WO2014082319A1 - 一种光学防伪元件及使用该光学防伪元件的产品 - Google Patents
一种光学防伪元件及使用该光学防伪元件的产品 Download PDFInfo
- Publication number
- WO2014082319A1 WO2014082319A1 PCT/CN2012/085795 CN2012085795W WO2014082319A1 WO 2014082319 A1 WO2014082319 A1 WO 2014082319A1 CN 2012085795 W CN2012085795 W CN 2012085795W WO 2014082319 A1 WO2014082319 A1 WO 2014082319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical anti
- counterfeiting element
- element according
- mirror
- optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 102
- 239000000463 material Substances 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims description 48
- 230000000694 effects Effects 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims description 24
- 238000000576 coating method Methods 0.000 claims description 16
- 230000008859 change Effects 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000012876 topography Methods 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 4
- 239000002346 layers by function Substances 0.000 claims description 4
- 238000007639 printing Methods 0.000 claims description 3
- 230000002285 radioactive effect Effects 0.000 claims description 2
- 239000011247 coating layer Substances 0.000 claims 2
- 238000001465 metallisation Methods 0.000 claims 1
- 238000007747 plating Methods 0.000 abstract description 26
- 238000000034 method Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 244000145841 kine Species 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/30—Identification or security features, e.g. for preventing forgery
- B42D25/328—Diffraction gratings; Holograms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/30—Identification or security features, e.g. for preventing forgery
- B42D25/324—Reliefs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/30—Identification or security features, e.g. for preventing forgery
- B42D25/36—Identification or security features, e.g. for preventing forgery comprising special materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0977—Reflective elements
- G02B27/0983—Reflective elements being curved
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1842—Gratings for image generation
Definitions
- the present invention relates to the field of optical security, and more particularly to an optical security element and a product using the same. Background technique
- the optically altered coating technology is widely used for public anti-counterfeiting of high security securities such as banknotes. It can display different colors under different viewing angles, is easy to describe, is easy for the public to identify, and cannot use cameras, scanners, printers, etc.
- the device is imitated or copied, so it has a high anti-counterfeiting capability.
- an optically variable magnetic ink (OVMI) or SPARK technology is formed by adding a magnetic layer to the existing optically variable structure, which enables the OVMI particles to be aligned along the magnetic line direction by magnetic field induction. Thereby forming a specific graphic structure.
- OVMI optically variable magnetic ink
- SPARK technology is formed by adding a magnetic layer to the existing optically variable structure, which enables the OVMI particles to be aligned along the magnetic line direction by magnetic field induction.
- a specific graphic structure When the particle arrangement in OVMI has a specific regular change, optical characteristics such as motion and zoom can be generated (see US Pat. No. 7,517,7878 B2).
- the directional arrangement of the optically variable magnetic particles needs to rely on the magnetic field, it is restricted by the shape of the magnetic field, and the shape cannot be arbitrarily designed, and a specific orientation device and process are required.
- WO2011066990A2 and WO2011066991A2 disclose a method for simulating a curved surface by using a surface micromirror structure.
- the effect of OVMI can be achieved.
- the advantage is that the angle information of each pixel can be arbitrarily controlled, and the image information is realized. Precise control of details, but this method is difficult to plate, requires special high-cost processes and equipment, and the surface topography is difficult to control. Therefore, it is not easy to obtain high quality original
- the present invention provides an optical security element capable of overcoming the above drawbacks and a product using the optical security element in view of the disadvantages of the prior art that the process flow is complicated, special high cost equipment is required, and the surface topography is difficult to control.
- the invention provides an optical security element, the optical security element comprising a substrate, the upper surface of the substrate is at least partially covered with a mirror, and the cross section of the mirror is any curved surface structure capable of modulating incident light Or a combination thereof, the surface of the mirror is covered with a plating layer that cooperates with the mirror to achieve a desired optical effect.
- the present invention also provides a product using the above optical security element.
- the optical security element according to the present invention achieves a desired optical effect by the cooperation of the mirror and the plating layer covering the surface of the mirror, the optical security element according to the present invention and the product using the optical security element not only prepare a process flow Simple, no special high-cost equipment is required, and the surface topography can be easily controlled.
- Figure 1 is a cross-sectional view of an optical security element in accordance with the present invention.
- 2, 2(b), 2(c) are top view, optical structure, and partial cross-section of an optical security element having a translational rolling effect formed by a cylindrical mirror structure;
- 3(b), 3(c) are top view, optical structure, and partial cross-section of an optical security element having a translational rolling effect formed by a spherical mirror structure;
- 4, 4(b), 4(c) are a plan view, a perspective view, and a partial cross-section of an optical security element having a translational rolling effect formed by a zigzag structure;
- Figure 5 shows a schematic diagram of the effect of forming a 2D/3D using a cylindrical mirror
- 6 , 6(b), and 6(c) are a plan view, a perspective view, and a partial cross section of the optical security element having a three-dimensional relief image effect;
- Figure 7 is a top plan view of an optical security element having diffuse reflection characteristics. detailed description
- the optical security element 1 comprises a substrate 2, and the upper surface 21 of the substrate 2 is at least partially covered with a mirror 3 having a cross section capable of incident light. Any curved surface structure or combination thereof that is modulated, the surface of the mirror 3 is covered with a plating layer 4, which cooperates with the mirror 3 to obtain a desired optical effect.
- the arrangement of the mirrors 3 on the upper surface 21 of the substrate 2 may be arbitrary, that is, the present invention does not limit the arrangement of the mirrors 3 as long as it can achieve any desired optical effect.
- the azimuth angle of the mirror 3 is variable, and the direction of rotation of the azimuth may be 0-360°, that is, the azimuth angles of different mirrors 3 on the upper surface 21 of the substrate 2 may be the same. , can also be different.
- the azimuth rotation angle may have a random distribution of a certain distribution or an average distribution, which can produce an irregular effect, reduce the directional reflection of the light, and reduce the diffraction probability. This will be explained below in conjunction with the specific arrangement of the mirror 3.
- the present invention does not limit the type of the mirror 3 in the optical security element 1 according to the present invention as long as it is combined with the plating layer 4 to achieve a desired optical effect.
- the mirror 3 may be a cylindrical mirror (including a cylindrical convex mirror, a cylindrical concave mirror), a spherical mirror (including a spherical convex mirror, a spherical concave mirror), a Fresnel mirror or a combination thereof, and of course, other types may also be used.
- the cross section of the mirror 3 may be any curved surface structure or a combination thereof capable of modulating incident light as needed, and for example, may be any one of a curved structure such as a sine, an ellipse, a hyperbola, a parabola or the like. Splicing or combination of curved structures.
- the optical security element according to the present invention will be described by taking a cylindrical mirror as an example, but it should be understood that the same as the cylindrical mirror can be obtained by appropriately adjusting the parameters of the period, duty ratio, height, and the like of other types of mirrors.
- the optical effect, and the curved surface of the cylindrical mirror may not be a strict spherical surface, but any of the above curved surface structures.
- the surface of the cylindrical mirror has an arc, which can not only reflect the incident light, but also the surface curvature can scatter the incident light, thereby reducing the light intensity to a certain extent, thereby avoiding the disadvantage of glare and glare, thereby further Easy to observe.
- the cylindrical mirror preferably has no diffraction effect.
- the characteristic period of the cylindrical mirror in one direction parallel to the upper surface 21 of the substrate 2 is 2 ⁇ m - 200 ⁇ m, preferably 5 ⁇ m - 100 ⁇ m, and When the feature size in one direction satisfies the requirement, the feature size in the other direction perpendicular to the one direction is not limited.
- the characteristic period of the cylindrical mirror in a direction parallel to the upper surface 21 of the substrate 2 is less than 2 ⁇ m, there is a significant diffraction phenomenon, thereby exhibiting iridescence, which may interfere with the color and observation of the plating layer 4. .
- the direction of the cylindrical mirror When the direction of the cylindrical mirror is parallel to the direction of the line connecting the human eye, most of the light emitted through the cylindrical mirror enters the human eye, and a bright coating color can be observed; when the cylindrical mirror is connected to the human eye When there is a certain angle, only a part of the light reflected by the cylindrical mirror enters the human eye, so the brightness of the light decreases.
- the purity of the color of the coating observed by the human eye is the case where the color of the plating does not change with the change of the observation angle.
- the cylindrical mirror at different positions in the upper surface 21 of the substrate 2 of the optical security element 1 according to the present invention can have the same relative angle or specific motion form with respect to the human eye connection, thereby tilting or rotating
- the position of the cylindrical mirror at the same angle as the human eye is constantly changing, and by combining with the structure of the plating layer 4, optical characteristics such as dynamic sensitization, pattern conversion, and three-dimensional stereoscopic light change can be obtained. This will be described in detail below with reference to the accompanying drawings.
- the height of the cylindrical mirror in a direction perpendicular to the upper surface 21 of the substrate 2 is less than 25 ⁇ m, and preferably less than 15 ⁇ m.
- the cylindrical mirror can be obtained by micro-nano processing such as gray scale exposure, laser direct etching, electron beam exposure, heat reflow, etc., by ultraviolet casting, molding, nanoimprinting, etc. Micro-nano processing mode for batch copying.
- the structure of the plating layer 4 in the optical security element 1 according to the present invention will be described below.
- the plating layer 4 may be an interference type multilayer film structure which forms a Fabry-Perot cavity, which has a selective effect on incident white light, so that the outgoing light only contains certain wavelength bands, thereby forming a specific
- the incident angle changes the relative optical path changes, and the interference band also changes, causing the color presented to the observer to change accordingly, thereby forming a light-changing effect.
- the interference type multilayer film structure may include at least one of the following: consisting of a sequentially overlapping reflective layer, a low refractive index dielectric layer and an absorbing layer covering the surface of the mirror 3 a light-varnished coating structure; a plating layer composed of a sequentially overlapping reflective layer, a high refractive index dielectric layer and an absorbing layer covering the surface of the mirror 3; and covered by the surface of the mirror 3
- a dielectric layer structure composed of a high refractive index dielectric layer, a low refractive index dielectric layer, and a high refractive index dielectric layer which are sequentially overlapped.
- the material of the reflective layer may be a material with high reflectivity, such as gold, silver, copper, aluminum, etc.; the material of the absorption layer is required to be a material whose refractive index is close to the light absorption coefficient, and may be, for example, a semi-metal material (such as silicon, ⁇ , etc.), may also be a metal material or an alloy thereof (such as chromium, copper, nickel, nickel-chromium alloy, etc.); a refractive index of a high refractive index dielectric layer is higher than 1.7, such as zinc sulfide, titanium dioxide, etc.; The dielectric layer has a refractive index of less than or equal to 1.7, and may be, for example, magnesium fluoride, silica, cryolite, or the like.
- the topography of the plating layer 4 is preferably the same as the surface topography of the mirror 3, so that the process flow is simple.
- a hollow pattern may be formed in the plating layer 4, wherein the hollow pattern may be a macro pattern, a micro text, a fine line, or the like, so that a better anti-counterfeiting effect can be achieved.
- the plating layer 4 can be obtained by physical or chemical vapor deposition such as thermal evaporation, electron beam evaporation, magnetron sputtering, etc., and produces a homogenous covering effect (ie, its morphology and surface).
- the surface of the mirror 3 is identical in shape, thereby maintaining the cylindrical mirror topography.
- the upper surface 21 of the substrate 2 may further have a grating structure (for example, a holographic grating structure, a sub-wavelength grating structure, etc.), a sub-wavelength microrelief structure, or the like.
- a grating structure for example, a holographic grating structure, a sub-wavelength grating structure, etc.
- a sub-wavelength microrelief structure or the like.
- the period of the holographic grating is variable and is in the range of 500 ⁇ -5 ⁇ ; when the grating structure is a subwavelength microrelief structure, the subwavelength microrelief structure The period is variable and lies in the range of 50 nm to 500 nm, preferably in the range of 200 nm to 400 nm.
- the groove shape and the groove depth of the sub-wavelength micro-relief structure may be variable.
- the groove shape may be at least one of a sinusoidal shape, a rectangular shape, and a zigzag shape, and the groove depth may be located at 10 nm. It is in the range of 500 nm and preferably in the range of 50 nm to 200 nm.
- the above-mentioned grating structure, sub-wavelength microrelief structure and the like can be obtained by laser double-beam interference exposure, laser direct exposure, electron beam direct etching, etc., by ultraviolet casting, molding, Micro-nano processing methods such as nanoimprinting are used for batch copying.
- the optical security element 1 may further include a functional layer on the upper surface 21 of the substrate 2, on the surface of the mirror 3, and/or on the surface of the plating layer 4 (not Shown, for example, an embossed layer having diffractive optically variable features, interferometric optical characteristics, micro/nano structural features, printed features, partially metallized features, and magnetic, optical, electrical, and radioactive features for machine readable One or more characteristics.
- a functional layer on the upper surface 21 of the substrate 2, on the surface of the mirror 3, and/or on the surface of the plating layer 4 (not Shown, for example, an embossed layer having diffractive optically variable features, interferometric optical characteristics, micro/nano structural features, printed features, partially metallized features, and magnetic, optical, electrical, and radioactive features for machine readable One or more characteristics.
- a fluorescent material may be added to the material forming the mirror 3, so that the optical security element 1 according to the present invention has a fluorescent feature.
- the fluorescent material can also be added to the optical
- the substrate 2 of the security element 1 is at the upper surface 21 of the substrate 2, at the lower surface 22 of the substrate 2 and/or at the surface of the mirror 3.
- the fluorescent material can form a fluorescent pattern, for example by printing.
- the substrate 2 in the optical security element 1 according to the present invention may be an at least partially transparent colorless or colored medium layer, and the substrate 2 may be a single transparent dielectric film such as a PET film, a PVC film, or the like. It may of course be a transparent dielectric film with a functional coating (such as an embossing layer) on the surface, or a composite film.
- the functional coating may have the same features as the functional layers described above.
- the cylindrical mirror or the like according to the present invention has a plurality of parameters such as period, height, duty ratio, surface topography, azimuth angle, etc., when it is combined with the plating layer 4, it is also necessary to consider the thickness of each layer of the plating layer 4, Material refractive index, illumination source, surface micro-nano structure and other parameters. Therefore, in designing the optical security element 1 according to the present invention, the Fresnel reflection law, the Maxwell's equations, and the boundary conditions are used in conjunction with the structure of the plating layer 4 to collectively determine the modulation effect on the incident light.
- the optical security element 1 according to the invention is particularly suitable for making a window security thread.
- the thickness of the security thread is not more than 50 ⁇ m.
- the security paper with the window security thread is used for anti-counterfeiting of various high-security products such as banknotes, passports, and securities.
- the optical security element 1 according to the present invention can also be used as a label, a logo, a wide strip, a transparent window, a film, etc., and can be adhered to various articles by various bonding mechanisms, such as transfer to banknotes, credit cards, etc. Products and high value-added products.
- the products including the optical security element 1 according to the present invention may include, but are not limited to, various types of high security products such as banknotes, credit cards, passports, securities, and high value-added products, and Packaging paper, packaging boxes, etc.
- the optical security element 1 according to the present invention will be described in detail below with reference to Figs. 2(a) to 7 .
- the arrangement of the mirrors shown in Figs. 2(a) to 7 is merely an example, and the present invention is not limited thereto.
- the plating layer 4 is a color variable plating layer composed of Cr/Si0 2 /Al, wherein A1 is closely attached to the surface of the cylindrical mirror, and the layers are overlapped 810 2 and &, respectively, and the thickness of each layer in the plating layer 4 is 5 nm.
- the color of the plating layer 4 is changed from magenta to green as the viewing angle changes.
- the substrate 2 has a thickness of 19 ⁇ m.
- the effect achieved by adopting the structure of such an optical security element 1 is as follows: When the optical security element 1 is viewed in a plan view, as the viewing angle changes, the entire area produces an effect of shifting the pattern with color and light and dark. Similar to the Rollingbar effect implemented with OVMI technology.
- 3(b), and 3(c) are top view views of the mirror 3, a perspective view of the optical security element 1, and a section of the intercepted portion, respectively, in order to obtain the effect of the pattern translation rolling.
- 4 ⁇ , 4(b), and 4(c) are respectively a plan view showing a zigzag structure as a mirror 3 for obtaining the effect of pattern translation rolling, a three-dimensional structure of the optical security element 1, and a partial cross section taken.
- Fig. 5 is a schematic view showing the effect of forming a 2D/3D effect by using a cylindrical mirror 3 of a certain parameter and arrangement.
- the four image areas of the shape "KINE" are shown in Fig. 5(a), (), (c), (d), and their difference in the lateral position is d, which are filled with cylindrical mirrors with different azimuth angles.
- the structure (the parameters are the same as those of the cylindrical mirror in Fig. 2), the change in the azimuth angle is gradual.
- the regions in Fig. 5, ( ), (c), and (d) are divided as shown in Fig. 5 (e:), (f), (g), and (h), and then according to Fig.
- the synthesis is performed in a manner to determine the final form of the cylindrical mirror structure arrangement of the optical security element 1.
- the optical security element 1 formed in this way will have a change in viewing angle in a plan view 2D/3D features with color and light and dark variations with depth of field and certain dynamic effects.
- FIG. 6 , 6(b), and 6(c) are respectively a plan view and a three-dimensional structure of the optical security element 1 using the cylindrical mirror 3 in order to obtain an image effect having a three-dimensional embossing feeling with color and light and dark changes. Partial section taken.
- the black areas in Figures 6(a) and 6(b) schematically represent cylindrical mirrors, and the morphology and arrangement of the selected cylindrical mirrors are schematically given by Figure 6(c).
- Fig. 7 is a plan view showing a cylindrical mirror structure 3 for obtaining a diffuse reflection effect.
- the orientation of the cylindrical mirrors in different areas is relatively randomized.
- the effect achieved by the optical security element 1 shown in FIG. 7 is: When the optical security element is viewed from a plan view, as the viewing angle changes, the entire area produces a grainy, flickering color with a change in color and brightness. Reflection characteristics.
- the mirror 3 may adopt a structure that is not specifically limited to the above-mentioned embodiment, and may also adopt other planar or curved surfaces capable of modulating the surface-covered plating structure. Type surface relief structures and combinations thereof.
Landscapes
- Credit Cards Or The Like (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
一种光学防伪元件和使用该光学防伪元件的产品。光学防伪元件(1)包括基材(2),基材(2)的上表面(21)上至少部分地覆盖有面镜(3),面镜(3)的截面为能够对入射光进行调制的任意曲面结构或其组合,面镜(3)的表面上覆盖有镀层(4),镀层(4)与面镜(3)相互配合以获得期望的光学效果。这种光学防伪元件及使用其的产品克服了现有技术中工艺流程复杂、需要特殊的高成本设备以及表面形貌不易控制等缺点。
Description
一种光学防伪元件及使用该光学防伪元件的产品
技术领域
本发明涉及光学防伪领域, 尤其涉及一种光学防伪元件及使用该光学 防伪元件的产品。 背景技术
光变镀层技术被广泛用于钞票等高防伪有价证券的公众防伪, 其在不 同的观察角度下能够呈现不同的颜色, 便于描述, 易于公众识别, 且无法 利用照相机、 扫描仪、 打印机等电子设备模仿或复制, 所以具有很高的防 伪能力。
但是, 由于光变产品应用已经有数十年的时间, 单纯的光变镀层技术 已经不能很好地满足防伪领域的需求。 光变镀层已与镂空、 全息、 光变配 对等技术相结合并提供了新的防伪特征。例如,专利 US5766738、US6114018 以及 US7729026中提出通过选择适当的光变镀层厚度与颜色来实现光变匹 配特征。 瑞士 SICPA公司通过粉碎具有对称结构的五层光变镀层结构来形 成光变颜料 (OVP), 进而获得光变油墨 (OVI), 其能够与印刷技术结合, 并在世界多种钞票中得到了广泛应用。 作为 OVI的进一步发展, 在现有光 变结构中增加一层磁性层就形成了光变磁性油墨(OVMI)即 SPARK技术, 该技术通过磁场诱导使得 OVMI颗粒能够沿磁感线方向定向排布, 从而形 成特定的图文结构。 当 OVMI中颗粒排列具有特定规律变化时, 能够产生 动感、 缩放等光学特征(请见专利 US7517578B2)。 但是由于光变磁性颗粒 的定向排布需要依靠磁场, 故受到磁场形状的制约, 不能对形状进行任意 设计,且需要特定的定向设备与工艺。为了克服这一缺点, WO2011066990A2 和 WO2011066991A2公开了一种利用表面微反镜结构模拟曲面的方法, 通
过精确控制每个微反镜的倾角与方位角, 在微反镜之上沉积光变镀层结构, 能够实现 OVMI的效果, 其优势在于能够任意控制每个像素的角度信息, 实现对图像信息与细节的精确控制, 但是这种方法制版难度大, 需要特殊 的高成本的工艺和设备, 且表面形貌不易控制。 因此不易获得高质量的原
发明内容
本发明针对现有技术中工艺流程复杂、 需要特殊的高成本设备以及表 面形貌不易控制等缺点, 提供一种能够克服上述缺陷的光学防伪元件及使 用该光学防伪元件的产品。
本发明提供一种光学防伪元件, 该光学防伪元件包括基材, 所述基材 的上表面上至少部分地覆盖有面镜, 所述面镜的截面为能够对入射光进行 调制的任意曲面结构或其组合, 所述面镜的表面上覆盖有镀层, 所述镀层 与所述面镜相互配合以获得期望的光学效果。
本发明还提供一种使用上述光学防伪元件的产品。
由于根据本发明的光学防伪元件通过面镜与覆盖在面镜表面上的镀层 的相互配合来获得期望的光学效果, 所以根据本发明的光学防伪元件及使 用该光学防伪元件的产品不仅制备工艺流程简单、 不需要特殊的高成本设 备, 而且还能够容易地控制表面形貌。 附图说明
图 1为根据本发明的光学防伪元件的剖面图;
图 2 、 2(b), 2(c)为采用柱面镜结构形成的具有平移滚动效果的光学 防伪元件的俯视观察图、 立体结构示意及截取的部分截面;
图 3 、 3(b), 3(c)为采用球面镜结构形成的具有平移滚动效果的光学 防伪元件的俯视观察图、 立体结构示意及截取的部分截面;
图 4 、 4(b), 4(c)为采用锯齿形结构形成的具有平移滚动效果的光学 防伪元件的俯视观察图、 立体结构示意及截取的部分截面;
图 5给出了利用柱面镜形成 2D/3D效果的示意图;
图 6 、 6(b), 6(c)为具有立体浮雕感图像效果的光学防伪元件的俯视 观察图、 立体结构示意及截取的部分截面; 以及
图 7为具有漫反射特征的光学防伪元件的俯视观察图。 具体实施方式
下面结合附图来详细描述根据本发明的光学防伪元件以及使用该光学 防伪元件的产品, 以便更好地理解本发明的思想。 应当理解, 所述附图和 详细描述只是对本发明优选实施方式的描述, 并非以任何方式来限制本发 明的范围。
如图 1所示, 根据本发明的光学防伪元件 1包括基材 2, 所述基材 2 的上表面 21上至少部分地覆盖有面镜 3, 所述面镜 3的截面为能够对入射 光进行调制的任意曲面结构或其组合, 所述面镜 3的表面上覆盖有镀层 4, 所述镀层 4与所述面镜 3相互配合以获得期望的光学效果。
其中, 所示面镜 3在基材 2的上表面 21上的排列方式可以是任意的, 即本发明不对面镜 3 的排列方式进行限制, 只要其能够实现任意期望的光 学效果即可。 例如, 所述面镜 3 的方位角是可变的, 而且所述方位角的旋 转方向可以为 0-360° , 即基材 2的上表面 21上的不同面镜 3的方位角可 以是相同的, 也可以是不同的。 另外, 所述方位角的旋转角度可以具有一 定分布或平均分布的随机变量, 这能够产生一种不规则的效果, 减小光线 的定向反射, 降低衍射几率。 下文中会结合面镜 3 的具体排列方式对此进 行说明。
另外, 本发明也不对根据本发明的光学防伪元件 1 中的面镜 3的类型 进行限制, 只要其与镀层 4相结合能够实现期望的光学效果即可。 例如,
所述面镜 3可以为柱面镜 (包括柱凸面镜、 柱凹面镜)、 球面镜 (包括球凸 面镜、 球凹面镜)、 菲涅耳面镜或它们的组合, 当然也可以是其他类型的面 镜。 而且, 所述面镜 3 的截面可以是能够按需对入射光进行调制的任意曲 面结构或其组合, 例如, 可以是正弦、 椭圆、 双曲线、 抛物线等曲面结构 中的任意一种结构或多种曲面结构的拼接或组合。
下面以柱面镜为例来说明根据本发明的光学防伪元件, 但是应当理解, 通过适当地调整其他类型的面镜的周期、 占空比、 高度等参数, 也能够获 得与柱面镜相同的光学效果, 而且, 柱面镜的曲面可以不是严格的球面, 而是上述的任意一种曲面结构。 另外, 所述柱面镜的表面具有弧度, 不仅 能够对入射光进行反射, 而且其表面弧度也能够对入射光线进行散射, 在 一定程度上降低光强, 避免产生强光耀眼的缺点, 从而更易于观察。 但是, 所述柱面镜优选无衍射效果。
在根据本发明的光学防伪元件中, 优选地, 所述柱面镜在平行于所述 基材 2 的上表面 21 的一个方向上的特征周期为 2μηι-200μηι, 优选为 5μηι-100μηι, 而且当所述一个方向上的特征尺寸满足要求时, 与所述一个 方向垂直的另一个方向上的特征尺寸不受限制。 而当柱面镜在平行于所述 基材 2的上表面 21的一个方向上的特征周期小于 2μηι时,会存在明显的衍 射现象, 从而呈现彩虹色, 这会干扰镀层 4 的颜色和观察效果。 当柱面镜 的方向与人眼连线的方向平行时, 绝大多数通过柱面镜发射的光线均进入 到人眼中, 能够观察到明亮的镀层颜色; 当柱面镜与人眼的连线存在一定 夹角时, 通过柱面镜反射的光线中只有一部分进入人眼, 故光线亮度下降; 对于镀层的颜色不随观察角度的变化而变化的情况而言, 人眼观察到的镀 层颜色的纯度下降; 对于光变镀层而言, 所观察到的镀层颜色随着观察角 度的变化不仅色纯度下降而且颜色也发生了改变; 当柱面镜与人眼的连线 垂直时, 绝大多数光线都无法进入到人眼中, 所以无法观察到颜色信息。 通过对柱面镜的排列方式进行适当的调整, 使得在不同的倾斜角度或旋转
角度下能够使根据本发明的光学防伪元件 1的基材 2的上表面 21内不同位 置处的柱面镜相对于人眼连线具有相同的相对角度或特定的运动形式, 从 而当倾斜或转动根据本发明的光学防伪元件 1 时, 与人眼保持相同角度的 柱面镜位置不断变化, 通过与镀层 4 的结构相结合, 能够获得动感光变、 图案变换、 三维立体光变等光学特征, 这将在下面结合附图进行详细描述。
优选地, 所述柱面镜在垂直于所述基材 2的上表面 21的方向上的高度 小于 25μηι, 而且优选小于 15μηι。
另外, 在制备根据本发明的光学防伪元件 1 时, 柱面镜可以通过灰度 曝光、 激光直刻、 电子束曝光、 热回流等微纳加工方法获得, 通过紫外浇 铸、 模压、 纳米压印等微纳加工方式进行批量复制。
下面对根据本发明的光学防伪元件 1 中的镀层 4的结构进行描述。 该 镀层 4可以为干涉型多层膜结构, 该干涉型多层膜结构形成法布里-泊罗谐 振腔, 其对入射的白光具有选择作用, 使得出射光线只包含某些波段, 从 而形成特定的颜色; 当入射角度变化时, 与之相对的光程发生变化, 干涉 波段也发生变化, 从而导致呈现给观测者的颜色也随之变化, 从而形成光 变效果。 其中, 所述干涉型多层膜结构可以包括下述各项中的至少一项: 由覆盖在所述面镜 3 的表面上的依序重叠的反射层、 低折射率介质层和吸 收层构成的光变镀层结构; 由覆盖在所述面镜 3 的表面上的依序重叠的反 射层、 高折射率介质层和吸收层构成的镀层; 以及由覆盖在所述面镜 3 的 表面上的依序重叠的高折射率介质层、 低折射率介质层和高折射率介质层 构成的介质层叠层结构。 其中, 反射层的材料可以为高反射率的材料, 如 金、 银、 铜、 铝等; 吸收层的材料要求是其折射率与吸光系数接近的材料, 例如可以是半金属材料(如硅、锗等), 也可以是金属材料或其合金(如铬、 铜、 镍、 镍铬合金等); 高折射率介质层的折射率高于 1.7, 例如可以是硫 化锌、 二氧化钛等; 低折射率介质层的折射率小于或等于 1.7, 例如可以是 氟化镁、 二氧化硅、 冰晶石等。
镀层 4的形貌优选与面镜 3的表面形貌相同, 从而使得工艺流程简单。 而且, 优选地, 镀层 4 中还可以形成有镂空图案, 其中所述镂空图案 可以为宏观图案、 微文字、 精细线条等, 从而能够实现更好的防伪效果。
在制备根据本发明的光学防伪元件 1 时, 镀层 4可以通过热蒸发、 电 子束蒸发、 磁控溅射等物理或化学气相沉积等方法获得, 并且产生同型覆 盖的效果 (即其形貌与面镜 3的表面形貌同型), 从而保持柱面镜形貌。
优选地, 在根据本发明的光学防伪元件中, 所述基材 2的上表面 21上 还可以具有光栅结构 (例如, 全息光栅结构、 亚波长光栅结构等)、 亚波长 微浮雕结构或它们的组合, 当镀层 4与上述结构结合时, 能够形成全息光 变、 旋转光变、 偏振光变等特征, 从而增加了光学防伪效果。 例如, 当光 栅结构为全息光栅时, 所述全息光栅的周期是可变的且位于 500ηηι-5μηι的 范围内; 当所述光栅结构为亚波长微浮雕结构时, 所述亚波长微浮雕结构 的周期是可变的且位于 50nm至 500nm的范围内, 优选位于 200nm-400nm 的范围内。 另外, 所述亚波长微浮雕结构的槽型和槽深均可以是可变的, 例如, 所述槽型可以为正弦形、 矩形、 锯齿形中的至少一者, 所述槽深可 以位于 10nm至 500nm的范围内并优选位于 50nm-200nm的范围内。
在制备根据本发明的光学防伪元件 1 时, 上述的光栅结构、 亚波长微 浮雕结构等可以通过激光双光束干涉曝光、 激光直刻曝光、 电子束直刻等 方式获得, 通过紫外浇注、 模压、 纳米压印等微纳加工方式进行批量复制。
另外, 根据本发明的所述光学防伪元件 1 还可以包括位于所述基材 2 的上表面 21上、所述面镜 3的表面上和 /或所述镀层 4的表面上的功能层(未 示出), 例如压印层, 该功能层具有衍射光变特征、 干涉光变特征、 微纳结 构特征、 印刷特征、 部分金属化特征以及用于机读的磁、 光、 电、 放射性 特征中的一种或多种特征。
优选地, 形成面镜 3 的材料中可以添加荧光材料, 从而使得根据本发 明的光学防伪元件 1 带有荧光特征。 优选地, 荧光材料也可以添加在光学
防伪元件 1的基材 2中、 基材 2的上表面 21处、 基材 2的下表面 22处和 / 或面镜 3 的表面处。 优选地, 荧光材料可以例如通过印刷方式形成荧光图 案。
优选地, 根据本发明的光学防伪元件 1 中的基材 2可以是至少局部透 明的无色或有色介质层, 而且基材 2可以是一层单一的透明介质薄膜, 例 如 PET膜、 PVC膜等, 当然也可以是表面带有功能涂层 (比如压印层) 的 透明介质薄膜, 还可以是经过复合而成的多层膜。 所述功能涂层可以具有 与上述功能层相同的特征。
根据本发明的柱面镜或类似结构具有多项参数, 例如周期、 高度、 占 空比、 表面形貌、 方位角等, 当其与镀层 4结合时, 还需考虑镀层 4的各 层厚度、 材料折射率、 照明光源、 表面微纳结构等参数。 因此在设计根据 本发明的光学防伪元件 1 时, 需利用菲涅耳反射定律、 麦克斯韦方程组以 及边界条件, 结合镀层 4 的结构来共同确定对入射光的调制作用。 但由于 微结构、 镀层结构、 材料光学参数和界面条件的复杂特性, 因此, 需从基 本理论出发, 根据问题的具体情况以及要实现光学特征设计算法、 编程计 算, 最终确定各方面设计参数, 例如柱面镜的周期、 高度、 占空比、 方位 角等参数, 根据本发明的镀层的层数以及各层厚度、 金属材料、 介质材料、 基材材料等。
根据本发明的光学防伪元件 1 特别适合制作成开窗安全线。 所述安全 线的厚度不大于 50μηι。 带有所述开窗安全线的防伪纸用于钞票、 护照、 有 价证券等各类高安全产品的防伪。
根据本发明的光学防伪元件 1也可用作标签、 标识、 宽条、 透明窗口、 覆膜等, 可以通过各种粘结机理粘附在各种物品上, 例如转移到钞票、 信 用卡等高安全产品和高附加值产品上。
另外, 包括根据本发明的光学防伪元件 1 的产品可以包括但不限于钞 票、 信用卡、 护照、 有价证券等各类高安全产品及高附加值产品, 以及各
类包装纸、 包装盒等。
下面结合图 2 (a) 至图 7来详细描述根据本发明的光学防伪元件 1, 但是图 2 (a)至图 7所示的面镜的排列方式仅是示例, 本发明并不限于此。
图 2 、 2(b), 2(c)分别示出了从光学防伪元件 1上方俯视观察表面柱 面镜的排列、 光学防伪元件 1 的立体结构示意及截取的部分截面图, 其中 不同区域定义了不同方向排列的柱面镜结构, 所述柱面镜的宽度为 30μηι、 周期为 32μηι、 高度为 8μηι。 所述镀层 4为 Cr/Si02/Al所组成的颜色可变镀 层, 其中 A1紧贴在柱面镜的表面, 其上依序重叠 8102和&, 镀层 4中各 层的厚度分别为 5nm/430nm/60nm,该镀层 4的颜色特征为随观察角度的变 化而从洋红色转变到绿色。 所述基材 2的厚度为 19μηι。 通过采用这样的光 学防伪元件 1 的结构所实现的效果为: 俯视观察该光学防伪元件 1 时, 随 观察角度的改变, 整个区域会产生带有颜色及明暗变化的图案平移滚动的 效果。 类似于采用 OVMI技术所实现的 Rollingbar效果。
图 3 、 3(b), 3(c)分别为为了获得图案平移滚动的效果而采用球面镜 作为面镜 3的俯视观察图、 光学防伪元件 1 的立体结构示意及截取的部分 截面。
图 4^ 、 4(b), 4(c) 分别为为了获得图案平移滚动的效果而采用锯齿形 结构作为面镜 3的俯视观察图、 光学防伪元件 1 的立体结构示意及截取的 部分截面。
图 5示意性地给出了利用一定参数及排列形式的柱面镜 3而形成 2D/3D 效果的示意图。 形状为 "KINE" 的四个图像区域如图 5(a)、 ( ), (c), (d) 所示,它们在横向的位置之差为 d,分别充满了方位角不同的柱面镜结构(参 数同图 2中柱面镜的参数), 所述方位角的变化是渐变的。 对图 5 、 ( ), (c), (d)中的区域进行如图 5(e:)、(f)、 (g), (h)的方式进行分割后, 按照图 5(i) 的方式进行合成, 从而确定了光学防伪元件 1 的柱面镜结构排列的最终形 式。 按照这种方法形成的光学防伪元件 1 将在俯视观察改变视角过程中带
有颜色及明暗变化的并具有景深感及一定动态效果的 2D/3D特征。
可通过改变图 5(a:)、 (b), (c), (d)的图像形式来获得不同的效果, 例如, 将它们分别定义为 "Κ"、 "Γ、 "Ν"、 "Ε" 四个图像区域, 那么将使观察者 俯视观察改变视角过程中获得多个图像之间的切换效果。 再例如, 将它们 分别定义为真实立体物体或模型的不同角度下的不同图像, 则可以通过将 其与柱面镜的方位角的关系进行匹配, 从而使观察者在俯视观察改变视角 过程中获得真实的立体感。
图 6 、 6(b), 6(c)分别为为了获得带有颜色及明暗变化的有立体浮雕 感的图像效果而采用柱面镜 3的光学防伪元件 1 的俯视观察图、 立体结构 示意及截取的部分截面。其中图 6(a)、 6(b)中黑色区域示意性地代表柱面镜, 所选取的柱面镜的形貌及排列方式示意性地由图 6(c)给出。
图 7为为了获得漫反射效果而采用柱面镜结构 3的俯视观察图。 图中 不同区域中的柱面镜排列方向相对随机化。根据图 7所示的光学防伪元件 1 所实现的效果为: 俯视观察该光学防伪元件时, 随观察角度的改变, 整个 区域会产生带有颜色及明暗变化的带有颗粒感、 闪烁感的漫反射特征。
应当理解, 以上实施例中, 为获得相应的视觉效果, 所述面镜 3 可以 采用不限于上述实施方式具体指定的结构, 还可以采用其它能够对表面覆 盖的镀层结构进行调制的平面型或曲面型表面浮雕结构以及它们的组合。
以上仅示例性地描述了本发明的某些优选实施方案。 但是本领域技术 人员可以理解, 在不偏离本发明构思和精神的前提下, 可以对本发明作出 各种等同变换或修改, 而如此得到的技术方案也应属于本发明的保护范围。
Claims
1、 一种光学防伪元件, 该光学防伪元件包括基材, 所述基材的上表面 上至少部分地覆盖有面镜,所述面镜的截面为能够对入射光进行调制的任意 曲面结构或其组合, 所述面镜的表面上覆盖有镀层, 所述镀层与所述面镜相 互配合以获得期望的光学效果。
2、 根据权利要求 1所述的光学防伪元件, 其中, 所述面镜的方位角是 可变的, 而且所述方位角的旋转方向为 0-360° 。
3、 根据权利要求 2所述的光学防伪元件, 其中, 所述方位角的旋转角 度具有一定分布或平均分布的随机变量。
4、 根据权利要求 1所述的光学防伪元件, 其中, 所述面镜为柱面镜、 球面镜或它们的组合。
5、 根据权利要求 4所述的光学防伪元件, 其中, 所述柱面镜的表面具 有弧度, 以便能够对所述入射光进行反射和散射。
6、 根据权利要求 4所述的光学防伪元件, 其中, 所述柱面镜无衍射效 果。
7、 根据权利要求 4所述的光学防伪元件, 其中, 所述柱面镜在平行于 所述基材的上表面的一个方向上的特征周期为 2μηι-200μηι,而且当所述一个 方向上的特征尺寸满足要求时, 与所述一个方向垂直的另一个方向上的特征 尺寸不受限制。
8、 根据权利要求 4所述的光学防伪元件, 其中, 所述柱面镜在平行于
所述基材的上表面的一个方向上的特征周期为 5μηι-100μηι,而且当所述一个 方向上的特征尺寸满足要求时, 与所述一个方向垂直的另一个方向上的特征 尺寸不受限制。
9、 根据权利要求 4所述的光学防伪元件, 其中, 所述柱面镜在垂直于 所述基材的上表面的方向上的高度小于 25μηι。
10、 根据权利要求 4所述的光学防伪元件, 其中, 所述柱面镜在垂直于 所述基材的上表面的方向上的高度小于 15μηι。
11、 根据权利要求 1所述的光学防伪元件, 其中, 所述镀层为干涉型多 层膜结构, 该干涉型多层膜结构形成法布里-泊罗谐振腔。
12、 根据权利要求 1所述的光学防伪元件, 其中, 所述镀层的形貌与所 述面镜表面的形貌相同。
13、 根据权利要求 1所述的光学防伪元件, 其中, 所述镀层中形成有镂 空图案。
14、 根据权利要求 1所述的光学防伪元件, 其中, 所述基材的上表面具 有光栅结构。
15、 根据权利要求 14所述的光学防伪元件, 其中, 所述光
息光栅, 所述全息光栅的周期可变且位于 500ηηι-5μηι的范围内。
16、 根据权利要求 14所述的光学防伪元件, 其中, 所述光
17、 根据权利要求 16所述的光学防伪元件, 其中, 所述亚波长微浮雕 结构的周期可变且位于 50nm至 500nm的范围内。
18、 根据权利要求 16所述的光学防伪元件, 其中, 所述亚波长微浮雕 结构的周期可变且位于 200nm-400nm的范围内。
19、 根据权利要求 16所述的光学防伪元件, 其中, 所述亚波长微浮雕 结构的槽型是可变的。
20、 根据权利要求 16所述的光学防伪元件, 其中, 所述亚波长微浮雕 结构的槽深是可变的, 并且所述槽深位于 10nm至 500nm的范围内。
21、 根据权利要求 16所述的光学防伪元件, 其中, 所述亚波长微浮雕 结构的槽深是可变的, 并且所述槽深位于 50nm-200nm的范围内。
22、 根据权利要求 1所述的光学防伪元件, 其中所述光学防伪元件还包 括位于所述基材的上表面上、所述面镜的表面上和 /或所述镀层的表面上的功 能层, 该功能层具有衍射光变特征、 干涉光变特征、 微纳结构特征、 印刷特 征、 部分金属化特征以及用于机读的磁、 光、 电、 放射性特征中的一种或多 种特征。
23、 根据权利要求 1所述的光学防伪元件, 其中, 所述基材的上表面、 所述基材的下表面、 所述面镜的表面和 /或所述面镜本身带有荧光图案特征。
24、 一种使用根据权利要求 1-23 中任一项权利要求所述的光学防伪元 件的产品。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210491242.6 | 2012-11-27 | ||
CN201210491242.6A CN103832114B (zh) | 2012-11-27 | 2012-11-27 | 一种光学防伪元件及使用该光学防伪元件的产品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014082319A1 true WO2014082319A1 (zh) | 2014-06-05 |
Family
ID=50796138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/085795 WO2014082319A1 (zh) | 2012-11-27 | 2012-12-04 | 一种光学防伪元件及使用该光学防伪元件的产品 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103832114B (zh) |
WO (1) | WO2014082319A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020187286A1 (zh) * | 2019-03-19 | 2020-09-24 | 中钞特种防伪科技有限公司 | 光学防伪元件及光学防伪产品 |
EP3306362B1 (en) | 2015-06-02 | 2021-11-03 | Toppan Printing Co., Ltd. | Laminate and manufacturing method for same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105291630B (zh) * | 2014-08-01 | 2017-01-25 | 中钞特种防伪科技有限公司 | 光学防伪元件及具有该光学防伪元件的防伪产品 |
CN104309355B (zh) * | 2014-10-14 | 2016-10-05 | 中国机动车辆安全鉴定检测中心 | 一种用于新版港澳往来通行证的安全防护层结构及方法 |
CN104385800B (zh) * | 2014-10-16 | 2017-10-24 | 中钞特种防伪科技有限公司 | 光学防伪元件及光学防伪产品 |
CN106324726B (zh) * | 2015-07-08 | 2020-07-10 | 昇印光电(昆山)股份有限公司 | 一种3d成像光学薄膜 |
US11143794B2 (en) | 2015-07-08 | 2021-10-12 | Shine Optoelectronics (Kunshan) Co., Ltd | Optical film |
CN106891637B (zh) * | 2015-12-17 | 2018-12-21 | 中钞特种防伪科技有限公司 | 光学防伪元件及其制备方法 |
CN106915170B (zh) * | 2015-12-28 | 2020-02-18 | 苏州苏大维格光电科技股份有限公司 | 金属色烫印膜及其制备方法和使用方法 |
CN105403947A (zh) * | 2015-12-29 | 2016-03-16 | 上海宏盾防伪材料有限公司 | 一种具有全息图像的安全层结构 |
CN110001234B (zh) * | 2018-01-05 | 2022-08-30 | 中钞特种防伪科技有限公司 | 光学防伪元件和光学防伪产品 |
CN111823749B (zh) * | 2019-04-19 | 2022-02-25 | 中钞特种防伪科技有限公司 | 光学防伪元件及其制作方法、光学防伪产品 |
CN211787902U (zh) * | 2020-04-27 | 2020-10-27 | 苏州苏大维格科技集团股份有限公司 | 动态图形光彩变色膜 |
CN112859213B (zh) * | 2021-02-18 | 2023-10-20 | 嘉兴驭光光电科技有限公司 | 微纳光学元件及其设计方法 |
CN115230364B (zh) * | 2021-04-25 | 2024-03-29 | 中钞特种防伪科技有限公司 | 光学防伪元件及其设计方法、防伪产品、数据载体 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1989529A (zh) * | 2004-08-13 | 2007-06-27 | 德国捷德有限公司 | 具有光学可变结构的数据载体 |
CN101269610A (zh) * | 2007-03-21 | 2008-09-24 | 中国印钞造币总公司 | 一种光学防伪元件及带有该防伪元件的产品 |
JP2011173379A (ja) * | 2010-02-25 | 2011-09-08 | Toppan Printing Co Ltd | 表示体及びその製造方法 |
CN102514443A (zh) * | 2011-12-09 | 2012-06-27 | 中钞特种防伪科技有限公司 | 一种光学防伪元件 |
CN102712207A (zh) * | 2009-12-04 | 2012-10-03 | 德国捷德有限公司 | 防伪元件、具有这种防伪元件的有价文件和防伪元件的制造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101699323B (zh) * | 2009-11-02 | 2011-12-28 | 中钞特种防伪科技有限公司 | 光学防伪元件及包含该光学防伪元件的光学防伪产品 |
CN101767511B (zh) * | 2010-01-12 | 2012-11-28 | 中钞特种防伪科技有限公司 | 光学防伪元件及带有该防伪元件的产品 |
-
2012
- 2012-11-27 CN CN201210491242.6A patent/CN103832114B/zh active Active
- 2012-12-04 WO PCT/CN2012/085795 patent/WO2014082319A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1989529A (zh) * | 2004-08-13 | 2007-06-27 | 德国捷德有限公司 | 具有光学可变结构的数据载体 |
CN101269610A (zh) * | 2007-03-21 | 2008-09-24 | 中国印钞造币总公司 | 一种光学防伪元件及带有该防伪元件的产品 |
CN102712207A (zh) * | 2009-12-04 | 2012-10-03 | 德国捷德有限公司 | 防伪元件、具有这种防伪元件的有价文件和防伪元件的制造方法 |
JP2011173379A (ja) * | 2010-02-25 | 2011-09-08 | Toppan Printing Co Ltd | 表示体及びその製造方法 |
CN102514443A (zh) * | 2011-12-09 | 2012-06-27 | 中钞特种防伪科技有限公司 | 一种光学防伪元件 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3306362B1 (en) | 2015-06-02 | 2021-11-03 | Toppan Printing Co., Ltd. | Laminate and manufacturing method for same |
WO2020187286A1 (zh) * | 2019-03-19 | 2020-09-24 | 中钞特种防伪科技有限公司 | 光学防伪元件及光学防伪产品 |
Also Published As
Publication number | Publication date |
---|---|
CN103832114B (zh) | 2017-10-24 |
CN103832114A (zh) | 2014-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014082319A1 (zh) | 一种光学防伪元件及使用该光学防伪元件的产品 | |
CN103576216B (zh) | 一种光学防伪元件及采用该光学防伪元件的防伪产品 | |
US10124621B2 (en) | Optically variable transparent security element | |
CA2780458C (en) | Security element, value document having such a security element, and manufacturing method for a security element | |
TWI526334B (zh) | 膜元件 | |
US11221448B2 (en) | Animated optical security feature | |
CA2992060A1 (en) | Optical products, masters for fabricating optical products, and methods for manufacturing masters and optical products | |
CN108656782B (zh) | 光学防伪元件、使用该光学防伪元件的产品及其制备方法 | |
JP2016505161A (ja) | 加飾エレメント及び加飾エレメントを備えるセキュリティドキュメント | |
CA2945024A1 (fr) | Composant optique de securite a effet reflectif, fabrication d'un tel composant et document securise equipe d'un tel composant | |
WO2021063126A1 (zh) | 光学防伪元件及防伪产品 | |
JP2021120753A (ja) | 表示体、および、表示体の製造方法 | |
WO2013177829A1 (zh) | 一种光学防伪元件及其制备方法 | |
US20220276501A1 (en) | Optical products, masters for fabricating optical products, and methods for manufacturing masters and optical products | |
US20220221735A1 (en) | Optical switch devices | |
CN110936750A (zh) | 光学防伪元件及防伪产品 | |
JP5906653B2 (ja) | 表示体および物品 | |
AU2014250641A1 (en) | Security element, value document comprising such a security element and method for producing such a security element | |
WO2017181442A1 (zh) | 一种光学防伪元件及光学防伪产品 | |
TWI815976B (zh) | 光學可變化元件、防偽文件、光學可變化元件的製造方法、防偽文件的製造方法 | |
CN104223620A (zh) | 一种币章 | |
CN112848744B (zh) | 光学防伪元件及防伪产品 | |
WO2023202864A1 (en) | Metasurface-based anti-counterfeiting device | |
CN112848742A (zh) | 光学防伪元件及光学防伪产品 | |
AU2016228200A1 (en) | Security element, value document comprising such a security element and method for producing such a security element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12889343 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12889343 Country of ref document: EP Kind code of ref document: A1 |