WO2014080870A1 - Lithium ion secondary battery - Google Patents
Lithium ion secondary battery Download PDFInfo
- Publication number
- WO2014080870A1 WO2014080870A1 PCT/JP2013/081085 JP2013081085W WO2014080870A1 WO 2014080870 A1 WO2014080870 A1 WO 2014080870A1 JP 2013081085 W JP2013081085 W JP 2013081085W WO 2014080870 A1 WO2014080870 A1 WO 2014080870A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- positive electrode
- secondary battery
- fluorinated
- active material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a lithium ion secondary battery.
- lithium ion secondary batteries Since lithium ion secondary batteries have a small volume, a large mass capacity density, and a high voltage can be taken out, they are widely used as power sources for small devices. For example, it is used as a power source for mobile devices such as mobile phones and notebook computers. Also, in recent years, in addition to small mobile device applications, large secondary devices that require a long life with a large capacity, such as electric vehicles (EV) and power storage fields, are being considered due to consideration for environmental issues and increased awareness of energy conservation. Application to batteries is expected.
- EV electric vehicles
- a positive electrode active material based on LiMO 2 having a layered structure (M is at least one of Co, Ni, and Mn) or LiMn 2 O 4 having a spinel structure is used.
- a lithium ion secondary battery having a positive electrode containing such a positive electrode active material mainly uses a charge / discharge region of 4.2 V or less (hereinafter referred to as a positive electrode having an operating potential of 4.2 V or less with respect to lithium metal). May be described as “4V class positive electrode”).
- a carbon material such as graphite is used as the negative electrode active material.
- a material obtained by substituting a part of Mn of LiMn 2 O 4 with Ni or the like shows a high charge / discharge region of 4.5 to 4.8 V with respect to lithium metal.
- spinel compounds such as LiNi 0.5 Mn 1.5 O 4 are not redox of conventional Mn 3+ and Mn 4+ , but Mn exists in the state of Mn 4+ and redox of Ni 2+ and Ni 4+ Therefore, a high operating voltage of 4.5 V or higher is shown.
- Such a material is called a 5V class active material and is expected to be a promising positive electrode material because it can improve the energy density by increasing the voltage.
- a technique of adding an additive to an electrolytic solution is widely performed in order to improve battery performance or suppress deterioration.
- the oxidative decomposition of the electrolyte on the positive electrode is not the main cause of the deterioration, so the additive used in the 4V class battery is not always effective for the 5V class battery. The effect may be different.
- Patent Documents 1 to 4 disclose bis (fluorosulfonyl) imide lithium salt represented by Li + [(FSO 2 ) 2 N] ⁇ .
- Patent Document 1 describes that LiFSI can be applied as an electrolyte of a non-aqueous solvent, and Patent Document 2 can improve output characteristics after high-temperature storage by using in combination with a specific compound. Is described.
- Patent Document 3 describes a nonaqueous electrolytic solution containing a sulfonylimide lithium containing a fluorine atom, a fluorinated diether, and a fluorinated monoether.
- Patent Document 4 describes a nonaqueous electrolytic solution for a secondary battery containing a fluorinated cyclic carbonate and lithium bisfluorosulfonylimide.
- Patent Documents 1 to 4 can sufficiently solve problems such as high temperature cycle characteristics and gas generation in a battery using a 5 V class active material that exhibits a voltage as high as 4.5 V or more with respect to lithium metal. It wasn't.
- the electrolytic solution described in Patent Document 4 has a large practical problem because a large amount of gas is generated during a high-temperature cycle although not specifically mentioned.
- JP 2012-94454 A Japanese Patent No. 3878206 JP 2011-187163 A JP 2010-129449 A
- the present invention solves the above-mentioned problems in a lithium ion secondary battery using a 5V class active material, and provides a lithium ion secondary battery with a high capacity retention rate of charge / discharge cycles at high temperatures and reduced gas generation. With the goal.
- the present invention is a lithium ion secondary battery comprising a positive electrode and a non-aqueous electrolyte
- the positive electrode includes a positive electrode active material having an operating potential of 4.5 V or more with respect to lithium metal
- the non-aqueous electrolyte is (A) N (SO 2 F) 2 anion (FSI anion); (B) a cyclic carbonate; (C) A fluorinated ether represented by the following formula (1), a fluorinated phosphate ester represented by the following formula (2), and a sulfone compound represented by the following formula (3) or the following formula (4) At least one selected from the group consisting of:
- the present invention relates to a lithium ion secondary battery.
- R 101 and R 102 each independently represents an alkyl group or a fluorinated alkyl group, and at least one of R 101 and R 102 is a fluorinated alkyl group
- R 1 , R 2 and R 3 each independently represents an alkyl group or a fluorinated alkyl group, and at least one of them is a fluorinated alkyl group
- R 1 and R 2 each independently represent a substituted or unsubstituted alkyl group
- R 3 represents a substituted or unsubstituted alkylene group.
- the cycle characteristics of a lithium ion secondary battery containing a 5 V class active material can be improved and gas generation can be suppressed.
- a positive electrode active material having an operating potential of 4.5 V or higher with respect to lithium metal may be referred to as a “5 V class active material”.
- the lithium ion secondary battery of this embodiment is A positive electrode and a non-aqueous electrolyte
- the positive electrode includes a positive electrode active material (hereinafter sometimes referred to as “5 V class active material”) having an operating potential of 4.5 V or more with respect to lithium metal
- the non-aqueous electrolyte is (A) N (SO 2 F) 2 anion (FSI anion); (B) a cyclic carbonate; (C) A fluorinated ether represented by the following formula (1), a fluorinated phosphate ester represented by the following formula (2), and a sulfone compound represented by the following formula (3) or the following formula (4) At least one selected from the group consisting of: including.
- R 101 and R 102 each independently represents an alkyl group or a fluorinated alkyl group, and at least one of R 101 and R 102 is a fluorinated alkyl group
- R 1 , R 2 and R 3 each independently represents an alkyl group or a fluorinated alkyl group, and at least one of them is a fluorinated alkyl group
- R 1 and R 2 each independently represent a substituted or unsubstituted alkyl group
- R 3 represents a substituted or unsubstituted alkylene group.
- a positive electrode including a positive electrode active material having an operating potential of 4.5 V or higher with respect to lithium metal may be referred to as a “5 V class positive electrode”.
- the non-aqueous electrolyte provided in the lithium ion secondary battery of this embodiment is (A) an N (SO 2 F) 2 anion (hereinafter sometimes referred to as “FSI anion”) and a nonaqueous electrolytic solvent;
- the non-aqueous electrolytic solvent is (B) a cyclic carbonate, and (C) at least selected from a fluorinated ether represented by formula (1), a fluorinated phosphate ester represented by formula (2), and a sulfone compound represented by formula (3) or formula (4) 1 type.
- the nonaqueous electrolytic solution contains an FSI anion.
- the FSI anion is considered to form a film on the negative electrode and the positive electrode.
- Such a film is also referred to as a SEI film (Solid Electrolyte Interface), and has an ionic conductivity but no electronic conductivity, and thus plays a role of preventing a reaction between the active material and the electrolytic solution.
- SEI film Solid Electrolyte Interface
- the film formed on the positive electrode suppresses the decomposition reaction between the 5V class active material and the electrolytic solution.
- the film formed on the negative electrode suppresses the decomposition reaction between the negative electrode and the electrolytic solution, and by-products of the electrolytic solution generated at the positive electrode or transition metal ions such as Mn and Ni eluted from the positive electrode react with the negative electrode. To prevent precipitation. As a result, the capacity maintenance rate of the charge / discharge cycle is improved, and gas generation can be sufficiently suppressed.
- the positive electrode has a positive electrode active material having an operating potential of 4.5 V or more with respect to lithium metal, but the effect of the FSI anion is 5 V class than the conventional secondary battery using a 4 V class positive electrode.
- a secondary battery having an active material is more highly effective. This is considered to be because an oxidative decomposition film by FSI anion is easily formed on the positive electrode because the positive electrode has a high potential.
- the FSI anion is generated when a compound containing the FSI anion is dissolved in the non-aqueous electrolyte.
- a salt of an FSI anion and an alkali metal is preferable, and examples thereof include LiFSI, NaFSI, and KFSI.
- LiFSI is particularly preferable because it can serve as an electrolyte of a lithium ion battery and can improve ion conductivity of the electrolytic solution.
- LiFSI is described as an example, but the coating of FSI anion is also formed other than the lithium salt, and is not limited to LiFSI.
- the amount of LiFSI added to the total mass of the electrolytic solution is preferably 0.1 to 5% by mass, and more preferably 0.2 to 3% by mass.
- the electrolytic solution contains a cyclic carbonate as a nonaqueous electrolytic solvent.
- the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC).
- EC ethylene carbonate
- PC propylene carbonate
- BC butylene carbonate
- VC vinylene carbonate
- some or all of hydrogen in these compounds may be substituted with fluorine.
- the fluorinated cyclic carbonate include 4-fluoro-1,3-dioxolan-2-one ⁇ monofluoroethylene carbonate (FEC) ⁇ , (cis or trans) 4,5-difluoro-1,3-dioxolane-2.
- a cyclic carbonate can be used individually by 1 type or in mixture of 2 or more types.
- EC and PC are preferable because they have a high dielectric constant and excellent electrolyte solubility, and EC is more preferable.
- LiFSI has poor solubility in organic solvents as compared with other lithium salts such as LiPF 6 , but the solubility of LiFSI can be further increased by including a cyclic carbonate in the electrolytic solution.
- the content of cyclic carbonate in the total nonaqueous electrolytic solvent is preferably 1 to 50% by volume, more preferably 5 to 40% by volume, and further preferably 10 to 40% by volume. If the content of the cyclic carbonate is too small, the conductivity of the electrolytic solution is lowered, and the cycle characteristics may be deteriorated. If the content of the cyclic carbonate is too large, the cyclic carbonate is likely to be decomposed at a high potential. Therefore, in a lithium ion secondary battery containing a 5V-grade positive electrode active material, gas generation may increase.
- the nonaqueous electrolytic solvent is a fluorinated ether represented by the formula (1) (hereinafter sometimes simply referred to as “fluorinated ether”), the formula (2), in addition to the cyclic carbonate.
- a sulfone compound represented by formula (3) or formula (4) (hereinafter simply referred to as “fluorinated phosphate ester”). It may be described as “sulfone compound”.), And at least one selected from the group consisting of 2 or more is more preferable.
- the nonaqueous electrolytic solvent can contain a fluorinated ether represented by the following formula (1).
- R 101 and R 102 each independently represents an alkyl group or a fluorinated alkyl group, and at least one of R 101 and R 102 is a fluorinated alkyl group).
- the total number of carbon atoms of R 101 and R 102 is preferably 10 or less.
- the fluorinated alkyl group is an alkyl group having at least one fluorine atom.
- the fluorine atom content in the fluorinated alkyl group is preferably 50% or more, more preferably 60% or more, based on the total of fluorine atoms and hydrogen atoms.
- the withstand voltage is further improved, and even when a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium is used, deterioration of battery capacity after cycling is more effectively reduced. Is possible.
- fluorinated ethers represented by the following formula (1-1) are more preferable.
- n and m are each independently 1 to 8.
- X 1 to X 6 are each independently a fluorine atom or a hydrogen atom, provided that X 1 to X 6 At least one is a fluorine atom, and when n is 2 or more, a plurality of X 2 and X 3 are independent from each other, and when m is 2 or more, a plurality of X 4 and X 5 are Are independent of each other.
- the fluorinated ether is more preferably a compound represented by the following formula (1-2) from the viewpoint of voltage resistance and compatibility with other electrolytes.
- X 1- (CX 2 X 3 ) n -CH 2 O-CX 4 X 5 -CX 6 X 7 -X 8 (1-2) (In the formula (1-2), n is 1 to 7, and X 1 to X 8 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 3 is a fluorine atom. And at least one of X 4 to X 8 is a fluorine atom).
- n 2 or more
- a plurality of X 2 may be the same or different from each other
- a plurality of X 3 are the same or different from each other. Also good.
- the fluorinated ether compound is more preferably represented by the following formula (1-3).
- n is 1, 2, 3 or 4.
- Y 1 to Y 8 are each independently a fluorine atom or a hydrogen atom. However, at least one of Y 1 to Y 4 is a fluorine atom, and at least one of Y 5 to Y 8 is a fluorine atom.
- n 2 or more, a plurality of Y 1 to Y 4 may be the same or different from each other.
- fluorinated ether examples include CF 3 OCH 3 , CF 3 OC 2 H 5 , F (CF 2 ) 2 OCH 3 , F (CF 2 ) 2 OC 2 H 5 , and CF 3 (CF 2 ).
- the content of the fluorinated ether compound represented by the formula (1) is preferably 0% by volume to 90% by volume and more preferably 15% by volume to 80% by volume in the nonaqueous electrolytic solvent. 30 volume% or more and 70 volume% or less is more preferable, 30 volume% or more and 60 volume% or less is more preferable, and 30 volume% or more and 50 volume% or less is further more preferable.
- the content of the fluorinated ether is too large, the dielectric constant of the electrolytic solution is lowered, the supporting salt cannot be dissociated, and the capacity is similarly reduced.
- the fluorinated ether has high oxidation resistance
- the oxidative decomposition of the solvent can be suppressed in a lithium ion secondary battery containing a 5V class active material.
- LiFSI forms a film on the negative electrode and the positive electrode.
- a high-quality film is hardly formed or the effect of the film is hindered.
- the effect of the film by LiFSI can be enhanced.
- the nonaqueous electrolytic solvent can contain a fluorinated phosphate ester represented by the following formula (2).
- R 1 , R 2 and R 3 each independently represents an alkyl group or a fluorinated alkyl group, and at least one of them is a fluorinated alkyl group).
- the fluorinated alkyl group is an alkyl group having at least one fluorine atom.
- R 1 , R 2 and R 3 each independently have 1 to 3 carbon atoms.
- At least one of R 1 , R 2 and R 3 is preferably a fluorinated alkyl group in which 50% or more of the hydrogen atoms of the corresponding unsubstituted alkyl group are substituted with fluorine atoms.
- all of R 1 , R 2 and R 3 are fluorinated alkyl groups, and 50% or more of the hydrogen atoms of the unsubstituted alkyl group to which R 1 , R 2 and R 3 correspond are substituted with fluorine atoms.
- a fluorinated alkyl group More preferred is a fluorinated alkyl group.
- the content of fluorine atoms is large, the voltage resistance is further improved, and even when a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium is used, the deterioration of battery capacity after cycling is further reduced. Because it can.
- the ratio of fluorine atoms in the substituent containing a hydrogen atom in the fluorinated alkyl group is more preferably 55% or more.
- fluorinated phosphate ester examples include, but are not limited to, for example, tris (trifluoromethyl) phosphate, tris (pentafluoroethyl) phosphate, tris phosphate.
- (2,2,2-trifluoroethyl) Tris (2,2,2-trifluoroethyl) phosphate (TTFP)] tris (2,2,3,3-tetrafluoropropyl) phosphate (Tris (2,2 , 3,3-tetrafluoropropyl) phosphate), tris (3,3,3-trifluoropropyl) phosphate (Tris (3,3,3-trifluorofluoro) phosphate), Phosphate tris (2,2,3,3,3-pentafluoro-propyl) (Tris (2,2,3,3,3-pentafluoropropyl) phosphate) fluorinated alkyl phosphoric acid ester compounds and the like.
- the content of the fluorinated phosphate ester contained in the nonaqueous electrolytic solvent is not particularly limited, but is preferably 0% by volume to 95% by volume in the nonaqueous electrolytic solvent, and is preferably 10% by volume to 95% by volume. Is more preferable, 20 vol% or more and 70 vol% or less is more preferable, 20 vol% or more and 50 vol% or less is more preferable, and 20 vol% or more and 40 vol% or less is more preferable.
- the content of the fluorinated phosphate ester in the nonaqueous electrolytic solvent is 10% by volume or more, the effect of increasing the voltage resistance is further improved.
- the ion conductivity of electrolyte solution improves that the content rate in the nonaqueous electrolytic solvent of fluorinated phosphate ester is 95 volume% or less, and the charge / discharge rate of a battery becomes more favorable.
- the fluorinated phosphate ester also has high oxidation resistance, oxidative decomposition of the solvent when a 5V class active material is used can be suppressed. As a result, it is possible to improve the capacity maintenance rate of the charge / discharge cycle and reduce gas generation.
- LiFSI forms a film on the negative electrode and the positive electrode. However, if a large amount of decomposable product of the solvent is present on the electrode, it is difficult to form a good film or the effect of the film is hindered. That is, the effect of the film by LiFSI can be strengthened by coexisting fluorinated phosphate ester having high oxidation resistance and LiFSI.
- the nonaqueous electrolytic solvent can contain a sulfone compound represented by the following formula (3).
- R 1 and R 2 each independently represents a substituted or unsubstituted alkyl group.
- R 2 of R 1 is 1 ⁇ n 1 ⁇ 12,1 ⁇ n 2 ⁇ 12 , respectively, 1 ⁇ n 1 ⁇ 6, 1 ⁇ n 2 ⁇ 6 are more preferable, and 1 ⁇ n 1 ⁇ 3 and 1 ⁇ n 2 ⁇ 3 are still more preferable.
- the alkyl group includes linear, branched, or cyclic groups.
- R 1 and R 2 may have a substituent.
- substituents include an alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group). Group), aryl groups having 6 to 10 carbon atoms (for example, phenyl group, naphthyl group), halogen atoms (for example, chlorine atom, bromine atom, fluorine atom) and the like.
- Examples of the sulfone compound represented by the formula (3) include ethyl methyl sulfone, ethyl isopropyl sulfone, ethyl isobutyl sulfone, dimethyl sulfone, and diethyl sulfone. Of these, dimethyl sulfone, ethyl methyl sulfone, ethyl isopropyl sulfone, and ethyl isobutyl sulfone are preferable.
- the nonaqueous electrolytic solvent can contain a sulfone compound represented by the following formula (4).
- R 3 represents a substituted or unsubstituted alkylene group.
- the alkylene group preferably has 4 to 9 carbon atoms, and more preferably 4 to 6 carbon atoms.
- examples of the substituent include an alkyl group having 1 to 6 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group), halogen atom (for example, chlorine atom, bromine atom, fluorine atom). Atom) and the like.
- a cyclic sulfone compound represented by the following formula (4-1) is preferable.
- m is an integer of 1 to 6).
- m is an integer of 1 to 6, and preferably an integer of 1 to 3.
- Preferred examples of the cyclic sulfone compound represented by the formula (4) include tetramethylene sulfone (sulfolane), pentamethylene sulfone, hexamethylene sulfone and the like.
- Preferred examples of the cyclic sulfone compound having a substituent include 3-methylsulfolane and 2,4-dimethylsulfolane. Since these materials are compatible with the fluorinated ether compound and have a relatively high dielectric constant, they have the advantage of being excellent in the dissolution / dissociation action of the lithium salt.
- a sulfone compound can be used individually by 1 type or in mixture of 2 or more types.
- the content of the sulfone compound is preferably 0% by volume or more and 75% by volume or less in the nonaqueous electrolytic solvent, more preferably 5% by volume or more and 50% by volume or less, and more preferably 5% by volume or more and 30% by volume or less. More preferably, it is more preferably 5% by volume or more and 20% by volume or less. If the content of the sulfone compound is too large, the viscosity of the electrolytic solution increases, and the capacity of the cycle characteristics at room temperature may be reduced.
- the sulfone compound also has high oxidation resistance, it is possible to suppress oxidative decomposition of the solvent particularly when a 5V class active material is used. As a result, it is possible to improve the capacity maintenance rate of the charge / discharge cycle and reduce gas generation.
- LiFSI forms a film on the negative electrode and the positive electrode. However, if a large amount of decomposition products of the solvent are present on the electrode, a high-quality film is hardly formed or the effect of the film is hindered.
- membrane by LiFSI can be strengthened by coexisting a sulfo compound with high oxidation resistance and LiFSI. Further, since the sulfone compound is a material having a relatively high dielectric constant, it is preferable from the viewpoint of easily dissolving the lithium salt.
- the nonaqueous electrolytic solvent includes at least one selected from fluorinated ethers, fluorinated phosphates, and sulfone compounds, and more preferably includes two or more.
- the higher the concentration of these solvents the better the decomposition of the electrolytic solution is suppressed, but it is preferable to include two or more in order to further improve the compatibility with the cyclic carbonate and the solubility of the lithium salt. There is.
- the nonaqueous electrolytic solvent may further contain a chain carbonate.
- the cyclic carbonate has a high viscosity, the viscosity can be reduced by mixing the chain carbonate.
- the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof (including fluorinated products).
- DMC dimethyl carbonate
- DEC diethyl carbonate
- EMC ethyl methyl carbonate
- DPC dipropyl carbonate
- the concentration in the electrolytic solution is preferably 10% by volume or less, more preferably 5% by volume or less, and even more preferably 2% or less.
- the nonaqueous electrolytic solvent may contain an aliphatic carboxylic acid ester, ⁇ -lactone, a cyclic ether, a chain ether other than the above formula (1), and the like.
- the aliphatic carboxylic acid ester include methyl formate, methyl acetate, ethyl propionate, and derivatives thereof (including fluorinated products).
- ⁇ -lactone include ⁇ -butyrolactone and its derivatives (including fluorinated products).
- the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran and derivatives thereof (including fluorinated products).
- chain ether examples include 1,2-ethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, and derivatives thereof (including fluorinated compounds). These can be used individually by 1 type or in mixture of 2 or more types.
- nonaqueous electrolytic solvents include, for example, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphate triester, trimethoxymethane, dioxolane Derivatives, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, anisole, N-methylpyrrolidone, and derivatives thereof (including fluorinated products) may also be used. it can.
- the electrolytic solution preferably further contains a cyclic sulfonic acid ester represented by the following formula (5) as an additive.
- the cyclic sulfonate ester can form a film on the negative electrode.
- a and B each independently represent an alkylene group or a fluorinated alkylene group.
- X represents a single bond or —OSO 2 — group).
- the number of carbon atoms of the alkylene group is, for example, 1 to 8, preferably 1 to 6, and more preferably 1 to 4.
- the fluorinated alkylene group represents a substituted alkylene group having a structure in which at least one hydrogen atom of the unsubstituted alkylene group is substituted with a fluorine atom.
- the carbon number of the fluorinated alkylene group is, for example, 1 to 8, preferably 1 to 6, and more preferably 1 to 4.
- the -OSO 2 -group may be in any direction.
- the cyclic sulfonate ester is preferably a cyclic monosulfonate ester, and the cyclic monosulfonate ester is preferably a compound represented by the following formula (5-1).
- R 101 and R 102 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms, and n is 0, 1, 2, 3, or 4) .
- the cyclic sulfonate ester is preferably a cyclic disulfonate ester, and the cyclic disulfonate ester is preferably a compound represented by the following formula (5-2).
- R 201 to R 204 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms, and n is 1, 2, 3, or 4.
- n is 2 or more
- a plurality of R 203 may be the same or different from each other, and a plurality of R 204 may be the same or different from each other. .
- cyclic sulfonate ester examples include 1,3-propane sultone, 1,2-propane sultone, 1,4-butane sultone, 1,2-butane sultone, 1,3-butane sultone, 2,4-butane sultone, 1,3 -Monosulfonic acid esters such as pentane sultone (when X in formula (5) is a single bond), disulfonic acid esters such as methylenemethane disulfonic acid ester and ethylenemethane disulfonic acid ester (X in formula (5) is- OSO 2 - for group).
- PS 1,3-propane sultone
- BS 1,4-butane sultone
- MMDS methylene methanedisulfonic acid ester
- the content of the cyclic sulfonic acid ester in the electrolytic solution is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, and 0.3 to 3% by mass. Is more preferable. If the content is too low, the effect as a film cannot be obtained sufficiently, and if it is too high, the internal resistance may increase.
- LiFSI and cyclic sulfonic acid ester are allowed to coexist, a greater effect can be obtained than when they are used alone.
- the cyclic sulfonic acid ester forms an excellent film on the negative electrode, but hardly forms a film on the positive electrode.
- LiFSI can form a film on both the negative electrode and the positive electrode, but the effect of the film on the negative electrode is lower than that of the cyclic sulfonate ester. Therefore, it is considered that a good quality film can be formed in a balanced manner on both the negative electrode and the positive electrode by mixing LiFSI and cyclic sulfonic acid ester.
- the nonaqueous electrolytic solution is obtained by dissolving an electrolyte made of a lithium salt in a nonaqueous electrolytic solvent.
- the lithium salt is not particularly limited, for example, (except for compounds containing FSI anion) lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6 , and the like. Among these, LiPF 6 and LiBF 4 are preferable.
- the lithium imide salt for example, LiN (C k F 2k + 1 SO 2) (C m F 2m + 1 SO 2) (k and m are each independently 1 or 2).
- a lithium salt can be used individually by 1 type, and can also be used in combination of 2 or more type.
- the concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / L. By setting the concentration of the lithium salt within this range, it is easy to adjust the density, viscosity, electrical conductivity, and the like to an appropriate range.
- the positive electrode in the present embodiment includes a positive electrode active material (5 V class active material) having an operating potential of 4.5 V or higher with respect to lithium metal. That is, the positive electrode active material used in the present embodiment has a charge / discharge region at 4.5 V or higher with respect to lithium metal.
- the 5V class active material is preferably a lithium-containing composite oxide.
- Examples of the 5V class active material of the lithium-containing composite oxide include spinel-type lithium manganese composite oxide, olivine-type lithium manganese-containing composite oxide, reverse spinel-type lithium manganese-containing composite oxide, Li 2 MnO 3 -based solid solution, and the like. Can be mentioned.
- the positive electrode active material it is preferable to use a lithium manganese composite oxide represented by the following formula (6).
- M includes only Ni or one or more of Co and Fe containing Ni as a main component.
- A is more preferably one or more of B, Mg, Al, and Ti.
- Z is more preferably F. Such a substitution element serves to stabilize the crystal structure and suppress the deterioration of the active material.
- the average particle diameter (D 50 ) of the positive electrode active material is preferably 1 to 50 ⁇ m, and more preferably 5 to 25 ⁇ m.
- the average particle diameter (D 50 ) of the positive electrode active material can be measured by a laser diffraction scattering method (microtrack method).
- the 5V class active material is a positive electrode active material other than the above formula (6) as long as it is a positive electrode active material having a charge / discharge region of 4.5 V (vs. Li / Li + ) or more with respect to lithium metal. It doesn't matter. It is considered that the quality and stability of the film formed on the surface of the positive electrode active material are dominated by the potential and are not directly influenced by the composition of the active material.
- Li x MPO 4 F y (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, M is at least one of Co and Ni).
- Si-containing composite oxide represented by Li x MSiO 4 (0 ⁇ x ⁇ 2, M: at least one of Mn, Fe and Co); Li x [Li a M b Mn 1-ab ] O 2 (0 ⁇ x ⁇ 1, 0.02 ⁇ a ⁇ 0.3, 0.1 ⁇ b ⁇ 0.7, M is at least Ni, Co, Fe and Cr
- One type of positive electrode active material may be used alone, or two or more types may be used in combination.
- a 4V class active material may be included.
- Negative electrode active material Although it does not restrict
- a negative electrode active material can be used individually by 1 type, and can also be used in combination of 2 or more type.
- the positive electrode has, for example, a positive electrode active material layer formed on at least one surface of a positive electrode current collector.
- a positive electrode active material layer is comprised by the positive electrode active material which is a main material, a binder, and a conductive support agent, for example.
- the negative electrode is configured, for example, by forming a negative electrode active material layer on at least one surface of a negative electrode current collector.
- a negative electrode active material layer is comprised by the negative electrode active material which is a main material, a binder, and a conductive support agent, for example.
- binder used in the positive electrode examples include polyvinylidene fluoride (PVDF) and acrylic polymers.
- binder used in the negative electrode examples include styrene butadiene rubber (SBR) and the like other than the binder that can be used in the positive electrode.
- SBR styrene butadiene rubber
- a thickener such as carboxymethyl cellulose (CMC) can be used in combination.
- carbon materials such as carbon black, granular graphite, flake graphite, and carbon fiber can be used for both the positive electrode and the negative electrode.
- carbon black having low crystallinity for the positive electrode.
- positive electrode current collector for example, aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used.
- negative electrode current collector for example, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
- the electrode is prepared by dispersing and kneading an active material, a binder, and a conductive aid in a solvent such as N-methyl-2-pyrrolidone (NMP) in a predetermined blending amount. It can be obtained by applying to an electric body to form an active material layer. The obtained electrode can be compressed to a suitable density by a method such as a roll press.
- NMP N-methyl-2-pyrrolidone
- the separator is not particularly limited, and for example, a porous film made of a polyolefin such as polypropylene or polyethylene, a fluororesin, an inorganic separator made of cellulose, glass, or the like can be used.
- the exterior body for example, coin-shaped, rectangular, cylindrical, etc. cans and laminate exterior bodies can be used. From the viewpoint of reducing the weight and improving the battery energy density, synthetic resin and metal A laminate outer package using a flexible film made of a laminate with a foil is preferred. Since the laminate type battery is excellent in heat dissipation, it is suitable as an in-vehicle battery such as an electric vehicle.
- an aluminum laminate film, a SUS laminate film, a laminate film made of silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
- an aluminum laminate film from the viewpoint of suppressing volume expansion and cost.
- the configuration of the secondary battery according to the present embodiment is not particularly limited, and for example, an electrode element in which a positive electrode and a negative electrode are opposed to each other and an electrolytic solution may be included in an exterior body. it can.
- the shape of the secondary battery is not particularly limited, and examples thereof include a cylindrical shape, a flat wound rectangular shape, a laminated rectangular shape, a coin shape, a flat wound laminated shape, and a laminated laminated shape.
- FIG. 1 shows a laminated secondary battery as an example of the secondary battery according to this embodiment.
- the secondary battery shown in FIG. 1 includes a positive electrode composed of a positive electrode active material layer 1 including a positive electrode active material and a positive electrode binder, and a positive electrode current collector 3, and a negative electrode active material layer 2 including a negative electrode active material capable of occluding and releasing lithium. And the negative electrode current collector 4 is sandwiched between the separator 5.
- the positive electrode current collector 3 is connected to the positive electrode tab 8, and the negative electrode current collector 4 is connected to the negative electrode tab 7.
- a laminated outer package 6 is used as the outer package, and the inside of the secondary battery is filled with the nonaqueous electrolytic solution according to the present embodiment.
- a positive electrode tab and a negative electrode tab are connected to the positive electrode for a secondary battery and the negative electrode according to this embodiment via a positive electrode current collector and a negative electrode current collector, respectively.
- the positive electrode and the negative electrode are arranged opposite to each other with the separator interposed therebetween, and an electrode laminate is produced in which the positive electrode and the negative electrode are laminated.
- the electrode laminate is accommodated in an exterior body and immersed in an electrolytic solution.
- a secondary battery is manufactured by sealing the exterior body so that a part of the positive electrode tab and the negative electrode tab protrudes to the outside.
- Example 1 (Preparation of negative electrode) Natural graphite powder (average particle size (D 50 ): 20 ⁇ m, specific surface area: 1 m 2 / g) as a negative electrode active material and PVDF as a binder are uniformly dispersed in NMP at a mass ratio of 95: 5 Thus, a negative electrode slurry was produced. By applying this negative electrode slurry on both sides of a 15 ⁇ m thick copper foil serving as a negative electrode current collector and drying at 125 ° C. for 10 minutes to evaporate NMP, a negative electrode active material layer is formed and further pressed. A negative electrode was produced. In addition, the weight of the negative electrode active material layer per unit area after drying was set to 0.015 g / cm 2 .
- LiNi 0.5 Mn 1.5 O 4 powder (average particle diameter (D 50 ): 10 ⁇ m, specific surface area: 0.5 m 2 / g) as a positive electrode active material was prepared.
- a positive electrode active material, PVDF as a binder, and carbon black as a conductive additive were uniformly dispersed in NMP at a mass ratio of 93: 4: 3 to prepare a positive electrode slurry.
- the positive electrode slurry was applied to both surfaces of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector, and then dried at 125 ° C. for 10 minutes to evaporate NMP, thereby producing a positive electrode.
- the weight of the positive electrode active material layer per unit area after drying was set to 0.040 g / cm 2 .
- a non-aqueous solvent was prepared by mixing. LiPF 6 was dissolved in a non-aqueous solvent at a concentration of 0.8 mol / L as an electrolyte. In this electrolytic solution, 1 mass% of LiFSI as an additive was dissolved with respect to the total mass of the nonaqueous electrolytic solution to prepare a nonaqueous electrolytic solution.
- the positive electrode and the negative electrode were cut into 1.5 cm ⁇ 3 cm. Five layers of the obtained positive electrode and six layers of the negative electrode were alternately stacked while sandwiching a polypropylene porous film as a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material are welded respectively, and further, the positive electrode terminal made of aluminum and the negative electrode terminal made of nickel are connected to the welded portion. Each was welded to obtain an electrode element having a planar laminated structure. The electrode element was wrapped with an aluminum laminate film as an outer package, and an electrolyte solution was injected therein, and then sealed while reducing the pressure to produce a secondary battery.
- a secondary battery was prepared and evaluated in the same manner as in Example 1 except that a nonaqueous solvent mixed at a ratio of 20: 10: 40: 30 was used.
- Example 1 Comparative Example 1
- a secondary battery was fabricated and evaluated.
- Comparative Example 2 A secondary battery was prepared and evaluated in the same manner as in Comparative Example 1 except that LiFSI was not added.
- Example 6 A secondary battery was fabricated in the same manner as in Example 3 except that 1% by mass of methylenemethane disulfonate (MMDS) was added as an additive in the total mass of the non-aqueous electrolyte instead of LiFSI in Example 3. ,evaluated.
- MMDS methylenemethane disulfonate
- Example 4 In place of the additive of Example 3, as additive, LiFSI was added in an amount of 0.5% by mass in the total mass of the nonaqueous electrolytic solution and MMDS was added in an amount of 0.5% by mass in the total mass of the nonaqueous electrolytic solution. Produced and evaluated a secondary battery in the same manner as in Example 3.
- Table 1 shows the measurement results of capacity retention rate and volume increase of Comparative Examples 1 to 6 and Examples 1 to 5. Furthermore, the graph which compared the capacity
- the electrolyte contains LiFSI as an additive, and further contains, as the non-aqueous solvent, one or more selected from the group consisting of fluorinated ethers, fluorinated phosphates, and sulfone compounds. It was shown that it is more preferable to include the above. More preferably, the non-aqueous solvent contains a fluorinated ether.
- Example 4 had a higher capacity retention rate and a smaller volume increase than Comparative Examples 6 and 3. From this, it was shown that the combined use of cyclic sulfonate ester (MMDS) and LIFSI has a synergistic effect and is more preferable.
- Example 4 used both PC and EC
- Example 5 used only EC
- Example 5 was better with a smaller volume increase rate. This is probably because EC has a higher dielectric constant than PC and a high ability to dissolve LiFSI.
- Example 6 A secondary battery was prepared and evaluated in the same manner as in Example 4 except that CH 3 CH 2 O (CF 2 ) 4 F (FE2) was used as the fluorinated ether instead of FE1.
- Example 7 A secondary battery was prepared and evaluated in the same manner as in Example 4 except that H (CF 2 ) 4 CH 2 O (CF 2 ) 2 H was used as the fluorinated ether instead of FE1.
- Example 8 A secondary battery was produced and evaluated in the same manner as in Example 4 except that CF 3 CHFCF 2 OCH 2 (CF 2 ) 2 F was used as the fluorinated ether instead of FE1.
- Example 9 A secondary battery was prepared and evaluated in the same manner as in Example 4 except that dimethyl sulfone (DMS) was used instead of SL as the sulfone compound.
- DMS dimethyl sulfone
- Example 10 A secondary battery was prepared and evaluated in the same manner as in Example 4 except that ethyl methyl sulfone (EMS) was used as the sulfone compound instead of SL.
- EMS ethyl methyl sulfone
- Example 11 A secondary battery was prepared and evaluated in the same manner as in Example 4 except that ethyl isopropyl sulfone (EiPS) was used instead of SL as the sulfone compound.
- EiPS ethyl isopropyl sulfone
- Table 2 shows the results of Examples 6 to 11. As described above, Examples 6 to 8 were obtained by using other fluorinated ethers instead of FE1 of Example 4, and Examples 9 to 11 were different sulfone compounds instead of SL of Example 4. Is used. In either case, it was confirmed that good results were obtained in both capacity retention ratio and volume increase.
- Example 12 A secondary battery was prepared and evaluated in the same manner as in Example 4 except that 1,3-propane sultone (PS) was used instead of MMDS as the cyclic sulfonate ester.
- PS 1,3-propane sultone
- Example 13 A secondary battery was prepared and evaluated in the same manner as in Example 4 except that 1,4-butane sultone (BS) was used instead of MMDS as the cyclic sulfonate ester.
- BS 1,4-butane sultone
- Example 12 and Example 13 show the measurement results of Example 12 and Example 13. As described above, Examples 12 and 13 are obtained by changing the type of the cyclic sulfonate ester of the additive in Example 4. In Examples 12 and 13, the capacity retention rate and the volume increase amount are slightly inferior to those in the case where MMDS, which is a cyclic disulfonic acid ester, is used as an additive (Example 4), but both have good characteristics. It was confirmed.
- LiMn 2 O 4 powder (average particle diameter (D 50 ): 13 ⁇ m, specific surface area: 0.5 m 2 / g) was used, and the unit area A secondary battery was fabricated and evaluated in the same manner as in Comparative Example 6 except that the weight of the positive electrode active material layer per hit was 0.050 g / cm 2 and the upper limit voltage was 4.2 V.
- LiMn 2 O 4 powder (average particle diameter (D 50 ): 13 ⁇ m, specific surface area: 0.5 m 2 / g) was used, and the unit area A secondary battery was produced and evaluated in the same manner as in Example 3 except that the weight of the positive electrode active material layer was 0.050 g / cm 2 and the upper limit voltage was 4.2 V.
- Comparative Example 8 and Comparative Example 9 are secondary batteries using a 4V class active material
- Comparative Example 8 uses only MMDS as an additive
- Comparative Example 9 uses only LiFSI as an additive.
- the capacity retention rate of Comparative Example 8 was 73%
- the volume increase amount was 5%
- the capacity maintenance rate of Comparative Example 9 was 70%
- the volume increase amount was 6%.
- the improvement effect of the capacity maintenance rate and the volume increase amount was not recognized as compared with the case where the cyclic sulfonic acid ester was used. .
- LiFSI has a particularly remarkable effect on the 5V class active material.
- Comparative Example 10 Secondary in the same manner as in Comparative Example 3 except that LiCoPO 4 was used instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, the upper limit voltage was 5.1 V, and the cycle number was 100 cycles. A battery was made and evaluated.
- Example 14 Secondary using LiCoPO 4 instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, the upper limit voltage is 5.1 V, and the number of cycles is 100 cycles. A battery was made and evaluated.
- Li (Li 0.15 Ni 0.2 Mn 0.65 ) O 2 was used instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, and the weight of the positive electrode active material layer per unit area was 0
- a secondary battery was fabricated and evaluated in the same manner as in Comparative Example 3 except that 0.025 g / cm 2 , the upper limit voltage was 4.7 V, the lower limit voltage was 2.5 V, and the cycle number was 100 cycles.
- Example 15 Li (Li 0.15 Ni 0.2 Mn 0.65 ) O 2 was used instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, and the weight of the positive electrode active material layer per unit area was 0 and .025g / cm 2, the upper limit voltage 4.7V, the lower limit voltage was 2.5V, except that the number of cycles is 100 cycles to produce a secondary battery in the same manner as in example 1 and evaluated.
- Table 4 shows the capacity retention rates after 100 cycles at 45 ° C. of Comparative Examples 10 and 11 and Examples 14 and 15.
- This embodiment in which LiFSI was added to olivine type LiCoPO 4 and layered structure Li (Li 0.15 Ni 0.2 Mn 0.65 ) O 2 was effective in improving cycle characteristics. From this, it was shown that the effect of adding LiFSI can be obtained with a 5V class positive electrode active material regardless of the structure of the positive electrode active material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present embodiment pertains to a lithium ion secondary battery comprising: a positive electrode including a positive electrode active substance having an operating potential of at least 4.5 V relative to lithium metal; and a non-aqueous electrolyte including (a) an N(SO2F)2 anion, (b) an annular carbonate, and (c) at least one type selected from a group comprising a fluorinated ether, a fluorinated organophosphate, and a sulfonic compound that are indicated by a prescribed formula.
Description
本発明は、リチウムイオン二次電池に関する。
The present invention relates to a lithium ion secondary battery.
リチウムイオン二次電池は、体積が小さく、質量容量密度が大きく、高電圧を取り出すことができるため、小型機器用の電源として広く採用されている。例えば、携帯電話、ノート型パソコンなどのモバイル機器用の電源として用いられている。また、近年では、小型のモバイル機器用途以外にも、環境問題に対する配慮と省エネルギー化に対する意識の向上から、電気自動車(EV)や電力貯蔵分野などの大容量で長寿命が要求される大型二次電池への応用が期待されている。
Since lithium ion secondary batteries have a small volume, a large mass capacity density, and a high voltage can be taken out, they are widely used as power sources for small devices. For example, it is used as a power source for mobile devices such as mobile phones and notebook computers. Also, in recent years, in addition to small mobile device applications, large secondary devices that require a long life with a large capacity, such as electric vehicles (EV) and power storage fields, are being considered due to consideration for environmental issues and increased awareness of energy conservation. Application to batteries is expected.
現在市販されているリチウムイオン二次電池では、正極活物質として層状構造のLiMO2(MはCo、Ni、及びMnのうち少なくとも1種)またはスピネル構造のLiMn2O4をベースとしたものが一般的に用いられている。このような正極活物質を含む正極を有するリチウムイオン二次電池は、主に4.2V以下の充放電領域を用いている(以下、リチウム金属に対して4.2V以下の動作電位を有する正極を「4V級正極」と記載することもある)。また、負極活物質としては黒鉛などの炭素材料が用いられている。
In the lithium ion secondary battery currently on the market, a positive electrode active material based on LiMO 2 having a layered structure (M is at least one of Co, Ni, and Mn) or LiMn 2 O 4 having a spinel structure is used. Commonly used. A lithium ion secondary battery having a positive electrode containing such a positive electrode active material mainly uses a charge / discharge region of 4.2 V or less (hereinafter referred to as a positive electrode having an operating potential of 4.2 V or less with respect to lithium metal). May be described as “4V class positive electrode”). Further, a carbon material such as graphite is used as the negative electrode active material.
一方、LiMn2O4のMnの一部をNiなどで置換した材料は、リチウム金属に対して4.5~4.8Vと高い充放電領域を示すことが知られている。具体的には、LiNi0.5Mn1.5O4等のスピネル化合物は従来のMn3+とMn4+の酸化還元ではなく、MnはMn4+の状態で存在しNi2+とNi4+の酸化還元を利用するため、4.5V以上の高い動作電圧を示す。このような材料は5V級活物質と呼ばれ、高電圧化によりエネルギー密度の向上を図ることが可能であることから、有望な正極材料として期待されている。
On the other hand, it is known that a material obtained by substituting a part of Mn of LiMn 2 O 4 with Ni or the like shows a high charge / discharge region of 4.5 to 4.8 V with respect to lithium metal. Specifically, spinel compounds such as LiNi 0.5 Mn 1.5 O 4 are not redox of conventional Mn 3+ and Mn 4+ , but Mn exists in the state of Mn 4+ and redox of Ni 2+ and Ni 4+ Therefore, a high operating voltage of 4.5 V or higher is shown. Such a material is called a 5V class active material and is expected to be a promising positive electrode material because it can improve the energy density by increasing the voltage.
しかしながら、正極の電位が高くなると、電解液が酸化分解されてガスが発生したり、電解液の分解に伴う副生成物が発生したり、正極活物質中のMnやNiなどの金属イオンが溶出して負極上に析出するなどして、高温での充放電サイクルによる容量劣化や多量のガス発生が引き起こされるといった問題があり、実用化への障害となっていた。
However, when the potential of the positive electrode is increased, the electrolyte is oxidized and decomposed to generate gas, by-products accompanying the decomposition of the electrolyte are generated, and metal ions such as Mn and Ni in the positive electrode active material are eluted. As a result, there are problems such as precipitation on the negative electrode, which causes capacity deterioration due to charge / discharge cycles at high temperatures and generation of a large amount of gas, which has been an obstacle to practical use.
従来の4V級正極を用いた電池では、電池性能を向上させたり劣化を抑制したりするために電解液に添加剤を加えるという手法が広く行われている。しかし、4V級正極では正極上での電解液の酸化分解がその劣化の主要因ではないため、4V級の電池で用いられる添加剤が5V級の電池にも有効であるとは限らず、その効果も異なる場合がある。
In a conventional battery using a 4V class positive electrode, a technique of adding an additive to an electrolytic solution is widely performed in order to improve battery performance or suppress deterioration. However, in the 4V class positive electrode, the oxidative decomposition of the electrolyte on the positive electrode is not the main cause of the deterioration, so the additive used in the 4V class battery is not always effective for the 5V class battery. The effect may be different.
電解液への添加剤として様々な化合物が報告されているが、例えば、特許文献1~4には、Li+[(FSO2)2N]-で表されるビス(フルオロスルホニル)イミドリチウム塩(LiFSI)を用いることが記載されており、特許文献1にはLiFSIが非水溶媒の電解質として適用できること、特許文献2には特定の化合物と併用することで高温保存後の出力特性を改善できることが記載されている。特許文献3には、フッ素原子を含有するスルホニルイミドリチウムと、含フッ素ジエーテルと、含フッ素モノエーテルとを含む非水電解液が記載されている。特許文献4には、フッ素化環状炭酸エステルとリチウムビスフルオロスルフォニルイミドとを含有する二次電池用非水電解液が記載されている。
Various compounds have been reported as additives to the electrolytic solution. For example, Patent Documents 1 to 4 disclose bis (fluorosulfonyl) imide lithium salt represented by Li + [(FSO 2 ) 2 N] −. Patent Document 1 describes that LiFSI can be applied as an electrolyte of a non-aqueous solvent, and Patent Document 2 can improve output characteristics after high-temperature storage by using in combination with a specific compound. Is described. Patent Document 3 describes a nonaqueous electrolytic solution containing a sulfonylimide lithium containing a fluorine atom, a fluorinated diether, and a fluorinated monoether. Patent Document 4 describes a nonaqueous electrolytic solution for a secondary battery containing a fluorinated cyclic carbonate and lithium bisfluorosulfonylimide.
しかしながら、特許文献1~4においては、リチウム金属に対して4.5V以上と高い電圧を示す5V級活物質を用いた電池における高温でのサイクル特性や、ガス発生等の課題について十分に解決できていなかった。例えば、特許文献4に記載の電解液では、具体的な言及はされていないものの高温サイクル時にガスが多量に発生してしまうため、実用上大きな問題があった。
However, Patent Documents 1 to 4 can sufficiently solve problems such as high temperature cycle characteristics and gas generation in a battery using a 5 V class active material that exhibits a voltage as high as 4.5 V or more with respect to lithium metal. It wasn't. For example, the electrolytic solution described in Patent Document 4 has a large practical problem because a large amount of gas is generated during a high-temperature cycle although not specifically mentioned.
本発明は、5V級活物質を用いたリチウムイオン二次電池における上記問題を解決し、高温における充放電サイクルの容量維持率が高く、ガス発生が低減されたリチウムイオン二次電池を提供することを目的とする。
The present invention solves the above-mentioned problems in a lithium ion secondary battery using a 5V class active material, and provides a lithium ion secondary battery with a high capacity retention rate of charge / discharge cycles at high temperatures and reduced gas generation. With the goal.
本発明は、正極と、非水電解液と、を備えるリチウムイオン二次電池であって、
前記正極は、リチウム金属に対して4.5V以上に動作電位を有する正極活物質を含み、
前記非水電解液は、
(a)N(SO2F)2アニオン(FSIアニオン)と、
(b)環状カーボネートと、
(c)下記式(1)で表されるフッ素化エーテル、下記式(2)で表されるフッ素化リン酸エステル、および、下記式(3)または下記式(4)で表されるスルホン化合物からなる群から選ばれる少なくとも1種と、
を含むことを特徴とするリチウムイオン二次電池に関する。 The present invention is a lithium ion secondary battery comprising a positive electrode and a non-aqueous electrolyte,
The positive electrode includes a positive electrode active material having an operating potential of 4.5 V or more with respect to lithium metal,
The non-aqueous electrolyte is
(A) N (SO 2 F) 2 anion (FSI anion);
(B) a cyclic carbonate;
(C) A fluorinated ether represented by the following formula (1), a fluorinated phosphate ester represented by the following formula (2), and a sulfone compound represented by the following formula (3) or the following formula (4) At least one selected from the group consisting of:
The present invention relates to a lithium ion secondary battery.
前記正極は、リチウム金属に対して4.5V以上に動作電位を有する正極活物質を含み、
前記非水電解液は、
(a)N(SO2F)2アニオン(FSIアニオン)と、
(b)環状カーボネートと、
(c)下記式(1)で表されるフッ素化エーテル、下記式(2)で表されるフッ素化リン酸エステル、および、下記式(3)または下記式(4)で表されるスルホン化合物からなる群から選ばれる少なくとも1種と、
を含むことを特徴とするリチウムイオン二次電池に関する。 The present invention is a lithium ion secondary battery comprising a positive electrode and a non-aqueous electrolyte,
The positive electrode includes a positive electrode active material having an operating potential of 4.5 V or more with respect to lithium metal,
The non-aqueous electrolyte is
(A) N (SO 2 F) 2 anion (FSI anion);
(B) a cyclic carbonate;
(C) A fluorinated ether represented by the following formula (1), a fluorinated phosphate ester represented by the following formula (2), and a sulfone compound represented by the following formula (3) or the following formula (4) At least one selected from the group consisting of:
The present invention relates to a lithium ion secondary battery.
本発明によると、5V級活物質を含むリチウムイオン二次電池のサイクル特性を向上させ、ガス発生を抑制することができる。なお、本明細書において、リチウム金属に対して4.5V以上に動作電位を有する正極活物質のことを「5V級活物質」と記載することもある。
According to the present invention, the cycle characteristics of a lithium ion secondary battery containing a 5 V class active material can be improved and gas generation can be suppressed. Note that in this specification, a positive electrode active material having an operating potential of 4.5 V or higher with respect to lithium metal may be referred to as a “5 V class active material”.
本実施形態のリチウムイオン二次電池は、
正極と、非水電解液と、を備え、
前記正極は、リチウム金属に対して4.5V以上に動作電位を有する正極活物質(以下、「5V級活物質」と記載することもある。)を含み、
前記非水電解液は、
(a)N(SO2F)2アニオン(FSIアニオン)と、
(b)環状カーボネートと、
(c)下記式(1)で表されるフッ素化エーテル、下記式(2)で表されるフッ素化リン酸エステル、および、下記式(3)または下記式(4)で表されるスルホン化合物からなる群から選ばれる少なくとも1種と、
を含む。 The lithium ion secondary battery of this embodiment is
A positive electrode and a non-aqueous electrolyte,
The positive electrode includes a positive electrode active material (hereinafter sometimes referred to as “5 V class active material”) having an operating potential of 4.5 V or more with respect to lithium metal,
The non-aqueous electrolyte is
(A) N (SO 2 F) 2 anion (FSI anion);
(B) a cyclic carbonate;
(C) A fluorinated ether represented by the following formula (1), a fluorinated phosphate ester represented by the following formula (2), and a sulfone compound represented by the following formula (3) or the following formula (4) At least one selected from the group consisting of:
including.
正極と、非水電解液と、を備え、
前記正極は、リチウム金属に対して4.5V以上に動作電位を有する正極活物質(以下、「5V級活物質」と記載することもある。)を含み、
前記非水電解液は、
(a)N(SO2F)2アニオン(FSIアニオン)と、
(b)環状カーボネートと、
(c)下記式(1)で表されるフッ素化エーテル、下記式(2)で表されるフッ素化リン酸エステル、および、下記式(3)または下記式(4)で表されるスルホン化合物からなる群から選ばれる少なくとも1種と、
を含む。 The lithium ion secondary battery of this embodiment is
A positive electrode and a non-aqueous electrolyte,
The positive electrode includes a positive electrode active material (hereinafter sometimes referred to as “5 V class active material”) having an operating potential of 4.5 V or more with respect to lithium metal,
The non-aqueous electrolyte is
(A) N (SO 2 F) 2 anion (FSI anion);
(B) a cyclic carbonate;
(C) A fluorinated ether represented by the following formula (1), a fluorinated phosphate ester represented by the following formula (2), and a sulfone compound represented by the following formula (3) or the following formula (4) At least one selected from the group consisting of:
including.
(式(4)中、R3は、置換または無置換のアルキレン基を示す。)。
(In formula (4), R 3 represents a substituted or unsubstituted alkylene group).
なお、本明細書において、リチウム金属に対して4.5V以上に動作電位を有する正極活物質を含む正極のことを「5V級正極」と記載することもある。
In this specification, a positive electrode including a positive electrode active material having an operating potential of 4.5 V or higher with respect to lithium metal may be referred to as a “5 V class positive electrode”.
(非水電解液)
本実施形態のリチウムイオン二次電池が備える非水電解液は、
(a)N(SO2F)2アニオン(以下、「FSIアニオン」と記載することもある。)と、非水電解溶媒を含み、
前記非水電解溶媒は、
(b)環状カーボネート、ならびに、
(c)式(1)で表されるフッ素化エーテル、式(2)で表されるフッ素化リン酸エステル、および、式(3)または式(4)で表されるスルホン化合物から選ばれる少なくとも1種と、を含む。 (Non-aqueous electrolyte)
The non-aqueous electrolyte provided in the lithium ion secondary battery of this embodiment is
(A) an N (SO 2 F) 2 anion (hereinafter sometimes referred to as “FSI anion”) and a nonaqueous electrolytic solvent;
The non-aqueous electrolytic solvent is
(B) a cyclic carbonate, and
(C) at least selected from a fluorinated ether represented by formula (1), a fluorinated phosphate ester represented by formula (2), and a sulfone compound represented by formula (3) or formula (4) 1 type.
本実施形態のリチウムイオン二次電池が備える非水電解液は、
(a)N(SO2F)2アニオン(以下、「FSIアニオン」と記載することもある。)と、非水電解溶媒を含み、
前記非水電解溶媒は、
(b)環状カーボネート、ならびに、
(c)式(1)で表されるフッ素化エーテル、式(2)で表されるフッ素化リン酸エステル、および、式(3)または式(4)で表されるスルホン化合物から選ばれる少なくとも1種と、を含む。 (Non-aqueous electrolyte)
The non-aqueous electrolyte provided in the lithium ion secondary battery of this embodiment is
(A) an N (SO 2 F) 2 anion (hereinafter sometimes referred to as “FSI anion”) and a nonaqueous electrolytic solvent;
The non-aqueous electrolytic solvent is
(B) a cyclic carbonate, and
(C) at least selected from a fluorinated ether represented by formula (1), a fluorinated phosphate ester represented by formula (2), and a sulfone compound represented by formula (3) or formula (4) 1 type.
(FSIアニオン)
本実施形態において、非水電解液は、FSIアニオンを含む。FSIアニオンは負極および正極に皮膜を形成すると考えられる。このような皮膜はSEI皮膜(Solid Electrolyte Interface)とも呼ばれ、イオン伝導性は有するが電子伝導性はもたないため、活物質と電解液との反応を防止する役割を果たす。正極に形成された皮膜は、5V級活物質と電解液の分解反応を抑制する。負極に形成された皮膜は、負極と電解液の分解反応を抑制し、正極で生じた電解液の副生成物、または、正極から溶出したMnやNiなどの遷移金属イオンが負極で反応したり析出したりするのを防止する。その結果、充放電サイクルの容量維持率が向上し、ガス発生を十分に抑制することができる。本実施形態において、正極はリチウム金属に対して4.5V以上に動作電位を有する正極活物質を有するが、上記FSIアニオンによる効果は、従来の4V級正極を用いた二次電池より、5V級活物質を有する二次電池の方がより高く発揮される。これは、正極の電位が高いために正極上でFSIアニオンによる酸化分解皮膜が形成されやすいためであると考えられる。 (FSI anion)
In the present embodiment, the nonaqueous electrolytic solution contains an FSI anion. The FSI anion is considered to form a film on the negative electrode and the positive electrode. Such a film is also referred to as a SEI film (Solid Electrolyte Interface), and has an ionic conductivity but no electronic conductivity, and thus plays a role of preventing a reaction between the active material and the electrolytic solution. The film formed on the positive electrode suppresses the decomposition reaction between the 5V class active material and the electrolytic solution. The film formed on the negative electrode suppresses the decomposition reaction between the negative electrode and the electrolytic solution, and by-products of the electrolytic solution generated at the positive electrode or transition metal ions such as Mn and Ni eluted from the positive electrode react with the negative electrode. To prevent precipitation. As a result, the capacity maintenance rate of the charge / discharge cycle is improved, and gas generation can be sufficiently suppressed. In this embodiment, the positive electrode has a positive electrode active material having an operating potential of 4.5 V or more with respect to lithium metal, but the effect of the FSI anion is 5 V class than the conventional secondary battery using a 4 V class positive electrode. A secondary battery having an active material is more highly effective. This is considered to be because an oxidative decomposition film by FSI anion is easily formed on the positive electrode because the positive electrode has a high potential.
本実施形態において、非水電解液は、FSIアニオンを含む。FSIアニオンは負極および正極に皮膜を形成すると考えられる。このような皮膜はSEI皮膜(Solid Electrolyte Interface)とも呼ばれ、イオン伝導性は有するが電子伝導性はもたないため、活物質と電解液との反応を防止する役割を果たす。正極に形成された皮膜は、5V級活物質と電解液の分解反応を抑制する。負極に形成された皮膜は、負極と電解液の分解反応を抑制し、正極で生じた電解液の副生成物、または、正極から溶出したMnやNiなどの遷移金属イオンが負極で反応したり析出したりするのを防止する。その結果、充放電サイクルの容量維持率が向上し、ガス発生を十分に抑制することができる。本実施形態において、正極はリチウム金属に対して4.5V以上に動作電位を有する正極活物質を有するが、上記FSIアニオンによる効果は、従来の4V級正極を用いた二次電池より、5V級活物質を有する二次電池の方がより高く発揮される。これは、正極の電位が高いために正極上でFSIアニオンによる酸化分解皮膜が形成されやすいためであると考えられる。 (FSI anion)
In the present embodiment, the nonaqueous electrolytic solution contains an FSI anion. The FSI anion is considered to form a film on the negative electrode and the positive electrode. Such a film is also referred to as a SEI film (Solid Electrolyte Interface), and has an ionic conductivity but no electronic conductivity, and thus plays a role of preventing a reaction between the active material and the electrolytic solution. The film formed on the positive electrode suppresses the decomposition reaction between the 5V class active material and the electrolytic solution. The film formed on the negative electrode suppresses the decomposition reaction between the negative electrode and the electrolytic solution, and by-products of the electrolytic solution generated at the positive electrode or transition metal ions such as Mn and Ni eluted from the positive electrode react with the negative electrode. To prevent precipitation. As a result, the capacity maintenance rate of the charge / discharge cycle is improved, and gas generation can be sufficiently suppressed. In this embodiment, the positive electrode has a positive electrode active material having an operating potential of 4.5 V or more with respect to lithium metal, but the effect of the FSI anion is 5 V class than the conventional secondary battery using a 4 V class positive electrode. A secondary battery having an active material is more highly effective. This is considered to be because an oxidative decomposition film by FSI anion is easily formed on the positive electrode because the positive electrode has a high potential.
FSIアニオンは、FSIアニオンを含む化合物が非水電解液中に溶解することにより生じる。FSIアニオンを含む化合物としては、FSIアニオンとアルカリ金属との塩が好ましく、例えば、LiFSI、NaFSI、KFSIなどが挙げられる。これらのうち、LiFSIは、リチウムイオン電池の電解質としてもはたらくことができ、電解液のイオン伝導性の向上を図ることが可能なので、特に好ましい。なお、本明細書において、LiFSIを例に記載しているところがあるが、リチウム塩以外でもFSIアニオンの皮膜は形成されるのでLiFSIに限定されるものではない。
The FSI anion is generated when a compound containing the FSI anion is dissolved in the non-aqueous electrolyte. As a compound containing an FSI anion, a salt of an FSI anion and an alkali metal is preferable, and examples thereof include LiFSI, NaFSI, and KFSI. Among these, LiFSI is particularly preferable because it can serve as an electrolyte of a lithium ion battery and can improve ion conductivity of the electrolytic solution. In this specification, LiFSI is described as an example, but the coating of FSI anion is also formed other than the lithium salt, and is not limited to LiFSI.
電解液の全質量に対するLiFSIの添加量は、0.1~5質量%が好ましく、0.2~3質量%がさらに好ましい。
The amount of LiFSI added to the total mass of the electrolytic solution is preferably 0.1 to 5% by mass, and more preferably 0.2 to 3% by mass.
(非水電解溶媒)
本実施形態において、電解液は、非水電解溶媒として、環状カーボネートを含む。環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などが挙げられる。また、これら化合物の水素の一部又は全部がフッ素で置換されていてもよい。フッ素化環状カーボネートとしては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン{モノフルオロエチレンカーボネート(FEC)}、(cisまたはtrans)4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン等が挙げられる。環状カーボネートは一種を単独でまたは二種以上を混合して用いることができる。ECやPCは誘電率が高く電解質の溶解性に優れるので好ましく、ECがより好ましい。LiFSIはLiPF6などの他のリチウム塩に比べて有機溶媒への溶解性が悪いが、環状カーボネートを電解液に含有させることによりLiFSIの溶解性をより高めることができる。 (Non-aqueous electrolytic solvent)
In the present embodiment, the electrolytic solution contains a cyclic carbonate as a nonaqueous electrolytic solvent. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC). Further, some or all of hydrogen in these compounds may be substituted with fluorine. Examples of the fluorinated cyclic carbonate include 4-fluoro-1,3-dioxolan-2-one {monofluoroethylene carbonate (FEC)}, (cis or trans) 4,5-difluoro-1,3-dioxolane-2. -One, 4,4-difluoro-1,3-dioxolan-2-one, 4-fluoro-5-methyl-1,3-dioxolan-2-one and the like. A cyclic carbonate can be used individually by 1 type or in mixture of 2 or more types. EC and PC are preferable because they have a high dielectric constant and excellent electrolyte solubility, and EC is more preferable. LiFSI has poor solubility in organic solvents as compared with other lithium salts such as LiPF 6 , but the solubility of LiFSI can be further increased by including a cyclic carbonate in the electrolytic solution.
本実施形態において、電解液は、非水電解溶媒として、環状カーボネートを含む。環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などが挙げられる。また、これら化合物の水素の一部又は全部がフッ素で置換されていてもよい。フッ素化環状カーボネートとしては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン{モノフルオロエチレンカーボネート(FEC)}、(cisまたはtrans)4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン等が挙げられる。環状カーボネートは一種を単独でまたは二種以上を混合して用いることができる。ECやPCは誘電率が高く電解質の溶解性に優れるので好ましく、ECがより好ましい。LiFSIはLiPF6などの他のリチウム塩に比べて有機溶媒への溶解性が悪いが、環状カーボネートを電解液に含有させることによりLiFSIの溶解性をより高めることができる。 (Non-aqueous electrolytic solvent)
In the present embodiment, the electrolytic solution contains a cyclic carbonate as a nonaqueous electrolytic solvent. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC). Further, some or all of hydrogen in these compounds may be substituted with fluorine. Examples of the fluorinated cyclic carbonate include 4-fluoro-1,3-dioxolan-2-one {monofluoroethylene carbonate (FEC)}, (cis or trans) 4,5-difluoro-1,3-dioxolane-2. -One, 4,4-difluoro-1,3-dioxolan-2-one, 4-fluoro-5-methyl-1,3-dioxolan-2-one and the like. A cyclic carbonate can be used individually by 1 type or in mixture of 2 or more types. EC and PC are preferable because they have a high dielectric constant and excellent electrolyte solubility, and EC is more preferable. LiFSI has poor solubility in organic solvents as compared with other lithium salts such as LiPF 6 , but the solubility of LiFSI can be further increased by including a cyclic carbonate in the electrolytic solution.
環状カーボネートの全非水電解溶媒中の含有率は、1~50体積%であることが好ましく、5~40体積%であることがより好ましく、10~40体積%であることがさらに好ましい。環状カーボネートの含有量が少なすぎると電解液の導電性が低下し、サイクル特性が劣化してしまう場合がある。環状カーボネートの含有量が多すぎると、環状カーボネートは、高電位では分解し易いことから、5V級の正極活物質を含むリチウムイオン二次電池においてはガス発生増加が起こりやすくなる場合がある。
The content of cyclic carbonate in the total nonaqueous electrolytic solvent is preferably 1 to 50% by volume, more preferably 5 to 40% by volume, and further preferably 10 to 40% by volume. If the content of the cyclic carbonate is too small, the conductivity of the electrolytic solution is lowered, and the cycle characteristics may be deteriorated. If the content of the cyclic carbonate is too large, the cyclic carbonate is likely to be decomposed at a high potential. Therefore, in a lithium ion secondary battery containing a 5V-grade positive electrode active material, gas generation may increase.
本実施形態において、非水電解溶媒は、上記環状カーボネートに加え、式(1)で表されるフッ素化エーテル(以下、単に「フッ素化エーテル」と記載することもある。)、式(2)で表されるフッ素化リン酸エステル(以下、単に「フッ素化リン酸エステル」と記載することもある。)、および、式(3)または式(4)で表されるスルホン化合物(以下、単に「スルホン化合物」と記載することもある。)から選ばれる少なくとも1種を含み、2種以上を含むことがより好ましい。以下、各化合物について説明する。
In the present embodiment, the nonaqueous electrolytic solvent is a fluorinated ether represented by the formula (1) (hereinafter sometimes simply referred to as “fluorinated ether”), the formula (2), in addition to the cyclic carbonate. And a sulfone compound represented by formula (3) or formula (4) (hereinafter simply referred to as “fluorinated phosphate ester”). It may be described as “sulfone compound”.), And at least one selected from the group consisting of 2 or more is more preferable. Hereinafter, each compound will be described.
本実施形態において、非水電解溶媒は下記式(1)で表されるフッ素化エーテルを含むことができる。
In this embodiment, the nonaqueous electrolytic solvent can contain a fluorinated ether represented by the following formula (1).
R101およびR102の炭素数の合計が10以下であることが好ましい。
The total number of carbon atoms of R 101 and R 102 is preferably 10 or less.
フッ化アルキル基とは、少なくとも1つのフッ素原子を有するアルキル基である。式(1)中、フッ化アルキル基におけるフッ素原子の含有率はフッ素原子と水素原子の合計に対して50%以上であることが好ましく、60%以上であることがより好ましい。フッ素原子の含有率が多いと、耐電圧性がより向上し、リチウムに対して4.5V以上の電位で動作する正極活物質を用いた場合でもサイクル後における電池容量の劣化をより有効に低減することが可能である。
The fluorinated alkyl group is an alkyl group having at least one fluorine atom. In formula (1), the fluorine atom content in the fluorinated alkyl group is preferably 50% or more, more preferably 60% or more, based on the total of fluorine atoms and hydrogen atoms. When the content of fluorine atoms is large, the withstand voltage is further improved, and even when a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium is used, deterioration of battery capacity after cycling is more effectively reduced. Is possible.
前記フッ素化エーテルのうち、下記式(1-1)で表されるフッ素化エーテルがより好ましい。
Of the fluorinated ethers, fluorinated ethers represented by the following formula (1-1) are more preferable.
X1-(CX2X3)n-O-(CX4X5)m-X6 (1-1)
(式(1-1)中、n、mは、それぞれ独立に1~8である。X1~X6は、それぞれ独立に、フッ素原子または水素原子である。ただし、X1~X6の少なくとも1つはフッ素原子である。また、nが2以上のとき、複数個存在するX2およびX3は互いに独立であり、mが2以上のとき、複数個存在するX4およびX5は互いに独立である。)。 X 1- (CX 2 X 3 ) n -O- (CX 4 X 5 ) m -X 6 (1-1)
(In formula (1-1), n and m are each independently 1 to 8. X 1 to X 6 are each independently a fluorine atom or a hydrogen atom, provided that X 1 to X 6 At least one is a fluorine atom, and when n is 2 or more, a plurality of X 2 and X 3 are independent from each other, and when m is 2 or more, a plurality of X 4 and X 5 are Are independent of each other.)
(式(1-1)中、n、mは、それぞれ独立に1~8である。X1~X6は、それぞれ独立に、フッ素原子または水素原子である。ただし、X1~X6の少なくとも1つはフッ素原子である。また、nが2以上のとき、複数個存在するX2およびX3は互いに独立であり、mが2以上のとき、複数個存在するX4およびX5は互いに独立である。)。 X 1- (CX 2 X 3 ) n -O- (CX 4 X 5 ) m -X 6 (1-1)
(In formula (1-1), n and m are each independently 1 to 8. X 1 to X 6 are each independently a fluorine atom or a hydrogen atom, provided that X 1 to X 6 At least one is a fluorine atom, and when n is 2 or more, a plurality of X 2 and X 3 are independent from each other, and when m is 2 or more, a plurality of X 4 and X 5 are Are independent of each other.)
フッ素化エーテルは、耐電圧性と他の電解質との相溶性の観点から、下記式(1-2)で表される化合物であることがより好ましい。
The fluorinated ether is more preferably a compound represented by the following formula (1-2) from the viewpoint of voltage resistance and compatibility with other electrolytes.
X1-(CX2X3)n-CH2O-CX4X5-CX6X7-X8 (1-2)
(式(1-2)中、nは1~7であり、X1~X8は、それぞれ独立に、フッ素原子または水素原子である。ただし、X1~X3の少なくとも1つはフッ素原子であり、X4~X8の少なくとも1つはフッ素原子である。)。 X 1- (CX 2 X 3 ) n -CH 2 O-CX 4 X 5 -CX 6 X 7 -X 8 (1-2)
(In the formula (1-2), n is 1 to 7, and X 1 to X 8 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 3 is a fluorine atom. And at least one of X 4 to X 8 is a fluorine atom).
(式(1-2)中、nは1~7であり、X1~X8は、それぞれ独立に、フッ素原子または水素原子である。ただし、X1~X3の少なくとも1つはフッ素原子であり、X4~X8の少なくとも1つはフッ素原子である。)。 X 1- (CX 2 X 3 ) n -CH 2 O-CX 4 X 5 -CX 6 X 7 -X 8 (1-2)
(In the formula (1-2), n is 1 to 7, and X 1 to X 8 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 3 is a fluorine atom. And at least one of X 4 to X 8 is a fluorine atom).
式(1-2)において、nが2以上のとき、複数個存在するX2は互いに同一であっても異なっていてもよく、複数個存在するX3は互いに同一であっても異なっていてもよい。
In formula (1-2), when n is 2 or more, a plurality of X 2 may be the same or different from each other, and a plurality of X 3 are the same or different from each other. Also good.
また、さらに、耐電圧性と他の電解質との相溶性の観点から、フッ素化エーテル化合物は、下記式(1-3)で表されることがさらに好ましい。
Further, from the viewpoint of voltage resistance and compatibility with other electrolytes, the fluorinated ether compound is more preferably represented by the following formula (1-3).
H-(CY1Y2-CY3Y4)n-CH2O-CY5Y6-CY7Y8-H(1-3)
H— (CY 1 Y 2 —CY 3 Y 4 ) n —CH 2 O—CY 5 Y 6 —CY 7 Y 8 —H (1-3)
式(1-3)において、nは1、2、3または4である。Y1~Y8は、それぞれ独立に、フッ素原子または水素原子である。ただし、Y1~Y4の少なくとも1つはフッ素原子であり、Y5~Y8の少なくとも1つはフッ素原子である。
In the formula (1-3), n is 1, 2, 3 or 4. Y 1 to Y 8 are each independently a fluorine atom or a hydrogen atom. However, at least one of Y 1 to Y 4 is a fluorine atom, and at least one of Y 5 to Y 8 is a fluorine atom.
式(1-3)において、nが2以上のとき、複数個存在するY1~Y4は互いに同一であっても異なっていてもよい。
In formula (1-3), when n is 2 or more, a plurality of Y 1 to Y 4 may be the same or different from each other.
フッ素化エーテルとして、具体的には、例えば、CF3OCH3、CF3OC2H5、F(CF2)2OCH3、F(CF2)2OC2H5、CF3(CF2)CH2O(CF2)CF3、F(CF2)3OCH3、F(CF2)3OC2H5、F(CF2)4OCH3、F(CF2)4OC2H5、F(CF2)5OCH3、F(CF2)5OC2H5、F(CF2)8OCH3、F(CF2)8OC2H5、F(CF2)9OCH3、CF3CH2OCH3、CF3CH2OCHF2、CF3CF2CH2OCH3、CF3CF2CH2OCHF2、CF3CF2CH2O(CF2)2H、CF3CF2CH2O(CF2)2F、HCF2CH2OCH3、(CF3)(CF2)CH2O(CF2)2H、H(CF2)2OCH2CH3、H(CF2)2OCH2CF3,H(CF2)2CH2OCHF2、H(CF2)2CH2O(CF2)2H、H(CF2)2CH2O(CF2)3H、H(CF2)3CH2O(CF2)2H、H(CHF)2CH2O(CF2)2H、(CF3)2CHOCH3、(CF3)2CHCF2OCH3、CF3CHFCF2OCH3、CF3CHFCF2OCH2CH3、CF3CHFCF2CH2OCHF2、CF3CHFCF2OCH2(CF2)2F、CF3CHFCF2OCH2CF2CF2H、H(CF2)4CH2O(CF2)2H、CH3CH2O(CF2)4F、F(CF2)4CH2O(CF2)2Hなどが挙げられる。中でも、フッ素化エーテル化合物として、H(CF2)2CH2O(CF2)2Hが好ましい。フッ素化エーテル化合物は、一種を単独で、または二種以上を組み合わせて使用してもよい。
Specific examples of the fluorinated ether include CF 3 OCH 3 , CF 3 OC 2 H 5 , F (CF 2 ) 2 OCH 3 , F (CF 2 ) 2 OC 2 H 5 , and CF 3 (CF 2 ). CH 2 O (CF 2) CF 3, F (CF 2) 3 OCH 3, F (CF 2) 3 OC 2 H 5, F (CF 2) 4 OCH 3, F (CF 2) 4 OC 2 H 5, F (CF 2 ) 5 OCH 3 , F (CF 2 ) 5 OC 2 H 5 , F (CF 2 ) 8 OCH 3 , F (CF 2 ) 8 OC 2 H 5 , F (CF 2 ) 9 OCH 3 , CF 3 CH 2 OCH 3 , CF 3 CH 2 OCHF 2 , CF 3 CF 2 CH 2 OCH 3 , CF 3 CF 2 CH 2 OCHF 2 , CF 3 CF 2 CH 2 O (CF 2 ) 2 H, CF 3 CF 2 CH 2 O (CF 2) 2 F , CF 2 CH 2 OCH 3, ( CF 3) (CF 2) CH 2 O (CF 2) 2 H, H (CF 2) 2 OCH 2 CH 3, H (CF 2) 2 OCH 2 CF 3, H (CF 2 ) 2 CH 2 OCHF 2 , H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H, H (CF 2 ) 2 CH 2 O (CF 2 ) 3 H, H (CF 2 ) 3 CH 2 O ( CF 2) 2 H, H ( CHF) 2 CH 2 O (CF 2) 2 H, (CF 3) 2 CHOCH 3, (CF 3) 2 CHCF 2 OCH 3, CF 3 CHFCF 2 OCH 3, CF 3 CHFCF 2 OCH 2 CH 3 , CF 3 CHFCF 2 CH 2 OCHF 2 , CF 3 CHFCF 2 OCH 2 (CF 2 ) 2 F, CF 3 CHFCF 2 OCH 2 CF 2 CF 2 H, H (CF 2 ) 4 CH 2 O (CF 2) 2 H, CH 3 CH 2 O (CF 2) 4 F, F (CF 2) 4 CH 2 O (CF 2) such as 2 H and the like. Among these, as the fluorinated ether compound, H (CF 2 ) 2 CH 2 O (CF 2 ) 2 H is preferable. A fluorinated ether compound may be used alone or in combination of two or more.
式(1)で表されるフッ素化エーテル化合物の含有量は、非水電解溶媒中0体積%以上90体積%以下であることが好ましく、15体積%以上80体積%以下であることがより好ましく、30体積%以上70体積%以下であることがより好ましく、30体積%以上60体積%以下であることがより好ましく、30体積%以上50体積%以下であることがさらに好ましい。フッ素化エーテルの含有率が多すぎると、電解液の誘電率が下がり、支持塩が解離できなくなり、同様に容量低下が起こる。
The content of the fluorinated ether compound represented by the formula (1) is preferably 0% by volume to 90% by volume and more preferably 15% by volume to 80% by volume in the nonaqueous electrolytic solvent. 30 volume% or more and 70 volume% or less is more preferable, 30 volume% or more and 60 volume% or less is more preferable, and 30 volume% or more and 50 volume% or less is further more preferable. When the content of the fluorinated ether is too large, the dielectric constant of the electrolytic solution is lowered, the supporting salt cannot be dissociated, and the capacity is similarly reduced.
フッ素化エーテルは耐酸化性が高いため5V級活物質を含むリチウムイオン二次電池において、溶媒の酸化分解を抑えることができる。その結果、充放電サイクルの容量維持率の向上やガス発生を低減することができる。LiFSIは負極および正極に皮膜を作るが、溶媒の分解生成物が電極上に多量に存在すると、良質な皮膜が形成されにくくなったり、その皮膜の効果が阻害されたりしてしまう。ここで、LiFSIと、耐酸化性の高いフッ素化エーテルとを共存させることにより、LiFSIよる皮膜の効果を強化することができる。
Since the fluorinated ether has high oxidation resistance, the oxidative decomposition of the solvent can be suppressed in a lithium ion secondary battery containing a 5V class active material. As a result, it is possible to improve the capacity maintenance rate of the charge / discharge cycle and reduce gas generation. LiFSI forms a film on the negative electrode and the positive electrode. However, if a large amount of decomposition products of the solvent are present on the electrode, a high-quality film is hardly formed or the effect of the film is hindered. Here, by making LiFSI coexist with fluorinated ether having high oxidation resistance, the effect of the film by LiFSI can be enhanced.
本実施形態において、非水電解溶媒は、下記式(2)で表されるフッ素化リン酸エステルを含むことができる。
In the present embodiment, the nonaqueous electrolytic solvent can contain a fluorinated phosphate ester represented by the following formula (2).
フッ化アルキル基とは、少なくとも1つのフッ素原子を有するアルキル基である。式(2)において、R1、R2およびR3の炭素数は、それぞれ独立に、1~3であることが好ましい。R1、R2およびR3の少なくとも1つは、対応する無置換のアルキル基が有する水素原子の50%以上がフッ素原子に置換されたフッ化アルキル基であることが好ましい。また、R1,R2およびR3の全てがフッ化アルキル基であり、該R1,R2およびR3が対応する無置換のアルキル基の水素原子の50%以上がフッ素原子に置換されたフッ化アルキル基であることがより好ましい。フッ素原子の含有率が多いと、耐電圧性がより向上し、リチウムに対して4.5V以上の電位で動作する正極活物質を用いた場合でも、サイクル後における電池容量の劣化をより低減することできるからである。また、フッ化アルキル基における水素原子を含む置換基中のフッ素原子の比率は55%以上がより好ましい。
The fluorinated alkyl group is an alkyl group having at least one fluorine atom. In the formula (2), it is preferable that R 1 , R 2 and R 3 each independently have 1 to 3 carbon atoms. At least one of R 1 , R 2 and R 3 is preferably a fluorinated alkyl group in which 50% or more of the hydrogen atoms of the corresponding unsubstituted alkyl group are substituted with fluorine atoms. Also, all of R 1 , R 2 and R 3 are fluorinated alkyl groups, and 50% or more of the hydrogen atoms of the unsubstituted alkyl group to which R 1 , R 2 and R 3 correspond are substituted with fluorine atoms. More preferred is a fluorinated alkyl group. When the content of fluorine atoms is large, the voltage resistance is further improved, and even when a positive electrode active material that operates at a potential of 4.5 V or higher with respect to lithium is used, the deterioration of battery capacity after cycling is further reduced. Because it can. Further, the ratio of fluorine atoms in the substituent containing a hydrogen atom in the fluorinated alkyl group is more preferably 55% or more.
フッ素化リン酸エステルとしては、特に限定されないが、例えば、リン酸トリス(トリフルオロメチル)(Tris(trifluoromethyl)phosphate)、リン酸トリス(ペンタフルオロエチル)(Tris(pentafluoroethyl)phosphate)、リン酸トリス(2,2,2-トリフルオロエチル)[Tris(2,2,2-trifluoroethyl)phosphate(TTFP)]、リン酸トリス(2,2,3,3-テトラフルオロプロピル)(Tris(2,2,3,3-tetrafluoropropyl)phosphate)、リン酸トリス(3,3,3-トリフルオロプロピル)(Tris(3,3,3-trifluoropropyl)phosphate)、リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)(Tris(2,2,3,3,3-pentafluoropropyl)phosphate)等のフッ素化アルキルリン酸エステル化合物が挙げられる。中でも、フッ素化リン酸エステル化合物として、Tris(2,2,2-trifluoroethyl)phosphate(TTFP)が好ましい。フッ素化リン酸エステルは、一種を単独で、または二種以上を組み合わせて使用することができる。
Examples of the fluorinated phosphate ester include, but are not limited to, for example, tris (trifluoromethyl) phosphate, tris (pentafluoroethyl) phosphate, tris phosphate. (2,2,2-trifluoroethyl) [Tris (2,2,2-trifluoroethyl) phosphate (TTFP)], tris (2,2,3,3-tetrafluoropropyl) phosphate (Tris (2,2 , 3,3-tetrafluoropropyl) phosphate), tris (3,3,3-trifluoropropyl) phosphate (Tris (3,3,3-trifluorofluoro) phosphate), Phosphate tris (2,2,3,3,3-pentafluoro-propyl) (Tris (2,2,3,3,3-pentafluoropropyl) phosphate) fluorinated alkyl phosphoric acid ester compounds and the like. Of these, Tris (2,2,2-trifluoroethyl) phosphate (TTFP) is preferable as the fluorinated phosphate compound. Fluorinated phosphates can be used alone or in combination of two or more.
非水電解溶媒に含まれるフッ素化リン酸エステルの含有率は、特に制限されるものではないが、非水電解溶媒中0体積%以上95体積%以下が好ましく、10体積%以上95体積%以下がより好ましく、20体積%以上70体積%以下がより好ましく、20体積%以上50体積%以下がより好ましく、20体積%以上40体積%以下がさらに好ましい。フッ素化リン酸エステルの非水電解溶媒中の含有率が10体積%以上であると、耐電圧性を高める効果がより向上する。また、フッ素化リン酸エステルの非水電解溶媒中の含有率が95体積%以下であると、電解液のイオン伝導性が向上して電池の充放電レートがより良好になる。
The content of the fluorinated phosphate ester contained in the nonaqueous electrolytic solvent is not particularly limited, but is preferably 0% by volume to 95% by volume in the nonaqueous electrolytic solvent, and is preferably 10% by volume to 95% by volume. Is more preferable, 20 vol% or more and 70 vol% or less is more preferable, 20 vol% or more and 50 vol% or less is more preferable, and 20 vol% or more and 40 vol% or less is more preferable. When the content of the fluorinated phosphate ester in the nonaqueous electrolytic solvent is 10% by volume or more, the effect of increasing the voltage resistance is further improved. Moreover, the ion conductivity of electrolyte solution improves that the content rate in the nonaqueous electrolytic solvent of fluorinated phosphate ester is 95 volume% or less, and the charge / discharge rate of a battery becomes more favorable.
フッ素化リン酸エステルも耐酸化性が高いため5V級活物質を用いた場合の溶媒の酸化分解を抑えることができる。その結果、充放電サイクルの容量維持率の向上やガス発生を低減することができる。LiFSIは負極および正極に皮膜を作るが、溶媒の分解性生成物が電極上に多量に存在すると、良質な皮膜が形成されにくくなったり、その皮膜の効果が阻害されてしまう。すなわち、耐酸化性の高いフッ素化リン酸エステルとLiFSIとを共存させることによってLiFSIによる皮膜の効果を強化することができる。
Since the fluorinated phosphate ester also has high oxidation resistance, oxidative decomposition of the solvent when a 5V class active material is used can be suppressed. As a result, it is possible to improve the capacity maintenance rate of the charge / discharge cycle and reduce gas generation. LiFSI forms a film on the negative electrode and the positive electrode. However, if a large amount of decomposable product of the solvent is present on the electrode, it is difficult to form a good film or the effect of the film is hindered. That is, the effect of the film by LiFSI can be strengthened by coexisting fluorinated phosphate ester having high oxidation resistance and LiFSI.
本実施形態において、非水電解溶媒は、下記式(3)で表されるスルホン化合物を含むことができる。
In this embodiment, the nonaqueous electrolytic solvent can contain a sulfone compound represented by the following formula (3).
式(3)で表されるスルホン化合物において、R1の炭素数n1、R2の炭素数n2はそれぞれ1≦n1≦12、1≦n2≦12であることが好ましく、1≦n1≦6、1≦n2≦6であることがより好ましく、1≦n1≦3、1≦n2≦3であることが更に好ましい。また、アルキル基は、直鎖状、分岐鎖状、又は環状のものを含む。
In sulfone compound represented by formula (3), it is preferable that the carbon number n 2 with carbon number n 1, R 2 of R 1 is 1 ≦ n 1 ≦ 12,1 ≦ n 2 ≦ 12 , respectively, 1 ≦ n 1 ≦ 6, 1 ≦ n 2 ≦ 6 are more preferable, and 1 ≦ n 1 ≦ 3 and 1 ≦ n 2 ≦ 3 are still more preferable. The alkyl group includes linear, branched, or cyclic groups.
R1及びR2は、置換基を有してもよく、置換基としては、例えば、炭素数1~6のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基)、炭素数6~10のアリール基(例えば、フェニル基、ナフチル基)、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子)等が挙げられる。
R 1 and R 2 may have a substituent. Examples of the substituent include an alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group). Group), aryl groups having 6 to 10 carbon atoms (for example, phenyl group, naphthyl group), halogen atoms (for example, chlorine atom, bromine atom, fluorine atom) and the like.
式(3)で表されるスルホン化合物としては、例えば、エチルメチルスルホン、エチルイソプロピルスルホン、エチルイソブチルスルホン、ジメチルスルホン、ジエチルスルホン等が挙げられる。これらのうち、ジメチルスルホン、エチルメチルスルホン、エチルイソプロピルスルホン、エチルイソブチルスルホンが好ましい。
Examples of the sulfone compound represented by the formula (3) include ethyl methyl sulfone, ethyl isopropyl sulfone, ethyl isobutyl sulfone, dimethyl sulfone, and diethyl sulfone. Of these, dimethyl sulfone, ethyl methyl sulfone, ethyl isopropyl sulfone, and ethyl isobutyl sulfone are preferable.
本実施形態において、非水電解溶媒は、下記式(4)で表されるスルホン化合物を含むことができる。
In this embodiment, the nonaqueous electrolytic solvent can contain a sulfone compound represented by the following formula (4).
R3において、アルキレン基の炭素数は4~9であることが好ましく、4~6であることが更に好ましい。
In R 3 , the alkylene group preferably has 4 to 9 carbon atoms, and more preferably 4 to 6 carbon atoms.
R3において、置換基としては、例えば、炭素数1~6のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基)、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子)等が挙げられる。
In R 3 , examples of the substituent include an alkyl group having 1 to 6 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group), halogen atom (for example, chlorine atom, bromine atom, fluorine atom). Atom) and the like.
式(4)で表されるスルホン化合物のうち、下記式(4-1)で表される環状スルホン化合物が好ましい。
Of the sulfone compounds represented by the formula (4), a cyclic sulfone compound represented by the following formula (4-1) is preferable.
式(4-1)において、mは、1~6の整数であり、1~3の整数であることが好ましい。
In the formula (4-1), m is an integer of 1 to 6, and preferably an integer of 1 to 3.
式(4)で表される環状スルホン化合物としては、例えば、テトラメチレンスルホン(スルホラン)、ペンタメチレンスルホン、ヘキサメチレンスルホン等が好ましく挙げられる。また、置換基を有する環状スルホン化合物として、3-メチルスルホラン、2,4-ジメチルスルホランなどが好ましく挙げられる。これらの材料は、フッ素化エーテル化合物と相溶性を持つと共に、比較的高い誘電率を有するため、リチウム塩の溶解/解離作用に優れるという利点がある。
Preferred examples of the cyclic sulfone compound represented by the formula (4) include tetramethylene sulfone (sulfolane), pentamethylene sulfone, hexamethylene sulfone and the like. Preferred examples of the cyclic sulfone compound having a substituent include 3-methylsulfolane and 2,4-dimethylsulfolane. Since these materials are compatible with the fluorinated ether compound and have a relatively high dielectric constant, they have the advantage of being excellent in the dissolution / dissociation action of the lithium salt.
なお、スルホン化合物は1種を単独で又は2種以上を混合して用いることができる。
In addition, a sulfone compound can be used individually by 1 type or in mixture of 2 or more types.
スルホン化合物の含有量は、非水電解溶媒中0体積%以上75体積%以下であることが好ましく、5体積%以上50体積%以下であることがより好ましく、5体積%以上30体積%以下がより好ましく、5体積%以上20体積%以下がさらに好ましい。スルホン化合物の含有率が多すぎると、電解液の粘度が高くなり、特に室温でのサイクル特性の容量低下を招く場合がある。
The content of the sulfone compound is preferably 0% by volume or more and 75% by volume or less in the nonaqueous electrolytic solvent, more preferably 5% by volume or more and 50% by volume or less, and more preferably 5% by volume or more and 30% by volume or less. More preferably, it is more preferably 5% by volume or more and 20% by volume or less. If the content of the sulfone compound is too large, the viscosity of the electrolytic solution increases, and the capacity of the cycle characteristics at room temperature may be reduced.
スルホン化合物も耐酸化性が高いため、特に5V級活物質を用いた場合の溶媒の酸化分解を抑えることができる。その結果、充放電サイクルの容量維持率の向上やガス発生を低減することができる。LiFSIは負極および正極に皮膜を作るが、溶媒の分解生成物が電極上に多量に存在すると、良質な皮膜が形成されにくくなったり、その皮膜の効果が阻害されたりしてしまう。ここで、耐酸化性の高いスルホン化合物とLiFSIとを共存させることによってLiFSIよる皮膜の効果を強化することができる。また、スルホン化合物は比較的誘電率が高い材料であるため、リチウム塩を溶解しやすい点からも好ましい。
Since the sulfone compound also has high oxidation resistance, it is possible to suppress oxidative decomposition of the solvent particularly when a 5V class active material is used. As a result, it is possible to improve the capacity maintenance rate of the charge / discharge cycle and reduce gas generation. LiFSI forms a film on the negative electrode and the positive electrode. However, if a large amount of decomposition products of the solvent are present on the electrode, a high-quality film is hardly formed or the effect of the film is hindered. Here, the effect of the film | membrane by LiFSI can be strengthened by coexisting a sulfo compound with high oxidation resistance and LiFSI. Further, since the sulfone compound is a material having a relatively high dielectric constant, it is preferable from the viewpoint of easily dissolving the lithium salt.
本実施形態において、非水電解溶媒は、フッ素化エーテル、フッ素化リン酸エステル、およびスルホン化合物から選ばれる少なくとも一種を含み、二種以上を含むことがより好ましい。非水電解溶媒において、これら溶媒の濃度が高いほど電解液の分解が抑えられるため好ましいが、環状カーボネートとの相溶性やリチウム塩の溶解性をより向上するために二種以上含むことが好ましい場合がある。
In the present embodiment, the nonaqueous electrolytic solvent includes at least one selected from fluorinated ethers, fluorinated phosphates, and sulfone compounds, and more preferably includes two or more. In non-aqueous electrolytic solvents, the higher the concentration of these solvents, the better the decomposition of the electrolytic solution is suppressed, but it is preferable to include two or more in order to further improve the compatibility with the cyclic carbonate and the solubility of the lithium salt. There is.
本実施形態において、非水電解溶媒はさらに鎖状カーボネートを含んでもよい。環状カーボネートは粘度が高いため、鎖状カーボネートを混合することにより粘度を低減させることができる。鎖状カーボネートとしては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、およびこれらの誘導体(フッ素化物を含む)が挙げられる。しかしながら、鎖状カーボネートは環状カーボネートよりもガスを発生しやすい傾向があるため、電解液中の濃度は10体積%以下が好ましく、5体積%以下がより好ましく、2%以下がさらに好ましい。
In this embodiment, the nonaqueous electrolytic solvent may further contain a chain carbonate. Since the cyclic carbonate has a high viscosity, the viscosity can be reduced by mixing the chain carbonate. Examples of the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof (including fluorinated products). However, since chain carbonate tends to generate gas more easily than cyclic carbonate, the concentration in the electrolytic solution is preferably 10% by volume or less, more preferably 5% by volume or less, and even more preferably 2% or less.
本実施形態において、非水電解溶媒は、脂肪族カルボン酸エステル、γ-ラクトン、環状エーテル、上記式(1)以外の鎖状エーテル等を含んでもよい。脂肪族カルボン酸エステルとしては、例えば、ギ酸メチル、酢酸メチル、プロピオン酸エチル、およびこれらの誘導体(フッ素化物を含む)が挙げられる。γ-ラクトンとしては、例えば、γ-ブチロラクトンおよびその誘導体(フッ素化物を含む)が挙げられる。環状エーテルとしては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフランおよびその誘導体(フッ素化物を含む)が挙げられる。鎖状エーテルとしては、例えば、1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)、ジエチルエーテル、およびこれらの誘導体(フッ素化物を含む)が挙げられる。これらは一種を単独で、または二種以上を混合して用いることができる。
In the present embodiment, the nonaqueous electrolytic solvent may contain an aliphatic carboxylic acid ester, γ-lactone, a cyclic ether, a chain ether other than the above formula (1), and the like. Examples of the aliphatic carboxylic acid ester include methyl formate, methyl acetate, ethyl propionate, and derivatives thereof (including fluorinated products). Examples of γ-lactone include γ-butyrolactone and its derivatives (including fluorinated products). Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran and derivatives thereof (including fluorinated products). Examples of the chain ether include 1,2-ethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, and derivatives thereof (including fluorinated compounds). These can be used individually by 1 type or in mixture of 2 or more types.
その他、非水電解溶媒として、例えば、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルオニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、アニソール、N-メチルピロリドン、およびこれらの誘導体(フッ素化物を含む)を用いることもできる。
Other nonaqueous electrolytic solvents include, for example, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphate triester, trimethoxymethane, dioxolane Derivatives, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, anisole, N-methylpyrrolidone, and derivatives thereof (including fluorinated products) may also be used. it can.
本実施形態において、電解液は、添加剤として下記式(5)で表される環状スルホン酸エステルをさらに含むことが好ましい。環状スルホン酸エステルは負極に皮膜を形成することができる。
In the present embodiment, the electrolytic solution preferably further contains a cyclic sulfonic acid ester represented by the following formula (5) as an additive. The cyclic sulfonate ester can form a film on the negative electrode.
式(5)において、アルキレン基の炭素数は、例えば1~8であり、好ましくは1~6であり、より好ましくは1~4である。
In the formula (5), the number of carbon atoms of the alkylene group is, for example, 1 to 8, preferably 1 to 6, and more preferably 1 to 4.
フッ化アルキレン基とは、無置換アルキレン基のうちの少なくとも一つの水素原子がフッ素原子で置換された構造を有する置換アルキレン基を表す。式(5)において、フッ化アルキレン基の炭素数は、例えば1~8であり、好ましくは1~6であり、より好ましくは1~4である。
The fluorinated alkylene group represents a substituted alkylene group having a structure in which at least one hydrogen atom of the unsubstituted alkylene group is substituted with a fluorine atom. In the formula (5), the carbon number of the fluorinated alkylene group is, for example, 1 to 8, preferably 1 to 6, and more preferably 1 to 4.
なお、-OSO2-基は、どちらの向きであってもよい。
The -OSO 2 -group may be in any direction.
式(5)において、Xが単結合の場合、環状スルホン酸エステルは環状モノスルホン酸エステルとなり、環状モノスルホン酸エステルは下記式(5-1)で表される化合物であることが好ましい。
In the formula (5), when X is a single bond, the cyclic sulfonate ester is preferably a cyclic monosulfonate ester, and the cyclic monosulfonate ester is preferably a compound represented by the following formula (5-1).
式(5)において、Xが-OSO2-基の場合、環状スルホン酸エステルは環状ジスルホン酸エステルとなり、環状ジスルホン酸エステルは下記式(5-2)で表される化合物であることが好ましい。
In the formula (5), when X is an —OSO 2 — group, the cyclic sulfonate ester is preferably a cyclic disulfonate ester, and the cyclic disulfonate ester is preferably a compound represented by the following formula (5-2).
環状スルホン酸エステルとしては、例えば、1,3-プロパンスルトン、1,2-プロパンスルトン、1,4-ブタンスルトン、1,2-ブタンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,3-ペンタンスルトン等のモノスルホン酸エステル(式(5)中のXが単結合の場合)、メチレンメタンジスルホン酸エステル、エチレンメタンジスルホン酸エステル等のジスルホン酸エステル(式(5)中のXが-OSO2-基の場合)などが挙げられる。これらの中でも、被膜形成効果、入手容易性、コストの点から、1,3-プロパンスルトン(PS)、1,4-ブタンスルトン(BS)、メチレンメタンジスルホン酸エステル(MMDS)が好ましく、特にMMDSは良好な皮膜が形成されるので好ましい。
Examples of the cyclic sulfonate ester include 1,3-propane sultone, 1,2-propane sultone, 1,4-butane sultone, 1,2-butane sultone, 1,3-butane sultone, 2,4-butane sultone, 1,3 -Monosulfonic acid esters such as pentane sultone (when X in formula (5) is a single bond), disulfonic acid esters such as methylenemethane disulfonic acid ester and ethylenemethane disulfonic acid ester (X in formula (5) is- OSO 2 - for group). Among these, 1,3-propane sultone (PS), 1,4-butane sultone (BS), and methylene methanedisulfonic acid ester (MMDS) are preferable from the viewpoint of film formation effect, availability, and cost. It is preferable because a good film is formed.
環状スルホン酸エステルの電解液中の含有量は、0.1~10質量%であることが好ましく、0.2~5質量%であることがより好ましく、0.3~3質量%であることがさらに好ましい。含有量が低すぎると皮膜としての効果が十分得られず、高すぎると内部抵抗が増大してしまう場合がある。
The content of the cyclic sulfonic acid ester in the electrolytic solution is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, and 0.3 to 3% by mass. Is more preferable. If the content is too low, the effect as a film cannot be obtained sufficiently, and if it is too high, the internal resistance may increase.
LiFSIと環状スルホン酸エステルとを共存させることでそれぞれ単独で用いた場合よりも大きな効果を得ることができる。環状スルホン酸エステルは負極には優れた皮膜を形成するが正極にはほとんど皮膜を形成しない。一方、LiFSIは負極にも正極にも皮膜を形成することができるが、負極の皮膜の効果としては環状スルホン酸エステルよりは低い。したがって、LiFSIと環状スルホン酸エステルとを混合することによって、負極にも正極にもバランスよく良質な皮膜を形成することができると考えられる。
When LiFSI and cyclic sulfonic acid ester are allowed to coexist, a greater effect can be obtained than when they are used alone. The cyclic sulfonic acid ester forms an excellent film on the negative electrode, but hardly forms a film on the positive electrode. On the other hand, LiFSI can form a film on both the negative electrode and the positive electrode, but the effect of the film on the negative electrode is lower than that of the cyclic sulfonate ester. Therefore, it is considered that a good quality film can be formed in a balanced manner on both the negative electrode and the positive electrode by mixing LiFSI and cyclic sulfonic acid ester.
本実施形態において、非水電解液は、非水電解溶媒にリチウム塩からなる電解質が溶解されたものである。リチウム塩としては、特に制限されるものではないが、例えば、リチウムイミド塩(FSIアニオン含む化合物を除く)、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6等が挙げられる。これらのなかでも、LiPF6、LiBF4が好ましい。リチウムイミド塩としては、例えば、LiN(CkF2k+1SO2)(CmF2m+1SO2)(kおよびmは、それぞれ独立して1または2である)が挙げられる。リチウム塩は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。リチウム塩の電解液中の濃度は、0.5~1.5mol/Lであることが好ましい。リチウム塩の濃度をこの範囲とすることにより、密度や粘度、電気伝導率等を適切な範囲に調整し易い。
In the present embodiment, the nonaqueous electrolytic solution is obtained by dissolving an electrolyte made of a lithium salt in a nonaqueous electrolytic solvent. Examples of the lithium salt is not particularly limited, for example, (except for compounds containing FSI anion) lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6 , and the like. Among these, LiPF 6 and LiBF 4 are preferable. The lithium imide salt, for example, LiN (C k F 2k + 1 SO 2) (C m F 2m + 1 SO 2) (k and m are each independently 1 or 2). A lithium salt can be used individually by 1 type, and can also be used in combination of 2 or more type. The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / L. By setting the concentration of the lithium salt within this range, it is easy to adjust the density, viscosity, electrical conductivity, and the like to an appropriate range.
(正極活物質)
本実施形態における正極は、リチウム金属に対して4.5V以上に動作電位を有する正極活物質(5V級活物質)を含む。すなわち、本実施形態で用いる正極活物質は、リチウム金属に対して4.5V以上に充放電領域を有する。 (Positive electrode active material)
The positive electrode in the present embodiment includes a positive electrode active material (5 V class active material) having an operating potential of 4.5 V or higher with respect to lithium metal. That is, the positive electrode active material used in the present embodiment has a charge / discharge region at 4.5 V or higher with respect to lithium metal.
本実施形態における正極は、リチウム金属に対して4.5V以上に動作電位を有する正極活物質(5V級活物質)を含む。すなわち、本実施形態で用いる正極活物質は、リチウム金属に対して4.5V以上に充放電領域を有する。 (Positive electrode active material)
The positive electrode in the present embodiment includes a positive electrode active material (5 V class active material) having an operating potential of 4.5 V or higher with respect to lithium metal. That is, the positive electrode active material used in the present embodiment has a charge / discharge region at 4.5 V or higher with respect to lithium metal.
5V級活物質としては、リチウム含有複合酸化物であることが好ましい。リチウム含有複合酸化物の5V級活物質としては、例えば、スピネル型リチウムマンガン複合酸化物、オリビン型リチウムマンガン含有複合酸化物、逆スピネル型リチウムマンガン含有複合酸化物、Li2MnO3系固溶体等が挙げられる。
The 5V class active material is preferably a lithium-containing composite oxide. Examples of the 5V class active material of the lithium-containing composite oxide include spinel-type lithium manganese composite oxide, olivine-type lithium manganese-containing composite oxide, reverse spinel-type lithium manganese-containing composite oxide, Li 2 MnO 3 -based solid solution, and the like. Can be mentioned.
特に、正極活物質としては、下記式(6)で表されるリチウムマンガン複合酸化物を用いることが好ましい。
In particular, as the positive electrode active material, it is preferable to use a lithium manganese composite oxide represented by the following formula (6).
Lia(MxMn2-x-yAy)(O4-wZw) (6)
(式(6)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1であり、Mは、Co、Ni、Fe、CrおよびCuからなる群から選択される少なくとも一種であり、Aは、Li、B、Na、Mg、Al、Ti、Si、KおよびCaからなる群から選択される少なくとも一種であり、Zは、FおよびClのうちの少なくとも一種である。)。 Li a (M x Mn 2-xy A y ) (O 4-w Z w ) (6)
(In formula (6), 0.4 ≦ x ≦ 1.2, 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2, 0 ≦ w ≦ 1, and M is Co, Ni, Fe, At least one selected from the group consisting of Cr and Cu, A is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti, Si, K and Ca, and Z is At least one of F and Cl).
(式(6)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1であり、Mは、Co、Ni、Fe、CrおよびCuからなる群から選択される少なくとも一種であり、Aは、Li、B、Na、Mg、Al、Ti、Si、KおよびCaからなる群から選択される少なくとも一種であり、Zは、FおよびClのうちの少なくとも一種である。)。 Li a (M x Mn 2-xy A y ) (O 4-w Z w ) (6)
(In formula (6), 0.4 ≦ x ≦ 1.2, 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2, 0 ≦ w ≦ 1, and M is Co, Ni, Fe, At least one selected from the group consisting of Cr and Cu, A is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti, Si, K and Ca, and Z is At least one of F and Cl).
Mとしては、Niのみ、あるいはNiを主成分としてCo及びFeのうち一種以上を含むことがより好ましい。Aとしては、B、Mg、Al、及びTiのうち一種以上であることがより好ましい。Zとしては、Fであることがより好ましい。このような置換元素は結晶構造を安定化させ、活物質の劣化を抑制する働きをする。
It is more preferable that M includes only Ni or one or more of Co and Fe containing Ni as a main component. A is more preferably one or more of B, Mg, Al, and Ti. Z is more preferably F. Such a substitution element serves to stabilize the crystal structure and suppress the deterioration of the active material.
正極活物質の平均粒径(D50)は、1~50μmであることが好ましく、5~25μmであることがより好ましい。なお、正極活物質の平均粒径(D50)は、レーザー回折散乱法(マイクロトラック法)により測定することができる。
The average particle diameter (D 50 ) of the positive electrode active material is preferably 1 to 50 μm, and more preferably 5 to 25 μm. The average particle diameter (D 50 ) of the positive electrode active material can be measured by a laser diffraction scattering method (microtrack method).
5V級活物質としては、リチウム金属に対して4.5V(vs.Li/Li+)以上の充放電領域がある正極活物質であれば、上記式(6)以外の正極活物質であっても構わない。正極活物質表面に形成される皮膜の質や安定性は、その電位の影響が支配的であって活物質の組成による直接的な影響は受けにくいと考えられる。
The 5V class active material is a positive electrode active material other than the above formula (6) as long as it is a positive electrode active material having a charge / discharge region of 4.5 V (vs. Li / Li + ) or more with respect to lithium metal. It doesn't matter. It is considered that the quality and stability of the film formed on the surface of the positive electrode active material are dominated by the potential and are not directly influenced by the composition of the active material.
5V級活物質のほかの例としては、例えば、LixMPO4Fy(0≦x≦2、0≦y≦1、Mは、少なくともCo及びNiのうちの少なくとも一種である。)で表されるオリビン系の複合酸化物;LixMSiO4(0≦x≦2,M:Mn、Fe及びCoのうちの少なくとも一種である。)で表されるSi含有複合酸化物;Lix[LiaMbMn1-a-b]O2(0≦x≦1、0.02≦a≦0.3、0.1<b<0.7、Mは、少なくともNi,Co、Fe及びCrのうちの少なくとも一種である。)で表される層状系複合酸化物;等を使用することができる。正極活物質は、一種類を単独で、または、二種類以上を組み合わせて用いてもよい。また、上記5V級活物質に加え、4V級の活物質を含んでもよい。
Another example of the 5V class active material is represented by, for example, Li x MPO 4 F y (0 ≦ x ≦ 2, 0 ≦ y ≦ 1, M is at least one of Co and Ni). Si-containing composite oxide represented by Li x MSiO 4 (0 ≦ x ≦ 2, M: at least one of Mn, Fe and Co); Li x [Li a M b Mn 1-ab ] O 2 (0 ≦ x ≦ 1, 0.02 ≦ a ≦ 0.3, 0.1 <b <0.7, M is at least Ni, Co, Fe and Cr A layered composite oxide represented by the following formula: and the like. One type of positive electrode active material may be used alone, or two or more types may be used in combination. In addition to the 5V class active material, a 4V class active material may be included.
(負極活物質)
負極活物質としては、特に制限されるものではないが、例えば、黒鉛や非晶質炭素等の炭素材料を用いることができる。負極活物質としては、エネルギー密度の観点から、黒鉛を用いることが好ましい。また、負極活物質として、炭素材料以外にも、例えば、Si、Sn、Al等のLiと合金を形成する材料、Si酸化物、SiとSi以外の他金属元素を含むSi複合酸化物、Sn酸化物、SnとSn以外の他金属元素を含むSn複合酸化物、Li4Ti5O12、これらの材料にカーボンを被覆した複合材料等を用いることもできる。負極活物質は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。 (Negative electrode active material)
Although it does not restrict | limit especially as a negative electrode active material, For example, carbon materials, such as graphite and amorphous carbon, can be used. From the viewpoint of energy density, it is preferable to use graphite as the negative electrode active material. Further, as the negative electrode active material, in addition to the carbon material, for example, a material that forms an alloy with Li, such as Si, Sn, and Al, a Si oxide, a Si composite oxide containing a metal element other than Si and Si, Sn An oxide, a Sn composite oxide containing a metal element other than Sn and Sn, Li 4 Ti 5 O 12 , a composite material in which these materials are coated with carbon, or the like can also be used. A negative electrode active material can be used individually by 1 type, and can also be used in combination of 2 or more type.
負極活物質としては、特に制限されるものではないが、例えば、黒鉛や非晶質炭素等の炭素材料を用いることができる。負極活物質としては、エネルギー密度の観点から、黒鉛を用いることが好ましい。また、負極活物質として、炭素材料以外にも、例えば、Si、Sn、Al等のLiと合金を形成する材料、Si酸化物、SiとSi以外の他金属元素を含むSi複合酸化物、Sn酸化物、SnとSn以外の他金属元素を含むSn複合酸化物、Li4Ti5O12、これらの材料にカーボンを被覆した複合材料等を用いることもできる。負極活物質は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。 (Negative electrode active material)
Although it does not restrict | limit especially as a negative electrode active material, For example, carbon materials, such as graphite and amorphous carbon, can be used. From the viewpoint of energy density, it is preferable to use graphite as the negative electrode active material. Further, as the negative electrode active material, in addition to the carbon material, for example, a material that forms an alloy with Li, such as Si, Sn, and Al, a Si oxide, a Si composite oxide containing a metal element other than Si and Si, Sn An oxide, a Sn composite oxide containing a metal element other than Sn and Sn, Li 4 Ti 5 O 12 , a composite material in which these materials are coated with carbon, or the like can also be used. A negative electrode active material can be used individually by 1 type, and can also be used in combination of 2 or more type.
(電極)
正極は、例えば、正極集電体の少なくとも一方の面に正極活物質層が形成されてなる。正極活物質層は、例えば、主材である正極活物質と、結着剤と、導電助剤とによって構成される。負極は、例えば、負極集電体の少なくとも一方の面に負極活物質層が形成されて構成される。負極活物質層は、例えば、主材である負極活物質と、結着剤と、導電助剤とによって構成される。 (electrode)
The positive electrode has, for example, a positive electrode active material layer formed on at least one surface of a positive electrode current collector. A positive electrode active material layer is comprised by the positive electrode active material which is a main material, a binder, and a conductive support agent, for example. The negative electrode is configured, for example, by forming a negative electrode active material layer on at least one surface of a negative electrode current collector. A negative electrode active material layer is comprised by the negative electrode active material which is a main material, a binder, and a conductive support agent, for example.
正極は、例えば、正極集電体の少なくとも一方の面に正極活物質層が形成されてなる。正極活物質層は、例えば、主材である正極活物質と、結着剤と、導電助剤とによって構成される。負極は、例えば、負極集電体の少なくとも一方の面に負極活物質層が形成されて構成される。負極活物質層は、例えば、主材である負極活物質と、結着剤と、導電助剤とによって構成される。 (electrode)
The positive electrode has, for example, a positive electrode active material layer formed on at least one surface of a positive electrode current collector. A positive electrode active material layer is comprised by the positive electrode active material which is a main material, a binder, and a conductive support agent, for example. The negative electrode is configured, for example, by forming a negative electrode active material layer on at least one surface of a negative electrode current collector. A negative electrode active material layer is comprised by the negative electrode active material which is a main material, a binder, and a conductive support agent, for example.
正極で用いる結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、アクリル系ポリマー等が挙げられる。負極で用いる結着剤としては、前記の正極で用いることができる結着剤以外に、例えば、スチレンブタジエンゴム(SBR)等が挙げられる。SBR系エマルジョンのような水系の結着剤を用いる場合、カルボキシメチルセルロース(CMC)等の増粘剤を併用することもできる。
Examples of the binder used in the positive electrode include polyvinylidene fluoride (PVDF) and acrylic polymers. Examples of the binder used in the negative electrode include styrene butadiene rubber (SBR) and the like other than the binder that can be used in the positive electrode. When an aqueous binder such as an SBR emulsion is used, a thickener such as carboxymethyl cellulose (CMC) can be used in combination.
導電助剤としては、正極および負極とも、例えば、カーボンブラック、粒状黒鉛、燐片状黒鉛、炭素繊維などの炭素材料を用いることができる。特に、正極においては、結晶性の低いカーボンブラックを用いることが好ましい。
As the conductive aid, for example, carbon materials such as carbon black, granular graphite, flake graphite, and carbon fiber can be used for both the positive electrode and the negative electrode. In particular, it is preferable to use carbon black having low crystallinity for the positive electrode.
正極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。負極集電体としては、例えば、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。
As the positive electrode current collector, for example, aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used. As the negative electrode current collector, for example, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
電極は、例えば、活物質と、結着剤と、導電助剤とを、所定の配合量でN-メチル-2-ピロリドン(NMP)等の溶剤中に分散混練し、得られたスラリーを集電体に塗布して活物質層を形成することで得ることができる。得られた電極は、ロールプレス等の方法により圧縮して、適当な密度に調整することもできる。
For example, the electrode is prepared by dispersing and kneading an active material, a binder, and a conductive aid in a solvent such as N-methyl-2-pyrrolidone (NMP) in a predetermined blending amount. It can be obtained by applying to an electric body to form an active material layer. The obtained electrode can be compressed to a suitable density by a method such as a roll press.
(セパレータ)
セパレータとしては、特に限定されるものではないが、例えば、ポリプロピレン、ポリエチレン等のポリオレフィンやフッ素樹脂等からなる多孔性フィルム、セルロースやガラスなどからなる無機セパレータ等を用いることができる。 (Separator)
The separator is not particularly limited, and for example, a porous film made of a polyolefin such as polypropylene or polyethylene, a fluororesin, an inorganic separator made of cellulose, glass, or the like can be used.
セパレータとしては、特に限定されるものではないが、例えば、ポリプロピレン、ポリエチレン等のポリオレフィンやフッ素樹脂等からなる多孔性フィルム、セルロースやガラスなどからなる無機セパレータ等を用いることができる。 (Separator)
The separator is not particularly limited, and for example, a porous film made of a polyolefin such as polypropylene or polyethylene, a fluororesin, an inorganic separator made of cellulose, glass, or the like can be used.
(外装体)
外装体としては、例えば、コイン型、角型、円筒型等の缶や、ラミネート外装体を用いることができるが、軽量化が可能であり電池エネルギー密度の向上を図る観点から、合成樹脂と金属箔との積層体からなる可撓性フィルムを用いたラミネート外装体が好ましい。ラミネート型電池は、放熱性にも優れているため、電気自動車などの車載用電池として好適である。 (Exterior body)
As the exterior body, for example, coin-shaped, rectangular, cylindrical, etc. cans and laminate exterior bodies can be used. From the viewpoint of reducing the weight and improving the battery energy density, synthetic resin and metal A laminate outer package using a flexible film made of a laminate with a foil is preferred. Since the laminate type battery is excellent in heat dissipation, it is suitable as an in-vehicle battery such as an electric vehicle.
外装体としては、例えば、コイン型、角型、円筒型等の缶や、ラミネート外装体を用いることができるが、軽量化が可能であり電池エネルギー密度の向上を図る観点から、合成樹脂と金属箔との積層体からなる可撓性フィルムを用いたラミネート外装体が好ましい。ラミネート型電池は、放熱性にも優れているため、電気自動車などの車載用電池として好適である。 (Exterior body)
As the exterior body, for example, coin-shaped, rectangular, cylindrical, etc. cans and laminate exterior bodies can be used. From the viewpoint of reducing the weight and improving the battery energy density, synthetic resin and metal A laminate outer package using a flexible film made of a laminate with a foil is preferred. Since the laminate type battery is excellent in heat dissipation, it is suitable as an in-vehicle battery such as an electric vehicle.
ラミネート型の二次電池の場合、外装体としては、例えば、アルミニウムラミネートフィルム、SUS製ラミネートフィルム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムなどを用いることができる。特に、体積膨張を抑制する観点やコストの観点から、アルミニウムラミネートフィルムを用いることが好ましい。
In the case of a laminate-type secondary battery, for example, an aluminum laminate film, a SUS laminate film, a laminate film made of silica-coated polypropylene, polyethylene, or the like can be used as the outer package. In particular, it is preferable to use an aluminum laminate film from the viewpoint of suppressing volume expansion and cost.
(二次電池)
本実施形態に係る二次電池の構成は、特に制限されるものではなく、例えば、正極および負極が対向配置された電極素子と、電解液とが外装体に内包されている構成とすることができる。二次電池の形状は、特に制限されるものではないが、例えば、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型、又は積層ラミネート型が挙げられる。 (Secondary battery)
The configuration of the secondary battery according to the present embodiment is not particularly limited, and for example, an electrode element in which a positive electrode and a negative electrode are opposed to each other and an electrolytic solution may be included in an exterior body. it can. The shape of the secondary battery is not particularly limited, and examples thereof include a cylindrical shape, a flat wound rectangular shape, a laminated rectangular shape, a coin shape, a flat wound laminated shape, and a laminated laminated shape.
本実施形態に係る二次電池の構成は、特に制限されるものではなく、例えば、正極および負極が対向配置された電極素子と、電解液とが外装体に内包されている構成とすることができる。二次電池の形状は、特に制限されるものではないが、例えば、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型、又は積層ラミネート型が挙げられる。 (Secondary battery)
The configuration of the secondary battery according to the present embodiment is not particularly limited, and for example, an electrode element in which a positive electrode and a negative electrode are opposed to each other and an electrolytic solution may be included in an exterior body. it can. The shape of the secondary battery is not particularly limited, and examples thereof include a cylindrical shape, a flat wound rectangular shape, a laminated rectangular shape, a coin shape, a flat wound laminated shape, and a laminated laminated shape.
図1に本実施形態に係る二次電池の一例として、ラミネート型二次電池を示す。図1に示す二次電池は、正極活物質と正極バインダーを含む正極活物質層1と正極集電体3とからなる正極と、リチウムを吸蔵放出し得る負極活物質を含む負極活物質層2と負極集電体4とからなる負極との間に、セパレータ5が挟まれている。正極集電体3は正極タブ8と接続され、負極集電体4は負極タブ7と接続されている。外装体にはラミネート外装体6が用いられ、二次電池内部は本実施形態に係る非水電解液で満たされている。
FIG. 1 shows a laminated secondary battery as an example of the secondary battery according to this embodiment. The secondary battery shown in FIG. 1 includes a positive electrode composed of a positive electrode active material layer 1 including a positive electrode active material and a positive electrode binder, and a positive electrode current collector 3, and a negative electrode active material layer 2 including a negative electrode active material capable of occluding and releasing lithium. And the negative electrode current collector 4 is sandwiched between the separator 5. The positive electrode current collector 3 is connected to the positive electrode tab 8, and the negative electrode current collector 4 is connected to the negative electrode tab 7. A laminated outer package 6 is used as the outer package, and the inside of the secondary battery is filled with the nonaqueous electrolytic solution according to the present embodiment.
(二次電池の製造方法)
本実施形態に係る二次電池の製造方法は特に限定されないが、例えば、以下に示す方法が挙げられる。本実施形態に係る二次電池用正極および前記負極にそれぞれ正極集電体及び負極集電体を介して正極タブ、負極タブを接続する。前記正極と前記負極とを前記セパレータを挟んで対向配置させ、積層させた電極積層体を作製する。該電極積層体を外装体内に収容し、電解液に浸す。正極タブ、負極タブの一部を外部に突出するようにして外装体を封止することで、二次電池を作製する。 (Method for manufacturing secondary battery)
Although the manufacturing method of the secondary battery which concerns on this embodiment is not specifically limited, For example, the method shown below is mentioned. A positive electrode tab and a negative electrode tab are connected to the positive electrode for a secondary battery and the negative electrode according to this embodiment via a positive electrode current collector and a negative electrode current collector, respectively. The positive electrode and the negative electrode are arranged opposite to each other with the separator interposed therebetween, and an electrode laminate is produced in which the positive electrode and the negative electrode are laminated. The electrode laminate is accommodated in an exterior body and immersed in an electrolytic solution. A secondary battery is manufactured by sealing the exterior body so that a part of the positive electrode tab and the negative electrode tab protrudes to the outside.
本実施形態に係る二次電池の製造方法は特に限定されないが、例えば、以下に示す方法が挙げられる。本実施形態に係る二次電池用正極および前記負極にそれぞれ正極集電体及び負極集電体を介して正極タブ、負極タブを接続する。前記正極と前記負極とを前記セパレータを挟んで対向配置させ、積層させた電極積層体を作製する。該電極積層体を外装体内に収容し、電解液に浸す。正極タブ、負極タブの一部を外部に突出するようにして外装体を封止することで、二次電池を作製する。 (Method for manufacturing secondary battery)
Although the manufacturing method of the secondary battery which concerns on this embodiment is not specifically limited, For example, the method shown below is mentioned. A positive electrode tab and a negative electrode tab are connected to the positive electrode for a secondary battery and the negative electrode according to this embodiment via a positive electrode current collector and a negative electrode current collector, respectively. The positive electrode and the negative electrode are arranged opposite to each other with the separator interposed therebetween, and an electrode laminate is produced in which the positive electrode and the negative electrode are laminated. The electrode laminate is accommodated in an exterior body and immersed in an electrolytic solution. A secondary battery is manufactured by sealing the exterior body so that a part of the positive electrode tab and the negative electrode tab protrudes to the outside.
以下、本実施形態の実施例について詳細に説明するが、本実施形態は以下の実施例のみに限定されるものではない。
Hereinafter, examples of the present embodiment will be described in detail, but the present embodiment is not limited to the following examples.
以下の例で使用した化合物の略号について説明する。
EC:エチレンカーボネート
DMC:ジメチルカーボネート
FE1:H(CF2)2CH2OCF2CF2H
FE2:CH3CH2O(CF2)4F
FP:O=P(OCH2CF3)3
SL:C4H8SO2で表されるスルホラン
DMS:ジメチルスルホン
EMS:エチルメチルスルホン
EiPS:エチルイソプロピルスルホン The abbreviations of the compounds used in the following examples are described.
EC: ethylene carbonate DMC: dimethyl carbonate FE1: H (CF 2 ) 2 CH 2 OCF 2 CF 2 H
FE2: CH 3 CH 2 O (CF 2 ) 4 F
FP: O = P (OCH 2 CF 3 ) 3
SL: sulfolane represented by C 4 H 8 SO 2 DMS: dimethyl sulfone EMS: ethyl methyl sulfone EiPS: ethyl isopropyl sulfone
EC:エチレンカーボネート
DMC:ジメチルカーボネート
FE1:H(CF2)2CH2OCF2CF2H
FE2:CH3CH2O(CF2)4F
FP:O=P(OCH2CF3)3
SL:C4H8SO2で表されるスルホラン
DMS:ジメチルスルホン
EMS:エチルメチルスルホン
EiPS:エチルイソプロピルスルホン The abbreviations of the compounds used in the following examples are described.
EC: ethylene carbonate DMC: dimethyl carbonate FE1: H (CF 2 ) 2 CH 2 OCF 2 CF 2 H
FE2: CH 3 CH 2 O (CF 2 ) 4 F
FP: O = P (OCH 2 CF 3 ) 3
SL: sulfolane represented by C 4 H 8 SO 2 DMS: dimethyl sulfone EMS: ethyl methyl sulfone EiPS: ethyl isopropyl sulfone
(実施例1)
(負極の作製)
負極活物質としての天然黒鉛粉末(平均粒径(D50):20μm、比表面積:1m2/g)と、結着剤としてのPVDFとを、質量比95:5でNMP中に均一に分散させて、負極スラリーを作製した。この負極スラリーを負極集電体となる厚み15μmの銅箔の両面に塗布して125℃にて10分間乾燥させてNMPを蒸発させることにより、負極活物質層を形成し、さらにプレスすることによって負極を作製した。なお、乾燥後の単位面積当たりの負極活物質層の重量を0.015g/cm2とした。 (Example 1)
(Preparation of negative electrode)
Natural graphite powder (average particle size (D 50 ): 20 μm, specific surface area: 1 m 2 / g) as a negative electrode active material and PVDF as a binder are uniformly dispersed in NMP at a mass ratio of 95: 5 Thus, a negative electrode slurry was produced. By applying this negative electrode slurry on both sides of a 15 μm thick copper foil serving as a negative electrode current collector and drying at 125 ° C. for 10 minutes to evaporate NMP, a negative electrode active material layer is formed and further pressed. A negative electrode was produced. In addition, the weight of the negative electrode active material layer per unit area after drying was set to 0.015 g / cm 2 .
(負極の作製)
負極活物質としての天然黒鉛粉末(平均粒径(D50):20μm、比表面積:1m2/g)と、結着剤としてのPVDFとを、質量比95:5でNMP中に均一に分散させて、負極スラリーを作製した。この負極スラリーを負極集電体となる厚み15μmの銅箔の両面に塗布して125℃にて10分間乾燥させてNMPを蒸発させることにより、負極活物質層を形成し、さらにプレスすることによって負極を作製した。なお、乾燥後の単位面積当たりの負極活物質層の重量を0.015g/cm2とした。 (Example 1)
(Preparation of negative electrode)
Natural graphite powder (average particle size (D 50 ): 20 μm, specific surface area: 1 m 2 / g) as a negative electrode active material and PVDF as a binder are uniformly dispersed in NMP at a mass ratio of 95: 5 Thus, a negative electrode slurry was produced. By applying this negative electrode slurry on both sides of a 15 μm thick copper foil serving as a negative electrode current collector and drying at 125 ° C. for 10 minutes to evaporate NMP, a negative electrode active material layer is formed and further pressed. A negative electrode was produced. In addition, the weight of the negative electrode active material layer per unit area after drying was set to 0.015 g / cm 2 .
(正極の作製)
正極活物質としてのLiNi0.5Mn1.5O4粉末(平均粒径(D50):10μm、比表面積:0.5m2/g)を用意した。正極活物質と、結着剤としてのPVDFと、導電助剤としてのカーボンブラックとを、質量比93:4:3でNMP中に均一に分散させて、正極スラリーを作製した。この正極スラリーを正極集電体となる厚み20μmのアルミニウム箔の両面に塗布後、125℃にて10分間乾燥させてNMPを蒸発させることにより、正極を作製した。なお、乾燥後の単位面積当たりの正極活物質層の重量を0.040g/cm2とした。 (Preparation of positive electrode)
LiNi 0.5 Mn 1.5 O 4 powder (average particle diameter (D 50 ): 10 μm, specific surface area: 0.5 m 2 / g) as a positive electrode active material was prepared. A positive electrode active material, PVDF as a binder, and carbon black as a conductive additive were uniformly dispersed in NMP at a mass ratio of 93: 4: 3 to prepare a positive electrode slurry. The positive electrode slurry was applied to both surfaces of a 20 μm thick aluminum foil serving as a positive electrode current collector, and then dried at 125 ° C. for 10 minutes to evaporate NMP, thereby producing a positive electrode. In addition, the weight of the positive electrode active material layer per unit area after drying was set to 0.040 g / cm 2 .
正極活物質としてのLiNi0.5Mn1.5O4粉末(平均粒径(D50):10μm、比表面積:0.5m2/g)を用意した。正極活物質と、結着剤としてのPVDFと、導電助剤としてのカーボンブラックとを、質量比93:4:3でNMP中に均一に分散させて、正極スラリーを作製した。この正極スラリーを正極集電体となる厚み20μmのアルミニウム箔の両面に塗布後、125℃にて10分間乾燥させてNMPを蒸発させることにより、正極を作製した。なお、乾燥後の単位面積当たりの正極活物質層の重量を0.040g/cm2とした。 (Preparation of positive electrode)
LiNi 0.5 Mn 1.5 O 4 powder (average particle diameter (D 50 ): 10 μm, specific surface area: 0.5 m 2 / g) as a positive electrode active material was prepared. A positive electrode active material, PVDF as a binder, and carbon black as a conductive additive were uniformly dispersed in NMP at a mass ratio of 93: 4: 3 to prepare a positive electrode slurry. The positive electrode slurry was applied to both surfaces of a 20 μm thick aluminum foil serving as a positive electrode current collector, and then dried at 125 ° C. for 10 minutes to evaporate NMP, thereby producing a positive electrode. In addition, the weight of the positive electrode active material layer per unit area after drying was set to 0.040 g / cm 2 .
(非水電解液)
ECと、DMCと、H(CF2)2CH2OCF2CF2Hで表されるフッ素化エーテル(FE1)とを、EC:DMC:FE1=40:20:40(体積比)の比率で混合して非水溶媒を調製した。電解質として0.8mol/Lの濃度でLiPF6を非水溶媒に溶解させた。この電解溶液に、添加剤としてLiFSIを、非水電解液の全質量に対し1質量%溶解させ、非水電解液を調製した。 (Non-aqueous electrolyte)
EC, DMC, and fluorinated ether (FE1) represented by H (CF 2 ) 2 CH 2 OCF 2 CF 2 H at a ratio of EC: DMC: FE1 = 40: 20: 40 (volume ratio) A non-aqueous solvent was prepared by mixing. LiPF 6 was dissolved in a non-aqueous solvent at a concentration of 0.8 mol / L as an electrolyte. In this electrolytic solution, 1 mass% of LiFSI as an additive was dissolved with respect to the total mass of the nonaqueous electrolytic solution to prepare a nonaqueous electrolytic solution.
ECと、DMCと、H(CF2)2CH2OCF2CF2Hで表されるフッ素化エーテル(FE1)とを、EC:DMC:FE1=40:20:40(体積比)の比率で混合して非水溶媒を調製した。電解質として0.8mol/Lの濃度でLiPF6を非水溶媒に溶解させた。この電解溶液に、添加剤としてLiFSIを、非水電解液の全質量に対し1質量%溶解させ、非水電解液を調製した。 (Non-aqueous electrolyte)
EC, DMC, and fluorinated ether (FE1) represented by H (CF 2 ) 2 CH 2 OCF 2 CF 2 H at a ratio of EC: DMC: FE1 = 40: 20: 40 (volume ratio) A non-aqueous solvent was prepared by mixing. LiPF 6 was dissolved in a non-aqueous solvent at a concentration of 0.8 mol / L as an electrolyte. In this electrolytic solution, 1 mass% of LiFSI as an additive was dissolved with respect to the total mass of the nonaqueous electrolytic solution to prepare a nonaqueous electrolytic solution.
(ラミネート型電池の作製)
上記の正極と負極を1.5cm×3cmに切り出した。得られた正極の5層と負極の6層を、セパレータとしてのポリプロピレン多孔質フィルムを挟みつつ交互に重ねた。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接し、更にその溶接箇所にアルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面的な積層構造を有する電極素子を得た。上記電極素子を外装体としてのアルミニウムラミネートフィルムで包み、内部に電解液を注液した後、減圧しつつ封止することで二次電池を作製した。 (Production of laminated battery)
The positive electrode and the negative electrode were cut into 1.5 cm × 3 cm. Five layers of the obtained positive electrode and six layers of the negative electrode were alternately stacked while sandwiching a polypropylene porous film as a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material are welded respectively, and further, the positive electrode terminal made of aluminum and the negative electrode terminal made of nickel are connected to the welded portion. Each was welded to obtain an electrode element having a planar laminated structure. The electrode element was wrapped with an aluminum laminate film as an outer package, and an electrolyte solution was injected therein, and then sealed while reducing the pressure to produce a secondary battery.
上記の正極と負極を1.5cm×3cmに切り出した。得られた正極の5層と負極の6層を、セパレータとしてのポリプロピレン多孔質フィルムを挟みつつ交互に重ねた。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接し、更にその溶接箇所にアルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面的な積層構造を有する電極素子を得た。上記電極素子を外装体としてのアルミニウムラミネートフィルムで包み、内部に電解液を注液した後、減圧しつつ封止することで二次電池を作製した。 (Production of laminated battery)
The positive electrode and the negative electrode were cut into 1.5 cm × 3 cm. Five layers of the obtained positive electrode and six layers of the negative electrode were alternately stacked while sandwiching a polypropylene porous film as a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material are welded respectively, and further, the positive electrode terminal made of aluminum and the negative electrode terminal made of nickel are connected to the welded portion. Each was welded to obtain an electrode element having a planar laminated structure. The electrode element was wrapped with an aluminum laminate film as an outer package, and an electrolyte solution was injected therein, and then sealed while reducing the pressure to produce a secondary battery.
(初回充放電)
上記のように作製したラミネート型電池を、20℃にて5時間率(0.2C)相当の16mAの定電流で4.75Vまで充電した後、合計で8時間の4.75V定電圧充電を行ってから、1時間率(1C)相当の80mAで3.0Vまで定電流放電した。 (First charge / discharge)
The laminated battery produced as described above was charged to 4.75 V at a constant current of 16 mA corresponding to a 5-hour rate (0.2 C) at 20 ° C., and then charged with a constant voltage of 4.75 V for 8 hours in total. Then, constant current discharge was performed up to 3.0 V at 80 mA corresponding to 1 hour rate (1 C).
上記のように作製したラミネート型電池を、20℃にて5時間率(0.2C)相当の16mAの定電流で4.75Vまで充電した後、合計で8時間の4.75V定電圧充電を行ってから、1時間率(1C)相当の80mAで3.0Vまで定電流放電した。 (First charge / discharge)
The laminated battery produced as described above was charged to 4.75 V at a constant current of 16 mA corresponding to a 5-hour rate (0.2 C) at 20 ° C., and then charged with a constant voltage of 4.75 V for 8 hours in total. Then, constant current discharge was performed up to 3.0 V at 80 mA corresponding to 1 hour rate (1 C).
(サイクル試験)
初回充放電が終了したラミネート型電池を、1Cで4.75Vまで充電した後、合計で2.5時間の4.75V定電圧充電を行ってから、1Cで3.0Vまで定電流放電するという充放電サイクルを、45℃で300回繰り返した。初回放電容量に対する300サイクル後の放電容量の比率を容量維持率(%)として算出した。また、初回充放電後と300サイクル後のセル体積を求め、初回放電後に対する300サイクル後のセルの体積増加率(%)を算出した。体積は水中と空気中での重量差からアルキメデス法を用いて測定した。 (Cycle test)
After the first charge / discharge is completed, the laminated battery is charged to 4.75V at 1C, and then charged for 4.75V constant voltage for 2.5 hours in total, and then discharged at a constant current to 3.0V at 1C. The charge / discharge cycle was repeated 300 times at 45 ° C. The ratio of the discharge capacity after 300 cycles to the initial discharge capacity was calculated as the capacity retention rate (%). Moreover, the cell volume after the first charge / discharge and after 300 cycles was obtained, and the volume increase rate (%) of the cell after 300 cycles with respect to after the first discharge was calculated. The volume was measured using the Archimedes method from the difference in weight between water and air.
初回充放電が終了したラミネート型電池を、1Cで4.75Vまで充電した後、合計で2.5時間の4.75V定電圧充電を行ってから、1Cで3.0Vまで定電流放電するという充放電サイクルを、45℃で300回繰り返した。初回放電容量に対する300サイクル後の放電容量の比率を容量維持率(%)として算出した。また、初回充放電後と300サイクル後のセル体積を求め、初回放電後に対する300サイクル後のセルの体積増加率(%)を算出した。体積は水中と空気中での重量差からアルキメデス法を用いて測定した。 (Cycle test)
After the first charge / discharge is completed, the laminated battery is charged to 4.75V at 1C, and then charged for 4.75V constant voltage for 2.5 hours in total, and then discharged at a constant current to 3.0V at 1C. The charge / discharge cycle was repeated 300 times at 45 ° C. The ratio of the discharge capacity after 300 cycles to the initial discharge capacity was calculated as the capacity retention rate (%). Moreover, the cell volume after the first charge / discharge and after 300 cycles was obtained, and the volume increase rate (%) of the cell after 300 cycles with respect to after the first discharge was calculated. The volume was measured using the Archimedes method from the difference in weight between water and air.
(実施例2)
実施例1の非水溶媒に代えて、ECと、PCと、FE1と、O=P(OCH2CF3)3で表されるフッ素化リン酸エステル(FP)とを、EC:PC:FE1:FP=20:10:40:30の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Example 2)
In place of the non-aqueous solvent of Example 1, EC, PC, FE1, and fluorinated phosphate ester (FP) represented by O = P (OCH 2 CF 3 ) 3 were replaced with EC: PC: FE1. A secondary battery was prepared and evaluated in the same manner as in Example 1 except that a nonaqueous solvent mixed at a ratio of 20: 10: 40: 30 was used.
実施例1の非水溶媒に代えて、ECと、PCと、FE1と、O=P(OCH2CF3)3で表されるフッ素化リン酸エステル(FP)とを、EC:PC:FE1:FP=20:10:40:30の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Example 2)
In place of the non-aqueous solvent of Example 1, EC, PC, FE1, and fluorinated phosphate ester (FP) represented by O = P (OCH 2 CF 3 ) 3 were replaced with EC: PC: FE1. A secondary battery was prepared and evaluated in the same manner as in Example 1 except that a nonaqueous solvent mixed at a ratio of 20: 10: 40: 30 was used.
(実施例3)
実施例1の非水溶媒に代えて、ECと、PCと、FE1と、FPと、C4H8SO2で表される環状スルホン化合物(スルホラン、SL)とを、EC:PC:SL:FE1:FP=10:10:10:40:30の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Example 3)
Instead of the non-aqueous solvent of Example 1, EC, PC, FE1, FP, and a cyclic sulfone compound (sulfolane, SL) represented by C 4 H 8 SO 2 were replaced with EC: PC: SL: A secondary battery was prepared and evaluated in the same manner as in Example 1 except that a non-aqueous solvent mixed at a ratio of FE1: FP = 10: 10: 10: 40: 30 was used.
実施例1の非水溶媒に代えて、ECと、PCと、FE1と、FPと、C4H8SO2で表される環状スルホン化合物(スルホラン、SL)とを、EC:PC:SL:FE1:FP=10:10:10:40:30の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Example 3)
Instead of the non-aqueous solvent of Example 1, EC, PC, FE1, FP, and a cyclic sulfone compound (sulfolane, SL) represented by C 4 H 8 SO 2 were replaced with EC: PC: SL: A secondary battery was prepared and evaluated in the same manner as in Example 1 except that a non-aqueous solvent mixed at a ratio of FE1: FP = 10: 10: 10: 40: 30 was used.
(比較例1)
実施例1の非水溶媒に代えて、ECと、DMCとを、EC:DMC=4:6(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Comparative Example 1)
Instead of the non-aqueous solvent in Example 1, EC and DMC were used in the same manner as in Example 1 except that a non-aqueous solvent in which EC and DMC were mixed at a ratio of EC: DMC = 4: 6 (volume ratio) was used. A secondary battery was fabricated and evaluated.
実施例1の非水溶媒に代えて、ECと、DMCとを、EC:DMC=4:6(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Comparative Example 1)
Instead of the non-aqueous solvent in Example 1, EC and DMC were used in the same manner as in Example 1 except that a non-aqueous solvent in which EC and DMC were mixed at a ratio of EC: DMC = 4: 6 (volume ratio) was used. A secondary battery was fabricated and evaluated.
(比較例2)
LiFSIを添加しなかった以外は比較例1と同様の方法で二次電池を作製し、評価した。 (Comparative Example 2)
A secondary battery was prepared and evaluated in the same manner as in Comparative Example 1 except that LiFSI was not added.
LiFSIを添加しなかった以外は比較例1と同様の方法で二次電池を作製し、評価した。 (Comparative Example 2)
A secondary battery was prepared and evaluated in the same manner as in Comparative Example 1 except that LiFSI was not added.
(比較例3)
LiFSIを添加しなかった以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Comparative Example 3)
A secondary battery was prepared and evaluated in the same manner as in Example 1 except that LiFSI was not added.
LiFSIを添加しなかった以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Comparative Example 3)
A secondary battery was prepared and evaluated in the same manner as in Example 1 except that LiFSI was not added.
(比較例4)
LiFSIを添加しなかった以外は実施例2と同様の方法で二次電池を作製し、評価した。 (Comparative Example 4)
A secondary battery was prepared and evaluated in the same manner as in Example 2 except that LiFSI was not added.
LiFSIを添加しなかった以外は実施例2と同様の方法で二次電池を作製し、評価した。 (Comparative Example 4)
A secondary battery was prepared and evaluated in the same manner as in Example 2 except that LiFSI was not added.
(比較例5)
LiFSIを添加しなかった以外は実施例3と同様の方法で二次電池を作製し、評価した。 (Comparative Example 5)
A secondary battery was prepared and evaluated in the same manner as in Example 3 except that LiFSI was not added.
LiFSIを添加しなかった以外は実施例3と同様の方法で二次電池を作製し、評価した。 (Comparative Example 5)
A secondary battery was prepared and evaluated in the same manner as in Example 3 except that LiFSI was not added.
(比較例6)
実施例3のLiFSIに代えて、添加剤としてメチレンメタンジスルホン酸エステル(MMDS)を非水電解液の全質量中1質量%添加した以外は実施例3と同様の方法で二次電池を作製し、評価した。 (Comparative Example 6)
A secondary battery was fabricated in the same manner as in Example 3 except that 1% by mass of methylenemethane disulfonate (MMDS) was added as an additive in the total mass of the non-aqueous electrolyte instead of LiFSI in Example 3. ,evaluated.
実施例3のLiFSIに代えて、添加剤としてメチレンメタンジスルホン酸エステル(MMDS)を非水電解液の全質量中1質量%添加した以外は実施例3と同様の方法で二次電池を作製し、評価した。 (Comparative Example 6)
A secondary battery was fabricated in the same manner as in Example 3 except that 1% by mass of methylenemethane disulfonate (MMDS) was added as an additive in the total mass of the non-aqueous electrolyte instead of LiFSI in Example 3. ,evaluated.
(実施例4)
実施例3の添加剤に代えて、添加剤として、LiFSIを非水電解液の全質量中0.5質量%とMMDSを非水電解液の全質量中0.5質量%とを添加した以外は実施例3と同様の方法で二次電池を作製し、評価した。 Example 4
In place of the additive of Example 3, as additive, LiFSI was added in an amount of 0.5% by mass in the total mass of the nonaqueous electrolytic solution and MMDS was added in an amount of 0.5% by mass in the total mass of the nonaqueous electrolytic solution. Produced and evaluated a secondary battery in the same manner as in Example 3.
実施例3の添加剤に代えて、添加剤として、LiFSIを非水電解液の全質量中0.5質量%とMMDSを非水電解液の全質量中0.5質量%とを添加した以外は実施例3と同様の方法で二次電池を作製し、評価した。 Example 4
In place of the additive of Example 3, as additive, LiFSI was added in an amount of 0.5% by mass in the total mass of the nonaqueous electrolytic solution and MMDS was added in an amount of 0.5% by mass in the total mass of the nonaqueous electrolytic solution. Produced and evaluated a secondary battery in the same manner as in Example 3.
(実施例5)
実施例4の非水溶媒に代えて、ECと、FE1と、FPと、SLとを、EC:SL:FE1:FP=10:20:40:30の体積比率で混合した非水溶媒を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 5)
Instead of the non-aqueous solvent of Example 4, a non-aqueous solvent in which EC, FE1, FP, and SL were mixed at a volume ratio of EC: SL: FE1: FP = 10: 20: 40: 30 was used. A secondary battery was fabricated and evaluated in the same manner as in Example 4 except that.
実施例4の非水溶媒に代えて、ECと、FE1と、FPと、SLとを、EC:SL:FE1:FP=10:20:40:30の体積比率で混合した非水溶媒を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 5)
Instead of the non-aqueous solvent of Example 4, a non-aqueous solvent in which EC, FE1, FP, and SL were mixed at a volume ratio of EC: SL: FE1: FP = 10: 20: 40: 30 was used. A secondary battery was fabricated and evaluated in the same manner as in Example 4 except that.
比較例1~6および実施例1~5の容量維持率と体積増加量の測定結果を表1に示す。さらに、比較例3から5と実施例1から3の容量維持率と体積増加率を比較したグラフをそれぞれ図2と図3に示す。図2および図3においては、LiFSIを添加した実施例と、LiFSIを添加してない比較例とを非水溶媒の組成ごとに並べて示した。
Table 1 shows the measurement results of capacity retention rate and volume increase of Comparative Examples 1 to 6 and Examples 1 to 5. Furthermore, the graph which compared the capacity | capacitance maintenance rate and the volume increase rate of Comparative Examples 3-5 and Examples 1-3 is shown in FIG. 2 and FIG. 3, respectively. In FIG. 2 and FIG. 3, the Example which added LiFSI and the comparative example which did not add LiFSI were shown side by side for every composition of the nonaqueous solvent.
表1、図2、図3からも示されるように、LiFSIを添加した実施例は、LiFSIを添加していない比較例に比べて容量維持率が向上し、かつ、ガス発生に起因する体積増加率が減少した。
As shown in Table 1, FIG. 2 and FIG. 3, the example in which LiFSI was added improved the capacity retention rate compared to the comparative example in which no LiFSI was added, and the volume increased due to gas generation. The rate decreased.
また、カーボネート系溶媒のみの比較例1に対してフッ素化エーテル(FE1)、フッ素化リン酸エステル(FP)、スルホン化合物(SL)と加えていくと容量維持率が向上するとともに、体積増加量も大きく減少した。LiFSIを添加していない比較例においても同様な傾向は見られるが、LiFSIを添加した実施例の方が効果は大きく、体積増加量は比較例2から比較例5では195%から40%へと約1/5に減少しているのに対し、比較例1から実施例3では155%から16%へと約1/10になっていた。このことから、電解液に添加剤としてLiFSIを含み、さらに非水溶媒として、フッ素化エーテル、フッ素化リン酸エステル、およびスルホン化合物から成る群から選ばれる1種以上を含むことが好ましく、2種以上を含むことがより好ましいことが示された。また、非水溶媒にフッ素化エーテルを含むことがさらに好ましい。
Moreover, while adding a fluorinated ether (FE1), a fluorinated phosphate ester (FP), and a sulfone compound (SL) to Comparative Example 1 containing only a carbonate-based solvent, the capacity retention rate is improved and the volume increase is increased. Also decreased significantly. Although the same tendency is seen also in the comparative example to which LiFSI is not added, the effect is larger in the example in which LiFSI is added, and the volume increase amount is from 195% to 40% in Comparative Example 2 to Comparative Example 5. While it decreased to about 1/5, in Comparative Example 1 to Example 3, it was about 1/10 from 155% to 16%. From this, it is preferable that the electrolyte contains LiFSI as an additive, and further contains, as the non-aqueous solvent, one or more selected from the group consisting of fluorinated ethers, fluorinated phosphates, and sulfone compounds. It was shown that it is more preferable to include the above. More preferably, the non-aqueous solvent contains a fluorinated ether.
また、非水溶媒としてEC:PC:SL:FE1:FP=10:10:10:40:30を用いて、添加剤としてMMDSのみを加えた比較例6と、LiFSIのみを加えた実施例3と、MMDSとLiFSIの両方を加えた実施例4とを比較すると、実施例4は、比較例6および実施例3よりも容量維持率が高く、体積増加量が少なかった。このことから、環状スルホン酸エステル(MMDS)とLIFSIを併用すると、相乗効果があり、より好ましいことが示された。
Further, EC: PC: SL: FE1: FP = 10: 10: 10: 40: 30 as a non-aqueous solvent and Comparative Example 6 in which only MMDS was added as an additive and Example 3 in which only LiFSI was added And Example 4 to which both MMDS and LiFSI were added, Example 4 had a higher capacity retention rate and a smaller volume increase than Comparative Examples 6 and 3. From this, it was shown that the combined use of cyclic sulfonate ester (MMDS) and LIFSI has a synergistic effect and is more preferable.
また、環状カーボネートとして、実施例4はPCとECを併用し、実施例5はECのみを用いたが、実施例5の方が、体積増加率が少なく良好であった。これはECがPCよりも誘電率が高くLiFSIを溶解する能力が高いためと考えられる。
In addition, as the cyclic carbonate, Example 4 used both PC and EC, and Example 5 used only EC, but Example 5 was better with a smaller volume increase rate. This is probably because EC has a higher dielectric constant than PC and a high ability to dissolve LiFSI.
(実施例6)
フッ素化エーテルとして、FE1に代えて、CH3CH2O(CF2)4F(FE2)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 6)
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that CH 3 CH 2 O (CF 2 ) 4 F (FE2) was used as the fluorinated ether instead of FE1.
フッ素化エーテルとして、FE1に代えて、CH3CH2O(CF2)4F(FE2)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 6)
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that CH 3 CH 2 O (CF 2 ) 4 F (FE2) was used as the fluorinated ether instead of FE1.
(実施例7)
フッ素化エーテルとして、FE1に代えて、H(CF2)4CH2O(CF2)2Hを用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 7)
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that H (CF 2 ) 4 CH 2 O (CF 2 ) 2 H was used as the fluorinated ether instead of FE1.
フッ素化エーテルとして、FE1に代えて、H(CF2)4CH2O(CF2)2Hを用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 7)
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that H (CF 2 ) 4 CH 2 O (CF 2 ) 2 H was used as the fluorinated ether instead of FE1.
(実施例8)
フッ素化エーテルとして、FE1に代えて、CF3CHFCF2OCH2(CF2)2Fを用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 8)
A secondary battery was produced and evaluated in the same manner as in Example 4 except that CF 3 CHFCF 2 OCH 2 (CF 2 ) 2 F was used as the fluorinated ether instead of FE1.
フッ素化エーテルとして、FE1に代えて、CF3CHFCF2OCH2(CF2)2Fを用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 8)
A secondary battery was produced and evaluated in the same manner as in Example 4 except that CF 3 CHFCF 2 OCH 2 (CF 2 ) 2 F was used as the fluorinated ether instead of FE1.
(実施例9)
スルホン化合物として、SLに代えて、ジメチルスルホン(DMS)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 Example 9
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that dimethyl sulfone (DMS) was used instead of SL as the sulfone compound.
スルホン化合物として、SLに代えて、ジメチルスルホン(DMS)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 Example 9
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that dimethyl sulfone (DMS) was used instead of SL as the sulfone compound.
(実施例10)
スルホン化合物として、SLに代えて、エチルメチルスルホン(EMS)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 10)
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that ethyl methyl sulfone (EMS) was used as the sulfone compound instead of SL.
スルホン化合物として、SLに代えて、エチルメチルスルホン(EMS)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 10)
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that ethyl methyl sulfone (EMS) was used as the sulfone compound instead of SL.
(実施例11)
スルホン化合物として、SLに代えて、エチルイソプロピルスルホン(EiPS)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 11)
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that ethyl isopropyl sulfone (EiPS) was used instead of SL as the sulfone compound.
スルホン化合物として、SLに代えて、エチルイソプロピルスルホン(EiPS)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 11)
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that ethyl isopropyl sulfone (EiPS) was used instead of SL as the sulfone compound.
表2に、実施例6~11の結果を示す。上述のとおり、実施例6~8は、実施例4のFE1に代えて別のフッ素化エーテルを用いたものであり、実施例9~11は、実施例4のSLに代えて別のスルホン化合物を用いたものである。いずれの場合も、容量維持率、体積増加量ともに良好な結果が得られることが確認できた。
Table 2 shows the results of Examples 6 to 11. As described above, Examples 6 to 8 were obtained by using other fluorinated ethers instead of FE1 of Example 4, and Examples 9 to 11 were different sulfone compounds instead of SL of Example 4. Is used. In either case, it was confirmed that good results were obtained in both capacity retention ratio and volume increase.
(EC/PC/スルホン化合物/フッ素化エーテル/FP=1/1/1/4/3)である。
(EC / PC / sulfone compound / fluorinated ether / FP = 1/1/1/4/3).
(実施例12)
環状スルホン酸エステルとして、MMDSに代えて1,3―プロパンスルトン(PS)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 Example 12
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that 1,3-propane sultone (PS) was used instead of MMDS as the cyclic sulfonate ester.
環状スルホン酸エステルとして、MMDSに代えて1,3―プロパンスルトン(PS)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 Example 12
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that 1,3-propane sultone (PS) was used instead of MMDS as the cyclic sulfonate ester.
(実施例13)
環状スルホン酸エステルとして、MMDSに代えて1,4-ブタンスルトン(BS)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 13)
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that 1,4-butane sultone (BS) was used instead of MMDS as the cyclic sulfonate ester.
環状スルホン酸エステルとして、MMDSに代えて1,4-ブタンスルトン(BS)を用いた以外は実施例4と同様の方法で二次電池を作製し、評価した。 (Example 13)
A secondary battery was prepared and evaluated in the same manner as in Example 4 except that 1,4-butane sultone (BS) was used instead of MMDS as the cyclic sulfonate ester.
表3に、実施例12と実施例13の測定結果を示す。上述のとおり、実施例12および13は、実施例4における添加剤の環状スルホン酸エステルの種類を変えたものである。実施例12および13では、添加剤として環状ジスルホン酸エステルであるMMDSを用いた場合(実施例4)より、容量維持率と体積増加量がわずかに劣るものの、いずれも良好な特性が得られることを確認した。
Table 3 shows the measurement results of Example 12 and Example 13. As described above, Examples 12 and 13 are obtained by changing the type of the cyclic sulfonate ester of the additive in Example 4. In Examples 12 and 13, the capacity retention rate and the volume increase amount are slightly inferior to those in the case where MMDS, which is a cyclic disulfonic acid ester, is used as an additive (Example 4), but both have good characteristics. It was confirmed.
(比較例7)
FE1と、FPと、SLとを、SL:FE1:FP=20:40:40の比率で混合した非水溶媒を調製した。しかしながら、目視により未溶解のリチウム塩が多量に残存していたため電池評価を行うことができなかった。この結果から、電解液には少なくとも環状カーボネートを含むことが好ましいことがわかった。 (Comparative Example 7)
A non-aqueous solvent in which FE1, FP, and SL were mixed at a ratio of SL: FE1: FP = 20: 40: 40 was prepared. However, since a large amount of undissolved lithium salt remained visually, the battery could not be evaluated. From this result, it was found that the electrolytic solution preferably contains at least a cyclic carbonate.
FE1と、FPと、SLとを、SL:FE1:FP=20:40:40の比率で混合した非水溶媒を調製した。しかしながら、目視により未溶解のリチウム塩が多量に残存していたため電池評価を行うことができなかった。この結果から、電解液には少なくとも環状カーボネートを含むことが好ましいことがわかった。 (Comparative Example 7)
A non-aqueous solvent in which FE1, FP, and SL were mixed at a ratio of SL: FE1: FP = 20: 40: 40 was prepared. However, since a large amount of undissolved lithium salt remained visually, the battery could not be evaluated. From this result, it was found that the electrolytic solution preferably contains at least a cyclic carbonate.
(比較例8)
正極活物質としてのLiNi0.5Mn1.5O4に代えて、LiMn2O4粉末(平均粒径(D50):13μm、比表面積:0.5m2/g)を用い、単位面積当たりの正極活物質層の重量を0.050g/cm2とし、上限電圧を4.2Vとした以外は、比較例6と同様の方法で二次電池を作製し、評価した。 (Comparative Example 8)
Instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, LiMn 2 O 4 powder (average particle diameter (D 50 ): 13 μm, specific surface area: 0.5 m 2 / g) was used, and the unit area A secondary battery was fabricated and evaluated in the same manner as in Comparative Example 6 except that the weight of the positive electrode active material layer per hit was 0.050 g / cm 2 and the upper limit voltage was 4.2 V.
正極活物質としてのLiNi0.5Mn1.5O4に代えて、LiMn2O4粉末(平均粒径(D50):13μm、比表面積:0.5m2/g)を用い、単位面積当たりの正極活物質層の重量を0.050g/cm2とし、上限電圧を4.2Vとした以外は、比較例6と同様の方法で二次電池を作製し、評価した。 (Comparative Example 8)
Instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, LiMn 2 O 4 powder (average particle diameter (D 50 ): 13 μm, specific surface area: 0.5 m 2 / g) was used, and the unit area A secondary battery was fabricated and evaluated in the same manner as in Comparative Example 6 except that the weight of the positive electrode active material layer per hit was 0.050 g / cm 2 and the upper limit voltage was 4.2 V.
(比較例9)
正極活物質としてのLiNi0.5Mn1.5O4に代えて、LiMn2O4粉末(平均粒径(D50):13μm、比表面積:0.5m2/g)を用い、単位面積当たりの正極活物質層の重量を0.050g/cm2とし、上限電圧を4.2Vとした以外は、実施例3と同様の方法で二次電池を作製し、評価した。 (Comparative Example 9)
Instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, LiMn 2 O 4 powder (average particle diameter (D 50 ): 13 μm, specific surface area: 0.5 m 2 / g) was used, and the unit area A secondary battery was produced and evaluated in the same manner as in Example 3 except that the weight of the positive electrode active material layer was 0.050 g / cm 2 and the upper limit voltage was 4.2 V.
正極活物質としてのLiNi0.5Mn1.5O4に代えて、LiMn2O4粉末(平均粒径(D50):13μm、比表面積:0.5m2/g)を用い、単位面積当たりの正極活物質層の重量を0.050g/cm2とし、上限電圧を4.2Vとした以外は、実施例3と同様の方法で二次電池を作製し、評価した。 (Comparative Example 9)
Instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, LiMn 2 O 4 powder (average particle diameter (D 50 ): 13 μm, specific surface area: 0.5 m 2 / g) was used, and the unit area A secondary battery was produced and evaluated in the same manner as in Example 3 except that the weight of the positive electrode active material layer was 0.050 g / cm 2 and the upper limit voltage was 4.2 V.
上記のとおり、比較例8および比較例9は4V級活物質を用いた二次電池であり、比較例8は添加剤としてMMDSのみを用いており、比較例9は添加剤としてLiFSIのみを用いている。比較例8の容量維持率は73%、体積増加量は5%、比較例9の容量維持率は70%、体積増加量は6%であった。4V級活物質であるLiMn2O4を用いた電池においては、LiFSIを用いても、環状スルホン酸エステルを用いた場合と比較して容量維持率や体積増加量の改善効果は認められなかった。これは4V級正極では電解液の酸化分解に起因した劣化は少なく、LiFSIによる正極への皮膜形成効果が限定的であるためと考えられる。このことから、LiFSIは5V級活物質に対して特に顕著な効果を示すことが確認された。
As described above, Comparative Example 8 and Comparative Example 9 are secondary batteries using a 4V class active material, Comparative Example 8 uses only MMDS as an additive, and Comparative Example 9 uses only LiFSI as an additive. ing. The capacity retention rate of Comparative Example 8 was 73%, the volume increase amount was 5%, the capacity maintenance rate of Comparative Example 9 was 70%, and the volume increase amount was 6%. In the battery using LiMn 2 O 4 which is a 4V class active material, even if LiFSI was used, the improvement effect of the capacity maintenance rate and the volume increase amount was not recognized as compared with the case where the cyclic sulfonic acid ester was used. . This is presumably because the degradation due to the oxidative decomposition of the electrolytic solution is small in the 4V class positive electrode, and the film formation effect on the positive electrode by LiFSI is limited. From this, it was confirmed that LiFSI has a particularly remarkable effect on the 5V class active material.
(比較例10)
正極活物質としてのLiNi0.5Mn1.5O4に代えてLiCoPO4を用い、上限電圧を5.1Vとし、サイクル数を100サイクルとした以外は比較例3と同様の方法で二次電池を作製し、評価した。 (Comparative Example 10)
Secondary in the same manner as in Comparative Example 3 except that LiCoPO 4 was used instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, the upper limit voltage was 5.1 V, and the cycle number was 100 cycles. A battery was made and evaluated.
正極活物質としてのLiNi0.5Mn1.5O4に代えてLiCoPO4を用い、上限電圧を5.1Vとし、サイクル数を100サイクルとした以外は比較例3と同様の方法で二次電池を作製し、評価した。 (Comparative Example 10)
Secondary in the same manner as in Comparative Example 3 except that LiCoPO 4 was used instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, the upper limit voltage was 5.1 V, and the cycle number was 100 cycles. A battery was made and evaluated.
(実施例14)
正極活物質としてのLiNi0.5Mn1.5O4に代えてLiCoPO4を用い、上限電圧を5.1Vとし、サイクル数を100サイクルとした以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Example 14)
Secondary using LiCoPO 4 instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, the upper limit voltage is 5.1 V, and the number of cycles is 100 cycles. A battery was made and evaluated.
正極活物質としてのLiNi0.5Mn1.5O4に代えてLiCoPO4を用い、上限電圧を5.1Vとし、サイクル数を100サイクルとした以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Example 14)
Secondary using LiCoPO 4 instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, the upper limit voltage is 5.1 V, and the number of cycles is 100 cycles. A battery was made and evaluated.
(比較例11)
正極活物質としてのLiNi0.5Mn1.5O4に代えてLi(Li0.15Ni0.2Mn0.65)O2を用い、単位面積当たりの正極活物質層の重量を0.025g/cm2とし、上限電圧を4.7V、下限電圧を2.5Vとし、サイクル数を100サイクルとした以外は比較例3と同様の方法で二次電池を作製し、評価した。 (Comparative Example 11)
Li (Li 0.15 Ni 0.2 Mn 0.65 ) O 2 was used instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, and the weight of the positive electrode active material layer per unit area was 0 A secondary battery was fabricated and evaluated in the same manner as in Comparative Example 3 except that 0.025 g / cm 2 , the upper limit voltage was 4.7 V, the lower limit voltage was 2.5 V, and the cycle number was 100 cycles.
正極活物質としてのLiNi0.5Mn1.5O4に代えてLi(Li0.15Ni0.2Mn0.65)O2を用い、単位面積当たりの正極活物質層の重量を0.025g/cm2とし、上限電圧を4.7V、下限電圧を2.5Vとし、サイクル数を100サイクルとした以外は比較例3と同様の方法で二次電池を作製し、評価した。 (Comparative Example 11)
Li (Li 0.15 Ni 0.2 Mn 0.65 ) O 2 was used instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, and the weight of the positive electrode active material layer per unit area was 0 A secondary battery was fabricated and evaluated in the same manner as in Comparative Example 3 except that 0.025 g / cm 2 , the upper limit voltage was 4.7 V, the lower limit voltage was 2.5 V, and the cycle number was 100 cycles.
(実施例15)
正極活物質としてのLiNi0.5Mn1.5O4に代えてLi(Li0.15Ni0.2Mn0.65)O2を用い、単位面積当たりの正極活物質層の重量を0.025g/cm2とし、上限電圧を4.7V、下限電圧を2.5Vとし、サイクル数を100サイクルとした以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Example 15)
Li (Li 0.15 Ni 0.2 Mn 0.65 ) O 2 was used instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, and the weight of the positive electrode active material layer per unit area was 0 and .025g / cm 2, the upper limit voltage 4.7V, the lower limit voltage was 2.5V, except that the number of cycles is 100 cycles to produce a secondary battery in the same manner as in example 1 and evaluated.
正極活物質としてのLiNi0.5Mn1.5O4に代えてLi(Li0.15Ni0.2Mn0.65)O2を用い、単位面積当たりの正極活物質層の重量を0.025g/cm2とし、上限電圧を4.7V、下限電圧を2.5Vとし、サイクル数を100サイクルとした以外は実施例1と同様の方法で二次電池を作製し、評価した。 (Example 15)
Li (Li 0.15 Ni 0.2 Mn 0.65 ) O 2 was used instead of LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material, and the weight of the positive electrode active material layer per unit area was 0 and .025g / cm 2, the upper limit voltage 4.7V, the lower limit voltage was 2.5V, except that the number of cycles is 100 cycles to produce a secondary battery in the same manner as in example 1 and evaluated.
表4に、比較例10、11および実施例14、15の45℃における100サイクル後の容量維持率を示す。オリビン型のLiCoPO4及び層状構造のLi(Li0.15Ni0.2Mn0.65)O2においてLiFSIを添加した本実施形態はサイクル特性の改善に効果が認められた。このことから、5V級正極活物質であれば、正極活物質の構造によらず、LiFSIを添加することによる効果が得られることが示された。
Table 4 shows the capacity retention rates after 100 cycles at 45 ° C. of Comparative Examples 10 and 11 and Examples 14 and 15. This embodiment in which LiFSI was added to olivine type LiCoPO 4 and layered structure Li (Li 0.15 Ni 0.2 Mn 0.65 ) O 2 was effective in improving cycle characteristics. From this, it was shown that the effect of adding LiFSI can be obtained with a 5V class positive electrode active material regardless of the structure of the positive electrode active material.
(比較例12)
溶媒として、4-フルオロエチレンカーボネート(FEC)とエチルメチルカーボネート(EMC)を、体積比で20:80となるように混合し、この混合溶媒にLiPF6を1mol/L、LiFSIを0.1mol/Lとなるように溶解させて作製した非水電解液を用いた以外は、比較例1と同様の方法で二次電池を作製し、評価した。その結果、45℃50サイクル後の体積増加量が280%と非常に大きく、容量維持率は39%と低かった。この結果から特許文献4に記載の電解液では、高温サイクル時のガス発生が十分に抑えられず容量維持率の低下も大きいことが確認された。 (Comparative Example 12)
As a solvent, 4-fluoroethylene carbonate (FEC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 20:80, and LiPF 6 was added at 1 mol / L and LiFSI at 0.1 mol / L. A secondary battery was prepared and evaluated in the same manner as in Comparative Example 1 except that a non-aqueous electrolyte prepared by dissolving so as to be L was used. As a result, the increase in volume after 50 cycles at 45 ° C. was as large as 280%, and the capacity retention rate was as low as 39%. From this result, it was confirmed that in the electrolytic solution described inPatent Document 4, gas generation during the high-temperature cycle was not sufficiently suppressed, and the capacity retention rate was greatly reduced.
溶媒として、4-フルオロエチレンカーボネート(FEC)とエチルメチルカーボネート(EMC)を、体積比で20:80となるように混合し、この混合溶媒にLiPF6を1mol/L、LiFSIを0.1mol/Lとなるように溶解させて作製した非水電解液を用いた以外は、比較例1と同様の方法で二次電池を作製し、評価した。その結果、45℃50サイクル後の体積増加量が280%と非常に大きく、容量維持率は39%と低かった。この結果から特許文献4に記載の電解液では、高温サイクル時のガス発生が十分に抑えられず容量維持率の低下も大きいことが確認された。 (Comparative Example 12)
As a solvent, 4-fluoroethylene carbonate (FEC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 20:80, and LiPF 6 was added at 1 mol / L and LiFSI at 0.1 mol / L. A secondary battery was prepared and evaluated in the same manner as in Comparative Example 1 except that a non-aqueous electrolyte prepared by dissolving so as to be L was used. As a result, the increase in volume after 50 cycles at 45 ° C. was as large as 280%, and the capacity retention rate was as low as 39%. From this result, it was confirmed that in the electrolytic solution described in
1 正極活物質層
2 負極活物質層
3 正極集電体
4 負極集電体
5 セパレータ
6 ラミネート外装体
7 負極タブ
8 正極タブ DESCRIPTION OFSYMBOLS 1 Positive electrode active material layer 2 Negative electrode active material layer 3 Positive electrode collector 4 Negative electrode collector 5 Separator 6 Laminate exterior 7 Negative electrode tab 8 Positive electrode tab
2 負極活物質層
3 正極集電体
4 負極集電体
5 セパレータ
6 ラミネート外装体
7 負極タブ
8 正極タブ DESCRIPTION OF
Claims (7)
- 正極と、非水電解液と、を備えるリチウムイオン二次電池であって、
前記正極は、リチウム金属に対して4.5V以上に動作電位を有する正極活物質を含み、
前記非水電解液は、
(a)N(SO2F)2アニオン(FSIアニオン)と、
(b)環状カーボネートと、
(c)下記式(1)で表されるフッ素化エーテル、下記式(2)で表されるフッ素化リン酸エステル、および、下記式(3)または下記式(4)で表されるスルホン化合物からなる群から選ばれる少なくとも1種と、
を含むことを特徴とするリチウムイオン二次電池;
The positive electrode includes a positive electrode active material having an operating potential of 4.5 V or more with respect to lithium metal,
The non-aqueous electrolyte is
(A) N (SO 2 F) 2 anion (FSI anion);
(B) a cyclic carbonate;
(C) A fluorinated ether represented by the following formula (1), a fluorinated phosphate ester represented by the following formula (2), and a sulfone compound represented by the following formula (3) or the following formula (4) At least one selected from the group consisting of:
A lithium ion secondary battery comprising:
- 前記FSIアニオンは、前記非水電解液中、LiN(SO2F)2(LiFSI)から生じることを特徴とする請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the FSI anion is generated from LiN (SO 2 F) 2 (LiFSI) in the non-aqueous electrolyte.
- 前記非水電解液は、
前記式(1)で表されるフッ素化エーテル、前記式(2)で表されるフッ素化リン酸エステル、および、前記式(3)または前記式(4)で表されるスルホン化合物からなる群から選ばれる2種以上の化合物を含むことを特徴とする請求項1または2に記載のリチウムイオン二次電池。 The non-aqueous electrolyte is
The group which consists of the fluorinated ether represented by said Formula (1), the fluorinated phosphate ester represented by said Formula (2), and the sulfone compound represented by said Formula (3) or said Formula (4). The lithium ion secondary battery according to claim 1, comprising two or more compounds selected from the group consisting of: - 前記非水電解液が、さらに、環状スルホン酸エステルを含むことを特徴とする請求項1~3のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the non-aqueous electrolyte further contains a cyclic sulfonate ester.
- 前記環状スルホン酸エステルが、環状ジスルホン酸エステルであることを特徴とする請求項4に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 4, wherein the cyclic sulfonic acid ester is a cyclic disulfonic acid ester.
- 前記正極活物質が、下記式(6)で表される請求項1~5のいずれか一項に記載のリチウムイオン二次電池;
Lia(MxMn2-x-yAy)(O4-wZw) (6)
(式(6)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1であり、Mは、Co、Ni、Fe、CrおよびCuからなる群から選択される少なくとも一種であり、Aは、Li、B、Na、Mg、Al、Ti、Si、KおよびCaからなる群から選択される少なくとも一種であり、Zは、FおよびClうちの少なくとも一種である。)。 The lithium ion secondary battery according to any one of claims 1 to 5, wherein the positive electrode active material is represented by the following formula (6):
Li a (M x Mn 2-xy A y ) (O 4-w Z w ) (6)
(In formula (6), 0.4 ≦ x ≦ 1.2, 0 ≦ y, x + y <2, 0 ≦ a ≦ 1.2, 0 ≦ w ≦ 1, and M is Co, Ni, Fe, At least one selected from the group consisting of Cr and Cu, A is at least one selected from the group consisting of Li, B, Na, Mg, Al, Ti, Si, K and Ca, and Z is At least one of F and Cl). - 電極素子と電解液と外装体を有するリチウムイオン二次電池の製造方法であって、
リチウムを吸蔵・放出することが可能で、リチウムに対して4.5V以上で動作する正極活物質を有する正極と、負極と、を対向配置して電極素子を作製する工程と、
前記電極素子と、
(a)N(SO2F)2アニオン(FSIアニオン)と、
(b)環状カーボネートと、
(c)式(1)で表されるフッ素化エーテル、式(2)で表されるフッ素化リン酸エステル、および、式(3)または式(4)で表されるスルホン化合物からなる群から選ばれる少なくとも1種とを含む非水電解液と、
を外装体の中に封入する工程と、
を含むことを特徴とする、リチウムイオン二次電池の製造方法。 A method for producing a lithium ion secondary battery having an electrode element, an electrolytic solution, and an outer package,
A step of producing an electrode element by arranging a positive electrode having a positive electrode active material capable of inserting and extracting lithium and operating at 4.5 V or higher with respect to lithium, and a negative electrode;
The electrode element;
(A) N (SO 2 F) 2 anion (FSI anion);
(B) a cyclic carbonate;
(C) From the group consisting of the fluorinated ether represented by formula (1), the fluorinated phosphate ester represented by formula (2), and the sulfone compound represented by formula (3) or formula (4) A non-aqueous electrolyte containing at least one selected from;
Sealing the inside of the exterior body,
A method for producing a lithium ion secondary battery, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014548556A JP6332033B2 (en) | 2012-11-20 | 2013-11-18 | Lithium ion secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-254758 | 2012-11-20 | ||
JP2012254758 | 2012-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014080870A1 true WO2014080870A1 (en) | 2014-05-30 |
Family
ID=50776053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/081085 WO2014080870A1 (en) | 2012-11-20 | 2013-11-18 | Lithium ion secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6332033B2 (en) |
WO (1) | WO2014080870A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016084556A1 (en) * | 2014-11-27 | 2016-06-02 | Necエナジーデバイス株式会社 | Electricity storage device using nonaqueous electrolyte solution |
JP2016178126A (en) * | 2015-03-18 | 2016-10-06 | 旭化成株式会社 | Nonaqueous lithium type power-storage device |
WO2016204278A1 (en) * | 2015-06-19 | 2016-12-22 | 株式会社日本触媒 | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
JP2017004603A (en) * | 2015-06-04 | 2017-01-05 | 東ソ−・エフテック株式会社 | Non-aqueous electrolyte and non-aqueous secondary battery |
JP2017107830A (en) * | 2015-06-19 | 2017-06-15 | 株式会社日本触媒 | Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using the same |
JPWO2016052542A1 (en) * | 2014-09-30 | 2017-07-13 | 三菱ケミカル株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
JP2017532740A (en) * | 2014-09-26 | 2017-11-02 | エルジー・ケム・リミテッド | Non-aqueous electrolyte and lithium secondary battery including the same |
JP2017212102A (en) * | 2016-05-25 | 2017-11-30 | 株式会社日本触媒 | Nonaqueous electrolyte secondary battery |
WO2018051675A1 (en) * | 2016-09-14 | 2018-03-22 | 日本電気株式会社 | Lithium secondary battery |
WO2018101391A1 (en) * | 2016-12-02 | 2018-06-07 | 日本電気株式会社 | Lithium ion secondary battery |
WO2018168285A1 (en) * | 2017-03-15 | 2018-09-20 | Necエナジーデバイス株式会社 | Lithium ion secondary cell |
WO2018212276A1 (en) * | 2017-05-19 | 2018-11-22 | 日本電気株式会社 | Lithium ion secondary battery |
WO2019054411A1 (en) * | 2017-09-13 | 2019-03-21 | 日本電気株式会社 | Lithium ion secondary battery |
CN110574211A (en) * | 2017-04-26 | 2019-12-13 | 远景Aesc能源元器件有限公司 | Lithium ion secondary battery, method for manufacturing lithium ion secondary battery, and electrolyte for lithium ion secondary battery |
JP2020021596A (en) * | 2018-07-31 | 2020-02-06 | 株式会社Gsユアサ | Nonaqueous electrolyte power storage element and method of manufacturing nonaqueous electrolyte power storage element |
JP2020036050A (en) * | 2015-03-18 | 2020-03-05 | 旭化成株式会社 | Nonaqueous lithium-type power storage element |
CN110970662A (en) * | 2018-09-28 | 2020-04-07 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte and lithium ion battery |
WO2020090678A1 (en) | 2018-10-31 | 2020-05-07 | 株式会社Gsユアサ | Rechargeable battery with nonaqueous electrolyte, method for producing rechargeable battery with nonaqueous electrolyte, and method for using rechargeable battery with nonaqueous electrolyte |
JP2021028957A (en) * | 2019-08-09 | 2021-02-25 | 株式会社豊田中央研究所 | Power storage device and electrode |
WO2022054343A1 (en) * | 2020-09-14 | 2022-03-17 | TeraWatt Technology株式会社 | Lithium secondary battery |
CN114520372A (en) * | 2022-02-21 | 2022-05-20 | 蜂巢能源科技股份有限公司 | Oxidation-resistant electrolyte, lithium ion battery and preparation method |
US11374260B2 (en) | 2016-06-03 | 2022-06-28 | Solvay Sa | Nonaqueous electrolyte compositions comprising fluorinated sulfones |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022030781A1 (en) * | 2020-08-06 | 2022-02-10 | 삼성에스디아이 주식회사 | Lithium secondary battery |
KR20220061723A (en) * | 2020-11-06 | 2022-05-13 | 삼성에스디아이 주식회사 | Rechargebale lithium battery |
KR20220061721A (en) * | 2020-11-06 | 2022-05-13 | 삼성에스디아이 주식회사 | Non-aqueous electrolyte for rechargebale lithium battery and rechargeable lithium battery comprising same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07249432A (en) * | 1994-03-14 | 1995-09-26 | Nippon Telegr & Teleph Corp <Ntt> | Electrolyte for lithium secondary battery |
JP2000077098A (en) * | 1998-08-28 | 2000-03-14 | Yuasa Corp | Nonaqueous electrolyte battery |
JP2007287677A (en) * | 2006-03-24 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
WO2008133112A1 (en) * | 2007-04-20 | 2008-11-06 | Ube Industries, Ltd. | Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using the same |
WO2010090028A1 (en) * | 2009-02-06 | 2010-08-12 | パナソニック株式会社 | Lithium ion secondary battery and method for manufacturing lithium ion secondary battery |
JP2010238510A (en) * | 2009-03-31 | 2010-10-21 | Daikin Ind Ltd | Solvent for nonaqueous electrolyte of lithium secondary battery |
WO2011162169A1 (en) * | 2010-06-25 | 2011-12-29 | Necエナジーデバイス株式会社 | Lithium ion secondary battery |
WO2012133902A1 (en) * | 2011-03-31 | 2012-10-04 | ダイキン工業株式会社 | Electrolytic solution |
JP2013093321A (en) * | 2011-10-04 | 2013-05-16 | Daikin Ind Ltd | Non-aqueous electrolyte and battery |
WO2013183655A1 (en) * | 2012-06-05 | 2013-12-12 | 日本電気株式会社 | Lithium secondary cell |
-
2013
- 2013-11-18 WO PCT/JP2013/081085 patent/WO2014080870A1/en active Application Filing
- 2013-11-18 JP JP2014548556A patent/JP6332033B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07249432A (en) * | 1994-03-14 | 1995-09-26 | Nippon Telegr & Teleph Corp <Ntt> | Electrolyte for lithium secondary battery |
JP2000077098A (en) * | 1998-08-28 | 2000-03-14 | Yuasa Corp | Nonaqueous electrolyte battery |
JP2007287677A (en) * | 2006-03-24 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
WO2008133112A1 (en) * | 2007-04-20 | 2008-11-06 | Ube Industries, Ltd. | Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using the same |
WO2010090028A1 (en) * | 2009-02-06 | 2010-08-12 | パナソニック株式会社 | Lithium ion secondary battery and method for manufacturing lithium ion secondary battery |
JP2010238510A (en) * | 2009-03-31 | 2010-10-21 | Daikin Ind Ltd | Solvent for nonaqueous electrolyte of lithium secondary battery |
WO2011162169A1 (en) * | 2010-06-25 | 2011-12-29 | Necエナジーデバイス株式会社 | Lithium ion secondary battery |
WO2012133902A1 (en) * | 2011-03-31 | 2012-10-04 | ダイキン工業株式会社 | Electrolytic solution |
JP2013093321A (en) * | 2011-10-04 | 2013-05-16 | Daikin Ind Ltd | Non-aqueous electrolyte and battery |
WO2013183655A1 (en) * | 2012-06-05 | 2013-12-12 | 日本電気株式会社 | Lithium secondary cell |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017532740A (en) * | 2014-09-26 | 2017-11-02 | エルジー・ケム・リミテッド | Non-aqueous electrolyte and lithium secondary battery including the same |
JPWO2016052542A1 (en) * | 2014-09-30 | 2017-07-13 | 三菱ケミカル株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
WO2016084556A1 (en) * | 2014-11-27 | 2016-06-02 | Necエナジーデバイス株式会社 | Electricity storage device using nonaqueous electrolyte solution |
JP2016178126A (en) * | 2015-03-18 | 2016-10-06 | 旭化成株式会社 | Nonaqueous lithium type power-storage device |
JP2020036050A (en) * | 2015-03-18 | 2020-03-05 | 旭化成株式会社 | Nonaqueous lithium-type power storage element |
JP2017004603A (en) * | 2015-06-04 | 2017-01-05 | 東ソ−・エフテック株式会社 | Non-aqueous electrolyte and non-aqueous secondary battery |
WO2016204278A1 (en) * | 2015-06-19 | 2016-12-22 | 株式会社日本触媒 | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
JP2017107830A (en) * | 2015-06-19 | 2017-06-15 | 株式会社日本触媒 | Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using the same |
JP2017212102A (en) * | 2016-05-25 | 2017-11-30 | 株式会社日本触媒 | Nonaqueous electrolyte secondary battery |
US11374260B2 (en) | 2016-06-03 | 2022-06-28 | Solvay Sa | Nonaqueous electrolyte compositions comprising fluorinated sulfones |
WO2018051675A1 (en) * | 2016-09-14 | 2018-03-22 | 日本電気株式会社 | Lithium secondary battery |
JP7014169B2 (en) | 2016-09-14 | 2022-02-01 | 日本電気株式会社 | Lithium secondary battery |
JPWO2018051675A1 (en) * | 2016-09-14 | 2019-07-18 | 日本電気株式会社 | Lithium secondary battery |
US10923770B2 (en) | 2016-12-02 | 2021-02-16 | Nec Corporation | Lithium ion secondary battery |
CN110036521A (en) * | 2016-12-02 | 2019-07-19 | 日本电气株式会社 | Lithium ion secondary battery |
JPWO2018101391A1 (en) * | 2016-12-02 | 2019-10-24 | 日本電気株式会社 | Lithium ion secondary battery |
WO2018101391A1 (en) * | 2016-12-02 | 2018-06-07 | 日本電気株式会社 | Lithium ion secondary battery |
JPWO2018168285A1 (en) * | 2017-03-15 | 2019-12-26 | 株式会社エンビジョンAescエナジーデバイス | Lithium ion secondary battery |
WO2018168285A1 (en) * | 2017-03-15 | 2018-09-20 | Necエナジーデバイス株式会社 | Lithium ion secondary cell |
US12015123B2 (en) | 2017-03-15 | 2024-06-18 | Aesc Japan Ltd. | Lithium ion secondary battery |
CN110462909A (en) * | 2017-03-15 | 2019-11-15 | 远景Aesc能源元器件有限公司 | Lithium ion secondary battery |
CN110462909B (en) * | 2017-03-15 | 2023-04-04 | 远景Aesc 日本有限公司 | Lithium ion secondary battery |
CN110574211A (en) * | 2017-04-26 | 2019-12-13 | 远景Aesc能源元器件有限公司 | Lithium ion secondary battery, method for manufacturing lithium ion secondary battery, and electrolyte for lithium ion secondary battery |
US11581581B2 (en) | 2017-05-19 | 2023-02-14 | Nec Corporation | Lithium ion secondary battery |
WO2018212276A1 (en) * | 2017-05-19 | 2018-11-22 | 日本電気株式会社 | Lithium ion secondary battery |
US11611107B2 (en) | 2017-09-13 | 2023-03-21 | Nec Corporation | Lithium ion secondary battery |
WO2019054411A1 (en) * | 2017-09-13 | 2019-03-21 | 日本電気株式会社 | Lithium ion secondary battery |
JPWO2019054411A1 (en) * | 2017-09-13 | 2020-10-15 | 日本電気株式会社 | Lithium ion secondary battery |
JP7155719B2 (en) | 2018-07-31 | 2022-10-19 | 株式会社Gsユアサ | Nonaqueous electrolyte storage element and method for manufacturing nonaqueous electrolyte storage element |
JP2020021596A (en) * | 2018-07-31 | 2020-02-06 | 株式会社Gsユアサ | Nonaqueous electrolyte power storage element and method of manufacturing nonaqueous electrolyte power storage element |
CN110970662B (en) * | 2018-09-28 | 2021-09-21 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte and lithium ion battery |
CN110970662A (en) * | 2018-09-28 | 2020-04-07 | 宁德时代新能源科技股份有限公司 | Non-aqueous electrolyte and lithium ion battery |
WO2020090678A1 (en) | 2018-10-31 | 2020-05-07 | 株式会社Gsユアサ | Rechargeable battery with nonaqueous electrolyte, method for producing rechargeable battery with nonaqueous electrolyte, and method for using rechargeable battery with nonaqueous electrolyte |
JPWO2020090678A1 (en) * | 2018-10-31 | 2021-09-24 | 株式会社Gsユアサ | How to manufacture non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and how to use non-aqueous electrolyte secondary battery |
JP7322892B2 (en) | 2018-10-31 | 2023-08-08 | 株式会社Gsユアサ | Non-aqueous electrolyte secondary battery, method for manufacturing non-aqueous electrolyte secondary battery, and method for using non-aqueous electrolyte secondary battery |
JP2021028957A (en) * | 2019-08-09 | 2021-02-25 | 株式会社豊田中央研究所 | Power storage device and electrode |
WO2022054343A1 (en) * | 2020-09-14 | 2022-03-17 | TeraWatt Technology株式会社 | Lithium secondary battery |
CN114520372A (en) * | 2022-02-21 | 2022-05-20 | 蜂巢能源科技股份有限公司 | Oxidation-resistant electrolyte, lithium ion battery and preparation method |
CN114520372B (en) * | 2022-02-21 | 2024-01-26 | 蜂巢能源科技股份有限公司 | Oxidation-resistant electrolyte, lithium ion battery and preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP6332033B2 (en) | 2018-05-30 |
JPWO2014080870A1 (en) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6332033B2 (en) | Lithium ion secondary battery | |
JP6252486B2 (en) | Lithium ion secondary battery | |
JP6187458B2 (en) | Lithium secondary battery | |
JP6131953B2 (en) | Lithium secondary battery | |
JP5582587B2 (en) | Lithium ion secondary battery | |
WO2015037451A1 (en) | Lithium ion secondary battery | |
WO2009122908A1 (en) | Nonaqueous electrolyte for lithium battery and lithium battery using same | |
WO2015080102A1 (en) | Electrolyte for secondary battery and secondary battery using same | |
JP7172015B2 (en) | Additive for non-aqueous electrolyte, electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery | |
WO2014133165A1 (en) | Lithium-ion secondary cell | |
JP5903286B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6036697B2 (en) | Non-aqueous secondary battery | |
JP6191602B2 (en) | Lithium ion secondary battery | |
JP2019175577A (en) | Nonaqueous electrolyte solution for battery and lithium secondary battery | |
JP2012243461A (en) | Secondary battery | |
JP2022126851A (en) | Nonaqueous electrolyte solution for batteries, and lithium secondary battery | |
JP6699087B2 (en) | Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery | |
WO2019150901A1 (en) | Non-aqueous electrolyte secondary battery, electrolyte solution and method for producing non-aqueous electrolyte secondary battery | |
JP7314458B2 (en) | Non-aqueous electrolyte for batteries and lithium-ion secondary batteries | |
JP2019102183A (en) | Nonaqueous electrolyte solution for battery, and lithium secondary battery | |
KR20180075405A (en) | Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method of producing nonaqueous electrolyte secondary battery | |
JP2018190569A (en) | Nonaqueous electrolyte solution for battery, additive agent for battery, and lithium secondary battery | |
WO2014133161A1 (en) | Nonaqueous electrolyte secondary battery | |
JP2017045664A (en) | Lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13856715 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014548556 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13856715 Country of ref document: EP Kind code of ref document: A1 |