WO2014083763A1 - 車両用加速抑制装置及び車両用加速抑制方法 - Google Patents
車両用加速抑制装置及び車両用加速抑制方法 Download PDFInfo
- Publication number
- WO2014083763A1 WO2014083763A1 PCT/JP2013/006363 JP2013006363W WO2014083763A1 WO 2014083763 A1 WO2014083763 A1 WO 2014083763A1 JP 2013006363 W JP2013006363 W JP 2013006363W WO 2014083763 A1 WO2014083763 A1 WO 2014083763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- driving force
- operation amount
- host vehicle
- obstacle
- detection unit
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims description 59
- 238000001514 detection method Methods 0.000 claims abstract description 84
- 230000001629 suppression Effects 0.000 claims description 91
- 238000003384 imaging method Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 13
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0953—Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/087—Interaction between the driver and the control system where the control system corrects or modifies a request from the driver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2201/00—Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
- B60T2201/10—Automatic or semi-automatic parking aid systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/20—Steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
- B60W2540/103—Accelerator thresholds, e.g. kickdown
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/18—Steering angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/801—Lateral distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/10—Change speed gearings
- B60W2710/105—Output torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/10—Longitudinal speed
- B60W2720/106—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2754/00—Output or target parameters relating to objects
- B60W2754/10—Spatial relation or speed relative to objects
- B60W2754/20—Lateral distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/08—Predicting or avoiding probable or impending collision
- B60Y2300/09—Taking automatic action to avoid collision, e.g. braking or steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/08—Predicting or avoiding probable or impending collision
- B60Y2300/095—Predicting travel path or likelihood of collision
- B60Y2300/0954—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/43—Control of engines
- B60Y2300/433—Control of engine throttle
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/14—Traffic control systems for road vehicles indicating individual free spaces in parking areas
Definitions
- the present invention relates to a vehicle acceleration suppression device and a vehicle acceleration suppression method that suppress contact between an obstacle such as another vehicle and the host vehicle.
- Patent Document 1 As a technique for suppressing contact between an obstacle (such as another vehicle) and the host vehicle, there is a technique described in Patent Document 1, for example.
- the traveling direction of the host vehicle at the start is predicted based on the information on the host vehicle at the time of parking.
- an image of the predicted traveling direction of the host vehicle is displayed on the monitor among images captured around the host vehicle.
- the driving force of the host vehicle is limited to a preset driving force limit value in accordance with the amount of operation of the steering operator that can be operated by the driver of the host vehicle.
- the limitation of the driving force is that the relative distance between the host vehicle and the obstacle is equal to or less than a predetermined limiting relative distance, and the operation amount of the opening of the driving force indicating operator that indicates the driving force of the host vehicle. Is exceeded when a preset driving force manipulated variable threshold is exceeded.
- the operation of the steering operator is performed.
- the driving force of the host vehicle is limited to the driving force limit value according to the amount. For this reason, even when the driver performs an inappropriate driving operation such as misunderstanding or erroneous operation during driving, it is possible to suppress contact between the obstacle and the host vehicle.
- FIG. 1 is a block diagram illustrating a schematic configuration of a vehicle acceleration suppression device 1 according to the present embodiment.
- the vehicle acceleration suppression device 1 includes an imaging unit 2, an ambient environment recognition sensor 4, an ambient environment recognition information calculation unit 6, a wheel speed sensor 8, and a host vehicle vehicle speed calculation unit 10.
- the shift position sensor 12 and the shift position calculation unit 14 are provided.
- the vehicle acceleration suppression device 1 includes a steering angle sensor 16, a steering angle calculation unit 18, a brake pedal operation information calculation unit 20, an accelerator operation amount calculation unit 22, and an acceleration suppression operation condition determination unit 24.
- the acceleration suppression control unit 26 is provided.
- the imaging unit 2 captures an image around the host vehicle and outputs an information signal including the captured image (may be described as “imaging signal” in the following description) to the ambient environment recognition sensor 4.
- the imaging unit 2 is formed using a front camera, a right side camera, a left side camera, and a rear camera.
- the front camera is a camera that images the front of the host vehicle in the front-rear direction
- the right side camera is a camera that images the right side of the host vehicle.
- the left side camera is a camera that images the left side of the host vehicle
- the rear camera is a camera that images the rear side of the host vehicle in the vehicle front-rear direction.
- the ambient environment recognition sensor 4 is based on the imaging signal received from the imaging unit 2, and the information signal including the individual image corresponding to the imaging direction of the camera is included in the image included in the imaging signal received from each camera. (In the following description, it may be described as “individual image signal”). Then, the generated individual image signal is output to the surrounding environment recognition information calculation unit 6. The ambient environment recognition information calculation unit 6 detects an obstacle present in the image included in the individual image signal based on the individual image signal received from the ambient environment recognition sensor 4. Then, an information signal including the detected obstacle (in the following description, may be described as “obstacle signal”) is output to the acceleration suppression operation condition determination unit 24.
- the obstacle present in the image included in the individual image signal is an object existing around the host vehicle, such as another vehicle or a wall.
- the wheel speed sensor 8 detects the rotation speed of a wheel (for example, a front wheel) included in the host vehicle. Then, an information signal including the detected rotational speed (may be described as “wheel speed signal” in the following description) is output to the own vehicle vehicle speed calculation unit 10.
- the own vehicle vehicle speed calculation unit 10 calculates the speed of the own vehicle from the rotation speed of the wheel based on the wheel speed signal received from the wheel speed sensor 8. Then, an information signal including the calculated speed (which may be described as “vehicle speed calculated value signal” in the following description) is output to the acceleration suppression operation condition determination unit 24.
- the shift position sensor 12 detects the current position of a member that changes the gear position (for example, “P”, “D”, “R”, etc.) of the host vehicle, such as a shift knob or a shift lever. Then, an information signal including the detected current position (may be described as “shift position signal” in the following description) is output to the shift position calculation unit 14. Based on the shift position signal received from the shift position sensor 12, the shift position calculation unit 14 calculates the gear position (shift position) of the host vehicle from the current position of the shift knob, shift lever, and the like. Then, an information signal including the calculated gear position (may be described as “gear position signal” in the following description) is output to the acceleration suppression operation condition determination unit 24.
- the steering angle sensor 16 is provided, for example, in a steering column (not shown) that rotatably supports a steering operator (for example, a steering wheel) (not shown).
- the steering angle sensor 16 detects a current steering angle that is a current rotation angle (steering operation amount) of a steering operator that can be operated by the driver. Then, the steering angle sensor 16 outputs an information signal including the detected current steering angle (in the following description, sometimes described as “current steering angle signal”) to the steering angle calculation unit 18.
- the steering angle calculation unit 18 calculates an operation amount (rotation angle) from the neutral position of the steering operator from the current rotation angle of the steering operator based on the current steering angle signal received from the steering angle sensor 16. . Then, an information signal including the calculated operation amount from the neutral position (in the following description, may be described as a “rotation angle signal”) is output to the acceleration suppression operation condition determination unit 24.
- the steering operator is not limited to the steering hole that is rotated by the driver, and may be, for example, a lever that is operated by the driver to tilt by hand.
- the steering angle calculation unit 18 generates and outputs the lever inclination angle from the neutral position as an information signal corresponding to the rotation angle signal described above.
- the brake pedal operation information calculation unit 20 detects the opening degree of the brake pedal 28 that is a braking force instruction operator. Then, based on the detected opening degree of the brake pedal 28, the depression amount of the brake pedal 28 is calculated based on the state where the depression amount is “0”. Further, an information signal including the calculated depression amount of the brake pedal 28 (in the following description, it may be described as “braking side depression amount signal”) is output to the acceleration suppression operation condition determination unit 24.
- the braking force instruction operator can be operated by the driver of the host vehicle and is configured to instruct the braking force of the host vehicle by a change in the opening degree. Note that the braking force instruction operator is not limited to a brake pedal that the driver steps on with his / her foot, and may be, for example, a lever that the driver operates with his / her hand.
- the accelerator operation amount calculation unit 22 detects the opening degree of the accelerator pedal 30 that is a driving force instruction operator. Then, based on the detected opening degree of the accelerator pedal 30, the depression amount of the accelerator pedal 30 is calculated with reference to the state where the depression amount is “0”. Further, an information signal including the calculated depression amount of the accelerator pedal 30 (in the following description, it may be described as a “driving side depression amount signal”) is sent to the acceleration suppression operation condition determination unit 24 and the acceleration suppression control unit 26. Output.
- the driving force instruction operator is configured to be operable by the driver of the host vehicle and to instruct the driving force of the host vehicle by changing the opening. Note that the driving force instruction operator is not limited to an accelerator pedal with which the driver steps on with his / her foot, and may be, for example, a lever operated by the driver with his / her hand.
- the acceleration suppression operation condition determination unit 24 includes an obstacle relative distance detection unit 32, a driving force operation amount detection unit 34, a steering operation amount detection unit 36, a driving force increase necessity calculation unit 38, and a vehicle speed detection unit 40.
- the contact time calculating unit 42 and the driving force limiting unit 44 are provided.
- the obstacle relative distance detection unit 32 detects the relative distance between the host vehicle and the obstacle based on the obstacle signal input from the surrounding environment recognition information calculation unit 6. Then, an information signal including the detected relative distance (which may be referred to as a “relative distance signal” in the following description) is converted into a driving force increase necessity calculating unit 38, a contact time calculating unit 42, and a driving force limit. To the unit 44.
- the relative distance between the host vehicle and the obstacle for example, the distance between the obstacle (such as a bumper) projecting around the host vehicle and the obstacle is used.
- the driving force operation amount detection unit 34 detects the driving force operation amount that is the operation amount of the accelerator pedal 30 based on the driving side depression amount signal received from the accelerator operation amount calculation unit 22. Then, an information signal including the detected driving force operation amount (in the following description, may be described as a “driving force operation amount signal”) is output to the driving force limiting unit 44.
- the driving force operation amount detected by the driving force operation amount detector 34 is the operation amount of the accelerator pedal 30 by the driver of the host vehicle.
- the steering operation amount detection unit 36 detects the steering operation amount that is the operation amount of the steering operator based on the rotation angle signal received from the steering angle calculation unit 18. Then, an information signal including the detected steering operation amount (which may be referred to as a “steering operation amount signal” in the following description) is supplied to the driving force increase necessity calculation unit 38, the contact time calculation unit 42, and the drive. Output to the force limiter 44.
- the steering operation amount detected by the steering operation amount detection unit 36 is the operation amount of the steering operator by the driver of the host vehicle.
- the driving force increase necessity calculating unit 38 is based on the relative distance signal received from the obstacle relative distance detecting unit 32 and the steering operation amount signal received from the steering operation amount detecting unit 36.
- the necessity for increasing the driving force which is a necessity for increasing the value, is calculated.
- an information signal including the calculated necessity for increasing the driving force (in the following description, it may be described as a “driving force increase necessity signal”) is output to the driving force limiter 44. That is, the driving force increase necessity calculation unit 38 calculates the driving force increase necessity based on the relative distance detected by the obstacle relative distance detection unit 32 and the steering operation amount detected by the steering operation amount detection unit 36.
- the necessity for increasing the driving force when the necessity for increasing the driving force is calculated, for example, as shown in FIG. 2, it is set in advance from the current position of the host vehicle MC based on the received relative distance signal and steering operation amount signal. The course of the vehicle within the range is estimated. Then, on the estimated course of the host vehicle, the ratio of obstacles (other vehicles OC in FIG. 2) within the range of the vehicle width of the host vehicle MC is calculated, and this calculated ratio (in FIG. 70/100) is calculated as the necessity of increasing the driving force (70 [%] in FIG. 2).
- FIG. 2 is a diagram showing a specific situation when the necessity for increasing the driving force is calculated.
- the host vehicle MC Indicates a situation where the vehicle moves backward (runs backward in the vehicle front-rear direction).
- a region representing the estimated course of the host vehicle is indicated by a symbol “CE”.
- a preset range is set to a range of 4 [m] from the current position of the host vehicle MC.
- the vehicle speed detection unit 40 detects the speed of the host vehicle based on the vehicle speed calculation value signal received from the host vehicle vehicle speed calculation unit 10. Then, an information signal including the detected speed of the own vehicle (may be described as “vehicle speed signal” in the following description) is output to the contact time calculation unit 42.
- the contact time calculation unit 42 receives a relative distance signal received from the obstacle relative distance detection unit 32, a steering operation amount signal received from the steering operation amount detection unit 36, and an input from the vehicle speed detection unit 40.
- the obstacle contact time is calculated based on the vehicle speed signal.
- an information signal including the calculated obstacle contact time in the following description, may be described as “obstacle contact time signal”) is output to the driving force limiter 44.
- the obstacle contact time is the time that elapses until the host vehicle contacts the obstacle. That is, the contact time calculation unit 42 is based on the relative distance detected by the obstacle relative distance detection unit 32, the steering operation amount detected by the steering operation amount detection unit 36, and the speed detected by the vehicle speed detection unit 40. Calculate the contact time.
- FIG. 3 is a diagram showing a specific situation when the obstacle contact time is calculated.
- the host vehicle MC When the driver is steering the steering operator clockwise (clockwise), the host vehicle MC A situation where the vehicle travels backward (runs backward in the vehicle longitudinal direction) is shown.
- a region representing the estimated course of the host vehicle MC is indicated by a symbol “CE”, and an obstacle contact distance is indicated by a symbol “CD”.
- the driving force limiter 44 performs a process of calculating a driving force limit request value for limiting the driving force of the host vehicle to a preset driving force limit value based on various information signals received.
- an information signal including the calculated driving force limit request value (in the following description, it may be referred to as “driving force limit request value signal”) is sent to the acceleration suppression control unit. 26.
- driving force limit request value signal an information signal including the calculated driving force limit request value (in the following description, it may be referred to as “driving force limit request value signal”) is sent to the acceleration suppression control unit. 26.
- driving force limit request value signal an information signal including the calculated driving force limit request value (in the following description, it may be referred to as “driving force limit request value signal”) is sent to the acceleration suppression control unit. 26.
- driving force limit request value signal an information signal including the calculated driving force limit request value (in the following description, it may be referred to as “driving force limit request value signal”) is sent to the acceleration suppression control unit. 26.
- the driving force operation amount threshold is a threshold for starting control for limiting the driving force of the host vehicle to a driving force limit value set in advance, and is set by a process described later.
- the driving force limit value is an upper limit value of the opening degree of a throttle valve 46 described later, and is set by a process described later.
- the acceleration suppression control unit 26 determines whether the driving force of the host vehicle is based on the driving side depression amount signal received from the accelerator operation amount calculation unit 22 and the driving force restriction request value signal received from the driving force restriction unit 44.
- the opening degree of the throttle valve 46 is changed so that the driving force limit value is obtained.
- the throttle valve 46 is a valve provided in a drive source (engine) (not shown) of the host vehicle.
- processing performed by the driving force limiting unit 44 Next, an example of processing performed by the driving force limiting unit 44 will be described with reference to FIGS. 1 to 3 and FIGS. 4 to 9. Hereinafter, as an example of processing performed by the driving force limiting unit 44, processing from (P1) to (P6) will be described. Note that the process performed by the driving force limiting unit 44 is not limited to the processes (P1) to (P6) shown below. In addition, the processing performed by the driving force limiting unit 44 may be a combination of at least two of the following processing (P1) to (P6).
- Condition (B) The relative distance detected by the obstacle relative distance detection unit 32 is equal to or less than a preset relative distance for restriction.
- Condition (C) The depression amount of the brake pedal 28 by the driver is “0”, that is, the brake pedal 28 is not operated by the driver.
- the setting of the limiting relative distance is changed according to the speed of the host vehicle detected by the vehicle speed detection unit 40, for example. In this case, the relative distance for restriction is set longer as the speed of the host vehicle detected by the vehicle speed detection unit 40 is higher.
- Whether or not the amount of depression of the brake pedal 28 by the driver is “0” is determined based on the amount of depression included in the braking-side depression amount signal received from the brake pedal operation information calculation unit 20.
- FIG. 4 is a diagram illustrating the relationship between the steering operation amount detected by the steering operation amount detection unit 36 and the driving force operation amount threshold value.
- the steering operation amount detected by the steering operation amount detection unit 36 is indicated as “steering angle (deg)”, and the driving force operation amount threshold is set as “acceleration suppression start accelerator operation amount (deg)”. Show. That is, in the process of (P1), the larger the steering operation amount detected by the steering operation amount detection unit 36, the smaller the driving force operation amount threshold value is set, and the driving force of the host vehicle is limited earlier. Performs processing to limit to values.
- FIG. 5 is a diagram illustrating the relationship between the driving force increase necessity calculated by the driving force increase necessity calculating unit 38 and the driving force manipulated variable threshold.
- the driving force operation amount threshold is indicated as “acceleration suppression start accelerator operation amount (deg)”. That is, in the process of (P2), the lower the driving force increase necessity calculated by the driving force increase necessity calculating unit 38 is, the lower the driving force manipulated variable threshold is set to a smaller value, and The process for limiting to the driving force limit value is performed.
- FIG. 6 is a diagram illustrating a relationship between the obstacle contact time calculated by the contact time calculation unit 42 and the driving force operation amount threshold value.
- the driving force operation amount threshold is indicated as “acceleration suppression start accelerator operation amount (deg)”. That is, in the process of (P3), as the obstacle contact time calculated by the contact time calculation unit 42 is shorter, the driving force operation amount threshold is set to a smaller value, and the driving force of the host vehicle is limited earlier. Performs processing to limit to values.
- FIG. 7 is a diagram illustrating the relationship between the steering operation amount detected by the steering operation amount detection unit 36 and the driving force limit value.
- the steering operation amount detected by the steering operation amount detector 36 is indicated as “steering angle (deg)”
- the driving force limit value is indicated as “acceleration suppression amount throttle opening (deg)”. . That is, in the process of (P4), the larger the steering operation amount detected by the steering operation amount detection unit 36 is, the larger the driving force limit value is set and the suppression amount for the driving force of the host vehicle is increased. The process for limiting to the driving force limit value is performed.
- FIG. 8 is a diagram illustrating the relationship between the driving force increase necessity calculated by the driving force increase necessity calculating unit 38 and the driving force limit value.
- the driving force limit value is indicated as “acceleration suppression amount throttle opening (deg)”. That is, in the process of (P5), the driving force limit value is set to a larger value as the driving force increase necessity calculated by the driving force increase necessity calculating unit 38 is lower, and the suppression amount for the driving force of the host vehicle is increased. Thus, processing for limiting to the driving force limit value at an early stage is performed.
- FIG. 9 is a diagram illustrating the relationship between the obstacle contact time calculated by the contact time calculation unit 42 and the driving force limit value.
- the driving force limit value is indicated as “acceleration suppression start accelerator operation amount (deg)”. That is, in the process of (P6), the shorter the obstacle contact time calculated by the contact time calculation unit 42, the larger the driving force limit value is set, and the suppression amount for the driving force of the host vehicle is increased. The process for limiting to the driving force limit value is performed.
- the driving force limiting unit 44 changes the setting of the driving force operation amount threshold according to the steering operation amount detected by the steering operation amount detection unit 36.
- the driving force limiter 44 changes the setting of the driving force limit value according to the steering operation amount detected by the steering operation amount detector 36.
- the driving force limiter 44 detects the steering operation amount detector 36 when at least the condition (A) and the condition (B) are satisfied among the conditions (A) to (C). The driving force of the host vehicle is limited to the driving force limit value according to the amount of steering operation performed.
- FIG. 10 is a flowchart of operations performed using the vehicle acceleration suppression device 1.
- the vehicle acceleration suppression device 1 performs the process described below every preset sampling time (for example, 50 [msec]).
- the vehicle acceleration suppression device 1 starts processing (START)
- step S10 processing for acquiring various types of vehicle information (“vehicle information acquisition processing" shown in the figure) is performed. . If the process which acquires various vehicle information is performed in step S10, the process which the vehicle acceleration suppression apparatus 1 performs will transfer to step S12.
- the various types of vehicle information include information on the relative distance detected by the obstacle relative distance detection unit 32, information on the driving force operation amount detected by the driving force operation amount detection unit 34, and the steering operation amount detection unit 36. Is information on the amount of steering operation detected.
- various vehicle information includes information on the speed detected by the vehicle speed detection unit 40, information on the shift position calculated by the shift position calculation unit 14, and the brake pedal 28 calculated by the brake pedal operation information calculation unit 20. It is information of the amount of stepping on.
- step S12 it is determined whether or not the host vehicle is in the parking operation based on the speed information and the shift position information among the various types of vehicle information acquired in step S10 ("Parking in progress" shown in the figure). ?)). If it is determined in step S12 that the host vehicle is in a parking operation ("Yes" shown in the figure), the processing performed by the vehicle acceleration suppression device 1 proceeds to step S14.
- step S12 determines whether the host vehicle is not in the parking operation ("No" shown in the figure).
- step S14 a process of determining the traveling direction of the host vehicle based on the speed information and the shift position information among the various vehicle information acquired in step S10 ("traveling direction determination process" shown in the figure). Do. If the process which judges the advancing direction of the own vehicle is performed in step S14, the process which the vehicle acceleration suppression apparatus 1 performs will transfer to step S16.
- step S16 among various vehicle information acquired in step S10, information on relative distance, information on driving force operation amount, information on steering operation amount, information on depression amount of brake pedal 28, and information on step S14. Refer to the determined traveling direction of the vehicle. Then, based on the various vehicle information referred to and the determination result, a process for setting the driving force operation amount threshold value and a process for determining whether or not to limit the driving force of the host vehicle to the driving force limit value (shown in the figure). "Acceleration limit operation determination process").
- the process performed by the vehicle acceleration suppression device 1 is as follows. Control goes to step S18. A specific example of the process performed in step S16 will be described later.
- step S18 among the various types of vehicle information acquired in step S10, processing for setting a driving force limit value based on information on relative distance, information on driving force operation amount, and information on steering operation amount (in the figure).
- (“Acceleration limit amount calculation output process") shown in FIG. if it is determined in step S16 that the driving force of the host vehicle is limited to the driving force limit value, the set driving force limit value is calculated as the driving force limit request value, and the driving force limit request value signal is calculated. The process which outputs to the acceleration suppression control part 26 is performed. If at least the process of setting the driving force limit value is performed in step S18, the process performed by the vehicle acceleration suppression device 1 returns to the process of step S10 (RETURN). A specific example of the process performed in step S18 will be described later.
- Specific example 1 First, among three specific examples, an example in which the driving force operation amount threshold value and the driving force limit value are set based on the magnitude of the steering operation amount detected by the steering operation amount detection unit 36 (in the following description, “ Will be described as “specific example 1”.
- Specific Example 1 as shown in FIG. 11, when the steering operation amount detected by the steering operation amount detection unit 36 is “0”, that is, when the steering operator is not being steered, the driving force operation amount threshold is set to The initial value is set in advance (“initial value” shown in the figure).
- FIG. 11 is a diagram illustrating a time chart when the driving force operation amount threshold value and the driving force limit value are set based on the magnitude of the steering operation amount detected by the steering operation amount detection unit 36. Further, in FIG. 11, the driving force operation amount threshold value and the valve opening upper limit value are indicated by dotted lines.
- the larger the steering operation amount detected by the steering operation amount detection unit 36 the smaller the driving force operation amount threshold value is set (see FIG. 4 and the like).
- the larger the steering operation amount detected by the steering operation amount detection unit 36 the larger the driving force limit value is set (see FIG. 7 etc.), and the valve opening degree is set.
- the upper limit value is decreased to increase the amount of restraint on the driving force of the host vehicle.
- the driving force limit request value signal is output to the acceleration suppression control unit 26 in a state where the driving force suppression operation determination flag is established (“ON” in the drawing).
- the opening degree of the throttle valve 46 is changed by changing the opening degree of the throttle valve 46 so that the driving force of the host vehicle becomes the driving force limit value.
- the opening is set according to the upper limit value of the valve opening.
- the driving force manipulated variable threshold is set to a small value.
- the driving force operation amount threshold is set to a smaller value as the steering operation amount is larger. Can be restricted. For this reason, even when the driver performs an inappropriate driving operation such as misunderstanding or erroneous operation during driving, the driving force of the own vehicle is limited as the steering operation amount increases, and the obstacle of the own vehicle is reduced. It is possible to suppress the approach between the obstacle and the own vehicle.
- the driving force operation amount threshold value and the driving force limit value are set based on the high driving force increase necessity calculated by the driving force increase necessity calculating unit 38 (hereinafter referred to as “the driving force increase amount threshold value”). Will be described as “specific example 2” in some cases.
- the driving force operation amount threshold value is set to a preset initial value (in the drawing, "Initial value").
- FIG. 12 is a diagram illustrating a time chart when setting the driving force operation amount threshold value and the driving force limit value based on the driving force increase necessity calculated by the driving force increase necessity calculating unit 38. is there. In FIG. 12, the driving force operation amount threshold value and the valve opening upper limit value are indicated by dotted lines.
- the driving force manipulated variable threshold value becomes smaller as the driving force increase necessity calculated by the driving force increase necessity calculating unit 38 is lower (see FIG. 5 and the like).
- the driving force limit value is set to a larger value as the driving force increase necessity calculated by the driving force increase necessity calculating unit 38 is lower (see FIG. 8 and the like). Then, the valve opening upper limit value is decreased, and the suppression amount for the driving force of the host vehicle is increased. After the time point t3, when the driver depresses the accelerator pedal 30 and the driving force operation amount detected by the driving force operation amount detector 34 increases, the detected driving force operation amount exceeds the driving force operation amount threshold at time t4. The above condition (A) is established.
- the driving force limit request value signal is output to the acceleration suppression control unit 26 in a state where the driving force suppression operation determination flag is established (“ON” in the drawing).
- the opening degree of the throttle valve 46 is changed by changing the opening degree of the throttle valve 46 so that the driving force of the host vehicle becomes the driving force limit value.
- the opening is set according to the upper limit value of the valve opening.
- the necessity for increasing the driving force is low during the parking operation, and the driving force operation amount is lower as the necessity for accelerating the host vehicle is lower.
- Set the threshold to a small value.
- there is an obstacle near the host vehicle and there is a high possibility that the host vehicle will come into contact with the obstacle, and there is little allowance for contact (the distance between the host vehicle and the obstacle is short).
- the lower the necessity of accelerating the host vehicle the smaller the driving force operation amount threshold value is set. Therefore, by suppressing the driving force of the host vehicle, the operation state of the accelerator pedal 30 and the acceleration state of the host vehicle are reduced. It is possible to suppress a sense of incongruity felt by the driver from the difference between the two.
- FIG. 13 is a diagram illustrating a time chart when setting the driving force operation amount threshold value and the driving force limit value based on the length of the obstacle contact time calculated by the contact time calculation unit 42.
- the driving force manipulated variable threshold value and the valve opening upper limit value are indicated by dotted lines.
- the shorter the obstacle contact time calculated by the contact time calculation unit 42 the smaller the driving force operation amount threshold value (see FIG. 6 and the like).
- the shorter the obstacle contact time calculated by the contact time calculation unit 42 the larger the driving force limit value is set (see FIG. 9 etc.), and the valve opening degree The upper limit value is decreased, and the amount of suppression for the driving force of the host vehicle is increased.
- the driving force limit request value signal is output to the acceleration suppression control unit 26 in a state where the driving force suppression operation determination flag is established (“ON” in the drawing).
- the opening degree of the throttle valve 46 is changed by changing the opening degree of the throttle valve 46 so that the driving force of the host vehicle becomes the driving force limit value.
- the opening is set according to the upper limit value of the valve opening.
- the vehicle acceleration suppression method implemented by the operation of the vehicle acceleration suppression device 1 of the present embodiment is a steering operation element that is the operation amount of the steering operation element that can be operated by the driver of the host vehicle.
- the driving force of the host vehicle is limited to a preset driving force limit value in accordance with the operation amount.
- the limitation on the driving force is that the relative distance between the host vehicle and the obstacle is equal to or less than a predetermined limiting relative distance, the driver of the host vehicle can operate, and the driving force of the host vehicle is indicated.
- the operation is performed when the operation amount of the driving force indicating operator to be exceeded exceeds a preset driving force operation amount threshold.
- the driving force limiting unit 44 performs a process of limiting the driving force of the host vehicle MC to the driving force limit value according to the steering operation amount detected by the steering operation amount detecting unit 36.
- the relative distance detected by the obstacle relative distance detection unit 32 is equal to or less than the limiting relative distance
- the driving detected by the driving force operation amount detection unit 34 is performed. Performed when the force operation amount exceeds the driving force operation amount threshold.
- the obstacle and the host vehicle MC contact according to the amount of operation of the steering operator by the driver.
- the driver performs an inappropriate driving operation based on the amount of operation of the steering operator by the driver, the obstacle and the vehicle MC It is possible to suppress contact with the host vehicle MC.
- the driving force operation amount threshold value is set to a smaller value as the possibility of contact with an obstacle such as another vehicle existing near the host vehicle MC increases.
- the driving force operation amount threshold is set to a smaller value as the steering operation amount is larger. It becomes possible to limit the driving force.
- the driving force of the host vehicle MC is limited as the steering operation amount increases, and the approach of the host vehicle MC to the obstacle is suppressed. It is possible to suppress contact between the obstacle and the host vehicle MC.
- the driving force limiting unit 44 changes the setting of the driving force operation amount threshold according to the steering operation amount detected by the steering operation amount detection unit 36. For this reason, according to the steering operation amount detected by the steering operation amount detection unit 36, it is possible to change the timing for starting the process of limiting the driving force of the host vehicle MC to the driving force limit value. As a result, even when the driver performs an inappropriate driving operation, the timing for starting to suppress the acceleration increase of the host vehicle MC can be changed based on the operation amount of the steering operator by the driver. It becomes possible.
- the driving force limiting unit 44 sets the driving force operation amount threshold value to a smaller value as the steering operation amount detected by the steering operation amount detecting unit 36 is larger. For this reason, the process of limiting the driving force of the host vehicle MC to the driving force limit value is started as the steering operation amount detected by the steering operation amount detection unit 36 is large and the obstacle and the host vehicle MC are more likely to contact each other. It is possible to advance the timing. As a result, even when the driver performs an inappropriate driving operation, the higher the possibility that the obstacle and the host vehicle MC are in contact with each other based on the operation amount of the steering operator by the driver, the higher the host vehicle MC. It is possible to suppress an increase in acceleration at an early stage.
- the driving force increase necessity calculation unit 38 calculates the driving force increase necessity based on the relative distance detected by the obstacle relative distance detection unit 32 and the steering operation amount detected by the steering operation amount detection unit 36. .
- the driving force limiter 44 sets the driving force operation amount threshold value to a smaller value as the necessity for increasing the driving force is lower. For this reason, the driving force increase necessity calculated by the driving force increase calculation unit 38 is low, and the higher the possibility that the obstacle and the host vehicle MC are in contact with each other, the driving force of the host vehicle MC is limited to the driving force limit value. It is possible to advance the timing for starting the processing to be performed.
- the contact time calculation unit 42 calculates an obstacle contact time that is a time elapsed until the host vehicle MC contacts the obstacle.
- the driving force limiter 44 sets the driving force manipulation amount threshold to a smaller value as the obstacle contact time calculated by the contact time calculator 42 becomes shorter. For this reason, the process of limiting the driving force of the host vehicle MC to the driving force limit value is started as the obstacle contact time calculated by the contact time calculating unit 42 is short and the obstacle and the host vehicle MC are more likely to contact each other. It is possible to advance the timing.
- the driving force limiter 44 changes the setting of the driving force limit value according to the steering operation amount detected by the steering operation amount detector 36. For this reason, it becomes possible to change the driving force limit value for limiting the driving force of the host vehicle MC according to the steering operation amount detected by the steering operation amount detector 36. As a result, even when the driver performs an inappropriate driving operation, the degree of suppression of the acceleration increase of the host vehicle MC can be changed based on the operation amount of the steering operator by the driver. .
- the driving force limiter 44 sets the driving force limit value to a larger value as the steering operation amount detected by the steering operation amount detector 36 is larger. Therefore, as the steering operation amount detected by the steering operation amount detection unit 36 is larger and the possibility that the obstacle and the host vehicle MC are in contact with each other increases, the driving force limit value for limiting the driving force of the host vehicle MC is increased. Thus, it is possible to increase the amount of suppression of the driving force of the host vehicle. As a result, even when the driver performs an inappropriate driving operation, the higher the possibility that the obstacle and the host vehicle MC are in contact with each other based on the operation amount of the steering operator by the driver, the higher the host vehicle MC. It is possible to increase the degree of suppression of increase in acceleration. As a result, the higher the possibility that the obstacle and the host vehicle MC are in contact with each other, the earlier the increase in the acceleration of the host vehicle MC can be suppressed.
- the driving force increase necessity calculation unit 38 calculates the driving force increase necessity based on the relative distance detected by the obstacle relative distance detection unit 32 and the steering operation amount detected by the steering operation amount detection unit 36. .
- the driving force limiter 44 sets the driving force limit value to a larger value as the necessity for increasing the driving force is lower. For this reason, the driving force increase necessity calculated by the driving force increase necessity calculating unit 38 is low, and the higher the possibility that the obstacle and the host vehicle MC are in contact with each other, the driving force limit value that limits the driving force of the host vehicle MC. It is possible to increase the amount of suppression of the driving force of the host vehicle.
- the contact time calculation unit 42 calculates an obstacle contact time, which is the time that elapses until the host vehicle MC contacts the obstacle.
- the driving force limiter 44 sets the driving force limit value to a larger value as the obstacle contact time calculated by the contact time calculator 42 becomes shorter. For this reason, as the obstacle contact time calculated by the contact time calculation unit 42 is short and the possibility that the obstacle and the host vehicle MC are in contact with each other increases, the driving force limit value for limiting the driving force of the host vehicle MC is increased. Thus, it is possible to increase the amount of suppression of the driving force of the host vehicle.
- the higher the possibility that the obstacle and the host vehicle MC are in contact with each other It becomes possible to increase the degree of suppression of the acceleration increase of the host vehicle MC.
- the higher the possibility that the obstacle and the host vehicle MC are in contact with each other the earlier the increase in the acceleration of the host vehicle MC can be suppressed.
- the imaging unit 2 captures an image around the host vehicle MC.
- the obstacle relative distance detection unit 32 detects the relative distance between the host vehicle MC and the obstacle based on the image captured by the imaging unit 2.
- the imaging unit 2 front camera or the like
- the relative distance is detected for a vehicle that does not include the imaging unit 2 at the beginning. Therefore, it is possible to add a configuration for acquiring information for this purpose.
- the processing used in the vehicle acceleration suppression device 1 of the present embodiment can be shared.
- the imaging unit 2 can be shared.
- information for detecting a relative distance compared to a case of using a configuration that measures a distance using a highly directional radio wave, such as a millimeter wave radar, around the host vehicle MC.
- information for detecting the relative distance can be acquired over a wide range.
- the driving force of the host vehicle MC is limited to a preset driving force limit value according to the operation amount of the steering operator.
- the limitation on the driving force is that the relative distance between the host vehicle MC and the obstacle is equal to or less than a preset relative distance for limitation, and the operation amount of the opening degree of the driving force indicating operator is a preset driving. Performed when the force manipulated variable threshold is exceeded. For this reason, even when the driver performs an inappropriate driving operation, the higher the possibility that the obstacle and the host vehicle MC are in contact with each other according to the amount of operation of the steering operator by the driver, the higher the host vehicle. It is possible to suppress an increase in MC acceleration. As a result, even when the driver performs an inappropriate driving operation, the contact between the obstacle and the host vehicle MC can be suppressed depending on the possibility that the obstacle and the host vehicle MC come into contact with each other. It becomes.
- the driving force operation amount threshold value is set to a smaller value as the possibility of contact with an obstacle such as another vehicle existing near the host vehicle MC increases.
- the driving force operation amount threshold is set to a smaller value as the steering operation amount is larger. It becomes possible to limit the driving force. Thereby, even when the driver performs an inappropriate driving operation, the driving force of the host vehicle MC is limited as the steering operation amount is larger, and the approach of the host vehicle MC to the obstacle is suppressed. It is possible to suppress contact between the obstacle and the host vehicle MC.
- the configuration of the obstacle relative distance detection unit 32 is configured to detect the relative distance based on the image captured by the imaging unit 2, but the configuration of the obstacle relative distance detection unit 32 is However, the present invention is not limited to this. That is, the configuration of the obstacle relative distance detection unit 32 may be configured to detect the relative distance based on information acquired using a configuration for transmitting and receiving radio waves such as a millimeter wave radar.
- the configuration of the acceleration suppression control unit 26 is configured so that the driving force of the host vehicle MC becomes the driving force limit value based on the driving side depression amount signal and the driving force limit request value signal.
- the configuration is such that the opening of 46 is changed, the present invention is not limited to this.
- the configuration of the acceleration suppression control unit 26 is configured to change the brake fluid pressure so that the driving force of the host vehicle MC becomes the driving force limit value based on the driving side depression amount signal and the driving force limit request value signal. It is good also as a structure.
- the configuration of the acceleration suppression control unit 26 is configured so that the opening degree of the throttle valve 46 is set so that the driving force of the host vehicle MC becomes the driving force limit value based on the driving side depression amount signal and the driving force limit request value signal. Further, at least one of the brake fluid pressure and the brake fluid pressure may be changed. Also, for example, when the host vehicle MC is an EV vehicle, the acceleration suppression control unit 26 is configured such that the current / voltage value supplied to the motor is changed so that the driving force of the host vehicle MC becomes the driving force limit value.
- an EV vehicle Electric Vehicle
- an EV vehicle Electric Vehicle
- the configuration of the acceleration suppression control unit 26 is energized to the opening of the throttle valve 46 and the motor so that the driving force of the host vehicle MC becomes the driving force limit value. It is good also as a structure which changes at least one among the electric current and voltage values to perform.
- the HEV vehicle Hybrid Electric Vehicle
- the HEV vehicle is a vehicle (hybrid vehicle) including an engine and a motor as drive sources.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Traffic Control Systems (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
特許文献1に記載されている技術では、駐車時における自車両の情報に基づいて、発進時における自車両の進行方向を予測する。そして、自車両の発進時には、自車両の周辺を撮影した画像のうち、予測した自車両の進行方向の画像をモニタに表示する。
本発明は、上記のような問題点に着目してなされたもので、運転者が不適切な運転操作を行なった場合であっても、障害物と自車両との接触を抑制することが可能な、車両用加速抑制装置及び車両用加速抑制方法を提供することを目的とする。
このため、運転時における勘違いや誤操作等、運転者が不適切な運転操作を行なった場合であっても、障害物と自車両との接触を抑制することが可能となる。
(第一実施形態)
以下、本発明の第一実施形態(以下、本実施形態と記載する)について、図面を参照しつつ説明する。
(構成)
図1は、本実施形態の車両用加速抑制装置1の概略構成を示すブロック図である。
図1中に示すように、車両用加速抑制装置1は、撮像部2と、周囲環境認識センサ4と、周囲環境認識情報演算部6と、車輪速センサ8と、自車両車速演算部10と、シフトポジションセンサ12と、シフトポジション演算部14を備える。これに加え、車両用加速抑制装置1は、操舵角センサ16と、操舵角演算部18と、ブレーキペダル操作情報演算部20と、アクセル操作量演算部22と、加速抑制作動条件判断部24と、加速抑制制御部26を備える。
撮像部2は、自車両の周囲の画像を撮像し、撮像した画像を含む情報信号(以降の説明では、「撮像信号」と記載する場合がある)を、周囲環境認識センサ4へ出力する。
周囲環境認識情報演算部6は、周囲環境認識センサ4から入力を受けた個別画像信号に基づき、個別画像信号が含む画像中に存在する障害物を検出する。そして、検出した障害物を含む情報信号(以降の説明では、「障害物信号」と記載する場合がある)を、加速抑制作動条件判断部24へ出力する。
ここで、個別画像信号が含む画像中に存在する障害物とは、自車両の周囲に存在する物体であり、例えば、他車両や壁等である。
自車両車速演算部10は、車輪速センサ8から入力を受けた車輪速信号に基づき、車輪の回転速度から自車両の速度を演算する。そして、演算した速度を含む情報信号(以降の説明では、「車速演算値信号」と記載する場合がある)を、加速抑制作動条件判断部24へ出力する。
シフトポジション演算部14は、シフトポジションセンサ12から入力を受けたシフト位置信号に基づき、シフトノブやシフトレバー等の現在位置から自車両のギヤ位置(シフトポジション)を演算する。そして、演算したギヤ位置を含む情報信号(以降の説明では、「ギヤ位置信号」と記載する場合がある)を、加速抑制作動条件判断部24へ出力する。
操舵角センサ16は、例えば、図示しない操舵操作子(例えば、ステアリングホイール)を回転可能に支持するステアリングコラム(図示せず)に設ける。
操舵角演算部18は、操舵角センサ16から入力を受けた現在操舵角信号に基づき、操舵操作子の現在の回転角度から、操舵操作子の中立位置からの操作量(回転角)を演算する。そして、演算した中立位置からの操作量を含む情報信号(以降の説明では、「回転角信号」と記載する場合がある)を、加速抑制作動条件判断部24へ出力する。
なお、操舵操作子は、運転者が回転させるステアリングホールに限定するものではなく、例えば、運転者が手で傾ける操作を行なうレバーとしてもよい。この場合、操舵角演算部18は、中立位置からのレバーの傾斜角度を、上述した回転角信号に相当する情報信号として生成・出力する。
ここで、制動力指示操作子は、自車両の運転者が操作可能であり、且つ開度の変化により自車両の制動力を指示する構成である。なお、制動力指示操作子は、運転者が足で踏込み操作を行なうブレーキペダルに限定するものではなく、例えば、運転者が手で操作するレバーとしてもよい。
ここで、駆動力指示操作子は、自車両の運転者が操作可能であり、且つ開度の変化により自車両の駆動力を指示する構成である。なお、駆動力指示操作子は、運転者が足で踏込み操作を行なうアクセルペダルに限定するものではなく、例えば、運転者が手で操作するレバーとしてもよい。
障害物相対距離検出部32は、周囲環境認識情報演算部6から入力を受けた障害物信号に基づき、自車両と障害物との相対距離を検出する。そして、検出した相対距離を含む情報信号(以降の説明では、「相対距離信号」と記載する場合がある)を、駆動力増加必要性算出部38と、接触時間算出部42と、駆動力制限部44へ出力する。
ここで、自車両と障害物との相対距離としては、例えば、自車両のうち周囲に突出している部分(バンパー等)と障害物との距離を用いる。
駆動力操作量検出部34は、アクセル操作量演算部22から入力を受けた駆動側踏込み量信号に基づき、アクセルペダル30の操作量である駆動力操作量を検出する。そして、検出した駆動力操作量を含む情報信号(以降の説明では、「駆動力操作量信号」と記載する場合がある)を、駆動力制限部44へ出力する。ここで、駆動力操作量検出部34が検出する駆動力操作量は、自車両の運転者によるアクセルペダル30の操作量となる。
接触時間算出部42は、障害物相対距離検出部32から入力を受けた相対距離信号と、操舵操作量検出部36から入力を受けた操舵操作量信号と、車速検出部40から入力を受けた車速信号に基づき、障害物接触時間を算出する。そして、算出した障害物接触時間を含む情報信号(以降の説明では、「障害物接触時間信号」と記載する場合がある)を、駆動力制限部44へ出力する。
ここで、障害物接触時間は、自車両が障害物に接触するまでに経過する時間である。すなわち、接触時間算出部42は、障害物相対距離検出部32が検出した相対距離と、操舵操作量検出部36が検出した操舵操作量と、車速検出部40が検出した速度に基づき、障害物接触時間を算出する。
なお、図3は、障害物接触時間を算出する際の具体な状況を示す図であり、運転者が操舵操作子を右回り(時計回り)に操舵操作している状態で、自車両MCが後退(車両前後方向後方へ走行)する状況を示す。また、図3中では、推定した自車両MCの進路を表す領域を、符合「CE」で示し、障害物接触距離を、符合「CD」で示す。
条件(A).駆動力操作量検出部34が検出した駆動力操作量が、予め設定した駆動力操作量閾値を超える。
なお、駆動力操作量閾値は、自車両の駆動力を予め設定した駆動力制限値に制限するための制御を開始する閾値であり、後述する処理により設定する。また、駆動力制限値は、後述するスロットルバルブ46の開度の上限値であり、後述する処理により設定する。
加速抑制制御部26は、アクセル操作量演算部22から入力を受けた駆動側踏込み量信号と、駆動力制限部44から入力を受けた駆動力制限要求値信号に基づき、自車両の駆動力が駆動力制限値となるように、スロットルバルブ46の開度を変化させる。ここで、スロットルバルブ46は、自車両の図示しない駆動源(エンジン)が備えるバルブである。
次に、図1から図3を参照しつつ、図4から図9を用いて、駆動力制限部44が行う処理の一例を説明する。
以下、駆動力制限部44が行う処理の例として、(P1)から(P6)の処理を説明する。なお、駆動力制限部44が行う処理は、以下に示す(P1)から(P6)の処理に限定するものではない。また、駆動力制限部44が行う処理は、以下に示す(P1)から(P6)の処理の少なくとも二つを組み合わせてもよい。
条件(B).障害物相対距離検出部32が検出した相対距離が、予め設定した制限用相対距離以下である。
条件(C).運転者によるブレーキペダル28の踏込み量が「0」、すなわち、運転者により、ブレーキペダル28が操作されていない。
ここで、制限用相対距離は、例えば、車速検出部40が検出した自車両の速度に応じて設定を変更する。この場合、車速検出部40が検出した自車両の速度が高いほど、制限用相対距離を長く設定する。
また、運転者によるブレーキペダル28の踏込み量が「0」であるか否かの判定は、ブレーキペダル操作情報演算部20から入力を受けた制動側踏込み量信号が含む踏込み量に基づいて行なう。
すなわち、(P1)の処理では、操舵操作量検出部36が検出した操舵操作量が大きいほど、駆動力操作量閾値を小さい値に設定して、自車両の駆動力を、早期に駆動力制限値へ制限するための処理を行う。
すなわち、(P2)の処理では、駆動力増加必要性算出部38が算出した駆動力増加必要性が低いほど、駆動力操作量閾値を小さい値に設定して、自車両の駆動力を、早期に駆動力制限値へ制限するための処理を行う。
すなわち、(P3)の処理では、接触時間算出部42が算出した障害物接触時間が短いほど、駆動力操作量閾値を小さい値に設定して、自車両の駆動力を、早期に駆動力制限値へ制限するための処理を行う。
すなわち、(P4)の処理では、操舵操作量検出部36が検出した操舵操作量が大きいほど、駆動力制限値を大きい値に設定し、自車両の駆動力に対する抑制量を増加させて、早期に駆動力制限値へ制限するための処理を行う。
すなわち、(P5)の処理では、駆動力増加必要性算出部38が算出した駆動力増加必要性が低いほど、駆動力制限値を大きい値に設定し、自車両の駆動力に対する抑制量を増加させて、早期に駆動力制限値へ制限するための処理を行う。
すなわち、(P6)の処理では、接触時間算出部42が算出した障害物接触時間が短いほど、駆動力制限値を大きい値に設定し、自車両の駆動力に対する抑制量を増加させて、早期に駆動力制限値へ制限するための処理を行う。
上述したように、駆動力制限部44は、操舵操作量検出部36が検出した操舵操作量に応じて、駆動力操作量閾値の設定を変更する。また、駆動力制限部44は、操舵操作量検出部36が検出した操舵操作量に応じて、駆動力制限値の設定を変更する。
また、上述したように、駆動力制限部44は、上述した条件(A)から条件(C)のうち、少なくとも条件(A)及び条件(B)が成立すると、操舵操作量検出部36が検出した操舵操作量に応じて、自車両の駆動力を駆動力制限値に制限する。
次に、図1から図9を参照しつつ、図10から図13を用いて、本実施形態の車両用加速抑制装置1を用いて行なう動作の一例を説明する。
図10は、車両用加速抑制装置1を用いて行なう動作のフローチャートである。なお、車両用加速抑制装置1は、予め設定したサンプリング時間(例えば、50[msec])毎に、以下に説明する処理を行う。
図10に示すように、車両用加速抑制装置1が処理を開始(START)すると、まず、ステップS10において、各種の車両情報を取得する処理(図中に示す「車両情報取得処理」)を行う。ステップS10において、各種の車両情報を取得する処理を行うと、車両用加速抑制装置1が行なう処理は、ステップS12へ移行する。
ステップS12では、ステップS10で取得した各種の車両情報のうち、速度の情報とシフトポジションの情報に基づいて、自車両が駐車操作中であるか否かを判定(図中に示す「駐車操作中?」)する。
ステップS12において、自車両が駐車操作中である(図中に示す「Yes」)と判定した場合、車両用加速抑制装置1が行なう処理は、ステップS14へ移行する。
ステップS14では、ステップS10で取得した各種の車両情報のうち、速度の情報とシフトポジションの情報に基づいて、自車両の進行方向を判断する処理(図中に示す「進行方向判断処理」)を行なう。ステップS14において、自車両の進行方向を判断する処理を行うと、車両用加速抑制装置1が行なう処理は、ステップS16へ移行する。
ステップS16において、駆動力操作量閾値を設定する処理と、自車両の駆動力を駆動力制限値に制限するか否かを判断する処理を行うと、車両用加速抑制装置1が行なう処理は、ステップS18へ移行する。なお、ステップS16で行なう処理の具体例は、後述する。
ステップS18において、少なくとも駆動力制限値を設定する処理を行うと、車両用加速抑制装置1が行なう処理は、ステップS10の処理へ復帰(RETURN)する。なお、ステップS18で行なう処理の具体例は、後述する。
・具体例1
まず、三種類の具体例のうち、操舵操作量検出部36が検出した操舵操作量の大きさに基づいて、駆動力操作量閾値及び駆動力制限値を設定する例(以降の説明では、「具体例1」と記載する場合がある)について説明する。
具体例1では、図11中に示すように、操舵操作量検出部36が検出した操舵操作量が「0」、すなわち、操舵操作子が操舵されていない状態では、駆動力操作量閾値を、予め設定した初期値(図中に示す「初期値」)とする。これに加え、駆動力制限値を、予め設定した初期値として、スロットルバルブ46の開度の上限値(図中に示す「バルブ開度上限値」)を、予め設定した初期値(図中に示す「初期値」)とする。なお、図11は、操舵操作量検出部36が検出した操舵操作量の大きさに基づいて、駆動力操作量閾値及び駆動力制限値を設定する際のタイムチャートを示す図である。また、図11中では、駆動力操作量閾値及びバルブ開度上限値を、点線で示す。
そして、操舵操作子が操舵された時点、すなわち、操舵操作量検出部36が検出した操舵操作量が「0」を超えた時点t1で、上述した(P1)及び(P4)の処理を行う。
駆動力制限要求値信号を加速抑制制御部26へ出力すると、自車両の駆動力が駆動力制限値となるように、スロットルバルブ46の開度を変化させて、スロットルバルブ46の開度を、バルブ開度上限値に応じた開度とする。これにより、時点t2以降は、自車両の駆動力を抑制する制御を行なう(図中に示す「駆動力抑制制御作動」)。
このため、運転時における勘違いや誤操作等、運転者が不適切な運転操作を行なった場合であっても、操舵操作量が大きいほど自車両の駆動力を制限して、自車両の障害物への接近を抑制し、障害物と自車両との接触を抑制することが可能となる。
次に、三種類の具体例のうち、駆動力増加必要性算出部38が算出した駆動力増加必要性の高さに基づいて、駆動力操作量閾値及び駆動力制限値を設定する例(以降の説明では、「具体例2」と記載する場合がある)について説明する。
具体例2では、図12中に示すように、駆動力増加必要性算出部38が算出した駆動力増加必要性が高い状態では、駆動力操作量閾値を、予め設定した初期値(図中に示す「初期値」)とする。これに加え、駆動力制限値を、予め設定した初期値として、スロットルバルブ46の開度の上限値(図中に示す「バルブ開度上限値」)を、予め設定した初期値(図中に示す「初期値」)とする。なお、図12は、駆動力増加必要性算出部38が算出した駆動力増加必要性の高さに基づいて、駆動力操作量閾値及び駆動力制限値を設定する際のタイムチャートを示す図である。また、図12中では、駆動力操作量閾値及びバルブ開度上限値を、点線で示す。
そして、駆動力増加必要性算出部38が算出した駆動力増加必要性が低下した時点t3で、上述した(P2)及び(P5)の処理を行う。
時点t3の後、運転者がアクセルペダル30を踏込み、駆動力操作量検出部34が検出した駆動力操作量が増加すると、検出した駆動力操作量が駆動力操作量閾値を超えた時点t4で、上記の条件(A)が成立する。これにより、駆動力抑制作動判断フラグを成立させた状態(図中に示す「ON」)として、駆動力制限要求値信号を、加速抑制制御部26へ出力する。
駆動力制限要求値信号を加速抑制制御部26へ出力すると、自車両の駆動力が駆動力制限値となるように、スロットルバルブ46の開度を変化させて、スロットルバルブ46の開度を、バルブ開度上限値に応じた開度とする。これにより、時点t4以降は、自車両の駆動力を抑制する制御を行なう(図中に示す「駆動力抑制制御作動」)。
また、自車両を加速させる必要性が低いほど、駆動力操作量閾値を小さい値に設定するため、自車両の駆動力を抑制することにより、アクセルペダル30の操作状態と自車両の加速状態との乖離から運転者が感じる違和感を、抑制することが可能となる。
次に、三種類の具体例のうち、接触時間算出部42が算出した障害物接触時間の長さに基づいて、駆動力操作量閾値及び駆動力制限値を設定する例(以降の説明では、「具体例3」と記載する場合がある)について説明する。
具体例3では、図13中に示すように、接触時間算出部42が算出した障害物接触時間が長い状態では、駆動力操作量閾値を、予め設定した初期値(図中に示す「初期値」)とする。これに加え、駆動力制限値を、予め設定した初期値として、スロットルバルブ46の開度の上限値(図中に示す「バルブ開度上限値」)を、予め設定した初期値(図中に示す「初期値」)とする。なお、図13は、接触時間算出部42が算出した障害物接触時間の長さに基づいて、駆動力操作量閾値及び駆動力制限値を設定する際のタイムチャートを示す図である。また、図13中では、駆動力操作量閾値及びバルブ開度上限値を、点線で示す。
そして、接触時間算出部42が算出した障害物接触時間が短くなった時点t5で、上述した(P3)及び(P6)の処理を行う。
時点t5の後、運転者がアクセルペダル30を踏込み、駆動力操作量検出部34が検出した駆動力操作量が増加すると、検出した駆動力操作量が駆動力操作量閾値を超えた時点t6で、上記の条件(A)が成立する。これにより、駆動力抑制作動判断フラグを成立させた状態(図中に示す「ON」)として、駆動力制限要求値信号を、加速抑制制御部26へ出力する。
以上説明したように、ステップS16及びステップS18において具体例3の処理を行なうことにより、駐車操作中において、自車両の近くに障害物が存在する場合に、障害物接触時間が短いほど、駆動力操作量閾値を小さい値に設定する。これにより、障害物に自車両が接触する可能性が高く、また、接触までの余裕が少ない(自車両と障害物との距離が近い)場合に、自車両の駆動力を、早期に駆動力制限値へ制限するための処理を行うことが可能となる。
本実施形態の車両用加速抑制装置1であれば、以下に記載する効果を奏することが可能となる。
(1)駆動力制限部44が、操舵操作量検出部36が検出した操舵操作量に応じて、自車両MCの駆動力を駆動力制限値に制限する処理を行う。自車両MCの駆動力を駆動力制限値に制限する処理は、障害物相対距離検出部32が検出した相対距離が制限用相対距離以下であるとともに、駆動力操作量検出部34が検出した駆動力操作量が駆動力操作量閾値を超えると行なう。
その結果、運転者が不適切な運転操作を行なった場合であっても、運転者による操舵操作子の操作量に基づき、障害物と自車両MCが接触する可能性に応じて、障害物と自車両MCとの接触を抑制することが可能となる。
これにより、運転者が不適切な運転操作を行なった場合であっても、操舵操作量が大きいほど自車両MCの駆動力を制限して、自車両MCの障害物への接近を抑制し、障害物と自車両MCとの接触を抑制することが可能となる。
このため、操舵操作量検出部36が検出した操舵操作量に応じて、自車両MCの駆動力を駆動力制限値に制限する処理を開始する時期を変更することが可能となる。
その結果、運転者が不適切な運転操作を行なった場合であっても、運転者による操舵操作子の操作量に基づいて、自車両MCの加速度増加の抑制を開始する時期を変更することが可能となる。
このため、操舵操作量検出部36が検出した操舵操作量が大きく、障害物と自車両MCが接触する可能性が高いほど、自車両MCの駆動力を駆動力制限値に制限する処理を開始する時期を早めることが可能となる。
その結果、運転者が不適切な運転操作を行なった場合であっても、運転者による操舵操作子の操作量に基づき、障害物と自車両MCが接触する可能性が高いほど、自車両MCの加速度増加を早期に抑制することが可能となる。
このため、駆動力増加必要性算出部38が算出した駆動力増加必要性が低く、障害物と自車両MCが接触する可能性が高いほど、自車両MCの駆動力を駆動力制限値に制限する処理を開始する時期を早めることが可能となる。
その結果、運転者が不適切な運転操作を行なった場合であっても、駆動力増加必要性算出部38が算出した駆動力増加必要性に基づき、障害物と自車両MCが接触する可能性が高いほど、自車両MCの加速度増加を早期に抑制することが可能となる。
このため、接触時間算出部42が算出した障害物接触時間が短く、障害物と自車両MCが接触する可能性が高いほど、自車両MCの駆動力を駆動力制限値に制限する処理を開始する時期を早めることが可能となる。
その結果、運転者が不適切な運転操作を行なった場合であっても、接触時間算出部42が算出した障害物接触時間に基づき、障害物と自車両MCが接触する可能性が高いほど、自車両MCの加速度増加を早期に抑制することが可能となる。
このため、操舵操作量検出部36が検出した操舵操作量に応じて、自車両MCの駆動力を制限する駆動力制限値を変更することが可能となる。
その結果、運転者が不適切な運転操作を行なった場合であっても、運転者による操舵操作子の操作量に基づいて、自車両MCの加速度増加の抑制度合いを変更することが可能となる。
このため、操舵操作量検出部36が検出した操舵操作量が大きく、障害物と自車両MCが接触する可能性が高いほど、自車両MCの駆動力を制限する駆動力制限値を増加させて、自車両の駆動力に対する抑制量を増加させることが可能となる。
その結果、運転者が不適切な運転操作を行なった場合であっても、運転者による操舵操作子の操作量に基づき、障害物と自車両MCが接触する可能性が高いほど、自車両MCの加速度増加の抑制度合いを増加させることが可能となる。これにより、障害物と自車両MCが接触する可能性が高いほど、自車両MCの加速度増加を早期に抑制することが可能となる。
このため、駆動力増加必要性算出部38が算出した駆動力増加必要性が低く、障害物と自車両MCが接触する可能性が高いほど、自車両MCの駆動力を制限する駆動力制限値を増加させて、自車両の駆動力に対する抑制量を増加させることが可能となる。
その結果、運転者が不適切な運転操作を行なった場合であっても、駆動力増加必要性算出部38が算出した駆動力増加必要性に基づき、障害物と自車両MCが接触する可能性が高いほど、自車両MCの加速度増加の抑制度合いを増加させることが可能となる。これにより、障害物と自車両MCが接触する可能性が高いほど、自車両MCの加速度増加を早期に抑制することが可能となる。
このため、接触時間算出部42が算出した障害物接触時間が短く、障害物と自車両MCが接触する可能性が高いほど、自車両MCの駆動力を制限する駆動力制限値を増加させて、自車両の駆動力に対する抑制量を増加させることが可能となる。
その結果、運転者が不適切な運転操作を行なった場合であっても、接触時間算出部42が算出した障害物接触時間に基づき、障害物と自車両MCが接触する可能性が高いほど、自車両MCの加速度増加の抑制度合いを増加させることが可能となる。これにより、障害物と自車両MCが接触する可能性が高いほど、自車両MCの加速度増加を早期に抑制することが可能となる。
その結果、相対距離を検出するための情報を取得する構成として、撮像部2(前方カメラ等)を用いることにより、当初は撮像部2を備えていない構成の車両に対し、相対距離を検出するための情報を取得する構成を後付けすることが可能となる。
また、例えば、相対距離を検出するための情報を取得する構成として、ミリ波レーダ等、指向性が強い電波を用いて距離を計測する構成を用いる場合と比較して、自車両MCの周囲に対し、相対距離を検出するための情報を、広範囲に取得することが可能となる。
このため、運転者が不適切な運転操作を行なった場合であっても、運転者による操舵操作子の操作量に応じて、障害物と自車両MCが接触する可能性が高いほど、自車両MCの加速度増加を抑制することが可能となる。
その結果、運転者が不適切な運転操作を行なった場合であっても、障害物と自車両MCが接触する可能性に応じて、障害物と自車両MCとの接触を抑制することが可能となる。
これにより、運転者が不適切な運転操作を行なった場合であっても、操舵操作量が大きいほど自車両MCの駆動力を制限して、自車両MCの障害物への接近を抑制し、障害物と自車両MCとの接触を抑制することが可能となる。
(1)本実施形態では、障害物相対距離検出部32の構成を、撮像部2で撮像した画像に基づき、相対距離を検出する構成としたが、障害物相対距離検出部32の構成は、これに限定するものではない。すなわち、障害物相対距離検出部32の構成を、例えば、ミリ波レーダ等の電波を送受信する構成を用いて取得した情報に基づき、相対距離を検出する構成としてもよい。
(2)本実施形態では、加速抑制制御部26の構成を、駆動側踏込み量信号と駆動力制限要求値信号に基づき、自車両MCの駆動力が駆動力制限値となるように、スロットルバルブ46の開度を変化させる構成としたが、これに限定するものではない。
すなわち、例えば、加速抑制制御部26の構成を、駆動側踏込み量信号と駆動力制限要求値信号に基づき、自車両MCの駆動力が駆動力制限値となるように、ブレーキ液圧を変化させる構成としてもよい。
また、例えば、自車両MCが、EV車両である場合、加速抑制制御部26の構成を、自車両MCの駆動力が駆動力制限値となるように、モータへ通電する電流・電圧値を変化させる構成としてもよい。ここで、EV車両(Electric Vehicle)とは、駆動源としてモータを備える車両(電気自動車)である。
以上、本願が優先権を主張する日本国特許出願2012-259201(2012年11月27日出願)の全内容は、参照により本開示の一部をなす。
ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
2 撮像部
4 周囲環境認識センサ
6 周囲環境認識情報演算部
8 車輪速センサ
10 自車両車速演算部
12 シフトポジションセンサ
14 シフトポジション演算部
16 操舵角センサ
18 操舵角演算部
20 ブレーキペダル操作情報演算部
22 アクセル操作量演算部
24 加速抑制作動条件判断部
26 加速抑制制御部
28 ブレーキペダル
30 アクセルペダル
32 障害物相対距離検出部
34 駆動力操作量検出部
36 操舵操作量検出部
38 駆動力増加必要性算出部
40 車速検出部
42 接触時間算出部
44 駆動力制限部
46 スロットルバルブ
MC 自車両
OC 他車両
CE 推定した自車両の進路を表す領域
CD 障害物接触距離
Claims (11)
- 自車両と障害物との相対距離を検出する障害物相対距離検出部と、
前記自車両の運転者が操作可能であり、且つ前記自車両の駆動力を指示する駆動力指示操作子の操作量である駆動力操作量を検出する駆動力操作量検出部と、
前記運転者が操作可能な操舵操作子の操作量である操舵操作量を検出する操舵操作量検出部と、
前記障害物相対距離検出部が検出した相対距離が予め設定した制限用相対距離以下であるとともに、前記駆動力操作量検出部が検出した駆動力操作量が予め設定した駆動力操作量閾値を超えると、前記操舵操作量検出部が検出した操舵操作量に応じて、前記自車両の駆動力を予め設定した駆動力制限値に制限する駆動力制限部と、を備えることを特徴とする車両用加速抑制装置。 - 前記駆動力制限部は、前記操舵操作量検出部が検出した操舵操作量に応じて前記駆動力操作量閾値の設定を変更することを特徴とする請求項1に記載した車両用加速抑制装置。
- 前記駆動力制限部は、前記操舵操作量検出部が検出した操舵操作量が大きいほど、前記駆動力操作量閾値を小さい値に設定することを特徴とする請求項2に記載した車両用加速抑制装置。
- 前記障害物相対距離検出部が検出した相対距離及び前記操舵操作量検出部が検出した操舵操作量に基づき、前記自車両の駆動力を増加させる必要性である駆動力増加必要性を算出する駆動力増加必要性算出部を備え、
前記駆動力制限部は、前記駆動力増加必要性算出部が算出した駆動力増加必要性が低いほど、前記駆動力操作量閾値を小さい値に設定することを特徴とする請求項1から請求項3のうちいずれか1項に記載した車両用加速抑制装置。 - 前記自車両の速度を検出する車速検出部と、
前記障害物相対距離検出部が検出した相対距離と、前記操舵操作量検出部が検出した操舵操作量と、前記車速検出部が検出した速度と、に基づき、前記自車両が前記障害物に接触するまでに経過する時間である障害物接触時間を算出する接触時間算出部と、を備え、
前記駆動力制限部は、前記接触時間算出部が算出した障害物接触時間が短いほど、前記駆動力操作量閾値を小さい値に設定することを特徴とする請求項1から請求項4のうちいずれか1項に記載した車両用加速抑制装置。 - 前記駆動力制限部は、前記操舵操作量検出部が検出した操舵操作量に応じて前記駆動力制限値の設定を変更することを特徴とする請求項1から請求項5のうちいずれか1項に記載した車両用加速抑制装置。
- 前記駆動力制限部は、前記操舵操作量検出部が検出した操舵操作量が大きいほど、前記駆動力制限値を大きい値に設定することを特徴とする請求項6に記載した車両用加速抑制装置。
- 前記障害物相対距離検出部が検出した相対距離及び前記操舵操作量検出部が検出した操舵操作量に基づき、前記自車両の駆動力を増加させる必要性である駆動力増加必要性を算出する駆動力増加必要性算出部を備え、
前記駆動力制限部は、前記駆動力増加必要性算出部が算出した駆動力増加必要性が低いほど、前記駆動力制限値を大きい値に設定することを特徴とする請求項1から請求項7のうちいずれか1項に記載した車両用加速抑制装置。 - 前記自車両の速度を検出する車速検出部と、
前記障害物相対距離検出部が検出した相対距離と、前記操舵操作量検出部が検出した操舵操作量と、前記車速検出部が検出した速度と、に基づき、前記自車両が前記障害物に接触するまでに経過する時間である障害物接触時間を算出する接触時間算出部と、を備え、
前記駆動力制限部は、前記接触時間算出部が算出した障害物接触時間が短いほど、前記駆動力制限値を大きい値に設定することを特徴とする請求項1から請求項8のうちいずれか1項に記載した車両用加速抑制装置。 - 前記自車両の周囲の画像を撮像する撮像部を備え、
前記障害物相対距離検出部は、前記撮像部で撮像した画像に基づき、前記相対距離を検出することを特徴とする請求項1から請求項9のうちいずれか1項に記載した車両用加速抑制装置。 - 自車両と障害物との相対距離が予め設定した制限用相対距離以下であるとともに、前記自車両の運転者が操作可能であり、且つ前記自車両の駆動力を指示する駆動力指示操作子の操作量である駆動力操作量が予め設定した駆動力操作量閾値を超えると、前記運転者が操作可能な操舵操作子の操作量である操舵操作量に応じて、前記自車両の駆動力を予め設定した駆動力制限値に制限することを特徴とする車両用加速抑制方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380053594.6A CN104718565B (zh) | 2012-11-27 | 2013-10-28 | 车辆用加速抑制装置以及车辆用加速抑制方法 |
JP2014549777A JP5862799B2 (ja) | 2012-11-27 | 2013-10-28 | 車両用加速抑制装置及び車両用加速抑制方法 |
US14/440,940 US9561721B2 (en) | 2012-11-27 | 2013-10-28 | Vehicle acceleration suppression device and vehicle acceleration suppression method |
EP13859329.8A EP2927892B1 (en) | 2012-11-27 | 2013-10-28 | Vehicle acceleration restriction device and vehicle acceleration restriction method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-259201 | 2012-11-27 | ||
JP2012259201 | 2012-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014083763A1 true WO2014083763A1 (ja) | 2014-06-05 |
Family
ID=50827427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/006363 WO2014083763A1 (ja) | 2012-11-27 | 2013-10-28 | 車両用加速抑制装置及び車両用加速抑制方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9561721B2 (ja) |
EP (1) | EP2927892B1 (ja) |
JP (1) | JP5862799B2 (ja) |
CN (1) | CN104718565B (ja) |
WO (1) | WO2014083763A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104797477B (zh) * | 2012-11-27 | 2017-04-05 | 日产自动车株式会社 | 车辆用加速抑制装置以及车辆用加速抑制方法 |
EP2927080B1 (en) * | 2012-11-27 | 2017-05-31 | Nissan Motor Co., Ltd | Vehicle acceleration-suppression device, and vehicle acceleration-suppression method |
US9514650B2 (en) * | 2013-03-13 | 2016-12-06 | Honda Motor Co., Ltd. | System and method for warning a driver of pedestrians and other obstacles when turning |
JP6378139B2 (ja) * | 2015-06-30 | 2018-08-22 | 株式会社デンソー | 車両制御装置及び車両制御方法 |
JP6555056B2 (ja) * | 2015-09-30 | 2019-08-07 | アイシン精機株式会社 | 周辺監視装置 |
JP6731332B2 (ja) * | 2016-12-13 | 2020-07-29 | アイシン・エィ・ダブリュ株式会社 | 障害物判定システムおよび障害物判定プログラム |
JP7091816B2 (ja) * | 2018-05-08 | 2022-06-28 | トヨタ自動車株式会社 | 駆動力制御装置 |
JP6821644B2 (ja) * | 2018-12-28 | 2021-01-27 | 本田技研工業株式会社 | 車両制御装置及び車両制御方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007125981A (ja) * | 2005-11-02 | 2007-05-24 | Equos Research Co Ltd | 駐車制御装置 |
JP2008090664A (ja) | 2006-10-03 | 2008-04-17 | Denso Corp | 運転支援装置及びプログラム |
JP2009132205A (ja) * | 2007-11-29 | 2009-06-18 | Aisin Seiki Co Ltd | 駐車支援装置 |
JP2010048240A (ja) * | 2008-08-25 | 2010-03-04 | Denso Corp | 運転支援システム |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2791940B1 (fr) * | 1999-04-09 | 2001-06-08 | Renault | Dispositif d'assistance au controle des deplacements d'un vehicule automobile, notamment en vue de son parcage |
DE10220426A1 (de) * | 2002-05-08 | 2003-11-20 | Valeo Schalter & Sensoren Gmbh | Verfahren zum Betreiben eines Parkhilfesystems und Parkhilfesystem |
JP3849650B2 (ja) * | 2003-01-28 | 2006-11-22 | トヨタ自動車株式会社 | 車両 |
WO2006064544A1 (ja) * | 2004-12-14 | 2006-06-22 | Hitachi, Ltd. | 自動車庫入れ装置 |
DE102005003274A1 (de) * | 2005-01-25 | 2006-07-27 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Vermeidung und/oder Minderung der Folgen von Kollisionen beim Ausweichen vor Hindernissen |
US7970535B2 (en) | 2006-07-04 | 2011-06-28 | Denso Corporation | Drive assist system |
JP4254821B2 (ja) * | 2006-08-15 | 2009-04-15 | トヨタ自動車株式会社 | 制動制御装置 |
JP4386082B2 (ja) * | 2007-02-20 | 2009-12-16 | トヨタ自動車株式会社 | 車両走行支援装置 |
DE102007009745A1 (de) * | 2007-02-28 | 2008-09-04 | Continental Automotive Gmbh | Einparkhalbautomat |
JP5272448B2 (ja) * | 2008-03-04 | 2013-08-28 | 日産自動車株式会社 | 車両用運転支援装置及び車両用運転支援方法 |
JP5278031B2 (ja) * | 2009-02-24 | 2013-09-04 | 日産自動車株式会社 | 駐車支援装置及び駐車支援方法 |
CN101934771B (zh) * | 2009-06-29 | 2012-10-03 | 财团法人车辆研究测试中心 | 车辆碰撞警示系统 |
DE102010045694A1 (de) * | 2010-09-16 | 2012-03-22 | Daimler Ag | Verfahren zur Vermeidung von Kollisionen eines Fahrzeugs mit Hindernissen |
-
2013
- 2013-10-28 WO PCT/JP2013/006363 patent/WO2014083763A1/ja active Application Filing
- 2013-10-28 US US14/440,940 patent/US9561721B2/en active Active
- 2013-10-28 CN CN201380053594.6A patent/CN104718565B/zh active Active
- 2013-10-28 EP EP13859329.8A patent/EP2927892B1/en active Active
- 2013-10-28 JP JP2014549777A patent/JP5862799B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007125981A (ja) * | 2005-11-02 | 2007-05-24 | Equos Research Co Ltd | 駐車制御装置 |
JP2008090664A (ja) | 2006-10-03 | 2008-04-17 | Denso Corp | 運転支援装置及びプログラム |
JP2009132205A (ja) * | 2007-11-29 | 2009-06-18 | Aisin Seiki Co Ltd | 駐車支援装置 |
JP2010048240A (ja) * | 2008-08-25 | 2010-03-04 | Denso Corp | 運転支援システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2927892A4 |
Also Published As
Publication number | Publication date |
---|---|
CN104718565B (zh) | 2016-10-19 |
US9561721B2 (en) | 2017-02-07 |
CN104718565A (zh) | 2015-06-17 |
US20150298547A1 (en) | 2015-10-22 |
EP2927892B1 (en) | 2018-04-25 |
JP5862799B2 (ja) | 2016-02-16 |
JPWO2014083763A1 (ja) | 2017-01-05 |
EP2927892A4 (en) | 2016-04-27 |
EP2927892A1 (en) | 2015-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5862799B2 (ja) | 車両用加速抑制装置及び車両用加速抑制方法 | |
US8126625B2 (en) | Vehicle drive assist apparatus and method | |
US9481368B2 (en) | Park exit assist system and park exit assist method | |
JP4995029B2 (ja) | 車両の運転支援装置 | |
US9919735B2 (en) | Control system and control method for vehicle | |
EP3124361B1 (en) | Parking assistance device, parking assistance method, and non-transitory computer readable medium storing program | |
US9886859B2 (en) | Parking assistance device | |
US10055994B2 (en) | Parking assistance device | |
US10471991B2 (en) | Parking assistance device and program | |
US10377416B2 (en) | Driving assistance device | |
CN110891830A (zh) | 周边监控装置 | |
JP2012250673A (ja) | 車両用加速抑制装置及び車両用加速抑制方法 | |
JP2008174102A (ja) | 駐車支援装置 | |
US20200189653A1 (en) | Parking support apparatus | |
US20180061241A1 (en) | Parking exit assist device | |
CN110494338B (zh) | 停车辅助装置 | |
JP7476509B2 (ja) | 駐車支援装置、駐車支援方法、および駐車支援プログラム | |
EP3357792B1 (en) | Vehicle control apparatus | |
JP5942817B2 (ja) | 車両用加速抑制装置 | |
US20220097687A1 (en) | Parking assistance apparatus, parking assistance method, and program | |
JP2012250674A (ja) | 車両用加速抑制装置及び車両用加速抑制方法 | |
WO2022249837A1 (ja) | 機能制御装置、機能制御プログラム、自動運転制御装置、及び自動運転制御プログラム | |
US20220379925A1 (en) | Driving assistance apparatus, and vehicle | |
JP2022055775A (ja) | 駐車支援装置 | |
JP2022182957A (ja) | 機能制御装置、機能制御プログラム、自動運転制御装置、及び自動運転制御プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13859329 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014549777 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14440940 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013859329 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |