[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014080468A1 - アクセルペダル反力制御装置及び車両 - Google Patents

アクセルペダル反力制御装置及び車両 Download PDF

Info

Publication number
WO2014080468A1
WO2014080468A1 PCT/JP2012/080154 JP2012080154W WO2014080468A1 WO 2014080468 A1 WO2014080468 A1 WO 2014080468A1 JP 2012080154 W JP2012080154 W JP 2012080154W WO 2014080468 A1 WO2014080468 A1 WO 2014080468A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
opening
accelerator pedal
vehicle
force control
Prior art date
Application number
PCT/JP2012/080154
Other languages
English (en)
French (fr)
Inventor
丸山耕平
千尚人
吉村貴之
根布谷秀人
木下智之
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201280076697.XA priority Critical patent/CN104755305B/zh
Priority to JP2014548367A priority patent/JP5843412B2/ja
Priority to PCT/JP2012/080154 priority patent/WO2014080468A1/ja
Priority to DE112012007156.5T priority patent/DE112012007156B4/de
Priority to US14/442,790 priority patent/US9365112B2/en
Publication of WO2014080468A1 publication Critical patent/WO2014080468A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/04Arrangements or mounting of propulsion unit control devices in vehicles of means connecting initiating means or elements to propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • B60K2026/023Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics with electrical means to generate counter force or torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W50/16Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0822Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to action of the driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/10Parameters used for control of starting apparatus said parameters being related to driver demands or status
    • F02N2200/101Accelerator pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Definitions

  • the present invention relates to an accelerator pedal reaction force control device and a vehicle having reaction force control means for controlling a reaction force applied to an accelerator pedal.
  • WO 2011/148753 A1 shows a configuration for controlling the pedal force (reaction force) of the accelerator pedal 32 in a hybrid vehicle.
  • the accelerator opening threshold is set as a larger value of the first accelerator opening and the second accelerator opening at each vehicle speed ([0036]).
  • the accelerator opening threshold is a threshold for increasing the depression force of the accelerator pedal 32 over the base depression force ([0033]).
  • the first accelerator opening is an accelerator opening obtained by subtracting a predetermined accelerator opening amount ⁇ from an accelerator opening on the engine start line, which is a threshold for switching from EV traveling to HEV traveling ([0035]).
  • EV travel is a travel mode in which the vehicle travels using only the power of the motor generator 2
  • HEV travel is a travel mode in which the vehicle travels using the power of the engine 1 and the motor generator 2 ([0014]).
  • the second accelerator opening is an accelerator opening obtained by adding an accelerator opening amount ⁇ capable of securing a driving force capable of constant acceleration to an accelerator opening capable of constant acceleration on a flat road at each vehicle speed ([0035], [ 0038]).
  • JP 2005-271618 A discloses an accelerator reaction force control device used in a hybrid electric vehicle.
  • JP 2005-271618 A has a motor travel region driven by the vehicle drive motor 7 and an engine travel region driven by the engine 6, and the motor travel region shifts to the engine travel region.
  • the depression reaction force of the accelerator pedal 2 is increased (summary).
  • the driver is notified by the reaction force against the accelerator pedal ([0005]).
  • JP 272005-271618 A discloses a control for charging the battery by driving only the engine 6 when the battery charge amount is not equal to or greater than a predetermined value (S1: NO ⁇ S9 in FIG. 4, [0018]). , Claim 2).
  • the accelerator opening amount ⁇ added to the constant balance opening degree of a flat road that can be driven at a constant value can ensure a driving force of “constant acceleration” ([0035 ], [0038]).
  • the acceleration required for the vehicle when traveling on an actual road is not always constant. For example, when the vehicle speed is low, a large acceleration is required to reach the vehicle speed for getting on the traffic flow, and when the vehicle speed is high, it is possible to sufficiently get on the traffic flow even with a small acceleration.
  • the second accelerator opening is set by adding the accelerator opening amount ⁇ for securing a driving force capable of constant acceleration regardless of the vehicle speed, and opening the second accelerator. If the degree of acceleration is the threshold value for the accelerator opening, at low vehicle speeds, if the driver depresses the accelerator pedal to obtain the necessary acceleration to get on the traffic flow, the treading force (reaction force) will increase and There is a risk of discomfort. In this regard, JP 5-2005-271618 A has nothing to do with it.
  • the present invention has been made in consideration of such problems, and an object thereof is to provide an accelerator pedal reaction force control device and a vehicle that can improve the operability of the accelerator pedal.
  • An accelerator pedal reaction force control device includes a reaction force control means for controlling a reaction force applied to an accelerator pedal of a vehicle, and increases the reaction force against the accelerator pedal more than a base reaction force.
  • the opening degree of the accelerator pedal is defined as a reaction force increasing opening degree and the opening degree of the accelerator pedal capable of constant traveling at the current vehicle speed is defined as a constant speed traveling opening degree
  • the reaction force control means A value obtained by adding a predetermined amount to the high-speed traveling opening is set as the reaction force increasing opening, and the predetermined amount is set as a value that realizes longitudinal acceleration according to each vehicle speed.
  • a value obtained by adding a predetermined amount to the constant speed traveling opening is set as the reaction force increasing opening. If the driver depresses the accelerator pedal to the reaction force increase opening, the longitudinal acceleration corresponding to the vehicle speed at the present time can be obtained. Accordingly, it is possible to suppress the driver from feeling uncomfortable and to improve the operability of the accelerator pedal.
  • the reaction force control means may set the reaction force increase opening so as to decrease the predetermined amount as the vehicle speed increases. According to the above configuration, it is possible to obtain a relatively large acceleration by depressing the accelerator pedal to the reaction force increase opening in the low vehicle speed range. As a result, for example, it is possible to obtain the acceleration necessary for the vehicle to get on the traffic flow. Further, in the high vehicle speed range, it is possible to obtain a relatively small acceleration by holding the accelerator pedal at the reaction force increasing opening. As a result, it becomes possible to prevent, for example, unnecessary acceleration and prevent fuel consumption or power consumption from deteriorating.
  • the reaction force control means sets the reaction force increase opening degree to the opening degree of the accelerator pedal at which an engine mounted on the vehicle provides an output with good movement efficiency, and the predetermined amount is an acceleration corresponding to each vehicle speed. May be set as a value that causes a generator mounted on the vehicle to generate power using the driving force of the engine.
  • the driver depresses the accelerator pedal to the reaction force increase opening, the vehicle can be accelerated in a state where the engine is outputting with good exercise efficiency. Therefore, in a state where the fuel efficiency is good, it is possible to realize the vehicle speed corresponding to each vehicle speed and to generate power by the generator.
  • the first opening degree of the accelerator pedal is switched from a first traveling mode in which only the motor mounted on the vehicle and used as a driving source of the vehicle is driven to travel the vehicle to a second traveling mode in which at least the engine is driven.
  • the reaction force control means is configured to perform the first driving according to the state of the vehicle or the operation of the driver.
  • reaction force control is performed with the first opening threshold as the reaction force increase opening, and when the first travel mode cannot be selected, the second opening threshold is increased with the reaction force increase.
  • Reaction force control may be performed as a degree.
  • the reaction force that increases the reaction force of the accelerator pedal when switching from traveling only by the motor to traveling that drives the engine at least By executing the control, it is possible to teach the driver about driving with good fuel efficiency.
  • the driver is executed by executing reaction force control using a value obtained by adding a predetermined amount to the constant speed travel opening as the reaction force increase opening. It is possible to suppress giving an uncomfortable feeling to the acceleration operation. Therefore, it becomes possible to make each reaction force control compatible.
  • the accelerator pedal reaction force control device includes mode switching means for switching between the first travel mode and the second travel mode, and the mode switching means is configured to switch between the first travel mode and the first travel mode when the vehicle speed falls below a predetermined value.
  • 2 driving mode is selected according to the opening of the accelerator pedal, and when the vehicle speed exceeds the predetermined value, the second driving mode is selected, and the reaction force control means, when the vehicle speed exceeds the predetermined value,
  • the reaction force control using the first opening threshold may be shifted to the reaction force control using the second opening threshold.
  • the first traveling mode traveling only by the motor
  • the second traveling mode running by at least the engine
  • the first traveling mode is selectable
  • the first opening threshold is used
  • the second opening threshold is used.
  • the reaction force control using the first opening threshold value is shifted to the reaction force control using the second opening threshold value. Therefore, it is possible to execute the reaction force control according to the travel mode (the driving state of the vehicle).
  • a vehicle according to the present invention includes the accelerator pedal reaction force control device.
  • FIG. 1 is a block diagram of a vehicle equipped with an accelerator pedal reaction force control device according to an embodiment of the present invention. It is a figure which shows the selection characteristic (high residual amount map) of a drive source when a battery remaining amount is large. It is a figure which shows the selection characteristic (low residual amount map) when the said battery remaining amount is small.
  • the pedal opening and the reaction force applied to the accelerator pedal (the pedal reaction) when the accelerator pedal opening (pedal opening) is increased and then the pedal opening is decreased.
  • FIG. 6 is a diagram showing a map showing the relationship between the vehicle speed, a constant speed travel opening degree, and first to third reaction force increase threshold values.
  • FIG. 1 is a block diagram of a vehicle 10 equipped with an accelerator pedal reaction force control device 12 (hereinafter also referred to as “reaction force control device 12” or “control device 12”) according to an embodiment of the present invention.
  • the vehicle 10 is a so-called hybrid vehicle, and includes an engine 14 and a travel motor 16 (hereinafter also referred to as “motor 16”) as a drive source.
  • motor 16 travel motor
  • the vehicle 10 in addition to an engine 14 (internal combustion engine) and a motor 16 (electric motor), the vehicle 10 includes an alternator 18 (generator), an inverter 20, a battery 22 (power storage device), an SOC sensor 24, and motor electronic control.
  • Device 26 hereinafter referred to as “motor ECU 26”
  • transmission 28 transmission electronic control device 30
  • drive state ECU 32 drive state ECU 32
  • accelerator accelerator
  • reaction force ECU 48 reaction force ECU 48
  • the drive source is selected according to the opening of the accelerator pedal 34 (hereinafter referred to as “pedal opening ⁇ ”) or the like (that is, either or both of the engine 14 and the travel motor 16).
  • the driver preferably uses a reaction force applied to the accelerator pedal 34 from the reaction force motor 40 (hereinafter referred to as “pedal reaction force Fr”). The operation of the accelerator pedal 34 is guided so that can be selected.
  • the accelerator pedal 34 controls the output of the drive source, and is fixed to the pedal side arm 36.
  • the pedal side arm 36 is connected to a return spring (not shown) so as to be able to turn.
  • the accelerator pedal 34 is returned to the original position by the urging force (spring reaction force Fr_sp) from the return spring.
  • the spring reaction force Fr_sp constitutes a basic reaction force (base reaction force) generated according to the pedal opening ⁇ among the reaction forces acting on the accelerator pedal 34, but is included in the pedal reaction force Fr. Absent. That is, the base reaction force is a reaction force associated with the pedal opening ⁇ one-to-one, and in the present embodiment, is composed only of the spring reaction force Fr_sp. Alternatively, the base reaction force may include a part of the driving force generated by the reaction force motor 40 in the case where the comfort of the accelerator pedal 34 can be adjusted by input means (such as a switch) not shown.
  • the opening sensor 38 detects the amount of depression (pedal opening ⁇ ) from the original position of the accelerator pedal 34 and transmits it to the drive state ECU 32 and the reaction force ECU 48.
  • the pedal opening ⁇ is used for controlling the drive source (the engine 14 and the traveling motor 16) and for controlling the reaction force (pedal reaction force Fr) against the accelerator pedal 34.
  • the motor side arm 42 is disposed so as to be able to turn at a position where it can come into contact with the pedal side arm 36.
  • the reaction force motor 40 drives the motor side arm 42 to apply the pedal reaction force Fr to the pedal side arm 36 and the accelerator pedal 34.
  • the reaction force ECU 48 includes an input / output unit, a calculation unit, and a storage unit (not shown), and generates a reaction force generation command for the driving force of the reaction force motor 40 (that is, the pedal reaction force Fr) based on the pedal opening ⁇ and the vehicle speed V. Control by Sr.
  • the reaction force motor 40 may be other driving force generation means (for example, a pneumatic actuator).
  • the reaction force motor 40 and the reaction force ECU 48 function as a reaction force applying unit that applies a pedal reaction force Fr to the accelerator pedal 34.
  • the engine 14 (internal combustion engine) generates a driving force Fe [N] (or torque [N ⁇ m]) as a driving source for traveling of the vehicle 10 and supplies it to a driving wheel (not shown), and operates the alternator 18. To generate power.
  • the electric power (hereinafter referred to as “generated power Pgen”) [W] generated by the alternator 18 is supplied to the battery 22, a 12-volt system (not shown) or an auxiliary machine.
  • the engine 14 of this embodiment is a 6-cylinder type.
  • the traveling motor 16 (electric motor) is a three-phase alternating current brushless type, and generates the driving force Fm [N] (or torque [N ⁇ m]) of the vehicle 10 based on the electric power supplied from the battery 22 via the inverter 20. Generated and supplied to the drive wheel. Further, the traveling motor 16 charges the battery 22 by outputting electric power (hereinafter referred to as “regenerative power Preg”) [W] generated by collecting deceleration energy as regenerative energy to the battery 22.
  • the regenerative power Preg may be output to a 12 volt system or an auxiliary machine (not shown).
  • the inverter 20 is configured as a three-phase bridge type, performs DC / AC conversion, converts DC to three-phase AC, and supplies it to the traveling motor 16, while DC after AC / DC conversion accompanying the regenerative operation. Is supplied to the battery 22.
  • the SOC sensor 24 (remaining electric power detection means) is configured by a current sensor or the like (not shown), detects the remaining amount (SOC: StateSOof Charge) of the battery 22, and transmits it to the motor ECU 26, the drive state ECU 32, and the reaction force ECU 48. .
  • the motor ECU 26 (electric motor control means) controls the inverter 20 based on commands from the drive state ECU 32 and outputs from various sensors (not shown) such as a voltage sensor and a current sensor, thereby outputting the driving motor 16 (propulsion power). To control.
  • the motor ECU 26 controls the operation of the transmission 28 via the T / M ECU 30.
  • the drive state ECU 32 plays a role of an engine electronic control unit (hereinafter referred to as “engine ECU”) for controlling the engine 14 and drives the engine 14 and the traveling motor 16 together using the pedal opening ⁇ and the vehicle speed V. Control the entire source.
  • engine ECU engine electronic control unit
  • the drive motor 16 is selected according to the vehicle speed V and the required drive force Freq [N] (or the required torque [N ⁇ m]) of the travel motor 16 as the selection of the drive source (selection of the travel state of the vehicle 10). Travel by operating only the engine (hereinafter referred to as “MOT travel”), travel by operating only the engine 14 (hereinafter referred to as “ENG travel”), and travel by operating both the travel motor 16 and the engine 14 (hereinafter referred to as “ENG + MOT travel”). Is possible). The switching is performed according to the vehicle speed V, the remaining amount (SOC) of the battery 22, and the pedal opening degree ⁇ . The pedal opening degree ⁇ can be handled as substantially indicating the required driving force Freq of the traveling motor 16.
  • FIG. 2 is a diagram illustrating a drive source selection characteristic (a large remaining amount map) when the remaining amount of the battery 22 is large.
  • “when the remaining amount is large” means, for example, that the battery 22 has sufficient power to travel only by the traveling motor 16, and the specific value of the remaining amount is It can be set as appropriate according to the specifications of the traveling motor 16 and the like.
  • MOT traveling is selected.
  • ENG travel is selected when the pedal opening ⁇ is relatively larger than in MOT travel (that is, when the required driving force Freq is greater than in MOT travel) or when the vehicle speed V is higher than in MOT travel. Is done.
  • the pedal opening degree ⁇ is larger than that in ENG traveling (that is, when the required driving force Freq is larger than ENG traveling) or when the vehicle speed V is high, ENG + MOT traveling is selected.
  • FIG. 3 is a diagram showing a drive source selection characteristic (low remaining amount map) used when the remaining amount of the battery 22 is small.
  • “when the remaining amount is small” means, for example, that the battery 22 does not have enough power to travel only by the traveling motor 16, and the specific value of the remaining amount is It can be set as appropriate according to the specifications of the traveling motor 16 and the like.
  • FIG. 3 shows characteristics used when the remaining amount of the battery 22 is small. Therefore, avoiding traveling by only the traveling motor 16 in which the amount of power supplied from the battery 22 is increased, the vehicle speed V is low, and the required driving force Freq. This is because the engine 14 is driven even when the engine speed is small. As a result, while the power consumption of the battery 22 is suppressed, the alternator 18 can be operated by driving the engine 14 to charge the battery 22.
  • MOT travel assistance In general, when the vehicle 10 is at a low speed and the required driving force Freq is low, traveling with the engine 14 has lower energy efficiency (fuel efficiency), and traveling with the traveling motor 16 has higher energy efficiency. Therefore, in the present embodiment, when the remaining amount of the battery 22 is large and the vehicle 10 is at a low speed and the required driving force Freq is low, MOT traveling is selected (FIG. 2). In this case, the pedal reaction force Fr is increased at the pedal opening ⁇ at which the MOT traveling and the ENG traveling are switched, and the driver is notified of the pedal opening ⁇ at which the MOT traveling and the ENG traveling are switched. This prompts selection of MOT travel.
  • the pedal opening ⁇ is a line indicated by “TH1” (hereinafter referred to as “MOT travel assist threshold TH1,” “first reaction force increase threshold TH1,” or “ When it is above the threshold value TH1, the reaction force ECU 48 increases the pedal reaction force Fr.
  • the threshold value TH2 is set as a value obtained by adding a predetermined amount Q1 to a pedal opening degree (hereinafter referred to as “constant speed traveling opening degree ⁇ cru”) that can travel at a constant speed at the vehicle speed V at that time.
  • the predetermined amount Q1 here is set as a value that realizes the acceleration of the vehicle 10 according to the vehicle speed V at that time.
  • the predetermined amount Q1 is set in consideration of not only the acceleration of the vehicle 10 corresponding to the vehicle speed V at that time but also the energy efficiency of the engine 14. Details of the predetermined amount Q1 will be described later.
  • the first and second reaction force increase thresholds TH1 and TH2 are collectively referred to as “a large remaining amount threshold”.
  • FIG. 4 shows a first example of the relationship between the pedal opening ⁇ and the pedal reaction force Fr when the pedal opening ⁇ is increased and then the pedal opening ⁇ is decreased when the remaining amount of the battery 22 is large.
  • the pedal opening ⁇ When the pedal opening ⁇ is further increased, the vehicle speed V increases, and the first acceleration assist threshold value TH2 is set instead of the MOT travel assist threshold value TH1.
  • the pedal opening degree ⁇ reaches the threshold value TH2, the pedal reaction force Fr increases rapidly. As a result, the driver can recognize the pedal opening degree ⁇ with good fuel efficiency while being able to moderately accelerate at the vehicle speed V at that time.
  • FIG. 5 shows a second example of the relationship between the pedal opening ⁇ and the pedal reaction force Fr when the pedal opening ⁇ is increased and then the pedal opening ⁇ is decreased when the remaining amount of the battery 22 is large.
  • the threshold value TH3 is set as a value obtained by adding a predetermined amount Q2 to a pedal opening degree (constant speed traveling opening degree ⁇ cru) that can be traveled at a constant speed at the vehicle speed V at that time, similarly to the threshold value TH2.
  • the predetermined amount Q2 is set as a value that realizes the acceleration of the vehicle 10 according to the vehicle speed V at that time, similarly to the predetermined amount Q1.
  • the predetermined amount Q2 is set in consideration of not only the acceleration of the vehicle 10 corresponding to the vehicle speed V at that time but also the energy efficiency of the engine 14.
  • the predetermined amounts Q1 and Q2 of the present embodiment are the same value, but may be different values. Details of the predetermined amounts Q1 and Q2 will be described later.
  • the third reaction force increase threshold TH3 is also referred to as a “low remaining amount threshold”.
  • FIG. 6 is a diagram illustrating an example of the relationship between the pedal opening ⁇ and the pedal reaction force Fr when the pedal opening ⁇ is increased and then the pedal opening ⁇ is decreased when the remaining amount of the battery 22 is small. It is.
  • FIG. 7 is a flowchart in which the reaction force ECU 48 sets the pedal reaction force Fr.
  • step S1 the reaction force ECU 48 determines whether or not to permit switching between the large remaining amount map (FIG. 2) and the small remaining amount map (FIG. 3). If it is always allowed to switch between the two maps, there is a possibility that the driver may feel uncomfortable. Therefore, in this embodiment, switching between both maps is performed only when a predetermined condition is satisfied. Specifically, when the pedal opening ⁇ is zero (that is, when the accelerator pedal 34 is in the original position), when the pedal reaction force Fr by the reaction force motor 40 is not generated, and when the reaction force from the reaction force ECU 48 is exceeded. When the reaction force generation command Sr is not output to the motor 40, switching between both maps is permitted.
  • permission conditions can be used in combination as appropriate, and other permission conditions may be set.
  • step S2 When switching between both maps is permitted (S1: YES), the process proceeds to step S2, and when switching between both maps is not permitted (S1: NO), the process proceeds to step S10.
  • step S2 the reaction force ECU 48 acquires the remaining amount (SOC) of the battery 22 from the SOC sensor 24.
  • the reaction force ECU 48 determines whether or not the remaining amount of the battery 22 is large. Specifically, it is determined whether or not the SOC acquired in step S2 exceeds a predetermined value (SOC threshold value THsoc).
  • step S4 the reaction force ECU 48 selects the large remaining amount map (FIG. 2).
  • step S ⁇ b> 5 the reaction force ECU 48 acquires the vehicle speed V from the vehicle speed sensor 44.
  • step S6 the reaction force ECU 48 sets the remaining amount threshold value (first reaction force increase threshold value TH1 or second reaction force increase threshold value TH2) from the relationship with the vehicle speed V in the remaining amount amount map.
  • first reaction force increase threshold value TH1 or second reaction force increase threshold value TH2 may be set depending on the vehicle speed V.
  • the threshold TH3 FIG. 3
  • the threshold TH2 FIG. 2
  • step S7 the reaction force ECU 48 selects the small remaining amount map (FIG. 3).
  • step S ⁇ b> 8 the reaction force ECU 48 acquires the vehicle speed V from the vehicle speed sensor 44.
  • step S9 the reaction force ECU 48 sets a low remaining amount threshold (third reaction force increase threshold TH3) from the relationship with the vehicle speed V in the small remaining amount map.
  • step S ⁇ b> 10 the reaction force ECU 48 acquires the pedal opening degree ⁇ from the opening degree sensor 38.
  • step S11 the reaction force ECU 48 determines whether or not the pedal opening degree ⁇ acquired in step S10 is equal to or greater than the remaining amount large threshold set in step S6 or the remaining amount small threshold set in step S9. .
  • the pedal opening degree ⁇ is equal to or larger than the threshold value (high remaining amount threshold value or low residual amount threshold value) set in step S6 or S9 (S11: YES)
  • the pedal reaction force Fr is increased in step S12.
  • the pedal opening degree ⁇ and the threshold value TH1 are set. Or compare with TH2.
  • the reaction force ECU 48 increases the pedal reaction force Fr by one step (see FIGS. 4 and 5). If the pedal opening ⁇ becomes equal to or greater than the threshold TH2 as the vehicle speed V increases after the pedal opening ⁇ becomes equal to or greater than the threshold TH1 and the pedal reaction force Fr increases by one step, the reaction force ECU 48 The force Fr is increased by two steps (see FIG. 4). Further, when the pedal opening ⁇ is less than both the first and second reaction force increase thresholds TH1 and TH2, the reaction force ECU 48 uses a normal pedal reaction force Fr (see FIGS. 4 and 5).
  • the pedal opening degree ⁇ is compared with the threshold value TH3.
  • the reaction force ECU 48 increases the pedal reaction force Fr by one step (see FIG. 6).
  • the reaction force ECU 48 uses a normal pedal reaction force Fr (see FIG. 6).
  • the thresholds TH2 and TH3 are set as values obtained by adding the predetermined amounts Q1 and Q2 to the pedal opening (constant speed traveling opening ⁇ cru) that can be traveled at a constant speed at the time (current time) of the vehicle.
  • FIG. 8 is a map showing the relationship between the vehicle speed V, the constant speed travel opening ⁇ cru, and the first to third reaction force increase thresholds TH1 to TH3.
  • an alternate long and short dash line 100 indicates a constant speed travel opening ⁇ cru
  • a broken line 102 indicates a threshold value TH1
  • a solid line 104 indicates threshold values TH2 and TH3.
  • the threshold TH1 is used in the region where the vehicle speed V is lower than the switching point 106
  • the threshold TH2 is not used in the region where the vehicle speed V is lower than the switching point 106.
  • a two-dot chain line 108 indicates an acceleration assist opening degree ⁇ acc described later.
  • the predetermined amounts Q1 and Q2 are each divided into a first addition value q1 for acceleration assist and a second addition value q2 for surplus output.
  • the first addition value q1 is the output that allows the vehicle 10 (engine 14) to travel at a constant speed at the vehicle speed V at that time (current time), and the front and rear G corresponding to the vehicle speed V at that time (hereinafter “necessary front and rear G”). It is an added value of the pedal opening degree ⁇ necessary for obtaining a driving force for realizing “. Necessary front and rear G means front and rear G corresponding to acceleration assumed to be necessary according to vehicle speed V. The driving force F generated by the engine 14 according to the first addition value q1 is used for traveling of the vehicle 10 itself. Further details of the necessary front and rear G and the first addition value q1 (predetermined amounts Q1 and Q2 considering the first addition value q1) will be described later.
  • the second addition value q2 is an addition value of the pedal opening degree ⁇ in consideration of the energy efficiency of the engine 14. That is, when the accelerator pedal 34 is depressed so that the pedal opening ⁇ becomes the sum of the constant speed traveling opening ⁇ cru and the first addition value q1 ( ⁇ cru + q1), the output of the engine 14 is energy efficiency (fuel efficiency). It may not be efficient from a viewpoint. Therefore, in the present embodiment, the pedal reaction force Fr is not generated so that the pedal opening ⁇ becomes the sum of the constant speed traveling opening ⁇ cru and the first addition value q1, but the output of the engine 14 is improved in energy efficiency. The pedal reaction force Fr is rapidly increased with the accelerator pedal 34 further depressed to the corresponding pedal opening degree ⁇ .
  • the driving force F generated by the engine 14 in accordance with the second addition value q2 is used for purposes other than traveling of the vehicle 10 (for example, charging of the battery 22 and driving of auxiliary equipment not shown). Further details of the second addition value q2 (predetermined amounts Q1 and Q2 considering the second addition value q2) will be described later.
  • FIG. 9 is a flowchart showing a procedure for setting the first and second acceleration assist thresholds TH2 and TH3. Of steps shown in FIG. 9, steps S21 to S24 relate to the first addition value q1, and step S25 relates to the second addition value q2.
  • step S21 of FIG. 9 the test driver runs the reference course on the vehicle 10, and measures or acquires data of actual measurement values of the vehicle speed V and longitudinal acceleration (hereinafter referred to as “front-rear G”) at that time.
  • the vehicle speed V is acquired by the vehicle speed sensor 44
  • the front / rear G is acquired by the front / rear G sensor 46.
  • the front and rear G can be calculated as a time differential value of the vehicle speed V.
  • the vehicle speed V and front / rear G data are stored by, for example, a data logger (not shown). Or you may give said function to electronic control apparatuses, such as reaction force ECU48.
  • step S ⁇ b> 22 the developer of the vehicle 10 sets the necessary front and rear G for each vehicle speed V.
  • the necessary front-rear G is used to determine the acceleration of the vehicle 10 that the driver may need at each vehicle speed V. That is, the acceleration of the vehicle 10 that the driver may need is considered to have a considerable degree of correlation with the longitudinal G. For this reason, it is possible to estimate the acceleration of the vehicle 10 that the driver may need by determining the necessary front-rear G.
  • the front and rear G including a predetermined ratio (for example, 90%) of the front and rear G generated for each vehicle speed V is set as the required front and rear G.
  • the necessary front-rear G is constant when the vehicle speed V is equal to or lower than a predetermined value (V1 in FIG. 8) regardless of the data content. This is because the possibility of a sudden start at a low speed is relatively high. That is, this is to prevent the driver from feeling uncomfortable when making a sudden start in a low speed range.
  • step S22 may be executed by an electronic control device such as the reaction force ECU 48 instead of being performed by the developer.
  • the target driving force Ftar is a driving force for realizing the necessary front and rear G, and can be calculated from measured values, simulation values, etc., for each of the engine 14 and the motor 16, as shown in FIG.
  • FIG. 10 is a diagram illustrating a method of determining the target driving force Ftar at each vehicle speed V based on the data acquired in step S21.
  • the thick broken line 120 is the target driving force Ftar related to MOT travel
  • the thick solid line 122 is the target driving force Ftar related to ENG travel
  • the thick dashed-dotted line 124 is shifted up by ENG travel. This is an example of the target driving force Ftar (or driving force Fe).
  • a thin solid line (having a description of 1st, 2nd, 3rd, 4th, 5th, 6th) indicates a driving force for each gear position.
  • a thin broken line (where 1st, 2nd, 3rd, 4th, and 5th are described) indicates the engine speed NE [rpm] for each gear position.
  • the MOT travel assist threshold TH1 and the first acceleration assist threshold TH2 are used.
  • the value corresponding to the target driving force Ftar is the threshold value TH2
  • the threshold value TH1 is a value indicating switching between MOT traveling and ENG traveling. Therefore, when the remaining amount of the battery 22 is large, the characteristic of the broken line 120 is used in the region where the vehicle speed V is lower than the switching point 126, and the characteristic of the solid line 122 is used in the region where the vehicle speed V is higher than the switching point 126. Note that the characteristic of the thick two-dot chain line 128 is used when switching between the characteristic of the broken line 120 and the characteristic of the solid line 122.
  • the characteristic of the broken line 120 in FIG. 10 does not correspond to the actual measurement data acquired in step S21, but indicates the driving force before switching from MOT traveling to ENG traveling.
  • the threshold value of the pedal opening degree ⁇ corresponding to the actual measurement data acquired in step S21 can be used instead of the threshold value TH1.
  • the ENG traveling is performed without performing the MOT traveling. Furthermore, when the remaining amount of the battery 22 is small, the second acceleration assist threshold TH3 is used. Therefore, when the remaining amount of the battery 22 is small, even when the vehicle speed V is relatively low (even in a region where the vehicle speed V is lower than the switching point 126), the characteristics of the solid line 122 are used.
  • step S23 may be executed by an electronic control device such as the reaction force ECU 48 instead of being performed by the developer.
  • step S24 of FIG. 9 the developer of the vehicle 10 is based on the target driving force Ftar for each vehicle speed V and is the sum of the constant speed travel opening ⁇ cru and the first addition value q1 (hereinafter referred to as “acceleration assist opening ⁇ acc”). ) Is set.
  • FIG. 11 is a diagram illustrating a map used when setting the acceleration assist opening ⁇ acc based on the target driving force Ftar.
  • the energy efficiency of the engine 14 (in other words, the second added value q2) is not considered.
  • FIG. 11 shows the relationship between the vehicle speed V, the target driving force Ftar, and the pedal opening degree ⁇ . That is, FIG. 11 shows a map showing the characteristics of the vehicle speed V and the target driving force Ftar for each pedal opening degree ⁇ .
  • the relationship between the vehicle speed V and the target driving force Ftar has characteristics 130, 132, 134, 136, 138, 140, 142, respectively.
  • the relationship shown in FIG. 11 is acquired and stored in advance by the developer of the vehicle 10 by acquiring actual measurement data or simulation data.
  • the first addition value q1 increases as the vehicle speed V decreases, and decreases as the vehicle speed V increases.
  • the necessary front-rear G is constant. Therefore, when the vehicle speed V is equal to or lower than V1, the first addition value q1 is also constant.
  • step S24 may be executed by an electronic control device such as the reaction force ECU 48 instead of being performed by the developer.
  • step S25 of FIG. 9 the developer of the vehicle 10 sets the thresholds TH2 and TH3 in consideration of the energy efficiency of the engine 14 (second addition value q2).
  • the thresholds TH2 and TH3 are within the best fuel consumption point or the best fuel consumption range obtained from the relationship between the pedal opening ⁇ and the vehicle speed V (or engine speed NE) based on the net fuel consumption rate (BSFC: Brake ⁇ Specific Fuel Consumption). Can be set as thresholds TH2 and TH3.
  • the thresholds TH2 and TH3 are referred to as regions (hereinafter referred to as “high-efficiency power generation region” or “charging promotion region”) in which the energy torque obtained by the fuel per unit amount (for example, 1 cc) is maximum. ) May be set as the value in parentheses. Thereby, the power generation amount of the alternator 18 when the engine 14 is driven by the fuel per unit amount becomes relatively high.
  • FIG. 12 is a diagram for explaining a method of setting the first and second acceleration assist thresholds TH2 and TH3.
  • the thresholds TH2 and TH3 are the best fuel consumption points or the best fuel consumption regions obtained based on the net fuel consumption rate (BSFC) from the relationship between the pedal opening degree ⁇ (required driving force Freq) and the vehicle speed V.
  • the inner pedal opening ⁇ can be set as the thresholds TH2 and TH3.
  • the threshold values TH2 and TH3 are set corresponding to the best fuel consumption point P1. can do.
  • Other values in the best fuel efficiency region R1 may be set as the thresholds TH2 and TH3.
  • the driving force corresponding to) is Freq2.
  • the driving force (Freq1-Freq2) that is the difference between Freq1 and Freq2 can be turned to an application other than traveling of the vehicle 10 (for example, power generation by the traveling motor 16, driving of the alternator 18 or driving of an auxiliary device not shown).
  • the best fuel efficiency region R1 and the best fuel efficiency point P1 obtained based on the BSFC vary according to the vehicle speed V and the required driving force Freq ( ⁇ the torque of the engine 14), and are shown as an optimal fuel efficiency curve C1 in FIG.
  • a line shown together with “WOT” is a line showing a relationship between the vehicle speed V and the required driving force Freq in the WOT (Wide Open Throttle) state.
  • the vehicle speed V in FIG. 12 may be replaced with, for example, the engine speed NE.
  • the required driving force Freq in FIG. 12 can be replaced with, for example, the torque of the engine 14.
  • the relationship between the pedal opening degree ⁇ and the vehicle speed V or the relationship between the pedal opening degree ⁇ and the engine speed NE may be changed according to the gear ratio (speed stage).
  • the first and second acceleration assist threshold values TH2 are obtained by adding the predetermined amounts Q1 and Q2 (first addition value q1) to the constant speed travel opening ⁇ cru. , TH3 (reaction force increase opening). If the driver depresses the accelerator pedal 34 to the thresholds TH2 and TH3, it is possible to obtain the front and rear G according to the vehicle speed V at the present time. Therefore, it is possible to suppress the driver from feeling uncomfortable and to improve the operability of the accelerator pedal 34 (vehicle 10).
  • the reaction force ECU 48 sets the thresholds TH2 and TH3 so as to decrease the predetermined amounts Q1 and Q2 (first addition value q1) as the vehicle speed V increases (FIG. 8). ). Accordingly, it is possible to obtain a relatively large acceleration by depressing the accelerator pedal 34 to the threshold values TH2 and TH3 in the low vehicle speed range. As a result, for example, it is possible to obtain the acceleration necessary for the vehicle 10 to get on the traffic flow (however, the threshold value TH1 is used in the low vehicle speed range). In the high vehicle speed range, it is possible to obtain a relatively small acceleration by holding the accelerator pedal 34 at the thresholds TH2 and TH3. As a result, for example, it is possible to prevent acceleration more than necessary and suppress deterioration of energy efficiency (fuel consumption or power consumption).
  • the reaction force ECU 48 sets the thresholds TH2 and TH3 to the pedal opening ⁇ at which the engine 14 has an output with good kinetic efficiency (energy efficiency) (FIG. 12), and predetermined amounts Q1 and Q2 (first The addition value q1 and the second addition value q2) are set as values for realizing the acceleration corresponding to each vehicle speed V and generating the alternator 18 or the motor 16 by the driving force Fe of the engine 14.
  • the vehicle 10 when the driver depresses the accelerator pedal 34 to the thresholds TH2 and TH3, the vehicle 10 can be accelerated in a state where the engine 14 is outputting with good exercise efficiency. Therefore, in a state where energy efficiency is good, it is possible to realize the vehicle speed V corresponding to each vehicle speed V and to generate power by the alternator 18 or the motor 16. In addition, it is possible to teach the driver the pedal opening ⁇ with good fuel efficiency at each vehicle speed V.
  • the reaction force ECU 48 uses the threshold value TH1 when the MOT travel (first travel mode) can be selected based on the vehicle speed V and the remaining battery level (the state of the vehicle 10).
  • the reaction force control is performed using the threshold value TH2 or TH3 (FIGS. 2 and 3).
  • the reaction force control is performed to increase the pedal reaction force Fr when switching from travel of only the motor 16 (electric motor) to travel that drives at least the engine 14. It is possible to teach the driver of good driving.
  • the driver's acceleration operation is performed by executing reaction force control using values obtained by adding predetermined amounts Q1 and Q2 to the constant speed travel opening ⁇ cru (that is, threshold values TH2 and TH3). It is possible to suppress giving a sense of incongruity. Therefore, it becomes possible to make each reaction force control compatible.
  • the accelerator pedal reaction force control device 12 includes a drive state ECU 32 (mode switching means) that switches between MOT travel (first travel mode) and ENG travel (second travel mode).
  • MOT travel and ENG travel are selected according to the pedal opening ⁇ (see FIG. 2), and when the vehicle speed V exceeds the predetermined value V1, ENG travel is selected.
  • the reaction force ECU 48 shifts from reaction force control using the threshold value TH1 to reaction force control using the threshold value TH2 (see FIG. 2).
  • the MOT travel first travel mode
  • the ENG travel second travel mode
  • the threshold value TH1 first opening threshold value
  • the threshold value TH2 second opening threshold value
  • the reaction force control using the threshold value TH1 is changed to the reaction force control using the threshold value TH2 (see FIG. 2). Accordingly, it is possible to execute reaction force control according to the travel mode (driving state of the vehicle 10).
  • the reaction force control device 12 is mounted on the vehicle 10 having the engine 14 and the travel motor 16 as the drive source (the one that generates the drive force). ) Is not limited to this from the viewpoint of realizing.
  • the vehicle 10 may have only one of the engine 14 and the motor 16.
  • the travel motor 16 is directly connected to the engine 14 and drives the drive wheels (for example, front wheels) as shown in FIG. 1, another travel motor that drives another drive wheel (for example, the rear wheels).
  • One or two (second traveling motors) may be provided.
  • the present invention may be applied to a four-wheel drive hybrid vehicle.
  • the engine 14 may be assisted by the second traveling motor.
  • traveling motor 16 when the engine 14 is being driven, the travel motor 16 stops driving (ENG travel) or is driven together with the engine 14 (ENG + MOT travel). Regeneration or power generation may be performed. In other words, the traveling motor 16 may serve as the alternator 18.
  • the first and second acceleration assist thresholds TH2 and TH3 are set, for example, within a region where the power generation amount of the travel motor 16 is equal to or greater than a predetermined power generation amount threshold by driving the engine 14 with fuel per unit amount. can do. Thereby, when the accelerator pedal 34 is held at or near the thresholds TH2, TH3, the amount of power generated by the traveling motor 16 can be relatively increased. Accordingly, charging of the battery 22 can be promoted.
  • the traveling motor 16 in “ENG + MOT traveling”, for example, the engine 14 and the second traveling motor are used. While performing “ENG + MOT traveling”, the traveling motor 16 can also regenerate or generate electric power by the driving force of the engine 14 to charge the battery 22.
  • Switching of running state [3-1. Characteristics according to the remaining amount of the battery 22]
  • the switching characteristics of the running state (MOT running, ENG running, and ENG + MOT running) are set in two cases, when the remaining amount of the battery 22 is large and small (FIGS. 2 and 3), If a plurality of driving state switching characteristics are set in accordance with the remaining amount of the battery 22, three or more characteristics can be provided.
  • MOT traveling, ENG traveling, and ENG + MOT traveling are set as switching characteristics when the remaining amount of the battery 22 is large (FIG. 2), and ENG traveling and switching are performed as switching characteristics when the remaining amount of the battery 22 is small.
  • ENG + MOT travel was set (Fig. 3).
  • the combination of the switching characteristics is not limited to this.
  • a combination of MOT traveling and ENG traveling, a combination of ENG traveling and ENG + MOT traveling, or a combination of MOT traveling and ENG + MOT traveling may be set as the switching characteristics when the remaining amount of the battery 22 is large.
  • only the ENG traveling or the ENG + MOT traveling may be set as the switching characteristic when the remaining amount of the battery 22 is small.
  • FIG. 13 shows a modification of the relationship between the pedal opening ⁇ and the pedal reaction force Fr when the pedal opening ⁇ is increased and then the pedal opening ⁇ is decreased when the remaining amount of the battery 22 is large.
  • the switching characteristics of the traveling state are set according to the vehicle speed V and the pedal opening degree ⁇ (required driving force Freq).
  • the characteristic setting is not limited to this as long as it is set according to the pedal opening degree ⁇ (required driving force Freq).
  • whether or not to select MOT traveling is determined based on whether or not the vehicle speed V is less than V1 and whether or not the remaining battery level is large. Or it is not restricted to this from the viewpoint of switching by the operation of the driver.
  • a threshold value of the coolant temperature (warm-up threshold value) of the engine 14 for determining whether or not the engine 14 needs to be warmed up is set, and if the coolant temperature falls below the warm-up threshold value, MOT travel is prohibited. May be.
  • whether or not to select MOT travel can be set according to a driver's input operation to an input means (switch, button, microphone, etc.) (not shown).
  • MOT travel assist threshold TH1 In the above embodiment, the MOT travel assist threshold value TH1 is used. However, for example, when attention is paid to the use of the first and second acceleration assist threshold values TH2 and TH3, a configuration in which the MOT travel assist threshold value TH1 is not used is also possible.
  • the threshold value similar to the MOT travel assist threshold value TH1 is not used (FIG. 3). It is also possible to set a threshold value similar to the threshold value TH1.
  • the first and second acceleration assist thresholds TH2 and TH3 which are the sum of the constant speed travel opening ⁇ cru and the predetermined amounts Q1 and Q2, are set in a region with high fuel efficiency (high efficiency power generation region).
  • the value is set as a value within the charge promotion region), but is not limited to this from the viewpoint of realizing front and rear G according to vehicle speed V (necessary front and rear G).
  • the thresholds TH2 and TH3 may be set only from the first addition value q1 except for the second addition value q2.
  • both thresholds TH2 and TH3 are used, but only one of them can be used.
  • the first addition value q1 is set over the entire vehicle speed V.
  • this is not necessarily limited thereto. Absent.
  • the thresholds TH2 and TH3 may be set without using the first addition value q1.
  • the constant speed travel opening ⁇ cru may be set as the thresholds TH2 and TH3.
  • the thresholds TH2 and TH3 are determined based on the best fuel consumption point or the best fuel consumption range obtained based on the net fuel consumption rate (BSFC) from the relationship between the pedal opening degree ⁇ (required driving force Freq) and the vehicle speed V. Is set as the threshold values TH2 and TH3 (FIG. 12), but may be set by another method.
  • the thresholds TH2 and TH3 may be set as values in a region (high-efficiency power generation region or charging promotion region) in which the energy torque obtained from fuel per unit amount (for example, 1 cc) is maximum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Mechanical Control Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 車両(10)のアクセルペダル反力制御装置(12)において、反力制御手段(48)は、定速走行開度(θcru)に所定量(Q1、Q2)を上乗せした値を反力増大開度(TH2、TH3)として設定する。前記反力増大開度(TH2、TH3)は、アクセルペダル(34)への反力(Fr)をベース反力よりも増加させるアクセルペダル(34)の開度である。前記定速走行開度(θcru)は、現時点における車速で一定走行可能なアクセルペダル(34)の開度である。前記所定量(Q1、Q2)は、各車速に応じた前後加速度を実現する値として設定される。

Description

アクセルペダル反力制御装置及び車両
 本発明は、アクセルペダルに付与する反力を制御する反力制御手段を有するアクセルペダル反力制御装置及び車両に関する。
 国際公開第2011/148753号パンフレット(以下「WO 2011/148753 A1」という。)には、ハイブリッド車両において、アクセルペダル32の踏力(反力)を制御する構成が示されている。
 WO 2011/148753 A1では、アクセル開度閾値が、各車速において、第1アクセル開度と第2アクセル開度のうち大きい値として設定される([0036])。アクセル開度閾値は、アクセルペダル32の踏力をベース踏力よりも増加させる閾値である([0033])。第1アクセル開度は、EV走行からHEV走行に切り替わる閾値であるエンジン始動線上のアクセル開度から所定のアクセル開度量αを減じたアクセル開度である([0035])。EV走行とは、モータジェネレータ2の動力のみで走行する走行モードであり、HEV走行とは、エンジン1とモータジェネレータ2の動力で走行する走行モードである([0014])。第2アクセル開度は、各車速で平坦路での一定速可能なアクセル開度に一定加速可能な駆動力を確保可能なアクセル開度量βを上乗せしたアクセル開度である([0035]、[0038])。
 また、特開2005-271618号公報(以下「JP 2005-271618 A」という。)では、ハイブリッド電気自動車で用いるアクセル反力制御装置が開示されている。具体的には、JP 2005-271618 Aでは、車両駆動用モータ7により駆動走行するモータ走行領域と、エンジン6により駆動走行するエンジン走行領域とを有し、モータ走行領域からエンジン走行領域に移行する際には、アクセルペダル2の踏込反力を増加させる(要約)。これにより、駆動源がモータ7からエンジン6に切り替わる際にアクセルペダルに対する反力で運転者に知らせる([0005])。
 さらに、JP 2005-271618 Aでは、バッテリ充電量が所定値以上でない場合、エンジン6のみにより駆動走行させ、バッテリを充電する制御が開示されている(図4のS1:NO→S9、[0018]、請求項2)。
 上記のように、WO 2011/148753 A1では、一定走行可能な平坦路一定釣り合い開度に上乗せされるアクセル開度量βは、「一定加速可能」な駆動力を確保可能なものである([0035]、[0038])。
 しかしながら、実際の道路を走行するに当たり、車両に必要とされる加速度は、必ずしも一定とはならない。例えば、車速が低いときには、交通の流れに乗るための車速に到達するために大きな加速度を要し、車速が高いときには、小さな加速度でも十分交通の流れに乗ることが可能である。
 従って、WO 2011/148753 A1のように、一定加速可能な駆動力を確保するためのアクセル開度量βを、車速を問わずに上乗せして第2アクセル開度を設定し、その第2アクセル開度をアクセル開度閾値とすると、低車速域では、交通の流れに乗るために必要な加速度を得るべく運転者がアクセルペダルを踏み込むと、踏力(反力)が増加されてしまい、踏込み操作に違和感を与えるおそれがある。この点に関し、JP 2005-271618 Aでは何ら触れられていない。
 本発明はこのような課題を考慮してなされたものであり、アクセルペダルの操作性を向上可能なアクセルペダル反力制御装置及び車両を提供することを目的とする。
 本発明に係るアクセルペダル反力制御装置は、車両のアクセルペダルに付与する反力を制御する反力制御手段を有するものであって、前記アクセルペダルへの反力をベース反力よりも増加させる前記アクセルペダルの開度を反力増大開度と定義し且つ現時点における車速で一定走行可能な前記アクセルペダルの開度を定速走行開度と定義するとき、前記反力制御手段は、前記定速走行開度に所定量を上乗せした値を前記反力増大開度として設定し、前記所定量は、各車速に応じた前後加速度を実現する値として設定されることを特徴とする。
 本発明によれば、定速走行開度に所定量を上乗せした値を反力増大開度として設定する。運転者が反力増大開度までアクセルペダルを踏み込めば、現時点における車速に応じた前後加速度を得ることが可能となる。従って、運転者の加速操作に違和感を与えることを抑制し、アクセルペダルの操作性を向上することが可能となる。
 前記反力制御手段は、車速が増加するにつれ、前記所定量を小さくするように前記反力増大開度を設定してもよい。上記構成によれば、低車速域では反力増大開度までアクセルペダルを踏み込むことで、比較的大きな加速度を得ることが可能となる。その結果、例えば、車両が交通の流れに乗るために必要な程度の加速度を得ることが可能となる。また、高車速域では、反力増大開度でアクセルペダルを留めることで、比較的小さな加速度を得ることが可能となる。その結果、例えば、必要以上の加速を防止して燃費又は電費が悪化することを抑制することが可能となる。
 前記反力制御手段は、前記車両に搭載されたエンジンが運動効率の良い出力となる前記アクセルペダルの開度に前記反力増大開度を設定し、前記所定量は、各車速に応じた加速度を実現すると共に、前記車両に搭載された発電機を前記エンジンの駆動力により発電させる値として設定されてもよい。これにより、運転者が反力増大開度までアクセルペダルを踏み込むことで、エンジンが運動効率の良い出力をしている状態で車両を加速することが可能となる。従って、燃費が良い状態において、各車速に応じた車速を実現すると共に発電機による発電を行うことが可能となる。加えて、各車速において燃費の良いアクセルペダルの開度を運転者に教えることが可能となる。
 前記車両に搭載され前記車両の駆動源として用いられるモータのみを駆動して前記車両を走行させる第1走行モードから、少なくともエンジンを駆動する第2走行モードに切り替わる前記アクセルペダルの開度を第1開度閾値とし、前記定速走行開度に前記所定量を上乗せした値を第2開度閾値とするとき、前記反力制御手段は、前記車両の状態又は運転者の操作により前記第1走行モードを選択可能なときには、前記第1開度閾値を前記反力増大開度として反力制御を行い、前記第1走行モードを選択不可のときには、前記第2開度閾値を前記反力増大開度として反力制御を行ってもよい。
 上記構成によれば、第1走行モード(モータのみでの走行)を選択可能な場合には、モータのみの走行から少なくともエンジンを駆動する走行に切り替わる際にアクセルペダルの反力を増加させる反力制御を実行することで、燃費の良い運転を運転者に教示することが可能となる。また、第1走行モード(モータのみでの走行)を選択不可の場合、定速走行開度に所定量を上乗せした値を反力増大開度として用いる反力制御を実行することで、運転者の加速操作に違和感を与えることを抑制することが可能となる。従って、それぞれの反力制御を両立させることが可能となる。
 前記アクセルペダル反力制御装置は、前記第1走行モードと前記第2走行モードを切り替えるモード切替手段を備え、前記モード切替手段は、車速が所定値を下回る場合、前記第1走行モードと前記第2走行モードを前記アクセルペダルの開度に応じて選択し、車速が前記所定値を上回る場合、前記第2走行モードを選択し、前記反力制御手段は、車速が前記所定値を超えると、前記第1開度閾値を用いる反力制御から前記第2開度閾値を用いる反力制御に移行してもよい。
 上記構成によれば、車速に応じて第1走行モード(モータのみによる走行)の選択の可否を切り替える。また、車速が所定値を下回る場合(すなわち、低車速域の場合)、第1走行モード(モータのみによる走行)と第2走行モード(少なくともエンジンによる走行)とをアクセルペダルの開度に応じて切り替える。そして、第1走行モードが選択可能なときには第1開度閾値を用い、第1走行モードが選択不可のときには第2開度閾値を用いる。さらに、車速に応じて第1走行モードが選択可能な状態から選択不可の状態に移行したとき、第1開度閾値を用いる反力制御から第2開度閾値を用いる反力制御に移行する。従って、走行モード(車両の駆動状態)に応じた反力制御を実行することが可能となる。
 本発明に係る車両は、上記アクセルペダル反力制御装置を備えることを特徴とする。
本発明の一実施形態に係るアクセルペダル反力制御装置を搭載した車両のブロック図である。 バッテリ残量が大きいときの駆動源の選択特性(残量大用マップ)を示す図である。 前記バッテリ残量が小さいときの駆動源の選択特性(残量小用マップ)を示す図である。 前記バッテリ残量が大きい場合において、アクセルペダルの開度(ペダル開度)を増加させ、その後、前記ペダル開度を減少させた場合の前記ペダル開度とアクセルペダルに付与する反力(ペダル反力)の関係の第1例を示す図である。 前記バッテリ残量が大きい場合において、前記ペダル開度を増加させ、その後、前記ペダル開度を減少させた場合の前記ペダル開度と前記ペダル反力の関係の第2例を示す図である。 前記バッテリ残量が小さい場合において、前記ペダル開度を増加させ、その後、前記ペダル開度を減少させた場合の前記ペダル開度と前記ペダル反力の関係の一例を示す図である。 反力電子制御装置が前記ペダル反力を設定するフローチャートである。 車速と、定速走行開度及び第1~第3反力増大閾値との関係を示すマップを示す図である。 第1・第2加速アシスト閾値(第2・第3反力増大閾値)を設定する際の手順を示すフローチャートである。 各車速における目標駆動力を決める方法を説明する図である。 前記目標駆動力に基づいて加速アシスト開度を設定する際に用いるマップを示す図である。 前記第1・第2加速アシスト閾値の設定方法を説明するための図である。 前記バッテリ残量が大きい場合において、前記ペダル開度を増加させ、その後、前記ペダル開度を減少させた場合の前記ペダル開度と前記ペダル反力の関係の変形例を示す図である。
A.一実施形態
1.車両10の構成
[1-1.全体構成]
 図1は、本発明の一実施形態に係るアクセルペダル反力制御装置12(以下「反力制御装置12」又は「制御装置12」ともいう。)を搭載した車両10のブロック図である。車両10は、いわゆるハイブリッド車両であり、駆動源として、エンジン14及び走行モータ16(以下「モータ16」ともいう。)を有する。
 図1に示すように、車両10は、エンジン14(内燃機関)及びモータ16(電動機)に加え、オルタネータ18(発電機)、インバータ20、バッテリ22(蓄電装置)、SOCセンサ24、モータ電子制御装置26(以下「モータECU26」という。)、トランスミッション28、トランスミッション電子制御装置30(以下「T/M ECU30」という。)、駆動状態電子制御装置32(以下「駆動状態ECU32」という。)、アクセルペダル34、ペダル側アーム36、開度センサ38、反力モータ40、モータ側アーム42、車速センサ44、前後加速度センサ46(以下「前後Gセンサ46」という。)及び反力電子制御装置48(以下「反力ECU48」という。)を有する。
 後に詳述するように、本実施形態では、アクセルペダル34の開度(以下「ペダル開度θ」という。)等に応じて駆動源の選択(すなわち、エンジン14及び走行モータ16のいずれ又は両方を用いるか)を設定する。本実施形態の反力制御装置12によれば、反力モータ40からアクセルペダル34に対して付与する反力(以下「ペダル反力Fr」という。)を用いて、運転者が好適に駆動源を選択することができるようにアクセルペダル34の操作を誘導する。
[1-2.アクセルペダル34及びその関連部品]
 アクセルペダル34は、駆動源の出力を制御するものであり、ペダル側アーム36に固定されている。ペダル側アーム36は、旋回可能な状態で図示しないリターンスプリングに連結されている。これにより、運転者がアクセルペダル34を戻すとき、アクセルペダル34は前記リターンスプリングからの付勢力(スプリング反力Fr_sp)により原位置まで戻される。
 なお、スプリング反力Fr_spは、アクセルペダル34に作用する反力のうちペダル開度θに応じて発生する基本的な反力(ベース反力)を構成するが、ペダル反力Frには含まれない。すなわち、ベース反力は、ペダル開度θと1対1に関連付けられた反力であり、本実施形態ではスプリング反力Fr_spのみからなる。或いは、アクセルペダル34の踏み心地を図示しない入力手段(スイッチ等)により調整可能な構成等である場合、ベース反力は、反力モータ40が生成する駆動力の一部を含んでもよい。
 開度センサ38は、アクセルペダル34の原位置からの踏込み量(ペダル開度θ)を検出し、駆動状態ECU32及び反力ECU48に送信する。ペダル開度θは、駆動源(エンジン14及び走行モータ16)の制御に用いられると共に、アクセルペダル34に対する反力(ペダル反力Fr)の制御に用いられる。
 モータ側アーム42は、ペダル側アーム36と当接可能な位置で旋回可能に配置されている。反力モータ40は、モータ側アーム42を駆動してペダル側アーム36及びアクセルペダル34にペダル反力Frを付与する。反力ECU48は、図示しない入出力部、演算部及び記憶部を備え、ペダル開度θ及び車速V等に基づいて反力モータ40の駆動力(すなわち、ペダル反力Fr)を反力生成指令Srにより制御する。なお、反力モータ40は、その他の駆動力生成手段(例えば、空気圧アクチュエータ)であってもよい。反力モータ40及び反力ECU48は、アクセルペダル34にペダル反力Frを付与する反力付与手段として機能する。
[1-3.駆動源及びその関連部品]
 エンジン14(内燃機関)は、車両10の走行用の駆動源として駆動力Fe[N](又はトルク[N・m])を生成して図示しない駆動輪側に供給すると共に、オルタネータ18を作動させて電力を発生させる。オルタネータ18で発生した電力(以下「発電電力Pgen」という。)[W]は、バッテリ22、図示しない12ボルト系又は補機等に供給される。本実施形態のエンジン14は、6気筒型である。
 走行モータ16(電動機)は、3相交流ブラシレス式であり、インバータ20を介してバッテリ22から供給される電力に基づいて車両10の駆動力Fm[N](又はトルク[N・m])を生成して前記駆動輪に供給する。また、走行モータ16は、減速エネルギを回生エネルギとして回収することで生成した電力(以下「回生電力Preg」という。)[W]をバッテリ22に出力することでバッテリ22を充電する。回生電力Pregは、図示しない12ボルト系又は補機に対して出力してもよい。
 インバータ20は、3相ブリッジ型の構成とされて、直流/交流変換を行い、直流を3相の交流に変換して走行モータ16に供給する一方、回生動作に伴う交流/直流変換後の直流をバッテリ22に供給する。
 SOCセンサ24(電力残量検出手段)は、図示しない電流センサ等により構成され、バッテリ22の残量(SOC:State of Charge)を検出してモータECU26、駆動状態ECU32及び反力ECU48に送信する。
 モータECU26(電動機制御手段)は、駆動状態ECU32からの指令、図示しない電圧センサ及び電流センサ等の各種センサからの出力に基づいてインバータ20を制御することにより、走行モータ16の出力(推進動力)を制御する。また、モータECU26は、T/M ECU30を介してトランスミッション28の作動を制御する。
 駆動状態ECU32は、エンジン14を制御するエンジン電子制御装置(以下「エンジンECU」という。)の役割を担うと共に、ペダル開度θ及び車速V等を用いてエンジン14及び走行モータ16を合わせた駆動源全体の制御を行う。
2.本実施形態における制御
[2-1.駆動源の切替え]
(2-1-1.概要)
 本実施形態では、駆動源の選択(車両10の走行状態の選択)として、車速Vと走行モータ16の要求駆動力Freq[N](又は要求トルク[N・m])に応じて走行モータ16のみの作動による走行(以下「MOT走行」という。)と、エンジン14のみの作動による走行(以下「ENG走行」という。)と、走行モータ16及びエンジン14両方の作動による走行(以下「ENG+MOT走行」という。)とが可能である。当該切替えは、車速V、バッテリ22の残量(SOC)及びペダル開度θに応じて行う。ペダル開度θは、実質的に走行モータ16の要求駆動力Freqを示すものとして扱うことができる。
(2-1-2.バッテリ22の残量が大きいときの駆動源の切替え特性)
 図2は、バッテリ22の残量が大きいときの駆動源の選択特性(残量大用マップ)を示す図である。ここにいう「残量が大きいとき」とは、例えば、走行モータ16のみによる走行に回すのに十分な電力をバッテリ22が有していることを意味し、当該残量の具体的な値は、走行モータ16の仕様等に応じて適宜設定することが可能である。
 図2に示すように、車速Vが相対的に低く且つペダル開度θが相対的に小さい場合(すなわち、要求駆動力Freqが小さい場合)、MOT走行が選択される。また、MOT走行の場合よりもペダル開度θが相対的に大きい場合(すなわち、MOT走行よりも要求駆動力Freqが大きい場合)又はMOT走行の場合よりも車速Vが高い場合、ENG走行が選択される。さらに、ENG走行の場合よりもペダル開度θが大きい場合(すなわち、ENG走行よりも要求駆動力Freqが大きい場合)又は車速Vが高い場合、ENG+MOT走行が選択される。
(2-1-3.バッテリ22の残量が小さいときの駆動源の切替え特性)
 図3は、バッテリ22の残量が小さいときに用いる駆動源の選択特性(残量小用マップ)を示す図である。ここにいう「残量が小さいとき」とは、例えば、走行モータ16のみによる走行に回すのに十分な電力をバッテリ22が有していないことを意味し、当該残量の具体的な値は、走行モータ16の仕様等に応じて適宜設定することが可能である。
 図2と比較して、図3では、MOT走行の領域が存在しない。これは、図3は、バッテリ22の残量が小さいときに用いる特性であるため、バッテリ22からの電力供給量が大きくなる走行モータ16のみによる走行を避け、車速Vが低く且つ要求駆動力Freqが小さい場合にもエンジン14を駆動させるためである。これにより、バッテリ22の電力消費を抑制しつつ、エンジン14を駆動させることでオルタネータ18を作動させ、バッテリ22を充電することが可能となる。
[2-2.ペダル反力Frの制御]
 本実施形態では、運転者が好適に駆動源(エンジン14及び走行モータ16)を選択することができるようにペダル反力Frを用いてアクセルペダル34の操作を誘導する。
(2-2-1.バッテリ22の残量が大きい場合)
(2-2-1-1.MOT走行アシスト)
 一般に、車両10が低速であり且つ要求駆動力Freqが低いときはエンジン14での走行はエネルギ効率(燃費効率)が低く、走行モータ16での走行の方がエネルギ効率が高い。そこで、本実施形態では、バッテリ22の残量が大きい状態で、車両10が低速であり且つ要求駆動力Freqが低ければ、MOT走行を選択する(図2)。この場合、MOT走行とENG走行とが切り替わるペダル開度θにおいてペダル反力Frを増大させ、運転者にMOT走行とENG走行とが切り替わるペダル開度θを知らせる。これにより、MOT走行の選択を促す。
 より具体的には、図2において、車速Vとの関係で、ペダル開度θが「TH1」で示される線(以下「MOT走行アシスト閾値TH1」、「第1反力増大閾値TH1」又は「閾値TH1」という。)上にあるとき、反力ECU48は、ペダル反力Frを増大させる。
(2-2-1-2.加速アシスト)
 上記のように、車速Vが高くなると、MOT走行を終了し、ENG走行に移行する。本実施形態では、MOT走行からENG走行に移行した後は、ペダル開度θが「TH2」で示される線(以下「第1加速アシスト閾値TH2」、「第2反力増大閾値TH2」又は「閾値TH2」という。)上にあるとき、反力ECU48は、ペダル反力Frを増大させる。
 閾値TH2は、その時点の車速Vで一定走行可能なペダル開度(以下「定速走行開度θcru」という。)に所定量Q1を上乗せした値として設定される。ここにいう所定量Q1は、その時点の車速Vに応じた車両10の加速度を実現する値として設定される。
 また、本実施形態では、所定量Q1は、その時点の車速Vに応じた車両10の加速度の実現のみならず、エンジン14のエネルギ効率も考慮して設定される。所定量Q1の詳細は後述する。なお、以下では、第1及び第2反力増大閾値TH1、TH2を「残量大用閾値」と総称する。
(2-2-1-3.具体例)
 図4は、バッテリ22の残量が大きい場合において、ペダル開度θを増加させ、その後、ペダル開度θを減少させた場合のペダル開度θとペダル反力Frの関係の第1例を示す図である。
 図4から明らかなように、ペダル開度θをゼロから増加させて行くと、まずMOT走行が選択され、さらにペダル開度θを増加させると、MOT走行からENG走行に切り替わる。この際、MOT走行からENG走行に切り替わる手前(MOT走行アシスト閾値TH1)において、ペダル反力Frが急激に増加する。これにより、運転者は、MOT走行からENG走行への切り替わりを認識することが可能となる。
 さらにペダル開度θを増加させると、車速Vが増加し、MOT走行アシスト閾値TH1の代わりに第1加速アシスト閾値TH2が設定される。そして、ペダル開度θが閾値TH2になったとき、ペダル反力Frが急激に増加する。これにより、運転者は、その時点の車速Vにおいて適度な加速が可能であると共に燃費の良いペダル開度θを認識することが可能となる。
 図5は、バッテリ22の残量が大きい場合において、ペダル開度θを増加させ、その後、ペダル開度θを減少させた場合のペダル開度θとペダル反力Frの関係の第2例を示す図である。
 図5から明らかなように、ペダル開度θをゼロから増加させて行くと、まずMOT走行が選択され、さらにペダル開度θを増加させると、MOT走行からENG走行に切り替わる。この際、MOT走行からENG走行に切り替わる手前(MOT走行アシスト閾値TH1)において、ペダル反力Frが急激に増加する。これにより、運転者は、MOT走行からENG走行への切り替わりを認識することが可能となる。なお、図5の場合、ENG走行からENG+MOT走行への切替えは行われない。
(2-2-2.バッテリ22の残量が小さい場合)
(2-2-2-1.加速アシスト)
 上記のように、バッテリ22の残量が小さい場合、低速域であっても、MOT走行を用いずにENG走行を用いる。本実施形態では、バッテリ22の残量が小さい場合、ペダル開度θが、「TH3」で示される線(以下「第2加速アシスト閾値TH3」、「第3反力増大閾値TH3」又は「閾値TH3」という。)上にあるとき、反力ECU48は、ペダル反力Frを増大させる。
 閾値TH3は、閾値TH2と同様、その時点の車速Vで一定走行可能なペダル開度(定速走行開度θcru)に所定量Q2を上乗せした値として設定される。所定量Q2は、所定量Q1と同様、その時点の車速Vに応じた車両10の加速度を実現する値として設定される。また、本実施形態では、所定量Q2は、その時点の車速Vに応じた車両10の加速度の実現のみならず、エンジン14のエネルギ効率も考慮して設定される。本実施形態の所定量Q1、Q2は、同一の値であるが、異なる値とすることもできる。所定量Q1、Q2の詳細は後述する。なお、以下では、第3反力増大閾値TH3を「残量小用閾値」とも称する。
(2-2-2-2.具体例)
 図6は、バッテリ22の残量が小さい場合において、ペダル開度θを増加させ、その後、ペダル開度θを減少させた場合のペダル開度θとペダル反力Frの関係の一例を示す図である。
 図6から明らかなように、ペダル開度θをゼロから増加させて行くと、MOT走行なしにENG走行が選択される。さらにペダル開度θを増加させ第2加速アシスト閾値TH3になると、ペダル反力Frが急激に増加する。これにより、運転者は、その時点の車速Vにおいて適度な加速が可能であると共に燃費の良いペダル開度θを認識することが可能となる。さらにペダル開度θを増加させると、ENG走行からENG+MOT走行に切り替わる。
(2-2-3.ペダル反力Frの設定)
 図7は、反力ECU48がペダル反力Frを設定するフローチャートである。ステップS1において、反力ECU48は、残量大用マップ(図2)と残量小用マップ(図3)の切替えを許可するか否かを判定する。両マップの切替えを常に許可することとすると、運転者に違和感を与える可能性もある。そこで、本実施形態では、両マップの切替えは、所定の条件が満たされるときのみ行う。具体的には、ペダル開度θがゼロであるとき(すなわち、アクセルペダル34が原位置にあるとき)、反力モータ40によるペダル反力Frが生成されていないとき及び反力ECU48から反力モータ40に対して反力生成指令Srが出力されていないときに両マップの切替えを許可する。これらの許可条件は、適宜組み合わせて用いることが可能であり、また、別の許可条件を設定してもよい。
 両マップの切替えを許可する場合(S1:YES)、ステップS2に進み、両マップの切替えを許可しない場合(S1:NO)、ステップS10に進む。
 ステップS2において、反力ECU48は、SOCセンサ24からバッテリ22の残量(SOC)を取得する。ステップS3において、反力ECU48は、バッテリ22の残量が大きいか否かを判定する。具体的には、ステップS2で取得したSOCが所定値(SOC閾値THsoc)を上回るか否かを判定する。
 バッテリ22の残量が大きい場合(S3:YES)、ステップS4において、反力ECU48は、残量大用マップ(図2)を選択する。ステップS5において、反力ECU48は、車速センサ44から車速Vを取得する。
 ステップS6において、反力ECU48は、残量大用マップにおいて、車速Vとの関係から残量大用閾値(第1反力増大閾値TH1又は第2反力増大閾値TH2)を設定する。図2から明らかなように、車速Vによっては第1・第2反力増大閾値TH1、TH2のいずれも設定されない場合がある。なお、閾値TH2(図2)の代わりに閾値TH3(図3)を用いて、閾値TH1、TH3の両方を同時に設定することも可能である。
 ステップS3に戻り、バッテリ22の残量が大きくない場合(S3:NO)、ステップS7において、反力ECU48は、残量小用マップ(図3)を選択する。ステップS8において、反力ECU48は、車速センサ44から車速Vを取得する。
 ステップS9において、反力ECU48は、残量小用マップにおいて、車速Vとの関係から残量小用閾値(第3反力増大閾値TH3)を設定する。
 ステップS10において、反力ECU48は、開度センサ38からペダル開度θを取得する。ステップS11において、反力ECU48は、ステップS10で取得したペダル開度θが、ステップS6で設定した残量大用閾値又はステップS9で設定した残量小用閾値以上であるか否かを判定する。ペダル開度θが、ステップS6又はS9で設定された閾値(残量大用閾値又は残量小用閾値)以上である場合(S11:YES)、ステップS12において、ペダル反力Frを増大させる。ペダル開度θが、ステップS6又はS9で選択された閾値(残量大用閾値又は残量小用閾値)以上でない場合(S11:NO)、ペダル反力Frを増大させずに今回の演算周期を終え、次の演算周期に移る(S1に戻る)。
 例えば、残量大用マップ(図2)が選択され、車速Vに応じて第1反力増大閾値TH1又は第2反力増大閾値TH2が設定されている場合、ペダル開度θと、閾値TH1又はTH2とを比較する。ペダル開度θが閾値TH1又はTH2以上である場合、反力ECU48は、ペダル反力Frを1段階増加させる(図4及び図5参照)。また、ペダル開度θが閾値TH1以上となりペダル反力Frが1段階増加された後、車速Vの増加に伴ってペダル開度θが閾値TH2以上となった場合、反力ECU48は、ペダル反力Frを2段階増加させる(図4参照)。さらに、ペダル開度θが第1・第2反力増大閾値TH1、TH2のいずれも下回る場合、反力ECU48は、通常のペダル反力Frを用いる(図4及び図5参照)。
 また、残量小用マップ(図3)が選択され、車速Vに応じて第3反力増大閾値TH3のみが設定されている場合、ペダル開度θと閾値TH3とを比較する。ペダル開度θが閾値TH3以上である場合、反力ECU48は、ペダル反力Frを1段階増加させる(図6参照)。また、ペダル開度θが閾値TH3以上でない場合、反力ECU48は、通常のペダル反力Frを用いる(図6参照)。
(2-2-4.第1・第2加速アシスト閾値TH2、TH3)
(2-2-4-1.第1・第2加速アシスト閾値TH2、TH3の概要)
 上記のように、閾値TH2、TH3は、その時点(現時点)の車速Vで一定走行可能なペダル開度(定速走行開度θcru)に所定量Q1、Q2を上乗せした値として設定される。
 図8は、車速Vと、定速走行開度θcru及び第1~第3反力増大閾値TH1~TH3との関係を示すマップである。図8において、一点鎖線100は、定速走行開度θcruを示し、破線102は、閾値TH1を示し、実線104は、閾値TH2、TH3を示す。但し、実線104に関し、切替点106よりも車速Vが低い領域では、閾値TH1に関する特性(破線102)を用いるため、切替点106よりも車速Vが低い領域では、閾値TH2は用いられない。二点鎖線108は、後述する加速アシスト開度θaccを示す。
 図8に示すように、所定量Q1、Q2はそれぞれ加速アシスト用第1加算値q1と余剰出力用の第2加算値q2とに分けられる。
 すなわち、第1加算値q1は、車両10(エンジン14)がその時点(現時点)の車速Vで一定走行可能な出力に加え、その時点の車速Vに応じた前後G(以下「必要前後G」という。)を実現する駆動力を得るために必要なペダル開度θの加算値である。必要前後Gは、車速Vに応じて必要となると想定される加速に対応する前後Gを意味する。第1加算値q1に応じてエンジン14が発生する駆動力Fは、車両10の走行自体に用いられる。必要前後G及び第1加算値q1の更なる詳細(第1加算値q1を考慮した所定量Q1、Q2)については後述する。
 第2加算値q2は、エンジン14のエネルギ効率を考慮したペダル開度θの加算値である。すなわち、ペダル開度θが定速走行開度θcru及び第1加算値q1の和(θcru+q1)となるようにアクセルペダル34が踏み込まれた場合、エンジン14の出力は、エネルギ効率(燃費効率)の観点から効率的になっているとはいえない場合がある。そこで、本実施形態では、ペダル開度θが定速走行開度θcru及び第1加算値q1の和となるようにペダル反力Frを発生させるのではなく、エネルギ効率がよくなるエンジン14の出力に対応するペダル開度θまでアクセルペダル34をさらに踏み込んだ状態でペダル反力Frが急激に増大させるようにする。第2加算値q2に応じてエンジン14が発生する駆動力Fは、車両10の走行以外の目的(例えば、バッテリ22の充電、図示しない補機の駆動)に用いられる。第2加算値q2の更なる詳細(第2加算値q2を考慮した所定量Q1、Q2)については後述する。
(2-2-4-2.第1・第2加速アシスト閾値TH2、TH3の設定)
 図9は、第1・第2加速アシスト閾値TH2、TH3を設定する際の手順を示すフローチャートである。なお、図9の各ステップのうちステップS21~S24は第1加算値q1に関するものであり、ステップS25は第2加算値q2に関するものである。
(2-2-4-2-1.実測データの取得)
 図9のステップS21において、テストドライバにより基準コースを車両10で走行し、その際の車速Vと前後加速度(以下「前後G」という。)の実測値のデータを計測又は取得する。車速Vは、車速センサ44が取得したものであり、前後Gは、前後Gセンサ46が取得したものである。或いは、前後Gは、車速Vの時間微分値として算出することもできる。
 車速V及び前後Gのデータは、例えば、図示しないデータロガーにより記憶する。或いは、反力ECU48等の電子制御装置に上記の機能を持たせてもよい。
(2-2-4-2-2.必要前後Gの設定)
 ステップS22において、車両10の開発者は、各車速Vについて必要前後Gを設定する。必要前後Gは、各車速Vにおいて運転者が必要とする可能性のある車両10の加速度を判定するために用いるものである。すなわち、運転者が必要とする可能性のある車両10の加速度は、前後Gと相当程度の相関関係があるものと考えられる。このため、必要前後Gを判定することで、運転者が必要とする可能性のある車両10の加速度を推定することが可能となる。
 例えば、各車速Vについて発生した前後Gの所定割合(例えば、90%)が含まれる前後Gを必要前後Gとする。これにより、各車速Vにおいて運転者が必要とする可能性のある車両10の加速度を推定することが可能となる。
 なお、必要前後Gは、車速Vが所定値(図8のV1)以下であるとき、データ内容にかかわらず、値を一定とする。これは、低速域では急発進する可能性が比較的高いことを考慮したものである。すなわち、低速域において急発進をしたときに運転者に違和感を与えないようにするためのものである。
 また、ステップS22の処理は、開発者が行う代わりに、反力ECU48等の電子制御装置において当該処理を実行してもよい。
(2-2-4-2-3.目標駆動力Ftarの設定)
 図9のステップS23において、車両10の開発者は、各車速Vにおける目標駆動力Ftarを、必要前後Gに基づき設定する。ここにいう目標駆動力Ftarは、必要前後Gを実現するための駆動力であり、図10に示すように、エンジン14及びモータ16それぞれについて実測値、シミュレーション値等により算出できる。
 図10は、ステップS21で取得したデータに基づき、各車速Vにおける目標駆動力Ftarを決める方法を説明する図である。図10において、太い破線120は、MOT走行に関する目標駆動力Ftarであり、太い実線122は、ENG走行に関する目標駆動力Ftarであり、太い一点鎖線124は、ENG走行によりシフトアップしていったときの目標駆動力Ftar(又は駆動力Fe)の一例である。細い実線(1st、2nd、3rd、4th、5th、6thとの記載があるもの)は、変速段毎の駆動力を示す。細い破線(1st、2nd、3rd、4th、5thとの記載があるもの)は、変速段毎のエンジン回転数NE[rpm]を示す。
 上記のように、バッテリ22の残量が大きい場合、MOT走行の後、ENG走行を行う。このため、車速Vが相対的に低い場合、実線122の特性ではなく、破線120の特性を用いる。
 また、バッテリ22の残量が大きい場合、MOT走行アシスト閾値TH1及び第1加速アシスト閾値TH2を用いる。閾値TH1、TH2のうち目標駆動力Ftarに対応する値となるのは、閾値TH2であり、閾値TH1は、MOT走行とENG走行の切り替わりを示す値である。従って、バッテリ22の残量が大きい場合、切替点126よりも車速Vが低い領域では、破線120の特性を用い、切替点126よりも車速Vが高い領域では、実線122の特性を用いる。なお、破線120の特性と実線122の特性との切替え時は、太い二点鎖線128の特性を用いる。
 図10の破線120の特性は、ステップS21で取得した実測データに対応するものではなく、MOT走行からENG走行に切り替わる手前の駆動力を示すものであることに留意されたい。但し、ステップS21で取得した実測データに対応するペダル開度θの閾値を、閾値TH1の代わりに用いることもできる。
 また、バッテリ22の残量が小さい場合、MOT走行を行わずにENG走行を行う。さらに、バッテリ22の残量が小さい場合、第2加速アシスト閾値TH3を用いる。従って、バッテリ22の残量が小さい場合、車速Vが相対的に低い場合でも(切替点126よりも車速Vが低い領域においても)、実線122の特性を用いる。
 なお、ステップS23の処理は、開発者が行う代わりに、反力ECU48等の電子制御装置において当該処理を実行してもよい。
(2-2-4-2-4.第1加算値q1を考慮した加速アシスト開度θaccの設定)
 図9のステップS24において、車両10の開発者は、各車速Vについての目標駆動力Ftarに基づき定速走行開度θcruと第1加算値q1の和(以下「加速アシスト開度θacc」という。)を設定する。
 図11は、目標駆動力Ftarに基づいて加速アシスト開度θaccを設定する際に用いるマップを示す図である。但し、図11では、エンジン14のエネルギ効率(換言すると、第2加算値q2)は考慮されていないことに留意されたい。図11では、車速V及び目標駆動力Ftarとペダル開度θとの関係が示されている。すなわち、図11では、ペダル開度θ毎に車速V及び目標駆動力Ftarの特性を示すマップが示されている。
 例えば、ペダル開度θがθ1、θ2、θ3、θ4、θ5、θ6、θ7のとき、車速Vと目標駆動力Ftarの関係はそれぞれ特性130、132、134、136、138、140、142となる。なお、ここでは、θ1<θ2<θ3<θ4<θ5<θ6<θ7である。また、θ1=0[%]であり、θ7=100[%]である。
 図11に示す関係は、車両10の開発者が予め実測データ又はシミュレーションデータを取得して記憶しておく。車両10の開発者は、ステップS23(図9)で求めた目標駆動力Ftarと図11の特性から、各車速Vについて加速アシスト開度θaccを設定する。すなわち、各車速Vについて目標駆動力Ftarに対応するペダル開度θを加速アシスト開度θacc(=定速走行開度θcru+第1加算値q1)とする。
 図8に示すように、第1加算値q1は、車速Vが低くなるほど大きくなり、車速Vが高くなるほど小さくなる。これは、ステップS22で設定した必要前後Gを考慮したものである。すなわち、車速Vが低くなるほど必要前後Gが大きくなり、車速Vが高くなるほど必要前後Gが小さくなることを考慮したものである。但し、上述したように、車速VがV1以下であるとき、必要前後Gは一定となるため、車速VがV1以下であるとき、第1加算値q1も一定となる。
 なお、ステップS24の処理は、開発者が行う代わりに、反力ECU48等の電子制御装置において当該処理を実行してもよい。
(2-2-4-2-5.第2加算値q2を考慮した閾値TH2、TH3の設定)
 図9のステップS25において、車両10の開発者は、エンジン14のエネルギ効率(第2加算値q2)を考慮して閾値TH2、TH3を設定する。
 閾値TH2、TH3は、ペダル開度θと車速V(又はエンジン回転数NE)との関係から、正味燃料消費率(BSFC:Brake Specific Fuel Consumption)に基づいて得られる最良燃費点又は最良燃費領域内となるペダル開度θを、閾値TH2、TH3として設定することができる。
 或いは、後述するように、閾値TH2、TH3は、単位量(例えば、1cc)当たりの燃料により得られるエネルギ・トルクが最大となる領域(以下「高効率発電領域」又は「充電促進領域」という。)内の値として設定してもよい。これにより、当該単位量当たりの燃料によりエンジン14が駆動した場合のオルタネータ18の発電量が相対的に高くなる。
 図12は、第1・第2加速アシスト閾値TH2、TH3の設定方法を説明するための図である。図12に示すように、閾値TH2、TH3は、ペダル開度θ(要求駆動力Freq)と車速Vとの関係から、正味燃料消費率(BSFC)に基づいて得られる最良燃費点又は最良燃費領域内となるペダル開度θを、閾値TH2、TH3として設定することができる。
 図12において、車速VがV2であり、BSFCに基づいて得られる最良燃費点(最良燃費領域R1内の中心)がP1であるとき、閾値TH2、TH3は、最良燃費点P1に対応して設定することができる。最良燃費領域R1内のその他の値を閾値TH2、TH3として設定してもよい。図12においてペダル開度θが閾値TH2又はTH3であるとき、要求駆動力Freqは、Freq1となるが、このうち車両10の走行に寄与する駆動力(すなわち、加速アシスト開度θacc(=θcru+q1)に対応する駆動力)はFreq2となる。そして、Freq1とFreq2の差分の駆動力(Freq1-Freq2)を、車両10の走行以外の用途(例えば、走行モータ16による発電若しくはオルタネータ18の駆動又は図示しない補機の駆動)に回すことができる。
 BSFCに基づいて得られる最良燃費領域R1及び最良燃費点P1は、車速Vと要求駆動力Freq(≒エンジン14のトルク)に応じて変化し、図12では、最適燃費曲線C1として示される。また、「WOT」と共に示される線は、WOT(Wide Open Throttle)状態の際の車速Vと要求駆動力Freqとの関係を示す線である。上記のようにBSFCに基づいて得られる最良燃費領域R1又は最良燃費点P1を用いることにより、エンジン14の効率が高い状態で、バッテリ22の充電を促進することが可能となる。
 なお、図12の車速Vを、例えば、エンジン回転数NEに置き換えてもよい。また、図12の要求駆動力Freqを、例えば、エンジン14のトルクに置き替えることもできる。さらに、ペダル開度θと車速Vの関係又はペダル開度θとエンジン回転数NEの関係は、変速比(変速段)に応じて変化させてもよい。
 上記のように閾値TH2、TH3を設定し、ペダル開度θが閾値TH2、TH3と等しい場合、駆動状態ECU32は、閾値TH2、TH3に対応する値にエンジン14の出力を制御する。そして、駆動状態ECU32は、車両10の駆動力Fについては、加速アシスト開度θacc(=θcru+q1)に対応する値となるように制御すると共に、オルタネータ18の発電量(又はモータ16の回生量)については、第2加算値q2に対応する値となるように制御する。
3.本実施形態の効果
 以上のように、本実施形態によれば、定速走行開度θcruに所定量Q1、Q2(第1加算値q1)を上乗せした値を第1・第2加速アシスト閾値TH2、TH3(反力増大開度)として設定する。運転者が閾値TH2、TH3までアクセルペダル34を踏み込めば、現時点における車速Vに応じた前後Gを得ることが可能となる。従って、運転者の加速操作に違和感を与えることを抑制し、アクセルペダル34(車両10)の操作性を向上することが可能となる。
 本実施形態において、反力ECU48(反力制御手段)は、車速Vが増加するにつれ、所定量Q1、Q2(第1加算値q1)を小さくするように閾値TH2、TH3を設定する(図8)。これにより、低車速域では閾値TH2、TH3までアクセルペダル34を踏み込むことで、比較的大きな加速度を得ることが可能となる。その結果、例えば、車両10が交通の流れに乗るために必要な程度の加速度を得ることが可能となる(但し、閾値TH2については、低車速域では、閾値TH1を用いる。)。また、高車速域では、閾値TH2、TH3でアクセルペダル34を留めることで、比較的小さな加速度を得ることが可能となる。その結果、例えば、必要以上の加速を防止してエネルギ効率(燃費又は電費)が悪化することを抑制することが可能となる。
 反力ECU48(反力制御手段)は、エンジン14が運動効率(エネルギ効率)の良い出力となるペダル開度θに閾値TH2、TH3を設定し(図12)、所定量Q1、Q2(第1加算値q1及び第2加算値q2)は、各車速Vに応じた加速度を実現すると共に、オルタネータ18又はモータ16をエンジン14の駆動力Feにより発電させる値として設定される。
 これにより、運転者が閾値TH2、TH3までアクセルペダル34を踏み込むことで、エンジン14が運動効率の良い出力をしている状態で車両10を加速することが可能となる。従って、エネルギ効率が良い状態において、各車速Vに応じた車速Vを実現すると共にオルタネータ18又はモータ16による発電を行うことが可能となる。加えて、各車速Vにおいて燃費の良いペダル開度θを運転者に教えることが可能となる。
 本実施形態において、反力ECU48(反力制御手段)は、車速V及びバッテリ残量(車両10の状態)によりMOT走行(第1走行モード)を選択可能なときには、閾値TH1を用いて反力制御を行い、MOT走行(第1走行モード)を選択不可のときには、閾値TH2又はTH3を用いて反力制御を行う(図2及び図3)。これにより、MOT走行を選択可能な場合には、モータ16(電動機)のみの走行から少なくともエンジン14を駆動する走行に切り替わる際にペダル反力Frを増加させる反力制御を実行することで、燃費の良い運転を運転者に教示することが可能となる。また、MOT走行を選択不可の場合、定速走行開度θcruに所定量Q1、Q2を上乗せした値(すなわち、閾値TH2、TH3)を用いる反力制御を実行することで、運転者の加速操作に違和感を与えることを抑制することが可能となる。従って、それぞれの反力制御を両立させることが可能となる。
 本実施形態において、アクセルペダル反力制御装置12は、MOT走行(第1走行モード)とENG走行(第2走行モード)を切り替える駆動状態ECU32(モード切替手段)を備え、駆動状態ECU32は、車速Vが所定値V1を下回る場合、MOT走行とENG走行をペダル開度θに応じて選択し(図2参照)、車速Vが所定値V1を上回る場合、ENG走行を選択する。反力ECU48(反力制御手段)は、車速Vが所定値V1を超えると、閾値TH1を用いる反力制御から閾値TH2を用いる反力制御に移行する(図2参照)。
 上記構成によれば、車速Vに応じてMOT走行の選択の可否を切り替える。また、車速Vが所定値V1を下回る場合(すなわち、低車速域の場合)、MOT走行(第1走行モード)とENG走行(第2走行モード)とをペダル開度θに応じて切り替える(図2参照)。そして、MOT走行が選択可能なときには閾値TH1(第1開度閾値)を用い、MOT走行が選択不可のときには閾値TH2(第2開度閾値)を用いる。さらに、車速Vに応じてMOT走行が選択可能な状態から選択不可の状態に移行したとき、閾値TH1を用いる反力制御から閾値TH2を用いる反力制御に移行する(図2参照)。従って、走行モード(車両10の駆動状態)に応じた反力制御を実行することが可能となる。
B.変形例
 なお、本発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
1.適用対象
 上記実施形態では、駆動源(駆動力を生成するもの)としてエンジン14及び走行モータ16を有する車両10に反力制御装置12を搭載したが、車速Vに応じた前後G(必要前後G)を実現する観点からすれば、これに限らない。例えば、車両10は、エンジン14又はモータ16の一方のみを有するものであってもよい。或いは、図1のように走行モータ16がエンジン14に直結して駆動輪(例えば、前輪)を駆動している構成において、さらに別の駆動輪(例えば、後輪)を駆動する別の走行モータ(第2走行モータ)を1つ又は2つ設けてもよい。換言すると、四輪駆動のハイブリッド車両に本発明を適用してもよい。この場合、「ENG+MOT走行」においては、当該第2走行モータによってエンジン14をアシストしてもよい。
2.走行モータ16
 上記実施形態では、エンジン14が駆動中である場合、走行モータ16は駆動を止めるか(ENG走行)又はエンジン14と共に駆動した(ENG+MOT走行)が、エンジン14の駆動力を用いて走行モータ16を回生又は発電させてもよい。換言すると、走行モータ16にオルタネータ18の役割を担わせてもよい。この場合、第1・第2加速アシスト閾値TH2、TH3は、例えば、単位量当たりの燃料によりエンジン14が駆動することで走行モータ16の発電量が所定の発電量閾値以上となる領域内で設定することができる。これにより、アクセルペダル34を閾値TH2、TH3又はその近傍で保持した場合、走行モータ16による発電量を相対的に多くすることが可能となる。従って、バッテリ22への充電を促進することが可能となる。
 なお、上記のようにエンジン14及び走行モータ16に加え、第2走行モータを設ける構成(四輪駆動のハイブリッド車両)の場合、「ENG+MOT走行」においては、例えば、エンジン14と第2走行モータで「ENG+MOT走行」を行いつつ、走行モータ16は、エンジン14の駆動力により回生又は発電してバッテリ22を充電することも可能である。
3.走行状態の切替え
[3-1.バッテリ22の残量に応じた特性]
 上記実施形態では、走行状態(MOT走行、ENG走行及びENG+MOT走行)の切替え特性を、バッテリ22の残量が大きい場合と小さい場合の2つに分けて設定したが(図2及び図3)、走行状態の切替え特性の設定は、バッテリ22の残量に応じて複数設ければ、3つ以上の特性を設けることもできる。
 上記実施形態では、バッテリ22の残量が大きい場合の切替え特性として、MOT走行、ENG走行及びENG+MOT走行を設定し(図2)、バッテリ22の残量が小さい場合の切替え特性として、ENG走行及びENG+MOT走行を設定した(図3)。しかしながら、車速Vに応じた前後G(必要前後G)を実現する観点からすれば、切替え特性の組合せは、これに限らない。例えば、バッテリ22の残量が大きい場合の切替え特性として、MOT走行及びENG走行の組合せ、ENG走行及びENG+MOT走行の組合せ又はMOT走行及びENG+MOT走行の組合せを設定してもよい。また、バッテリ22の残量が小さい場合の切替え特性として、ENG走行のみ又はENG+MOT走行のみを設定してもよい。
 図13は、バッテリ22の残量が大きい場合において、ペダル開度θを増加させ、その後、ペダル開度θを減少させた場合のペダル開度θとペダル反力Frの関係の変形例を示す図である。
 図13の変形例では、ペダル開度θをゼロから増加させて行くと、まずMOT走行が選択され、さらにペダル開度θを増加させると、MOT走行からENG+MOT走行に切り替わる。この際、MOT走行からENG+MOT走行に切り替わる手前(MOT走行アシスト閾値TH1)において、ペダル反力Frが急激に増加する。これにより、運転者は、ENG走行からENG+MOT走行への切り替わりを認識することが可能となる。なお、図13の特性は、例えば、アクセルペダル34の踏込み速度[°/sec]が大きく(所定の踏込み速度閾値を上回り)、且つペダル開度θが大きいとき(所定の開度閾値を上回るとき)に適用してもよい。これにより、急加速を要する場面で車両10の加速度を急速に高めることが可能となる。
[3-2.切替えの指標]
 上記実施形態(図2及び図3)では、走行状態(MOT走行、ENG走行及びENG+MOT走行)の切替え特性を、車速Vとペダル開度θ(要求駆動力Freq)に応じて設定したが、切替え特性の設定は、ペダル開度θ(要求駆動力Freq)に応じて設定するものであれば、これに限らない。例えば、ペダル開度θ(要求駆動力Freq)のみに応じて設定してもよい。或いは、ペダル開度θ(要求駆動力Freq)と加速度[km/h/s]に応じて設定することもできる。
 上記実施形態(図2及び図3)では、MOT走行の選択の可否を、車速VがV1未満であるか否かと、バッテリ残量が大きいか否かとに応じて判断したが、車両10の状態又は運転者の操作により切り替えるとの観点からすれば、これに限らない。例えば、エンジン14の暖機が必要であるか否かを判定するためのエンジン14の冷却水温の閾値(暖機閾値)を設定し、冷却水温が暖機閾値を下回る場合、MOT走行を禁止してもよい。或いは、MOT走行の選択の可否を、図示しない入力手段(スイッチ、ボタン、マイクロホン等)に対する運転者の入力操作に応じて設定することもできる。
[3-3.MOT走行アシスト閾値TH1]
 上記実施形態では、MOT走行アシスト閾値TH1を用いたが、例えば、第1・第2加速アシスト閾値TH2、TH3の利用に着目すれば、MOT走行アシスト閾値TH1を用いない構成も可能である。
 上記実施形態では、バッテリ残量が小さいとき、MOT走行アシスト閾値TH1と同様の閾値を用いなかったが(図3)、これに限らず、例えば、バッテリ残量が大きいときよりも値を小さくして閾値TH1と同様の閾値を設定することも可能である。
[3-4.第1・第2加速アシスト閾値TH2、TH3]
 上記実施形態(図2及び図3)では、定速走行開度θcruと所定量Q1、Q2の和である第1・第2加速アシスト閾値TH2、TH3を燃費効率の高い領域(高効率発電領域又は充電促進領域)内の値として設定したが、車速Vに応じた前後G(必要前後G)を実現する観点からすれば、これに限らない。例えば、第2加算値q2を除き第1加算値q1のみから閾値TH2、TH3を設定してもよい。
 上記実施形態(図2及び図3)では、閾値TH2、TH3の両方を用いたが、いずれか一方のみを用いることもできる。
 上記実施形態(図8)では、車速Vの全域に亘り、第1加算値q1を設定したが、車速Vに応じた前後G(必要前後G)を実現する観点からすれば、必ずしもこれに限らない。例えば、車速Vが所定値以上(例えば、80km/h以上)の領域では、第1加算値q1を用いずに閾値TH2、TH3を設定してもよい。第2加算値q2も同様である。従って、車速Vが前記所定値以上である場合、定速走行開度θcruを閾値TH2、TH3として設定してもよい。
 上記実施形態では、閾値TH2、TH3は、ペダル開度θ(要求駆動力Freq)と車速Vとの関係から、正味燃料消費率(BSFC)に基づいて得られる最良燃費点又は最良燃費領域内となるペダル開度θを、閾値TH2、TH3として設定したが(図12)、別の方法により設定してもよい。例えば、閾値TH2、TH3は、単位量(例えば、1cc)当たりの燃料により得られるエネルギ・トルクが最大となる領域(高効率発電領域又は充電促進領域)内の値として設定してもよい。

Claims (6)

  1.  車両(10)のアクセルペダル(34)に付与する反力を制御する反力制御手段(48)を有するアクセルペダル反力制御装置(12)であって、
     前記アクセルペダル(34)への反力をベース反力よりも増加させる前記アクセルペダル(34)の開度を反力増大開度と定義し且つ現時点における車速で一定走行可能な前記アクセルペダル(34)の開度を定速走行開度と定義するとき、前記反力制御手段(48)は、前記定速走行開度に所定量を上乗せした値を前記反力増大開度として設定し、
     前記所定量は、各車速に応じた前後加速度を実現する値として設定される
     ことを特徴とするアクセルペダル反力制御装置(12)。
  2.  請求項1記載のアクセルペダル反力制御装置(12)において、
     前記反力制御手段(48)は、車速が増加するにつれ、前記所定量を小さくするように前記反力増大開度を設定する
     ことを特徴とするアクセルペダル反力制御装置(12)。
  3.  請求項1又は2記載のアクセルペダル反力制御装置(12)において、
     前記反力制御手段(48)は、前記車両(10)に搭載されたエンジン(14)が運動効率の良い出力となる前記アクセルペダル(34)の開度に前記反力増大開度を設定し、
     前記所定量は、各車速に応じた加速度を実現すると共に、前記車両(10)に搭載された発電機(16、18)を前記エンジン(14)の駆動力により発電させる値として設定される
     ことを特徴とするアクセルペダル反力制御装置(12)。
  4.  請求項1~3のいずれか1項に記載のアクセルペダル反力制御装置(12)において、
     前記車両(10)に搭載され前記車両(10)の駆動源として用いられるモータのみを駆動して前記車両(10)を走行させる第1走行モードから、少なくともエンジン(14)を駆動する第2走行モードに切り替わる前記アクセルペダル(34)の開度を第1開度閾値とし、前記定速走行開度に前記所定量を上乗せした値を第2開度閾値とするとき、
     前記反力制御手段(48)は、
     前記車両(10)の状態又は運転者の操作により前記第1走行モードを選択可能なときには、前記第1開度閾値を前記反力増大開度として反力制御を行い、
     前記第1走行モードを選択不可のときには、前記第2開度閾値を前記反力増大開度として反力制御を行う
     ことを特徴とするアクセルペダル反力制御装置(12)。
  5.  請求項4記載のアクセルペダル反力制御装置(12)において、
     前記アクセルペダル反力制御装置(12)は、前記第1走行モードと前記第2走行モードを切り替えるモード切替手段(32)を備え、
     前記モード切替手段(32)は、車速が所定値を下回る場合、前記第1走行モードと前記第2走行モードを前記アクセルペダル(34)の開度に応じて選択し、車速が前記所定値を上回る場合、前記第2走行モードを選択し、
     前記反力制御手段(48)は、車速が前記所定値を超えると、前記第1開度閾値を用いる反力制御から前記第2開度閾値を用いる反力制御に移行する
     ことを特徴とするアクセルペダル反力制御装置(12)。
  6.  請求項1~5のいずれか1項に記載のアクセルペダル反力制御装置(12)を備える車両(10)。
PCT/JP2012/080154 2012-11-21 2012-11-21 アクセルペダル反力制御装置及び車両 WO2014080468A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280076697.XA CN104755305B (zh) 2012-11-21 2012-11-21 油门踏板反力控制装置及车辆
JP2014548367A JP5843412B2 (ja) 2012-11-21 2012-11-21 アクセルペダル反力制御装置及び車両
PCT/JP2012/080154 WO2014080468A1 (ja) 2012-11-21 2012-11-21 アクセルペダル反力制御装置及び車両
DE112012007156.5T DE112012007156B4 (de) 2012-11-21 2012-11-21 Gaspedalgegenkraft-Steuerungsvorrichtung und Fahrzeug
US14/442,790 US9365112B2 (en) 2012-11-21 2012-11-21 Accelerator-pedal-counterforce control device and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080154 WO2014080468A1 (ja) 2012-11-21 2012-11-21 アクセルペダル反力制御装置及び車両

Publications (1)

Publication Number Publication Date
WO2014080468A1 true WO2014080468A1 (ja) 2014-05-30

Family

ID=50775673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080154 WO2014080468A1 (ja) 2012-11-21 2012-11-21 アクセルペダル反力制御装置及び車両

Country Status (5)

Country Link
US (1) US9365112B2 (ja)
JP (1) JP5843412B2 (ja)
CN (1) CN104755305B (ja)
DE (1) DE112012007156B4 (ja)
WO (1) WO2014080468A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107206895A (zh) * 2015-03-04 2017-09-26 本田制锁有限公司 反力输出装置
CN105579272B (zh) * 2014-08-29 2019-01-18 马自达汽车株式会社 车辆用油门踏板反力控制装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326805B2 (ja) * 2008-07-31 2013-10-30 日産自動車株式会社 アクセルペダル踏力制御装置
JP6347417B2 (ja) * 2015-12-25 2018-06-27 マツダ株式会社 エンジンの制御装置
DE102016007134A1 (de) * 2016-06-10 2017-12-14 Audi Ag Verfahren zum Betreiben einer Bedienelementanordnung sowie entsprechende Bedienelementanordnung
DE102017004536A1 (de) * 2017-05-11 2018-11-15 Lucas Automotive Gmbh System und Verfahren zur vorausschauenden Geschwindigkeitsbeeinflussung eines Kraftfahrzeugs
DE102017221495A1 (de) 2017-11-30 2019-06-06 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines hybriden Antriebsstrangs eines Kraftfahrzeugs und Kraftfahrzeug
US10793092B2 (en) 2017-12-29 2020-10-06 Cnh Industrial America Llc System and method for reducing fuel consumption of a work vehicle based on estimated parastic power losses
US10752188B2 (en) 2017-12-29 2020-08-25 Cnh Industrial America Llc System and method for reducing fuel consumption of a work vehicle based on estimated fan-based and/or alternator-based power losses
JP6985645B2 (ja) * 2018-02-02 2021-12-22 マツダ株式会社 車両の制御方法、車両システム及び車両の制御装置
JP7081263B2 (ja) * 2018-03-29 2022-06-07 マツダ株式会社 車両用制御装置
JP7258919B2 (ja) * 2019-02-01 2023-04-17 株式会社ミクニ アクセルペダル装置
KR102645052B1 (ko) * 2019-03-05 2024-03-08 현대자동차주식회사 하이브리드 차량의 주행모드 제어 장치 및 그 방법
JP2022108510A (ja) * 2021-01-13 2022-07-26 マツダ株式会社 運転補助装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120339A (ja) * 2001-10-10 2003-04-23 Toyota Motor Corp アクセル反力制御装置
JP2005132225A (ja) * 2003-10-30 2005-05-26 Nissan Motor Co Ltd アクセルペダル踏力制御装置
JP2006282135A (ja) * 2005-04-05 2006-10-19 Toyota Motor Corp 駆動力制御装置
WO2011148753A1 (ja) * 2010-05-25 2011-12-01 日産自動車株式会社 ハイブリッド車両のアクセルペダル踏力制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7028793B2 (en) * 2002-02-08 2006-04-18 Green Vision Technology, Llc Internal combustion engines for hybrid powertrain
JP2005271618A (ja) 2004-03-23 2005-10-06 Nissan Motor Co Ltd ハイブリッド電気自動車のアクセル反力制御装置
JP4413835B2 (ja) * 2005-08-24 2010-02-10 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
US7699129B2 (en) * 2007-10-31 2010-04-20 Ford Global Technologies, Llc Method and system for alerting a driver that a motive power system is about to be activated
JP5326805B2 (ja) 2008-07-31 2013-10-30 日産自動車株式会社 アクセルペダル踏力制御装置
JP4745418B2 (ja) * 2009-04-23 2011-08-10 本田技研工業株式会社 反力装置
JP5316339B2 (ja) * 2009-09-18 2013-10-16 日産自動車株式会社 アクセルペダル踏力制御装置
EP2529970B1 (en) 2010-01-28 2019-10-23 Nissan Motor Co., Ltd Device to control force required to depress accelerator pedal
WO2011158571A1 (ja) * 2010-06-15 2011-12-22 日産自動車株式会社 アクセルペダル踏力制御装置のアクセルペダル踏力設定方法
JP5206802B2 (ja) * 2011-01-20 2013-06-12 トヨタ自動車株式会社 車両の走行制御装置
DE112012004922B4 (de) 2011-11-25 2019-06-27 Honda Motor Co., Ltd. Fahrzeug-Fahrsteuer-/Regelvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120339A (ja) * 2001-10-10 2003-04-23 Toyota Motor Corp アクセル反力制御装置
JP2005132225A (ja) * 2003-10-30 2005-05-26 Nissan Motor Co Ltd アクセルペダル踏力制御装置
JP2006282135A (ja) * 2005-04-05 2006-10-19 Toyota Motor Corp 駆動力制御装置
WO2011148753A1 (ja) * 2010-05-25 2011-12-01 日産自動車株式会社 ハイブリッド車両のアクセルペダル踏力制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579272B (zh) * 2014-08-29 2019-01-18 马自达汽车株式会社 车辆用油门踏板反力控制装置
CN107206895A (zh) * 2015-03-04 2017-09-26 本田制锁有限公司 反力输出装置
US10202037B2 (en) 2015-03-04 2019-02-12 Honda Lock Mfg. Co., Ltd. Reaction force output device
CN107206895B (zh) * 2015-03-04 2019-09-27 本田制锁有限公司 反力输出装置

Also Published As

Publication number Publication date
CN104755305B (zh) 2017-06-13
DE112012007156B4 (de) 2022-02-10
US9365112B2 (en) 2016-06-14
US20150298546A1 (en) 2015-10-22
DE112012007156T5 (de) 2015-08-13
CN104755305A (zh) 2015-07-01
JP5843412B2 (ja) 2016-01-13
JPWO2014080468A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5843412B2 (ja) アクセルペダル反力制御装置及び車両
JP5756185B2 (ja) 車両用走行制御装置
CN102673377B (zh) 混合动力车辆的控制装置
CN104093594B (zh) 车辆以及车辆用控制方法
JP5725037B2 (ja) 車両および車両用制御方法
CN103328291B (zh) 车辆及车辆用控制方法
JP5538633B2 (ja) 電動車両
JP2007210418A (ja) 車両の制御装置
WO2013018221A1 (ja) 車両および車両の制御方法
WO2012053592A1 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
WO2012101796A1 (ja) 車両および車両用制御方法
JP4858060B2 (ja) 車両の駆動トルク制御装置
JP5765419B2 (ja) 車両および車両用制御方法
US20210188254A1 (en) Electric vehicle and control method for electric vehicle
WO2012101798A1 (ja) 車両および車両の制御方法
JP6686384B2 (ja) ハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法
JP2013005560A (ja) 電動車両
US20170334281A1 (en) Vehicle
JP2003250202A (ja) 車両の回生制御装置および自動車
WO2017086471A1 (ja) ハイブリッド車両及びその制御方法
WO2012105019A1 (ja) 車両および車両の制御方法
US12083928B2 (en) Vehicle control device, vehicle control method, and storage medium
JP5724840B2 (ja) ハイブリッド車両
JP2024129910A (ja) 車両
JP2019188981A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548367

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14442790

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120071565

Country of ref document: DE

Ref document number: 112012007156

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888672

Country of ref document: EP

Kind code of ref document: A1