to any one of (VII).
(IX) The resin composition according to any one of (I) to (VIII) above, which contains an epoxy compound having an alicyclic epoxy compound having a cyclohexane skeleton as component (B).
(X) The compound according to any one of (I) to (IX) above, wherein the compound contained as component (A) or component (B) is a bifunctional oxetane compound or a bifunctional epoxy compound. Resin composition.
(XI) The above (I) containing dicyclopentadiene dimethanol diglycidyl ether as component (A) and 3,4-epoxycyclohexenylmethyl-3 ′, 4 ′ epoxycyclohexene carboxylate as component (B) The resin composition according to any one of to (X).
(XII)硬化剤(C)が光カチオン重合開始剤又は熱カチオン重合開始剤である上記(I)~(XI)のいずれか一項に記載の樹脂組成物。
(XIII)硬化剤(C)が前記(C-1)の群から選択される光カチオン重合開始剤である上記(I)~(XII)のいずれか一項に記載の樹脂組成物。
(XIV)硬化剤(C)がスルホニウム塩である上記(I)~(XIII)のいずれか一項に記載の樹脂組成物。
(XV)該樹脂組成物の粘度が1000mPa・s以下、好ましくは500mPa・s以下、より好ましくは300mPa・s以下である上記(I)~(XIV)の何れか一項に記載の樹脂組成物。
(XVI)該樹脂組成物を硬化させて厚さ100μmの硬化物とし、60℃及び相対湿度90%において測定した該硬化物の透湿度(水蒸気透過度)が45g/m・24hr以下である上記(I)~(XV)の何れか一項に記載の樹脂組成物。
(XVII)樹脂組成物の硬化物のガラス転位点(Tg)が、80℃以上、より好ましくは100℃以上である上記(I)~(XVI)の何れか一項に記載の樹脂組成物。
(XVIII)硬化収縮率が4%以下である上記(I)~(XVII)の何れか一項に記載の樹脂組成物。
(XIX)樹脂組成物の液屈折率が1.45~1.7である上記(I)~(XVIII)の何れか一項に記載の樹脂組成物。
(XX)成分(A)及び成分(B)の総量100質量部に対して、成分(A)の含有量が20~80質量部であり、成分(B)の含有量が20~80質量部であり、硬化剤(C)の含有量が0.05~5質量部である上記(I)~(XIX)の何れか一項に記載の樹脂組成物。
(XII) The resin composition according to any one of (I) to (XI) above, wherein the curing agent (C) is a photocationic polymerization initiator or a thermal cationic polymerization initiator.
(XIII) The resin composition according to any one of (I) to (XII), wherein the curing agent (C) is a photocationic polymerization initiator selected from the group (C-1).
(XIV) The resin composition according to any one of (I) to (XIII) above, wherein the curing agent (C) is a sulfonium salt.
(XV) The resin composition according to any one of (I) to (XIV) above, wherein the viscosity of the resin composition is 1000 mPa · s or less, preferably 500 mPa · s or less, more preferably 300 mPa · s or less. .
(XVI) The resin composition is cured to obtain a cured product having a thickness of 100 μm, and the moisture permeability (water vapor permeability) of the cured product measured at 60 ° C. and 90% relative humidity is 45 g / m 2 · 24 hr or less. The resin composition according to any one of (I) to (XV) above.
(XVII) The resin composition according to any one of (I) to (XVI) above, wherein the glass transition point (Tg) of the cured product of the resin composition is 80 ° C. or higher, more preferably 100 ° C. or higher.
(XVIII) The resin composition according to any one of (I) to (XVII), which has a curing shrinkage rate of 4% or less.
(XIX) The resin composition according to any one of (I) to (XVIII) above, wherein the liquid refractive index of the resin composition is 1.45 to 1.7.
(XX) The content of the component (A) is 20 to 80 parts by mass and the content of the component (B) is 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B). The resin composition according to any one of (I) to (XIX) above, wherein the content of the curing agent (C) is 0.05 to 5 parts by mass.
  本発明による有機EL素子の固体封止方法は、基板上に形成された有機EL素子上にパッシベーション膜を形成する工程、上記パッシベーション膜の上に面封止用樹脂組成物を塗布し、封止用透明基板を設ける工程、および上記面封止用樹脂組成物を硬化させる工程を有し、該面封止用樹脂組成物として上述の本発明による硬化性樹脂組成物を使用することを特徴とする。 The organic EL device solid sealing method according to the present invention includes a step of forming a passivation film on an organic EL device formed on a substrate, a surface sealing resin composition is applied on the passivation film, and sealing is performed. And a step of curing the surface sealing resin composition, and using the curable resin composition according to the present invention described above as the surface sealing resin composition. To do.
  面封止される有機EL素子は、基板と、下部電極と、少なくとも発光層を含む有機EL層と、上部電極とを含む素子部本体とから構成される。基板には、ガラス基板、シクロオレフィンやポリカーボネート、ポリメチルメタクリレート等からなる透明有機材料、該透明有機材料をグラスファイバー等で高剛性化した有機/無機ハイブリッド透明基板等の電気絶縁性物質からなる平坦な基板を用いる。また、素子部本体の代表的な構成としては以下のものが挙げられる。
(1)下部電極/発光層/上部電極
(2)下部電極/電子輸送層/発光層/上部電極
(3)下部電極/発光層/正孔輸送層/上部電極
(4)下部電極/電子輸送層/発光層/正孔輸送層/上部電極
  例えば、上記(4)の層構造を有する有機EL素子は、基板の片面上に、Al-Li合金等からなる下部電極(陰極)を抵抗加熱蒸着法またはスパッタ法によって形成し、次いで有機EL層として、オキサジアゾール誘導体やトリアゾール誘導体等からなる電子輸送層、発光層、TPD(N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-diamine)等からなる正孔輸送層及び上部電極(陽極)を抵抗加熱蒸着法又はイオンビームスパッタ法等の薄膜形成方法によって順次積層することによって作製することが可能である。なお、有機EL素子の層構造、又は材料は表示素子として機能するものであれば特に限定されるものではない。また、本発明による固体封止方法はいかなる構造の有機EL素子であっても適用可能である。
The organic EL element to be surface-sealed includes a substrate, a lower electrode, an organic EL layer including at least a light emitting layer, and an element unit body including an upper electrode. The substrate is a flat substrate made of an electrically insulating material such as a glass substrate, a transparent organic material made of cycloolefin, polycarbonate, polymethyl methacrylate, or the like, or an organic / inorganic hybrid transparent substrate made of the transparent organic material made of high-rigidity glass fiber or the like. Use a suitable substrate. Moreover, the following are mentioned as a typical structure of an element part main body.
(1) Lower electrode / light emitting layer / upper electrode (2) Lower electrode / electron transport layer / light emitting layer / upper electrode (3) Lower electrode / light emitting layer / hole transport layer / upper electrode (4) Lower electrode / electron transport Layer / light emitting layer / hole transport layer / upper electrode For example, in the organic EL device having the layer structure of (4) above, a lower electrode (cathode) made of an Al—Li alloy or the like is deposited on one side of a substrate by resistance heating vapor deposition. Then, as an organic EL layer, an electron transport layer composed of an oxadiazole derivative or a triazole derivative, a light emitting layer, TPD (N, N′-diphenyl-N, N′-bis (3-methylphenyl) ) -1,1-biphenyl-4,4'-diamine), etc., and the upper electrode (anode) are sequentially stacked by thin film formation methods such as resistance heating vapor deposition or ion beam sputtering. Is possible. The layer structure or material of the organic EL element is not particularly limited as long as it functions as a display element. The solid sealing method according to the present invention can be applied to any structure of organic EL elements.
  パッシベーション膜は、有機EL素子を覆うように形成される。パッシベーション膜は、窒化ケイ素、酸化ケイ素などの無機材料を蒸着やスパッタなどの方法によって形成することが可能である。パッシベーション膜は、有機EL素子へ水分やイオン性不純物等が浸入するのを防止するために設けられる。パッシベーション膜の厚さは、10nm~100μmの範囲が好ましく、100nm~10μmの範囲とすることがより好ましい。パッシベーション膜は信頼性を高める目的で積層させても良い。 The passivation film is formed so as to cover the organic EL element. The passivation film can be formed by a method such as vapor deposition or sputtering of an inorganic material such as silicon nitride or silicon oxide. The passivation film is provided to prevent moisture, ionic impurities, and the like from entering the organic EL element. The thickness of the passivation film is preferably in the range of 10 nm to 100 μm, and more preferably in the range of 100 nm to 10 μm. The passivation film may be laminated for the purpose of improving reliability.
  パッシベーション膜は、成膜法にもよるが、一般にピンホールが存在する不完全な膜であるか、機械的強度が弱い膜であることが多い。そのため、固体封止方法では、パッシベーション膜の上にさらに接着剤を塗布し、封止用透明基板を用いて圧着し、接着剤を硬化することによって封止の信頼性を高めている。 Passivation films are generally incomplete films with pinholes or films with low mechanical strength, although depending on the deposition method. Therefore, in the solid sealing method, the reliability of sealing is improved by further applying an adhesive on the passivation film, press-bonding using a transparent substrate for sealing, and curing the adhesive.
 次に、実施例により本発明を更に詳細に説明する。本発明は以下の実施例によって何ら限定されるものではない。なお、数値の単位「部」は質量部を示す。 Next, the present invention will be described in more detail with reference to examples. The present invention is not limited in any way by the following examples. The unit “part” of the numerical value indicates part by mass.
 下記表1に示す組成を有する本発明の樹脂組成物、比較例1の樹脂組成物及び参考例1の樹脂組成物を作製し、また、下記の方法により各樹脂組成物の硬化物を得た。得られた樹脂組成物及び硬化物(硬化膜)を、下記の評価方法及び評価基準により、評価した。 The resin composition of the present invention having the composition shown in Table 1 below, the resin composition of Comparative Example 1 and the resin composition of Reference Example 1 were prepared, and cured products of the respective resin compositions were obtained by the following methods. . The obtained resin composition and cured product (cured film) were evaluated by the following evaluation methods and evaluation criteria.
(1)粘度:E型粘度計(TV-200:東機産業株式会社製)を用いて、下記表1に記載の各樹脂組成物の25℃における粘度(単位:mPa・s)を測定した。 (1) Viscosity: Using an E-type viscometer (TV-200: manufactured by Toki Sangyo Co., Ltd.), the viscosity at 25 ° C. (unit: mPa · s) of each resin composition described in Table 1 below was measured. .
(2)液屈折率:下記表1に記載の各樹脂組成物の屈折率(25℃)をアッベ屈折率計(DR-M2:株式会社アタゴ製)で測定した。 (2) Liquid refractive index: The refractive index (25 ° C.) of each resin composition described in Table 1 below was measured with an Abbe refractometer (DR-M2: manufactured by Atago Co., Ltd.).
(3)水蒸気透過度:下記表1に記載の各樹脂組成物をガラス基板で挟み、100μmのスペーサーを使用して膜厚を調整した。次いで、実施例1、実施例2、比較例1及び参考例1の樹脂組成物については、高圧水銀灯(80W/cm、オゾンレス)で積算照射量3000mJ/cmの紫外線を照射することにより、また、実施例3の樹脂組成物については、100℃で1時間加温することにより、それぞれ硬化させて、試験片を作製した。得られた各試験片につき、Lyssy水蒸気透過度計L80-5000(Systech Illinois社製)を用いて、60℃及び90%RHの環境下における透湿度(単位:g/m・24hr)を測定した。 (3) Water vapor permeability: Each resin composition described in Table 1 below was sandwiched between glass substrates, and the film thickness was adjusted using a 100 μm spacer. Next, for the resin compositions of Example 1, Example 2, Comparative Example 1 and Reference Example 1, by irradiating ultraviolet rays with an integrated irradiation amount of 3000 mJ / cm 2 with a high pressure mercury lamp (80 W / cm, ozone-less), The resin composition of Example 3 was cured by heating at 100 ° C. for 1 hour to prepare test pieces. For each of the obtained test pieces, the moisture permeability (unit: g / m 2 · 24 hr) in an environment of 60 ° C. and 90% RH was measured using a Lyssy water vapor permeability meter L80-5000 (manufactured by Systemech Illinois). did.
(4)Tg(ガラス転移点、単位:℃):上記(3)と同様にして硬化して得られた硬化物のTg点を、粘弾性測定システムEXSTAR DMS-6000(エスアイアイ・ナノテクノロジー株式会社製)、引張モード、周波数1Hzにて測定した。 (4) Tg (glass transition point, unit: ° C.): Viscoelasticity measurement system EXSTAR DMS-6000 (SII NanoTechnology Co., Ltd.) is used to determine the Tg point of the cured product obtained by curing in the same manner as (3) above. (Manufactured by the company), tensile mode, frequency 1 Hz.
(5)硬化収縮率:基材上に下記表1に記載の各樹脂組成物からなる樹脂層を塗布した。次いで、実施例1、実施例2、比較例1及び参考例1の樹脂組成物については、高圧水銀灯(80W/cm、オゾンレス)で積算照射量3000mJ/cmの紫外線を照射することにより、また、実施例3の樹脂組成物については、乾燥器において100℃で1時間加熱することにより、それぞれ樹脂組成物を硬化させ、膜比重測定用の硬化物を作製した。これを、JIS K7112 B法に準拠し、硬化物の比重(DS)を測定した。また、23±2℃で樹脂組成物の比重(DL)を測定し、次式により硬化収縮率を算出した。測定結果は4回の測定結果の平均値で示す。
  硬化収縮率(%)=(DS-DL)/DS×100
(5) Curing shrinkage rate: A resin layer made of each resin composition described in Table 1 below was applied on a substrate. Next, for the resin compositions of Example 1, Example 2, Comparative Example 1 and Reference Example 1, by irradiating ultraviolet rays with an integrated irradiation amount of 3000 mJ / cm 2 with a high pressure mercury lamp (80 W / cm, ozone-less), For the resin composition of Example 3, the resin composition was cured by heating at 100 ° C. for 1 hour in a drier to produce a cured product for film specific gravity measurement. This was measured based on JIS K7112 B method, and the specific gravity (DS) of the cured product was measured. Further, the specific gravity (DL) of the resin composition was measured at 23 ± 2 ° C., and the cure shrinkage rate was calculated by the following formula. A measurement result is shown by the average value of four measurement results.
Curing shrinkage (%) = (DS−DL) / DS × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(6)光線透過率
 上記(3)と同様にして、実施例1~3の樹脂組成物をそれぞれ硬化させて、膜厚100μmの試験片を作製した。得られた各試験片につき、分光光度計(株式会社日立ハイテクノロジーズ製、製品名U-3900H)を用いて、波長380~780nmにおける各波長の光線透過率(%)を測定した。実施例1~3の樹脂組成物の硬化膜(膜厚100μm)における光線透過率は、上記各波長においていずれも90%以上であった。
(6) Light transmittance In the same manner as in (3) above, the resin compositions of Examples 1 to 3 were cured to prepare test pieces having a film thickness of 100 μm. About each obtained test piece, the light transmittance (%) of each wavelength in wavelength 380-780 nm was measured using the spectrophotometer (The Hitachi High-Technologies Corporation make, product name U-3900H). The light transmittance of the cured films (thickness: 100 μm) of the resin compositions of Examples 1 to 3 was 90% or more at each wavelength.
EP-4088S:株式会社ADEKA製、ジシクロペンタジエンジメタノールジグリシジルエーテル
SEJ-01R:日本化薬株式会社製、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート
OXT-121:東亞合成株式会社製、キシリレンビスオキセタン
MA-DGIC:四国化成工業株式会社製、モノアリルジグリシジルイソシアヌレート
GSID 26-1:BASFジャパン株式会社製、(トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムトリス[(トリフルオロメチル)スルホニル]メタニド
サンエイドSI-100主剤:三新化学工業株式会社製、ベンジルメチル-p-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート
エポライト80MF:共栄社化学株式会社製、グリセリンジグリシジルエーテル
エポライト100MF:共栄社化学株式会社製、トリメチロールプロパントリグリシジルエーテル
EP-4088S: manufactured by ADEKA Corporation, dicyclopentadiene dimethanol diglycidyl ether SEJ-01R: manufactured by Nippon Kayaku Co., Ltd., 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate OXT-121 : Toagosei Co., Ltd., xylylene bisoxetane MA-DGIC: Shikoku Kasei Kogyo Co., Ltd., monoallyl diglycidyl isocyanurate GSID 26-1: BASF Japan Ltd., (Tris [4- (4-acetylphenylsulfanyl) ) Phenyl] sulfonium tris [(trifluoromethyl) sulfonyl] methanide sunaide SI-100 main agent: Benzylmethyl-p-hydroxyphenylsulfonium hexafluoroantimonate epolite 80 manufactured by Sanshin Chemical Industry Co., Ltd. F: manufactured by Kyoeisha Chemical Co., glycerine diglycidyl ether Epo write 100MF: Kyoeisha Chemical Co., Ltd., trimethylolpropane triglycidyl ether
 実施例1~3、参考例1及び比較例1の評価結果から明らかなように、特定の組成を有する本発明の樹脂組成物から得られる硬化物は、Tgが高く、硬化収縮率及び水蒸気透過度が低い。そのため、本発明の樹脂組成物から得られる硬化物は、例えばバリアフィルム用の塗剤や各種封止材、特に有機EL素子の面封止材に適している。 As is clear from the evaluation results of Examples 1 to 3, Reference Example 1 and Comparative Example 1, the cured product obtained from the resin composition of the present invention having a specific composition has a high Tg, a curing shrinkage rate and a water vapor transmission rate. The degree is low. Therefore, the hardened | cured material obtained from the resin composition of this invention is suitable for the coating agent for barrier films, various sealing materials, especially the surface sealing material of an organic EL element, for example.
 本発明の樹脂組成物及びその硬化物は、可視光透過率及び耐光性に優れ、Tgが高く、硬化収縮率及び水蒸気透過度が低いことから、各種封止材、特に有機EL素子の面封止材に適するものである。 The resin composition of the present invention and its cured product are excellent in visible light transmittance and light resistance, have a high Tg, and have a low curing shrinkage and water vapor permeability. Suitable for fastening materials.

Claims (19)

  1.  オキセタニル基またはエポキシ基を有する脂環式化合物(A)、オキセタニル基またはエポキシ基を有し、下記の条件を満たす環状化合物(B)を含有する有機EL素子の面封止用樹脂組成物、
    該環状化合物(B)の条件:
    該環状化合物(B)における環は、脂肪族環またはヘテロ環であって、該環が脂肪族環である場合、該環状化合物は、前記脂環式化合物(A)として使用される化合物とは異なる構造を有する化合物である。
    A resin composition for surface sealing of an organic EL device comprising an alicyclic compound (A) having an oxetanyl group or an epoxy group, a cyclic compound (B) having an oxetanyl group or an epoxy group and satisfying the following conditions:
    Conditions for the cyclic compound (B):
    The ring in the cyclic compound (B) is an aliphatic ring or a heterocycle, and when the ring is an aliphatic ring, the cyclic compound is a compound used as the alicyclic compound (A). It is a compound having a different structure.
  2.  前記脂環式化合物(A)が下記(A-1)に記載の群から選択される骨格を有する請求項1に記載の樹脂組成物、
    A-1:トリシクロデカン、イソボルニル、アダマンタン、シクロペンタン、シクロヘキサン、水添ビスフェノールA、水添ビスフェノールF及び水添ビスフェノールS。
    The resin composition according to claim 1, wherein the alicyclic compound (A) has a skeleton selected from the group described in the following (A-1).
    A-1: Tricyclodecane, isobornyl, adamantane, cyclopentane, cyclohexane, hydrogenated bisphenol A, hydrogenated bisphenol F, and hydrogenated bisphenol S.
  3.  前記脂環式化合物(A)が、脂肪族環として、トリシクロデカン、アダマンタン、シクロヘキサン及び水添ビスフェノールAからなる群から選択される骨格を有するオキセタン化合物またはエポキシ化合物である請求項1または請求項2に記載の樹脂組成物。 The alicyclic compound (A) is an oxetane compound or an epoxy compound having a skeleton selected from the group consisting of tricyclodecane, adamantane, cyclohexane and hydrogenated bisphenol A as an aliphatic ring. 2. The resin composition according to 2.
  4.  前記環状化合物(B)が下記(B-1)に記載の群から選択される骨格を有する請求項1乃至3の何れか一項に記載の樹脂組成物。
    B-1:トリシクロデカン、イソボルニル、アダマンタン、シクロペンタン、シクロヘキサン、水添ビスフェノールA、水添ビスフェノールF及び水添ビスフェノールS。
    The resin composition according to any one of claims 1 to 3, wherein the cyclic compound (B) has a skeleton selected from the group described in the following (B-1).
    B-1: Tricyclodecane, isobornyl, adamantane, cyclopentane, cyclohexane, hydrogenated bisphenol A, hydrogenated bisphenol F, and hydrogenated bisphenol S.
  5. 前記環状化合物(B)が、脂肪族環として、トリシクロデカン、アダマンタン、シクロヘキサン及び水添ビスフェノールAからなる群から選択される骨格を有するオキセタン化合物またはエポキシ化合物である請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the cyclic compound (B) is an oxetane compound or an epoxy compound having a skeleton selected from the group consisting of tricyclodecane, adamantane, cyclohexane, and hydrogenated bisphenol A as an aliphatic ring. object.
  6.  前記環状化合物(B)が下記(B-3)に記載の群から選択される骨格を有する請求項1乃至請求項3の何れか一項に記載の樹脂組成物。
    B-3:モルホリン、テトラヒドロフラン、オキサン、ジオキサン、トリアジン、カルバゾール、ピロリジン及びピペリジン。
    The resin composition according to any one of claims 1 to 3, wherein the cyclic compound (B) has a skeleton selected from the group described in the following (B-3).
    B-3: Morpholine, tetrahydrofuran, oxane, dioxane, triazine, carbazole, pyrrolidine and piperidine.
  7.  前記環状化合物(B)が、ヘテロ環として、オキサン、ジオキサン及びトリアジンからなる群から選択される骨格を有するエポキシ化合物である請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the cyclic compound (B) is an epoxy compound having a skeleton selected from the group consisting of oxane, dioxane and triazine as a heterocycle.
  8.  さらに硬化剤(C)を含有する請求項1乃至請求項7の何れか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, further comprising a curing agent (C).
  9.  硬化剤(C)が光カチオン重合開始剤であり、樹脂組成物がエネルギー線硬化型樹脂組成物である請求項8に記載の樹脂組成物。 The resin composition according to claim 8, wherein the curing agent (C) is a cationic photopolymerization initiator and the resin composition is an energy ray curable resin composition.
  10.  前記光カチオン重合開始剤が下記(C-1)に記載の群から選択される化合物である請求項9に記載のエネルギー線硬化型樹脂組成物。
    C-1:スルホニウム塩、ヨードニウム塩、ホスホニウム塩、アンモニウム塩及びアンチモン酸塩。
    The energy ray-curable resin composition according to claim 9, wherein the cationic photopolymerization initiator is a compound selected from the group described in (C-1) below.
    C-1: sulfonium salt, iodonium salt, phosphonium salt, ammonium salt and antimonate.
  11. 硬化剤(C)が熱硬化剤であり、樹脂組成物が熱硬化型樹脂組成物である請求項8に記載の樹脂組成物。 The resin composition according to claim 8, wherein the curing agent (C) is a thermosetting agent, and the resin composition is a thermosetting resin composition.
  12. 前記熱硬化剤が下記(C-2)に記載の群から選択される化合物である請求項11に記載の熱硬化型樹脂組成物、
    C-2:アミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物、イミダゾール系化合物、イソシアヌル酸付加物、金属化合物、スルホニウム塩、アンモニウム塩、アンチモン酸塩、ホスホニウム塩及びマイクロカプセル型硬化剤。
    The thermosetting resin composition according to claim 11, wherein the thermosetting agent is a compound selected from the group described in the following (C-2).
    C-2: Amine compound, acid anhydride compound, amide compound, phenol compound, carboxylic acid compound, imidazole compound, isocyanuric acid adduct, metal compound, sulfonium salt, ammonium salt, antimonate, phosphonium Salt and microcapsule type curing agents.
  13.  前記脂環式化合物(A)と前記環状化合物(B)の総量100質量部に対して、前記脂環式化合物(A)を20~80質量部含有する請求項1乃至請求項12の何れか一項に記載の樹脂組成物。 The alicyclic compound (A) is contained in an amount of 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the alicyclic compound (A) and the cyclic compound (B). The resin composition according to one item.
  14.  前記脂環式化合物(A)と前記環状化合物(B)の総量100質量部に対して、前記環状化合物(B)を20~80質量部含有する請求項1乃至請求項13の何れか一項に記載の樹脂組成物。 The cyclic compound (B) is contained in an amount of 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the alicyclic compound (A) and the cyclic compound (B). The resin composition described in 1.
  15.  前記脂環式化合物(A)と前記環状化合物(B)の総量100質量部に対して、硬化剤(C)を0.1~5質量部含有する請求項1乃至請求項14の何れか一項に記載の樹脂組成物。 The hardener (C) is contained in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the alicyclic compound (A) and the cyclic compound (B). The resin composition according to item.
  16.  25℃で測定した粘度が15Pa・s以下である請求項1乃至請求項15の何れか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 15, wherein the viscosity measured at 25 ° C is 15 Pa · s or less.
  17.  請求項1乃至請求項16の何れか一項に記載の樹脂組成物を硬化せしめて得られる硬化物で面封止された有機ELディスプレイ。 An organic EL display whose surface is sealed with a cured product obtained by curing the resin composition according to any one of claims 1 to 16.
  18. 請求項1乃至請求項16の何れか一項に記載の樹脂組成物を基材上に塗布、硬化させてなるバリア性能を有する有機ELディスプレイの面封止用フィルム。 The film for surface sealing of the organic EL display which has the barrier performance formed by apply | coating and hardening the resin composition as described in any one of Claims 1 thru | or 16 on a base material.
  19.  請求項1乃至請求項16の何れか一項に記載の樹脂組成物の有機EL素子の面封止のための使用。 Use of the resin composition according to any one of claims 1 to 16 for surface sealing of an organic EL device.
PCT/JP2013/006963 2012-11-28 2013-11-27 Resin composition, and cured product (2) thereof WO2014083844A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380062296.3A CN104822729A (en) 2012-11-28 2013-11-27 Resin composition, and cured product (2) thereof
KR1020157012283A KR102031575B1 (en) 2012-11-28 2013-11-27 Resin composition, and cured product (2) thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012259622A JP5967654B2 (en) 2012-11-28 2012-11-28 Resin composition and cured product thereof (2)
JP2012-259622 2012-11-28

Publications (1)

Publication Number Publication Date
WO2014083844A1 true WO2014083844A1 (en) 2014-06-05

Family

ID=50827505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006963 WO2014083844A1 (en) 2012-11-28 2013-11-27 Resin composition, and cured product (2) thereof

Country Status (5)

Country Link
JP (1) JP5967654B2 (en)
KR (1) KR102031575B1 (en)
CN (2) CN107556457A (en)
TW (1) TWI591093B (en)
WO (1) WO2014083844A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109661431A (en) * 2016-12-09 2019-04-19 株式会社Lg化学 Encapsulating composition
WO2021234766A1 (en) * 2020-05-18 2021-11-25 シャープ株式会社 Display device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012021A (en) * 2014-06-27 2016-01-21 富士フイルム株式会社 Polarizing plate protective film, polarizing plate, image display device, and method for manufacturing polarizing plate protective film
KR101920581B1 (en) * 2014-12-09 2018-11-20 미쯔이가가꾸가부시끼가이샤 Surface sealing material for organic el elements and cured product of same
JP6068543B2 (en) * 2015-03-31 2017-01-25 日東電工株式会社 Liquid crystal panel and image display device
CN111031623A (en) * 2015-11-19 2020-04-17 积水化学工业株式会社 Sealing agent for organic electroluminescent display element
WO2017099055A1 (en) * 2015-12-08 2017-06-15 株式会社ダイセル Sealing composition
JP6443321B2 (en) * 2015-12-24 2018-12-26 株式会社オートネットワーク技術研究所 Wire protection member and wire harness
JP6485369B2 (en) * 2016-01-14 2019-03-20 東洋インキScホールディングス株式会社 Anchor coating agent
JP6833169B2 (en) * 2016-02-10 2021-02-24 日東電工株式会社 Photosensitive resin composition for optics and optical materials using it
JP6804023B2 (en) * 2016-02-10 2020-12-23 日東電工株式会社 Photosensitive resin composition for optics and optical materials using it
JP7008398B2 (en) * 2016-03-31 2022-01-25 株式会社Adeka Curable composition, method for producing cured product, and cured product thereof
KR102431016B1 (en) * 2016-09-16 2022-08-09 세키스이가가쿠 고교가부시키가이샤 Encapsulant for organic electroluminescent display elements
JP6776785B2 (en) * 2016-10-07 2020-10-28 三菱ケミカル株式会社 Active energy ray-curable adhesive composition, polarizing plate adhesive composition, polarizing plate adhesive, and polarizing plate using the same.
JP7087245B2 (en) 2018-09-11 2022-06-21 エルジー・ケム・リミテッド Sealing material composition
CN110444682B (en) * 2019-07-25 2022-02-11 苏州清越光电科技股份有限公司 Display panel, preparation process thereof and display device comprising same
KR20220158229A (en) * 2020-03-23 2022-11-30 가부시끼가이샤 쓰리본드 Epoxy Resin Composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073452A (en) * 2001-09-03 2003-03-12 Stanley Electric Co Ltd Epoxy resin for ultraviolet light-emitting element and epoxy resin material
WO2004035558A1 (en) * 2002-09-05 2004-04-29 Daicel Chemical Industries, Ltd. Process for preparation of alicyclic diepoxy compounds, curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation
JP2004339417A (en) * 2003-05-16 2004-12-02 Daicel Chem Ind Ltd Casting epoxy resin composition for electric insulation and cured product
JP2005350546A (en) * 2004-06-09 2005-12-22 Sekisui Chem Co Ltd Photocurable resin composition
JP2006228708A (en) * 2005-01-20 2006-08-31 Mitsui Chemicals Inc Organic el sealant
JP2007112981A (en) * 2005-09-22 2007-05-10 Hitachi Chem Co Ltd Resin composition reduced in char production amount and optical member using the same
CN101070373A (en) * 2002-09-05 2007-11-14 大赛璐化学工业株式会社 Epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850231A (en) 1971-10-27 1973-07-16
JPS4876609A (en) 1972-01-13 1973-10-15
JP2001081182A (en) 1999-09-09 2001-03-27 Nippon Shokubai Co Ltd Polymerizable resin and polymerizable resin composition
JP4655172B2 (en) 2000-04-27 2011-03-23 日立化成工業株式会社 Hydroxyl-containing oxetane compounds
JP5401767B2 (en) * 2007-06-14 2014-01-29 東亞合成株式会社 Curable composition and optical device
CN101910240B (en) * 2007-12-28 2012-10-03 三井化学株式会社 Latent curing agents, epoxy resin compositions conating the same, sealing materials, and organic EL displays
WO2010150524A1 (en) * 2009-06-22 2010-12-29 日本化薬株式会社 Polyvalent carboxylic acid, composition thereof, curable resin composition, cured product, and method for manufacturing a polyvalent carboxylic acid
JP2011099031A (en) * 2009-11-05 2011-05-19 Mitsui Chemicals Inc Adhesive composition
WO2011108588A1 (en) * 2010-03-02 2011-09-09 日本化薬株式会社 Curable resin composition and cured article thereof
JP5555532B2 (en) 2010-04-22 2014-07-23 積水化学工業株式会社 Sealant for organic EL element and organic EL element
JP2012059553A (en) 2010-09-09 2012-03-22 Toppan Printing Co Ltd Organic electroluminescence element and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073452A (en) * 2001-09-03 2003-03-12 Stanley Electric Co Ltd Epoxy resin for ultraviolet light-emitting element and epoxy resin material
WO2004035558A1 (en) * 2002-09-05 2004-04-29 Daicel Chemical Industries, Ltd. Process for preparation of alicyclic diepoxy compounds, curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation
EP1541567A1 (en) * 2002-09-05 2005-06-15 DAICEL CHEMICAL INDUSTRIES, Ltd. Process for preparation of alicyclic diepoxy compounds, curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation
US20060009547A1 (en) * 2002-09-05 2006-01-12 Hisashi Maeshima Process for preparation of alicyclic diepoxy compound, curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation
CN101070373A (en) * 2002-09-05 2007-11-14 大赛璐化学工业株式会社 Epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating
TWI312800B (en) * 2002-09-05 2009-08-01 Daicel Chem Process for the preparation of an alicyclic diepoxy compound, a curable epoxy resin composition, an epoxy resin composition for encapsulating electronics parts, a stabilizer for electrically insulating oils, and an epoxy resin composition for casting
KR101005948B1 (en) * 2002-09-05 2011-01-05 다이셀 가가꾸 고교 가부시끼가이샤 Process for preparation of alicyclic diepoxy compounds, curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation
JP2004339417A (en) * 2003-05-16 2004-12-02 Daicel Chem Ind Ltd Casting epoxy resin composition for electric insulation and cured product
JP2005350546A (en) * 2004-06-09 2005-12-22 Sekisui Chem Co Ltd Photocurable resin composition
JP2006228708A (en) * 2005-01-20 2006-08-31 Mitsui Chemicals Inc Organic el sealant
JP2007112981A (en) * 2005-09-22 2007-05-10 Hitachi Chem Co Ltd Resin composition reduced in char production amount and optical member using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109661431A (en) * 2016-12-09 2019-04-19 株式会社Lg化学 Encapsulating composition
CN109661431B (en) * 2016-12-09 2021-09-21 株式会社Lg化学 Packaging composition
WO2021234766A1 (en) * 2020-05-18 2021-11-25 シャープ株式会社 Display device

Also Published As

Publication number Publication date
KR102031575B1 (en) 2019-10-14
CN107556457A (en) 2018-01-09
TW201428026A (en) 2014-07-16
JP5967654B2 (en) 2016-08-10
KR20150090059A (en) 2015-08-05
JP2014105286A (en) 2014-06-09
TWI591093B (en) 2017-07-11
CN104822729A (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP6363508B2 (en) Resin composition and cured product thereof (1)
JP5967654B2 (en) Resin composition and cured product thereof (2)
TWI603963B (en) Energy ray curable type resin composition and cured product thereof
TWI654212B (en) Energy ray hardening resin composition and hardened material thereof
TWI623576B (en) Resin composition for sealing organic EL element and cured product thereof
JP6284217B2 (en) Energy ray curable resin composition and cured product thereof
KR101563827B1 (en) Epoxy polymerizable composition and organic el device
JP6112603B2 (en) Energy ray curable resin composition and cured product thereof
JP6012433B2 (en) Resin composition and cured product thereof (3)
JP2016108512A (en) Resin composition for organic el element, surface sealing agent and organic el device using the same
JP6474432B2 (en) Energy ray curable resin composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157012283

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857978

Country of ref document: EP

Kind code of ref document: A1